WorldWideScience

Sample records for foreland basin northern

  1. A detrital record of continent-continent collision in the Early-Middle Jurassic foreland sequence in the northern Yangtze foreland basin, South China

    Science.gov (United States)

    Qian, Tao; Liu, Shaofeng; Wang, Zongxiu; Li, Wangpeng; Chen, Xinlu

    2016-12-01

    The Mesozoic northern Yangtze foreland basin system was formed by continental collision between the North China and South China plates along the Mianlue suture. Synorogenic stratigraphic sequences of Late Triassic to Early-Middle Jurassic age were developed in the northern Yangtze foreland basin. The upper Middle Jurassic Shaximiao Formation consists mainly of thick-bedded terrestrial successions that serve as the main body of the basin-filling sequences, suggesting intense tectonism in the peripheral orogeny of the foreland basin. Laser-ICP-MS U-Pb analysis of 254 detrital zircon grains from sandstone samples and several published Lower-Middle Jurassic samples, detrital compositions, petrofacies, and paleocurrent reconstructions in the northern Yangtze foreland basin indicate that discrete source areas included the Qinling-Dabieshan ranges and the Mianlue suture zone to the north, and the South China plate to the south. The stratigraphic succession and sediment provenance of the foreland basin imply that the early Mianlue oceanic basin, magmatic arc, and nonmarine molasse foreland basin during the period of deposition were modified or buried by the subsequent continent-continent collision between the North China-Qinling-Dabieshan plate and the Yangtze plate during the Jurassic, which followed the oblique amalgamation between these plates during the Middle-Late Triassic.

  2. Growth of the Zagros Fold-Thrust Belt and Foreland Basin, Northern Iraq, Kurdistan

    Science.gov (United States)

    Koshnaw, Renas; Horton, Brian; Stockli, Daniel; Barber, Douglas; Ghalib, Hafidh; Dara, Rebwar

    2016-04-01

    The Zagros orogenic belt in the Middle Eastern segment of the Alpine-Himalayan system is among the youngest seismically active continental collision zones on Earth. However, due to diachronous and incremental collision, the precise ages and kinematics of shortening and deposition remain poorly understood. The Kurdistan region of the Zagros fold-thrust belt and foreland basin contains well-preserved Neogene wedge-top and foredeep deposits that include clastic nonmarine fill of the Upper Fars, Lower Bakhtiari, and Upper Bakhtiari Formations. These deposits record significant information about orogenic growth, fold-thrust dynamics, and advance of the deformation front. Thermochronologic and geochronologic data from thrust sheets and stratigraphic archives combined with local earthquake data provide a unique opportunity to address the linkages between surface and subsurface geologic relationships. This research seeks to constrain the timing and geometry of exhumation and deformation by addressing two key questions: (1) Did the northwestern Zagros fold-thrust belt evolve from initial thin-skinned shortening to later thick-skinned deformation or vice-versa? (2) Did the fold-thrust belt advance steadily under critical/supercritical wedge conditions involving in-sequence thrusting or propagate intermittently under subcritical conditions with out-of-sequence deformation? From north to south, apatite (U-Th)/He ages from the Main Zagros Thrust, the Mountain Front Flexure (MFF), and additional frontal thrusts suggest rapid exhumation by ~10 Ma, ~5 Ma, and ~8 Ma respectively. Field observations and seismic sections indicate progressive tilting and development of growth strata within the Lower Bakhtiari Formation adjacent to the frontal thrusts and within the Upper Bakhtiari Formation near the MFF. In the Kurdistan region of Iraq, a regional balanced cross section constrained by new thermochronometric results, proprietary seismic reflection profiles, and earthquake hypocenters

  3. Thick sedimentary sequence around Bahraich in the northern part of the central Ganga foreland basin

    Science.gov (United States)

    Manglik, A.; Adilakshmi, L.; Suresh, M.; Thiagarajan, S.

    2015-06-01

    We present the results of a magnetotelluric study along a 285 km long profile between Hamirpur and Rupadia (Nepal border) across the central Ganga basin. The electrical resistivity image obtained by combining 1-D Occam inversion models for 39 sites reveals a significant contrast in the subsurface structure from south to north along the profile. At the southern end, the Bundelkhand massif is delineated as a high resistivity block buried beneath 250-300 m thick sediments. The thickness of sediments gradually increases to about 500-600 m at Kanpur, and to about 1.2 km at Lucknow. Here, the basement depth increases to more than 2.5 km within a profile distance of 20 km, which could be attributed to the Lucknow fault. The underlying rocks also have moderate resistivity and possibly represent the Vindhyans. The sedimentary sequence at the northern end of the profile around Bahraich is more than 9 km thick. Integrating the resistivity image with a published seismic velocity structure from the region and the lithology from the 3927 m deep Matera-I well reveals that the top 4 km succession is constituted of highly conductive Oligocene and younger rocks of the Matera Formation and the Siwaliks, and recent sediments whereas the underlying > 5 km section is composed of sedimentary rocks of the Bahraich Group overlying the Archean basement. The high conductivity of sediments in conjunction with the low seismic velocity and large Vp/Vs obtained by receiver function analysis implies poor consolidation of sediments and thus high seismic hazard potential. The present results have implications for hydrocarbon exploration, hazard potential scenario of the central Ganga basin, and flexural strength of the Indian Plate.

  4. Irregular plate boundary controls on Foreland Basin sedimentation (Miocene, Kahramanmaraş Foreland Basin, SE Turkey)

    Science.gov (United States)

    Gül, Murat; Gürbüz, Kemal; Cronin, Bryan T.

    2015-11-01

    The northern movement of the Arabian Plate led to the development of a compressional regime in the south-eastern part of Turkey after the Late Cretaceous. The collision of the Arabian Plate with the Anatolide-Taurides Platform and subsequent development of the Kahramanmaraş Foreland Basin at the beginning of the Miocene evolved as a result of this movement. An irregular plate geometry or promontory of the Arabian Plate caused partitioning of the plate margin (precollision-collision-postcollision). This irregular plate boundary was delimited by western and northern boundary faults and an interior basin fault. The NW-oriented small wedge top basins on the overlying Anatolide-Taurides Platform obliquely cut through the foredeep basin. The region (across the wedge top basin) on the irregular promontory of the underlying Arabian Plate contains different sedimentation depocentres. Small fining-upward submarine fan deposits (including pebbly channel deposits and coarsening-upward lobe sequences) are located at the centre of the irregular part of the plate (in the Tanır region) and overlie planktic foraminifera-bearing claystones. These submarine fan sediments pass outboard into distal interbedded turbidite claystones and siltstones in a downdip direction (S-SE). The boundary fault intersection of the promontory led to the development of a submarine slope environment with irregular sea-floor topography in the Fırnız area (4-5 km south-east of the Tanır region). The slump deposits, sandy debrites, and fine-grained thin-bedded turbidites filled this region. Structural alignments and seismicity associated with the plate margin were the main controlling factors on the geometry of the depocentre, sediment quantity, sediment input, sedimentary facies, local sea level changes, and post-sedimentary deformation in the Kahramanmaraş Foreland Basin.

  5. Integrated stratigraphy of the Ammer section, Northern Alpine Foreland Basin, Germany: examining the age and origin of the earliest deposits in the Paratethys

    Science.gov (United States)

    van der boon, Annique; Beniest, Anouk; Ciurej, Agnieszka; Gaździcka, Elzbieta; Grothe, Arjen; Sachsenhofer, Reinhard; Langereis, Cor; Krijgsman, Wout

    2017-04-01

    The Northern Alpine Foreland Basin (NAFB) was an arm of the epicontinental Paratethys Sea during the Oligocene. The Oligocene and Miocene deposits in the Paratethys are linked to a long-term phase of episodically oxygen-poor conditions. This led to the deposition of organic-rich shales over millions of years, which nowadays make up the most important part of the source rocks of the Paratethys. At the Eocene-Oligocene transition (EOT), global sea-level dropped by an estimated 70 meters. Both this eustatic sea-level drop and large scale tectonic movements are inferred as mechanisms for restriction of connections to the global ocean and consecutive basin isolation in the Paratethys. Discriminating sea-level effects from tectonic processes requires accurate dating of Oligocene deposits. Here, we use an integrated stratigraphic approach, combining different biostratigraphic techniques with magnetostratigraphy and organic geochemistry, to determine the age of the Tonmergel formation along the Ammer River in southern Germany. The Tonmergel formation is usually interpreted as the equivalent of the Paratethys Lower Oligocene organic-rich shales. The age of deposits (typically mapped as Oligocene) in this region is currently under debate, as some studies suggest they might be late Eocene in age. The absence of marker species for biostratigraphic zones, the scarcity of ash layers and the lack of formally defined boundaries of nannoplankton zones around the Eocene-Oligocene interval (e.g. the NP19-20/NP21 boundary) further obstruct accurate dating. Here we present the results of our magnetostratigraphy, biostratigraphy and organic geochemistry and interpret whether any lithological changes can be linked to climate forcing or tectonic processes. Based on the combined results of our study we provide several options for the age of these earliest Paratethys deposits, and discuss our preferred option.

  6. Neogene shortening and exhumation of the Zagros fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq

    Science.gov (United States)

    Koshnaw, Renas I.; Horton, Brian K.; Stockli, Daniel F.; Barber, Douglas E.; Tamar-Agha, Mazin Y.; Kendall, Jerome J.

    2017-01-01

    The Zagros fold-thrust belt in the Kurdistan region of Iraq encroached southward toward a rapidly subsiding Neogene foreland basin and was later partitioned by out-of-sequence shortening focused along the Mountain Front Flexure (MFF), as defined by new low-temperature thermochronologic, stratigraphic, and provenance results. Apatite (U-Th)/He ages document rapid deformation advance from the Main Zagros Fault to southern frontal structures (Kirkuk, Shakal, and Qamar thrusts) at 10-8 Ma, followed by potential basement-involved out-of-sequence development of the MFF (Qaradagh anticline) by 5 Ma. Distinct shifts in detrital zircon U-Pb provenance signatures for Neogene foreland basin fill provide evidence for drainage reorganization during fold-thrust belt advance. U-Pb age spectra and petrologic data from the Injana (Upper Fars) Formation indicate derivation from a variety of Eurasian, Pan-African, ophiolitic and Mesozoic-Cenozoic volcanic terranes, whereas the Mukdadiya (Lower Bakhtiari) and Bai-Hasan (Upper Bakhtiari) Formations show nearly exclusive derivation from the Paleogene Walash-Naopurdan volcanic complex near the Iraq-Iran border. Such a sharp cutoff in Eurasian, Pan-African, and ophiolitic sources is likely associated with drainage reorganization and tectonic development of the geomorphic barrier formed by the MFF. As a result of Zagros crustal shortening, thickening and loading, the Neogene foreland basin developed and accommodated an abrupt influx of fluvial clastic sediment that contains growth stratal evidence of synkinematic accumulation. The apparent out-of-sequence pattern of upper crustal shortening in the hinterland to foreland zone of Iraqi Kurdistan suggests that structural inheritance and the effects of synorogenic erosion and accumulation are important factors influencing the irregular and episodic nature of orogenic growth in the Zagros.

  7. The structural hinge of a chain-foreland basin: Quaternary activity of the Pede-Apennine Thrust front (Northern Italy)

    Science.gov (United States)

    Maestrelli, Daniele; Benvenuti, Marco; Bonini, Marco; Carnicelli, Stefano; Piccardi, Luigi; Sani, Federico

    2018-01-01

    The Pede-Apennine margin (Northern Italy) is a major WNW-ESE-trending morpho-structural element that delimits the Po Plain to the southwest and consists of a system of southwest dipping thrusts, generally referred to as Pede-Apennine Thrust (PAT). The leading edge of the chain lies further north-east and is buried beneath the Plio-Quaternary marine and fluvial deposits of the Po Plain. Whereas the buried external thrust fronts are obvious active structures (as demonstrated by the 2012 Emilia earthquakes; e.g. Burrato et al., 2012), ongoing activity of the PAT is debated. Using a multidisciplinary approach that integrates structural, seismic, sedimentological and pedological field data, we describe the recent activity of the PAT structures in a sector of the Pede-Apennine margin between the Panaro and the Enza Rivers (Emilia-Romagna). We found that the PAT is emergent or sub-emergent and deforms Middle Pleistocene deposits. We also infer a more recent tectonic phase ( 60-80 ka) by Optically Stimulated Luminescence (OSL) dating of soil profiles that have been deformed by a recent reactivation of the PAT. Furthermore, we show evidence that the PAT and its external splay thrusts strongly influenced the drainage pattern, causing fluvial diversions and forcing paleo-rivers to develop roughly parallel to the margin. Finally, numerical Trishear modelling has been used to calculate deformation rates for the PAT along two transects. Extrapolated slip rates vary between 0.68 and 0.79 mm·yr- 1 for about the last 1.2-0.8 million years.

  8. Detrital zircon U-Pb and (U-Th)/He double-dating of Upper Cretaceous-Cenozoic Zagros foreland basin strata in the Kurdistan Region of northern Iraq

    Science.gov (United States)

    Barber, D. E.; Stockli, D. F.; Koshnaw, R. I.; Horton, B. K.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The NW Zagros orogen is the result of the multistage collisional history associated with Late Cretaceous-Cenozoic convergence of the Arabian and Eurasian continents and final closure of Neotethys. Siliciclastic strata preserved within a ~400 km segment of the NW Zagros fold-thrust belt and foreland basin in the Iraqi Kurdistan Region (IKR) provide a widespread record of exhumation and sedimentation. As a means of assessing NW Zagros foreland basin evolution and chronostratigraphy, we present coupled detrital zircon (DZ) U-Pb and (U-Th)/He geo-thermochronometric data of Upper Cretaceous to Pliocene siliciclastic strata from the Duhok, Erbil, and Suleimaniyah provinces of IKR. LA-ICP-MS U-Pb age analyses reveal that the foreland basin fill in IKR in general was dominantly derived from Pan-African/Arabian-Nubian, Peri-Gondwandan, Eurasian, and Cretaceous volcanic arc terrenes. However, the provenance of these strata varies systematically along strike and through time, with an overall increase in complexity upsection. DZ age distribution of Paleocene-Eocene strata is dominated by a ~95 Ma grain age population, likely sourced from the Late Cretaceous Hassanbag-Bitlis volcanic arc complex along the northern margin of Arabia. In contrast, DZ U-Pb age distributions of Neogene strata show a major contribution derived from various Eurasian (e.g., Iranian, Tauride, Pontide; ~45, 150, 300 Ma) and Pan-African (~550, 950 Ma) sources. The introduction of Eurasian DZ ages at the Paleogene-Neogene transition likely records the onset of Arabian-Eurasian collision. Along strike to the southeast, the DZ U-Pb spectra of Neogene strata show a decreased percentage of Pan-African, Peri-Gondwandan, Tauride, and Ordovician ages, coupled with a dramatic increase in 40-50 Ma DZ ages that correspond to Urumieh-Dokhtar magmatic rocks in Iran. Combined with paleocurrent data, this suggests that Neogene sediments were transported longitudinally southeastward through an unbroken foreland basin

  9. TRANSGRESSIVE SEQUENCES ON FORELAND MARGINS: A CASE STUDY OF THE NEOGENE CENTRAL GUADALQUIVIR BASIN, SOUTHERN SPAIN

    Directory of Open Access Journals (Sweden)

    J. GABRIEL PENDÓN

    2004-07-01

    Full Text Available The Guadalquivir foreland basin, located between the Iberian basement northward and the Betic orogen to the South, represents the western sector of the earlier foredeep basin of the Betic Cordillera. Along the northern foreland margin, the sedimentary fill of this basin includes a Tortonian Basal Transgressive Complex (BTC, composed of five internal sequences bounded by transgressive surfaces. Two main parts are distinguished within each sequence: the lower transgressive lag deposits, and the upper stillstand/prograding sediments. Three facies associations were distinguished within this stratigraphic succession along the central sector of this basin margin: unfossiliferous conglomerates and coarse-grained sands (A, fossiliferous conglomerates and coarse-grained sands (B, and yellow medium-coarse-grained fossiliferous sands (C. A fourth facies association (D: blue silty marlstones and shales overlies the BTC. Deposits of alluvial sediments (facies association A and shallow-marine/foreshore sediments (facies association C, were recurrently interrupted by transgressive pulses (facies associations B and C. Every pulse is recorded by an erosional, cemented sandy-conglomerate bar with bivalves (Ostreidae, Isognomon, balanids, gastropods and other marine bioclasts; or their transgressive equivalents. The lateral facies changes in each individual sequence of the BTC are related to: (1 the influence on the northern foreland margin of the tectonic activity of the southern orogenic margin; (2 the palaeorelief formed by irregularities of the substrate which controls the sediment dispersal; and (3 the evolution stages of the sedimentary systems. 

  10. Post-collisional deposits in the Zagros foreland basin: Implications for diachronous underthrusting

    Science.gov (United States)

    Pirouz, Mortaza

    2017-11-01

    Detailed sedimentology of the Neogene foreland basin deposits is investigated and classified into 11 lithofacies associations with respect to their paleo-sedimentary environments. The foreland deposits reveal a single coarsening-upward mega-sequence with continuous passage from back-bulge to forebulge, foredeep, and wedge-top sedimentary environments. The Gachsaran deposits form the base of the foreland strata and consist mainly of three different lithofacies associations including fluvial, marine, and sabkha deposits in the eastern Zagros in Fars, and are typically dominated with evaporites toward the west in the Dezful and Kirkuk embayments. The Mishan Formation has three different shallow-marine lithofacies associations in a vertical succession representing foredeep deposits in the eastern Zagros, which tapers toward the Dezful embayment and disappears in Iraq. The Agha Jari distal wedge-top deposits also contain three different lithofacies associations including delta deposits mostly in the Fars, tidal flat deposits in Dezful and Mesopotamia basin, and continental fluvial deposits across the entire Zagros. The uppermost synorogenic Bakhtiari Formation represents proximal wedge-top deposits and consists mainly of two main lithofacies associations including shallow marine and fluvial deposits, within which the fluvial succession is divided into three sub-lithofacies associations with respect to distance from the mountain front and hydraulic power of the river networks. Synthetizing sedimentary facies association with age constraints of the old foreland deposits near the Zagros suture in the High Zagros area suggests that a considerable part of the Arabian plate has been removed at the northern edge by underthrusting and erosion. Moreover, preservation of the young distal foreland deposits near the suture in the western Zagros implies that the magnitude and rate of removal of the proximal foreland deposits have been inconstant along-strike the belt and decreases

  11. Complex tectonic and tectonostratigraphic evolution of an Alpine foreland basin: The western Duero Basin and the related Tertiary depressions of the NW Iberian Peninsula

    Science.gov (United States)

    Martín-González, F.; Heredia, N.

    2011-04-01

    The tectonic and tectonostratigaphic evolution of foreland basins and related Tertiary depressions are the key to investigate deformation history and the uplifting of the continental lithosphere of the Alpine-Pyrenean Orogeny. The northern part of the Duero basin is the foreland basin of the Cantabrian Mountains, which are, in turn, the western part of the Pyrenean Orogen. We have studied the western sharp end of the Duero foreland basin, and its relation to the Tertiary deposits of the NW Iberian Peninsula and the topography evolution. In order to propose a coherent tectonic and tectonosedimentary model that could explain all Tertiary deposits, we have analysed the depositional environment, stratigraphic sequences, paleocurrents and established a correlation of the main outcrops. Besides, a detailed structural mapping of the Alpine structures that limit and affect the main Tertiary outcrops has been carried out. The Tertiary deposits of the NW Iberian Peninsula depressions are affected and fragmented by Alpine structures that limit their extensions and locations. The stratigraphic succession is similar in the NW Tertiary outcrops; they are mainly terrigenous and carbonated continental deposits formed by assemblage of alluvial fans developed at the mountains front, in arid or semiarid conditions. Three formations can be identified in the main depressions: Toral Fm, Santalla Fm and Médulas Fm. The NW Tertiary outcrops were the western deposits of the Duero foreland basin that surrounded the lateral termination of the Pyrenean Orogen. These deposits were fragmented and eroded by the subsequent uplift of the Galaico-Leoneses Mountains and the NE-SW strike-slip faults activity (broken foreland basin). Only the latest stages of some of these outcrops can be considered as intramontane basins as traditionally have been interpreted. The sedimentation started in the northeast (Oviedo-Infiesto) during the Eocene and migrated to the west (As Pontes) during the Late Oligocene

  12. Evolution of sedimentary architecture in retro-foreland basin: Aquitaine basin example from Paleocene to lower Eocene.

    Science.gov (United States)

    Ortega, Carole; Lasseur, Eric; Guillocheau, François; Serrano, Olivier; Malet, David

    2017-04-01

    terrigeneous LST and a massive erosional surface in deep basin. We correlated this upper Thanetian major regression with a flexural deformation of the basin. In this context, the importance of terrigeneous LST could be explained by the erosion of the East Pyrenean range. (3) The lower Ypresian records the installation of mixed terrigenous-carbonated system. While the East-West progradation of siliciclastic deltas is drained into foreland basin, a carbonates condensation are developed on structural ridges, attesting the structural activation of foreland basin during lower Ypresian. This study shows that Danian to middle Thanetian time represents a quiet tectonic period in the retro-foreland basin. During the upper Thanetian period, the compressive deformation is increasing, marked by the emersion of the northern platform, a massive LST in distal environment and a rise of terrigenous input in flexural basin (LST). This deformation associated with the Pyrenean compression continues during the Ypresian and highlights the paroxysm of the Pyrenean orogeny. This work is included in the Gaia project founded by TIGF, BRGM and Agence de l'Eau Adour/Garonne whose aim at constrain the nature and dynamics of deep Upper cretaceous and Tertiary aquifers of the Aquitaine basin.

  13. A Multi-Proxy Analysis of two Loess-Paleosol Sequences in the Northern Harz Foreland

    Science.gov (United States)

    Krauss, Lydia; Zens, Joerg; Zeeden, Christian; Schulte, Philipp; Eckmeier, Eileen; Lehmkuhl, Frank

    2016-04-01

    Within the second phase of the "Collaborative Research Centre 806 (CRC806) - Our Way to Europe - Culture-Environment Interaction and Human Mobility in the Late Quaternary" two loess-paleosol sections in the northern Harz foreland are being investigated. The region is part of the Northern European loess belt. The northern edge of the loess distribution is characterized by an interlocking of Weichselian silt and sand sized aeolian sediments. To the south the Northern European loess belt is limited by the central German uplands (Mittelgebirge). Here the continuous loess cover disperses into separated loess basins. In comparison to relatively long, continuous and intensively studied sections, e.g. along the Rhine river, investigations on loess-paleosol sequences in the northern Harz foreland have been sparse so far. In 2006 REINECKE created an overview of Pleistocene landscape developments by investigating terrace sequences and loess sections in this area. Due to improvements of research methods over the last ten years, the two loess-paleosol sequences Hecklingen and Zilly are being reinvestigated. Aiming towards a better understanding of the paleoenvironmental conditions during the Weichselian in an area close to the Scandinavian ice sheet, results from grain size, geochemical (XRF, CNS) and color measurements are combined. The results show an increased input of aeolian material during the last glacial maximum and the last cover loess period, supporting the theory of dryer and colder conditions during this time frame. Further, we can see a stronger short distant input within the recent soil and during the last glacial maximum in both profiles. In Hecklingen this is also observed within the MIS 3 soil material. Since soil material dating to the MIS 3 is present, we can assume that surface processes where less intrusive during the MIS 3 and 2 as in e.g. the Lower Rhine Embayment. REINECKE, V. (2006): Untersuchungen zur mittel- und jungpleistozänen Reliefentwicklung und

  14. Exhumation of the North Alpine Foreland Basin- Quantitative insights from structural analysis, thermochronology and a new thermal history model

    Science.gov (United States)

    Luijendijk, Elco; von Hagke, Christoph; Hindle, David

    2016-04-01

    Due to a wealth of geological and thermochronology data the northern foreland basin of the European Alps is an ideal natural laboratory for understanding the dynamics of foreland basins and their interaction with surface and geodynamic processes. We present an unprecedented compilation of thermochronological data from the basin and quantify cooling and exhumation rates in the basin by combining published and new vitrinite reflectance, apatite fission track and U-Th/He data with a new inverse burial and thermal history model. No correlation is obvious between inferred cooling and exhumation rates and elevation, relief or tectonics. We compare derived temperature histories to exhumation estimates based on the retro-deformation of Molasse basin and the Jura mountains, and to exhumation caused by drainage reorganization and incision. Drainage reorganization can explain at most 25% of the observed cooling rates in the basin. Tectonic transport of the basin's sediments over the inclined basement of the alpine foreland as the Jura mountains shortened can explain part of the cooling signal in the western part of the basin. However, overall a substantial amount of cooling and exhumation remains unexplained by known tectonic and surface processes. Our results document basin wide exhumation that may be related to slab roll-back or other lithospheric processes. Uncertainty analysis shows that thermochronometers can be explained by cooling and exhumation starting as early as the Miocene or as late as the Pleistocene. New (U-Th)/He data from key areas close to the Alpine front may provide better constraints on the timing of exhumation.

  15. Effects of Flat Slab Subduction on Andean Thrust Kinematics and Foreland Basin Evolution in Western Argentina

    Science.gov (United States)

    Horton, B. K.; Fuentes, F.; McKenzie, N. R.; Constenius, K. N.; Alvarado, P. M.

    2014-12-01

    Debate persists over the effects of flat-slab subduction on the kinematics of overriding plate deformation and the evolution of retroarc sedimentary basins. In western Argentina, major spatial and temporal variations in the geometry of the subducting Nazca slab since ~15 Ma provide opportunities to evaluate the late Cenozoic response of the Andean fold-thrust belt and foreland basin to subhorizontal subduction. Preliminary results from several structural and sedimentary transects spanning the frontal thrust belt and foreland basin system between 31°S and 35°S reveal Oligocene-middle Miocene hinterland exhumation during normal-slab subduction followed thereafter by progressive slab shallowing with initial rapid cratonward propagation of ramp-flat thrust structures (prior to basement-involved foreland uplifts) and accompanying wholesale exhumation and recycling of the early Andean foreland basin (rather than regional dynamic subsidence). Detrital zircon U-Pb geochronologic data prove instrumental for revealing shifts in thrust-belt exhumation, defining depositional ages within the foreland basin, and constraining the timing of activity along frontal thrust structures. In both the San Juan (31-32°S) and Malargüe (34-35°S) segments of the fold-thrust belt, geochronological results for volcaniclastic sandstones and syndeformational growth strata are consistent with a major eastward advance in shortening at 12-9 Ma. This episode of rapid thrust propagation precedes the reported timing of Sierras Pampeanas basement-involved foreland uplifts and encompasses modern regions of both normal- and flat-slab subduction, suggesting that processes other than slab dip (such as inherited crustal architecture, critical wedge dynamics, and arc magmatism) are additional regulators of thrust-belt kinematics and foreland basin evolution.

  16. Craton-derived alluvium as a major sediment source in the Himalayan Foreland Basin of India

    DEFF Research Database (Denmark)

    Sinha, R.; Kettanah, Y.; Gibling, M.R.

    2009-01-01

    foreland basin may reflect avulsion of orogenic rivers along the craton margin, in addition to dynamic transverse drainage systems from the Himalaya that pushed the axial drainage to the basin's feather edge. The wide spread of cratonic sediment would have been enhanced by slow subsidence in the distal...

  17. Escape tectonics and foreland basin evolution: The Austrian-German Molasse basin

    Science.gov (United States)

    Ortner, Hugo

    2016-04-01

    The Alpine peripheral foreland basin formed during Eocene collision of the lower, European plate and the upper, Adriatic plate. Two marine to continental megasequences fill the basin. The transition form deep marine to continental deposits of the first megasequence at the Early - Late Oligocene boundary has been related to a change from predominant horizontal to vertical movements in the core of the orogenic wedge. The second megasequence is, however, poorly understood, and different models have been put forward. I present an alternative explanation for the development of this second megacycle, based on an analysis of the Subalpine Molasse thrust belt east of the Rhine river (Ortner et al., 2015). The main characteristics of the Subalpine Molasse thrust belt are: 1) A frontal anticline/thrust started to develop during deposition of the older, marine portion of the second megasequence. Structures continued to grow throughout deposition of the younger, continental part of the megasequence. Structural growth is documented by growth strata. 2) The thrusts in the Subalpine Molasse evolved in a break-back sequence. 3) The amount of shortening during depositon of the second megasequence reduces from 40-50 km near the Rhine valley to zero in the east in the Salzburg area. The onset of the second megasequence in the foreland north of the Subalpine Molasse thrust belt is characterized by an angular unconformity documenting a tilt of the foreland toward the orogen, and therefore ongoing flexure of the lower plate. East of the eastern end of the Subalpine Molasse thrust belt, the deposits of the second megasequence are in a horizontal position, lower plate flexure had stopped. In the internal part of the Alpine orogenic wedge, shortening, exhumation and E-directed stretching of the Tauern Window as a consequence of escape tectonics was active. Most probably shortening was transferred from the Alpine front into the zone of lateral escape, causing the break-back thrust sequence

  18. 3D structural model of the North Alpine Foreland Basin, Bavarian Part

    Science.gov (United States)

    Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael

    2013-04-01

    The continental collision of Europe and Africa leads to the rise of the European Alps, which gave way to the formation of the North Alpine Foreland Basin, also referred to as the Molasse Basin, since the Tertiary. This typically wedge formed "foredeep" basin is filled with predominantly clastic sediments originating from erosional processes of the Alps which overly a southward dipping Mesozoic and Paleozoic succession. With our project we want to contribute to the understanding of the structure and subsequently of the thermal configuration of the Molasse Basin and its underlying deposits on a basin wide scale. We constructed a 3D structural model of the basin down to the crust-mantle-boundary, beginning with the Bavarian part. Therefore we used an approach of already existing local to midscale 2D and 3D structural models (e.g. Lüschen et al. 2006) as well as surface maps, seismic, well and gravity data. This 3D structural model resolves 5 sedimentary layers of the Mesozoic, including the geothermally utilized carbonate Malm aquifer (e.g. Birner et al. 2011), as well as the combined Paleozoic basement. Assuming isostatic equilibrium of the system a lithosphere-asthenosphere-boundary (LAB) has been calculated and compared to other published LABs of the region. Subsequently the model has been further constrained by 3D gravity modeling. The outcomes show that Cretaceous sediments are restricted to a small region in the central to eastern model area and are mostly overlain by the Tertiary Molasse sediments. The Triassic sediments occur in the northern and western part of the model area and do not continue far under the Molasse basin proper, while the Jurassic can be tracked as far south as beneath the Alps. The evaluation of the gravity indicates that the crystalline crust consists of a lighter upper crust and a denser lower crust. Our final LAB is shallowest under the Triassic subbasin, descending below the Bohemian Massif and the Molasse Basin proper and rising again

  19. Three-dimensional modelling of thrust-controlled foreland basin stratigraphy

    NARCIS (Netherlands)

    Clevis, Q. (Quintijn)

    2003-01-01

    In this thesis a tectono-sedimentary forward model has been presented, devised to simulate sediment erosion and deposition in a coupled drainage basin - foreland system, as well as accumulating a three-dimensional stratigraphy. The aim of the research was to investigate which features recorded in

  20. Three-dimensional seismo-tectonics in the Po Valley basin, Northern Italy

    NARCIS (Netherlands)

    Turrini, Claudio; Angeloni, Pamela; Lacombe, Olivier; Ponton, Maurizio; Roure, François

    2015-01-01

    The Po Valley (Northern Italy) is a composite foreland-foredeep basin caught in between the Southern Alps and Northern Apennine mountain belts. By integrating the 3D structural model of the region with the public earthquake dataset, the seismo-tectonics of the basin is shown at different scales of

  1. Foreland deformation in the Central Adriatic and its bearing on the evolution of the Northern Apennines

    Directory of Open Access Journals (Sweden)

    F. Frugoni

    1997-06-01

    Full Text Available Seismic profiles in the Central Adriatic show the presence of a WNW-ESE trending belt (Central Adriatic Deformation Belt, CADB where broad folds of Quaternary age occur. Seismicity in the Adriatic foreland seems to be localised along the CADB which is interpreted as the result of foreland deformation linked to the Apennine fold-and-thrust belt and possibly due to the presence of an inherited structural discontinuity. Geological arguments indicate that the CADB lineament can continue underneath the Northern Apennines and might have affected its recent evolution, characterised by the rise of a linear orographic front.

  2. THE GEOLOGICAL EVOLUTION OF SORGUN (YOZGAT)-YILDIZELİ (SİVAS) FORELAND BASIN, PETROGRAPHIC, GEOCHEMICAL ASPECTS AND GEOCHRONOLOGY OF VOLCANISM AFFECTING THE BASIN

    OpenAIRE

    Akçay, Ali Ekber; BEYAZPİRİNÇ, Metin

    2017-01-01

    Sorgun-Yıldızeli basin is an east-west trending asymmetric marginal foreland (peripheral forelandbasin) formed as a result of the consumption of oceanic crust of the northern branch of Neotethys dueto the collision of Sakarya continent in the north and Kırşehir Block in the south. It provides muchinformation about the geodynamic evolution of the region. The basement of the study area consists ofLate Palaeozoic-Mesozoic Akdağmadeni Massif. Akdağmadeni Massif was intruded by CenomanianMaastrich...

  3. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    Energy Technology Data Exchange (ETDEWEB)

    Groshong, R.H.; Pashin, J.C.; McIntyre, M.R. [University of Alabama, Tuscaloosa, AL (United States). Dept. of Geological Science

    2009-09-15

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same sigma(1) direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend.

  4. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    Science.gov (United States)

    Groshong, Richard H., Jr.; Pashin, Jack C.; McIntyre, Marcella R.

    2009-09-01

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same σ1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend.

  5. Evolution of the Paleogene succession of the western Himalayan foreland basin

    Directory of Open Access Journals (Sweden)

    B.P. Singh

    2013-03-01

    Full Text Available The Paleogene succession of the Himalayan foreland basin is immensely important as it preserves evidence of India-Asia collision and related records of the Himalayan orogenesis. In this paper, the depositional regime of the Paleogene succession of the Himalayan foreland basin and variations in composition of the hinterland at different stages of the basin developments are presented. The Paleogene succession of the western Himalayan foreland basin developed in two stages, i.e. syn-collisional stage and post-collisional stage. At the onset, chert breccia containing fragments derived from the hanging walls of faults and reworked bauxite developed as a result of erosion of the forebulge. The overlying early Eocene succession possibly deposited in a coastal system, where carbonates represent barriers and shales represent lagoons. Up-section, the middle Eocene marl beds likely deposited on a tidal flat. The late Eocene/Oligocene basal Murree beds, containing tidal bundles, indicate that a mixed or semi-diurnal tidal system deposited the sediments and the sedimentation took place in a tide-dominated estuary. In the higher-up, the succession likely deposited in a river-dominated estuary or in meandering rivers. In the beginning of the basin evolution, the sediments were derived from the Precambrian basement or from the metasediments/volcanic rocks possessing terrains of the south. The early and middle Eocene (54.7–41.3 Ma succession of the embryonic foreland possibly developed from the sediments derived from the Trans-Himalayan schists and phyllites and Indus ophiolite of the north during syn-collisional stage. The detrital minerals especially the lithic fragments and the heavy minerals suggest the provenance for the late Eocene/Oligocene sequences to be from the recycled orogenic belt of the Higher Himalaya, Tethyan Himalaya and the Indus-suture zone from the north during post-collisional stage. This is also supported by the paleocurrent

  6. Present-day 3D structural model of the Po Valley basin, Northern Italy

    NARCIS (Netherlands)

    Turrini, C.; Lacombe, O.; Roure, F.

    2014-01-01

    A 3D structural model of the Po Valley basin (Northern Italy) was built by integrating the dataset available from the public domain (DEM, wells, isobath-maps, cross-sections, outcrop-trends).The model shows the complex foredeep-foreland architecture across the basin, from the Moho level to the

  7. Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism

    Science.gov (United States)

    Moore, Thomas; O'Sullivan, Paul B.; Potter, Christopher J.; Donelick, Raymond A.

    2015-01-01

    The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.These observations indicate that two primary provenance areas provided

  8. The influence of late Miocene exhumation on the petroleum systems of the greater Caucasus foreland basins

    International Nuclear Information System (INIS)

    Andy, A.; Colin, D.; Sally, H.; Simon, O.

    2002-01-01

    Full text: Northwards impingement of Arabia during the Cenozoic led to the inversion of the Mesozoic Greater Caucasus Basin and the associated development of areas of enhanced subsidence. However, there is great debate regarding the timing of initiation of thrusting and uplift in the Caucasus region.Traditionally, ages ranging from Middle Eocene through to Middle Miocene have been proposed.More recently. It has become clear that although deformation and flexural subsidence may have initiated during the Late Miocene to Pliocene.The potential causative mechanisms for this late uplift and exhumation did not begin until the Late Miocene to Pliocene.The potential causative mechanisms for this late uplift event have been identified.The late Miocene to Pliocene event influenced a broad region and had important implications for reservoir rock deposition and the generation,migration,trapping and preservation of hydrocarbons in the surrounding basins (e.g. Indolo-Kuban,Terek-Caspian, South Caspian, Kura-Kartli, Rion, Black Sea).One area of particular interest is the development of the Stavropol Arch through time,since foreland basins are presently restricted to the Indolo-Kuban and Terek-Caspian Sub-basins.The Stavropol Arch lies immediately north of the central, most elevated parts of the Caucasus Mountains and separates the main areas of enhanced foreland subsidence.Although in most palaeogeographic reconstructions of the area, the Stavropol Arch is shown as an uplifted massif during much of the Mesozoic and Lower Cenozoic, it seems likely from recent studies that it is a feature of Late Miocene to Pliocene exhumation.One major potential implication is that an Oligocene to Miocene (foreland) succession developed in a major basin across the whole region north of the Greater Caucasus.Much of this was subsequently eroded from the Stavropol Arch during uplift and exhumation, separating the Indolo-Kuban and Terek-Caspian foreland basins.From qualitative section balancing we

  9. Heat flow-heat production relationship not found: what drives heat flow variability of the Western Canadian foreland basin?

    Science.gov (United States)

    Majorowicz, Jacek A.

    2018-01-01

    Heat flow high -80 ± 10 mW/m2 in the northern western parts of the Western Canadian foreland basin is in large contrast to low heat flow to the south and east (50 ± 7 mW/m2) of the same basin with the same old 2E09 year's Precambrian basement and some 200-km-thick lithosphere. Over-thrusted and flat-laying sedimentary units are heated from below by heat flow from the old craton' crust and low 15 ± 5 mW/m2 mantle contribution. The heat flow vs. radiogenic heat production statistical relationship is not found for this area. To account for this large heat flow contrast and to have 200-km-thick lithosphere, we would need to assume that high heat production layer of the upper crust varies in thickness as much as factor of 2 and/or that the measured heat production at top of Precambrian basement is not representative for deeper rocks. The other explanation proposed before that heat in the basin is redistributed by the regional fluid flow systems driven from high hydraulic head areas close to the foothills of the Rocky Mountains toward low elevation areas to the east and north cannot be explained by observed low Darcy fluid velocities and the geometry of the basin.

  10. Cenozoic foreland basins of Central Andes: a preliminary provenance U-Pb zircon analysis of sedimentary sequences of Calchaqui Valley

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Alisson Lopes; Hauser, Natalia; Pimentel, Marcio Martins; Matteini, Massimo, E-mail: alisson_oliveira@hotmail.com [Universidade de Brasilia (UnB), DF (Brazil). Laboratorio de Geocronologia; Galli, Claudia Ines [Faculdad de Ingenieria, Universidad Nacional de Jujuy (Argentina); Coira, Beatriz [CIT Jujuy, CONICET. Instituto de Geologia y Mineria (Argentina); Alonso, Ricardo; Barrientos, Andrea [Instituto CEGA, CONICET. Universidad Nacional de Salta (Argentina)

    2015-07-01

    The Eocene of northwestern Argentina records complex basin and structural evolution, including continental sedimentation of the post-rift Salta Basin and the beginning of the Andean uplift and foreland system evolution. This illuminates a significant period of evolutionary history of this and surrounding basins in northwestern Argentina. U-Pb zircon analyses by LA-ICP-MS for three formations representing post-rift to foreland stages allowed interpretation about provenance terrains. The Lumbrera Formation, representing the post-rift stage, shows bimodal sources with a main zircon population around 462 Ma, and a second population around 1023 Ma. The Los Colorados and Angastaco Formations representing the sedimentation in a foreland basin, show a unimodal source around 490 Ma, and 517 Ma respectively. Zircons younger than 50 Ma were not identified during this study. (author)

  11. Cenozoic foreland basins of Central Andes: a preliminary provenance U-Pb zircon analysis of sedimentary sequences of Calchaqui Valley

    International Nuclear Information System (INIS)

    Oliveira, Alisson Lopes; Hauser, Natalia; Pimentel, Marcio Martins; Matteini, Massimo; Coira, Beatriz; Alonso, Ricardo; Barrientos, Andrea

    2015-01-01

    The Eocene of northwestern Argentina records complex basin and structural evolution, including continental sedimentation of the post-rift Salta Basin and the beginning of the Andean uplift and foreland system evolution. This illuminates a significant period of evolutionary history of this and surrounding basins in northwestern Argentina. U-Pb zircon analyses by LA-ICP-MS for three formations representing post-rift to foreland stages allowed interpretation about provenance terrains. The Lumbrera Formation, representing the post-rift stage, shows bimodal sources with a main zircon population around 462 Ma, and a second population around 1023 Ma. The Los Colorados and Angastaco Formations representing the sedimentation in a foreland basin, show a unimodal source around 490 Ma, and 517 Ma respectively. Zircons younger than 50 Ma were not identified during this study. (author)

  12. Integrated provenance analysis of a convergent retroarc foreland system: U-Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia

    Science.gov (United States)

    Nie, Junsheng; Horton, Brian K.; Saylor, Joel E.; Mora, Andrés; Mange, Maria; Garzione, Carmala N.; Basu, Asish; Moreno, Christopher J.; Caballero, Victor; Parra, Mauricio

    2012-01-01

    Sediment provenance analysis remains a powerful method for testing hypotheses on the temporal and spatial evolution of uplifted source regions, but issues such as recycling, nonunique sources, and pre- and post-depositional modifications may complicate interpretation of results from individual provenance techniques. Convergent retroarc systems commonly contain sediment sources that are sufficiently diverse (continental magmatic arc, fold-thrust belt, and stable craton) to enable explicit provenance assessments. In this paper, we combine detrital zircon U-Pb geochronology, heavy mineral identification, Nd isotopic analyses, conventional sandstone petrography, and paleocurrent measurements to reconstruct the clastic provenance history of a long-lived sedimentary basin now exposed in an intermontane zone of the northern Andean hinterland of Colombia. The Middle Magdalena Valley basin, situated between the Central Cordillera and Eastern Cordillera, contains a 5-10 km-thick succession of Upper Cretaceous to Quaternary fill. The integrated techniques show a pronounced change in provenance during the Paleocene transition from the lower to upper Lisama Formation. We interpret this as a shift from an eastern cratonic source to a western Andean source composed of magmatic-arc rocks uplifted during initial shortening of the Central Cordillera. The appearance of detrital chloritoid and a shift to more negative ɛ Nd(t=0) values in middle Eocene strata of the middle La Paz Formation are attributed to shortening-related exhumation of a continental basement block (La Cira-Infantas paleohigh), now buried, along the axis of the Magdalena Valley. The diverse provenance proxies also show distinct changes during middle to late Eocene deposition of the Esmeraldas Formation that likely reflect initial rock uplift and exhumation of the fold-thrust belt defining the Eastern Cordillera. Upsection, detrital zircon U-Pb ages and heavy mineral assemblages for Oligocene and younger clastic

  13. New Late Permian tectonic model for South Africa's Karoo Basin: foreland tectonics and climate change before the end-Permian crisis.

    Science.gov (United States)

    Viglietti, Pia A; Rubidge, Bruce S; Smith, Roger M H

    2017-09-07

    Late Permian Karoo Basin tectonics in South Africa are reflected as two fining-upward megacycles in the Balfour and upper Teekloof formations. Foreland tectonics are used to explain the cyclic nature and distribution of sedimentation, caused by phases of loading and unloading in the southern source areas adjacent to the basin. New data supports this model, and identifies potential climatic effects on the tectonic regime. Diachronous second-order subaerial unconformities (SU) are identified at the base and top of the Balfour Formation. One third-order SU identified coincides with a faunal turnover which could be related to the Permo-Triassic mass extinction (PTME). The SU are traced, for the first time, to the western portion of the basin (upper Teekloof Formation). Their age determinations support the foreland basin model as they coincide with dated paroxysms. A condensed distal (northern) stratigraphic record is additional support for this tectonic regime because orogenic loading and unloading throughout the basin was not equally distributed, nor was it in-phase. This resulted in more frequent non-deposition with increased distance from the tectonically active source. Refining basin dynamics allows us to distinguish between tectonic and climatic effects and how they have influenced ancient ecosystems and sedimentation through time.

  14. Gas accumulations in Oligocene-Miocene reservoirs in the Alpine Foreland Basin (Austria): evidence for gas mixing and gas degradation

    Science.gov (United States)

    Pytlak, L.; Gross, D.; Sachsenhofer, R. F.; Bechtel, A.; Linzer, H.-G.

    2017-09-01

    Two petroleum systems are present in the eastern (Austrian) sector of the Alpine Foreland Basin. Whereas oil and thermogenic gas in Mesozoic and Eocene reservoir rocks have been generated beneath the Alps in Lower Oligocene source rocks, relative dry gas in Oligocene-Miocene clastic rocks deposited in the deep marine basin-axial channel system (Puchkirchen Channel) is interpreted as microbial in origin. Detailed investigations of the molecular and isotope composition of 87 gas samples from 86 wells, representing all producing fields with Oligocene and Miocene reservoir rocks, suggest that the presence of pure microbial gas is rare and limited mainly to the northern basin flank (e.g., KK field). All other fields contain varying amounts of thermogenic gas, which has been generated from a source rock with oil-window maturity. A relation with the underlying thermogenic petroleum system is obvious. Upward migration occurred along discrete fault zones (e.g., H field) or through low-permeability caprocks. Local erosion of Lower Oligocene sediments, the principal seal for the thermogenic petroleum system, as well as a high percentage of permeable rocks within the Puchkirchen Channel favored upward migration and mixing of thermogenic and microbial gas. All gas samples in Oligocene-Miocene reservoirs are biodegraded. Biodegradation and the formation of secondary microbial gas resulted in gas drying. Therefore, the gas samples analyzed in this study are relative dry, despite significant contributions of thermogenic hydrocarbons. Biodegradation probably continues at present time. The degree of biodegradation, however, decreases with depth.

  15. The Jiuxi basin, Hexi Corridor, NW China: foreland structural features and hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q.M. (JAPEX Geoscience Inst. Inc., Tokyo (Japan)); Coward, M.P. (Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Geology)

    1993-04-01

    The Jiuxi (Western Jiuquan) Basin, located in the west of the Hexi Corridor, NW China, is a foreland basin which has been active since the Early Jurassic. It was formed as a consequence of the progressive northwards migration of the North Qilian thrusts in response to sinistral shearing along the 2,000-km long Aerjin (Altun) Fault. Sedimentary deposits in the basin are controlled not only by foreland loading and thrusting, but also by the development of listric normal faults at high angles to the thrust belt. At the junctions of these two sets of faults, thick organic-rich sediments and reservoirs have accumulated. During the Tertiary and Quaternary, thrusts propagated along the foot-wall of the North Qilian Fault, truncating earlier-formed oil pools and source-rock layers and thereby causing great difficulties for petroleum exploration. A basin development model is proposed in this paper from an integrated study of sedimentary facies, drilling and seismic data, structural analyses and cross-section reconstructions. The average northwards movement in the frontal zone of the North Qilian Mountains since the Pliocene is estimated at about 8 mm/yr. Therefore, about one-half of the Jurassic-Cretaceous oil-bearing basin could be buried beneath the Laojunmiao and North Qilian Marginal Faults and is virtually untouched by drilling. Source rocks in the basin are black, lacustrine shales of Late Jurassic through Early Cretaceous ages, with a maximum thickness of up to 1.2 km in the Qingxi Depression. The generation of liquid hydrocarbons began in the Late Cretaceous or mid-Oligocene: seven stratigraphical reservoirs, ranging in age from Silurian to Miocene, are described - anticlinal, fault- and ''buriedhill'' structures are the most important traps. The petroleum potential of individual depressions is discussed, and suggestions for potential regional oil prospects are made. (author)

  16. Hinterland tectonics and drainage evolution recorded by foreland basin archives: the Neogene Siwaliks of the Himalaya

    Science.gov (United States)

    Huyghe, Pascale; van der Beek, Peter; Matthias, Bernet; Catherine, Chauvel; Jean-Louis, Mugnier; Laurent, Husson; François, Chirouze

    2014-05-01

    Provenance analysis and detrital thermochronology of detrital synorogenic sediments, derived from erosion of mountain belts and deposited in surrounding sedimentary basins, are well-established methods to examine the exhumation history of convergent zones, tectonic activity and the associated evolution of the drainage network. We have conducted multidisciplinary studies on magnetostratigraphically dated sections throughout the Neogene Siwalik foreland basin of the Himalayan belt since more than 10 years. Sr, Nd and Hf isotopes are used as provenance indicators, providing information on the nature and size of catchment basins and their evolution through time in response to tectonics. Detrital zircon and apatite thermochronology provides constraints on exhumation rates in the hinterland of the Himalaya and the deformation of the Sub-Himalayan foreland basin. Throughout the Himalaya, detrital zircons from the Siwaliks generally show three age peaks: two static peaks (i.e., displaying constant peak ages through time), and a moving peak. The latter shows a constant lag time of ~4 m.y. corresponding to source-area exhumation rates on the order of 1.8 km/my, while the two static peaks respectively reveal a major 15-20 Ma exhumation event in the belt, the significance of which is still debated, and inheritance of pre-Himalayan ages that indicate recycling of Tethyan sediments. Therefore, our ZFT results suggest that the exhumation dynamics are broadly similar throughout the Himalaya since at least 13 m.y, as also shown by the Bengal Fan detrital sediment record. We relate this switch in tectonic regime to the destabilization of the Himalayan wedge that is rendered overcritical as a response to the transience of dynamic topography caused by the deforming underlying Indian slab. Nonetheless, in detail, the timing of thrusting in the Siwalik domain is delayed by about 1 my eastward as demonstrated by both structural and apatite fission-track data, suggesting overall eastward

  17. Sedimentary Evolution of Marginal Ganga Foreland Basin during the Late Pleistocene

    Science.gov (United States)

    Ghosh, R.; Srivastava, P.; Shukla, U. K.

    2017-12-01

    Ganga foreland basin, an asymmetrical basin, was formed as result of plate-plate collision during middle Miocene. A major thrust event occurred during 500 ka when upper Siwalik sediments were uplifted and the modern Ganga foreland basin shifted towards craton, making a more wide and deep basin. The more distal part of this basin, south of axial river Yamuna, records fluvial sedimentary packages that helps to understand dynamics of peripheral bulge during the late Quaternary. Sedimentary architecture in conjunction with chemical index of alteration (CIA), paleocurrent direction and optically stimulated dating (OSL) from 19 stratigraphic sections helped reconstructing the variations in depositional environments vis-à-vis climate change and peripheral bulge tectonics. Three major units (i) paleosol; (ii) cratonic gravel; (iii) interfluve succession were identified. The lower unit-I showing CIA values close to 70-80 and micro-morphological features of moderately well-developed pedogenic unit that shows development of calcrete, rhizoliths, and mineralized organic matter in abundance. This is a regional paleosols unit and OSL age bracketed 200 ka. This is unconformably overlain by unit-II, a channelized gravel composed of sub-angular to sub-rounded clasts of granite, quartz, quartzite, limestone and calcrete. The gravel have low CIA value up to 55, rich in vertebrate fossil assemblages and mean paleocurrent vector direction is NE, which suggesting deposition by a fan of a river draining craton into foreland. This unit is dated between 100 ka and 54 ka. The top unit-III, interfluve succession of 10-15 m thick is composed of dark and light bands of sheet like deposit of silty clay to clayey silt comprises sand lenses of red to grey color and displaying top most OSL age is 12 ka. The basal mature paleosol signifies a humid climate developed under low subsidence rate at >100 ka. After a hiatus represented by pedogenic surface deposition of unit-II (gravel) suggests uplift

  18. Influence of inherited structures on the growth of basement-cored ranges, basin inversion and foreland basin development in the Central Andes, from apatite fission-track and apatite Helium thermochronology.

    Science.gov (United States)

    Zapata, S.; Sobel, E. R.; Del Papa, C.; Jelinek, A. R.; Muruaga, C.

    2017-12-01

    The Central Andes in NW of Argentina is part of a long-lived subduction zone, active since the Paleozoic. This region experienced several tectonic cycles; each of which created an unique set of structures and may have reactivated preexisting structures. These inherited structures may exert a first-order control over the different foreland deformational styles observed along the strike in the Central Andes. Our study area is located between 26°S and 28°S on the transition between the broken foreland (Santa Barbara system), which expresses a combination of thin-skin and thick-skin styles, and the Sierras Pampeanas, which is deform in a thick-skin style. The Cumbres Calchaquies range and the associated Choromoro Basin are located in the northern part of the study area, and are the southern expression of the Santa Barbara system. Published thermochronology data suggest that the rocks from the basement experienced Late Cretaceous and Late Miocene exhumation; the associated sedimentary rocks within the Choromoro basin experienced Paleogene and Late Miocene deformational phases. In contrast, the Sierra Aconquija range, located immediately south on the transition to the Sierras Pampeanas (thick skin) foreland basin, exhibit larger amounts of Miocene exhumation and lack of Cretaceous exhumation; the associated sedimentary rocks from the Tucuman basin have not been deformed since the Cretaceous. Our goal is to understand the evolution of the structural blocks and the structures responsible for the along strike changes in foreland basin deformational styles and their relation with inherited structures from previous tectonic cycles. We are obtaining new apatite U-Th/He and fission track data to reconstruct the thermal history of the basement, accompanied by U-Pb geochronology and stratigraphy to constrain the evolution of the associated sedimentary basins. Preliminary results combined with published data suggest that inherited structures within the study area have evolved

  19. Quantifying the role of mantle forcing, crustal shortening and exogenic forcing on exhumation of the North Alpine Foreland Basin

    Science.gov (United States)

    von Hagke, C.; Luijendijk, E.; Hindle, D.

    2017-12-01

    In contrast to the internal zones of orogens, where the stacking of thrust sheets can overwhelm more subtle signals, foreland basins can record long-wavelength subsidence or uplift signals caused by mantle processes. We use a new and extensive compilation of geological and thermochronology data from the North Alpine Foreland Basin to understand the dynamics of foreland basins and their interaction with surface and geodynamic processes. We quantify cooling and exhumation rates in the basin by combining published and new vitrinite reflectance, apatite fission track and U-Th/He data with a new inverse burial and thermal history model, pybasin. No correlation is obvious between inferred cooling and exhumation rates and elevation, relief or tectonics. Uncertainty analysis shows that thermochronometers can be explained by cooling starting as early as the Miocene or as late as the Pleistocene. We compare derived temperature histories to exhumation estimates based on the retro-deformation of Molasse basin and the Jura mountains, and to exhumation caused by drainage reorganization and incision. Drainage reorganization can explain at most 25% of the observed cooling rates in the basin. Tectonic transport of the basin's sediments over the inclined basement of the alpine foreland as the Jura mountains shortened can explain part of the cooling signal in the western part of the basin. However, overall a substantial amount of cooling and exhumation remains unexplained by known tectonic and surface processes. Our results document basin wide exhumation that may be related to slab roll-back or other lithospheric processes. We suggest that new (U-Th)/He data from key areas close to the Alpine front may provide better constraints on the timing of exhumation.

  20. Paleocene-middle Miocene flexural-margin migration of the non marine llanos Foreland basin of Colombia

    International Nuclear Information System (INIS)

    Bayona, German; Jaramillo, Carlos; Rueda, Milton; Reyes Harker, Andres; Torres, Vladimir

    2007-01-01

    A foreland basin is a dynamic system whose depositional systems migrate in response to changes in tectonic uplift patterns, sedimentary filling processes and isostatic rebound of the lithosphere. The Paleocene-middle Miocene foreland system of the llanos foothills and llanos basin of Colombia includes regional unconformities, abrupt changes in lithology/stacking patterns and flooding surfaces bounding reservoir and seal units. Here we integrate a systematic biostratigraphic study, strata architecture and tectonic subsidence analyses, regional seismic profiles, and provenance data to define the diachronism of such surfaces and to document the direction of migration of foreland depozones. Line a flexural-deformed basin, sandstone composition, rates of accommodation and sediment supply vary across and along the basin. we show how a coeval depositional profile in the llanos foothills-llanos foreland basin consists of lithoranites inter b edded with mudstones (seal rock, supplied from the orogenic front to the west) that correlate craton ward with organic-rich mudstones and coal (source rock), and to amalgamated fluvial-estuarine quartzarenites (reservoir rock, supplied from the craton to the east) adjacent to a sub-aerial fore-bulge (unconformity). This system migrated northward and eastward during the Paleocene, westward during the early-middle Eocene, and eastward during the Oligocene. In the lower-middle Miocene succession of the llanos basin, identification of flooding events indicates a westward encroaching of a shallow-water lacustrine system that covered an eastward-directed fluvial-deltaic system. A similar process has been documented in other basins in Venezuela and Bolivia, indicating the regional extent of such flooding event may be related to the onset of Andean-scale mountain-building processes

  1. The collision of South China with NW India to join Gondwanaland in the Cambrian: Provenance constraints from foreland basins

    Science.gov (United States)

    Yao, W.; Li, Z.; Li, W.; Li, X.; Yang, J.

    2013-12-01

    The paleogeographic position of the South China Block (SCB) during the early Paleozoic is important for understanding its affinity with Gondwanaland and addressing potential tectonic trigger for both the early Paleozoic Wuyi-Yunkai orogeny in South China and similar-aged orogenic events along Gondwanan margins. Detrital zircon U-Pb ages of Cambrian sandstones/metasandstones from the southwestern SCB reveal a predominant population at 1100¬-950 Ma, and zircon Hf-O isotopic results suggest three Precambrian episodes of juvenile crustal growth for the source provenance (ca. 3.0 Ga, ca. 2.5 Ga and ca. 1.0 Ga), with major crustal reworking at 0.58-0.50 Ga. This provenance record is distinctly different from the known tectonomagmatic record of the SCB, but matches well with the provenance record of Cambrian sandstones and Cambro-Ordovician tectonomagmatic events in the NW Indian Himalaya. Such a provenance linkage between the two continents appears to have started from the Ediacaran. We thus propose that the SCB likely collided with NW India during the assembling of Gondwanaland between the Ediacaran and the Cambrian. The collisional event propagated to eastern Himalaya during Cambro-Ordovician time as South China rotated relative to India to close the remnant ocean, causing the Cambro-Ordovician North India orogeny (also known as the Kurgiakh orogeny) along the Himalaya, as well as the intraplate Wuyi-Yunkai orogeny (>460-415 Ma) in South China. This collisional event also generated two peripheral foreland basins on both the Indian Gondwanaland and the South China sides. The foreland basin on the South China side (the Nanhua foreland basin), started as a failed Neoproterozoic continental rift, and appears to have experienced two stage of development. During the first stage between the Ediacaran and the Cambrian, the basin likely shared the same detrital sources as the foreland basin in NW India, with sediments predominantly derived from the East Africa orogen and the

  2. Successive reactivation of older structures under variable heat flow conditions evidenced by K-Ar fault gouge dating in Sierra de Ambato, northern Argentine broken foreland

    Science.gov (United States)

    Nóbile, Julieta C.; Collo, Gilda; Dávila, Federico M.; Martina, Federico; Wemmer, Klaus

    2015-12-01

    The Argentine broken foreland has been the subject of continuous research to determine the uplift and exhumation history of the region. High-elevation mountains are the result of N-S reverse faults that disrupted a W-E Miocene Andean foreland basin. In the Sierra de Ambato (northern Argentine broken foreland) the reverse faults offset Neogene sedimentary rocks (Aconquija Fm., ˜9 Ma) and affect the basement comprising Paleozoic metamorphic rocks that have been dated at ˜477-470 Ma. In order to establish a chronology of these faults affecting the previous continuous basin we date the formation age of clay minerals associated with fault gouge using the K-Ar dating technique. Clay mineral formation is a fundamental process in the evolution of faults under the brittle regime (history with a minimum age of ˜360 Ma and a last clay minerals forming event at ˜220 Ma. Moreover, given the progression of apparent ages decreasing from coarse to fine size fractions (˜360-311 Ma for 2-1 μm grain size fraction, ˜326-286 Ma for 1-0.2 μm and ˜291-219 Ma of <0.2 μm), we modeled discrete deformation events at ˜417 Ma (ending of the Famatinian cycle), ˜317-326 Ma (end of Gondwanic orogeny), and ˜194-279 Ma (Early Permian - Jurassic deformation). According to our data, the Neogene reactivation would not have affected the K-Ar system neither generated a significant clay minerals crystallization in the fault gouge, although an exhumation of more than 2 Km is recorded in this period from stratigraphic data.

  3. Late Miocene to Recent formation of the Aure-Moresby fold-thrust belt and foreland basin as a consequence of Woodlark microplate rotation, Papua New Guinea

    Science.gov (United States)

    Ott, Bryan; Mann, Paul

    2015-06-01

    The Aure-Moresby fold-thrust belt and Aure-Moresby foreland basin are located in the eastern Gulf of Papua (GOP), Papua New Guinea (PNG), and formed during late Miocene-Recent as the result of large-scale, counterclockwise rotation of the 355,000 km2 Woodlark microplate. To document the structure, stratigraphy, and age of convergent deformation along the poorly studied, western edge of the rotating Woodlark microplate, we integrate results of 2,538 km of previously unpublished 2-D seismic reflection data with onshore geologic and GPS studies from previous workers. The late Miocene Aure-Moresby fold-thrust belt is a 400 km long, northwest-trending fold-belt exposed onshore in Papua New Guinea that plunges to the southeast, where continuous folds and northeast-dipping thrusts can be imaged in the subsurface for more than 250 km. The arcuate trend of the Aure-Moresby fold-thrust belt along the southwestern coast and offshore areas of the Papuan peninsula parallels the shape of the adjacent, offshore Aure-Moresby foreland basin and the strike of the transpressional segment of the left-lateral Owen-Stanley fault zone (OSFZ) passing along the center of the Papuan peninsula. As the OSFZ becomes more transtensional east of 148°E, folds of the Aure-Moresby fold-thrust belt along southern coast of the peninsula become less prominent, and the adjacent Aure-Moresby foreland basin transitions into an undeformed Cenozoic passive margin setting. These observations of convergent an left-lateral deformation along the Aure-Moresby fold-thrust belt are consistent with: (1) counterclockwise rotation of the Woodlark microplate known from regional GPS studies; (2) coeval opening of the Woodlark basin along its southern edge in the late Miocene; and (3) rapid subduction at the New Britain trench along its northern edge. The kinematics of the rotating Woodlark microplate are driven by slab pull forces acting on the actively subducting northern edge of the microplate.

  4. Latest Quaternary rapid river incision across an inactive fold in the northern Chinese Tian Shan foreland

    Science.gov (United States)

    Lu, Honghua; Cheng, Lu; Wang, Zhen; Zhang, Tianqi; Lü, Yanwu; Zhao, Junxiang; Li, Youli; Zheng, Xiangmin

    2018-01-01

    This work focuses on the incision process over the Tuostai anticline, a fold of the proximal structure Belt I in the northern Chinese Tian Shan foreland, where the Sikeshu River has incised deeply into the alluvial gravels and the fold's underlying bedrock strata. Field investigation and geomorphic mapping define five terraces of the Sikeshu River (designated as T1 to T5 from oldest to youngest) preserved within the Tuostai anticline. 10Be surface exposure dating and optically stimulated luminescence dating constrain stabilization of the highest three terrace surfaces at about 80 ka (T1), 16 ka (T2), and 15 ka (T3), respectively. Around 16 ka, the calculated river incision rates significantly increase from 6 mm/yr. Undeformed longitudinal profiles of terraces T2, T3 and T4 over the Tuostai anticline suggest that this structure may have been tectonically inactive since stabilization of these three terraces. We thus think that the observed rapid river incision over the Tuostai anticline has not been largely forced by tectonic uplift. Instead, the progressively warmer and wetter palaeoclimatic condition within the Tian Shan range and its surrounding area during the period of ∼20-10 ka may have enhanced river incision across the Tuostai anticline. A reduced sediment/water ratio might have lowered the gradient of the Sikeshu River.

  5. Biostratigraphy of a Paleocene–Eocene Foreland Basin boundary in southern Tibet

    Directory of Open Access Journals (Sweden)

    Xiaoqiao Wan

    2010-10-01

    Full Text Available This study of the Paleocene–Eocene boundary within a foreland basin of southern Tibet, which was dominated by a carbonate ramp depositional environment, documents more complex environmental conditions than can be derived from studies of the deep oceanic environment. Extinction rates for larger foraminiferal species in the Zongpu-1 Section apply to up to 46% of the larger foraminiferal taxa. The extinction rate in southern Tibet is similar to rates elsewhere in the world, but it shows that the Paleocene fauna disappeared stepwise through the Late Paleocene, with Eocene taxa appearing abruptly above the boundary. A foraminifera turnover was identified between Members 3 and 4 of the Zongpu Formation—from the Miscellanea–Daviesina assemblage to an Orbitolites–Alveolina assemblage. The Paleocene and Eocene boundary is between the SBZ 4 and SBZ 5, where it is marked by the extinction of Miscellanea miscella and the first appearance of Alveolina ellipsodalis and a large number of Orbitolites. Chemostratigraphically, the δ13C values from both the Zongpu-1 and Zongpu-2 Sections show three negative excursions in the transitional strata, one in Late Paleocene, one at the boundary, and one in the early Eocene. The second negative excursion of δ13C, which is located at the P–E boundary, coincides with larger foraminifera overturn. These faunal changes and the observed δ13C negative excursions provide new evidence on environmental changes across the Paleocene–Eocene boundary in Tibet.

  6. Diagenetic Evolution and Reservoir Quality of Sandstones in the North Alpine Foreland Basin: A Microscale Approach.

    Science.gov (United States)

    Gross, Doris; Grundtner, Marie-Louise; Misch, David; Riedl, Martin; Sachsenhofer, Reinhard F; Scheucher, Lorenz

    2015-10-01

    Siliciclastic reservoir rocks of the North Alpine Foreland Basin were studied focusing on investigations of pore fillings. Conventional oil and gas production requires certain thresholds of porosity and permeability. These parameters are controlled by the size and shape of grains and diagenetic processes like compaction, dissolution, and precipitation of mineral phases. In an attempt to estimate the impact of these factors, conventional microscopy, high resolution scanning electron microscopy, and wavelength dispersive element mapping were applied. Rock types were established accordingly, considering Poro/Perm data. Reservoir properties in shallow marine Cenomanian sandstones are mainly controlled by the degree of diagenetic calcite precipitation, Turonian rocks are characterized by reduced permeability, even for weakly cemented layers, due to higher matrix content as a result of lower depositional energy. Eocene subarkoses tend to be coarse-grained with minor matrix content as a result of their fluvio-deltaic and coastal deposition. Reservoir quality is therefore controlled by diagenetic clay and minor calcite cementation.Although Eocene rocks are often matrix free, occasionally a clay mineral matrix may be present and influence cementation of pores during early diagenesis. Oligo-/Miocene deep marine rocks exhibit excellent quality in cases when early cement is dissolved and not replaced by secondary calcite, mainly bound to the gas-water contact within hydrocarbon reservoirs.

  7. Sediment provenance in contractional orogens: The detrital zircon record from modern rivers in the Andean fold-thrust belt and foreland basin of western Argentina

    Science.gov (United States)

    Capaldi, Tomas N.; Horton, Brian K.; McKenzie, N. Ryan; Stockli, Daniel F.; Odlum, Margaret L.

    2017-12-01

    This study analyzes detrital zircon U-Pb age populations from Andean rivers to assess whether active synorogenic sedimentation accurately records proportional contributions from varied bedrock source units across different drainage areas. Samples of modern river sand were collected from west-central Argentina (28-33°S), where the Andes are characterized by active uplift and deposition in diverse contractional provinces, including (1) hinterland, (2) wedge-top, (3) proximal foreland, and (4) distal broken foreland basin settings. Potential controls on sediment provenance were evaluated by comparing river U-Pb age distributions with predicted age spectra generated by a sediment mixing model weighted by relative catchment exposure (outcrop) areas for different source units. Several statistical measures (similarity, likeness, and cross-correlation) are employed to compare how well the area-weighted model predicts modern river age populations. (1) Hinterland basin provenance is influenced by local relief generated along thrust-bounded ranges and high zircon fertility of exposed crystalline basement. (2) Wedge-top (piggyback) basin provenance is controlled by variable lithologic durability among thrust-belt bedrock sources and recycled basin sediments. (3) Proximal foreland (foredeep) basin provenance of rivers and fluvial megafans accurately reflect regional bedrock distributions, with limited effects of zircon fertility and lithologic durability in large (>20,000 km2) second-order drainage systems. (4) In distal broken segments of the foreland basin, regional provenance signatures from thrust-belt and hinterland areas are diluted by local contributions from foreland basement-cored uplifts.

  8. Late Burdigalian sea retreat from the North Alpine Foreland Basin: new magnetostratigraphic age constraints

    Science.gov (United States)

    Sant, K.; Kirscher, U.; Reichenbacher, B.; Pippèrr, M.; Jung, D.; Doppler, G.; Krijgsman, W.

    2017-05-01

    Accurate reconstruction of the final sea retreat from the North Alpine Foreland Basin (NAFB) during the Burdigalian (Early Miocene) is hampered by a lack of reliable age constraints. In this high resolution magnetostratigraphic study we try to solve a significant age bias for the onset of the Upper Freshwater Molasse (OSM) deposition in the neighboring S-German and Swiss Molasse Basins. We measured > 550 samples from eleven drill cores covering the transition from marine to brackish to freshwater environments in the S-German Molasse Basin. Based on combined bio-, litho- and magnetostratigraphic constraints, the composite magnetostratigraphic pattern of these cores provides two reasonable age correlation options (model 1 and 2). In model 1, the base of the brackish succession lies within Chron C5Cr ( 16.7-17.2 Ma), and the onset of OSM deposition has an age of 16.5 Ma. Correlation model 2 suggests the transition to brackish conditions to be within C5Dr.1r ( 17.7-17.5 Ma), and yields an age around 16.7 Ma for the shift to the OSM. Most importantly, both models confirm a much younger age for the OSM base in the study area than previously suggested. Our results demonstrate a possible coincidence of the last transgressive phase (Kirchberg Fm) with the Miocene Climatic Optimum (model 1), or with the onset of this global warming event (model 2). In contrast, the final retreat of the sea from the study area is apparently not controlled by climate change. Supplementary material B. Profiles of the eleven studied drill cores including lithologies, all magnetostratigraphic data (inclinations), interpreted polarity pattern (this study and Reichenbacher et al., 2013) and magnetic susceptibility (this study). Legend for graphs on page 1. Samples without a stable direction above 200 °C or 20 mT are depicted as +-signs and plotted at 0° inclination. The interpreted normal (black), reversed (white) and uncertain (grey) polarity zones in the polarity columns are based on at least

  9. Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions

    Science.gov (United States)

    Kastrup, U.; Zoback, M.L.; Deichmann, N.; Evans, Kenneth F.; Giardini, D.; Michael, A.J.

    2004-01-01

    This study is devoted to a systematic analysis of the state of stress of the central European Alps and northern Alpine foreland in Switzerland based on focal mechanisms of 138 earthquakes with magnitudes between 1 and 5. The most robust feature of the results is that the azimuth of the minimum compressive stress, S3, is generally well constrained for all data subsets and always lies in the NE quadrant. However, within this quadrant, the orientation of S3 changes systematically both along the structural strike of the Alpine chain and across it. The variation in stress along the mountain belt from NE to SW involves a progressive, counterclockwise rotation of S3 and is most clear in the foreland, where it amounts to 45??-50??. This pattern of rotation is compatible with the disturbance to the stress field expected from the indentation of the Adriatic Block into the central European Plate, possibly together with buoyancy forces arising from the strongly arcuate structure of the Moho to the immediate west of our study area. Across the Alps, the variation in azimuth of S3 is defined by a progressive, counterclockwise rotation of about 45?? from the foreland in the north across the Helvetic domain to the Penninic nappes in the south and is accompanied by a change from a slight predominance of strike-slip mechanisms in the foreland to a strong predominance of normal faulting in the high parts of the Alps. The observed rotation can be explained by the perturbation of the large-scale regional stress by a local uniaxial deviatoric tension with a magnitude similar to that of the regional differential stress and with an orientation perpendicular to the strike of the Alpine belt. The tensile nature and orientation of this stress is consistent with the "spreading" stress expected from lateral density changes due to a crustal root beneath the Alps. Copyright 2004 by the American Geophysical Union.

  10. The lithospheric-scale 3D structural configuration of the North Alpine Foreland Basin constrained by gravity modelling and the calculation of the 3D load distribution

    Science.gov (United States)

    Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael

    2014-05-01

    The North Alpine Foreland Basin is situated in the northern front of the European Alps and extends over parts of France, Switzerland, Germany and Austria. It formed as a wedge shaped depression since the Tertiary in consequence of the Euro - Adriatic continental collision and the Alpine orogeny. The basin is filled with clastic sediments, the Molasse, originating from erosional processes of the Alps and underlain by Mesozoic sedimentary successions and a Paleozoic crystalline crust. For our study we have focused on the German part of the basin. To investigate the deep structure, the isostatic state and the load distribution of this region we have constructed a 3D structural model of the basin and the Alpine area using available depth and thickness maps, regional scale 3D structural models as well as seismic and well data for the sedimentary part. The crust (from the top Paleozoic down to the Moho (Grad et al. 2008)) has been considered as two-parted with a lighter upper crust and a denser lower crust; the partition has been calculated following the approach of isostatic equilibrium of Pratt (1855). By implementing a seismic Lithosphere-Asthenosphere-Boundary (LAB) (Tesauro 2009) the crustal scale model has been extended to the lithospheric-scale. The layer geometry and the assigned bulk densities of this starting model have been constrained by means of 3D gravity modelling (BGI, 2012). Afterwards the 3D load distribution has been calculated using a 3D finite element method. Our results show that the North Alpine Foreland Basin is not isostatically balanced and that the configuration of the crystalline crust strongly controls the gravity field in this area. Furthermore, our results show that the basin area is influenced by varying lateral load differences down to a depth of more than 150 km what allows a first order statement of the required compensating horizontal stress needed to prevent gravitational collapse of the system. BGI (2012). The International

  11. Combined tectonic-sediment supply-driven cycles in a Lower Carboniferous deep-marine foreland basin, Moravice Formation, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Bábek, O.; Mikuláš, Radek; Zapletal, J.; Lehotský, T.

    2004-01-01

    Roč. 93, č. 2 (2004), s. 241-261 ISSN 1437-3254 R&D Projects: GA ČR(CZ) GA205/00/0118 Keywords : facies analysis * Foreland basin * trace fossils Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.147, year: 2004

  12. 2D Seismic Velocity Modelling in the Southeastern Romanian Carpathians and its Foreland (Vrancea Zone and Focsani Basin)

    Science.gov (United States)

    Stephenson, R.; Bocin, A.; Tryggvason, A.

    2003-12-01

    The DACIA-PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the objective of obtaining of new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea Zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly NW-SE direction, from near the southeast Transylvanian Basin, across the mountainous southeastern Carpathians and their foreland to near the Danube Dalta. A high resolution 2D velocity model of the upper crust along the seismic profile has been determined from a first-arrival tomographic inversion of the DACIA-PLAN data. The shallowing of Palaeozoic-Mesozoic basement, and related structural heterogeneity within it, beneath the eastern flank of the Focsani Basin is clearly seen. Velocity heterogeneity within the Carpathian nappe belt is also evident and is indicative of internal structural complexity, including the presence of salt bodies and basement involvement in thrusting, thus favouring some current geological models over others. The presence of basement involvement implies the compressional reactivation of pre-existing basement normal faults. Members of the DACIA-PLAN/TomoSeis Working Group (see poster) should be considered as co-authors of this presentation.

  13. The Late Miocene to recent erosion pattern of the Alpine foreland basin reflects Eurasian slab-unloading beneath the western Alps rather than global climate change

    Science.gov (United States)

    Friedrich, Anke; Schlunegger, Fritz; Baran, Ramona

    2014-05-01

    It has been proposed that mountainous erosion increased globally around 5 Ma in response to global climate change, mainly because this increase coincides with a cooling trend indicated by global isotopic data (e.g., Herman et al. 2013). The Alps have played a prominent role in this debate. Published sedimentary budgets for the western and eastern Alps for the past 35 Ma show a substantial increase in the erosion of the Alps at c. 5 Ma (e.g., Kuhlemann, 2000). This temporal coincidence was used to call for a climate driver, mainly because this increase was not accompanied by tectonic convergence across the Alps during this time period. However, several authors emphasized the importance of lithospheric-scale processes beneath the Alps, which could also explain the increase in erosion rates through surface uplift. To provide a new perspective on this debate, we synthesized a spatial gradient map of erosion rates for the Alps and the entire Alpine foreland basin. Our data base consists of published (1) apatite fission-track (AFT) cooling ages for the Alps (e.g., Vernon et al. 2008; Luth and Willingshofer 2008; Wölfler et al. 2012; (2) AFT ages from wells from the Swiss foreland basin (e.g., Cederbom et al. 2011), and (3) stratigraphic data from industry wells in the German and Austrian foreland basin (e.g., Lemcke 1974; Genser et al. 2007). We focus our analysis on the shape and scale of the areas undergoing erosion since 5 Ma. Our synthesis of published denudation rate data for the past 5 Million years reveals that erosion of the Alpine foreland basin is highest in front of the western Alps (between 2 and 0.6 km), and decreases eastward over a distance of 700 km to the Austrian foreland basin (c. 200 m). For the western Alps, the compilation of apatite-fission-track ages yields erosion rates > 0.6 km/Ma, while erosion rates for the eastern foreland basin and the adjacent eastern Alps are slab along the Eurasian-Adriatic plate boundary. This mechanism triggered large

  14. Broken foreland basins in the India-Eurasia collision zone and in the central Andes: tectonic, geomorphic and sedimentologic similarities (Invited)

    Science.gov (United States)

    Strecker, M. R.; Bookhagen, B.; Hilley, G. E.; Kirby, E.; Sobel, E. R.

    2010-12-01

    Deformation in broken forelands may be accommodated far into the foreland by reactivation of crustal anisotropies, producing steep, but short-wavelength topography. The discontinuous nature of this deformation and potentially rapid rock uplift rates relative to those within fold-and-thrust belts favors sediment ponding behind active mountain ranges built atop reactivated geologic structures. In the realm of the greater Indo-Eurasian collision zone the Tien Shan of Kyrgyzstan and China or the Qilian Shan comprise such settings, where ongoing shortening excises and uplifts basement blocks and eventually compartmentalizes a formerly contiguous foreland. In the Qilian Shan and ranges of NE Tibet, an early Tertiary foreland was disrupted by diachronous range growth and formation of isolated basins. Reconnection to external base level did not occur until Quaternary time. The Argentine Santa Barbara and Pampean ranges are examples of such environments in a non-collisional orogen. Here, several generations of transient basin fills were deposited and re-excavated in intermontane basins that are near the headwaters of rivers currently draining the broken foreland basin system. Despite differing settings, there similarities between basins in both environments, including: (1) multiple episodes of filling and excavation; (2) steep precipitation gradients; and, (4) highly disparate and diachronous deformation and uplift. Comparison of basin histories from the Andes and Central Asia suggests that these characteristics are the consequence of similar factors. First, deformation is typically localized along inherited crustal zones of weakness and the evolving topographic load above the reactivated faults. The high-angle structures produce large amounts of uplift for a given increment of shortening, facilitating rapid removal of cover sediments and exposing resistant lithologies. Second, transient basin fills typically occur where moisture-laden winds are prevented from reaching the

  15. Sedimentology and stratigraphy of the middle Eocene Guara carbonate platform near Arguis, South-West Pyrenean foreland: Implications for basin physiography

    Science.gov (United States)

    Huyghe, D.; Castelltort, S.; Serra-Kiel, J.; Filleaudeau, P.-Y.; Emmanuel, L.; Mouthereau, F.; Renard, M.

    2009-04-01

    The Pyrenees results from the collision between Spain and Europe and developed between the upper Cretaceous (Santonian) and the Miocene. Its foreland basins are characterised by a thick fill of detrital and carbonate sediments. The diversity of Eocene deposits in the southern Pyrenean foreland basin is of particular use in facies sedimentology due to their exceptional outcropping quality and well established stratigraphic framework and has been taken as type examples of many different sedimentary environments. Most studies have concerned facies sedimentology of detrital series in turbiditic environments, meandering and braided rivers, alluvial fans, and deltas. In contrast, the Eocene carbonate series have attracted less attention. The marine Guara limestones are a formation of lower to middle Eocene age deposited on the southern border of the western Pyrenean foreland basin (Jaca basin). They were deposited as a retrogradational carbonate platform dominated by large benthic foraminifers near or at the flexural forebulge of the foreland basin as the Pyrenean orogen developed. This formation represents the last episode of carbonate platform in the Pyrenees and remains poorly studied. In the present work our aim is to provide a detailed facies analysis and physiographic reconstructions of the Guara carbonate platform. This is crucial to unravel the respective influences of tectonics, climate and rheology of the lithosphere on the foreland basin tectonic and stratigraphic development, and it brings new constraints on the paleoenvironments and paleogeography during the Lutetian, i.e. at the beginning of the major phase of activity of the Pyrenean orogenesis. Two outcrops were studied in the Sierras Marginales at the localities of Arguis and Lusera. The Lusera section once restored in its initial position is located to the North of the Arguis section in a basinward direction such that comparing time-equivalent facies between these two sections helps us reconstructing

  16. Reconstruction of fluid (over-)pressure evolution from sub-seismic fractures in folds and foreland basins

    Science.gov (United States)

    Beaudoin, Nicolas; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2013-04-01

    at 2 to 3 km depth, and emphasize that the LPS-related stress build-ups during Sevier and Laramide are associated with an increase in fluid overpressure until it reaches the lithostatic pressure. In each fold studied, the evolution of fluid pressure however reflects peculiar periods during which tensile fracture and vein sets developed under a nearly hydrostatic fluid pressure, suggesting a high hydraulic permeability of the sedimentary cover. The hydraulic behavior of these tensile fracture/vein sets which formed during regional foreland flexure and at fold hinges in response to local strata bending is fully supported by independent geochemical studies performed on the cements of the same veins. At the basin scale, the evolution of the fluid overpressure possibly reflects the eastward fluid migration in the Rocky Mountain foreland during the Laramide contractional event. Finally, considering that fluid overpressure was released during folding permits to estimate syn-folding exhumation of strata, the value of which is consistent with independent paleo-barometric reconstruction based on hydrocarbon fluid inclusions and with exhumation-uplift rates derived from apatite fission-track data in neighboring Laramide uplifts. To conclude, in a geological setting where the paleo-hydrological, the microstructural and the structural histories are well-constrained, we are now able to (semi-)quantitatively reconstruct the evolution of fluid (over-) pressure and to integrate this evolution in a consistent tectonic-fluid flow scenario at both fold scale and basin scale, to be compared with outputs of numerical modeling of fluid flow in basins.

  17. Part I: Neoacadian to Alleghanian foreland basin development and provenance in the central appalachian orogen, pine mountain thrust sheet Part II: Structural configuration of a modified Mesozoic to Cenozoic forearc basin system, south-central Alaska

    Science.gov (United States)

    Robertson, Peter Benjamin

    Foreland and forearc basins are large sediment repositories that form in response to tectonic loading and lithospheric flexure during orogenesis along convergent plate boundaries. In addition to their numerous valuable natural resources, these systems preserve important geologic information regarding the timing and intensity of deformation, uplift and erosion history, and subsidence history along collisional margins, and, in ancient systems, may provide more macroscopic information regarding climate, plate motion, and eustatic sea level fluctuations. This thesis presents two studies focused in the Paleozoic Appalachian foreland basin system along the eastern United States and in the Mesozoic to Cenozoic Matanuska forearc basin system in south-central Alaska. Strata of the Appalachian foreland basin system preserve the dynamic history of orogenesis and sediment dispersal along the east Laurentian margin, recording multiple episodes of deformation and basin development during Paleozoic time. A well-exposed, >600 m thick measured stratigraphic section of the Pine Mountain thrust sheet at Pound Gap, Kentucky affords one of the most complete exposures of Upper Devonian through Middle Pennsylvanian strata in the basin. These strata provide a window into which the foreland basin's development during two major collisional events known as the Acadian-Neoacadian and the Alleghanian orogenies can be observed. Lithofacies analysis of four major sedimentary successions observed in hanging wall strata record the upward transition from (1) a submarine deltaic fan complex developed on a distal to proximal prodelta in Late Devonian to Middle Mississippian time, to (2) a Middle to Late Mississippian carbonate bank system developed on a slowly subsiding, distal foreland ramp, which was drowned by (3) Late Mississippian renewed clastic influx to a tidally influenced, coastal deltaic complex to fluvial delta plain system unconformably overlain by (4) a fluvial braided river complex

  18. Cenozoic sedimentation and exhumation of the foreland basin system preserved in the Precordillera thrust belt (31-32°S), southern central Andes, Argentina

    Science.gov (United States)

    Levina, Mariya; Horton, Brian K.; Fuentes, Facundo; Stockli, Daniel F.

    2014-09-01

    Andean retroarc compression associated with subduction and shallowing of the oceanic Nazca plate resulted in thin-skinned thrusting that partitioned and uplifted Cenozoic foreland basin fill in the Precordillera of west-central Argentina. Evolution of the central segment of the Precordillera fold-thrust belt is informed by new analyses of clastic nonmarine deposits now preserved in three intermontane regions between major east directed thrust faults. We focus on uppermost Oligocene-Miocene basin fill in the axial to frontal Precordillera at 31-32°S along the Río San Juan (Albarracín and Pachaco sections) and the flank of one of the leading thrust structures (Talacasto section). The three successions record hinterland construction of the Frontal Cordillera, regional arc volcanism, and initial exhumation of Precordillera thrust sheets. Provenance changes recorded by detrital zircon U-Pb age populations suggest that initial shortening in the Frontal Cordillera coincided with an early Miocene shift from eolian to fluvial accumulation in the adjacent foreland basin. Upward coarsening of fluvial deposits and increased proportions of Paleozoic clasts reflect cratonward (eastward) advance of deformation into the Precordillera and resultant structural fragmentation of the foreland basin into isolated intermontane segments. Apatite (U-Th)/He thermochronometry of basin fill constrains to 12-9 Ma the most probable age of uplift-induced exhumation and cooling of Precordillera thrust sheets. This apparent pulse of exhumation is evident in each succession, suggestive of rapid, large-scale exhumation by synchronous thrusting above a single décollement linking major structures of the Precordillera.

  19. The Eocene-Oligocene transition in the North Alpine Foreland Basin and subsequent closure of a Paratethys gateway

    Science.gov (United States)

    van der Boon, A.; Beniest, A.; Ciurej, A.; Gaździcka, E.; Grothe, A.; Sachsenhofer, R. F.; Langereis, C. G.; Krijgsman, W.

    2018-03-01

    During the Eocene-Oligocene transition (EOT), a major palaeoenvironmental change took place in the Paratethys Sea of central Eurasia. Restricted connectivity and increased stratification resulted in wide-spread deposition of organic-rich sediments which nowadays make up important hydrocarbon source rocks. The North Alpine Foreland Basin (NAFB) was a major gateway of the Paratethys Sea to the open ocean during the Eocene, but the age of closure of this gateway is still uncertain. The Ammer section in southern Germany documents the shallowing of this connection and subsequent disappearance of marine environments in the NAFB, as reflected in its sedimentary succession of turbidites to marls (Deutenhausen to Tonmergel beds), via coastal sediments (Baustein beds) to continental conglomerates (Weißach beds). Here, we apply organic geochemistry and date the lithological transitions in the Ammer section using integrated stratigraphy, including magnetostratigraphy and biostratigraphy. Nannoplankton and dinocyst results can be reconciled when dinoflagellate species Wetzeliella symmetrica is of late Eocene age. Our magnetostratigraphy then records C13r-C13n-C12r and allows calculation of sediment accumulation rates and estimation of ages of lithological transitions. We show that the shallowing from turbiditic slope deposits (Deutenhausen beds) to shelf sediments (Tonmergel beds) coincides with the Eocene-Oligocene boundary at 33.9 Ma. The transition to continental sediments is dated at ca. 33.15 Ma, significantly older than suggested by previous studies. We conclude that the transition from marine to continental sediments drastically reduced the marine connection through the western part of the NAFB and influenced the oxygen conditions of the Paratethys Sea.

  20. The radioisotopically constrained Viséan onset of turbidites in the Moravian-Silesian part of the Rhenohercynian foreland basin (Central European Variscides)

    Science.gov (United States)

    Jirásek, Jakub; Otava, Jiří; Matýsek, Dalibor; Sivek, Martin; Schmitz, Mark D.

    2018-03-01

    The Březina Formation represents the initiation of siliciclastic flysch turbidite sedimentation at the eastern margin of Bohemian Massif or within the Rhenohercynian foreland basin. Its deposition started after drowning of the Devonian carbonate platform during Viséan (Mississippian) times, resulting in a significant interval of black siliceous shale and variegated fossiliferous shale deposition in a starved basin. Near the top of the Březina Formation an acidic volcanoclastic layer (tuff) of rhyolitic composition has been dated with high precision U-Pb zircon chemical abrasion isotope dilution method at 337.73 ± 0.16 Ma. This new radiometric age correlates with the previously inferred stratigraphic age of the locality and the current calibration of the Early Carboniferous geologic time scale. Shales of the Březina Formation pass gradually upwards into the siliciclastics of the Rozstání Formation of the Drahany culm facies. Thus our new age offers one of the few available radioisotopic constraints on the time of onset of siliciclastic flysch turbidites in the Rhenohercynian foreland basin of the European Variscides.

  1. Pleistocene-Recent Drainage Evolution in the Western Himalayan Foreland Basin

    Science.gov (United States)

    Clift, P. D.; Giosan, L.; Macklin, M.; Carter, A.; Tabrez, A. R.

    2011-12-01

    The rivers of the upper Indus flood plains support large populations in an area where rainfall is relatively weak. Nonetheless, the region has been one in which early civilizations flourished and then dispersed, most notably the Indus Valley or Harappan Culture. We investigated potential links between human settlement and drainage evolution by drilling abandoned and filled river channels on the northern edge of the Thar Desert to see how they have evolved. Pb isotope data from single K-feldspar grains from Holocene and Pleistocene sands showed that the channels were sourced from Himalayan rivers before and at 6-8 ka, but that after that time the proportion of high isotopic ratio grains rose, indicating increased contribution from the Thar Desert dunes prior to ~4.5 ka when flow in the Ghaggar-Hakra ceased entirely. U-Pb dating of single zircon sand grains confirms this general pattern. Grain ages <300 Ma are typical of the Thar Desert and become more common around 6-8 ka as the river flux decreased and desert began to encroach. Zircons ages at ~1900 Ma can be linked to a westward flow of the Yamuna River into the Indus but this flow may have finished as early as 49 ka, so that this capture does not affect the Harappan Culture. After this time the Sutlej and Beas River flowed through the region until they were both captured away to the north prior to 6-8 ka. The Harappan centers on the north of the Thar Desert likely dispersed because of unpredictable water supply as the monsoon weakened and because the flow of major rivers had ceased well before 4 ka.

  2. Tectonic-sedimentary evolution of foreland basins: U-Pb dating of the discharge that would have originated the piggy-back basin of Rodeo-Iglesias, San Juan-Argentina

    International Nuclear Information System (INIS)

    Santos, Romulo Duarte Moreira dos; Hauser, Natalia; Matteini, Massimo; Pimentel, Marcio Martins

    2015-01-01

    Between the 28 ° and 31 ° LS parallels of the Argentinean west, in the province of San Juan, foreland basins originated by the subhorizontal subduction of oceanic crust as a result of the Andean orogeny in the late Oligocene emerges. The Bermejo basin and Rodeo-Iglesias piggy-back basin would be associated with the progressive development of landslides, backscatter and minor faults, and basin fragmentation. Two samples of volcanic rocks, R-1 (rhyolitic dome) and R-3 (fall deposit) of the Rodeo-Iglesias basin, had ages of 8.2 ± 0.11 Ma and 8.7 ± 0.24 Ma. At the same time, the age of the (R-1) made it possible to infer quantitatively the age of the first cavalcade that occurred approximately 8.2 ± 0.11 Ma. From the data obtained in the Rodeo-Iglesias basin both volcanism and the first cavalcade could have been synchronous

  3. Megafans of the Northern Kalahari Basin

    Science.gov (United States)

    Wilkinson, M. J.; Miller, R. McG.; Eckardt, F.; Kreslavsky, M. A.

    2016-01-01

    We identify eleven megafans (partial cones of fluvial sediment, >80 km radius) in the northern Kalahari Basin, using several criteria based on VIS and IR remotely sensed data and SRTM-based surface morphology reconstructions. Two other features meet fewer criteria of the form which we class as possible megafans. The northern Kalahari megafans are located in a 1700 km arc around the southern and eastern flanks of the Angola's Bié Plateau, from northern Namibia through northwest Botswana to western Zambia. Three lie in the Owambo subbasin centered on the Etosha Pan, three in the relatively small Okavango rift depression, and five in the Upper Zambezi basin. The population includes the well-known Okavango megafan (150 km), Namibia's Cubango megafan, the largest megafan in the region (350 km long), and the largest nested group (the five major contiguous megafans on the west slopes of the upper Zambezi Valley). We use new, SRTM-based topographic roughness data to discriminate various depositional surfaces within the flat N. Kalahari landscapes. We introduce the concepts of divide megafans, derived megafans, and fan-margin rivers. Conclusions. (i) Eleven megafan cones total an area of 190,000 sq km. (ii) Different controls on megafan size operate in the three component basins: in the Okavango rift structural controls become the prime constraint on megafan length by controlling basin dimensions. Megafans in the other les constricted basins appear to conform to classic relationships fan area, slope, and feeder-basin area. (iii) Active fans occupy the Okavango rift depression with one in the Owambo basin. The rest of the population are relict but recently active fans (surfaces are relict with respect to activity by the feeder river). (iv) Avulsive behavior of the formative river-axiomatic for the evolution of megafans-has resulted in repeated rearrangements of regional drainage, with likely effects in the study area well back into the Neogene. Divide megafans comprise the

  4. Uncoupled vs. coupled thrust belt-foreland deformation: a model for northern Patagonia inferred from U-Th/He and apatite fission track dating

    Science.gov (United States)

    Savignano, Elisa; Mazzoli, Stefano; Zattin, Massimiliano; Gautheron, Cécile; Franchini, Marta

    2017-04-01

    The study of the Cretaceous - Cenozoic evolution of the Patagonian Andes represents a great opportunity to investigate the effects of coupling between deep lithospheric processes and near-surface deformation. Low-temperature thermochronological systems are ideally suited for detecting events involving rocks in the uppermost part of the crust because they record time and rates of cooling related to exhumation of the top few kilometers of the crust. The Patagonia region, although characterized by a general continuity of the Andean orogen along its strike, shows an appreciable internal tectonic segmentation (marked by a variable position of the magmatic arc and of the deformation front in the retroarc area) at various latitudes. This complex structural architecture has been interpreted as the result of different processes acting since the Late Cretaceous. The present-day configuration of the southern Andes is interpreted to have been controlled by alternating stages of flat- and steep-slab subduction, which produced shortening and upper plate extension episodes,, respectively. Furthermore, the deformation in this whole retroarc sector varied not only in time (i.e. with major 'cycles' of mountain building and orogenic collapse), but also in space, due to the variable transmission of horizontal compressive stress away from the orogen, that produced an irregular unroofing pattern. In this study, we have integrated field structural observations with new apatite (U-Th)/He data (AHe) and apatite fission-track (AFT) ages in the north Patagonia region (at latitudes between 40° and 44°S) in order to analyse and compare the exhumation patterns from the frontal part of the orogen and from the adjacent foreland sector, as well as to gain new insights into the timing and modes of coupling vs. uncoupling of the deformation between the northern Patagonian fold and thrust belt and its foreland. The obtained data indicate a markedly different unroofing pattern between the 'broken

  5. When did the Penglai orogeny begin on Taiwan?: Geochronological and petrographic constraints on the exhumed mountain belts and foreland-basin sequences

    Science.gov (United States)

    Chen, W. S.; Syu, S. J.; Yeh, J. J.

    2017-12-01

    Foreland basin receives large amounts of synorogenic infill that is eroded from the adjacent exhumed mountain belt, and therefore provides the important information on exhumation evolution. Furthermore, a complete stratigraphic sequence of Taiwan mountain belt consists of five units of Miocene sedimentary rocks (the Western Foothills and the uppermost sequence on the proto-Taiwan mountain belt), Oligocene argillite (the Hsuehshan Range), Eocene quartzite (the Hsuehshan Range), Eocene-Miocene slate and schist (Backbone Range), and Cretaceous schist (Backbone Range) from top to bottom. Based on the progressive unroofing history, the initiation of foreland basin received sedimentary lithic sediments from the uppermost sequence of proto-Taiwan mountain belt, afterwards, and receiving low- to medium-grade metamorphic lithic sediments in ascending order of argillite, quartzite, slate, and schist clasts. Therefore, the sedimentary lithics from mountain belt were deposited which represents the onset of the mountain uplift. In this study, the first appearance of sedimentary lithic sediments occurs in the Hengchun Peninsula at the middle Miocene (ca. 12-10 Ma). Thus, sandstone petrography of the late Miocene formation (10-5.3 Ma) shows a predominantly recycled sedimentary and low-grade metamorphic sources, including sandstone, argillite and quartzite lithic sediments of 10-25% which records erosion to slightly deeper metamorphic terrane on the mountain belt. Based on the results of previous thermogeochronological studies of the Yuli belt, it suggests that the middle Miocene occurred mountain uplift. The occurrence of low-grade metamorphic lithic sediments in the Hengchun Peninsula during late Miocene is coincident with the cooling ages of uplift and denuded Yuli schist belt at the eastern limb of Backbone Range.

  6. Three-dimensional seismo-tectonics in the Po Valley basin, Northern Italy

    Science.gov (United States)

    Turrini, Claudio; Angeloni, Pamela; Lacombe, Olivier; Ponton, Maurizio; Roure, François

    2015-10-01

    The Po Valley (Northern Italy) is a composite foreland-foredeep basin caught in between the Southern Alps and Northern Apennine mountain belts. By integrating the 3D structural model of the region with the public earthquake dataset, the seismo-tectonics of the basin is shown at different scales of observation. The three-dimensional geo-volume is used to review the seismicity around the region and validate the structure-earthquake association for such a complex tectonic framework. Despite the overall uncertainty due to the original data distribution-quality as well as the crustal scale model dimension, the direct correlation between structures and seismicity a) confirms the Po Valley region as an active tectonic system and b) allows the whole structural architecture to be revised by a unique three-dimensional perspective and approach. This study also indicates that 3D methodology is a powerful tool for better understanding of highly complex seismo-tectonic situations at both regional and local scales.

  7. Depositional Record of the Bagua Basin, Northern Peru: Implications for Climate and Tectonic Evolution of Tropical South America

    Science.gov (United States)

    Moreno, F.; George, S. W. M.; Williams, L. A.; Horton, B. K.; Garzione, C. N.

    2015-12-01

    The Andes Mountains exert critical controls on the climate, hydrology, and biodiversity of South America. The Bagua Basin, a low elevation (400-600 m) intermontane basin in northern Peru, offers a unique opportunity to study the ecological, climatic, and structural evolution of the western topographic boundary of the Amazonian foreland. Situated between the Marañon fold-thrust belt of the Western Cordillera and basement block uplifts of the Eastern Cordillera, the Bagua region contains a protracted, semi-continuous record of Triassic through Pleistocene sedimentation. Whereas Triassic-Cretaceous marine deposits were potentially related to extension and regional thermal subsidence, a Paleocene-Eocene shift to shallow marine and fluvial systems marks the onset of foreland basin conditions. Oligocene-Miocene sedimentation corresponds to a braided-meandering fluvial system with exceptional development of paleosols. In this study, we use new detrital zircon U-Pb geochronologic and oxygen stable isotopic datasets to establish a chronology of pre-Andean and Andean processes within the Bagua Basin. Detrital zircon geochronology provides constraints on when the Western and Eastern cordilleras shed sediments into the basin. Syndepositional zircons within Eocene, Oligocene and Miocene strata provide key age control for a previously poorly constrained depositional chronology. Preliminary results suggest a dramatic provenance shift in which Paleocene deposits contain almost exclusively cratonic populations (500-1600 Ma) whereas Eocene deposits show a mix of syndepositional zircons from the magmatic arc, recycled Mesozoic zircons, and cratonic zircon populations. Oxygen stable isotopes (δ18O) of carbonate nodules from Neogene paleosols will help elucidate when the Eastern Cordillera became an orographic barrier intercepting moisture from the Amazon basin to the east. Together, these records will help uncover the history of tectonics and climate interaction in tropical South

  8. U-Pb geochronology of modern river sands from the flat-slab segment of the southern central Andes, Argentina, 29-31°S: Implications for Neogene foreland and hinterland basin evolution

    Science.gov (United States)

    Capaldi, T.; Horton, B. K.; McKenzie, R.; Stockli, D. F.

    2015-12-01

    This study investigates how Andean river sediments in the flat-slab segment of western Argentina record active mixing of lithologically and geochemically distinct source regions comprising the Principal Cordillera, Frontal Cordillera, Precordillera fold-thrust belt, Sierras Pampeanas basement uplifts, and recycled Neogene basin fill. Detrital zircon U-Pb geochronological results for modern river sands discriminate variations from hinterland source regions, through river tributaries and main trunks of the Bermejo, Jachal, San Juan, and Mendoza rivers, and their respective fluvial megafans within the active foreland basin. Proportions of proximal zircon populations in the hinterland trunk rivers (with extensive Permian-Triassic and Cenozoic igneous exposures) diminish downstream with progressive contributions from the frontal Precordillera fold-thrust belt (dominantly Paleozoic sedimentary rocks) and Pampean basement uplifts. However, this systematic downstream dilution is perturbed in several catchments by significant recycling of older foreland basin fill. The degree of recycling depends on the position and extent of Oligocene-Pliocene exposures within the catchments. To discern the effects of the variable detrital zircon sources, multiple statistical methods are utilized. Quantitative comparisons suggest that variations in detrital zircon age distributions among the modern sands, and with older foreland basin fill and exposed bedrock, are dependent on spatial and temporal variations in exhumation and drainage network evolution within their respective Andean catchments. The present surface area of competing source regions and the configuration of hinterland tributary rivers largely dictate the degree of downstream dilution and/or recycling. This study provides a modern analogue and baseline for reconstructing Neogene shifts in foreland basin provenance, depositional systems, and drainage configurations during a critical transition to flat-slab subduction.

  9. Groundwater quality in the Northern Coast Ranges Basins, California

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    The Northern Coast Ranges (NOCO) study unit is 633 square miles and consists of 35 groundwater basins and subbasins (California Department of Water Resources, 2003; Mathany and Belitz, 2015). These basins and subbasins were grouped into two study areas based primarily on locality. The groundwater basins and subbasins located inland, not adjacent to the Pacific Ocean, were aggregated into the Interior Basins (NOCO-IN) study area. The groundwater basins and subbasins adjacent to the Pacific Ocean were aggregated into the Coastal Basins (NOCO-CO) study area (Mathany and others, 2011).

  10. Controlling effect of fractures on gas accumulation and production within the tight sandstone: A case study on the Jurassic Dibei gas reservoir in the eastern part of the Kuqa foreland basin, China

    OpenAIRE

    Lu, Hui; Lu, Xuesong; Fan, Junjia; Zhao, Mengjun; Wei, Hongxing; Zhang, Baoshou; Lu, Yuhong

    2016-01-01

    Using Dibei tight sandstone gas reservoir in the eastern part of the Kuqa foreland basin as an example, this paper discusses tight sandstone reservoir fractures characterization, its effect on storage space and gas flow capacity, and its contribution to gas accumulation, enrichment and production in tight sandstone reservoir by using laser scanning confocal microscope (LSCM) observation, mercury intrusion capillary pressure (MICP) testing, and gas-water two-phase relative permeability testing...

  11. Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran-Iraq)

    Science.gov (United States)

    Saura, Eduard; Garcia-Castellanos, Daniel; Casciello, Emilio; Parravano, Vanessa; Urruela, Aritz; Vergés, Jaume

    2015-03-01

    The evolution of the Amiran and Mesopotamian flexural basins of the Zagros belt is approached by coupled 2-D forward modeling of orogenic wedge formation, lithospheric flexural isostasy, and stream power erosion/transport/sedimentation. Thrust geometries and sequence of emplacement derived from geometric and kinematic models presented here are the inputs to our evolutionary model, constrained by basin geometry, sediment volume, and topography. Modeling results confirm that the Zagros flexural basins evolution is consistent with two stages of deformation: (1) the obduction stage involving the Kermanshah accretionary complex and a basement unit and (2) the collision stage, emplacing the Gaveh Rud and Sanandaj-Sirjan domains in the hinterland and forming a basement duplex in the outer part. Results provide quantitative insights into processes involved in mountain and basin building. The lithospheric equivalent elastic thickness (Te) changed from 20 km during the Amiran stage ( 90-50 Ma) to 55 km during the Mesopotamian subsidence stage (last 20 Myr). The Amiran basin results from flexure of the Arabian plate below the load of the Kermanshah cover and basement thrust sheets. During this stage, material eroded in the inner parts was enough to fill the flexural trough. The Mesopotamian basin formed in front of the outermost basement units flexing the Arabian plate. During this latter stage, material eroded from the orogenic wedge was not enough to fill the Mesopotamian basin. An additional longitudinal sediment supply of up to 200 m/Myr is required to fill the flexural basin.

  12. Crustal investigations of the earthquake-prone Vrancea region in Romania - Part 2: Novel deep seismic reflection experiment in the southeastern Carpathian belt and its foreland basin - survey target, design, and first results

    Science.gov (United States)

    Mocanu, V. I.; Stephenson, R. A.; Diaconescu, C. C.; Knapp, J. H.; Matenco, L.; Dinu, C.; Harder, S.; Prodehl, C.; Hauser, F.; Raileanu, V.; Cloetingh, S. A.; Leever, K.

    2001-12-01

    Seismic studies of the outer Carpathian Orogen and its foreland (Focsani Basin) in the vicinity of the Vrancea Zone and Danube Delta (Romania) forms one component of a new multidisciplinary initiative of ISES (Netherlands Centre for Integrated Solid Earth Sciences) called DACIA PLAN ("Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics"). The study area, at the margin of the European craton, constitutes one of the most active seismic zones in Europe, yet has remained a geological and geodynamic enigma within the Alpine-Himalayan orogenic system. Intermediate depth (50-220 km) mantle earthquakes of significant magnitude occur in a geographically restricted area in the south-east Carpathians bend. The adjacent, foreland Focsani Basin appears to exhibit recent extensional deformation in what is otherwise understood to be a zone of convergence. The deep seismic reflection component of DACIA PLAN comprises a ~140-km near-vertical profile across the Vrancea Zone and Focsani Basin. Data acquisition took place in August-September 2001, as part of the integrated refraction/reflection seismic field programme "Vrancea-2001" co-ordinated at Karlsruhe University (cf. Abstract, Part 1), utilising 640 independently deployed recorders provided by UTEP and IRIS/PASSCAL ("Texans"). Station spacing was every 100-m with shots every 1-km. These data are to be integrated with industry seismic as well as planned new medium-high resolution seismic reflection profiling across key neotectonically active structures in the Focsani Basin. Particular goals of DACIA PLAN include: (1) the architecture of the Tertiary/Quaternary basins developed within and adjacent to this zone, including the foreland Focsani Basin; (2) the presence and geometry of structural detachment(s) in relation with foreland basin development, including constraints for balanced cross-sections and geodynamic modelling of basin origin and evolution; (3) the relationship between crustal

  13. Andean stratigraphic record of the transition from backarc extension to orogenic shortening: A case study from the northern Neuquén Basin, Argentina

    Science.gov (United States)

    Horton, Brian K.; Fuentes, Facundo; Boll, Andrés; Starck, Daniel; Ramirez, Sebastian G.; Stockli, Daniel F.

    2016-11-01

    The temporal transition from backarc extension to retroarc shortening is a fundamental process in the evolution of many Andean-type convergent margins. This switch in tectonic regime is preserved in the 5-7 km thick Mesozoic-Cenozoic stratigraphic record of west-central Argentina at 34-36°S, where the northern Neuquén Basin and succeeding Cenozoic foreland succession chronicle a long history of fluctuating depositional systems and diverse sediment source regions during Andean orogenesis. New findings from sediment provenance and facies analyses are integrated with detrital zircon U-Pb geochronological results from 16 samples of Jurassic through Miocene clastic deposits to delineate the progressive exhumation of the evolving Andean magmatic arc, retroarc fold-thrust belt, and foreland province. Abrupt changes in provenance and depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, postextensional thermal subsidence, punctuated tectonic inversion, thick- and thin-skinned shortening, overlapping igneous activity, and alternating phases of basin accumulation, sediment bypass, and erosion. U-Pb age distributions constrain the depositional ages of Cenozoic units and reveal a prolonged late middle Eocene to earliest Miocene (roughly 40-20 Ma) hiatus in the retroarc foreland basin. This stratigraphic gap is expressed as a regional disconformity that marks a pronounced shift in depositional conditions and sediment sources, from (i) slow Paleocene-middle Eocene accumulation of distal fluviolacustrine sediments (Pircala and Coihueco Formations) contributed from far western magmatic arc sources (Cretaceous-Paleogene volcanic rocks) and subordinate eastern basement rocks (Permian-Triassic Choiyoi igneous complex) to (ii) rapid Miocene-Quaternary accumulation of proximal fluvial to megafan sediments (Agua de la Piedra, Loma Fiera, and Tristeza Formations) recycled from emerging western thrust-belt sources of Mesozoic basin fill

  14. Characteristics of depositional sequences, systems tracts and bounding surfaces in Early Ordovician greenhouse passive margin carbonates to Late Ordovician glacio-eustatic influenced foreland basin facies

    Energy Technology Data Exchange (ETDEWEB)

    Pope, M.C.; Read, J.F. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Geology)

    1994-03-01

    Passive margin, cyclic carbonates of the Early Ordovician Knox Group, Appalachians are dominated by meter scale dolomitized carbonate cycles. These are stacked into 1 to 5 m.y. depositional sequences that appear to be relatively conformable. The sequences are defined by stacking patterns on Fischer plots that graph long term changes in accommodation with thick less dolomitized cycles in the TST, and thin, highly dolomitized cycles in the HST, becoming quartzose in the late HST and LST. Sequence and systems tract boundaries are subtle and typically marked by zones of cycles rather than single discrete surfaces. In contrast, sequences in the later Ordovician foreland basin fill locally show: (1) sequence bounding unconformities on the Knox, the Camp Nelson and on top of the Ordovician, (2) well defined low stand deposits as in the subaerial breccias and detrital dolomite muds veneering the Knox unconformity; redbeds and associated quartz sands and conglomerates with intercalated peritidal carbonate layers and their distal equivalent peritidal laminites; (3) TST's in the lower part of the Middle Ordovician limestones include regionally traceable cyclic peritidal carbonates or in the lower Lexington Limestone, transgressive high energy grainstones; (4) HST's consist of poorly cyclic deeper water up into shallow water grainstone bank and northward prograding peritidal carbonate facies; The ongoing study of detailed logs of outcrop and core should help refine the understanding of the fine scale makeup of sequences developed in these contrasting tectonic and global climatic settings.

  15. Geometric and kinematics of West Segment of South Dabashan Foreland Fold-and-Thrust Belt, Northeast Sichuan Basin, China

    Science.gov (United States)

    He, Dengfa

    2017-04-01

    The west segment of South Daba Shan (WSD) foreland thrust belt is an ideal area to disclose the intra-continental tectonic processes. Based on the latest pre-stack depth migration of 3-D seismic data, 2-D seismic profile, well data and geological outcrop, the paper explore the structural geometric and kinematic features of WSD with the application of fault-related folding theories. WSD is characterized by multi-level detachment deformation due to the three predominant sets of weak layers, Lower Triassic Jialingjiang Formation gypsum interval, Silurian mudstone beds and Cambrian shale zone. It is accordingly subdivided vertically into three tectonic systems. The upper one is above the Jialingjiang Formation gypsolith layer and presents a Jura-like fold-and-thrust belt. The middle one takes Silurian shale as the base and Jialingjiang Formation gypsolith interval as the passive roof, in which imbricate thrusts developed. The lower one is bounded to Cambrian and Silurian detachment layers, in which duplex dominated. The Sinian and Proterozoic basements below Cambrian have not been involved in deformation. WSD underwent four periods of tectonic evolution: Late Jurassic -Cretaceous (150-110Ma); Late Cretaceous (110-70Ma); Latest Cretaceous to Paleogene (70-30Ma); Oligocene to Quaternary (30-0 Ma). The deformation propagated southward as an imbricate style, which results in the passive uplifting of overlying structural layer. WSD exhibits a rather low taper tectonic wedge. According to the magnetotelluric and deep seismic profiles, it is inferred that the WSD tectonic processes is mainly controlled by the Yangtze continental block subduction northward under the Qingling Mountains and the pro-wedge multi-level thrusting during late Jurassic to Cretaceous. The Upper Paleozoic carbonates in the middle tectonic deformation system are favorable for gas exploration in thea area.

  16. The age of volcanic tuffs from the Upper Freshwater Molasse (North Alpine Foreland Basin) and their possible use for tephrostratigraphic correlations across Europe for the Middle Miocene

    Science.gov (United States)

    Rocholl, Alexander; Schaltegger, Urs; Gilg, H. Albert; Wijbrans, Jan; Böhme, Madelaine

    2018-03-01

    The Middle Miocene Upper Freshwater Molasse sediments represent the last cycle of clastic sedimentation during the evolution of the North Alpine Foreland Basin. They are characterized by small-scale lateral and temporal facies changes that make intra-basin stratigraphic correlations at regional scale difficult. This study provides new U-Pb zircon ages as well as revised 40Ar/39Ar data of volcanic ash horizons in the Upper Freshwater Molasse sediments from southern Germany and Switzerland. In a first and preliminary attempt, we propose their possible correlation to other European tephra deposits. The U-Pb zircon data of one Swiss (Bischofszell) and seven southern German (Zahling, Hachelstuhl, Laimering, Unterneul, Krumbad, Ponholz) tuff horizons indicate eruption ages between roughly 13.0 and 15.5 Ma. The stratigraphic position of the Unterneul and Laimering tuffs, bracketing the ejecta of the Ries impact (Brockhorizon), suggests that the Ries impact occurred between 14.93 and 15.00 Ma, thus assigning the event to the reversed chron C5Bn1r (15.032-14.870 Ma) which is in accordance with paleomagnetic evidence. We combine our data with published ages of tuff horizons from Italy, Switzerland, Bavaria, Styria, Hungary, and Romania to derive a preliminary tephrochronological scheme for the Middle Miocene in Central Europe in the age window from 13.2 to 15.5 Ma. The scheme is based on the current state of knowledge that the Carpathian-Pannonian volcanic field was the only area in the region producing explosive calc-alkaline felsic volcanism. This preliminary scheme will require verification by more high-quality ages complemented by isotopic, geochemical and paleomagnetic data.

  17. Late-Miocene thrust fault-related folding in the northern Tibetan Plateau: Insight from paleomagnetic and structural analyses of the Kumkol basin

    Science.gov (United States)

    Lu, Haijian; Fu, Bihong; Shi, Pilong; Xue, Guoliang; Li, Haibing

    2018-05-01

    Constraints on the timing and style of the Tibetan Plateau growth help spur new understanding of the tectonic evolution of the northern Tibetan Plateau and its relation to the India-Asia continental collision. In this regard, records of tectonic deformation with accurate ages are urgently needed, especially in regions without relevant studies. The Kumkol basin, located between two major intermontane basins (the Hoh Xil and Qaidam basins), may hold clues to how these major basins evolve during the Cenozoic. However, little has been known about the exact ages of the strata and tectonic deformation of the basin. Herein, detailed paleomagnetic and structural studies are conducted on the southern Baiquanhe section in the central Kumkol basin, northern Tibetan Plateau. The magnetostratigraphic study indicates that the southern Baiquanhe section spans a time interval of 8.2-4.2 Ma. Well-preserved growth strata date to 7.5 Ma, providing evidence for a significant thrust fault-related folding. This thrust-related folding has also been identified in the Tian Shan foreland and in the northern Tibetan Plateau, most likely implying a pulsed basinward deformation during the late Miocene.

  18. Microtectonic and geochemical characterization of thrusting in a foreland basin: Example of the South-Pyrenean orogenic wedge (Spain)

    Science.gov (United States)

    Lacroix, B.; Buatier, M.; Labaume, P.; Travé, A.; Dubois, M.; Charpentier, D.; Ventalon, S.; Convert-Gaubier, D.

    2011-09-01

    In orogenic systems, thrust faults play a major role in stacking different tectonic units and may act as conduits for the expulsion of large amounts of fluid of different origins (metamorphic, diagenetic, meteoric). This study focuses on the Monte Perdido thrust unit emplaced in the Paleogene Jaca thrust-sheet-top basin, in the SW-central Pyrenees. We aim to decipher the mechanisms and P-T conditions of deformation in fault zones and characterize the related fluid involvement, through combined microstructural, geochemical and microthermometry analyses. Two thrust faults cutting platform limestones, marls and siliciclastic turbidites of the lower part of the basin-fill (Paleocene-lower Eocene) have been studied. The fault zones are characterized by metre-thick shear zones with highly deformed, foliated clay-rich sediments. Foliation is underlined by preferentially oriented phyllosilicates. Several generations of shear and extension calcite, quartz and chlorite-bearing veins attest to fluid-rock interactions during a multi-stage deformation. Microstructural observations and stable isotope analyses on calcite from veins and host sediments suggest that deformation was aseismic and dominated by diffusive mass transfer from pressure solution sites along cleavage and stylolites to the precipitation sites in veins, with mineralizing fluids in equilibrium with the host sediments. Our results suggest an essentially closed hydrologic system, and imply the absence of significant fluid flow along the studied fault zones. Microthermometric study on fluid inclusions present in calcite and quartz veins, and calcite-quartz oxygen isotopic fractionation determined for the first generation shear veins, allow a geothermal gradient of 34 °C/km to be estimated. Analytical results demonstrate an evolution of the fault zones in three stages. The first stage was related to the emplacement of the Monte Perdido thrust unit during the middle Eocene at a temperature of ˜208 °C and a burial

  19. The Cretaceous-Paleogene boundary in the shallow northeastern Mexican foreland basins: Evidence for paleoseismic liquefaction, tsunami deposition, and Chicxulub ejecta

    Science.gov (United States)

    Schulte, Peter; Smit, Jan; Deutsch, Alex; Friese, Andrea; Beichel, Kilian

    2010-05-01

    Understanding the depositional sequence and composition of impact ejecta is critical for the interpretation of timing and effects of the Chicxulub impact regarding the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary. Preliminary investigations have shown that the shallow La Popa and Parras foreland basins in northeastern Mexico both feature outstanding and continuous 3D exposures of the Chicxulub ejecta-rich, K-Pg boundary event deposit (Lawton et al., 2005). The m-thick sand-siltstone interval directly underlying the ejecta-rich mass flows shows evidence of slumping and liquefaction, locally leading to complete disorganization and disruption of the pre-impact late Cretaceous sedimentary sequence. The subsequent ejecta-rich sequence consists of an up to one m-thick basal carbonate-rich bed that discontinuously fills a valley-like topography. Besides abundant silicic and carbonate ejecta spherules (up to 50%) that are excellently preserved, this bed includes abundant mollusks and gastropod shells, as well as vertebrate bones and teeth. The conglomeratic bed is overlain by a series of alternating fine- to medium grained calcareous sandstones with shell debris and ejecta that were deposited by repeated currents / mass flow events incorporating varying source areas. Hummocky-cross-stratified strata that mark the return to a normal out-shelf depositional regime conformably overly these sandstones. We interpret this sequence as evidence for presumably seismic-induced sediment liquefaction followed by a series of impact-related tsunami deposits. The specific depositional sequence and Fe-Mg-rich ejecta composition as well as the petrography of the sandstones all closely link the K-Pg boundary sequence in the La Popa and Parras basin to the well-known deep-water K-Pg sites in the Gulf of Mexico (e.g. El Mimbral; Smit et al., 1996; Schulte and Kontny, 2005). Lawton, T.F., et al., 2005, Geology, v. 33, p. 81-84. Smit, J. et al., 1996, GSA Special Paper v. 307, p

  20. Provenance evolution of the Jurassic northern Qaidam Basin (West China) and its geological implications: evidence from detrital zircon geochronology

    Science.gov (United States)

    Yu, Long; Xiao, Ancheng; Wu, Lei; Tian, Yuntao; Rittner, Martin; Lou, Qianqian; Pan, Xiaotian

    2017-03-01

    The Jurassic system is the major hydrocarbon source rock and of crucial importance for understanding the Mesozoic intra-continental tectonics in West China. This paper presents systematic detrital zircon geochronology of the Jurassic outcropping at the Dameigou locality in the northern Qaidam Basin, and reports 1000 single-grain U-Pb zircon ages that have implications for the provenance, the corresponding basin property as well as the tectonic setting of West China during Jurassic. Zircon ages exhibit two major clusters at 250 and 2400 Ma whereas two minor clusters at 450 and 850 Ma, suggesting primary sources from the East Kunlun Shan and Oulongbuluke Block, secondary sources from the North Qaidam UHP belt and South Qilian Shan. Combined with observation of lithology and sedimentary facies, two rifting periods were inferred in the earliest Jurassic and the early stage of the Middle Jurassic, respectively, accompanied by further extension throughout the Jurassic. Our results do not support a foreland basin related to the Jurassic southward thrusting of the South Qilian Shan, but favor that the Mesozoic intra-continental tectonics in West China were characterised by pulsed responses to specific collisions rather than a persisting contractional setting during Jurassic period.

  1. Petrology and provenance of the Neogene fluvial succession in Pishin Belt (Katawaz Basin) western Pakistan: Implications for sedimentation in peripheral forelands basins

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Aktar Muhammad; Friis, Henrik

    2017-01-01

    Sandstones and conglomerates of the Neogene fluvial succession in Pishin Belt (Katawaz Basin), Pakistan were studied for the first time to understand the composition, provenance and tectonic settings of the source areas. Sandstones of the Miocene Dasht Murgha Group and Pliocene Malthanai Formation...

  2. Tectonic-sedimentary evolution of foreland basins: U-Pb dating of the discharge that would have originated the piggy-back basin of Rodeo-Iglesias, San Juan-Argentina; Evolucao tectono-sedimentar de bacias de antepais: datacao U-Pb do corrimento que teria originado a bacia de piggy-back de Rodeo-Iglesias, San Juan-Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Romulo Duarte Moreira dos; Hauser, Natalia; Matteini, Massimo; Pimentel, Marcio Martins [Universidade de Brasilia (UnB), DF (Brazil). Instituto de Geociencias. Laboratorio de de Estudos Geocronologicos, Geodinamicos e Ambientais; Limarino, Oscar; Marensi, Sergio; Ciccioli, Patricia; Alonso, Susana, E-mail: romulodms@gmail.com [Departamento de Ciencias Geologicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2015-07-01

    Between the 28 ° and 31 ° LS parallels of the Argentinean west, in the province of San Juan, foreland basins originated by the subhorizontal subduction of oceanic crust as a result of the Andean orogeny in the late Oligocene emerges. The Bermejo basin and Rodeo-Iglesias piggy-back basin would be associated with the progressive development of landslides, backscatter and minor faults, and basin fragmentation. Two samples of volcanic rocks, R-1 (rhyolitic dome) and R-3 (fall deposit) of the Rodeo-Iglesias basin, had ages of 8.2 ± 0.11 Ma and 8.7 ± 0.24 Ma. At the same time, the age of the (R-1) made it possible to infer quantitatively the age of the first cavalcade that occurred approximately 8.2 ± 0.11 Ma. From the data obtained in the Rodeo-Iglesias basin both volcanism and the first cavalcade could have been synchronous.

  3. Implications of Spatial Variability in Heat Flow for Geothermal Resource Evaluation in Large Foreland Basins: The Case of the Western Canada Sedimentary Basin

    Directory of Open Access Journals (Sweden)

    Simon Weides

    2014-04-01

    Full Text Available Heat flow and geothermal gradient of the sedimentary succession of the Western Canada Sedimentary Basin (WCSB are mapped based on a large thermal database. Heat flow in the deep part of the basin varies from 30 mW/m2 in the south to high 100 mW/m2 in the north. As permeable strata are required for a successful geothermal application, the most important aquifers are discussed and evaluated. Regional temperature distribution within different aquifers is mapped for the first time, enabling a delineation of the most promising areas based on thermal field and aquifer properties. Results of previous regional studies on the geothermal potential of the WCSB are newly evaluated and discussed. In parts of the WCSB temperatures as high as 100–210 °C exist at depths of 3–5 km. Fluids from deep aquifers in these “hot” regions of the WCSB could be used in geothermal power plants to produce electricity. The geothermal resources of the shallower parts of the WCSB (>2 km could be used for warm water provision (>50 °C or district heating (>70 °C in urban areas.

  4. Influence of a tectonically active mountain belt on its foreland basin: Evidence from detrital zircon dating of bedrocks and sediments from the eastern Tibetan Plateau and Sichuan Basin, SW China

    Science.gov (United States)

    Zhong, Ning; Song, Xiangsuo; Xu, Hongyan; Jiang, Hanchao

    2017-09-01

    The tectonically active eastern Tibetan Plateau (TP) impacts the populous Sichuan Basin in the form of dust and exhumed detrital materials. To better understand a detailed transport process of detrital material from the eastern TP to the Sichuan Basin, eight samples were collected from the upper reaches of the Min River in the eastern TP to the Sichuan Basin, for zircon U-Pb chronological and grain-size analysis. The results are compared with those of previously studies. Zircon grains are comparatively coarse in three bedrock samples, one fluvial sand sample and one dust sample, but are distinctly fine in three lacustrine samples. Intriguingly, the zircon grain-size parameters from the fluvial sand and dust samples are similar to each other. Consistent with previous studies of this area, the analysis of our U-Pb zircon ages indicates five major age populations at 180-350 Ma, 350-550 Ma, 700-1000 Ma, 1600-2000 Ma, and 2200-2600 Ma, which broadly correspond to five known granitoid magmatic events within the Yangtze Block. The Min River links lacustrine sediments from Lixian, fluvial sands from Wenchuan, Leshan, Yibin, and from the Dadu River and the Dayi conglomerate, implying the Dayi conglomerate was transported by fluvial rather than glacial processes. The denuded detrital material, mainly generated by seismic events in the eastern TP, was transported by water flow into the western Sichuan Basin, where two thick sedimentary depocenters developed, and the relatively fine grains were then transported by wind to the northern Sichuan Basin. Thus, the thick sediments in the western Sichuan Basin mainly transported by the Min River probably exerted a major influence on dust deposition in the northern Sichuan Basin. In contrast, the Jialing and Dadu rivers made a minor contribution.

  5. Northern Rivers Basins human health monitoring program : report

    Energy Technology Data Exchange (ETDEWEB)

    Gabos, S. [Alberta Health, Edmonton, AB (Canada). Health Surveillance

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs.

  6. Northern Rivers Basins human health monitoring program : report

    International Nuclear Information System (INIS)

    Gabos, S.

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs

  7. Nannofossil record across the Cenomanian-Coniacian interval in the Bohemian Cretaceous Basin and Tethyan foreland basins (Outer Western Carpathians), Czech Republic

    Science.gov (United States)

    Švábenická, Lilian

    2012-06-01

    Nannofossil biostratigraphy and mutual correlation was worked out for the Cenomanian-Coniacian deposits of the Bohemian Cretaceous Basin (BCB) and Outer Western Carpathians (OWC) in the territory of the Czech Republic. Similar assemblages of the BCB and from sediments deposited on the SE slopes of West European Platform, Waschbergždánice-Subsilesian Unit, OWC support the hypothesis that the two areas were connected by a sea way (nowadays the Blansko trough). The nannoflora of the Silesian Unit, OWC show more afinity to high latitudes as is documented by the presence of Marthasterites furcatus in the Lower Turonian, UC6b and UC7 Zones. Turonian and Coniacian deep-water flysch sediments of the Silesian Unit and Magura Group of Nappes provide nannofossils on rare occassions. Strongly atched nannofossils dominated by W. barnesiae from Cenomanian black shales of the BCB are comparable to those of the Silesian Unit and reflect a similar shallow nearshore sea. In the BCB, uppermost Cenomanian is marked by the last occurrence (LO) of Axopodorhabdus albianus and first occurrence (FO) of Quadrum intermedium (6 and 7 elements) and lowermost Turonian by a sudden quantitative rise in nannoflora and by the FO Eprolithus octopetalus. First Eiffellithus eximius and thus the base of the UC8 Zone was recorded in the upper part of ammonite Zone Collignoniceras woollgari in the lower Middle Turonian. Lithastrinus grillii is the stratigraphically youngest nannofossil species in this region and indicates the uppermost Coniacian. In the OWC, the Albian-Cenomanian boundary was recorded in the Silesian Unit and is marked by the LO Crucicribrum anglicum and FO Prediscosphaera cretacea and Corollithion kennedyi in the uppermost Albian. The Turonian-Coniacian boundary found both in the BCB and Waschberg-Ždánice-Subsilesian Unit, OWC is indicated by the FO Broinsonia parca expansa and by the base of the interval with common Marthasterites furcatus. In both areas, events were found closely

  8. Mio Pliocene volcaniclastic deposits in the Famatina Ranges, southern Central Andes: A case of volcanic controls on sedimentation in broken foreland basins

    Science.gov (United States)

    Martina, Federico; Dávila, Federico M.; Astini, Ricardo A.

    2006-04-01

    A well-constrained record of Miocene-Pliocene explosive volcanism is preserved within the broken foreland of Western Argentina along the Famatina Ranges. This paper focuses on the volcaniclastic record known as the Río Blanco member of the El Durazno Formation. Three facies can be recognized in the study area: (1) massive tuffs; (2) volcaniclastic conglomerates and (3) pumiceous sandstones. These facies are interpreted as primary pyroclastic flow deposits (ignimbrites) and reworked volcanogenic deposits within interacting volcanic-fluvial depositional systems. Alternation between ignimbrites and volcanogenic sandstones and conglomerates suggest a recurrent pattern of sedimentation related to recurrent volcanic activity. Considering the facies mosaic and relative thicknesses of facies, short periods of syn-eruption sedimentation (volcaniclastic deposits) seem to have been separated by longer inter-eruption periods, where normal stream-flow processes were dominant. The volcaniclastic component decreases up-section, suggesting a gradual reduction in volcanic activity. The mean sedimentation rate of the Río Blanco member is higher (0.44 mm/year) than those obtained for the underlying and overlying units. This increase cannot be fully explained by foreland basement deformation and tectonic loading. Hence, we propose subsidence associated with volcanic activity as the causal mechanism. Volcanism would have triggered additional accommodation space through coeval pyroclastic deposition, modification of the stream equilibrium profile, flexural loading of volcanoes, and thermal processes. These mechanisms may have favored the preservation of volcaniclastic beds in the high-gradient foreland system of Famatina during the Mio-Pliocene. Thus, the Río Blanco member records the response of fluvial systems to large, volcanism-induced sediment loads.

  9. Contributions of gravity and field data on the structural scheme updating of the Tellian domain and its foreland (Nefza-Bizerte region, northern Tunisia)

    Science.gov (United States)

    Essid, El Mabrouk; Kadri, Ali; Balti, Hadhemi; Gasmi, Mohamed; Zargouni, Fouad

    2018-03-01

    The Nefza-Bizerte region, eastern part of the Tunisian Alpine chain, covers the thrust sheets domain called the Tell and its Atlassic foreland. The deep structures under the Tellian thrust sheets are not enough explored. The structural interpretation of magmatic rocks, Triassic outcrops and the depressions are still a subject of discussion. In this work, we intend to investigate deep faults and their eventual role in magmatism and Triassic salt setting up and to explain the depression genesis. Analysis of the Bouguer anomaly map and its derivatives reveals the main gravity lineaments, organized in major NE- and NW-trending systems. The NE-trending system, dipping towards the NW, is the main component of the structural scheme and has controlled the tectonic evolution of this area. After the immobilization of the Tellian thrust sheets during the uppermost Langhian, the Tell and its Atlassic foreland were affected by the Tortonian compressive event with a NW-trending maximum horizontal stress. The reverse kinematics of the NE-trending deep-seated faults created at their front continental environments filled later by post-nappes Neogene deposits. After the early Pleistocene, a NNW-directed compressional stress regime deformed the post-nappes Neogene series and generated NW-trending grabens. This coexistence of compression-extension continues until present day.

  10. Slab rollback orogeny in the Alps and evolution of the Swiss Molasse basin

    Science.gov (United States)

    Schlunegger, Fritz; Kissling, Edi

    2015-01-01

    The stratigraphies of foreland basins have been related to orogeny, where continent–continent collision causes the construction of topography and the downwarping of the foreland plate. These mechanisms have been inferred for the Molasse basin, stretching along the northern margin of the European Alps. Continuous flexural bending of the subducting European lithosphere as a consequence of topographic loads alone would imply that the Alpine topography would have increased at least between 30 Ma and ca. 5–10 Ma when the basin accumulated the erosional detritus. This, however, is neither consistent with observations nor with isostatic mass balancing models because paleoaltimetry estimates suggest that the topography has not increased since 20 Ma. Here we show that a rollback mechanism for the European plate is capable of explaining the construction of thick sedimentary successions in the Molasse foreland basin where the extra slab load has maintained the Alpine surface at low, but constant, elevations. PMID:26472498

  11. Foreland crustal structure of the New York recess, northeastern United States

    Science.gov (United States)

    Herman, G.C.; Monteverde, D.H.; Schlische, R.W.; Pitcher, D.M.

    1997-01-01

    A new structural model for the northeast part of the Central Appalachian foreland and fold-and-thrust belt is based on detailed field mapping, geophysical data, and balanced cross-section analysis. The model demonstrates that the region contains a multiply deformed, parautochthonous fold-and-thrust system of Paleozoic age. Our interpretations differ from previous ones in which the entire region north of the Newark basin was considered to be allochthonous. The new interpretation requires a substantial decrease in Paleozoic tectonic shortening northeastward from adjacent parts of the Central Appalachian foreland and illustrates the common occurrence of back-thrusting within the region. During early Paleozoic time northern New Jersey consisted of a Taconic orogenic foreland in which cover folds (F1) involved lower Paleozoic carbonate and flysch overlying Middle Proterozoic basement. F1 folds are open and upright in the foreland and more gently inclined to recumbent southeastward toward the trace of the Taconic allochthons. F1 structures were cut and transported by a fold-and-thrust system of the Allegheny orogeny. This thrust system mostly involves synthetic faults originating from a master decollement rooted in Proterozoic basement. Antithetic faults locally modify early synthetic overthrusts and S1 cleavage in lower Paleozoic cover and show out-of-sequence structural development. The synthetic parts of the regional thrust system are bounded in the northwestern foreland by blind antithetic faults interpreted from seismic-reflection data. This antithetic faulting probably represents Paleozoic reactivation of Late Proterozoic basement faults. Tectonic contraction in overlying cover occurred by wedge faulting where synthetic and antithetic components of the foreland fault system overlap. S2 cleavage in the Paleozoic cover stems from Alleghanian shortening and flattening and commonly occurs in the footwall of large overthrust sheets. Paleozoic structures in Proterozoic

  12. Constraining drivers of basin exhumation in the Molasse Basin by combining low-temperature thermochronology, thermal history and kinematic modeling

    Science.gov (United States)

    Luijendijk, Elco; von Hagke, Christoph; Hindle, David

    2017-04-01

    Due to a wealth of geological and thermochronology data the northern foreland basin of the European Alps is an ideal natural laboratory for understanding the dynamics of foreland basins and their interaction with surface and geodynamic processes. The northern foreland basin of the Alps has been exhumed since the Miocene. The timing, rate and cause of this phase of exhumation are still enigmatic. We compile all available thermochronology and organic maturity data and use a new thermal history model, PyBasin, to quantify the rate and timing of exhumation that can explain these data. In addition we quantify the amount of tectonic exhumation using a new kinematic model for the part of the basin that is passively moved above the detachment of the Jura Mountains. Our results show that the vitrinite reflectance, apatite fission track data and cooling rates show no clear difference between the thrusted and folded part of the foreland basin and the undeformed part of the foreland basin. The undeformed plateau Molasse shows a high rate of cooling during the Neogene of 40 to 100 °C, which is equal to >1.0 km of exhumation. Calculated rates of exhumation suggest that drainage reorganization can only explain a small part of the observed exhumation and cooling. Similarly, tectonic transport over a detachment ramp cannot explain the magnitude, timing and wavelength of the observed cooling signal. We conclude that the observed cooling rates suggest large wavelength exhumation that is probably caused by lithospheric-scale processes. In contrast to previous studies we find that the timing of exhumation is poorly constrained. Uncertainty analysis shows that models with timing starting as early as 12 Ma or as late as 2 Ma can all explain the observed data.

  13. Erosion of the French Alpine foreland controlled by crustal thickening

    Science.gov (United States)

    Schwartz, Stéphane; Gautheron, Cécile; Audin, Laurence; Nomade, Jérôme; Dumont, Thierry; Barbarand, Jocelyn; Pinna-Jamme, Rosella; van der Beek, Peter

    2017-04-01

    In alpine-type collision belts, deformation of the foreland may occur as a result of forward propagation of thrusting and is generally associated with thin-skinned deformation mobilizing the sedimentary cover in fold-and-thrust belts. Locally, foreland deformation can involve crustal-scale thrusting and produce large-scale exhumation of crystalline basement resulting in significant relief generation. In this study, we investigate the burial and exhumation history of Tertiary flexural basins located in the western Alpine foreland, at the front of the Digne thrust-sheet (SE France), using low-temperature apatite fission-track (AFT) and (U-Th)/He (AHe) thermochronology. Based on the occurrence of partially to totally reset apatite grain ages, we document 3.3 to 4.0 km burial of these basins remnants between 12-6 Ma, related to thin-skinned thrust-sheet emplacement without major relief generation. The onset of exhumation is dated at 6 Ma and is linked to erosion associated with subsequent relief development. This evolution does not appear controlled by major climate changes (Messinian crisis) or by European slab breakoff. Rather, we propose that the erosional history of the Digne thrust-sheet corresponds to basement involvement in foreland deformation, leading to crustal thickening and the incipient formation of a new external crystalline massif. Our study highlights the control of deep-crustal tectonic processes on foreland relief development and its erosional response at mountain fronts.

  14. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  15. Relationship between sandstone-type uranium deposits and hydrocarbon in the northern ordos basin

    Science.gov (United States)

    Wang, Feifei; Wang, Jianqiang; Guo, Pei; Cheng, Xianghu; Li, Bei; Song, Zisheng; Wei, Anjun

    2017-05-01

    The Ordos Basin is one of the largest proliferous basins and also one of the most important uranium-bearing basins in China. It is characterized by the coexistence of petroleum and uranium in the northern part of the basin. To understand the coexistence mechanism, more studies are called for on the genesis of sandstone-type uranium deposits in the northern part of the basin, especially on the role of hydrocarbon in uranium mineralization. In this study, we investigated the relationship between uranium and hydrocarbon in the northern Ordos Basin using the methods of petrology, mineralogy and geochemistry. Our results show that the hydrocarbon seepage plays an important role in the mineralization of sandstone-type uranium deposits. It greatly affects the reduction in mineralization and the environmental rehabilitation to protect the ore body from being destroyed by the groundwater after mineralization.

  16. The central and northern Appalachian Basin-a frontier region for coalbed methane development

    Science.gov (United States)

    Lyons, P.C.

    1998-01-01

    The Appalachian basin is the world's second largest coalbed-methane (CBM) producing basin. It has nearly 4000 wells with 1996 annual production at 147.8 billion cubic feet (Bcf). Cumulative CBM production is close to 0.9 trillion cubic feet (Tcf). The Black Warrior Basin of Alabama in the southern Appalachian basin (including a very minor amount from the Cahaba coal field) accounts for about 75% of this annual production and about 75% of the wells, and the remainder comes from the central and northern Appalachian basin. The Southwest Virginia coal field accounts for about 95% of the production from the central and northern parts of the Appalachian basin. Production data and trends imply that several of the Appalachian basin states, except for Alabama and Virginia, are in their infancy with respect to CBM development. Total in-place CBM resources in the central and northern Appalachian basin have been variously estimated at 66 to 76 trillion cubic feet (Tcf), of which an estimated 14.55 Tcf (~ 20%) is technically recoverable according to a 1995 U.S. Geological Survey assessment. For comparison in the Black Warrior basin of the 20 Tcf in-place CBM resources, 2.30 Tcf (~ 12%) is technically recoverable. Because close to 0.9 Tcf of CBM has already been produced from the Black Warrior basin and the proved reserves are about 0.8 Tcf for 1996 [Energy Information Administration (EIA), 1997]. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 1996 Annual Report. U.S. Department of Energy DOE/EIA-0216(96), 145 pp.], these data imply that the central and northern Appalachian basin could become increasingly important in the Appalachian basin CBM picture as CBM resources are depleted in the southern Appalachian basin (Black Warrior Basin and Cahaba Coal Field). CBM development in the Appalachian states could decrease the eastern U.S.A.'s dependence on coal for electricity. CBM is expected to provide over the next few decades a virtually untapped source of

  17. A Blind Normal Fault beneath the Taipei Basin in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Kou-Cheng Chen

    2010-01-01

    Full Text Available The Taipei basin, historically low in seismicity, is located in northern Taiwan. A dense broadband seismic array was deployed in the basin in June 2004 to monitor seismic activity. During the period of operation, three felt earthquakes occurred near the eastern part of the Taipei basin, about 3 km to the south of Taipei 101 then the tallest building in the world. Relocated earthquakes show a southeast-dipping distribution of hypocenters beneath the Taipei basin. The seismicity pattern and focal mechanisms of the three felt events suggest the existence of a blind normal fault whose surface projection is along the river channel in the middle of the basin.

  18. Controlling effect of fractures on gas accumulation and production within the tight sandstone: A case study on the Jurassic Dibei gas reservoir in the eastern part of the Kuqa foreland basin, China

    Directory of Open Access Journals (Sweden)

    Hui Lu

    2016-02-01

    Full Text Available Using Dibei tight sandstone gas reservoir in the eastern part of the Kuqa foreland basin as an example, this paper discusses tight sandstone reservoir fractures characterization, its effect on storage space and gas flow capacity, and its contribution to gas accumulation, enrichment and production in tight sandstone reservoir by using laser scanning confocal microscope (LSCM observation, mercury intrusion capillary pressure (MICP testing, and gas-water two-phase relative permeability testing. The statistics of laser scanning confocal microscopy observation showed that the microstructural fractures width in the Dibei gas reservoir was mainly 8–25 μm, and the associated micro-fractures width was mainly 4–10 μm. Additionally, the throat radius was mainly 1–4 μm. The fractures width was significantly wider than the throat radius that served as the main channel of in gas flow. In addition, it illustrated that the samples with developed fractures became easier for gas to flow under equal porosity condition, because of lower expulsion pressure, higher mercury injection saturation, and increased gas relative permeability based on the physical simulation experiment of gas charging into core samples with saturated water, mercury injection and gas-water two-phase permeability experiments. Furthermore, it had been concluded that the fractures control tight gas in the following aspects: (1 Fractures play a significant role in reservoir property improvement. The isolated pores were linked by the fractures to form connective reservoir spaces, and dissolution is prone to occur along the fractures forming new pores. The fractures with bigger width are reservoir space as well. (2 Fractures increased fluid flow capacity because it decreased the starting pressure gradient, and it increased gas effective permeability. Thus, fractures improved the gas injection efficiency as well as gas production. (3 Fractures that developed in different time and spatial

  19. Timing and mechanism of the rise of the Shillong Plateau in the Himalayan foreland.

    OpenAIRE

    Govin, Gwladys; Najman, Yanina Manya Rachel; Copley, Alex; Millar, Ian; Van der Beek, Peter; Huyghe, Pascale; Grujic, Djordje; Davenport, Jesse

    2018-01-01

    The Shillong Plateau (northeastern India) constitutes the only significant topography in the Himalayan foreland. Knowledge of its surface uplift history is key to understanding topographic development and unraveling tectonic–climate–topographic coupling in the eastern Himalaya. We use the sedimentary record of the Himalayan foreland basin north of the Shillong Plateau to show that the paleo-Brahmaputra river was redirected north and west by the rising plateau at 5.2–4.9 Ma. We suggest that on...

  20. Interaction between trench retreat and Anatolian escape as recorded by neogene basins in the northern Aegean Sea

    NARCIS (Netherlands)

    Beniest, A.; Brun, J. P.; Gorini, C.; Crombez, V.; Deschamps, R.; Hamon, Y.; Smit, Jeroen

    2016-01-01

    The evolution of the North Aegean Sea is studied through the development of three deep basins: the North Aegean Trough, the North Skyros Basin and the Ikaria Basin. Bathymetric data, a 2D seismic dataset and the well-investigated stratigraphic records of the onshore deep basins of northern Greece

  1. Tectonic subsidence of the Zhu 1 Sub-basin in the Pearl River Mouth Basin, northern South China Sea

    Science.gov (United States)

    Tang, Xiaoyin; Yang, Shuchun; Zhu, Junzhang; Long, Zulie; Jiang, Guangzheng; Huang, Shaopeng; Hu, Shengbiao

    2017-12-01

    The Pearl River Mouth Basin, which is situated on the northern margin of the South China Sea, has attracted great attention not only because of its tectonic setting but also because of its abundant hydrocarbon resources. We have analyzed the Cenozoic tectonic subsidence history of 4 drilled wells and 43 artificial wells from the Zhu 1 Sub-basin of the Pearl River Mouth Basin by back-stripping, using newly interpreted seismic profiles. We also calculated the average tectonic subsidence rates of the four sags in the Zhu 1 Sub-basin. The rifting and post-rifting stages are separated by abrupt changes in the tectonic subsidence curves and average subsidence rates. In the eastern sags of the Zhu 1 Sub-basin, tectonic subsidence started to slow at ca. 30 Ma, compared with ca. 23.8 Ma in the western sags. This probably corresponds to the timing of break-up and suggests that rifting in the Pearl River Mouth Basin ended earlier in the eastern sags than in the western sags. Anomalously accelerated tectonic subsidence occurred at 17.5-16.4 Ma during the post-rifting stage, with average subsidence rates as high as 301.9 m/Myr. This distinguishes the Pearl River Mouth Basin from classical Atlantic passive continental marginal basins, which demonstrate exponentially decaying post-rift tectonic subsidence.

  2. Geology and depositional environments of the Guadalupian rocks of the northern Del Norte Mountains, West Texas

    Science.gov (United States)

    Rudine, S.F.; Wardlaw, B.R.; Rohr, D.M.; Grant, R.E.

    2000-01-01

    The Guadalupian rocks of the northern Del Norte Mountains were deposited in a foreland basin between land of the Marathon orogen and a carbonate shoal established on the geanticline separating the foreland basin from the Delaware basin. Deposition was alternately influenced by coarse clastic input from the orogen and carbonate shoal, which interrupted shallow basinal siltstone depletion. Relatively deeper-water deposition is characterized by carbonate input from the shoal, and relatively shallow-water deposition is characterized by sandstone input from the orogen. Deposition was in five general transgressive-regressive packages that include (1) the Road Canyon Formation and the first siltstone member and first sandstone member of the Word Formation, (2) the second siltstone member, Appel Ranch Member, and limy sandy siltstone member of the Word Formation, (3) the Vidrio Formation, (4) the lower and part of the middle members of the Altuda Formation, and (5) part of the middle and upper members of the Altuda Formation.

  3. Detrital zircon U-Pb geochronology and whole-rock Nd-isotope constraints on sediment provenance in the Neoproterozoic Sergipano orogen, Brazil: From early passive margins to late foreland basins

    Science.gov (United States)

    Oliveira, E. P.; McNaughton, N. J.; Windley, B. F.; Carvalho, M. J.; Nascimento, R. S.

    2015-11-01

    SHRIMP U-Pb detrital zircon geochronology and depleted-mantle Nd-model ages of clastic rocks were combined to understand the sediment provenance in the Neoproterozoic Sergipano Belt. The Sergipano is the main orogenic belt between the Borborema province and the São Francisco Craton, eastern South America; it is divisible into several lithostratigraphic domains from North to South: Canindé, Poço Redondo-Marancó, Macururé, Vaza Barris, and Estância. Nd model ages (TDM) and detrital zircon U-Pb SHRIMP geochronology indicate that the protoliths of clastic metasedimentary rocks from the Marancó and Macururé domains were mostly derived from eroded late Mesoproterozoic to early Neoproterozoic rocks (1000-900 Ma), whereas detritus of similar rocks from the Canindé domain came from a younger source (ca. 700 Ma and 1000 Ma). Samples from the Vaza Barris domain show the greatest scatter of both TDM and zircon ages amongst all domains, but with important contributions from Proterozoic sources (690-1050 Ma and ca. 2100 Ma) and less from Archaean sources. The Estância domain samples have zircon population peaks at 570 Ma, 600 Ma, and 920-980 Ma, with a few older grains; one diamictite contains only ca. 2150 Ma zircon grains. Our preliminary results support a model in which sediments of the Marancó and Macururé domains were deposited on a continental margin of the ancient Borborema plate before its collision with the São Francisco Craton; the Canindé domain is likely to be an aborted Neoproterozoic rift assemblage within the southern part of the Borborema plate (Pernambuco-Alagoas massif). The basal units of the Vaza Barris and Estância domains have clast sources from the São Francisco Craton and are best interpreted as passive margin sediments. However, the uppermost units of the Estância and Vaza Barris domains come from foreland basins formed during collision of Borborema plate with the São Francisco Craton.

  4. Petroleum potential of the northern Sinu-San Jacinto Basin, Colombia: an integrated petroleum system and basin modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Nino, Christian H.; Goncalves, Felix T.T.; Bedregal, Ricardo P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Modelagem de Bacias (LAB2M); Azevedo, Debora A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Landau, Luis [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Metodos Computacionais em Engenharia (LAMCE)

    2004-07-01

    The northern Sinu-San Jacinto basin, located in the northwestern corner of South America (Colombia), belongs to the accretionary prism that resulted from the collision and subduction of the Caribbean plate under the South America plate. Despite all the previous exploratory efforts, solely a few small sub-commercial oil and gas accumulation have been found up to now. The geological and geochemical information acquired by different companies during the lasts decades was integrated with new geochemical analysis and basin modeling to characterize the petroleum systems, to reconstruct the hydrocarbon charge history in the study area and to better assess the exploratory risk. (author)

  5. Inversion Tectonics in the Alpine Foreland, Eastern Alps (Austria)

    OpenAIRE

    Martínez Granado, Pablo

    2017-01-01

    [eng] In this thesis, the 3D structure and kinematics of the locally and mildly inverted Lower Austria Mesozoic Basin beneath the Alpine-Carpathian fold-and-thrust belt is described. This study has been carried out by the integrative interpretation of 2D and 3D seismic surveys, well and geophysical logs data and gravity maps. A basin-scale, 3D structural model has been carried out, focused on the sub-thrust and foreland zones. The Late Eocene to Early Miocene Alpine–Carpathian fold-and-thrus...

  6. Tectonoestratigraphic and Thermal Models of the Tiburon and Wagner Basins, northern Gulf of California Rift System

    Science.gov (United States)

    Contreras, J.; Ramirez Zerpa, N. A.; Negrete-Aranda, R.

    2014-12-01

    The northern Gulf of California Rift System consist sofa series faults that accommodate both normal and strike-slip motion. The faults formed a series of half-greens filled with more than 7 km of siliciclastic suc­cessions. Here, we present tectonostratigraphic and heat flow models for the Tiburón basin, in the southern part of the system, and the Wag­ner basin in the north. The models are constrained by two-dimensional seis­mic lines and by two deep boreholes drilled by PEMEX­-PEP. Analysis of the seismic lines and models' results show that: (i) subsidence of the basins is controlled by high-angle normal faults and by flow of the lower crust, (ii) basins share a common history, and (iii) there are significant differences in the way brittle strain was partitioned in the basins, a feature frequently observed in rift basins. On one hand, the bounding faults of the Tiburón basin have a nested geometry and became active following a west-to-east sequence of activation. The Tiburon half-graben was formed by two pulses of fault activity. One took place during the protogulf extensional phase in the Miocene and the other during the opening of Gulf of California in the Pleistocene. On the other hand, the Wagner basin is the result of two fault generations. During the late-to middle Miocene, the west-dipping Cerro Prieto and San Felipe faults formed a domino array. Then, during the Pleistocene the Consag and Wagner faults dissected the hanging-wall of the Cerro Prieto fault forming the modern Wagner basin. Thermal modeling of the deep borehole temperatures suggests that the heat flow in these basins in the order of 110 mW/m2 which is in agreement with superficial heat flow measurements in the northern Gulf of California Rift System.

  7. Slump structures in quaternary slope sediments of the northern Derbent Basin (Caspian Sea)

    Science.gov (United States)

    Verzhbitskii, V. E.; Lobkovskii, L. I.; Roslyakov, A. G.; Merklin, L. R.; Polyakov, A. S.; Levchenko, O. V.; Kovachev, S. A.; Zverev, A. S.; Garagash, I. A.; Mar, G. N.; Mutovkin, A. D.; Putans, V. A.; Libina, N. V.; Soltanovskii, I. I.; Slobodyan, V. Yu.; Gontarev, S. V.

    2009-06-01

    During Cruise 20-3 of the R/V Rift (April, 2006), the area that includes the shelf and slope of the Derbent Basin in the northern Middle Caspian was studied using the continuous seismoacoustic profiling method. In accordance with the previous standpoint, two Pleistocene deltaic complexes formed in the Enotaevian and Mangyshlakian time are defined in this area. The seismoacoustic records obtained for the northern slope of the Derbent Basin demonstrate the development of specific rootless exogenic-gravitational fold structures in the upper (˜150-200 m) Quaternary part of the sedimentary sequence. The Quaternary section encloses angular unconformities indicating the pulsating mode of gravitational processes in the northern slope of the basin. South-dipping gravitational normal faults (and/or normal fault-related flexures) displacing the bottom surface and uppermost sedimentary layers (with vertical amplitudes up to 5-6 m) were defined in the southern part of the study area. Several impulses of the submarine slump structures predated and accompanied the deposition of the upper deltaic sequence (Mangyshlakian), although their most intense formation took place later during the Novocaspian (Holocene) time. Thus, the structural analysis of the seismoacoustic data revealed intense development of different-origin and different-age gravitational structures within the Quaternary sediments in the northern slope of the Derbent Basin. These results should be taken into consideration when designing, building, and operating submarine constructions in order to prevent potential natural hazards and reduce their consequences.

  8. Foraminiferal patterns in two trophically different regions: the northern Adriatic Sea and the southern Levantine Basin.

    NARCIS (Netherlands)

    Jannink, N.T.; Duijnstee, Ivo; van der Zwaan, Bert

    2001-01-01

    In spite of the fact that the northern Adriatic Sea and southern Levantine Basin are trophically quite different, the benthic foraminiferal standing stocks through the seasons were found to be in the same range. This suggests that the amount offood (organic matter) available at the sediment-water

  9. Adaptation tot changing water resources in the Ganges basin, northern India

    NARCIS (Netherlands)

    Moors, E.J.; Groot, A.M.E.; Biemans, H.; Terwisscha van Scheltinga, C.T.H.M.; Siderius, C.; Stoffel, M.

    2011-01-01

    An ensemble of regional climate model (RCM) runs from the EU HighNoon project are used to project future air temperatures and precipitation on a 25 km grid for the Ganges basin in northern India, with a view to assessing impact of climate change on water resources and determining what multi-sector

  10. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    Science.gov (United States)

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined

  11. War and early state formation in the northern Titicaca Basin, Peru.

    Science.gov (United States)

    Stanish, Charles; Levine, Abigail

    2011-08-23

    Excavations at the site of Taraco in the northern Titicaca Basin of southern Peru indicate a 2,600-y sequence of human occupation beginning ca. 1100 B.C.E. Previous research has identified several political centers in the region in the latter part of the first millennium B.C.E. The two largest centers were Taraco, located near the northern lake edge, and Pukara, located 50 km to the northwest in the grassland pampas. Our data reveal that a high-status residential section of Taraco was burned in the first century A.D., after which economic activity in the area dramatically declined. Coincident with this massive fire at Taraco, Pukara adopted many of the characteristics of state societies and emerged as an expanding regional polity. We conclude that organized conflict, beginning approximately 500 B.C.E., is a significant factor in the evolution of the archaic state in the northern Titicaca Basin.

  12. Stratigraphic architecture of Devonian lacustrine basins of northern Scotland

    DEFF Research Database (Denmark)

    Kristiansen, Thorben; Moreau, Julien; Andrews, Steven D.

    interpretations. The studied deposits have been deeply buried then exhumed so that they are exposed widely onshore. Post Caledonian tectonism has faulted and folded the Devonian succession making it challenging to reconstruct the stratigraphy and the basin architecture from geological data only. The Devonian...... sediments were deposited in a continental environment and fluvial and alluvial deposits are interbedded with lacustrine units. These lacustrine facies contain fishbeds which are organic rich mudstones with moderate source potential. Variations in burial history have resulted in variations in the source rock...... profiles. Correlations made to deep borehole data (Tain-1 well) have allowed marker beds to be attributed to specific seismic reflections. Finally, gravimetric data are used to calculate the depth to basement. The main focus of this work is to fully interpret the seismic architecture of the Devonian basins...

  13. A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    Science.gov (United States)

    Fontiela, J. F.; Borges, J.; Ouyed, M.; Bezzeghoud, M.; Idres, M.; Caldeira, B.; Boughacha, M. S.; Carvalho, J.; Samai, S.; Aissa, S.; Benfadda, A.; Chimouni, R.; Yalaoui, R.; Dias, R.

    2017-12-01

    The Mitidja Basin (MB) is located in N Algeria and it is filled by quaternary sediments with a length of 100 km on the EW direction and around 20 km width. The S and N limites comprise the Boumerdes-Larbaa-Blida, and the Thenia-Sahel active fault system, respectively. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of ˜4 mm/year. In the basin occurred earthquakes that caused severe damage and losses such as the ones of Algiers (1365, Io=X; 1716, Io=X) and the Bourmedes earthquake (Mw 6.9; May 2003) that affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The earthquake generated a max uplift of 0.8m along the coast and a horizontal max. slip of 0.24m.Recent studies show that the Boumerdes earthquake overloaded the adjacent faults system with a stress increase between 0.4 and 1.5 bar. The stress change recommends a detailed study of mentioned faults system due to the increase of the seismic hazard. The high seismogenic potential of the fault system bordering the MB, increases the vulnerability of densely populated areas of Algiers and the amplification effect caused by the basin are the motivation of this project that will focus on the evaluation of the seismic hazard of the region. To achieve seismic hazard assessment on the MB, through realistic predictions of strong ground motion, caused by moderate and large earthquakes, it is important 1) develop a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data acquired on wells, refraction velocities and seismic noise data, and determination of the attenuation laws based on instrumental records; 2) evaluate the seismic potential and parameters of the main active faults of the MB; 3) develop numerical methods (deterministic and stochastic) to simulate strong ground motions produced by extended seismic sources. To acquire seismic noise were used

  14. Lacustrine basin evolution and coal accumulation of the Middle Jurassic in the Saishiteng coalfield, northern Qaidam Basin, China

    Directory of Open Access Journals (Sweden)

    Meng Li

    2016-07-01

    Full Text Available Based on an extensive borehole survey of the Middle Jurassic coal-bearing sequences in the Saishiteng coalfield, northern Qaidam Basin (NQB, a total of 20 rock types and 5 sedimentary facies were identified, including braided river, meandering river, braided delta, meandering river delta, and lacustrine facies. The distribution of rock types and sedimentary facies contributed to the reconstruction of three periods' sedimentary facies maps of the Middle Jurassic in the Saishiteng coalfield, namely, the Dameigou age, the early Shimengou age and the late Shimengou age. That also provided the basis for the development of a three-stage depositional model of the Middle Jurassic in the NQB, indicating the lacustrine basin of the NQB in the Dameigou age and early Shimengou age were corresponding to an overfill basin, and that in the late Shimengou age was related to a balanced-fill basin. The analysis of the stability and structure of coal seams based on sedimentary facies maps showed that the preferred coal-forming facies in the Saishiteng coalfield were inter-delta bay and interdistributary bay of lower delta plain in the Dameigou age. In particular, the swamps that developed on the subaqueous palaeohigh favored the development of thick coal seams. Thus, minable coal seams may also be found along the Pingtai palaeohigh in the western part of the Saishiteng coalfield.

  15. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas

    Science.gov (United States)

    Kováč, Michal; Márton, Emő; Oszczypko, Nestor; Vojtko, Rastislav; Hók, Jozef; Králiková, Silvia; Plašienka, Dušan; Klučiar, Tomáš; Hudáčková, Natália; Oszczypko-Clowes, Marta

    2017-08-01

    The data on the Neogene geodynamics, palaeogeography, and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas (ALCAPA Mega-unit) are summarized, re-evaluated, supplemented, and newly interpreted. The proposed concept is illustrated by a series of palinspastic and palaeotopographic maps. The Miocene development of the Outer Carpathians reflects the vanishing subduction of the residual oceanic and/or thinned continental crust. A compression perpendicular to the front of the orogenic system led to the closing of residual flysch troughs and to accretionary wedge growth, as well as to the development of a foredeep on the margin of the European Platform. Docking of the Outer Western Carpathians accretionary wedge, together with the Central Western Carpathians and Northern Pannonian domain, was accompanied by stretching of the overriding microplate. An orogen parallel and perpendicular extension was associated with the opening and subsidence of the Early and Middle Miocene hinterland (back-arc) basin system that compensated counter-clockwise rotations of the individual crustal fragments of ALCAPA. The Late Miocene development relates to the opening of the Pannonian Basin System. This process was coupled with common stretching of both ALCAPA and Tisza-Dacia Mega-units due to the pull exerted by subduction rollback in front of the Eastern Carpathians. The filling up of the hinterland basin system was associated with thermal subsidence and was followed by the Pliocene tectonic inversion and consequent erosion of the basin system margins, as well as part of the interior.

  16. Geodynamic implications for zonal and meridional isotopic patterns across the northern Lau and North Fiji Basins

    Science.gov (United States)

    Price, Allison A.; Jackson, Matthew G.; Blichert-Toft, Janne; Kurz, Mark D.; Gill, Jim; Blusztajn, Jerzy; Jenner, Frances; Brens, Raul; Arculus, Richard

    2017-03-01

    We present new Sr-Nd-Pb-Hf-He isotopic data for 65 volcanic samples from the northern Lau and North Fiji Basins. This includes 47 lavas obtained from 40 dredge sites spanning an east-west transect across the Lau and North Fiji basins, 10 ocean island basalt (OIB)-type lavas collected from seven Fijian islands, and eight OIB lavas sampled on Rotuma. For the first time, we are able to map clear north-south and east-west geochemical gradients in 87Sr/86Sr across the northern Lau and North Fiji Basins: lavas with the most geochemically enriched radiogenic isotopic signatures are located in the northeast Lau Basin, while signatures of geochemical enrichment are diminished to the south and west away from the Samoan hot spot. Based on these geochemical patterns and plate reconstructions of the region, these observations are best explained by the addition of Samoa, Rurutu, and Rarotonga hot spot material over the past 4 Ma. We suggest that underplated Samoan material has been advected into the Lau Basin over the past ˜4 Ma. As the slab migrated west (and toward the Samoan plume) via rollback over time, younger and hotter (and therefore less viscous) underplated Samoan plume material was entrained. Thus, entrainment efficiency of underplated plume material was enhanced, and Samoan plume signatures in the Lau Basin became stronger as the trench approached the Samoan hot spot. The addition of subducted volcanoes from the Cook-Austral Volcanic Lineament first from the Rarotonga hot spot, then followed by the Rurutu hot spot, contributes to the extreme geochemical signatures observed in the northeast Lau Basin.

  17. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    Science.gov (United States)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  18. Paleozoic unconformities favorable for uranium concentration in northern Appalachian basin

    International Nuclear Information System (INIS)

    Dennison, J.M.

    1986-01-01

    Unconformities can redistribute uranium from protore rock as ground water moves through poorly consolidated strata beneath the erosion surface, or later moves along the unconformity. Groundwater could migrate farther than in present-day lithified Paleozoic strata in the Appalachian basin, now locally deformed by the Taconic and Allegheny orogenies. Several paleoaquifer systems could have developed uranium geochemical cells. Sandstone mineralogy, occurrences of fluvial strata, and reduzate facies are important factors. Other possibilities include silcrete developed during desert exposure, and uranium concentrated in paleokarst. Thirteen unconformities are evaluated to determine favorable areas for uranium concentration. Cambrian Potsdam sandstone (New York) contains arkoses and possible silcretes just above crystalline basement. Unconformities involving beveled sandstones and possible fluvial strata include Cambrian Hardyston sandstone (New Jersey), Cambrian Potsdam Sandstone (New York), Ordovician Oswego and Juniata formations (Pennsylvania and New York), Silurian Medina Group (New York), and Silurian Vernon, High Falls, and Longwood formations (New York and New Jersey). Devonian Catskill Formation is beveled by Pennsylvanian strata (New York and Pennsylvania). The pre-Pennsylvanian unconformity also bevels Lower Mississippian Pocono, Knapp, and Waverly strata (Pennsylvania, New York, and Ohio), truncates Upper Mississippian Mauch Chunk Formation (Pennsylvania), and forms paleokarst on Mississippian Loyalhanna Limestone (Pennsylvania) and Maxville Limestone (Ohio). Strata associated with these unconformities contain several reports of uranium. Unconformities unfavorable for uranium concentration occur beneath the Middle Ordovician (New York), Middle Devonian (Ohio and New York), and Upper Devonian (Ohio and New York); these involve marine strata overlying marine strata and probably much submarine erosion

  19. The Frasnian-Famennian boundary (Upper Devonian) in black shale sequences: US Southern Midcontinent, Illinois Basin, and northern Appalachian Basin

    Energy Technology Data Exchange (ETDEWEB)

    Over, D.J. (State Univ. of New York, Geneseo, NY (United States). Dept. of Geological Sciences)

    1994-04-01

    The Frasnian-Famennian (F/F) boundary in the Woodford Shale of the US southern Midcontinent, Sweetland Creek Shale of the Illinois Basin, and the Hanover Shale of the northern Appalachian Basin is recognized to a discrete horizon. In each locality the boundary is marked by evidence of a disconformity: phosphate nodules, concentration of conodonts, or coated and corroded grains. The Woodford Shale consists of finely laminated pyritic organic-rich shale containing interbeds of greenish shale and chert. The F/F boundary horizon is marked by a concentration of conodonts and phosphatic nodules. The boundary lag horizon contains Pa. linguliformis, Pa. subperlobtata, Pa. delicatula delicatula, and Pa. triangularis. Underlying laminations contain Ancyrognathus ubiquitus and Pa. triangularis indicating that the disconformity is within the uppermost MN Zone 13 or Lower triangularis Zone. The upper portion of the Type Sweetland Creek Shale consists of dark organic-rich shales. The F/F boundary is located within an interval containing three green shale interbeds. Palmatolepis triangularis in the absence of Frasnian species first occurs in the middle green shale. In the thick Upper Devonian clastic sequence of the northern Appalachian Basin the F/F boundary is within an interval of interbedded pyritic green and organic-rich silty shales of the Hanover Shale. At Irish Gulf strata containing Pa. triangularis overlie finely laminated dark shales containing Pa. bogartensis, Pa. triangularis, Pa. winchell, Ancyrodella curvata, and Icriodus alternatus. The conodont fauna transition is below a conodont-rich laminae containing a Famennian fauna that marks the boundary horizon.

  20. Northern Rivers Basins ecological and human health studies : summary, relevance and recommendations

    International Nuclear Information System (INIS)

    1999-04-01

    Residents in northern Alberta expressed concerns that the original Northern River Basins Study (NRBS) only examined the impacts of contaminants on ecological health and did not include impacts on human health. In response to these concerns, Alberta Health established the Northern River Basins Human Health Monitoring Program in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This document links the ecological information collected by the original NRBS program with the information provided by the health program. Issues regarding health impacts from pulp mills and oil sand mining were also discussed. The findings of the health program were summarized and recommendations were made for future studies. The contaminants of potential concern (COPC) arising from the original NRBS were described in terms of their sources and any known connections between exposure and human health. The COPCs included arsenic, dioxins, chlorinated furans, polycyclic aromatic hydrocarbons (PAH) polychlorinated biphenyls (PCB) mercury, chlorinated phenolics, toxaphene, carbon monoxide, nitrogen oxides, ozone, sulphur dioxide, acid sulphates and particulate matter. Examples of Canadian regulatory criteria for these contaminants were also presented. 41 refs., 1 tab

  1. Status and understanding of groundwater quality in the Northern Coast Ranges study unit, 2009: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    Groundwater quality in the 633-square-mile (1,639-square-kilometer) Northern Coast Ranges (NOCO) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program and the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. The study unit is composed of two study areas (Interior Basins and Coastal Basins) and is located in northern California in Napa, Sonoma, Lake, Colusa, Mendocino, Glenn, Humboldt, and Del Norte Counties. The GAMA-PBP is being conducted by the California State Water Resources Control Board in collaboration with the USGS and the Lawrence Livermore National Laboratory.

  2. Organic geochemistry and petroleum geology, tectonics and basin analysis of southern Tarim and northern Qaidam basins, northwest China

    Science.gov (United States)

    Hanson, Andrew Dean

    Organic geochemistry of oils from the Tarim basin, NW China, distinguish at least seven genetic groups of oils. The largest group are derived from Middle-Upper Ordovician anoxic slope-facies marls coincident with the margins of structural uplifts. Other groups include non-marine derived oils in the Luntai uplift, from southwest Tarim, in the Kuqa depression, and west of the Bachu uplift. A seep sample from west of Kashi clusters with Luntai oils. These results suggest that numerous source-rock horizons occur, but they are really restricted. Organic geochemistry of oils from northern Qaidam defines a family of hypersaline, anoxic lacustrine derived oils. Cenozoic outcrop samples from northern Qaidam are too organic lean to be of source quality, but dark laminated upper Oligocene mudstones from the Shi 28 well are of fair to good quality. Biomarkers provide a good correlation between the oils and the core samples. Organic matter is from algae and bacteria and lacks terrestrial material. Hydrocarbons are contained in upper Oligocene, Miocene, and Pliocene reservoirs. Eight oils are from NW Qaidam, but one sample comes from NE Qaidam, an area previously believed to only produce oils derived from Jurassic source rocks. Thus an unidentified Cenozoic source rock occurs in NE Qaidam. Thermal modeling indicates generation occurred in northwestern Qaidam within the last 3 million years, agreeing with observed low maturity biomarker parameters. Cenozoic stratigraphy in northern Qaidam and southern Tarim basins record the tectonic history of the surrounding structural/topographic elements. Paleocurrents record flow away from adjacent ranges from the Miocene to the present. Provenance data tie sediments to adjacent structural elements. Petrography indicates increasingly immature sandstones in Miocene and younger sediments relative to pre-Miocene samples. Apatite fission-track results from southeastern Tarim yield a cooling age of 17 +/- 1 Ma indicative of unroofing since at

  3. Crustal structure of an exhumed IntraCONtinental Sag (ICONS): the Mekele Basin in Northern Ethiopia.

    Science.gov (United States)

    Alemu, T. B.; Abdelsalam, M. G.

    2017-12-01

    The Mekele Sedimentary Basin (MSB) in Ethiopia is a Paleozoic-Mesozoic IntraCONtinental Sag (ICONS) exposed due to Cenozoic domal and rift flank uplift associated with the Afar mantle plume and Afar Depression (AD). ICONS are formed over stable lithosphere, and in contrast to rift and foreland basins, show circular-elliptical shape in map view, saucer shaped in cross section, and concentric gravity minima. Surface geological features of the MSB have been shown to exhibit geologic characteristics similar to those of other ICONS. We used the World Gravity Map (WGM 2012) data to investigate subsurface-crustal structure of the MSB. We also used 2D power spectrum analysis and inversion of the gravity field to estimate the Moho depth. Our results show the Bouguer anomalies of the WGM 2012 ranges between 130 mGal and - 110 mGal with the highest values within the AD. Despite the effect of the AD on the gravity anomalies, the MSB is characterized by the presence of gravity low anomaly that reaches in places -110 mGal, especially in its western part. The Moho depth estimates, from both spectral analysis and inversion of the gravity data, is between 36 and 40 km depth over most of the western and southern margins of the MSB. However, as the AD is approached, in the eastern margins of the MSB, crustal thickness estimates are highly affected by the anomalously thin and magmatic segment of the AD, and the Moho depth range between 30 and 25 km. Our results are consistent with that of seismic studies in areas far from the MSB, but within the Northwestern Ethiopian Plateau where the MSB is located. Those studies have reported an abrupt decrease in Moho depth from 40 km beneath the Northwestern plateau, to 20 km in the adjacent AD. Though the MSB is small (100 kmX100 km) compared to other ICONS, and affected by the neighboring AD, it is characterized by elliptical gravity minima and a relatively thicker crust that gradually thickens away from the rift. In addition, seismic imaging

  4. Prospecting for Natural Gas Gydrate in the Orca & Choctaw Basins in the Northern Gulf of Mexico

    Science.gov (United States)

    Cook, A.; Hillman, J. I. T.; Sawyer, D.; Frye, M.; Palmes, S.; Shedd, W. W.

    2016-12-01

    The Orca and Choctaw salt bounded mini-basins, which occur in 1.5 to 2.5 km water depth on the northern Gulf of Mexico slope, are currently under consideration as an IODP scientific drilling location for coarse-grained natural gas hydrate systems. We use a 3D seismic dataset for gas hydrate prospecting that covers parts of eleven lease blocks ( 200 km2) in the Walker Ridge protraction area. The study area includes the southern section of the Orca Basin and a smaller section of the northern Choctaw Basin. We have mapped a discontinuous bottom-simulating reflection (BSR) over nearly 30% of our seismic dataset, which varies significantly in both amplitude and depth throughout the area. The southeastern section of our dataset contains three positive impedance amplitude horizons with possible phase reversals at the BSR. Detailed mapping in the area also reveals at the base of gas hydrate stability, a complicated intercalation of an east-west trending fault system and an amalgamated deepwater depositional system comprising channel levee deposits and turbidite sheet sands. Three industry wells drilled in the southwestern section of our study area indicate that the sedimentary sequence infilling the basins consists of predominantly mud rich units with interbedded turbidite sands, forming a 2 km thick supra-salt sequence of late Miocene to Pleistocene sediments. Two of the industry wells have strong evidence for natural gas hydrate in clay-rich sediment, with moderate resistivity (between 2-10 Ωm) increases above background resistivity in zones that exceed 60 m thick. Additionally, the electromagnetic resistivity curves in these wells separate suggesting that the gas hydrate occurs in high-angle fractures. We will present our seismic dataset, our continuing analysis and selected drill sites in the Orca and Choctaw basins. Furthermore, our analysis in the southeastern section of the study area underscores the importance of interpreting faults when considering phase

  5. Application of a technique for scenario prediction of climate change impact on the water balance components of northern river basins

    Directory of Open Access Journals (Sweden)

    Gusev Yeugeniy M.

    2014-09-01

    Full Text Available The scenario forecasting technique for assessing changes of water balance components of the northern river basins due to possible climate change was developed. Three IPCC global emission scenarios corresponding to different possible scenarios for economic, technological, political and demographic development of the human civilization in the 21st century were chosen for generating climate change projections by an ensemble of 16 General Circulation Models with a high spatial resolution. The projections representing increments of monthly values of meteorological characteristics were used for creating 3-hour meteorological time series up to 2063 for the Northern Dvina River basin, which belongs to the pan-Arctic basin and locates at the north of the European part of Russia. The obtained time series were applied as forcing data to drive the land surface model SWAP to simulate possible changes in the water balance components due to different scenarios of climate change for the Northern Dvina River basin

  6. Miocene woods from the Qaidam Basin on northern Qinghai-Tibet Plateau with implications for paleoenvironmental change

    Science.gov (United States)

    Cheng, Ye-Ming; Yang, Xiao-Nan

    2016-02-01

    The Qaidam Basin with the most complete Cenozoic sedimentary preservation in northern Qinghai-Tibet Plateau is a key area for studying uplift and environmental change of the plateau. Three types of woods, Ulmus (Ulmaceae), Leguminosae (?) (angiosperm) and Cupressaceae (gymnosperm) were recognized from the large-scale preservation of fossil woods in late Miocene Shang Youshashan Formation in northern Qaidam Basin on the Qinghai-Tibet Plateau. Both investigations of their Nearest Living Relatives (NLRs) and previous grassland mammal evidences suggest that there have been temperate deciduous broad-leaved forest and needle-leaved forest with grass in northern Qaidam Basin during the late Miocene in contrast to the desert vegetation found there nowadays. The presence of the ancient forest steppe further implies that the southern part of the plateau used to be adequately low, so that the Indian and East Asian monsoons could approach the northern area and to accommodate the vegetation in late Miocene.

  7. Prospect analysis for sandstone-type uranium mineralization in the northern margin of Qaidam basin

    International Nuclear Information System (INIS)

    Liu Lin; Song Xiansheng; Feng Wei; Song Zhe; Li Wei

    2010-01-01

    Affected by the regional geological structural evolution, a set of sedimentary structure, i.e. the construction of coal-bearing classic rocks which is in favor of the sandstone-type uranium mineralization has deposited in the northern margin of Qaidam Basin since Meso-Cenozoic. A NWW thrust nappe tectonic belt, i.e. the ancient tectonic belt which is the basis for the development of ancient interlayer oxidation zone formed by the tectonic reverse in late Jurassic and Cretaceous. The Mid and late Jurassic layer was buried by the weak extension in Paleogene and the depression in early Neogene. The extrusion reversal from late Neogene to Quaternary made the basin into the development era of the modern interlayer oxidation zone. It can be concluded that the layer of the northern margin of Qaidam Basin has the premise for the formation of sandstone-type uranium ore. Based on the analysis of the characteristics of the thrust belt, the structure of the purpose layer, the sand body, the hydrogeology, the interlayer oxidation zone and uranium mineralization, the results indicated that the ancient interlayer oxidation zone is the prospecting type of sandstone-type uranium ore. Beidatan and the east of Yuqia are the favorable prospective area of sandstone-type uranium mineralization. (authors)

  8. Systematic heat flow measurements across the Wagner Basin, northern Gulf of California

    Science.gov (United States)

    Neumann, Florian; Negrete-Aranda, Raquel; Harris, Robert N.; Contreras, Juan; Sclater, John G.; González-Fernández, Antonio

    2017-12-01

    A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. The heat flow profile is 40 km long, has a nominal measurement spacing of ∼1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Although heat flow data were collected in shallow water, where there are significant temporal variations in bottom water temperature, we use CTD data collected over many years to correct our measurements to yield accurate values of heat flow. After correction for bottom water temperature, the mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220 ± 60, 99 ± 14, 889 ± 419 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Moreover, heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.

  9. Visan miospore biostratigraphy and correlation of the Poti Formation (Parnaba Basin, northern Brazil).

    Science.gov (United States)

    Melo; Loboziak

    2000-10-01

    The Poti Formation, which consists mainly of sandstones with minor proportions of carbonaceous shales and other siliciclastic lithologies, represents all the Viséan strata thus far recorded in the Parnaíba Basin, northern Brazil.Well-preserved miospores featuring species with both Southern Euramerican and Gondwanan affinities have been recovered from this formation in four well sections. The most characteristic species are listed in this paper, and brief systematic descriptions are presented for the most significant species, along with comments on their biostratigraphy. A new generic combination is proposed: Cordylosporites magnidictyus (Playford and Helby) Loboziak and Melo comb. nov. Comparisons with miospores illustrated from the Grand Erg Occidental, Algerian Sahara, are tentatively proposed.In terms of the Western European Carboniferous palynozonation, miospore assemblages from the Poti Formation are assignable to the Perotrilites tessellatus-Schulzospora campyloptera (TC)-Raistrickia nigra-Triquitrites marginatus (NM) zonal range. This corresponds to the upper part of the Holkerian and the whole Asbian, which are British regional stages for the lower to middle parts of the upper Viséan. The Viséan age formerly attributed to biostratigraphic interval XII of Petrobras' regional palynostratigraphic scheme is therefore confirmed. As already noted in our recent investigations of the Faro Formation in the Amazon Basin and equivalent strata of the Solimões Basin, latest Tournaisian and early to middle Viséan sections are either absent or barren of characteristic miospores in the Parnaíba Basin as well.

  10. Northern tamarisk beetle (Diorhabda carinulata) and tamarisk (Tamarix spp.) interactions in the Colorado River basin

    Science.gov (United States)

    Nagler, Pamela L.; Nguyen, Uyen; Bateman, Heather L.; Jarchow, Christopher; Glenn, Edward P.; Waugh, William J.; van Riper, Charles

    2018-01-01

    Northern tamarisk beetles (Diorhabda carinulata) were released in the Upper Colorado River Basin in the United States in 2004–2007 to defoliate introduced tamarisk shrubs (Tamarix spp.) in the region’s riparian zones. The primary purpose was to control the invasive shrub and reduce evapotranspiration (ET) by tamarisk in an attempt to increase stream flows. We evaluated beetle–tamarisk interactions with MODIS and Landsat imagery on 13 river systems, with vegetation indices used as indicators of the extent of defoliation and ET. Beetles are widespread and exhibit a pattern of colonize–defoliate–emigrate, so that riparian zones contain a mosaic of completely defoliated, partially defoliated, and refoliated tamarisk stands. Based on satellite data and ET algorithms, mean ET before beetle release (2000–2006) was 416 mm/year compared to postrelease (2007–2015) ET of 355 mm/year (pBasin has shown a steady decline since 2007 and equilibrium has not yet been reached. Defoliation is now proceeding from the Upper Basin into the Lower Basin at a rate of 40 km/year, much faster than initially projected.

  11. Ground-water levels in intermontane basins of the northern Rocky Mountains, Montana and Idaho

    Science.gov (United States)

    Briar, David W.; Lawlor, S.M.; Stone, M.A.; Parliman, D.J.; Schaefer, J.L.; Kendy, Eloise

    1996-01-01

    The Regional Aquifer-System Analysis (RASA) program is a series of studies by the U.S. Geological Survey (USGS) to analyze regional ground-water systems that compose a major portion of the Nation's water supply (Sun, 1986). The Northern Rocky Mountains Intermontane Basins is one of the study regions in this national program. The main objectives of the RASA studies are to (1) describe the groundwater systems as they exist today, (2) analyze the known changes that have led to the systems present condition, (3) combine results of previous studies in a regional analysis, where possible, and (4) provide means by which effects of future ground-water development can be estimated.The purpose of this study, which began in 1990, was to increase understanding of the hydrogeology of the intermontane basins of the Northern Rocky Mountains area. This report is Chapter B of a three-part series and shows the general distribution of ground-water levels in basin-fill deposits in the study area. Chapter A (Tuck and others, 1996) describes the geologic history and generalized hydrogeologic units. Chapter C (Clark and Dutton, 1996) describes the quality of ground and surface waters in the study area.Ground-water levels shown in this report were measured primarily during summer 1991 and summer 1992; however, historical water levels were used for areas where more recent data could not be obtained. The information provided allows for the evaluation of general directions of ground-water flow, identification of recharge and discharge areas, and determination of hydraulic gradients within basin-fill deposits.

  12. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin

    Directory of Open Access Journals (Sweden)

    Heng Fu

    2017-07-01

    Full Text Available The Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin are important oil and gas exploration targets in the basin, but their dissolution mechanisms are in controversy. In this paper, based on the integrated study of sedimentation, sequence and reservoir, together with microscopic analysis and macroscopic seismic data analysis, the carbonate karst reservoirs in the study area were divided into three types: dissolved pore-cavity limestone reservoir, pore-cavity dolomite reservoir and fracture-cavity siliceous reservoir, and their forming mechanisms were discussed respectively. Some findings were obtained. First, dissolved pore-cavity limestone reservoirs are distributed in the upper Yingshan Fm and Yijianfang Fm of the Ordovician vertically, while pore-cavity dolomite reservoirs are mainly developed in the Penglai Fm and lower Yingshan Fm of the Ordovician with great thickness. Second, dissolved pore-cavity limestone reservoirs were formed by karstification on the third-order sequence boundary (lowstand tract, while pore-cavity dolomite reservoirs were formed by deep burial dolomitization controlled by karstification on the third-order sequence boundary, both of which are distributed in the highstand tract below the third-order sequence boundary. Third, siliceous reservoirs are developed under the control of faulting, as a result of reworking of deep hydrothermal fluids along faults to the limestone, and the siliceous reservoirs and their hydrothermal solution fracture-cavity systems are distributed near faults. It is further predicted that, in addition to the three types of reservoir above, platform-margin reef-flat reservoirs are developed in the Ordovician on the northern slope of central Tarim Basin.

  13. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chengcheng [State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gao, Xubo, E-mail: xubo.gao.cug@gmail.com [State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); University of Texas at Austin, Austin, TX, 78705 (United States); Wang, Yanxin, E-mail: yx.wang@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2015-03-01

    Hydrogeochemical and environmental isotope methods were integrated to delineate the spatial distribution and enrichment of fluoride in groundwater at Yuncheng Basin in northern China. One hundred groundwater samples and 10 Quaternary sediment samples were collected from the Basin. Over 69% of the shallow groundwater (with a F{sup −} concentration of up to 14.1 mg/L), 44% of groundwater samples from the intermediate and 31% from the deep aquifers had F{sup −} concentrations above the WHO provisional drinking water guideline of 1.5 mg/L. Groundwater with high F{sup −} concentrations displayed a distinctive major ion chemistry: Na-rich and Ca-poor with a high pH value and high HCO{sub 3}{sup −} content. Hydrochemical diagrams and profiles and hydrogen and oxygen isotope compositions indicate that variations in the major ion chemistry and pH are controlled by mineral dissolution, cation exchange and evaporation in the aquifer systems, which are important for F{sup −} mobilization as well. Leakage of shallow groundwater and/or evaporite (gypsum and mirabilite) dissolution may be the major sources for F{sup −} in groundwater of the intermediate and deep aquifers. - Highlights: • High-F{sup −} groundwater widely occurs in Yuncheng Basin of northern China. • High-F{sup −} groundwater is Na and HCO{sub 3}-rich and Ca-poor, with high pH. • Major hydrogeochemical processes are mineral dissolution, ion exchange and evaporation. • Shallow groundwater leakage/evaporite dissolution may cause F enrichment in lower aquifers.

  14. Detrital fission-track-compositional signature of an orogenic chain-hinterland basin system: The case of the late Neogene Quaternary Valdelsa basin (Northern Apennines, Italy)

    Science.gov (United States)

    Balestrieri, M. L.; Benvenuti, M.; Tangocci, F.

    2013-05-01

    Detrital thermochronological data collected in syn-tectonic basin deposits are a promising tool for deciphering time and processes of the evolution of orogenic belts. Our study deals with the Valdelsa basin, one of the wider basins of central Tuscany, Italy. The Valdelsa basin is located at the rear of the Northern Apennines, a collisional orogen whose late Neogene Quaternary development is alternatively attributed to extensional and compressional regimes. These contrasting interpretations mostly rely on different reconstructions of the tectono-sedimentary evolution of several basins formed at the rear of the chain since the late Tortonian. Here, we explore the detrital thermochronological-compositional signature of tectonic and surface processes during the Valdelsa basin development. For this aim, detrital apatite fission-track analysis of 21 sand samples from the latest Messinian Gelasian fluvial to shallow marine basin deposits, has been accompanied by a clast composition analysis of 7 representative outcrops of the conglomerate facies. The grain-age distributions of the sediment samples are generally characterized by two distinct components, one younger peak (P1) varying between 5.5 ± 2.8 and 9.5 ± 1.0 Ma and one older peak (P2) varying from 15.0 ± 8.0 to 41.0 ± 10 Ma. By comparison with some bedrock ages obtained from the E-NE basin shoulder, we attributed the P2 peak to the Ligurian Units and the P1 peak to the Macigno Formation (Tuscan Units). These units are arranged one upon the other in the complex nappe pile forming the Northern Apennines orogen. While the gravel composition indicates a predominant feeding from the Ligurian units all along the sedimentary succession with a subordinate occurrence of Macigno pebbles slightly increasing upsection, the P1 peak is present even in the oldest collected sandy sediments. The early P1 occurrence reveals that the Macigno was exposed in the E-NE basin shoulder since at least the latest Messinian-early Zanclean

  15. Northern tamarisk beetle (Diorhabda carinulata) and tamarisk (Tamarix spp.) interactions in the Colorado River basin

    Science.gov (United States)

    Nagler, Pamela L.; Nguyen, Uyen; Bateman, Heather L.; Jarchow, Christopher; Glenn, Edward P.; Waugh, William J.; van Riper, Charles

    2018-01-01

    Northern tamarisk beetles (Diorhabda carinulata) were released in the Upper Colorado River Basin in the United States in 2004–2007 to defoliate introduced tamarisk shrubs (Tamarix spp.) in the region’s riparian zones. The primary purpose was to control the invasive shrub and reduce evapotranspiration (ET) by tamarisk in an attempt to increase stream flows. We evaluated beetle–tamarisk interactions with MODIS and Landsat imagery on 13 river systems, with vegetation indices used as indicators of the extent of defoliation and ET. Beetles are widespread and exhibit a pattern of colonize–defoliate–emigrate, so that riparian zones contain a mosaic of completely defoliated, partially defoliated, and refoliated tamarisk stands. Based on satellite data and ET algorithms, mean ET before beetle release (2000–2006) was 416 mm/year compared to postrelease (2007–2015) ET of 355 mm/year (p<0.05) for a net reduction of 61 mm/year. This is lower than initial literature projections that ET would be reduced by 300–460 mm/year. Reasons for the lower-than-expected ET reductions are because baseline ET rates are lower than initially projected, and percentage ET reduction is low because tamarisk stands tend to regrow new leaves after defoliation and other plants help maintain canopy cover. Overall reductions in tamarisk green foliage during the study are 21%. However, ET in the Upper Basin has shown a steady decline since 2007 and equilibrium has not yet been reached. Defoliation is now proceeding from the Upper Basin into the Lower Basin at a rate of 40 km/year, much faster than initially projected.

  16. Adaptation to changing water resources in the Ganges basin, northern India

    International Nuclear Information System (INIS)

    Moors, Eddy J.; Groot, Annemarie; Biemans, Hester; Terwisscha van Scheltinga, Catharien; Siderius, Christian; Stoffel, Markus; Huggel, Christian; Wiltshire, Andy; Mathison, Camilla; Ridley, Jeff; Jacob, Daniela; Kumar, Pankaj

    2011-01-01

    An ensemble of regional climate model (RCM) runs from the EU HighNoon project are used to project future air temperatures and precipitation on a 25 km grid for the Ganges basin in northern India, with a view to assessing impact of climate change on water resources and determining what multi-sector adaptation measures and policies might be adopted at different spatial scales. The RCM results suggest an increase in mean annual temperature, averaged over the Ganges basin, in the range 1-4 o C over the period from 2000 to 2050, using the SRES A1B forcing scenario. Projections of precipitation indicate that natural variability dominates the climate change signal and there is considerable uncertainty concerning change in regional annual mean precipitation by 2050. The RCMs do suggest an increase in annual mean precipitation in this region to 2050, but lack significant trend. Glaciers in headwater tributary basins of the Ganges appear to be continuing to decline but it is not clear whether meltwater runoff continues to increase. The predicted changes in precipitation and temperature will probably not lead to significant increase in water availability to 2050, but the timing of runoff from snowmelt will likely occur earlier in spring and summer. Water availability is subject to decadal variability, with much uncertainty in the contribution from climate change. Although global social-economic scenarios show trends to urbanization, locally these trends are less evident and in some districts rural population is increasing. Falling groundwater levels in the Ganges plain may prevent expansion of irrigated areas for food supply. Changes in socio-economic development in combination with projected changes in timing of runoff outside the monsoon period will make difficult choices for water managers. Because of the uncertainty in future water availability trends, decreasing vulnerability by augmenting resilience is the preferred way to adapt to climate change. Adaptive policies are

  17. Origin of the tertiary red beds in the Northern part of the Duero Basin (Spain), II. Composition and genesis

    NARCIS (Netherlands)

    Mabesoone, J.M.

    1961-01-01

    In this second paper the red beds outcropping in the northern part of the Duero basin have been treated regarding their mineral and pebble composition, chemical parameters, and surface textures of quartz sand grains, taking as basis the results reported in the first paper. These deposits originate

  18. Trends in the development and updating of the fishing fleet in the Northern Basin

    Directory of Open Access Journals (Sweden)

    Kuranov Yu. F.

    2017-12-01

    Full Text Available The practice and need to update and form the production and technical base of fishery enterprises have an increasing impact on performance of the fisheries complex and become decisive when considering the prospects for its development on an innovative basis. The paper examines the current state and development trends of the Northern Basin fishing fleet, its production capabilities in developing available bioresources, the need and prospects for renewal. During the research the influence of the main factors determining the formation of the quantitative and structural composition of the fishing fleet has been shown. The most stable and long-term impact is the state of commercial stocks of aquatic biological resources, their variability under the influence of natural factors and anthropogenic load. The second important factor is institutional changes. Initially, since the beginning of the 1990s, this took place due to the transformation of economic relations, and later – to institutional changes in the legislatively approved principles of granting fishing enterprises the right to access water biological resources. The following data have been presented: adaptation of the fleet's production capacities for specialization of fishing activities, ways of modernization and re-equipment, construction of new vessels, acquisition of vessels being in operation in the countries with developed fisheries. These changes had reduced the fleet's production potential raising its qualitative indicators (productivity, depth of processing of raw materials at sea. At the same time, the noted positive trends have been accompanied by some increase in the aging indicators for all groups and types of vessels. The institutional and economic instruments for supporting and stimulating the construction of new fishing vessels have been justified. Nowadays, in the Northern Basin the priority areas of support should be the construction of ships for pelagic fishing and coastal

  19. Mapping and monitoring cheatgrass dieoff in rangelands of the Northern Great Basin, USA

    Science.gov (United States)

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2015-01-01

    Understanding cheatgrass (Bromus tectorum) dynamics in the Northern Great Basin rangelands, USA, is necessary to effectively manage the region’s lands. This study’s goal was to map and monitor cheatgrass performance to identify where and when cheatgrass dieoff occurred in the Northern Great Basin and to discover how this phenomenon was affected by climatic, topographic, and edaphic variables. We also examined how fire affected cheatgrass performance. Land managers and scientists are concerned by cheatgrass dieoff because it can increase land degradation, and its causes and effects are not fully known. To better understand the scope of cheatgrass dieoff, we developed multiple ecological models that integrated remote sensing data with geophysical and biophysical data. The models’ R2 ranged from 0.71 to 0.88, and their root mean squared errors (RMSEs) ranged from 3.07 to 6.95. Validation of dieoff data showed that 41% of pixels within independently developed dieoff polygons were accurately classified as dieoff, whereas 2% of pixels outside of dieoff polygons were classified as dieoff. Site potential, a long-term spatial average of cheatgrass cover, dominated the development of the cheatgrass performance model. Fire negatively affected cheatgrass performance 1 year postfire, but by the second year postfire performance exceeded prefire levels. The landscape-scale monitoring study presented in this paper helps increase knowledge about recent rangeland dynamics, including where cheatgrass dieoffs occurred and how cheatgrass responded to fire. This knowledge can help direct further investigation and/or guide land management activities that can capitalize on, or mitigate the effects of, cheatgrass dieoff.

  20. Radon measurements along active faults in the Langadas Basin, northern Greece

    Directory of Open Access Journals (Sweden)

    C. Papastefanou

    2001-01-01

    Full Text Available A network of three radon stations has been established in the Langadas Basin, northern Greece for radon monitoring by various techniques in earthquake prediction studies. Specially made devices with plastic tubes including Alpha Tracketch Detectors (ATD were installed for registering alpha particles from radon and radon decay products exhaled from the ground, every 2 weeks, by using LR-115, type II, non-strippable Kodak films, starting from December 1996. Simultaneous measurements started using Lucas cells alpha spectrometer for instantaneous radon measurements in soil gas, before and after setting ATDs at the radon stations. Continuous monitoring of radon gas exhaling from the ground started from the middle of August 1999 by using silicon diode detectors, which simultaneously register meteorological parameters, such as rainfall, temperature and barometric pressure. The obtained data were studied together with the data of seismic events, such as the magnitude, ML, of earthquakes that occurred at the Langadas Basin during the period of measurements, as registered by the Laboratory of Geophysics, Aristotle University of Thessaloniki, in order to find out any association between them.

  1. Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Theuring, Philipp [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany); Collins, Adrian L. [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB (United Kingdom); Rode, Michael [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany)

    2015-09-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (< 10 μm) sediment in the 15 000 km{sup 2} Kharaa River basin in northern Mongolia. Variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb) was used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal–Wallis H-test and Principal Component Analysis. All composite fingerprints yielded a satisfactory GOF (> 0.97) and were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin), generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of river bank erosion is shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the applicability and associated uncertainties of the approach for fine-grained sediment source investigation in large scale semi-arid catchments. - Highlights: • Applied statistical approach for selecting composite fingerprints in Mongolia. • Geochemical fingerprinting for the definition of source areas in semiarid catchment. • Test of applicability of sediment sourcing in large scale semi-arid catchments

  2. Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia

    International Nuclear Information System (INIS)

    Theuring, Philipp; Collins, Adrian L.; Rode, Michael

    2015-01-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (< 10 μm) sediment in the 15 000 km 2 Kharaa River basin in northern Mongolia. Variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb) was used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal–Wallis H-test and Principal Component Analysis. All composite fingerprints yielded a satisfactory GOF (> 0.97) and were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin), generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of river bank erosion is shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the applicability and associated uncertainties of the approach for fine-grained sediment source investigation in large scale semi-arid catchments. - Highlights: • Applied statistical approach for selecting composite fingerprints in Mongolia. • Geochemical fingerprinting for the definition of source areas in semiarid catchment. • Test of applicability of sediment sourcing in large scale semi-arid catchments.

  3. Spatial distribution of pelagic fish larvae in the northern main basin of Lake Huron

    Science.gov (United States)

    Roseman, Edward F.; O'Brien, Timothy P.

    2013-01-01

    Larval fish occurrence in inshore and offshore zones in the northern main basin of Lake Huron was assessed during 2007 as part of a larger ecological examination of Lake Huron foodwebs and habitats. Day and night collections using neuston and conical nets at inshore (1.5–15 m depths) and offshore (37 and 91 m depths) locations at De Tour and Hammond Bay to assess the abundance, phenology, and spatial distribution of pelagic ichthyoplankton during spring and early summer were made. In general, densities of larval fishes were higher at De Tour than Hammond Bay during daytime neuston net collections, with the exception of Longnose Sucker, which were only collected at Hammond Bay. Lake Whitefish, Burbot, and Rainbow Smelt dominated inshore catches in early spring with Cisco, Deepwater Sculpin, Emerald Shiner, Bloater, Slimy Sculpin, Ninespine Stickleback, and Yellow Perch larvae also collected.Nighttime nearshore and offshore sampling revealed that Rainbow Smelt and Burbot larvae were present in relatively high abundances compared to inshore densities. Concentrations of larvae of deepwater demersal fishes such as Lake Whitefish and Deepwater Sculpin suggest that inshore zones in northern Lake Huron are important nursery habitats emphasizing a critical production and recruitment linkage between inshore and deepwater zones.

  4. Status and understanding of groundwater quality in the northern San Joaquin Basin, 2005

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2010-01-01

    Groundwater quality in the 2,079 square mile Northern San Joaquin Basin (Northern San Joaquin) study unit was investigated from December 2004 through February 2005 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 that was passed by the State of California and is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The Northern San Joaquin study unit was the third study unit to be designed and sampled as part of the Priority Basin Project. Results of the study provide a spatially unbiased assessment of the quality of raw (untreated) groundwater, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 61 wells in parts of Alameda, Amador, Calaveras, Contra Costa, San Joaquin, and Stanislaus Counties; 51 of the wells were selected using a spatially distributed, randomized grid-based approach to provide statistical representation of the study area (grid wells), and 10 of the wells were sampled to increase spatial density and provide additional information for the evaluation of water chemistry in the study unit (understanding/flowpath wells). The primary aquifer systems (hereinafter, primary aquifers) assessed in this study are defined by the depth intervals of the wells in the California Department of Public Health database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. Two types of assessments were made: (1) status, assessment of the current quality of the groundwater resource; and (2) understanding, identification of the natural and human factors

  5. The MITMOTION Project - A seismic hazard overview of the Mitidja Basin (Northern Algeria)

    Science.gov (United States)

    Borges, José; Ouyed, Merzouk; Bezzeghoud, Mourad; Idres, Mouloud; Caldeira, Bento; Boughacha, Mohamed; Carvalho, João; Samai, Saddek; Fontiela, João; Aissa, Saoussen; Benfadda, Amar; Chimouni, Redouane; Yalaoui, Rafik; Dias, Rui

    2017-04-01

    The Mitidja Basin (MB) is located in northern Algeria and is filled by quaternary sediments with a length of about 100 km on the EW direction and approximately 20 km width. This basin is limited to the south by the Boumerdes - Larbaa - Blida active fault system and to the north by the Thenia - Sahel fault system. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of 4 mm/year. This basin is associated with important seismic events that affected northern Algeria since the historical period until the present. The available earthquake catalogues reported numerous destructive earthquakes that struke different regions, such as Algiers (1365, Io= X; 1716, Io = X). Recently, on May 2003 the Bourmedes earthquake (Mw = 6.9) affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The epicenter was located offshore and generated a maximum uplift of 0.8 m along the coast with a horizontal maximum slip of 0.24 m. Recent studies show that the Boumerdes earthquake overloaded the system of adjacent faults with a stress increase between 0.4 and 1.5 bar. This induced an increase of the seismic hazard potential of the region and recommends a more detailed study of this fault system. The high seismogenic potential of the fault system bordering the MB, the exposure to danger of the most densely populated region of Algiers and the amplification effect caused by the basin are the motivation for this project proposal that will focus on the evaluation of the seismic hazard of the region. The general purpose of the project is to improve the seismic hazard assessment on the MB producing realistic predictions of strong ground motion caused by moderate and large earthquakes. To achieve this objective, it is important to make an effort in 3 directions: 1) the development of a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data

  6. Tertiary evolution of the Sivas Basin, central Turkey

    Science.gov (United States)

    Cater, J. M. L.; Hanna, S. S.; Ries, A. C.; Turner, P.

    1991-08-01

    The Sivas Basin is one of several basins in Turkey formed during closure of the northern branch of Neotethys in early Tertiary times. Cretaceous ophiolitic fragments and Eocene platform carbonates and volcaniclastics, transported northwards into the basin as olistoliths and grain-flow aprons, were incorporated into autochthonous Eocene turbidites and bioclastic limestones. The sequence as a whole was thrust northwards in late Eocene times. A southward-sloping terrestial foreland basin, related to northward-directed thrusting, developed during Oligocene times. A piggy-back basin developed on top of this thrust system. During the late Oligocene, the Eocene thrusts were reactivated, probably resulting in northward propagation of thrusts in the subsurface. In early and mid-Miocene times, the basin was floored by a thrust sheet which had been cut by N-S trending tear faults or oblique culminations as a result of non-uniform thrust advance in pre-Miocene times. These N-S faults were subsequently reactivated as extensional faults, radial to the thrust front, during early to mid-Miocene alluvial and shallow marine sedimentation. Later strike-slip displacement along the N-S faults was associated with the development of the Northern Boundary Fault of the Sivas Basin in late Miocene times, which is regarded as a left-lateral transpressive fault related to the North Anatolian Fault Zone.

  7. Hydrocarbon potential, palynology and palynofacies of four sedimentary basins in the Benue Trough, northern Cameroon

    Science.gov (United States)

    Bessong, Moïse; Hell, Joseph Victor; Samankassou, Elias; Feist-Burkhardt, Susanne; Eyong, John Takem; Ngos, Simon, III; Nolla, Junior Désiré; Mbesse, Cecile Olive; Adatte, Thierry; Mfoumbeng, Marie Paule; Dissombo, Edimo André Noel; Ntsama, Atangana Jacqueline; Mouloud, Bennami; Ndjeng, Emmanuel

    2018-03-01

    Organic geochemical, palynological and palynofacies analyses were carried out on 79 selected samples from four sedimentary basins (Mayo-Rey, Mayo-Oulo-Lere, Hamakoussou and Benue) in northern Cameroon. Rock-Eval pyrolysis and Total Organic Carbon results indicate that most of the samples of the studied basins are thermally immature to mature. The organic matter consists of terrestrial components (peat, lignite, bituminous coal, and anthracite) associated with organic matter of marine origin. Based on the appraisal of multiple parameters: Total Organic Carbon (TOC), maximum Temperature (T-max), Hydrogen Index (HI), Oxygen Index (OI) and Production Index (PI), some samples are organically rich both in oil and/or gas-prone kerogen Type-II, II/III and III. The source rock quality ranges from poor to very good. The source material is composed of both algae and higher plants. Samples from these basins yielded palynological residue composed of translucent and opaque phytoclasts, Amorphous Organic Matter (AOM), fungal remains, algal cysts pollen and pteridophyte spores. Abundance and diversity of the palynomorphs overall low and include Monoporopollenites annulatus (= Monoporites annulatus), indeterminate periporate pollen, indeterminate tetracolporate pollen, indeterminate tricolporate pollen, indeterminate triporate pollen, indeterminate trilete spores, Polypodiaceoisporites spp., Biporipsilonites sp., Rhizophagites sp., Striadiporites sp., Botryococcus sp. (colonial, freshwater green algae), and Chomotriletes minor (cyst of zygnematalean freshwater green algae). Age assigned confidently for all these basins the palynological data except for one sample of Hamakoussou that can be dated as Early to Mid-Cretaceous in age. Callialasporites dampieri, Classopollis spp., Eucommiidites spp. and Araucariacites australis indicate, an Aptian to Cenomanian age. The other pollen and spores recovered may indicate a Tertiary or younger age (especially Monoporopollenites annulatus), or

  8. New seismo-stratigraphic data of the Volturno Basin (northern Campania, Tyrrhenian margin, southern Italy: implications for tectono-stratigraphy of the Campania and Latium sedimentary basins

    Directory of Open Access Journals (Sweden)

    Ennio Marsella

    2011-07-01

    Full Text Available A geological section of the Volturno Basin (northern Campania, continental margin, Italy has been constructed based on new multi-channel seismic data, to show the stratigraphic relationships between the filling in the Quaternary basin and the Meso-Cenozoic acoustic basement. The new seismic sections presented here outline the underlying structures of the basin and their relationships to the filling in the Quaternary basin. Deep exploration wells in Campania and Latium on the Tyrrhenian margin have gathered litho-stratigraphic and commercial multi-channel seismic data that can be used for better integration of the geological data for the area under study. The trending of the seismic units is controlled by the Massico Structural High, which forms the boundary of the Volturno Basin towards the north-west. This produces a geometry that is characteristic of a fan complex, with NE-SW trending. This qualitative calibration of the seismic sequences that fill the sedimentary basin was carried out through the litho-stratigraphic data of the «Castelvolturno 2» well, which highlights the pyroclastic layers and conglomeratic strata of the lagoon and delta environments as they evolve upwards towards marine sediments. Seismo-stratigraphic analysis shows the complex depositional geometries of the filling in the Volturno Basin, which overlie the Meso-Cenozoic carbonatic basement and the related flysch deposits. Coupled with regional geological evidence, the data interpretation here suggests that the Volturno Basin represents a half-graben structure that is characterized by down-thrown blocks along normal faults.

  9. Radionuclide levels in fish from Lake Athabasca February 1993. Northern River Basins Study project report no.26

    International Nuclear Information System (INIS)

    Smithson, G.

    1993-12-01

    The Northern River Basins Study was initiated through the 'Canada-Alberta-Northwest Territories Agreement Respecting the Peace-Athabasca-Slave River Basin Study, Phase II - Technical Studies' which was signed September 27, 1991. The purpose of the study is to understand and characterize the cumulative effects of development on the water and aquatic environment of the Study Area by coordinating with existing programs and undertaking appropriate new technical studies. This publication reports the method and findings of particular work conducted as part of the Northern River Basins Study. As such, the work was governed by a specific terms of reference and is expected to contribute information about the Study Area within the context of the overall study as described by the Study Final Report. This report has been reviewed by the Study Science Advisory Committee in regards to scientific content and has been approved by the Study Board of Directors for public release. It is explicit in the objectives of the Study to report the results of technical work regularly to the public. This objective is served by distributing project reports to an extensive network of libraries, agencies, organizations and interested individuals and by granting universal permission to reproduce the material. This report contains referenced data obtained from external to the Northern River Basins Study. Individuals interested in using external data must obtain permission to do so from the donor agency. (author). 47 refs., 9 tabs., 2 figs

  10. Major transgression during Late Cretaceous constrained by basin sediments in northern Africa: implication for global rise in sea level

    Science.gov (United States)

    An, Kaixuan; Chen, Hanlin; Lin, Xiubin; Wang, Fang; Yang, Shufeng; Wen, Zhixin; Wang, Zhaoming; Zhang, Guangya; Tong, Xiaoguang

    2017-12-01

    The global rise in sea level during the Late Cretaceous has been an issue under discussion by the international geological community. Despite the significance, its impact on the deposition of continental basins is not well known. This paper presents the systematic review on stratigraphy and sedimentary facies compiled from 22 continental basins in northern Africa. The results indicate that the region was dominated by sediments of continental facies during Early Cretaceous, which were replaced by deposits of marine facies in Late Cretaceous. The spatio-temporal distribution of sedimentary facies suggests marine facies deposition reached as far south as Taoudeni-Iullemmeden-Chad-Al Kufra-Upper Egypt basins during Turonian to Campanian. These results indicate that northern Africa underwent significant transgression during Late Cretaceous reaching its peak during Turonian to Coniacian. This significant transgression has been attributed to the global high sea-level during this time. Previous studies show that global rise in sea level in Late Cretaceous may have been driven by an increase in the volume of ocean water (attributed to high CO2 concentration and subsequently warm climate) and a decrease in the volume of the ocean basin (attributed to rapid production of oceanic crust and seamounts). Tectonic mechanism of rapid production of oceanic crust and seamounts could play a fundamental role in driving the global rise in sea level and subsequent transgression in northern Africa during Late Cretaceous.

  11. Advances in ammonite biostratigraphy of the marine Atacama basin (Lower Cretaceous), northern Chile, and its relationship with the Neuquén basin, Argentina

    Science.gov (United States)

    Mourgues, Francisco Amaro

    2004-09-01

    Preliminary results about the Lower Cretaceous ammonite biostratigraphy of northern Chile reveal eight fossiliferous levels: Lower-Upper Valanginian neocomitid and olcostephanid faunas in the Punta del Cobre and Abundancia Formations and Upper Hauterivian-Barremian crioceratid in the Nantoco, Totoralillo, and Pabellón Formations. The faunal affinities with the Neuquén are strong during the Valanginian and Hauterivian. In contrast, during the Barremian and Aptian, the ammonites show affinities with Austral, California, and Tethys basinal faunas. The Lower Valanginian-lower Upper Aptian series in northern Chile comprises two sedimentary cycles separated by a regressive pulse of Upper Hauterivian-Lower Barremian age. This pulse may be equivalent to the regression that ended the Early Cretaceous marine cycle in central Chile and central west Argentina, where the second marine sedimentary cycle observed in northern Chile is not represented.

  12. Oligocene-miocene mammalian fossils from Hongyazi Basin and its bearing on tectonics of Danghe Nanshan in northern Tibetan plateau.

    Science.gov (United States)

    Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An

    2013-01-01

    A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan'ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan'ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is

  13. Oligocene-miocene mammalian fossils from Hongyazi Basin and its bearing on tectonics of Danghe Nanshan in northern Tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan'ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan'ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the

  14. Jurassic sedimentary evolution of southern Junggar Basin: Implication for palaeoclimate changes in northern Xinjiang Uygur Autonomous Region, China

    Directory of Open Access Journals (Sweden)

    Shun-Li Li

    2014-04-01

    Full Text Available Junggar Basin, located in northern Xinjiang, presents continuous and multikilometer-thick strata of the Jurassic deposits. The Jurassic was entirely terrestrial fluvial and lacustrine deltaic sedimentation. Eight outcrop sections across the Jurassic strata were measured at a resolution of meters in southern Junggar Basin. Controlling factors of sedimentary evolution and palaeoclimate changes in Junggar Basin during the Jurassic were discussed based on lithology, fossils and tectonic setting. In the Early to Middle Jurassic, the warm and wide Tethys Sea generated a strong monsoonal circulation over the central Asian continent, and provided adequate moisture for Junggar Basin. Coal-bearing strata of the Badaowan, Sangonghe, and Xishanyao Formations were developed under warm and humid palaeoclimate in Junggar Basin. In the late Middle Jurassic, Junggar Basin was in a semi-humid and semi-arid environment due to global warming event. Stratigraphy in the upper part of the Middle Jurassic with less plant fossils became multicolor or reddish from dark color sediments. During the Late Jurassic, collision of Lhasa and Qiangtang Block obstructed monsoon from the Tethys Sea. A major change in climate from semi-humid and semi-arid to arid conditions took place, and reddish strata of the Upper Jurassic were developed across Junggar Basin.

  15. Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico

    Science.gov (United States)

    Ruleman, Cal; Machette, Michael; Thompson, Ren A.; Miggins, Dan M; Goehring, Brent M; Paces, James B.

    2016-01-01

    The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio

  16. ITCZ-monsoonal association during the last glacial (Cariaco Basin, Northern Arabian Sea)

    Science.gov (United States)

    Deplazes, G.; Haug, G. H.; Lueckge, A.

    2010-12-01

    The anoxic Cariaco Basin on the northern shelf of Venezuela preserves detailed records of past tropical climate variability. The sediment formation in this basin is controlled by the migration of the Atlantic Intertropical Convergence Zone (ITCZ) and the corresponding rain belt and trade winds. In the oxygen minimum zone off Pakistan in the northeastern Arabian Sea sediment archives of low-latitude monsoonal climate are preserved. In this study sediments from the two settings that cover the last 80,- to 110,000 years were analysed. Sediment color analysis resulted in reflectance records with a down to annual resolution. An age model was set up by correlation of these records to the δ18O record of Greenland ice (NGRIP). The major element chemistry of the sediments was analysed with X-ray fluorescence scanning. The new high resolution proxy records indicate an unbroken association between warm climate conditions over Greenland, a northerly position of the Atlantic Intertropical Convergence Zone, and a strong Indian summer monsoon since the last glacial. The tight coupling is explained by a dominant role of the North Atlantic that is communicated largely through the atmosphere. New insights of dynamical mechanisms arise from comparison of individual Dansgaard-Oeschger events. The tropical records and the Greenland δ18O record show both an abrupt change at the beginning of an interstadial. The δ18O of Greenland ice peaks early in the interstadials and then decreases more or less constantly toward stadial values. However, the tropical records have a tendency to maintain dark interstadial color on a similar level over several centuries. The following centennial-scale lightening toward the next stadial appears to be delayed compared to the δ18O ice record. This “resistance” of the tropics to the interstadial-stadial transitions suggests a threshold response of the tropics to North Atlantic cooling.

  17. Spatial and temporal variability of groundwater recharge in Geba basin, Northern Ethiopia

    Science.gov (United States)

    Yenehun, Alemu; Walraevens, Kristine; Batelaan, Okke

    2017-10-01

    WetSpa, a physically based, spatially distributed watershed model, has been used to study the spatial and temporal variation of recharge in the Geba basin, Northern Ethiopia. The model covers an area of about 4, 249 km2 and integrates elevation, soil and land-use data, hydrometeorological and river discharge data. The Geba basin has a highly variable topography ranging from 1000 to 3280 m with an average slope of 12.9%. The area is characterized by a distinct wet and long dry season with a mean annual precipitation of 681 mm and temperatures ranging between 6.5 °C and 32 °C. The model was simulated on daily basis for nearly four years (January 1, 2000 to December 18, 2003). It resulted in a good agreement between measured and simulated streamflow hydrographs with Nash-Sutcliffe efficiency of almost 70% and 85% for, respectively, the calibration and validation. The water balance terms show very strong spatial and temporal variability, about 3.8% of the total precipitation is intercepted by the plant canopy; 87.5% infiltrates into the soil (of which 13% percolates, 2.7% flows laterally off and 84.2% evapotranspired from the root zone), and 7.2% is surface runoff. The mean annual recharge varies from about 45 mm (2003) to 208 mm (2001), with average of 98.6 mm/yr. On monthly basis, August has the maximum (73 mm) and December the lowest (0.1 mm) recharge. The mean annual groundwater recharge spatially varies from 0 to 371 mm; mainly controlled by the distribution of rainfall amount, followed by soil and land-use, and to a certain extent, slope. About 21% of Geba has a recharge larger than 120 mm and 1% less than 5 mm.

  18. Cenozoic sediment flux in the Qaidam Basin, northern Tibetan Plateau, and implications with regional tectonics and climate

    Science.gov (United States)

    Bao, Jing; Wang, Yadong; Song, Chunhui; Feng, Ying; Hu, Chunhua; Zhong, Sirui; Yang, Jiwei

    2017-08-01

    As the largest Mesozoic-Cenozoic terrestrial intermountain basin in the northern Tibetan Plateau, the Qaidam Basin is an ideal basin to examine the influences of regional tectonics and climate on sediment flux. Research conducted over the last two decades has provided abundant information about paleoclimatology and tectonic histories. In this study, we used the restoration of seven balanced cross-sections and compiled thickness data of ten outcrop sections and four boreholes to reconstruct the basin boundaries, develop isopach maps, and calculate the sediment flux in the Qaidam Basin. Our results show that the sediment flux in the Qaidam Basin increased gradually between 53.5 and 35.5 Ma, decreased to its lowest value from 35.5 to 22 Ma, increased between 22 and 2.5 Ma, and then increased dramatically after 2.5 Ma. By comparing the changes in the sediment flux with our reconstructed shortening rate in the Qaidam Basin, and the records of regional tectonic events and regional and global climate changes, we suggest that the gradual increase in the sediment flux from 53.5 to 40.5 Ma was controlled by both the tectonic uplift of the Tibetan Plateau and the relatively warm and humid climate, and that the high sediment flux from 40.5 to 35.5 Ma was mainly controlled by tectonics. The low sediment flux from 35.5 to 22 Ma was a response to the relatively cold and arid climate in a stable tectonic setting. The relatively high sediment flux between 22 and 15.3 Ma was related to tectonic activity and the warm and humid climate. The intense tectonic uplift of the northern Tibetan Plateau and the frequent climate oscillations after 15.3 Ma, particularly the glacial-interglacial cycles after 2.5 Ma, caused the high sediment flux after 15.3 Ma and the dramatic increase after 2.5 Ma, respectively.

  19. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska

    Science.gov (United States)

    Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter

    2012-01-01

    Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.

  20. Neogene Basin Evolution Along the Northern Flank of the Papuan Peninsula, Goodenough Bay, Eastern Papua New Guinea

    Science.gov (United States)

    Horton, B. K.; Gillis, R. J.; Mann, P.

    2009-12-01

    Although large-magnitude extension in the Woodlark Rift of eastern Papua New Guinea (PNG) and the D’Entrecasteaux Islands has been addressed through previous research on the late Cenozoic structure and cooling history of metamorphic domes, few studies have evaluated the exhumational record contained within adjacent sedimentary basins. Onshore exposures of Neogene basin fill in PNG along the northern flank of the Papuan peninsula (east of the Dayman metamorphic dome and west-southwest of the domes of the D’Entrecasteaux Islands) provide a record of basin evolution prior to and during growth of the active spreading center that defines the boundary between the Australian plate and Woodlark microplate. Along the northern margin of the Papuan peninsula, a collection of lithofacies associations consisting of sandstone and subordinate conglomerate and mudstone represent deposition in bottomset, foreset, and topset subenvironments in a series of marine Gilbert-type deltas. Internal angular unconformities within the basin-fill succession indicate slope instability likely related to syndepositional deformation. This deformation is attributed to principally down-to-the north motion along extensional and strike-slip structures bordering the northern margin of Papuan peninsula, notably the ESE-striking Goodenough fault zone. Small-scale folding is interpreted as the product of late Miocene to Quaternary fault-related folding in an extensional setting, although we cannot rule out possible contraction coeval with significant collision-related shortening on the southern flank of the Papuan peninsula within the south-directed Papuan fold-thrust belt. Differences in sandstone petrographic results for the northern margin of the Papuan peninsula and the smaller Vogel peninsula suggest a multiphase history of basin evolution, with early Neogene subsidence of uncertain origin and late Neogene subsidence linked to regional extension. The timing of basin evolution will be assessed

  1. Biomarkers of contaminant exposure in northern pike (Esox lucius) from the Yukon River Basin, Alaska

    Science.gov (United States)

    Hinck, J.E.; Blazer, V.S.; Denslow, N.D.; Myers, M.S.; Gross, T.S.; Tillitt, D.E.

    2007-01-01

    As part of a larger investigation, northern pike (n = 158; Esox lucius) were collected from ten sites in the Yukon River Basin (YRB), Alaska, to document biomarkers and their correlations with organochlorine pesticide (total p,p'-DDT, total chlordane, dieldrin, and toxaphene), total polychlorinated biphenyls (PCBs), and elemental contaminant (arsenic, cadmium, copper, lead, total mercury, selenium, and zinc) concentrations. A suite of biomarkers including somatic indices, hepatic 7-ethoxyresorufin O-deethylase (EROD) activity, vitellogenin concentrations, steroid hormone (17B- ustradiol and 16-kebtestosteront) concentrations, splenic macrophage aggregates (MAs), oocyte atresia, and other microscopic anomalies in various tissues were documented in YRB pike. Mean condition factor (0.50 to 0.68), hepatosomatic index (1.00% to 3.56%), and splenosomatic index (0.09% to 0.18%) were not anomalous at any site nor correlated with any contaminant concentration. Mean EROD activity (0.71 to 17.51 pmol/min/mg protein) was similar to basal activity levels previously measured in pike and was positively correlated with selenium concentrations (r = 0.88, P contaminant exposure but provide information on the general health of YRB pike. The most common histologic anomalies were parasitic infestations in various organs and developing nephrons and nephrocalcinosis in posterior kidney tissues. Overall, few biomarker responses in YRB pike were correlated with chemical contaminant concentrations, and YRB pike generally appeared to be healthy with no site having multiple anomalous biomarker responses. ?? 2007 Springer Science+Business Media, LLC.

  2. Thermal maturity of northern Appalachian Basin Devonian shales: Insights from sterane and terpane biomarkers

    Science.gov (United States)

    Hackley, Paul C.; Ryder, Robert T.; Trippi, Michael H.; Alimi, Hossein

    2013-01-01

    To better estimate thermal maturity of Devonian shales in the northern Appalachian Basin, eleven samples of Marcellus and Huron Shale were characterized via multiple analytical techniques. Vitrinite reflectance, Rock–Eval pyrolysis, gas chromatography (GC) of whole rock extracts, and GC–mass spectrometry (GCMS) of extract saturate fractions were evaluated on three transects that lie across previously documented regional thermal maturity isolines. Results from vitrinite reflectance suggest that most samples are immature with respect to hydrocarbon generation. However, bulk geochemical data and sterane and terpane biomarker ratios from GCMS suggest that almost all samples are in the oil window. This observation is consistent with the presence of thermogenic gas in the study area and higher vitrinite reflectance values recorded from overlying Pennsylvanian coals. These results suggest that vitrinite reflectance is a poor predictor of thermal maturity in early mature areas of Devonian shale, perhaps because reported measurements often include determinations of solid bitumen reflectance. Vitrinite reflectance interpretations in areas of early mature Devonian shale should be supplanted by evaluation of thermal maturity information from biomarker ratios and bulk geochemical data.

  3. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)

    2013-08-01

    A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.

  4. Precipitation thresholds for triggering floods in Corgo hydrographic basin (Northern Portugal)

    Science.gov (United States)

    Santos, Monica; Fragoso, Marcelo

    2016-04-01

    The precipitation is a major cause of natural hazards and is therefore related to the flood events (Borga et al., 2011; Gaál et al., 2014; Wilhelmi & Morss, 2013). The severity of a precipitation event and their potential damage is dependent on the total amount of rain but also on the intensity and duration event (Gaál et al., 2014). In this work, it was established thresholds based on critical combinations: amount / duration of flood events with daily rainfall data for Corgo hydrographic basin, in northern Portugal. In Corgo basin are recorded 31 floods events between 1865 and 2011 (Santos et al., 2015; Zêzere et al., 2014). We determined the minimum, maximum and pre-warning thresholds that define the boundaries so that an event may occur. Additionally, we applied these thresholds to different flood events occurred in the past in the study basin. The results show that the ratio between the flood events and precipitation events that occur above the minimum threshold has relatively low probability of a flood happen. These results may be related to the reduced number of floods events (only those that caused damage reported by the media and produced some type of damage). The maximum threshold is not useful for floods forecasting, since the majority of true positives are below this limit. The retrospective analysis of the thresholds defined suggests that the minimum and pre warning thresholds are well adjusted. The application of rainfall thresholds contribute to minimize possible situations of pre-crisis or immediate crisis, reducing the consequences and the resources involved in emergency response of flood events. References Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J. D. (2011). Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science & Policy, 14(7), 834-844. doi: 10.1016/j.envsci.2011.05.017 Gaál, L., Molnar, P., & Szolgay, J. (2014). Selection of intense rainfall events based on intensity thresholds and

  5. Palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin, northern South China Sea.

    Science.gov (United States)

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter.

  6. Hydrogeochemical processes identification and groundwater pollution causes analysis in the northern Ordos Cretaceous Basin, China.

    Science.gov (United States)

    An, Yongkai; Lu, Wenxi

    2017-10-23

    It is necessary to identify the hydrogeochemical processes and analyze the causes of groundwater pollution due to the lack of knowledge about the groundwater chemical characteristics and the endemic diseases caused by groundwater pollution in the northern Ordos Cretaceous Basin. In this paper, groundwater chemical facies were obtained using the piper trilinear diagram based on the analysis of 190 samples. The hydrogeochemical processes were identified using ionic ratio coefficient, such as leaching, evaporation and condensation. The causes and sources of groundwater pollution were analyzed by correspondence analysis, and the spatial distribution and enrichment reasons of fluoride ion were analyzed considering the endemic fluorosis emphatically. The results show that leaching, evaporation and condensation, mixing, and anthropogenic activities all had significant impact on hydrogeochemical processes in the study area. However, cation exchange and adsorption effects were strong in the S2 and S3 groundwater flow systems, but weak in S1. Groundwater is mainly polluted by Mn and COD Mn in the study area. The landfill leachate, domestic sewage, and other organic pollutants, excessive use of pesticides and fertilizers in agriculture, and pyrite oxidation from long-term and large-scale exploitation of coal are the sources of groundwater pollution. The S1 has the highest degree of groundwater pollution, followed by S2 and S3. High concentration of fluoride ion is mainly distributed in the north and west of study area. Evaporation and condensation and groundwater chemistry component are the most important causes of fluoride ion enrichment. The results obtained in this study will be useful for understanding the groundwater quality for effective management and utilization of groundwater resources and assurance of drinking water safety.

  7. FACIES ANALYSIS, STRATIGRAPHY AND PALAEONTOLOGY (MOLLUSCS AND VERTEBRATES IN THE UPPER PLIOCENE SANDY FLOOD-BASIN DEPOSITS OF THE UPPER VALDARNO BASIN (NORTHERN APENNINES

    Directory of Open Access Journals (Sweden)

    MASSIMILIANO GHINASSI

    2005-11-01

    Full Text Available The Upper Valdarno Basin, one of the most investigated Neogene–Quaternary basins of the Northern Apennines, developed during three main phases, as testified by the occurrence of three unconformity-bounded stratigraphic units (UBSUs in the basin infill. Despite numerous studies having been carried out, biochronological, paleoecological and stratigraphical issues in the lower portion of the Montevarchi Synthem (second phase have yet to be understood. Sandy deposits (Montecarlo Sand and Silt Unit, stratigraphically located in this portion of the Montevarchi Synthem, are the focus of this multidisciplinary study. These deposits conformably overlie sandy fluvio-eolian sediments and are, in turn, capped by fluvio-palustrine deposits through a progressive unconformity. Facies analysis suggest a sandy flood-basin environment for these deposits, characterised by variations in water discharge and flood event energy. Mollusc and fish remains, pointing to quiet or slow-moving shallow waters, have been affected by transport processes before final burial in overbank areas. Fish remains of the primary marine family Mugilids highlight a connection between the basin and the sea that was previously only supposed. Small mammal remains, referred to the rodent Mimomys polonicus, are coherent with a water-rich environment. Cyclic variations in shell content and sedimentological characteristics testify to the occurrence of short-term climatic oscillations during this warming phase. This study fits with paleomagnetic and radiometric datings and mammal biochronology, in indicating that the Montecarlo Sand and Silt Unit belongs to a time interval preceding the Reunion paleomagnetic event. The depositional evolution of the Montecarlo Unit was driven by climatic change from arid to humid conditions, related to a global increase in temperature that occurred between 2.4 and 2.2 Ma.

  8. Stress state variations among the clay and limestone formations of the molasse basin of Northern Switzerland

    International Nuclear Information System (INIS)

    Vietor, Tim; Mueller, Herwig; Frieg, Bernd; Klee, Gerd

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: The design of geological repositories for radioactive waste responds to the requirements of technical feasibility and long-term safety in the context of a specific geological setting. An important aspect of the geological setting is the primary stress field. To a large extent the stress state controls repository induced effects such as the excavation damage zone and the associated potential changes in the waste isolation properties of the host rock. Therefore the measurement of the stress state receives some attention where the site selection for geological repositories focuses onto relatively weak host rocks such as clay-stones and marly shales that tend to develop a significant excavation damage zone. Measurements of the minimum stress magnitudes in a recently drilled geothermal well in the Molasse Basin of northern Switzerland have yielded a stress profile reaching from 592 m to 1455 m depth. It straddles several rock units and includes the top of the crystalline basement. The sedimentary sequence consists of Marine limestones, shales and marls unconformably covered by Tertiary rocks of the Molasse. In other parts of the basin the evaporitic rocks of the Triassic Muschelkalk formation at the base of the sedimentary layer served as a regional detachment and enabled thin skinned thrusting and the formation of the Jura Fold and Thrust Belt in the Late Miocene. The stress measurements have been performed in the open hole by Mini-frac tests. The method uses a double packer system to isolate a one meter long interval of the borehole that is then pressurized at high injection rates up to the breakdown of the formation. Repeated pressurization of the interval allows to determine the stress that acts on the newly created fracture. The total injected volume during such a test is in the range of a few litres and the size of the fracture that extends from the borehole normal to the minimum

  9. Some regularities in the distribution of kenophytes in the Polish Carpathians and their foreland

    Directory of Open Access Journals (Sweden)

    Zając Maria

    2015-03-01

    Full Text Available The Polish Carpathians and their northern foreland are a rewarding object for the kenophyte distribution research. The study, using the cartogram method, showed that the number of kenophyte species decreases with increasing altitude. Only few kenophytes were found in the lower forest zone. This regularity concerns also the species that reach higher altitudes in the mountains of their native lands. A number of species migrated into the Carpathians through rivers and streams. River valleys generate many open habitats, which are easily colonized by kenophytes due to the lack of competition. In the Carpathians, towns used to be founded in the mountain valleys and this was also a favouring factor of kenophyte propagation. The arrangement of mountain ranges in the Polish Carpathians, including their foreland, hindered the migration of some species and allowed to discover the possible migration routes into the area covered by research. Tracing these migration routes was possible only for those species that have not occupied the whole available area yet. Additionally, the study indicated the most dangerous invasive species in the Polish Carpathians and their foreland.

  10. Tectono-stratigraphy of the Orhaniye Basin, Turkey: Implications for collision chronology and Paleogene biogeography of central Anatolia

    Science.gov (United States)

    Licht, A.; Coster, P.; Ocakoğlu, F.; Campbell, C.; Métais, G.; Mulch, A.; Taylor, M.; Kappelman, John; Beard, K. Christopher

    2017-08-01

    Located along the İzmir-Ankara-Erzincan Suture (IAES), the Maastrichtian - Paleogene Orhaniye Basin has yielded a highly enigmatic -yet poorly dated- Paleogene mammal fauna, the endemic character of which has suggested high faunal provincialism associated with paleogeographic isolation of the Anatolian landmass during the early Cenozoic. Despite its biogeographic significance, the tectono-stratigraphic history of the Orhaniye Basin has been poorly documented. Here, we combine sedimentary, magnetostratigraphic, and geochronological data to infer the chronology and depositional history of the Orhaniye Basin. We then assess how our new data and interpretations for the Orhaniye Basin impact (1) the timing and mechanisms of seaway closure along the IAES and (2) the biogeographic evolution of Anatolia. Our results show that the Orhaniye Basin initially developed as a forearc basin during the Maastrichtian, before shifting to a retroarc foreland basin setting sometime between the early Paleocene and 44 Ma. This chronology supports a two-step scenario for the assemblage of the central Anatolian landmass, with incipient collision during the Paleocene - Early Eocene and final seaway retreat along the IAES during the earliest Late Eocene after the last marine incursion into the foreland basin. Our dating for the Orhaniye mammal fauna (44-43 Ma) indicates the persistence of faunal endemism in northern Anatolia until at least the late Lutetian despite the advanced stage of IAES closure. The tectonic evolution of dispersal corridors linking northern Anatolia with adjacent parts of Eurasia was not directly associated with IAES closure and consecutive uplifts, but rather with the build-up of continental bridges on the margins of Anatolia, in the Alpine and Tibetan-Himalayan orogens.

  11. A new genus of aplodontid rodent (Mammalia, Rodentia from the late Oligocene of northern Junggar Basin, China.

    Directory of Open Access Journals (Sweden)

    Shundong Bi

    Full Text Available A new genus and species of aplodontid rodent, Proansomys dureensis, from the late Oligocene of the northern Junggar Basin of China is described. The new genus is referred to as Ansomyinae because the ectoloph on the upper cheek teeth, although not fully crested, has attained the same characteristic bucket-handle-shaped configuration as other members of the subfamily. It represents the earliest record of the subfamily yet discovered in Asia and is more plesiomorphic than species of the genus Ansomys in having a partly crested ectoloph, a lower degree of lophodonty, and less complex tooth basins (lacking accessory lophules. Proansomys has transitional features between Prosciurus and Ansomys, suggesting that the Ansomyinae derived from a group of aplodontids related to Prosciurus, as did other advanced aplodontid rodents. This provides new light on the paleobiogeography of the Ansomyinae.

  12. Cheatgrass percent cover change: Comparing recent estimates to climate change − Driven predictions in the Northern Great Basin

    Science.gov (United States)

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and

  13. Past, present and future formation of groundwater resources in northern part of Baltic Artesian Basin

    Science.gov (United States)

    Marandi, A.; Vallner, L.; Vaikmae, R.; Raidla, V.

    2012-04-01

    Cambrian-Vendian Aquifer System (CVAS) is the deepest confined aquifer system used for water consumption in northern part of Baltic Artesian Basin (BAB). A regional groundwater flow and transport model (Visual Modflow) was used to investigate the paleohydrogeological scientific and contemporary management problems of CVAS. The model covers the territory of Estonia and its close surrounding, all together 88,000 km2 and includes all main aquifers and aquitards from ground surface to as low as the impermeable part of the crystalline basement. Three-dimensional distribution of groundwater heads, flow directions, velocities, and rates as well as transport and budget characteristics were simulated by the model. Water composition was changed significantly during the last glaciations.Strongly depleted O and H stable isotope composition, absence of 3H and low radiocarbon concentration are the main indicators of glacial origin of groundwater in the Cambrian-Vendian aquifer in northern Estonia. The noble gas analyses allowed concluding, that palaeorecharge took place at temperatures around the freezing point. While in North Estonia, most of water was changed by glacial melt water, high salinity water is till preserved in Southern part of Estonia.First results of modeling suggest that during the intrusion period lasting 7.3-9.3 ka the front of glacial thaw water movement had southeast direction and reachedto 180-220 kmfrom CVAS outcrop in Baltic Sea. Confining layer of CVAS is cut through by deep buried valleys in several places in North Estonia making possible for modern precipitation to infiltrate into aquifer system in present day. In case of natural conditions, the water pressure of CVAS is few meters above sea level and most of valleys act as discharge areas for aquifers system. Two regional depression ones have formed in North Estonia as a result of groundwater use from CVAS. Water consumption changes the natural groundwater gradient, flow direction and thereforerecharge

  14. Foreland sedimentary record of Andean mountain building during advancing and retreating subduction

    Science.gov (United States)

    Horton, Brian K.

    2016-04-01

    As in many ocean-continent (Andean-type) convergent margins, the South American foreland has long-lived (>50-100 Myr) sedimentary records spanning not only protracted crustal shortening, but also periods of neutral to extensional stress conditions. A regional synthesis of Andean basin histories is complemented by new results from the Mesozoic Neuquén basin system and succeeding Cenozoic foreland system of west-central Argentina (34-36°S) showing (1) a Late Cretaceous shift from backarc extension to retroarc contraction and (2) an anomalous mid-Cenozoic (~40-20 Ma) phase of sustained nondeposition. New detrital zircon U-Pb geochronological results from Jurassic through Neogene clastic deposits constrain exhumation of the evolving Andean magmatic arc, retroarc thrust belt, foreland basement uplifts, and distal eastern craton. Abrupt changes in sediment provenance and distal-to-proximal depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, post-extensional thermal subsidence, punctuated tectonic inversion involving thick- and thin-skinned shortening, alternating phases of erosion and rapid accumulation, and overlapping igneous activity. U-Pb age distributions define the depositional ages of several Cenozoic stratigraphic units and reveal a major late middle Eocene-earliest Miocene (~40-20 Ma) hiatus in the Malargüe foreland basin. This boundary marks an abrupt shift in depositional conditions and sediment sources, from Paleocene-middle Eocene distal fluviolacustrine deposition of sediments from far western volcanic sources (Andean magmatic arc) and subordinate eastern cratonic basement (Permian-Triassic Choiyoi igneous complex) to Miocene-Quaternary proximal fluvial and alluvial-fan deposition of sediments recycled from emerging western sources (Malargüe fold-thrust belt) of Mesozoic basin fill originally derived from basement and magmatic arc sources. Neogene eastward advance of the fold-thrust belt involved thick

  15. Review of the Upper Jurassic-Lower Cretaceous stratigraphy in Western Cameros basin, Northern Spain

    DEFF Research Database (Denmark)

    Vidal, Maria del Pilar Clemente

    2010-01-01

    The Upper Jurassic-Lower Cretaceous stratigraphy of the Cameros basin has been reviewed. In Western Cameros the stratigraphic sections are condensed but they have a parallel development with the basin depocentre and the same groups have been identified. The Tera Group consists of two formations: ...

  16. Structure of the Wagner Basin in the Northern Gulf of California From Interpretation of Seismic Reflexion Data

    Science.gov (United States)

    Gonzalez, M.; Aguilar, C.; Martin, A.

    2007-05-01

    The northern Gulf of California straddles the transition in the style of deformation along the Pacific-North America plate boundary, from distributed deformation in the Upper Delfin and Wagner basins to localized dextral shear along the Cerro Prieto transform fault. Processing and interpretation of industry seismic data adquired by Petroleos Mexicanos (PEMEX) allow us to map the main fault structures and depocenters in the Wagner basin and to unravel the way strain is transferred northward into the Cerro Prieto fault system. Seismic data records from 0.5 to 5 TWTT. Data stacking and time-migration were performed using semblance coefficient method. Subsidence in the Wagner basin is controlled by two large N-S trending sub-parallel faults that intersect the NNW-trending Cerro Prieto transform fault. The Wagner fault bounds the eastern margin of the basin for more than 75 km. This fault dips ~50° to the west (up to 2 seconds) with distinctive reflectors displaced more than 1 km across the fault zone. The strata define a fanning pattern towards the Wagner fault. Northward the Wagner fault intersects the Cerro Prieto fault at 130° on map view and one depocenter of the Wagner basin bends to the NW adjacent to the Cerro Prieto fault zone. The eastern boundary of the modern depocenter is the Consag fault, which extends over 100 km in a N-S direction with an average dip of ~50° (up to 2s) to the east. The northern segment of the Consag fault bends 25° and intersects the Cerro Prieto fault zone at an angle of 110° on map view. The acoustic basement was not imaged in the northwest, but the stratigraphic succession increases its thickness towards the depocenter of the Wagner basin. Another important structure is El Chinero fault, which runs parallel to the Consag fault along 60 km and possibly intersects the Cerro Prieto fault to the north beneath the delta of the Colorado River. El Chinero fault dips at low-angle (~30°) to the east and has a vertical offset of about 0

  17. Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile

    Science.gov (United States)

    Alpers, Charles N.; Whittemore, D.O.

    1990-01-01

    The geochemistry and stable isotopes of groundwaters, surface waters, and precipitation indicate different sources of some dissolved constituents, but a common source of recharge and other constituents in two adjacent closed basins in the Atacama Desert region of northern Chile (24??15???-24??45???S). Waters from artesian wells, trenches, and ephemeral streams in the Punta Negra Basin are characterized by concentrations of Na>Ca>Mg and Cl ???SO4, with TDS Mg ??? Ca and SO4 > Cl, with TDS also Mg ??? Ca and SO4 > Cl, but with TDS up to 40 g/l. The deep mine waters have pH between 3.2 and 3.9, and are high in dissolved CO2 (??13 C = -4.8%PDB), indicating probable interaction with oxidizing sulfides. The deep mine waters have ??18O values of ???-1.8%.compared with values < -3.5??? for other Hamburgo Basin waters; thus the mine waters may represent a mixture of meteoric waters with deeper "metamorphic" waters, which had interacted with rocks and exchanged oxygen isotopes at elevated temperatures. Alternatively, the deep mine waters may represent fossil meteoric waters which evolved isotopically along an evaporative trend starting from values quite depleted in ??18O and ??Dd relative to either precipitation or shallow groundwaters. High I/Br ratios in the Hamburgo Basin waters and La Escondida mine waters are consistent with regionally high I in surficial deposits in the Atacama Desert region and may represent dissolution of a wind-blown evaporite component. Rain and snow collected during June 1984, indicate systematic ??18O and ??D fractionation with increasing elevation between 3150 and 4180 m a.s.l. (-0.21??.??18O and -1.7??.??D per 100 m). Excluding the deep mine waters from La Escondida, the waters from the Hamburgo and Punta Negra Basins have similar ??D and ??18O values and together show a distinct evaporative trend (??D = 5.0 ??18O - 20.2). Snowmelt from the central Andes Cordillera to the east is the most likely source of recharge to both basins. Some of the

  18. Neotectonics and intraplate continental topography of the northern Alpine Foreland

    NARCIS (Netherlands)

    Cloetingh, S.; Cornu, T.; Ziegler, P.A.; Beekman, F.; Ustaszewski, K.; Schmid, S.M.; Dèzes, P.; Hinsch, R.; Decker, K.; Lopes Gardozo, G.; Granet, M.; Bertrand, G.; Behrmann, J.; Balen, R. van; Michon, L.; Pagnier, H.; Rozsa, S.; Heck, B.; Tesauro, M.; Kahle, H.G.; Dewez, T.; Carretier, S.; Winter, T.; Hardebol, N.; Bada, G.; Dost, B.; Eck, T. van

    2006-01-01

    Research on neotectonics and related seismicity has hitherto been mostly focused on active plate boundaries that are characterized by generally high levels of earthquake activity. Current seismic hazard estimates for intraplate domains are mainly based on probabilistic analyses of historical and

  19. Neotectonics and intraplate continental topography of the Northern Alpine Foreland

    NARCIS (Netherlands)

    Cloetingh, S.A.P.L.; Ziegler, P.A.; Beekman, W.W.W.; Cornu, T.

    2006-01-01

    Research on neotectonics and related seismicity has hitherto been mostly focused on active plate boundaries that are characterized by generally high levels of earthquake activity. Current seismic hazard estimates for intraplate domains are mainly based on probabilistic analyses of historical and

  20. Saghro Group in the Ougnat Massif (Morocco), an evidence for a continuous Cadomian basin along the northern West African Craton

    Science.gov (United States)

    Michard, André; Soulaimani, Abderrahmane; Ouanaimi, Hassan; Raddi, Youssef; Aït Brahim, Lahsen; Rjimati, Ech-Cherki; Baidder, Lahssen; Saddiqi, Omar

    2017-03-01

    The Saghro Group (SG) is a folded, low-grade volcano-sedimentary series up to 8 km thick that crops out within and to the north of the Pan-African suture zone in the central and eastern Anti-Atlas. Here we describe the SG of the Ougnat inliers that are exposed in the easternmost Anti-Atlas beneath the unconformable, Late Ediacaran Ouarzazate Group (OZG) volcanic rocks. The Ougnat SG mostly consists of volcaniclastic greywackes accumulated in a peritidal-to-shallow basin. The basin infilling was deformed by NNE-trending, mostly upright folds with axial-planar slaty cleavage and low-grade metamorphism. The deformed SG rocks were intruded by the ∼550 Ma Mellab hypovolcanic granodiorite. The latter also crosscuts the lowest OZG rocks that are dated to 574-571 Ma in the western Saghro region. The SG rocks that form the Siroua and Saghro inliers have an oldest age of 620-610 Ma and were folded at ∼610-580 Ma at the onset of the Cadomian orogenic events. We show that the SG rocks are similar to the ;Série verte; (SV) rocks that are exposed in the Ougarta and western Hoggar east of the Pan-African suture. We infer that the SG and SV rocks accumulated in a same, continuous basin that was bounding the West African Craton to the north and the east. This strongly subsiding basin formed close to a volcanic arc and was folded during the last Pan-African synmetamorphic events. Fold orientation and age of folding differ however along the edge of the West African Craton. The orogenic greywackes that form the remnants of the SG-SV basin thus constitute a precious record of the diachronic Cadomian event s.l. along the West African Craton northern margin.

  1. Hydrological application of the INCA model with varying spatial resolution and nitrogen dynamics in a northern river basin

    Directory of Open Access Journals (Sweden)

    K. Rankinen

    2002-01-01

    Full Text Available As a first step in applying the Integrated Nitrogen model for CAtchments (INCA to the Simojoki river basin (3160 km2, this paper focuses on calibration of the hydrological part of the model and nitrogen (N dynamics in the river during the 1980s and 1990s. The model application utilised the GIS land-use and forest classification of Finland together with a recent forest inventory based on remote sensing. In the INCA model, the Hydrologically Effective Rainfall (HER is used to drive the water flow and N fluxes through the catchment system. HER was derived from the Watershed Simulation and Forecast System (WSFS. The basic component of the WSFS is a conceptual hydrological model which simulates runoff using precipitation, potential evapotranspiration and temperature data as inputs. Spatially uniform, lumped input data were calculated for the whole river basin and spatially semi-distributed input data were calculated for each of the nine sub-basins. When comparing discharges simulated by the INCA model with observed values, a better fit was obtained with the semi-distributed data than with the spatially uniform data (R2 0.78 v. 0.70 at Hosionkoski and 0.88 v. 0.78 at the river outlet. The timing of flow peaks was simulated rather well with both approaches, although the semi-distributed input data gave a more realistic simulation of low flow periods and the magnitude of spring flow peaks. The river basin has a relatively closed N cycle with low input and output fluxes of inorganic N. During 1982-2000, the average total N flux to the sea was 715 tonnes yr–1, of which 6% was NH4-N, 14% NO3-N, and 80% organic N. Annual variation in river flow and the concentrations of major N fractions in river water, and factors affecting this variation are discussed. Keywords: northern river basin, nitrogen, forest management, hydrology, dynamic modelling, semi-distributed modelling

  2. Improved Thermal Conductivity and Heat Flow for the Northern Denver Basin

    Science.gov (United States)

    Brokaw, Casey

    The Denver Basin is one of the most prodigious oil and gas producing basins in the Western United States, however, the data on the thermal properties of this basin, and in particular, deeper (Cretaceous) formations where significant hydrocarbons exist are sparse. To improve our understanding of thermal properties of Cretaceous sediments within the Denver Basin, I collected, processed, analyzed, and interpreted thermal conductivity on 73 core samples from the Niobrara Formation, Codell Sandstone, Greenhorn Limestone, Dakota and overlying Tertiary White River Formation. Conductivity values measured using a high-accuracy ( 30%). A clear inverse relationship exists between thermal conductivity and measured gamma ray log intensity: conductivity can be estimated to within 20% using only gamma ray logs in Cretaceous sediments in this Basin. Combining these new thermal conductivity measurements with equilibrium temperature-depth logs, I generated six high-fidelity heat flow measurements for the Denver Basin. From this, I produce two temperature-depth cross-sections transecting the Wattenberg oil field. The new cross sections indicate anomalously high heat flow values in the Wattenberg Field (82 mWm-2), and more tightly constrain temperature and conductivity below the Denver Basin. I briefly outlines why anomalously high heat flow exists in the Wattenberg field; a topic of future study.

  3. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    Science.gov (United States)

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    In cooperation with the Bureau of Land Management, groundwater levels in wells located in the northern Green River Basin in Wyoming, an area of ongoing energy development, were measured by the U.S. Geological Survey from 2010 to 2014. The wells were completed in the uppermost aquifers of the Green River Basin lower Tertiary aquifer system, which is a complex regional aquifer system that provides water to most wells in the area. Except for near perennial streams, groundwater-level altitudes in most aquifers generally decreased with increasing depth, indicating a general downward potential for groundwater movement in the study area. Drilled depth of the wells was observed as a useful indicator of depth to groundwater such that deeper wells typically had a greater depth to groundwater. Comparison of a subset of wells included in this study that had historical groundwater levels that were measured during the 1960s and 1970s and again between 2012 and 2014 indicated that, overall, most of the wells showed a net decline in groundwater levels.

  4. Analysis of subsurface temperature data to quantify groundwater recharge rates in a closed Altiplano basin, northern Chile

    Science.gov (United States)

    Kikuchi, C. P.; Ferré, T. P. A.

    2017-01-01

    Quantifying groundwater recharge is a fundamental part of groundwater resource assessment and management, and is requisite to determining the safe yield of an aquifer. Natural groundwater recharge in arid and semi-arid regions comprises several mechanisms: in-place, mountain-front, and mountain-block recharge. A field study was undertaken in a high-plain basin in the Altiplano region of northern Chile to quantify the magnitude of in-place and mountain-front recharge. Water fluxes corresponding to both recharge mechanisms were calculated using heat as a natural tracer. To quantify in-place recharge, time-series temperature data in cased boreholes were collected, and the annual fluctuation at multiple depths analyzed to infer the water flux through the unsaturated zone. To quantify mountain-front recharge, time-series temperature data were collected in perennial and ephemeral stream channels. Streambed thermographs were analyzed to determine the onset and duration of flow in ephemeral channels, and the vertical water fluxes into both perennial and ephemeral channels. The point flux estimates in streambeds and the unsaturated zone were upscaled to channel and basin-floor areas to provide comparative estimates of the range of volumetric recharge rates corresponding to each recharge mechanism. The results of this study show that mountain-front recharge is substantially more important than in-place recharge in this basin. The results further demonstrate the worth of time-series subsurface temperature data to characterize both in-place and mountain-front recharge processes.

  5. Structural characteristics of an active fold-and-thrust system in the southeastern Atacama Basin, northern Chile

    Science.gov (United States)

    Lin, Yen-Sheng; Chuang, Yi-Rung; Shyu, J. Bruce H.; González, Gabriel; Shen, Chuan-Chou; Lo, Ching-Hua; Liou, Ya-Hsuan

    2016-08-01

    The western South American margin is one of the most active plate boundaries in the world. Using various remote sensing data sets, we mapped the neotectonic characteristics of an area at the southeastern corner of the Atacama Basin, northern Chile, in the Andean forearc. There, one major N-S trending ridge is clearly visible both in the satellite images and in the field. This ridge reaches 250 m above the basin floor in its middle part and is asymmetrical, with a steep eastern slope and a much gentler western slope. The geometry of the ridge indicates that it formed as an asymmetrical anticline. This anticline is likely formed as a shear fault-bend fold, with a major décollement at a depth of about 2.5 km in the Naranja Formation. We suggest that this décollement is a major structure of the Atacama Basin area. From the ages of the ignimbrites and lake deposits that were deformed by this anticline, we obtained a long-term shortening rate of the major underlying structure at about 0.2 mm/yr. This thin-skinned fold-and-thrust system appears to be active since at least about 3 Ma, and could be as long as since middle Miocene. Therefore, crustal structures may play important roles in the Neogene development of the western Andean margin.

  6. Raft tectonics in northern Campos Basin; Tectonica de jangada (raft tectonics) na area norte da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Marilia R. de [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil)]|[PETROBRAS, Macae, RJ (Brazil). Unidade de Negocio da Bacia de Campos; Fugita, Adhemar M. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Programa de Recursos Humanos da ANP

    2004-07-01

    In the northern area of Campos Basin salt gliding/spreading processes promoted the break-up and transport of Cretaceous and Tertiary rocks overlying the evaporites. This process is known as raft tectonics, and it represents the most extreme form of thin-skinned extension above the salt decollement surface. Three distinct geotectonic domains were recognized that formed in response to the raft tectonics. The first one, confined to the shallower shelf portion of the basin, is characterized by minor extension (pre-raft domain), probably because of small salt thickness and low gradient. In the second domain (or disorganized rafts domain), located in distal platformal and slope areas, seismic sections show the occurrence of blocks or rafts with angular shapes, sometimes imbricated and frequently discontinuous. In the third domain, or domain of organized rafts, located in bacinal region, seismic sections show a more continuous raft pattern, often folded because of salt compression in the distal portions of the basin. The main purposes of this work is to characterize these three tectonic domains distinguished by raft tectonics, as well as their importance in hydrocarbon accumulations in calcarenites. (author)

  7. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  8. Structural and geological analysis of the northern Pescadero basin: preliminary results based on the analysis of 2D multichannel seismic reflection profiles

    Science.gov (United States)

    Spelz, R. M.; Ramirez-Zerpa, N. A.; Gonzalez-Fernandez, A.; Yarbuh, I.; Contreras, J.

    2017-12-01

    The Pacific-North America plate boundary along the Gulf of California is characterized by an array of right-stepping, right-lateral, transform faults connecting a series of pull-apart basins distributed along the gulf axis. Altogether, these structures accommodate an oblique-divergent component of deformation characterizing the modern tectonic regime along the gulf. The northern Pescadero complex, in the southern Gulf of California, is one of the deepest and probably least studied transtensional fault-termination basins in the gulf. The complex is bounded to the north and south by Atl and Farallon transform faults, respectively, and consists of two asymmetric, rhomboidal-shaped, basins with a series of intrabasinal high-angle normal faults and ramps connecting their depocenters. In this study we present preliminary results derived from the processing and analysis of 400 km of seismic reflection profiles, collected in 2006 onboard the R/V Francisco de Ulloa in northern Pescadero, providing new insights into the geology and internal structure of the basin. Northern Pescadero is a deep and narrow basin characterized by a maximum sedimentary infill of 1 km, and depths to the basin floor exceeding 3500 m. Deformation is chiefly accommodated by an array of self-parallel half-graben structures that appear to grow towards the northern flank of the basin. Faults-scarps located farther from the deformation axis appear to be more degraded, suggesting a progressively younger age of the half-grabens near the basin's depocenter. Another important feature revealed in the seismic images is the lack of sediments on top of the crystalline basement that floors the narrow central portion of the basin. In this area the reflectors at the basin's floor show a pronounced increase in amplitude and coherence, indicating the emplacement of magmatic extrusions. Likewise, in those areas with the greater sediment infill, the occurrence of high-amplitude reflectors, located 150 m below the

  9. Biological and Genetic Characterization of Cryptosporidium spp. and Giardia duodenalis Isolates from Five Hydrographical Basins in Northern Portugal

    Science.gov (United States)

    Moreira, Maria João; Soares, Sónia; de Lurdes Delgado, Maria; Figueiredo, João; Magalhães, Elisabete Silva; Castro, António; Viana Da Costa, Alexandra; Correia da Costa, José Manuel

    2010-01-01

    To understand the situation of water contamination with Cryptosporidium spp. and Giardia spp. in the northern region of Portugal, we have established a long-term program aimed at pinpointing the sources of surface water and environmental contamination, working with the water-supply industry. Here, we describe the results obtained with raw water samples collected in rivers of the 5 hydrographical basins. A total of 283 samples were analyzed using the Method 1623 EPA, USA. Genetic characterization was performed by PCR and sequencing of genes 18S rRNA of Cryptosporidium spp. and β-giardin of Giardia spp. Infectious stages of the protozoa were detected in 72.8% (206 of 283) of the water samples, with 15.2% (43 of 283) positive for Giardia duodenalis cysts, 9.5% (27 of 283) positive for Cryptosporidium spp. oocysts, and 48.1% (136 of 283) samples positive for both parasites. The most common zoonotic species found were G. duodenalis assemblages A-I, A-II, B, and E genotypes, and Cryptosporidium parvum, Cryptosporidium andersoni, Cryptosporidium hominis, and Cryptosporidium muris. These results suggest that cryptosporidiosis and giardiasis are important public health issues in northern Portugal. To the authors' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in raw water samples in the northern region of Portugal. PMID:20585525

  10. Provenance of Miocene Hinterland Basins in Ecuador: Implications for the Growth of Topographic Barriers in the Northern Andes

    Science.gov (United States)

    George, S. W. M.; Horton, B. K.; Vallejo, C.; Nogales, V.

    2017-12-01

    Establishment of the Eastern Cordillera of Ecuador as an Andean topographic barrier caused significant drainage reorganization, perhaps even as dramatic as the reversal of the Amazon River. Cenozoic growth of this barrier coincided with substantial increases in speciation rates in Andean and Amazonian environments. Situated in the Interandean Depression between the Eastern Cordillera and Western Cordillera of Ecuador, a series of well-preserved Miocene intermontane basins offer a unique opportunity to constrain the along-strike development of the flanking north-trending cordilleras as drainage divides in the Northern Andes. Here were provide detrital zircon U-Pb geochronological results for 17 samples from Ecuadorian hinterland basins (Cuenca, Giron-Santa Isabel, Nabón, Loja, and Vilcabamba), supplemented with measured sections in the Cuenca Basin, to provide insights on orogenic development of the cordilleras of Ecuador during the Miocene. In addition, we characterize the age distributions of basement units to more precisely determine sediment routing patterns through time. Detrital zircon geochronological data yields regional upsection trends throughout Miocene stratigraphic sections marked by: (1) middle Miocene deposits containing a strong syndepositional age peak, with a complementary Eocene-Oligocene peak in varying abundances, and subsidiary low-intensity Paleozoic-Proterozoic age peaks; and (2a) upper Miocene deposits maintaining similar trends to that of the middle Miocene, or (2b) upper Miocene deposits showing a dramatic shutoff of most Cenozoic populations and a switch to Paleozoic-Proterozoic sources, as seen in the Nabón and Loja basins. Syndepositional signatures reflect derivation from the magmatic arc, while varying inputs of Eocene-Oligocene zircons were derived from the Eocene-Oligocene volcanic rocks that comprise the effective basement of much of the Interandean Depression. The late Miocene shift to Paleozoic-Proterozoic sources observed in

  11. Oligocene-Miocene spreading history of the northern South Fiji Basin and implications for the evolution of the New Zealand plate boundary

    Science.gov (United States)

    Herzer, R. H.; Barker, D. H. N.; Roest, W. R.; Mortimer, N.

    2011-02-01

    A tectonic model of the evolution of the northern half of the South Fiji Basin, including the Minerva Triple Junction and Cook Fracture Zone, is developed from regional gravity, multibeam bathymetry, and a new interpretation of magnetic anomalies pinned to radiometric dates of oceanic crust in the basin. The geometry and age of a portion of the Minerva Triple Junction and the Cook-Minerva spreading center (the connection from the triple junction to the Cook Fracture Zone, which accommodated coeval opening of the Norfolk Basin), are resolved with multibeam bathymetry and magnetics. The South Fiji Basin opened from about 34 to 15 Ma in an anticlockwise sweep about an Euler pole located at the northern end of the present Lau Ridge. This rotation and a rigidly straight southeastward motion of the Three Kings Ridge were accommodated by the configuration of the triple junction changing from ridge-fault-fault to ridge-ridge-fault to ridge-ridge-ridge. During this evolution the southeastern arm of the system, the Julia Fracture Zone, underwent several transformations and the Cook-Minerva spreading center experienced repeated ridge jumps. The kinematics of the northern South Fiji Basin dictate, to a large extent, the evolution of the southern South Fiji Basin and the Norfolk Basin. This in turn leads to the interpretation of a complex trench-trench-double transform fault framework at the northern New Zealand margin, which explains most aspects of the geology, structure, and arc volcanic history of the margin and provides a radical new setting for the origin of the Northland Allochthon.

  12. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Sweetzer, Richard [Exergy Partners Corp.; Leslie, Neil [Gas Technology Institute

    2008-02-01

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  13. Asymmetrical cross-current turbidite facies tract in a structurally-confined mini-basin (Priabonian-Rupelian, Ranzano Sandstone, northern Apennines, Italy)

    NARCIS (Netherlands)

    Tinterri, R.; Laporta, M.; Ogata, K.

    2017-01-01

    This work discusses the stratigraphy and facies analysis of the Ranzano Sandstone, in the northern Apennines (Italy), a confined low-efficiency turbidite system deposited in a series of small piggy-back basins, which show strong analogies with intraslope minibasins commonly observed in divergent

  14. Origin of the tertiary red beds in the Northern part of the Duero Basin (Spain). I. Grain size, roundness, and sphericity

    NARCIS (Netherlands)

    Mabesoone, J.M.

    1961-01-01

    Red sediments of Tertiary age crop out alongside the southern border of the Cantabrian Mountains in the northern part of the Duero basin. They consist mainly of conglomerates with quartzite pebbles, sandstones, and sandy, loamy, and marly deposits, all with a deep red colour. Detailed analyses were

  15. Morphodynamics of the Kulsi River Basin in the northern front of ...

    Indian Academy of Sciences (India)

    Watinaro Imsong

    2018-02-14

    Feb 14, 2018 ... (Geographic Information System) platform. Lately, morphotectonic .... If the ks differs at segments, then the river basin is undergoing ..... segments. Very high and high ksn values in the upstream and midstream segments of the river cor- respond well with the knickpoints observed in the. Kulsi River profile ...

  16. Morphodynamics of the Kulsi River Basin in the northern front of ...

    Indian Academy of Sciences (India)

    65

    uplift and climatic variability (Seeber and Gornitz 1983; Oberlander 1985; Burbank 1992;. 22. Zhisheng et al. 2001) or controlled by plate tectonics and modified by the influence of climate. 23. (Brookfield 1998). In the northeastern sub Himalaya, fluvial geomorphological process of the. 24. Brahmaputra River Basin w.r.t ...

  17. Evaluation of uranium anomalies in the Hylas zone and northern Richmond basin, east-central Virginia

    International Nuclear Information System (INIS)

    Baillieul, T.A.; Dexter, J.J.

    1982-01-01

    Conclusions from this study are: (1) Radon values in ground water from the Hylas Zone and the adjacent Richmomd Basin are anomalous and may indicate nearby uranium-enriched source rocks. (2) Pegmatites, protomylonitic granite, and the Petersburg Granite can be good sources of uranium for ground water. The pegmatites described in this report appear to be the best source rocks because of uranium values ranging from 82 to 235 ppM eU and corresponding low values of Th as well (average Th/U = 0.18). The protomylonitic granite has an average Th/U ratio of 0.5. Ground-water samples (ranging from 70 to 270 ppB uranium) from southwest Richmond are believed to have originated from a major ground-water system at the contact of the Petersburg Granite and overlying coastal plain sediments. Thus, the Petersburg Granite may be considered a possible source of uranium available to ground water entering the Richmond Basin. (3) The Richmond Basin could host uranium deposits of the sandstone class. As mentioned above, there appears to be an adequate supply of uranium in rocks surrounding the basin. The basin environment is presently classified as unevaluated. Further work is warranted on the basis of this study. (4) Pegmatites in the Hylas Zone could be favorable for the occurrence of uranium deposits of the pegmatitic class. However, it is not known how the uranium occurs in the pegmatites, and only pegmatites exposed in the Boscobel quarry were examined. Therefore, this environment remains unevaluated. 3 figures, 4 tables

  18. Small-scale variability of seafloor features in the northern Peru Basin: Results from acoustic survey methods

    Science.gov (United States)

    Wiedicke, Michael H.; Weber, Michael E.

    1996-10-01

    During RV SONNE cruise SO-79 to the eastern Pacific Ocean, two areas of about 65×80 km in the northern Peru Basin were surveyed with the acoustic mapping systems HYDROSWEEP (bathymetry), PARASOUND (3.5 kHz high-resolution seismic system), and a deep-towed side-scan sonar system. In addition, we sampled sediments using piston and box corers. The data show an unexpected variability of seafloor features: The bathymetry is characterized by an abyssal hill topography with predominately N-S ridges up to 300 m high, and scattered volcanic hills. Moreover, one 2000-m-high seamount was mapped. PARASOUND shows several distinct reflectors within the sediment cover, all of which are attributed to carbonate-rich strata. In the northern area, the uppermost prominent reflector is related to the Mid-Brunhes Event (0.45 Ma) in the sediment cores, while the lowermost represents acoustic basement. In the southern area, the seismic pattern reveals an upper opaque zone and a lower transparent zone. The base of the opaque zone is marked by a distinct reflector which corresponds to a huge carbonate peak (6 7 Ma) in the sediment cores. However, despite this general pattern, the PARASOUND records show a highly variable situation, with the distribution of sediment echo types strongly influenced by the seafloor topography. The side-scan sonar revealed the existence of numerous small volcanic cones up to 25 m high and nearly free of sediment. Additionally, the sonar records show a patchy (up to 800 m across) seafloor reflectiviti. We interpret this patchiness as a local lack of manganese nodule coverage. Volcanic cones and the most distinct nodule-free patches are usually on ridges. We interpret this variability as caused by winnowing and erosion, an interpretation that is supported by the occurrence of outcrops of Tertiary strata. This regional small-scale variability argues for a highly dynamic depositional history of the Peru Basin.

  19. An integrated quantitative basin analysis study of the northern part of the Arctic national Wildlife Refuge, Northeastern Alaska

    Science.gov (United States)

    Yu, Z.; Lerche, Ian

    1992-06-01

    An integrated basin analysis was conducted using one- and two-dimensional quantitative dynamic models (1-D and 2-D) in the northern part of the Arctic National Wildlife Refuge (ANWR), Northeastern Alaska. Exploratory well data have been used in the reconstructions of: (1) geohistory including basement subsidence, sediment deposition, change of porosity and compaction, permeability, fluid pressure and fluid flow with time and depth; (2) thermal history including heat flux evolution with time, temperature change with time and depth, and thermal maturation history; and (3) hydrocarbon generation history including the change in the amount of hydrocarbons generated with time and depth, and determining the time and depth of peak hydrocarbon generation. 1-D and 2-D basin modeling codes were used with selected wells, and also with a 18 km section, west of ANWR, with five well controls. It is concluded that: (1) the main source rock west of ANWR area matured first about 40-30 Ma ago in the south and gradually to the north about 10-8 Ma ago on the coastal plain; (2) the modeled erosion thickness at Beli Unit-1 location, northeastern Brooks Range, was 1500-3000 m and at least 3000 m at Canning River Unit B-1; and (3) an overpressure zone within the Hue shale and the lowest part of the Canning Formation caused by rapid Tertiary deposition retained porosity, increased the temperature and speeded hydrocarbon generation in the lower part of the coastal plain.

  20. [Assessment of heavy metal pollution in surface sediments of rivers in northern area of Haihe River Basin, China].

    Science.gov (United States)

    Shang, Lin-Yuan; Sun, Ran-Hao; Wang, Zhao-Ming; Ji, Yu-He; Chen, Li-Ding

    2012-02-01

    Using Håkanson potential ecological risk index, the paper assesses heavy metal risk levels in northern parts of Haihe River basin based on 39 sampling sites. The results indicate that, the concentrations of Cu, Zn, Cd, and Cr in Haihe River basin are higher than the background values of heavy metals in China mainland, while the concentration of Pb is close to the background value in China mainland. Based on the potential ecological risk index for single heavy metal, the risk of Cu, Pb, Zn and Cr belongs to the "slight" level, while Cd has various risk levels at different sampling sites. Generally, the risk order of the heavy metals is Cd > Pb > Cu > Cr > Zn. According to Håkanson potential ecological risk index, 32 monitoring sites belong to "slight" level, 5 sampling sites belong to "middle" level, and 2 monitoring sites belong to "very strong" level. The most polluted sites are Tang River and Dashi River of Beijing, Juma River in Baoding. Therefore, these rivers should be taken more considerations in the river management.

  1. A Systematic Regional Trend in Helium Isotopes Across the NorthernBasin and Range Province, Western North America

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B. Mack; van Soest, Matthijs C.

    2005-03-22

    An extensive study of helium isotopes in fluids collectedfrom surface springs, fumaroles and wells across the northern Basin andRange Province reveals a systematic trend of decreasing 3He/4He ratiosfrom west to east. The western margin of the Basin and Range ischaracterized by mantle-like ratios (6-8 Ra) associated with active orrecently active crustal magma systems (e.g. Coso, Long Valley, Steamboat,and the Cascade volcanic complex). Moving towards the east, the ratiosdecline systematically to a background value of ~;0.1 Ra. The regionaltrend is consistent with extensive mantle melting concentrated along thewestern margin and is coincident with an east-to-west increase in themagnitude of northwest strain. The increase in shear strain enhancescrustal permeability resulting in high vertical fluid flow rates thatpreserve the high helium isotope ratios at the surface. Superimposed onthe regional trend are "helium spikes", local anomalies in the heliumisotope composition. These "spikes" reflect either local zones of mantlemelting or locally enhanced crustal permeability. In the case of theDixie Valley hydrothermal system, it appears to be a combination ofboth.

  2. Extraction and Validation of Geomorphological Features from EU-DEM in The Vicinity of the Mygdonia Basin, Northern Greece

    Science.gov (United States)

    Mouratidis, Antonios; Karadimou, Georgia; Ampatzidis, Dimitrios

    2017-12-01

    The European Union Digital Elevation Model (EU-DEM) is a relatively new, hybrid elevation product, principally based on SRTM DEM and ASTER GDEM data, but also on publically available Russian topographic maps for regions north of 60° N. More specifically, EU-DEM is a Digital Surface Model (DSM) over Europe from the Global Monitoring for Environment and Security (GMES) Reference Data Access (RDA) project - a realisation of the Copernicus (former GMES) programme, managed by the European Commission/DG Enterprise and Industry. Even if EU-DEM is indeed more reliable in terms of elevation accuracy than its constituents, it ought to be noted that it is not representative of the original elevation measurements, but is rather a secondary (mathematical) product. Therefore, for specific applications, such as those of geomorphological interest, artefacts may be induced. To this end, the purpose of this paper is to investigate the performance of EU-DEM for geomorphological applications and compare it against other available datasets, i.e. topographic maps and (almost) global DEMs such as SRTM, ASTER-GDEM and WorldDEM™. This initial investigation is carried out in Central Macedonia, Northern Greece, in the vicinity of the Mygdonia basin, which corresponds to an area of particular interest for several geoscience applications. This area has also been serving as a test site for the systematic validation of DEMs for more than a decade. Consequently, extensive elevation datasets and experience have been accumulated over the years, rendering the evaluation of new elevation products a coherent and useful exercise on a local to regional scale. In this context, relief classification, drainage basin delineation, slope and slope aspect, as well as extraction and classification of drainage network are performed and validated among the aforementioned elevation sources. The achieved results focus on qualitative and quantitative aspects of automatic geomorphological feature extraction from

  3. Subsurface images of the northern Newark basin, New York, USA and their implications for carbon sequestration

    Science.gov (United States)

    Olsen, P. E.; Withjack, M. O.; Schlische, R. W.; Goldberg, D.; Kent, D. V.; Tamulonis, K.; Couëslan, M.; Collins, D. J.

    2011-12-01

    The Triassic-Jurassic Newark rift, a large onshore sedimentary basin close to northeast US metropolitan areas, may have potential for safe geological storage of CO2 in a suitably deep formation overlain by appropriate confining units. Filled with continental synrift sedimentary rocks and CAMP (Central Atlantic Magmatic Province) basaltic intrusions and flows, the basin is bounded on the NW by the NE-striking, SE-dipping Ramapo fault. Funded by the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Carbon Sequestration Program's portion of the American Recovery and Reinvestment Act of 2009 (ARRA) and NYSERDA, the TriCarb Consortium for Carbon Sequestration acquired two seismic-reflection profiles in Rockland County, NY that were processed to obtain depth-migrated images of the basin's subsurface geometry. The E-trending dip profile crosses most of the basin, while the shorter N-trending profile provides a strike-view. Five seismic facies are present: (1) shallow continuous, closely spaced, W-dipping reflections suggestive of lacustrine deposits; (2) short, non-coherent reflections suggestive of conglomeritic fluvial strata; (3) high-amplitude parallel reflections, locally exhibiting reverse separation, suggestive of prerift early Paleozoic strata Cambro-Ordovician carbonates; (4) a facies at the bottom of both lines and the western end of the ESE-trending line that lacks reflections, suggestive of prerift metamorphic rocks such as Precambrian gneiss, and/or highly deformed Taconic (Ordovician) phyllites; and (5) a seismically transparent band commonly bounded by high-amplitude reflections that cuts across the stratigraphy of facies 1-3, suggestive of a scoop-shaped intrusive diabase sheet that projects to the surface to outcrops of the CAMP-related Palisade sill. Basin geometry is well-imaged conforming to a deeply eroded half graben. Reflections of facies 3 are truncated by facies 2 marking the angular pre-rift unconformity. Distinct

  4. Soil map, area and volume calculations in Orrmyrberget catchment basin at Gideaa, Northern Sweden

    International Nuclear Information System (INIS)

    Ittner, T.; Tammela, P.T.; Gustafsson, E.

    1991-06-01

    Fallout studies in the Gideaa study site after the Chernobyl fallout in 1986, has come to the point that a more exact surface mapping of the studied catchment basin is needed. This surface mapping is mainly made for area calculations of different soil types within the study site. The mapping focus on the surface, as the study concerns fallout redistribution and it is extended to also include materials down to a depth of 0.5 meter. Volume calculations are made for the various soil materials within the top 0.5 m. These volume and area calculations will then be used in the modelling of the migration and redistribution of the fallout radionuclides within the studied catchment basin. (au)

  5. Provenance and paleogeography of the Mesozoic strata in the Muang Xai Basin, northern Laos: petrology, whole-rock geochemistry, and U-Pb geochronology constraints

    Science.gov (United States)

    Wang, Yanlu; Wang, Licheng; Wei, Yushuai; Shen, Lijian; Chen, Ke; Yu, Xiaocan; Liu, Chenglin

    2017-06-01

    The Muang Xai Basin, located in northern Laos, is associated with the Simao, Vientiane, and Khorat Basins. The paleogeographic link of these basins has not been investigated in great detail; thus, the investigation presented in this study is a comprehensive analysis of petrology, whole-rock geochemistry, and detrital zircon U-Pb chronology used to characterize the provenance of the Muang Xai Basin. Results suggest that the sedimentary source includes felsic rocks from an active continental margin or continental arc with minor amounts of recycled passive continental margin sediments. Sandstones of the Muang Xai Basin contain detrital zircons with varying U-Pb peak ages. The youngest age peak of all the zircons is 103 Ma, which limits the age of the Mesozoic strata to the Late Cretaceous. Detrital zircon U-Pb and trace element data, combined with geochemical result, reveal that the pre-Ordovician zircons were derived from recycled sediments of the Yangtze Block, which are originally sourced from the Qinling Orogenic belt. This provenance is shared with coeval sediments in the Simao and Khorat Basins, while magmatic rocks of the Ailaoshan, Truong Son Belt, and Lincang terrane are responsible for zircons of 416-466 and 219-308 Ma in age. Zircons of 101-110 and 149-175 Ma in age were sourced from magmatic rocks of the southwestern South China Block and northern Vietnam. These provenance results suggest that sediments flow into the Khorat red beds was likely from the Great Simao Basin and northern Vietnam, and not directly from the Yangtze Block.

  6. Water resources: the prerequisite for ecological restoration of rivers in the Hai River Basin, northern China.

    Science.gov (United States)

    Tang, Wenzhong; Mao, Zhanpo; Zhang, Hong; Shan, Baoqing; Zhao, Yu; Ding, Yuekui

    2015-01-01

    The competition for water resources between humans and river ecosystems is becoming ever more intense worldwide, especially in developing countries. In China, with rapid socioeconomic development, water resources to maintain river ecosystems are progressively decreasing, especially in the Hai River Basin (HRB), which has attracted much attention from the Chinese government. In the past 56 years, water resources have continuously decreased in the basin, such that there is 54.2 % less surface water now compared with then. Water shortages, mainly due to local anthropogenic activities, have emerged as the main limiting factor to river ecological restoration in the HRB. However, the South-to-North Water Diversion Project, the largest such project in the world, presents a good opportunity for ecological restoration of rivers in this basin. Water diverted from the Danjiangkou Reservoir will restore surface water resources in the HRB to levels of 30 years ago and will amount to more than 20 billion m(3). Our findings highlight the fact that water resources are crucial for river ecological restoration.

  7. Heavy metal accumulation by periphyton is related to eutrophication in the Hai River Basin, Northern China.

    Directory of Open Access Journals (Sweden)

    Wenzhong Tang

    Full Text Available The Hai River Basin (HRB is one of the most polluted river basins in China. The basin suffers from various types of pollutants including heavy metals and nutrients due to a high population density and rapid economic development in this area. We assessed the relationship between heavy metal accumulation by periphyton playing an important role in fluvial food webs and eutrophication in the HRB. The concentrations of the unicellular diatoms (type A, filamentous algae with diatoms (type B, and filamentous algae (type C varied along the river, with type A dominating upstream, and types B then C increasing in concentration further downstream, and this was consistent with changes in the trophic status of the river. The mean heavy metal concentrations in the type A, B and C organisms were Cr: 18, 18 and 24 mg/kg, respectively, Ni: 9.2, 10 and 12 mg/kg, respectively, Cu: 8.4, 19 and 29 mg/kg, respectively, and Pb: 11, 9.8 and 7.1 mg/kg respectively. The bioconcentration factors showed that the abilities of the organisms to accumulate Cr, Ni and Pb decreased in the order type A, type B, then type C, but their abilities to accumulate Cu increased in that order. The Ni concentration was a good predictor of Cr, Cu and Pb accumulation by all three periphyton types. Our study shows that heavy metal accumulation by periphyton is associated with eutrophication in the rivers in the HRB.

  8. The Evolution of the Hydrogeologic System in the Taipei Basin, Northern Taiwan

    Science.gov (United States)

    Lin, M.; Chia, Y.

    2011-12-01

    Taipei basin is the largest metropolitain area in Taiwan, and thus the change of its hydrogeologic system is closely associated with the economic development of the urban area. In this study, we integrated the core data and groundwater level data to construct the hydrogeologic framework of the Taipei basin. Then the long-term elevation data and groundwater data were analyzed to understand the impact of urban development on the hydrogeologic system. By analyzing the long-term change of groundwater level in the Taipei basin, we found two groups of wells with a different range of water level and pattern of water level variation. The first group of wells is relatively shallow. Their hydraulic heads fluctuated between 0 and 5m. Generally the water level is rarely affected by pumping, but sensitive to the rainfall. These wells were placed in sand layers of the Songshan formation. However, the second group of wells, where the hydraulic head ranges from -40m to 0m, is relatively deep. They were installed in the Jingmei formation and Wugu formation. Pumping activities have significantly influenced the change in groundwater level. For these reasons, we proposed two hydrogeologic units in the Taipei basin. One is the Songshan aquifer characterized by interbeded local aquifer and aquitard. The other is the Taipei aquifer which combines the lower Songshan formation, Jingmei formation, and Wugu formation. Extensive pumping from the Taipei aquifer has caused serious land subsidence since the rapid expansion of the urban area in 1950s. The cumulative amount of settlement in the Taipei basin is about 2.2 m by 1983. The subsidence appeared to be inelastic with little recovery. The groundwater level has declined approximately 50 m by 1976. The decline was followed by a rapid recovery in the Taipei aquifer starting from late 1970s. In the past two decades, however, small subsidence ranging from 3~5 cm have been induced by the extensive pumping during the construction of Metro system

  9. Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands

    DEFF Research Database (Denmark)

    Karg, Sabine

    Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands.......Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands....

  10. South China connected to north India in Gondwana: sedimentary basin and detrital provenance analyses

    Science.gov (United States)

    Yao, W.; Li, Z. X.; Li, W. X.; Li, X. H.; Yang, J. H.

    2015-12-01

    The paleoposition of South China during the Ediacaran-Silurian is important for understanding the assembly of Gondwana. We report here the tectonostratigraphic evolution of the Ediacaran-Silurian Nanhua foreland basin in South China, and discuss South China's connection with Gondwana and potential tectonic triggers for both the Wuyi-Yunkai orogeny in South China and the Bhimphedian orogeny in north India. The Nanhua basin was involved in a three-stage evolution, which are: Stage 1 (the Ediacaran-Cambrian) recording the start of tectonic subsidence with turbiditic marine clastic deposition, fed by exotic orogens outboard South China; Stage 2 (the Ordovician to earliest-Silurian) featured by migrating depocentres with dominant shallow marine to deltaic clastic deposition, fed by the local Wuyi-Yunkai orogen; and Stage 3 (the Silurian) showing the arrival of depocentre in the Yangtze Block during the waning stage of the Wuyi-Yunkai orogeny with deltaic deposition in the remanent foreland basin. Detrital zircon analyses of the Ediacaran-Silurian sandstones across the Nanhua basin reveal a prominent age population of 1100-900 Ma (with a peak age at ~980 Ma) and moderate populations of Archean-Paleozoic ages, grossly matching that of crystalline and sedimentary rocks in northern India. Zircon isotopes of the Stage 1 samples suggest three Precambrian episodes of juvenile crustal growth at 3.0 Ga, 2.5 Ga and 1.0 Ga, and a major crustal reworking at 580-500 Ma for the source areas, which are constraint to be northwestern India and its surrounding orogens. Together with other evidence, we propose that South China likely collided with northwestern India during the Gondwana assembly, generated the Bhimphedian orogeny in north India and formed two foreland basins on both the north India and South China sides. Far-field stress of the collision triggered the Ordovician-Silurian Wuyi-Yunkai orogeny in South China. The Stage 2-3 samples in the Nanhua basin of South China were shed

  11. The Research of Tectonic Framework and the Fault Activity in Large Detachment Basin System on Northern Margin of South China Sea

    Science.gov (United States)

    Pan, L., Sr.; Ren, J.

    2017-12-01

    The South China Sea (SCS) is one of the largest marginal sea on southeast Asia continental margin, developed Paleogene extension-rifting continental margin system which is rare in the world and preserving many deformed characterizes of this kind system. With the investigation of the SCS, guiding by the development of tectonics and geo-physics, especially the development of tectonics and the high quality seismic data based on the development of geo-physics, people gradually accept that the northern margin of the SCS has some detachment basin characterizes. After researching the northern margin of the SCS, we come up with lithosphere profiles across the shelf, slope and deep sea basin in the northeast of the SCS to confirm the tectonic style of ocean-continental transition and the property of the detachment fault. Furthermore, we describe the outline of large detachment basins at northern SCS. Based on the large number of high-quality 2D and 3D deep seismic profile(TWT,10s), drilling and logging data, combined with domestic and international relevant researches, using basin dynamics and tectono-stratigraphy theory, techniques and methods of geology and geophysics, qualitative and quantitative, we describe the formation of the detachment basin and calculate the fault activity rate, stretching factor and settlement. According to the research, we propose that there is a giant and complete detachment basin system in the northern SCS and suggest three conclusions. First of all, the detachment basin system can be divided into three domains: proximal domain covering the Yangjiang Sag, Shenhu uplift and part of Shunde Sag, necking zone covering part of the Shunde Sag and Heshan Sag, distal domain covering most part of Heshan Sag. Second, the difference of the stretching factor is observed along the three domains of the detachment basin system. The factor of the proximal domain is the minimum among them. On the other side, the distal domain is the maximum among them. This

  12. CLIMATE CHANGE IN NORTHERN AFRICA: TOWARDS A RETURN OF RAINFALL ON THE SOUTHERN MEDITERRANEAN BASIN

    Directory of Open Access Journals (Sweden)

    NOUACEUR ZEINEDDINE

    2014-03-01

    Full Text Available To determine to what extent climate change affects the rainfall recorded on the southern Mediterranean basin, a trend analysis is proposed. This study is based on the chronological graphic method of processing information (MGCTI of type "Matrice Bertin". Results show an extreme variability of the precipitations and a severe drought, especially for Morocco, observed since 1970s. Finally, a gradual return to humid conditions is observed from the beginning of the 2000s in Algeria and Tunisia and since 2008 in Morocco. This new trend is also confirmed by recent results provided by agricultural data of 2011/2012 and 2012/2013.

  13. Evolution of the Rodgers Creek–Maacama right-lateral fault system and associated basins east of the northward-migrating Mendocino Triple Junction, northern California

    Science.gov (United States)

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Wagner, David L.; Fleck, Robert J.; Langenheim, V.E.; Jachens, Robert C.; Clahan, Kevin; Allen, James R.

    2012-01-01

    The Rodgers Creek–Maacama fault system in the northern California Coast Ranges (United States) takes up substantial right-lateral motion within the wide transform boundary between the Pacific and North American plates, over a slab window that has opened northward beneath the Coast Ranges. The fault system evolved in several right steps and splays preceded and accompanied by extension, volcanism, and strike-slip basin development. Fault and basin geometries have changed with time, in places with younger basins and faults overprinting older structures. Along-strike and successional changes in fault and basin geometry at the southern end of the fault system probably are adjustments to frequent fault zone reorganizations in response to Mendocino Triple Junction migration and northward transit of a major releasing bend in the northern San Andreas fault. The earliest Rodgers Creek fault zone displacement is interpreted to have occurred ca. 7 Ma along extensional basin-forming faults that splayed northwest from a west-northwest proto-Hayward fault zone, opening a transtensional basin west of Santa Rosa. After ca. 5 Ma, the early transtensional basin was compressed and extensional faults were reactivated as thrusts that uplifted the northeast side of the basin. After ca. 2.78 Ma, the Rodgers Creek fault zone again splayed from the earlier extensional and thrust faults to steeper dipping faults with more north-northwest orientations. In conjunction with the changes in orientation and slip mode, the Rodgers Creek fault zone dextral slip rate increased from ∼2–4 mm/yr 7–3 Ma, to 5–8 mm/yr after 3 Ma. The Maacama fault zone is shown from several data sets to have initiated ca. 3.2 Ma and has slipped right-laterally at ∼5–8 mm/yr since its initiation. The initial Maacama fault zone splayed northeastward from the south end of the Rodgers Creek fault zone, accompanied by the opening of several strike-slip basins, some of which were later uplifted and compressed

  14. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China.

    Science.gov (United States)

    Li, Junxia; Wang, Yanxin; Xie, Xianjun; Zhang, Liping; Guo, Wei

    2013-04-01

    High iodine concentrations in groundwater have seldom been reported and there have been few systematic studies on high iodine groundwater worldwide. To better understand the sources and processes responsible for iodine enrichment in the groundwater of the Datong Basin, the hydrochemical characteristics of groundwater and geochemical features of aquifer sediments were studied. High iodine groundwater mainly occurs in the center of the Datong Basin with iodine concentrations ranging between 3.31 and 1890 μg L(-1). Most samples with iodine concentrations higher than 500 μg L(-1) are from wells with depths between 75 and 120 m. High pH and a reducing environment are favorable for iodine enrichment in the groundwater, with iodide as the dominant species that accounts for 63.2-99.3% of the total iodine. Sediment samples from a borehole specifically drilled for this study contain 0.18-1.46 mg kg(-1) iodine that is moderately correlated with total organic carbon (TOC). The results of sequential extraction experiments show that iodine is mostly bound to iron oxyhydroxides and organic matter in the sediments. The mobilization processes of iodine are proposed to include reductive dissolution of iron oxyhydroxides and transformations among iodide, iodate and organic iodine driven by microbial activities under alkaline and reducing conditions.

  15. Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan

    Directory of Open Access Journals (Sweden)

    A. A. Tahir

    2011-07-01

    Full Text Available A major proportion of flow in the Indus River is contributed by its snow- and glacier-fed river catchments situated in the Himalaya, Karakoram and Hindukush ranges. It is therefore essential to understand the cryosphere dynamics in this area for water resource management. The MODIS MOD10A2 remote-sensing database of snow cover products from March 2000 to December 2009 was selected to analyse the snow cover changes in the Hunza River basin (the snow- and glacier-fed sub-catchment of the Indus River. A database of daily flows for the Hunza River at Dainyor Bridge over a period of 40 yr and climate data (precipitation and temperature for 10 yr from three meteorological stations within the catchment was made available to investigate the hydrological regime in the area. Analysis of remotely sensed cryosphere (snow and ice cover data during the last decade (2000–2009 suggest a rather slight expansion of cryosphere in the area in contrast to most of the regions in the world where glaciers are melting rapidly. This increase in snow cover may be the result of an increase in winter precipitation caused by westerly circulation. The impact of global warming is not effective because a large part of the basin area lies under high altitudes where the temperature remains negative throughout most of the year.

  16. Miocene–Pliocene planktonic foraminiferal biostratigraphy of the Pearl River Mouth Basin, northern South China Sea

    Directory of Open Access Journals (Sweden)

    Liu Chunlian

    2012-07-01

    Full Text Available The present study deals with the planktonic foraminiferal biostratigraphy of the Miocene–Pliocene sequence of three petroleum exploration wells (BY7-1-1, KP6-1-1 and KP9-1-1 in the Pearl River Mouth Basin (PRMB. In general, the three wells contain a fairly well-preserved, abundant foraminiferal fauna. The proposed planktonic foraminiferal zonation follows the scheme updated by Wade et al. (2011. Nineteen planktonic foraminiferal zones have been recognized, 14 zones (zones M1–M14 for the Miocene and 5 zones (zones PL1–PL5 for the Pliocene. The zonation is correlated with previously published biostratigraphic subdivisions of the Neogene succession in the PRMB and with international foraminiferal zonations. The zonal boundaries are mostly defined by the last appearance datum of zonal taxa of planktonic foraminifera, which is more reliable than the FAD (first appearance datum events for ditch cutting sampling. Changes in the coiling of Globorotalia menardii (s. l. are also used to define the zonal boundaries, where no LADs (last appearance datum are available. The Fohsella fohsi group, comprising useful taxa for delimiting zonal boundaries of the middle Miocene in other areas, has a poor record within the Pearl River Mouth Basin due to unfavorable ecological conditions, and cannot be used for the studied wells. Different from the previously reported zonal scheme for the PRMB, the present zonation is based on correlation with the current standard planktonic foraminiferal zonation, with calibrated absolute ages.

  17. Late Permian non-marine-marine transitional profiles in the central Southern Permian Basin, northern Germany

    Science.gov (United States)

    Legler, B.; Gebhardt, U.; Schneider, J. W.

    2005-12-01

    The transition from Rotliegend to Zechstein within the Southern Permian Basin is one from continental desert to a marine environment. During the Upper Rotliegend II a huge playa lake existed there. This lake was temporarily influenced by precursors of the Zechstein transgression. Therefore the mega-playa evolved into a sabkha system. One of these early marine ingressions is known from an outcrop in Schleswig-Holstein. Laminated silt- and claystones, deposited within a standing water body, are intercalated in siltstones of a salt-flat environment. The lake sediments are characterised by high frequency cyclicity, shown by the sedimentary record and also by palaeontological data. The section contains fresh water as well as brackish-marine and marine fauna. Climatically forced cycles interact with marine incursions. After the Zechstein transgression had flooded the basin completely, sedimentation was controlled by sea-level fluctuations. Two sections, in the southern North Sea and in Schleswig-Holstein, are presented in this paper. Cyclicities with different frequencies controlled the sedimentation of the Kupferschiefer (T1) and the Werra Carbonate (Ca1). Sediments of the North Sea sequence were deposited within a shallow bay at the margin of an elevation. Therefore, the high frequency cyclicity became obvious within the sedimentary patterns and in the faunal content.

  18. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    Science.gov (United States)

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in

  19. Tectonics and paleogeography of the Marajó Basin, northern Brazil

    Directory of Open Access Journals (Sweden)

    JOÃO B. S. COSTA

    2002-09-01

    Full Text Available The Marajó Basin area presents geologic and geomorphologic features chiefly due to the Mesozoic extension and post-Miocene neotectonics. The extension event with an Early and a Late Cretaceous phases originated four sub-basins that constitutes the Marajó Basin, with a thick continental clastic sequence showing marine influence. NW and NNW normal faults and NE and ENE strike-slip faults controlled the basin geometry. The extension, related to the Equatorial Atlantic opening, propagated into the continent along crustal weakness zones of the Precambrian Tumucumaque, Amapá and Araguaia orogenic belts. The neotectonic event is a strike-slip regime which developed transtensional basins filled in by Upper Tertiary shallow marine (Pirabas Formation and transitional sequences (Barreiras Group, followed by Quaternary fluvial deposits and transitional sequences derived from the Amazon and Tocantins rivers and the Marajoara estuary. The current landscape has a typical estuarine morphology. The coast morphology presents sea-cliffs on transitional Upper Tertiary sequences, while inwards dominate hills sustained by Mid-Pleistocene lateritic crust, with a flat erosive surface at 70 m. In the eastern Marajó Island several generations of paleochannels associated with fluvial-estuarine sequences are recognized, while a fluvial-marine plain is widespread on its western side.A área da Bacia do Marajó apresenta feições geológicas e geomorfológicas devidas principamente à distensão Mesozóica e à neotectônica pós-miocênica. O evento de distensão, com fases do Cretáceo Inferior e Superior, originou quatro sub-bacias que contituem a Bacia do Marajó, com uma espessa seqüência clástica continental mostrando influência marinha. Falhas normais NW e NNW e direcionais NE e ENE controlaram a geometria da bacia. A distensão, relacionada com a abertura do Atlântico Equatorial, propagou-se continente adentro ao longo de zonas de fraqueza crustal dos

  20. Assessment of undiscovered conventional oil and gas resources, onshore Claiborne Group, United Statespart of the northern Gulf of Mexico Basin

    Science.gov (United States)

    Hackley, P.C.; Ewing, T.E.

    2010-01-01

    The middle Eocene Claiborne Group was assessed for undiscovered conventional hydrocarbon resources using established U.S. Geological Survey assessment methodology. This work was conducted as part of a 2007 assessment of Paleogene-Neogene strata of the northern Gulf of Mexico Basin, including the United States onshore and state waters (Dubiel et al., 2007). The assessed area is within the Upper Jurassic-CretaceousTertiary composite total petroleum system, which was defined for the assessment. Source rocks for Claiborne oil accumulations are interpreted to be organic-rich, downdip, shaley facies of the Wilcox Group and the Sparta Sand of the Claiborne Group; gas accumulations may have originated from multiple sources, including the Jurassic Smackover Formation and the Haynesville and Bossier shales, the Cretaceous Eagle Ford and Pearsall (?) formations, and the Paleogene Wilcox Group and Sparta Sand. Hydrocarbon generation in the basin started prior to deposition of Claiborne sediments and is currently ongoing. Primary reservoir sandstones in the Claiborne Group include, from oldest to youngest, the Queen City Sand, Cook Mountain Formation, Sparta Sand, Yegua Formation, and the laterally equivalent Cockfield Formation. A geologic model, supported by spatial analysis of petroleum geology data, including discovered reservoir depths, thicknesses, temperatures, porosities, permeabilities, and pressures, was used to divide the Claiborne Group into seven assessment units (AUs) with three distinctive structural and depositional settings. The three structural and depositional settings are (1) stable shelf, (2) expanded fault zone, and (3) slope and basin floor; the seven AUs are (1) lower Claiborne stable-shelf gas and oil, (2) lower Claiborne expanded fault-zone gas, (3) lower Claiborne slope and basin-floor gas, (4) lower Claiborne Cane River, (5) upper Claiborne stable-shelf gas and oil, (6) upper Claiborne expanded fault-zone gas, and (7) upper Claiborne slope and basin

  1. Sedimentological and geochronological evidences of anthropogenic impacts on river basins in the Northern Latium coastal area (Italy)

    Science.gov (United States)

    Piazzolla, Daniele; Paladini de Mendoza, Francesco; Scanu, Sergio; Marcelli, Marco

    2015-04-01

    In this work we aimed to compare sedimentological and geochronological data from three sediment core samples (MIG50, MRT50, and GRT50) taken in the Northern Latium (Italy) coastal area, at -50 m depth, to data regarding rainfall, river flows and the land use in the three most important hydrographic basins (Mignone, Marta and Fiora) and in the coastal area. Different trends of sediment mass accumulation rate (MAR) are detected in the three cores: a strongly increasing trend was identified in MIG50 and MRT50 cores while GRT50 doesn't show significant variation. Data from the sedimentological analysis of GRT50 core identify a progressive decrease in the sandy component, which declined from about 30% to the current level of 7% over the last 36 years, while MRT50 and MIG50 cores (mainly composed by pelitic fraction > 95%) showed slight variations of textural ratio between silt and clay. According to the general decrease of pluviometric trend observed in Italy, related to teleconnection pattern tendency (NAO), the statistical analysis of rain identified significative decrease only in the Fiora river basin, whereas in the other two locations the decrease was not as significant. Regarding the Fiora river flow, a significative decreasing trend of average flow is detected, while the flood regime remained unaffected over the past 30 years. The analysis of the land use shows that the human activities are increased of 6-10% over the available time steps (1990 - 2006) in Fiora and Mignone river basins, while the Marta river basin has a strong human impact since 1990 highligting more than 80% of artificial soil covering. The largest variation is observed on the Fiora basin (10%) where the antrhopic activities have expanded to an area of about 85 Km2. Moreover, in the last ten years a large beach nourishment in 2004 (570000 m3) and dredging activities in the early second half of 2000s (1000000 m3 moved) were performed in Marina di Tarquinia beach and in front of the Torrevaldaliga

  2. Post-rift magmatism in the Pearl River Mouth Basin, northern South China Sea

    Science.gov (United States)

    Xu, H.; Zhao, F.; Xia, S.; Sun, J.; Fan, C.

    2017-12-01

    Multi-beam, 2D seismic reflection and borehole data reveal that post-rift magmatism are widespread in the northern margin of South China Sea. A large-scale volcanic complex was identified at water depths of 500 to 3000 m, covering an area of ca. 8000 km2. This volcanic complex includes seamounts, igneous sills, dykes and intruded volcanic bodies. Combining data from exploration wells BY7-1 and BY2 with published seismic stratigraphic data, we can highlight multiple extrusive events from the Early Oligocene to Early Miocene, reflecting progressive continental breakup in the South China Sea. Most intruded magma through the continental crust also uplifted sediments up to the T6 unconformity. Given the evidence in this work that Early Miocene magmatic bodies were developed above or along faults, we suggest that post-rift magmatism in the northern margin of the South China Sea was largely controlled by the faults. Reactivation events in the faults are suggested to have generated preferential vertical pathways for the ascent of magma within a context of progressive continental breakup and thinned continental crust, as the South China Sea was being formed.

  3. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Jacobi; John Fountain

    2001-02-28

    In the structure task, we completed a N-S transect east of Seneca Lake that indicated a N-striking fault near the southeastern shore of Seneca Lake, and also indicated NE and ENE-trending FIDs and faults north of Valois. The orientation and existence of the NE-striking FIDs and faults are thought to be controlled by basement faults, rather than thrust ramps above the Salina salt controlled only by a far-field Alleghanian stress field. Structure contour maps based on well log analyses have been constructed but not interpreted. Soil gas data displayed a number of ethane-charged soil gas ''spikes'' on a N-S transect from Ovid south to near Valois. The soil gas team found a larger number of spikes in the northern half of the survey, suggesting more open fractures (and faults) in the northern half of the survey. Seismic data has been purchased and reprocessed. Several grabens observed in the Trenton reflector are consistent with surface structure, soil gas, and aeromagnetic anomalies. The aeromagnetic survey is completed and the data is processed. Prominent magnetic anomalies suggest that faults in the Precambrian basement are located beneath regions where grabens in the Trenton are located.

  4. Early Neogene foreland of the Zagros, implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening

    Science.gov (United States)

    Pirouz, Mortaza; Avouac, Jean-Philippe; Hassanzadeh, Jamshid; Kirschvink, Joseph L.; Bahroudi, Abbas

    2017-11-01

    We study the transition from passive margin to foreland basin sedimentation now exposed in the High Zagros belt to provide chronological constraints on the initial stage of Arabia-Eurasia collision and closure of the Neo-Tethys. We performed magnetostratigraphy and strontium isotope stratigraphy along two sections near the Zagros suture which expose the oldest preserved foreland deposits: the Shalamzar section in the west and the Dehmoord section in the east. The top of the passive margin Asmari formation has an age of 28-29 Ma in the High Zagros and is overlain by foreland deposits with a major basal unconformity representing 7 Myr of hiatus. The base of the foreland deposits has an age of 21.5 Ma at Dehmoord and ca. 26 Ma at Shalamzar. The sedimentation rate increased from 30 m/Myr in the passive margin to 247 m/Myr in the foreland. Combined with available age constraints across the Zagros, our results show that the unconformity is diachronous and records the southwestward migration of the flexural bulge within the Arabian plate at an average rate of 24 ± 2 mm/yr over the last 27 Ma. The time evolution of sediment accumulation in the Zagros foreland follows the prediction from a flexural model, as the foreland is thrust beneath the orogenic wedge and loaded by the wedge and basin fill. We detect the onset of forebulge formation within the Asmari Formation around 25 Ma. We conclude that closure of the Neo-Tethys formed the Zagros collisional wedge at 27 ± 2 Ma. Hence, the Arabia-Eurasia collision was probably not the main driver of global cooling which started near the Eocene-Oligocene boundary (ca. 33.7 Ma). We estimate 650 km of forebulge migration since the onset of the collision which consists of 350 km of shortening across the orogen, and 300 km of widening of the wedge and increasing flexural rigidity of Arabia. We conclude the average rate of shortening across the Zagros to be ca. 13 mm/yr over the last 27 Myr; a value comparable to the modern rate

  5. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Kunfu; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Xie, Xianjun, E-mail: xjxie@cug.edu.cn; Su, Chunli; Ma, Teng; Li, Junxia; Liu, Yaqing

    2015-12-30

    Highlights: • Co-mobilization of As, F and I was identified at Datong Basin. • Both As and I are released via reductive dissolution of Fe minerals. • Some amounts of As and I may be sequestered by FeS precipitates. • Intensive evaporation promotes retention of As but mobilization of F and I. - Abstract: Abnormal levels of co-occurring arsenic (As), fluorine (F) and iodine (I) in groundwater at Datong Basin, northern China are geochemically unique. Hydrochemical, {sup 18}O and {sup 2}H characteristics of groundwater were analyzed to elucidate their mobilization processes. Aqueous As, F and I ranged from 5.6 to 2680 μg/L, 0.40 to 3.32 mg/L and 10.1 to 186 μg/L, respectively. High As, F and I groundwater was characterized by moderately alkaline, high HCO{sub 3}{sup −}, Fe(II), HS{sup −} and DOC concentrations with H{sub 3}AsO{sub 3}, F{sup −} and I{sup −} as the dominant species. The plots of δ{sup 18}O values and Cl/Br ratios versus Cl{sup −} concentration demonstrate build-up of more oxidizing conditions and precipitation of carbonate minerals induced by vertical recharge and intensive evaporation facilitate As retention to Fe (hydr) oxides, but enhance F and I mobilization from host minerals. Under reducing conditions, As and I can be simultaneously released via reductive dissolution of Fe (hydr) oxides and reduction of As(V) and I(V) while F migration may be retarded due to effects of dissolution-precipitation equilibria between carbonate minerals and fluorite. With the prevalence of sulfate-reducing condition and lowering of HCO{sub 3}{sup −} concentration, As and I may be sequestered by Fe(II) sulfides and F is retained to fluorite and on clay mineral surfaces.

  6. Local climate change induced by groundwater overexploitation in a high Andean arid watershed, Laguna Lagunillas basin, northern Chile

    Science.gov (United States)

    Scheihing, Konstantin; Tröger, Uwe

    2017-08-01

    The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to -25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to 15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3-8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of 2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of 10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2-3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.

  7. Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China

    Directory of Open Access Journals (Sweden)

    Shan-hu Jiang

    2010-12-01

    Full Text Available Three high-resolution satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM standard precipitation products 3B42V6 and 3B42RT and the Climate Precipitation Center's (CPC morphing technique precipitation product (CMORPH, were evaluated against surface rain gauge observations from the Laohahe Basin in northern China. Widely used statistical validation indices and categorical statistics were adopted. The evaluations were performed at multiple time scales, ranging from daily to yearly, for the years from 2003 to 2008. The results show that all three satellite precipitation products perform very well in detecting the occurrence of precipitation events, but there are some different biases in the amount of precipitation. 3B42V6, which has a bias of 21%, fits best with the surface rain gauge observations at both daily and monthly scales, while the biases of 3B42RT and CMORPH, with values of 81% and 67%, respectively, are much higher than a normal receivable threshold. The quality of the satellite precipitation products also shows monthly and yearly variation: 3B42RT has a large positive bias in the cold season from September to April, while CMORPH has a large positive bias in the warm season from May to August, and they all attained their best values in 2006 (with 10%, 50%, and −5% biases for 3B42V6, 3B42RT, and CMORPH, respectively. Our evaluation shows that, for the Laohahe Basin, 3B42V6 has the best correspondence with the surface observations, and CMORPH performs much better than 3B42RT. The large errors of 3B42RT and CMORPH remind us of the need for new improvements to satellite precipitation retrieval algorithms or feasible bias adjusting methods.

  8. Studying Petrophysical and Geomechanical Properties of Utica Point-Pleasant Shale and its Variations Across the Northern Appalachian Basin

    Science.gov (United States)

    Raziperchikolaee, S.; Kelley, M. E.; Burchwell, A.

    2017-12-01

    Understanding petrophysical and geomechanical parameters of shale formations and their variations across the basin are necessary to optimize the design of a hydraulic fracturing program aimed at enhancing long term oil/gas production from unconventional wells. Dipole sonic logging data (compressional-wave and shear-wave slowness) from multiple wells across the study area, coupled with formation bulk density log data, were used to calculate dynamic elastic parameters, including shear modulus, bulk modulus, Poisson's ratio, and Young's modulus for the shale formations. The individual-well data were aggregated into a single histogram for each parameter to gain an understanding of the variation in the properties (including brittleness) of the Utica Point-Pleasant formations across the entire study area. A crossplot of the compressional velocity and bulk density and a crossplot between the compressional velocity, the shear velocity, and depth of the measurement were used for a high level petrophysical characterization of the Utica Point-Pleasant. Detailed interpretation of drilling induced fractures recorded in image logs, and an analysis of shear wave anisotropy using multi-receiver sonic logs were also performed. Orientation of drilling induced fractures was measured to determine the maximum horizontal stress azimuth. Also, an analysis of shear wave anisotropy to predict stress anisotropy around the wellbore was performed to determine the direction of maximum horizontal stress. Our study shows how the detailed interpretation of borehole breakouts, drilling induced fractures, and sonic wave data can be used to reduce uncertainty and produce a better hydraulic fracturing design in the Utica Point Pleasant formations across the northern Appalachian Basin region of Ohio.

  9. Hydrological Responses to Various Land Use, Soil and Weather Inputs in Northern Lake Erie Basin in Canada

    Directory of Open Access Journals (Sweden)

    Prasad Daggupati

    2018-02-01

    Full Text Available In the last decade, Lake Erie, one of the great lakes bordering Canada and the USA has been under serious threat due to increased phosphorus levels originating from agricultural fields. Large scale watersheds contributing to Lake Erie from the USA side are being simulated using hydrological and water quality (H/WQ models such as the Soil and Water Assessment Tool (SWAT and the results from the model are being used by policy and decision makers to implement better management decisions to solve emerging phosphorus issues. On the Canadian side, modeling applications are limited to either small watersheds or one major watershed contributing to Lake Erie. To the best of our knowledge, no efforts have been made to model the entire contributing watersheds to Lake Erie from Canada. This study applied the SWAT model for Northern Lake Erie Basin (NLEB; entire contributing basin to Lake Erie. Various provincial, national and global inputs of weather, land use and soil at various resolutions was assessed to evaluate the effects of input data types on the simulation of hydrological processes and streamflows. Twelve scenarios were developed using the input combinations and selected scenarios were evaluated at selected locations along the Grand and Thames Rivers using model performance statistics, and graphical comparisons of time variable plots and flow duration curves (FDCs. In addition, various hydrological components such as surface runoff, water yield, and evapotranspiration were also evaluated. Global level coarse resolution weather and soil did not perform better compared to fine resolution national data. Interestingly, in the case of land use, global and national/provincial land use were close, however, fine resolution provincial data performed slightly better. This study found that interpolated weather data from Environment Canada climate station observations performed slightly better compared to the measured data and therefore could be a good choice

  10. Local climate change induced by groundwater overexploitation in a high Andean arid watershed, Laguna Lagunillas basin, northern Chile

    Science.gov (United States)

    Scheihing, Konstantin; Tröger, Uwe

    2018-05-01

    The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to -25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to 15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3-8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of 2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of 10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2-3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.

  11. Paleoproterozoic basin development and sedimentation in the Lake Superior region, North America

    Science.gov (United States)

    Ojakangas, R.W.; Morey, G.B.; Southwick, D.L.

    2001-01-01

    The peneplaned Archean craton in the Lake Superior region was the platform upon which a continental margin assemblage was deposited. Extension resulted in localized rifts that received thicker accumulations of sediments and volcanic rocks than did adjacent parts of the platform. Seas transgressed onto the continent several times and an ocean basin opened south of the present-day Lake Superior. Island arcs that formed during subduction collided with the craton margin as the ocean basin closed; oceanic crust is poorly preserved as a dismembered ophiolite sequence. The arc volcanics are preserved as the Wisconsin magmatic terranes. The collision resulted in a fold-and-thrust belt known as the Penokean orogen. To the north of the fold-and-thrust belt, a northward-migrating foreland basin - the Animikie basin - developed. Thick turbidite successions were deposited along the basin axis, and terrigenous clastics and Lake Superior-type iron-formation were deposited on the shelf along the northern margin of the basin. The primary paleoclimatic indicators are: (1) glaciogenic rocks at the base of the Paleoproterozoic succession in Michigan indicating ice-house conditions; 2) remnants of a paleosol on the glaciogenic rocks indicative of deep weathering, probably under subtropical conditions and therefore of greenhouse conditions; and (3) carbonate minerals after gypsum, halite, and anhydrite in stromatolitic dolomite, indicative of aridity. Three second-order depositional sequences are bounded by major unconformities, and can be correlated throughout the Lake Superior region. ?? 2001 Elsevier Science B.V. All rights reserved.

  12. Two new species of Pseudancistrus (Siluriformes, Loricariidae from the Amazon basin, northern Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel da Costa e Silva

    2015-02-01

    Full Text Available Two new species of Pseudancistrus, a genus diagnosed by non-evertible cheek plates and hypertrophied odontodes along the snout margin, are described from two drainages of the Brazilian Shield: P. kayabi from the rio Teles Pires (rio Tapajós basin and P. asurini from the rio Xingu. The new species are distinguished from congeners (P. barbatus, P. corantijniensis, P. depressus, P. nigrescens, P. reus, and P. zawadzkii by the coloration pattern. Pseudancistrus kayabi has dark bars on the dorsal and caudal fins which are similar to that of P. reus from the Caroní River, Venezuela. Pseudancistrus asurini is unique among Pseudancistrus in having whitish tips of the dorsal and caudal fins in juveniles to medium-sized adults.

  13. Seismic reflection-based evidence of a transfer zone between the Wagner and Consag basins: implications for defining the structural geometry of the northern Gulf of California

    Science.gov (United States)

    González-Escobar, Mario; Suárez-Vidal, Francisco; Hernández-Pérez, José Antonio; Martín-Barajas, Arturo

    2010-12-01

    This study examines the structural characteristics of the northern Gulf of California by processing and interpreting ca. 415 km of two-dimensional multi-channel seismic reflection lines (data property of Petróleos Mexicanos PEMEX) collected in the vicinity of the border between the Wagner and Consag basins. The two basins appear to be a link between the Delfín Superior Basin to the south, and the Cerro Prieto Basin to the north in the Mexicali-Imperial Valley along the Pacific-North America plate boundary. The seismic data are consistent with existing knowledge of four main structures (master faults) in the region, i.e., the Percebo, Santa María, Consag Sur, and Wagner Sur faults. The Wagner and Consag basins are delimited to the east by the Wagner Sur Fault, and to the west by the Consag Sur Fault. The Percebo Fault borders the western margin of the modern Wagner Basin depocenter, and is oriented N10°W, dipping (on average) ˜40° to the northeast. The trace of the Santa María Fault located in the Wagner Basin strikes N19°W, dipping ˜40° to the west. The Consag Sur Fault is oriented N14°W, and dips ˜42° to the east over a distance of 21 km. To the east of the study area, the Wagner Sur Fault almost parallels the Consag Sur Fault over a distance of ˜86 km, and is oriented N10°W with an average dip of 59° to the east. Moreover, the data provide new evidence that the Wagner Fault is discontinuous between the two basins, and that its structure is more complex than previously reported. A structural high separates the northern Consag Basin from the southern Wagner Basin, comprising several secondary faults oriented NE oblique to the main faults of N-S direction. These could represent a zone of accommodation, or transfer zone, where extension could be transferred from the Wagner to the Consag Basin, or vice versa. This area shows no acoustic basement and/or intrusive body, which is consistent with existing gravimetric and magnetic data for the region.

  14. Temporal and spatial constraints on the evolution of a Rio Grande rift sub-basin, Guadalupe Mountain area, northern New Mexico

    Science.gov (United States)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Hudson, M. R.; Lee, J.

    2013-12-01

    The Taos Plateau volcanic field (TPVF) in the southern San Luis Valley of northern New Mexico is the most voluminous of the predominantly basaltic Neogene (6-1 Ma) volcanic fields of the Rio Grande rift. Volcanic deposits of the TPVF are intercalated with alluvial deposits of the Santa Fe Group and compose the N-S-trending San Luis Basin, the largest basin of the northern rift (13,500 km2 in area). Pliocene volcanic rocks of the Guadalupe Mountain area of northern New Mexico are underlain by the southern end of one of the larger sub-basins of the San Luis Valley, the Sunshine sub-basin (~ 450 km2 in area) juxtaposed against the down-to-west frontal fault of the Precambrian-cored Sangre de Cristo Range. The sub-basin plunges northward and extends to near the Colorado-New Mexico border. The western margin (~15 km west of the Sangre de Cristo fault) is constrained by outcrops of Oligocene to Miocene volcanic rocks of the Latir volcanic field, interpreted here as a broad pre-Pliocene intra-rift platform underlying much of the northern TPVF. The southern sub-basin border is derived, in part, from modeling of gravity and aeromagnetic data and is interpreted as a subsurface extension of this intra-rift platform that extends southeastward to nearly the Sangre de Cristo range front. Broadly coincident with this subsurface basement high is the northwest-trending, curvilinear terminus of the down-to-northeast Red River fault zone. South of the gravity high, basin-fill alluvium and ~3.84 Ma Servilleta basalt lava flows thicken along a poorly exposed, down-to-south, basin-bounding fault of the northern Taos graben, the largest of the San Luis Valley sub-basins. The uppermost, western sub-basin fill is exposed along steep canyon walls near the confluence of the Rio Grande and the Red River. Unconformity-bound, lava flow packages are intercalated with paleo Red River fan alluvium and define six eruptive sequences in the Guadalupe Mountain area: (1) Guadalupe Mtn. lavas (dacite ~5

  15. Morphology, sedimentary features and evolution of a large palaeo submarine canyon in Qiongdongnan basin, Northern South China Sea

    Science.gov (United States)

    Li, Xiangquan; Fairweather, Luke; Wu, Shiguo; Ren, Jianye; Zhang, Hongjie; Quan, Xiayun; Jiang, Tao; Zhang, Cheng; Su, Ming; He, Yunlong; Wang, Dawei

    2013-01-01

    The large Miocene-aged palaeo canyon that extents through the Qiongdongnan basin (QDNB) and Yinggehai basin (YGHB) of Northern South China Sea has been of considerable interest both economically and scientifically over the past decade. Stemmed from this, significant research has been employed into understanding the mechanism for its existence, incision, and sedimentary fill, yet debate remains. In the first case the canyon itself is actually quite anomalous. Alone from the size (over 570 km in length and more than 8 km in width (Yuan et al., 2009)), which is considerably more than most ancient deep-water channels (REFS), the canyon's sedimentary fill is also distinctly different. Some explanations have been given to explain the canyon's origin and existence, these include increased sediment supply from the Red River which is genetically linked to uplift of the Tibetan Plateau, lowstand turbidite and mass-transport activity, reactivation and dextral displacement of the Red River Fault zone inducing erosive gravity-flows, regional tilt of the QDNB and YGHB, paleo-seafloor morphology and seal-level fluctuations. With the application of new data obtained from interpretations of a large number of 2D seismic profiles, core and well log data, and tectonic and sedimentary analysis this contribution aims to: (1) Present models to explain the Canyon's sedimentary fill and basin plain deposits, which provided significant understanding of processes pre-, syn- and post-incision and; (2) review the plausibility and likelihood of each of the controlling mechanisms, hoping to shed light on this controversial aspect. We conclude that the final erosive event that shaped the canyon is dated at 5.5 Ma. The Canyon's unusual fill is a product of variation in the interaction between turbidity currents and MTD that blocked the canyon's axis, and the reduction in gravity flow energy through time; and therefore the complete succession represents one major erosive and cut event at 5.5 Ma and

  16. The 2001 - Present Triggered Seismicity Sequence in the Raton Basin of Southern Colorado/Northern New Mexico

    Science.gov (United States)

    Rubinstein, J. L.; Ellsworth, W. L.; McGarr, A.

    2012-12-01

    The occurrence of an earthquake of magnitude (M) 5.3 near Trinidad, CO, on 23 August 2011 renewed interest in the possibility that an earthquake sequence in this region that began in August 2001 is the result of industrial activities. Our investigation of this seismicity, in the Raton Basin of northern New Mexico and southern Colorado, led us to conclude that the majority, if not all of the earthquakes since August 2001 have been triggered by the deep injection of wastewater related to the production of natural gas from the coal-bed methane field here. The evidence that this earthquake sequence was triggered by wastewater injection is threefold. First, there was a marked increase in seismicity shortly after major fluid injection began in the Raton Basin. From 1970 through July of 2001, there were five earthquakes of magnitude 3 and larger located in the Raton Basin. In the subsequent 10 years from August of 2001 through the end of 2011, there were 95 earthquakes of magnitude 3 and larger. The statistical likelihood of this rate increase occurring naturally was determined to be 0.01%. Second, the vast majority of the seismicity is located close (within 5km) to active disposal wells in this region. Additionally, this seismicity is primarily shallow, ranging in depth between 2 and 8 km, with the shallowest seismicity occurring within 500 m depth of the injection intervals. Finally, these wells have injected exceptionally high volumes of wastewater. The 23 August 2011 M5.3 earthquake, located adjacent to two high-volume disposal wells, is the largest earthquake to date for which there is compelling evidence of triggering by fluid injection activities; indeed, these two nearly-co-located wells injected about 4.9 million cubic meters of wastewater during the period leading up to the M5.3 earthquake, more than 7 times as much as the disposal well at the Rocky Mountain Arsenal that caused damaging earthquakes in the Denver, CO, region in the 1960s. Much of the seismicity

  17. (Plio-)Pleistocene alluvial-lacustrine basin infill evolution in a strike-slip active zone (Northern Andes, Western-Central Cordilleras, Colombia)

    OpenAIRE

    SUTER, F.; NEUWERTH, R.; GORIN, G.; GUZMÁN, C.

    2009-01-01

    The (Plio)-Pleistocene Zarzal Formation was deposited in the Cauca Depression and Quindío-Risaralda Basin between the Western and Central Cordilleras (Northern Andes). This area is structurally located on the transcurrent Romeral Fault System (RFS). Because of the interaction between the Nazca plate and the Chocó-Panamá block (an active indenter), the RFS strike-slip component changes direction around the study zone (dextral in the south, senestral in the north). Zarzal sediments are the olde...

  18. Density and population structure of the natural regeneration of Scots pine (Pinus sylvestris L.) in the High Ebro Basin (Northern Spain)

    OpenAIRE

    González-Martínez, Santiago; Bravo, Felipe

    2001-01-01

    International audience; This paper presents the analysis of 11 natural regenerated stands in native Scots pine forests located in the High Ebro Basin (Northern Spain). The natural regeneration showed a continuous age distribution, early height differentiation and a high stability in the height position of seedlings. Total density and main crop (trees selected for future commercial harvest) density models were developed to study the relationship between natural regeneration and site variables....

  19. Winter and spring mixing depths affect the trophic status and composition of phytoplankton in the northern meromictic basin of Lake Lugano

    Directory of Open Access Journals (Sweden)

    Marco SIMONA

    2003-08-01

    Full Text Available The trophic state of Lake Lugano is still too high to be acceptable, despite extensive recovery measures undertaken in recent decades which have resulted in a reduction of the external phosphorus load to the deepest of the lake's basins (northern basin; Zmax=286 m to fairly acceptable values. Since meromixis was established in the middle of last century, the deep hypolimnion of the northern basin (the layer between ca 100 m and the bottom has contained high quantities of nutrients (especially phosphorus which are a major potential source of internal load. When there are particularly strong winter mixing events, a portion of this phosphorus reserve is redistributed along the upper water column (0-100 m. The impact of meteo-climatic conditions on the plankton biocenosis were analysed using data collected in the northern basin (Gandria station during the three-year period 1998-2000. The phytoplankton composition, which is typical of eutrophicated waters, shows marked interannual variations, also depending on the degree of mixing of the waters at the start of the vegetative period. Though there is no steady pattern of typical dominant species / master species in the lake, there is a seasonal succession characterised by a marked development of diatoms in spring, and a predominance of chlorophyceans and cyanobacteria in summer and autumn. Under present conditions, the mechanisms of internal replenishment of nutrients towards the euphotic layer, due to the phenomena of late winter and spring mixing, constitute a significant source of nutrients for the spring and summer growth of phytoplankton. On the other hand, pronounced mixing phenomena, like those occurring in the two-year period 1999-2000, can reduce the hypolimnetic nutrient reserves and cause a decrease in the trophic potential of the basin, contrasting with an increase in algal biomass in the euphotic zone.

  20. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, northern China.

    Science.gov (United States)

    Pi, Kunfu; Wang, Yanxin; Xie, Xianjun; Su, Chunli; Ma, Teng; Li, Junxia; Liu, Yaqing

    2015-12-30

    Abnormal levels of co-occurring arsenic (As), fluorine (F) and iodine (I) in groundwater at Datong Basin, northern China are geochemically unique. Hydrochemical, (18)O and (2)H characteristics of groundwater were analyzed to elucidate their mobilization processes. Aqueous As, F and I ranged from 5.6 to 2680 μg/L, 0.40 to 3.32 mg/L and 10.1 to 186 μg/L, respectively. High As, F and I groundwater was characterized by moderately alkaline, high HCO3(-), Fe(II), HS(-) and DOC concentrations with H3AsO3, F(-) and I(-) as the dominant species. The plots of δ(18)O values and Cl/Br ratios versus Cl(-) concentration demonstrate build-up of more oxidizing conditions and precipitation of carbonate minerals induced by vertical recharge and intensive evaporation facilitate As retention to Fe (hydr) oxides, but enhance F and I mobilization from host minerals. Under reducing conditions, As and I can be simultaneously released via reductive dissolution of Fe (hydr) oxides and reduction of As(V) and I(V) while F migration may be retarded due to effects of dissolution-precipitation equilibria between carbonate minerals and fluorite. With the prevalence of sulfate-reducing condition and lowering of HCO3(-) concentration, As and I may be sequestered by Fe(II) sulfides and F is retained to fluorite and on clay mineral surfaces. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. [Monitoring of soil salinization in Northern Tarim Basin, Xinjiang of China in dry and wet seasons based on remote sensing].

    Science.gov (United States)

    Yao, Yuan; Ding, Jian-Li; Zhang, Fang; Wang, Gang; Jiang, Hong-Nan

    2013-11-01

    Soil salinization is one of the most important eco-environment problems in arid area, which can not only induce land degradation, inhibit vegetation growth, but also impede regional agricultural production. To accurately and quickly obtain the information of regional saline soils by using remote sensing data is critical to monitor soil salinization and prevent its further development. Taking the Weigan-Kuqa River Delta Oasis in the northern Tarim River Basin of Xinjiang as test object, and based on the remote sensing data from Landsat-TM images of April 15, 2011 and September 22, 2011, in combining with the measured data from field survey, this paper extracted the characteristic variables modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), and the third principal component from K-L transformation (K-L-3). The decision tree method was adopted to establish the extraction models of soil salinization in the two key seasons (dry and wet seasons) of the study area, and the classification maps of soil salinization in the two seasons were drawn. The results showed that the decision tree method had a higher discrimination precision, being 87.2% in dry season and 85.3% in wet season, which was able to be used for effectively monitoring the dynamics of soil salinization and its spatial distribution, and to provide scientific basis for the comprehensive management of saline soils in arid area and the rational utilization of oasis land resources.

  2. Stable isotope record of Eemian seasonal temperature from MIS 5e tufa stromatolite; Somme Basin, Northern France

    Science.gov (United States)

    Dabkowski, J.; Andrews, J.; Antoine, P.; Marca-Bell, A.

    2013-03-01

    In many modern to sub-fossil deposits tufa formations, very well crystallised deposits called stromatolites are preserved. These are often strongly laminated deposits, the laminae linked to seasonal climatic and environmental variations. Where found in fossil tufas such deposits have huge potential as high resolution archives of Pleistocene climate. One of the first investigations of this type has been performed on a 2.5 cm-radius stromatolite from the Eemian sequence of Caours (Somme Basin, Northern France), where precise observations in thin section have been combined with intra-lamina δ18O and δ13C analyses. Independent interpretations of petrographical and geochemical data are strongly coherent and demonstrate a clear seasonal signal. Moreover, as δ18O is temperature dependent, we have quantified likely maximum water temperature variations between summer and winter at Caours. A small mismatch between the δ18O derived temperature values and the typical modern range is observed, which may reflect a real difference between modern and Eemian temperature seasonality. This study supports previous investigations performed on a laminated tufa from central Greece and clearly confirms the potential of tufa stromatolites as records of seasonal climatic information and for the quantification of riverine water temperature variations.

  3. Impact of reclaimed water in the watercourse of Huai River on groundwater from Chaobai River basin, Northern China

    Science.gov (United States)

    Yu, Yilei; Song, Xianfang; Zhang, Yinghua; Zheng, Fandong; Liu, Licai

    2017-12-01

    Reclaimed water is efficient for replenishing the dry rivers in northern China, but regional groundwater may be at risk from pollution. Therefore, samples of reclaimed water, river water, and groundwater were collected at the Huai River in the Chaobai River basin in 2010. The water chemistry and isotopic compositions of the samples were analyzed in the laboratory. The reclaimed water had stable compositions of water chemistry and isotopes, and the Na·Ca-HCO3·Cl water type. The water chemistry of the river water was consistent with that of the reclaimed water. A June peak of total nitrogen was the prominent characteristic in the shallow groundwater, which also had the Na·Ca-HCO3·Cl water type. However, the water chemistry and isotopes in most of the deep groundwater remained stable, and the water type was Ca·Mg-HCO3. The amount of reclaimed water recharging the groundwater was about 2.5 × 107 m3/yr. All of the shallow groundwater was impacted by the reclaimed water, with the mixing proportion of reclaimed water ranging from 42% to 80 % in the dry season and from 20% to 86% in the wet season. Only one deep well, with proportions of 67% (dry season) and 28% (wet season), was impacted. TDS, EC, and major ions (Na, K, Cl, NH4-N, NO2-N, and NO3-N) were increased in the impacted wells.

  4. Tectonic stages in Southern Greater Caucasus and Adjara Trialeti belt in Georgia: new results on timing and structures of inverted basins

    Science.gov (United States)

    Candaux, Zoé; Sosson, Marc; Adamia, Shota; Sadradze, Nino; Alania, Victor; Enukidze, Onise; Chabukiani, Alexandre

    2017-04-01

    The Greater Caucasus mountain belt is the result of a long live subduction process and collisions of continental microplates (e.g. Dercourt et al., 1986; Barrier and Vrielynck, 2008). The northward subduction of Tethys beneath Eurasian plate initiated a back-arc basin: the Greater Caucasus basin (e.g. Adamia et al., 1981; Zonenshain and Le Pichon, 1986; Roberston et al., 1996; Stephenson and Schellart, 2010 among others). It took place from Middle Jurassic to Late Cretaceous. First compression stage started at the end of Cretaceous in the Lesser Caucasus (e.g. Rolland et al., 2010; Sosson et al. 2010, 2016) and Palaeocene-early Eocene in Crimean Mountains (northwestern continuation of the Greater Caucasus) (Sheremet et al., 2016). In southern Greater Caucasus (Georgian area) the age of deformation during the beginning of the collision is still a subject of debate: Oligocene-Lower Miocene at the frontal part (e.g. Adamia et al. 2010) or Eocene (Mosar et al., 2010). The deformation continues at Miocene, Pliocene and actual time in Kura and Rioni foreland basins (Forte et al., 2010; 2013; Mosar et al., 2010). The different timing is interpreted to be the result of the Taurides-Anatolides-South Armenian microcontinent collision with Eurasia, followed by the collision with Arabia. During the first collision, during Paleocene-Eocene, the so-called Adjara-Trialeti basin opened north of the volcanic arc. One question is if this local extension affect the timing of compression observed in the Greater Caucasus or not. In Georgia, we investigated new structural analyses, and considered unconformities and growth strata at the frontal part of deformations in Kura and Rioni forelands basins (in front of the Greater Caucasus). Our results evidence different tectonic stages and their timing. In Adjara-Trialeti, Kura and south Rioni basins deformation starts at Middle-Late Miocene. In northern Rioni basin Upper Cretaceous-Lower Paleocene compression is evidenced. The structures

  5. A new species of Bryconops (Teleostei: Characidae from the rio Madeira basin, Northern Brazil

    Directory of Open Access Journals (Sweden)

    Juliana M. Wingert

    Full Text Available A new species of Bryconops is described from a tributary to the rio Madeira in the Amazon basin, State of Rondônia, Brazil. Bryconops piracolina belongs to the subgenus Bryconops by having no teeth or rarely one tooth in the maxilla, and a naked area on cheek between the second and third infraorbitals. The new species is distinguished from all species of this subgenus by the presence of a large black blotch on dorsal-fin base. Furthermore, it is distinguished from all congeners, except B. inpai, by possessing the adipose fin entirely black. It differs from B. inpai by the lack of humeral spots. It further differs from all species of the subgenus Bryconops, except B. caudomaculatus, by having the last scales of the longitudinal series of scales that bears the lateral line series not pored beyond the end of the hypural plate, and differs from B. caudomaculatus by the smaller number of pored lateral line scales (31-36, mean 34.6, vs. 37-43, mean = 40.6, respectively.

  6. 26Al/10Be burial dating of Xujiayao-Houjiayao site in Nihewan Basin, northern China.

    Directory of Open Access Journals (Sweden)

    Hua Tu

    Full Text Available The Xujiayao-Houjiayao site in Nihewan Basin is among the most important Paleolithic sites in China for having provided a rich collection of hominin and mammalian fossils and lithic artifacts. Based on biostratigraphical correlation and exploratory results from a variety of dating methods, the site has been widely accepted as early Upper Pleistocene in time. However, more recent paleomagnetic analyses assigned a much older age of ∼500 ka (thousand years. This paper reports the application of 26Al/10Be burial dating as an independent check. Two quartz samples from a lower cultural horizon give a weighted mean age of 0.24 ± 0.05 Ma (million years, 1σ. The site is thus younger than 340 ka at 95% confidence, which is at variance with the previous paleomagnetic results. On the other hand, our result suggests an age of older than 140 ka for the site's lower cultural deposits, which is consistent with recent post-infrared infrared stimulated luminescence (pIR-IRSL dating at 160-220 ka.

  7. Probable mixing state of aerosols in the Indo-Gangetic Basin, northern India

    Science.gov (United States)

    Dey, Sagnik; Tripathi, S. N.; Mishra, S. K.

    2008-02-01

    To investigate the probable mixing state of aerosols in the Indo-Gangetic Basin, six different mixing cases, viz. external mixing, internal mixing, and four combinations of core-shell type mixing (black carbon, BC over dust, water-soluble over dust, BC over water-soluble and water-soluble over BC) have been considered. Composite single scattering albedo (SSA) have been computed for six cases for post-monsoon, winter and pre-monsoon seasons and are compared with the Aerosol Robotic Network (AERONET) retrieved SSA values. The most probable mixing state in the post-monsoon season seems either to be external mixing or water-soluble coating over dust and in the winter season, the external mixing seems to be the probable mixing state. However, in the pre-monsoon season, BC coating over dust seems to be the most probable mixing state. This type of mixing leads to enhanced absorption and needs future attention to better understand the aerosol radiative effect in this region.

  8. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  9. Lower Permian stems as fluvial paleocurrent indicators of the Parnaíba Basin, northern Brazil

    Science.gov (United States)

    Capretz, Robson Louiz; Rohn, Rosemarie

    2013-08-01

    A comprehensive biostratinomic study was carried out with abundant stems from the Lower Permian Motuca Formation of the intracratonic Parnaíba Basin, central-north Brazil. The fossils represent a rare tropical to subtropical paleofloristic record in north Gondwana. Tree ferns dominate the assemblages (mainly Tietea, secondarily Psaronius), followed by gymnosperms, sphenophytes, other ferns and rare lycophytes. They are silica-permineralized, commonly reach 4 m length (exceptionally more than 10 m), lie loosely on the ground or are embedded in the original sandstone or siltstone matrix, and attract particular attention because of their frequent parallel attitudes. Many tree fern stems present the original straight cylindrical to slightly conical forms, other are somewhat flattened, and the gymnosperm stems are usually more irregular. Measurements of stem orientations and dimensions were made in three sites approximately aligned in a W-E direction in a distance of 27.3 km at the conservation unit "Tocantins Fossil Trees Natural Monument". In the eastern site, rose diagrams for 54 stems indicate a relatively narrow azimuthal range to SE. These stems commonly present attached basal bulbous root mantles and thin cylindrical sandstone envelopes, which sometimes hold, almost adjacent to the lateral stem surface, permineralized fern pinnae and other small plant fragments. In the more central site, 82 measured stems are preferentially oriented in the SW-NE direction, the proportion of gymnosperms is higher and cross-stratification sets of sandstones indicate paleocurrents mainly to NE and secondarily to SE. In the western site, most of the 42 measured stems lie in E-W positions. The predominantly sandy succession, where the fossil stems are best represented, evidences a braided fluvial system under semiarid conditions. The low plant diversity, some xeromorphic features and the supposedly almost syndepositional silica impregnation of the plants are coherent with marked dry

  10. Geological and geochronological evidence for the effect of Paleogene and Miocene uplift of the Northern Ordos Basin on the formation of the Dongsheng uranium district, China

    Science.gov (United States)

    Zhang, Chuang; Yi, Chao; Dong, Qian; Cai, Yu-Qi; Liu, Hong-Xu

    2018-02-01

    The Dongsheng uranium district, located in the northern part of the Ordos Basin, contains the largest known sandstone-hosted uranium deposit in China. This district contains (from west to east) the Daying, Nalinggou, and Dongsheng uranium deposits that host tens of thousands of metric tonnes of estimated recoverable uranium resources at an average grade of 0.05% U. These uranium orebodies are generally hosted by the lower member of the Zhiluo Formation and are dominantly roll or tabular in shape. The uranium deposits in this district formed during two stages of mineralization (as evidenced by U-Pb dating) that occurred at 65-60 and 25 Ma. Both stages generated coffinite, pitchblende, anatase, pyrite, and quartz, with or without sericite, chlorite, calcite, fluorite, and hematite. The post-Late Cretaceous uplift of the Northern Ordos Basin exposed the northern margins of the Zhiluo Formation within the Hetao depression at 65-60 Ma, introducing groundwater into the formation and generating the first stage of uranium mineralization. The Oligocene (∼25 Ma) uplift of this northern margin exposed either the entirety of the southern flank of the Hetao depression or only the clastic sedimentary part of this region, causing a second gravitational influx of groundwater into the Zhiluo Formation and forming the second stage of uranium mineralization.

  11. RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA

    Energy Technology Data Exchange (ETDEWEB)

    Blount, G.; Millings, M.

    2011-08-01

    A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of

  12. Structure and Stratigraphy of the Rift Basins in the Northern Gulf of California: Results from Analysis of Seismic Reflection and Borehole Data.

    Science.gov (United States)

    Martín, A.; González, M.; Helenes, J.; García, J.; Aragón, M.; Carreño, A.

    2008-12-01

    The northern Gulf of California contains two parallel, north-south trending rift basin systems separated by a basement-high. The interpretation of several exploration wells, and ~4500 km of seismic reflection data from PEMEX (Mexican national oil company) indicate that the tectonically active basins to the west (Wagner- Consag and Upper Delfin basins) may have initiated synchronously with the now abandoned Tiburón- Tepoca-Altar basins to the east in the Sonora margin. In both basin systems the lower sequence (A) is marine mudstone-siltstone, has parallel reflectors and a largely uniform thickness that reaches up to1.5 km, and gradually pinches out toward the lateral margins. This suggests that the unit was deposited prior to their segmentation by transtensional faulting. Marine microfossils from borehole samples from sequence A in the Tiburón and Consag basins indicates middle Miocene (>11.2 Ma) proto-Gulf conditions. Sequence B conformably overlies sequence A, and is characterized by up to 2 km growth strata with a fanning geometry that show a clear genetic relationship to the major transtensional faults that control the segmentation of the two basin systems. Sequence C in the Tiburón and Tepoca basins is comparatively thin (<800 m) and includes several unconformities, but is much less affected by faulting. In contrast, sequence C in the active Wagner, Consag and Upper Delfin basin is a much thicker (up to 2 km) growth sequence with abundant volcanic intrusions. Marked variations in sequence C in the different basin systems clearly demonstrate a major westward shift of deformation and subsidence at this time. The modern depocenter in Wagner-Consag basins is controlled by the Consag and Wagner faults, which trend parallel to the north ~20 km apart, and show opposite normal offset. These two faults merge at an oblique angle (70°-50°, respectively) into the Cerro Prieto transform fault to the north and likely accommodate an important amount of dextral shear. To

  13. A high 87Sr 86Sr mantle source for low alkali tholeiite, northern Great Basin

    Science.gov (United States)

    Mark, R.K.; Lee, Hu C.; Bowman, H.R.; Asaro, F.; McKee, E.H.; Coats, R.R.

    1975-01-01

    Olivine tholeiites, the youngest Tertiary units (about 8-11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250-3350 ppm), Rb (1??9-6??2 ppm) and Sr (140-240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100-780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0??7052-0??7076, considerably higher than MORB (~0??702-0??703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0??02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0??04. A significant decrease in Rb/Sr of the source material (a factor 2??) thus most probably occurred in the relatively recent (1??09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr 86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history. ?? 1975.

  14. Multidisciplinary insights into the seismotectonics of the Swiss Alps and its foreland

    Science.gov (United States)

    Diehl, Tobias; Lee, Timothy; Houlié, Nicolas; Cardello, Giovanni Luca; Kraft, Toni; Clinton, John; Kissling, Edi; Wiemer, Stefan

    2017-04-01

    Information on structure and mechanics of fault systems and their connection with present-day seismicity is key to the understanding of neotectonic processes in the Swiss Alps and the northern Swiss Foreland. Precisely determined focal depths in combination with high-resolution structural models can provide important insight into deformation styles of the uppermost crust (e.g. thin- vs. versus thick-skinned tectonics). Detailed images of seismogenic fault zones combined with estimates on deformation rates from geodesy, on the other hand, will improve the assessment of the hazard related to natural and induced earthquakes in those regions. In the framework of various projects, studies have been recently undertaken to image seismogenic fault zones at high resolution, with a special focus on southwest and northeast Switzerland because of their high societal relevance. Southwest Switzerland, is the region with one of the highest natural seismic hazard in the country. A large part of the present-day seismic activity is related to an earthquake lineament located in the southern part of the Rawil depression, which is dominated by strike-slip faulting. The possibility of large magnitude earthquakes critically depends on the question as to whether this activity is related to a single fault of considerable lateral and vertical extension or not. Field data demonstrate oblique normal faulting and fault segmentation at surface related to mountain uplift at the curvature of the Alpine Arc. Studies of seismogenic structures and neotectonic processes in the northeast Molasse basin, on the other hand, are of special interest, since the region is one of the target sites for radioactive waste repositories and future geothermal plants. On-going densification of the seismic network in Switzerland and new detection algorithms have significantly lowered the detection threshold of microearthquakes and improved data coverage in most parts of the country over the last ten years. To

  15. Stratigraphic and sedimentary evidences for development of Aptian intrashelf basin in the structural Zagros zone, northern Fars Platform

    Directory of Open Access Journals (Sweden)

    Neda Khoshfam

    2016-12-01

    Therefore despite previous visions, the Fars platform was not a monolith shallow platform. In addition, except Kazhdumi intrashelf basin, there were other deep and local intrashelf basins which were developed within the Fars platform.

  16. Lower Badenian coarse-grained Gilbert deltas in the southern margin of the Western Carpathian Foredeep basin

    Science.gov (United States)

    Nehyba, Slavomír

    2018-02-01

    carbonates of the Northern Calcareous Alps and the Western Carpathians, crystalline rocks of the eastern margin of the Bohemian Massif, older sedimentary infill of the Carpathian Foredeep and/or the North Alpine Foreland Basin, sedimentary rocks of the Western Carpathian/Alpine Flysch Zone).

  17. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: a northern Appalachian Basin case study

    Science.gov (United States)

    Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.

    2012-01-01

    Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1  C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1  103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85  103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar

  18. Growth Normal Faulting at the Western Edge of the Metropolitan Taipei Basin since the Last Glacial Maximum, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-Tung Chen

    2010-01-01

    Full Text Available Growth strata analysis is an useful tool in understanding kinematics and the evolution of active faults as well as the close relationship between sedimentation and tectonics. Here we present the Shanchiao Fault as a case study which is an active normal fault responsible for the formation of the 700-m-thick late Quaternary deposits in Taipei Basin at the northern tip of the Taiwan mountain belt. We compiled a sedimentary record, particularly the depositional facies and their dated ages, at three boreholes (SCF-1, SCF-2 and WK-1, from west to east along the Wuku Profile that traverses the Shanchiao Fault at its central segment. By incorporating the global sea level change curve, we find that thickness changes of sediments and changes of depositional environments in the Wuku area are in a good agreement with a rapid sea level rise since the Last Glacial Maximum (LGM of about 23 ka. Combining depositional facies changes and their ages with their thickness, we are able to introduce a simple back-stripping method to reconstruct the evolution of growing strata across the Shanchiao Fault since the LGM. We then estimate the vertical tectonic slip rate since 23 ka, which exhibits 2.2 mm yr-1 between SCF-2 and WK-1 and 1.1 mm yr-1 between SCF-1 and SCF-2. We also obtain the Holocene tectonic subsidence rate of 2.3 mm yr-1 at WK-1 and 0.9 mm yr-1 at SCF-2 since 8.4 ka. We thus conclude that the fault zone consists of a high-angle main fault to the east between SCF-2 and WK-1 and a western lower-angle branch fault between SCF-1 and SCF-2, resembling a tulip structure developed under sinistral transtensional tectonism. We find that a short period of 600-yr time span in 9 - 8.4 ka shows important tectonic subsidence of 7.4 and 3.3 m for the main and branch fault, respectively, consistent with possible earthquake events proposed by previous studies during that time. A correlation between geomorphology and subsurface geology in the Shanchiao Fault zone shows

  19. Climate warming could increase recruitment success in glacier foreland plants.

    Science.gov (United States)

    Mondoni, Andrea; Pedrini, Simone; Bernareggi, Giulietta; Rossi, Graziano; Abeli, Thomas; Probert, Robin J; Ghitti, Michele; Bonomi, Costantino; Orsenigo, Simone

    2015-11-01

    Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants. Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory. At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13-35 % higher) in all species except two. Survival and establishment was possible for 60-75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success. The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent on interactions with shifts in other components of the

  20. A Late-Glacial sedimentary sequence at KIlkeel, Northern Ireland: implications for the glaciation of the Irish Sea Basin

    Science.gov (United States)

    Merritt, Jon; Roberson, Sam; Cooper, Mark

    2017-04-01

    This paper re-evaluates the nature and timing of a Late-Glacial ice sheet re-advance in the north western sector of the Irish Sea basin. The sedimentary archive in the region records the collapse of the Irish Sea Ice Stream, a major outlet glacier of the British-Irish Ice Sheet. The region documents the interplay between southerly flowing Scottish ice, ice flowing southeast from Lough Neagh and locally sourced Mournes ice. We present the results of sedimentological analysis of a glacigenic sequence exposed in a modern cliff section 3 km long between Derryoge and Kilkeel, Co. Down, Northern Ireland. The interaction between an advancing ice-sheet outlet lobe and rapidly changing sea levels are examined using facies analysis and micromorphology. The section is composed of four lithofacies associations (LAs). These are, from the base, a laminated, fossiliferous and deformed silt (LA1) at least 4.5 m thick that contains lenses of diamicton and discontinuous rafts of sandy gravel. Marine shells form the axis of a fold hinge, part of a lightly tectonised channel fill within the raft. LA1 is overlain by a sandy diamict (LA2) up to 14 m thick containing mainly local clasts with some of northern provenance. Within LA2 are wide channel structures infilled by laminated clayey silts (LA2b). These form deposits up to 14 m thick and contain small-scale folds, discrete shear zones and ball-and-pillow structures. LA2b forms a lithofacies association with LA2, consisting of a lower subfacies of sheared and deformed silts, overlain by sandy diamicton, capped by a striated boulder pavement. These are interpreted to represent retreat/advance cycles of a marine terminating ice margin. Up to five such cycles are identified. LA2 is widely punctuated by fissures and conduits infilled by loose sands and gravels. These are inferred to be emplaced by subglacial meltwater during the final stages of ice sheet advance. Covering both LA2 and LA2b, LA3 is a unit of glaciofluvial outwash, composed

  1. Genetic Types and Source of the Upper Paleozoic Tight Gas in the Hangjinqi Area, Northern Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Xiaoqi Wu

    2017-01-01

    Full Text Available The molecular and stable isotopic compositions of the Upper Paleozoic tight gas in the Hangjinqi area in northern Ordos Basin were investigated to study the geochemical characteristics. The tight gas is mainly wet with the dryness coefficient (C1/C1–5 of 0.853–0.951, and δ13C1 and δ2H-C1 values are ranging from -36.2‰ to -32.0‰ and from -199‰ to -174‰, respectively, with generally positive carbon and hydrogen isotopic series. Identification of gas origin indicates that tight gas is mainly coal-type gas, and it has been affected by mixing of oil-type gas in the wells from the Shilijiahan and Gongkahan zones adjacent to the Wulanjilinmiao and Borjianghaizi faults. Gas-source correlation indicates that coal-type gas in the Shiguhao zone displays distal-source accumulation. It was mainly derived from the coal-measure source rocks in the Upper Carboniferous Taiyuan Formation (C3t and Lower Permian Shanxi Formation (P1s, probably with a minor contribution from P1s coal measures from in situ Shiguhao zone. Natural gas in the Shilijiahan and Gongkahan zones mainly displays near-source accumulation. The coal-type gas component was derived from in situ C3t-P1s source rocks, whereas the oil-type gas component might be derived from the carbonate rocks in the Lower Ordovician Majiagou Formation (O1m.

  2. Paleoshoreline patterns in the transgressive-regressive sequences of Pennsylvanian rocks in the northern Appalachian Basin, U.S.A.

    Science.gov (United States)

    Carlson, Ernest H.

    1994-11-01

    Sheets of sponge spicule flint of Pennsylvanian age (Bashkirian, Moscovian, Kasimovian) that are present in the northern Appalachian Basin of Ohio and adjacent parts of Kentucky, Pennsylvania and West Virginia, are important indicators of paleoshorelines. This flint typically occurs with or occupies the position normally held by shallow-water limestone and contains a normal marine fauna. The flint was deposited above coal or underclay, representing the detritus-starved marine portion of a transgressive-regressive sequence and marking the eastern limit of transgression across a westward-spreading alluvial plain. Flint occurs at several stratigraphic positions in the upper Pottsville-lower Conemaugh interval. The most important are: Boggs, Upper Mercer and Kanawha flints of the upper Pottsville Group; Kilgore-Flint Ridge, Zaleski and Vanport flints of the lower Allegheny Group; and Brush Creek flint of the lower Conemaugh Group. Lithofacies maps of these beds were constructed to show the distribution of the flint. Limestone-hosted flint occurs in long discontinuous chains of sheetlike bodies, whereas shale-hosted flint occurs in single sheets with restricted geographic distribution. Chains of limestone-hosted flint attain maximum dimensions of a few meters in thickness, a few kilometers in width and several hundreds of kilometers in length. The Upper Mercer, Vanport and Brush Creek flints are particularly extensive, forming arcuate shoreline patterns that parallel the fronts of large delta systems. Beds of clay ironstone and/or coal above flint indicate that the lagoonal environment in which flint was deposited was followed closely by a change to stagnant waters. Cementation of flint with silica likely occurred under the lower pH conditions existing at that time and when depths of burial were shallow.

  3. Occurrence and distribution characteristics of fluids in tight sandstone reservoirs in the Shilijiahan zone, northern Ordos Basin

    Directory of Open Access Journals (Sweden)

    Gongqiang Li

    2017-05-01

    Full Text Available High-yield gas layers, low-yield gas layers and (gas bearing water layers of Upper Paleozoic coexist in the Shilijiahan zone in the northern Ordos Basin, but gas–water distribution characteristics, laws and influence factors are not understood well, so the exploration and development of natural gas in this zone are restricted. In this paper, statistical analysis was carried out on the data of Upper Paleozoic formation water in this zone, e.g. salinity, pH value and ion concentration. It is shown that the formation water in this zone is of CaCl2 type. Then, the origin, types, controlling factors and spatial distribution characteristics of formation water were figured out by using core, mud logging, well logging and testing data, combined with the classification and evaluation results of geochemical characteristics of formation water. Besides, the logging identification chart of gas, water and dry layers in this zone was established. Finally, the occurrence and distribution laws of reservoir fluids were defined. The formation water of CaCl2 type indicates a good sealing capacity in this zone, which is favorable for natural gas accumulation. It is indicated that the reservoir fluids in this zone exist in the state of free water, capillary water and irreducible water. Free water is mainly distributed in the west of this zone, irreducible water in the east, and capillary water in the whole zone. The logging identification chart has been applied in many wells in this zone like Well Jin 86. The identification result is basically accordant with the gas testing result. It is verified that gas and water layers can be identified effectively based on this logging identification chart.

  4. Scenarios for shale gas development and their related land use impacts in the Baltic Basin, Northern Poland

    International Nuclear Information System (INIS)

    Baranzelli, Claudia; Vandecasteele, Ine; Ribeiro Barranco, Ricardo; Mari i Rivero, Ines; Pelletier, Nathan; Batelaan, Okke; Lavalle, Carlo

    2015-01-01

    Scenarios for potential shale gas development were modelled for the Baltic Basin in Northern Poland for the period 2015–2030 using the land allocation model EUCS100. The main aims were to assess the associated land use requirements, conflicts with existing land use, and the influence of legislation on the environmental impact. The factors involved in estimating the suitability for placement of shale gas well pads were analysed, as well as the potential land and water requirements to define 2 technology-based scenarios, representing the highest and lowest potential environmental impact. 2 different legislative frameworks (current and restrictive) were also assessed, to give 4 combined scenarios altogether. Land consumption and allocation patterns of well pads varied substantially according to the modelled scenario. Potential landscape fragmentation and conflicts with other land users depended mainly on development rate, well pad density, existing land-use patterns, and geology. Highly complex landscapes presented numerous barriers to drilling activities, restricting the potential development patterns. The land used for shale gas development could represent a significant percentage of overall land take within the shale play. The adoption of appropriate legislation, especially the protection of natural areas and water resources, is therefore essential to minimise the related environmental impact. -- Highlights: •A range of scenarios for shale gas development in Poland were modelled. •The impact in terms of land take and competition for land was assessed. •Of land used for industrial purposes, 7–12% was attributed to shale gas extraction. •If unregulated, 24% of well pads were developed within protected areas. •The legislative framework can have a major influence on overall environmental impact

  5. Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    Energy Technology Data Exchange (ETDEWEB)

    Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

    2007-03-31

    For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan

  6. China's first intermediate resolution multi-channel seismic survey in the northern Victoria Land Basin and Terror Rift, Ross Sea, Antarctica

    Science.gov (United States)

    Shen, Zhongyan; Gao, Jinyao; Zhang, Tao; Wang, Wei; Ding, Weifeng; Zhang, Sheng

    2017-04-01

    The West Antarctic Rift System (WARS) represents one of the largest active continental rift systems on Earth and is less well known than other rift systems because it is largely covered by thick ice. The Terror Rift (TR), superimposing on the Victoria Land Basin (VLB) in the western Ross Sea, is identified as the most recent deformational zone of the WARS, thus will provide knowledge of the active deformation process of the WARS. The structure and kinematics of the TR is under debate. Originally, the TR was thought to consist of two parts: the Discovery Graben and the magmatically-intruded Lee Arch. New denser seismic grid in the middle and southern segments of the TR revealed a different structure of the Lee Arch while the northern segment of the TR is not well studied. The glacial history of the VLB/TR region is another attractive issue to the geologists since this area records the behavior information of EAIS and WAIS. In the southern part of the VLB, especially in the McMurdo Sound, the framework of the glacial history is well established after several deep cores which recovery the whole stratigraphic sequences since the onset of the glaciation. However, the glacial history of the northern part of the VLB/TR is less well studied and here we emphasize its importance because the northern part of the VLB/TR is a link between the well-studied southern VLB and the sediment-well-preserved Northern Basin. During the 32nd Chinese National Antarctic Research Expedition, on the board of the RV XueLong, we collected intermediate resolution multi-channel seismic reflection data in the northern VLB/TR. These data will establish new constraints on the timing of deformation, structure and kinematics of the TR, and the history of the EAIS and WAIS.

  7. Identifying key climate and environmental factors affecting rates of post-fire big sagebrush (Artemisia tridentata) recovery in the northern Columbia Basin, USA

    Science.gov (United States)

    Shinneman, Douglas; McIlroy, Susan

    2016-01-01

    Sagebrush steppe of North America is considered highly imperilled, in part owing to increased fire frequency. Sagebrush ecosystems support numerous species, and it is important to understand those factors that affect rates of post-fire sagebrush recovery. We explored recovery of Wyoming big sagebrush (Artemisia tridentata ssp.wyomingensis) and basin big sagebrush (A. tridentata ssp. tridentata) communities following fire in the northern Columbia Basin (Washington, USA). We sampled plots across 16 fires that burned in big sagebrush communities from 5 to 28 years ago, and also sampled nearby unburned locations. Mixed-effects models demonstrated that density of large–mature big sagebrush plants and percentage cover of big sagebrush were higher with time since fire and in plots with more precipitation during the winter immediately following fire, but were lower when precipitation the next winter was higher than average, especially on soils with higher available water supply, and with greater post-fire mortality of mature big sagebrush plants. Bunchgrass cover 5 to 28 years after fire was predicted to be lower with higher cover of both shrubs and non-native herbaceous species, and only slightly higher with time. Post-fire recovery of big sagebrush in the northern Columbia Basin is a slow process that may require several decades on average, but faster recovery rates may occur under specific site and climate conditions.

  8. Application of the authigenic 10Be/9Be dating method to Late Miocene-Pliocene sequences in the northern Danube Basin (Pannonian Basin System): Confirmation of heterochronous evolution of sedimentary environments

    Science.gov (United States)

    Šujan, Michal; Braucher, Régis; Kováč, Michal; Bourlès, Didier L.; Rybár, Samuel; Guillou, Valéry; Hudáčková, Natália

    2016-02-01

    Authigenic 10Be/9Be dating method was applied to lacustrine, deltaic and alluvial sequences of the northern Danube Basin (Pannonian Basin System), to bridge the insufficiency of geochronological data for the Late Miocene to Pliocene period. The measurements of 51 samples (both lacustrine and floodplain), ranging from 11.6 to 0.95 Ma are consistent with the existing magnetostratigraphic and biostratigraphic data standing mainly on the evolution degree of endemic mollusk fauna, mammals and dinocysts. This agreement confirms our assumption that the incoming beryllium fluxes remained constant over the studied time period and thus that the two initial 10Be/9Be ratios determined in actual Holocene/Late Pleistocene sediments (lacustrine and floodplain) are valid for these environments. The obtained ages indicate gradual progradation of the deltaic depositional systems across the Danube Basin with a clear time-transgressional character, replacing basin floor and shelfal environments. Deltaic sedimentation occurred firstly in the north at foothills of the Western Carpathians from 11.0 Ma, and changed to the alluvial environment after 10.5 Ma. At the same time (~ 10.5 Ma), the paleo-Danube deltaic system draining the Eastern Alps entered the study area from the Vienna Basin situated on the West. Later, the deltaic systems were merged in the central part of the basin and reached its southeastern margin at ~ 9.4 Ma. Regression of the Lake Pannon from the southernmost part of the study area is evidenced after 8.7 Ma. Alluvial deposition of meandering rivers lasting until 6.0-5.0 Ma followed and was interrupted by the early Pliocene basin inversion. Sedimentation of braided streams took place during the late Pliocene and Pleistocene, reflecting uplift of mountains surrounding the basin margins. This study documents the powerful potential of the authigenic 10Be/9Be dating method and its reliability in a basin with complicated tectonic and sedimentary history. It demonstrates that

  9. Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania) - implications for dust accumulation in the Carpathian Basin and the northern Hemisphere

    Science.gov (United States)

    Zeeden, Christian; Hambach, Ulrich; Kels, Holger; Schulte, Philipp; Eckmeier, Eileen; Marković, Slobodan; Klasen, Nicole; Lehmkuhl, Frank

    2016-04-01

    Recent investigations of the Semlac loess section in the Southeastern Carpathian Basin, which is situated at the Mureş River in its lower reaches (Banat region, western Romanian), are presented. Dating back to marine isotope stage (MIS) 10, the more than 10 m thick loess sequence includes four fossil sol-complexes developed in homogenous relatively fine silty loess. Because good preservation and sedimentation of fine silt Semlac is regarded as a key section for the Carpathian Basin, which offers possibilities to a) improve the understanding of the type and composition of the lowland loess sequences in the Carpathian Basin also beyond the last interglacial palaeosol complex, b) to reconstruct the temporal evolution of the local loess-palaeosol successions and c) to compare the loess of the region to loess-sequences in adjacent and dust proxy data in the northern hemisphere. A strikingly sinusoidal course of physical property data with depth/time point to relatively homogenous, quasi-continuous background sedimentation of dust, interpreted as long-range transport (LRT). An integrated age model based on correlation to reference records and luminescence dating is compiled. Applying this age model we compare climate proxy data from Semlac to both global data and to data from the very southeast of the Carpathian Basin (Vojvodina, Serbia). The obtained results provide new insight into the dust accumulation regime in the Carpathian Basin and offer new palaeoenvironmental information for the region and are an important step towards establishing a catena from the thin loess-like sediments of the Banat foothills in the East towards the thicker and seemingly more complete loess sections of the southeastern and central Carpathian Basin. Disentangling grain size data from soil formation proxies gives quantitative estimates for the contribution of original sediment and weathering (through soil formation) to the present clay fraction. Patterns of clay from direct sedimentation

  10. Chemostratigraphy of Late Cretaceous deltaic and marine sedimentary rocks from high northern palaeolatitudes in the Nuussuaq Basin, West Greenland

    DEFF Research Database (Denmark)

    Lenniger, Marc; Pedersen, Gunver Krarup; Bjerrum, Christian J.

    The Nuussuaq Basin in the Baffin Bay area in West Greenland formed as a result of the opening of the Labrador Sea in Late Mesozoic to Early Cenozoic times. The first rifting and the development of the Nuussuaq Basin took place during the Early Cretaceous and was followed by a second rifting phase...... in the basin. Three localities in a proximal–distal transect (terrestrial– deep water) through the Nuussuaq Basin will be investigated with bulk d13C from organic material and other geochemical proxies. In the end a synthesis of sedimentological and geochemical investigations should help to understand...

  11. Life history and habitat preference in the Darling hardyhead, Craterocephalus amniculus (Teleostei, Atherinidae) in the northern Murray-Darling Basin, Australia

    DEFF Research Database (Denmark)

    Moy, Karl G.; Wilson, G. Glenn; Ellison, Tanya L.

    2018-01-01

    The Darling hardyhead, Craterocephalus amniculus (Atherinidae), is a threatened fish species inhabiting upstream reaches of a number of northern Murray-Darling Basin catchments. Little is known of its life history. Our goal was to determine patterns of seasonal size structure, interannual...... most of the diet while over half the gut contents at the downstream site was unidentified detritus. Preference was shown for pool habitats with a sand or cobble substrate, increased channel depth and width and distance from the bank, and reduced flow velocity. Overhanging exotic riparian vegetation...

  12. Tectono-sedimentary evolution of an extensional basin revealed by a combined photo-geological and field-mapping approach. The Montefalco Basin (Northern Apennines, Italy)

    Science.gov (United States)

    Bucci, Francesco; Mirabella, Francesco; Santangelo, Michele; Cardinali, Mauro; Guzzetti, Fausto

    2016-04-01

    Active extensional basins are important since their sedimentary infills and bounding tectonic structures provide: i) sinks with preservation potential for sedimentary and fossil records of past changes in climate and sediment/water supply, ii) information on the growth, activity, decay and death of normal faults, iii) vast economic reserves of hydrocarbons, water and minerals. Unfortunately, quaternary extensional basins, especially if located in humid and temperate climate environments, are often characterized by extensively cultivated areas, homogeneous terrains and quite flat morphologies. Furthermore, they commonly host human settlements, together with roads, economic and industrial infrastructures, with a consequent limited availability of good outcrops. Such a limitation can (often severely) hamper an adequate mapping of the sedimentary infill. Therefore alternative methodological approaches (such as aerial photographs interpretation, API) are needed to integrate heterogeneous and incomplete datasets. This contribution presents an updated photo-geological map of a Quaternary extensional basin in Central Italy, the Montefalco Basin. This basin developed in a continental environment characterized by clayey-sandy lacustrine and fluvial sequences (late Pliocene - early Pleistocene) underlying more recent coarse grained deposits related to alluvial fan environment (early-to-late Pleistocene) and younger palustrine deposits (late Pleistocene). Since the late Pleistocene, regional uplift and local tectonics led to the end of deposition in the Montefalco basin, which experienced a diffuse incision and the modification of the drainage network, in response to the W-to-E migration of active faulting and tectonic subsidence. The new photo-geological map represents an important improvement compared to the existing data, since it provides unprecedented and spatially distributed information on the geometry of the continental deposits and on the tectonic structures affecting

  13. Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China.

    Science.gov (United States)

    Zhang, Junwen; Ma, Teng; Feng, Liang; Yan, Yani; Abass, Olusegun K; Wang, Zhiqiang; Cai, Huawei

    2017-04-15

    Studies have shown that arsenic is desorbed/released into groundwater as a result of bacterial reduction of As(V) and Fe(III). However, bacterial activities like sulfate reduction process can also reduce the content of arsenic in groundwater. In this study, we examined the effects of different biogeochemical processes (e.g. NO 3 - and SO 4 2- reduction) on arsenic, by investigating the chemical characteristics and bacterial community structure of groundwater in the Datong Basin, northern China. Along the groundwater flow path, arsenic concentration increased from <1 to 947.6μg/L with dominant bacteria change from aerobic (Fluviicola, Rhodococcus) to denitrifying bacteria (Thauera, Gallionella), and then to sulfate reducing bacteria (Desulfosporosinus). According to the groundwater redox sensitive indicators (Eh, NO 3 - , SO 4 2- /Cl - and Fe 2+ ) concentrations (or ratios), the sampling points were approximately divided into three zones (I, I'' and II). Variation in features of these indicators suggested that the groundwater evolved from a weakly oxidizing environment (Zone I, Eh average 93.3mV, respectively) to strong reducing environment (Zone II, Eh average -101.8mV). In Zone I, bacteria mainly consuming O 2 or NO 3 - were found which inhibits Fe(III) and As(V) reduction reaction, resulting in a low As zone (<1 to 3.3μg/L). However, in Zone II, where O 2 and NO 3 - have been depleted, SO 4 2- reduction appears to be the dominant process, and the Fe(III) and As(V) reduction processes are also occurring and hence, enrichment of As in the groundwater (2.8 to 947.6μg/L, average 285.6μg/L). Besides, bacterial Fe(III) reduction process was retarded due to the weakly alkaline conditions (pH7.60-8.11, average 7.83), but abiotic Fe(III) reduction by HS - may be continued. Therefore, we conclude that the Fe(III) and As(V) reduction processes contributed to arsenic enrichment in the groundwater, and the reductive desorption of arsenate is the main occurring process

  14. Palynology, petrography and geochemistry of the Sewickley coal bed (Monongahela Group, Late Pennsylvanian), Northern Appalachian Basin, USA

    Science.gov (United States)

    Eble, C.F.; Pierce, B.S.; Grady, W.C.

    2003-01-01

    Forty-two bench samples of the Sewickley coal bed were collected from seven localities in the northern Appalachian Basin and analyzed palynologically, petrographically, and geochemically. The Sewickley coal bed occurs in the middle of the Pittsburgh Formation (Monongahela Group) and is of Late Pennsylvanian age. Palynologically, it is dominated by spores of tree ferns. Tree fern spore taxa in the Sewickley include Punctatisporites minutus, Punctatosporites minutus, Laevigatosporites minimus, Spinosporites exiguus, Apiculatasporites saetiger, and Thymospora spp. In fact, Punctatisporites minutus was so abundant that it had to be removed from the standard counts and recorded separately (average 73.2%). Even when Punctatisporites minutus is removed from the counts, tree fern spores still dominate a majority of the assemblages, averaging 64.4%. Among the tree fern spores identified in the Sewickley coal, Thymospora exhibits temporal and spatial abundance variation. Thymospora usually increases in abundance from the base to the top of the bed. Thymospora is also more abundant in columns that are thick (>100 cm) and low in ash yield (< 12.0%, dry basis). Calamite spores (e.g. Calamospora spp., Laevigatosporites minor, and L. vulgaris) are the next most abundant plant group represented in the Sewickley coal, averaging 20%. Contributions from all other plant groups are minor in comparison. Petrographically, the Sewickley coal contains high percentages of vitrinite (average 82.3%, mineral matter-free (mmf)), with structured forms being more common than unstructured forms. In contrast, liptinite and inertinite macerals both occur in low percentages (average 7.7% and 10.0%, respectively). Geochemically, the Sewickley coal has a moderate ash yield (average 12.4%) and high total sulfur content (average 3.4%). Four localities contained a high ash or carbonaceous shale bench. These benches, which may be coeval, are strongly dominated by tree fern spores. Unlike the lower ash

  15. Holocene Paleoenvironment of the North-central Great Basin: Preliminary Results from Favre Lake, Northern Ruby Mountains, Nevada

    Science.gov (United States)

    Starratt, S.; Wahl, D.; Wan, E.; Anderson, L.; Wanket, J.; Olson, H.; Lloyd-Davies, T.; Kusler, J.

    2009-12-01

    Little is known about Holocene climate variability in north-central Nevada. This study aims to assess changes in watershed vegetation, fire history, lake levels and limnological conditions in order to understand secular to millennial-scale changes in regional climate. Favre Lake (2,899 m a.s.l.; 12 m deep; 7.7 hectares) is a flow-through lake in the northern Ruby Mountains. The primary sources of influent, both of which appear to be intermittent, are Castle Lake (2,989 m a.s.l.) and Liberty Lake (3,077 m a.s.l.). The bedrock of the three lake basins is early Paleozoic marble and Mesozoic granite and metamorphic rocks. Bathymetric maps and temperature, pH, salinity, and conductivity profiles have been generated for Favre Lake. Surface samples and a series of cores were also collected using a modified Livingstone piston corer. The presence of the Mazama ash in the basal sediment (~4 m below the sediment/water interface) indicates the record extends to ~7,700 cal yr B.P. Magnetic susceptibility (MS) and loss-on-ignition data indicate that the sediments in the lowest part of the core contain primary and reworked Mazama ash. About 2,000 years ago CaCO3 increased from 2 to 3% of the inorganic sediment. The upper 25 cm of the core are marked by an increase in MS which may indicate increased erosion due to grazing. Between about 7,700 and 6,000 cal yr B.P. the diatom flora is dominated by a diverse assemblage of benthic species. The remainder of the core is dominated by Fragilaria, suggesting that lake level rose and flooded the shelf that surrounds the depocenter of the lake. This is supported by changes in the abundance of the aquatic fern Isoetes. Pinus and Artemisia dominate the pollen record, followed by subordinate levels of Poaceae, Asteraceae, Amaranthaceae, and Sarcobatus. The late early Holocene (7,700-6,000 cal yr B.P.) is dominated by Pinus which is present in reduced amounts during the middle Holocene (6,000-3,000 cal yr B.P.) and then returns to dominance in

  16. Hydrocarbon potential of Early Cretaceous lacustrine sediments from Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Insight from organic geochemistry and petrology

    Science.gov (United States)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Adegoke, Adebanji Kayode; Maigari, A. S.; Haruna, A. I.; Yaro, Usman Y.

    2017-05-01

    The Early Cretaceous lacustrine sediments from Bima Formation in the Yola Sub-basin, Northern Benue Trough, northeastern Nigeria were studied based on organic geochemistry and petrology. This is in other to provide information on hydrocarbon generation potential; organic matter type (quality), richness (quantity), origin/source inputs, redox conditions (preservation) and thermal maturation in relation to thermal effect of Tertiary volcanics. The total organic carbon (TOC) contents ranges from 0.38 to 0.86 wt % with extractable organic matter (EOM) below 1000 ppm and pyrolysis S2 yield values from 0.16 to 0.68 mg/g, suggesting poor to fair source rock richness. Based on kerogen pyrolysis and microscopy coupled with biomarker parameters, the organic matters contain Type I (lacustrine algae), Type III (terrestrially derived land-plants) and Type IV kerogens deposited in a mixed lacustrine-terrestrial environment under suboxic to relatively anoxic conditions. This suggest potential occurrence of Early Cretaceous lacustrine sediments (perhaps Lower Cretaceous petroleum system) in Yola Sub-basin of the Northern Benue Trough as present in the neighbouring basins of Chad, Niger and Sudan Republics that have both oil and gas generation potential within the same rift trend (WCARS). Vitrinite reflectance (%Ro) and Tmax values of the lacustrine shales ranges from 1.12 to 2.32 VRo% and 448-501 °C, respectively, indicating peak-late to post-maturity stage. This is supported by the presence of dark brown palynomorphs, amorphous organic matter and phytoclasts as well as inertinite macerals. Consequently, the organic matters in the lacustrine shales of Bima Formation in the Yola Sub-basin appeared as a source of oil (most likely even waxy) and gas prone at a relatively deeper part of the basin. However, the high thermal maturity enhanced the organic matters and most of the hydrocarbons that formed in the course of thermal maturation were likely expelled to the reservoir rock units

  17. Facies analysis, depositional environments and paleoclimate of the Cretaceous Bima Formation in the Gongola Sub - Basin, Northern Benue Trough, NE Nigeria

    Science.gov (United States)

    Shettima, B.; Abubakar, M. B.; Kuku, A.; Haruna, A. I.

    2018-01-01

    Facies analysis of the Cretaceous Bima Formation in the Gongola Sub -basin of the Northern Benue Trough northeastern Nigeria indicated that the Lower Bima Member is composed of alluvial fan and braided river facies associations. The alluvial fan depositional environment dominantly consists of debris flow facies that commonly occur as matrix supported conglomerate. This facies is locally associated with grain supported conglomerate and mudstone facies, representing sieve channel and mud flow deposits respectively, and these deposits may account for the proximal alluvial fan region of the Lower Bima Member. The distal fan facies were represented by gravel-bed braided river system of probably Scot - type model. This grade into sandy braided river systems with well developed floodplains facies, forming probably at the lowermost portion of the alluvial fan depositional gradient, where it inter-fingers with basinal facies. In the Middle Bima Member, the facies architecture is dominantly suggestive of deep perennial sand-bed braided river system with thickly developed amalgamated trough crossbedded sandstone facies fining to mudstone. Couplets of shallow channels are also locally common, attesting to the varying topography of the basin. The Upper Bima Member is characterized by shallow perennial sand-bed braided river system composed of successive succession of planar and trough crossbedded sandstone facies associations, and shallower channels of the flashy ephemeral sheetflood sand - bed river systems defined by interbedded succession of small scale trough crossbedded sandstone facies and parallel laminated sandstone facies. The overall stacking pattern of the facies succession of the Bima Formation in the Gongola Sub - basin is generally thinning and fining upwards cycles, indicating scarp retreat and deposition in a relatively passive margin setting. Dominance of kaolinite in the clay mineral fraction of the Bima Formation points to predominance of humid sub - tropical

  18. Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell [Pacific States Marine Fisheries Commission].

    2009-09-10

    This report presents results for year seventeen in the basin-wide Experimental Northern Pikeminnow Management Program to harvest northern pikeminnow1 (Ptychocheilus oregonensis) in the Columbia and Snake Rivers. This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991 - a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional

  19. Petroleum systems of the Eastern Venezuelan basin

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, S.C. (DGSI, The Woodlands, TX (United States))

    1991-03-01

    The Eastern Venezuelan basin (area 165,000 km{sup 2}) is well known for its Orinoco Heavy Oil belt and many large accumulations of medium and light oils and gas in the Maturin and Guarico subbasins. A single petroleum system is responsible for all the oil accumulations in the Orinoco Oil belt and the maturin subbasin and the majority of oil deposits in the Guarico subbasin. Source rocks for the system are the calcareous shales and limestones of Upper Cretaceous Querecual and San Antonio formations. Geologic reconstruction and basin modeling have shown the development of huge generating areas along the northern parts of the Guarico and Maturin subbasins during early stages of foreland basin development in lower/middle Miocene times. Expelled oils migrated southward and updip for long distances (150-300 km) along undistributed homoclinal surfaces successively through the Upper Cretaceous, Oligocene, and Miocene sandstone carrier beds under progressively younger Tertiary marine shales. The oils finally accumulated in Miocene sandstone stratigraphic traps. Biodegradation of originally mature medium to light oils in shallow lower/middle Miocene reservoirs formed the heavy and extra-heavy oils of the Orinoco Oil belt. The oils in the Maturin and Guarico subbasins are found in structural traps within many different reservoirs. They are mainly mature and medium to light gravity oils but some heavy oils were formed in shallow reservoirs by biodegradation and in deep reservoirs by deasphaltenation. The Cretaceous sourced oils generated during upper Miocene-Recent times migrated vertically along thrusts and faults that caused disruptions of regional carrier beds and seals and accumulated into different stratigraphic and structural levels.

  20. Neogene deformation of thrust-top Rzeszów Basin (Outer Carpathians, Poland)

    Science.gov (United States)

    Uroda, Joanna

    2015-04-01

    The Rzeszów Basin is a 220 km2 basin located in the frontal part of Polish Outer Carpathians fold-and-thrust belt. Its sedimentary succession consist of ca. 600 m- thick Miocene evaporates, litoral and marine sediments. This basin developed between Babica-Kąkolówka anticline and frontal thrust of Carpathian Orogen. Rzeszów thrust-top basin is a part of Carpathian foreland basin system- wedge-top depozone. The sediments of wedge -top depozone were syntectonic deformed, what is valuable tool to understand kinematic history of the orogen. Analysis of field and 3D seismic reflection data showed the internal structure of the basin. Seismic data reveal the presence of fault-bend-folds in the basement of Rzeszów basin. The architecture of the basin - the presence of fault-releated folds - suggest that the sediments were deformed in last compressing phase of Carpathian Orogen deformation. Evolution of Rzeszów Basin is compared with Bonini et.al. (1999) model of thrust-top basin whose development is controlled by the kinematics of two competing thrust anticlines. Analysis of seismic and well data in Rzeszów basin suggest that growth sediments are thicker in south part of the basin. During the thrusting the passive rotation of the internal thrust had taken place, what influence the basin fill architecture and depocentre migration opposite to thrust propagation. Acknowledgments This study was supported by grant No 2012/07/N/ST10/03221 of the Polish National Centre of Science "Tectonic activity of the Skole Nappe based on analysis of changes in the vertical profile and depocentre migration of Neogene sediments in Rzeszów-Strzyżów area (Outer Carpathians)". Seismic data by courtesy of the Polish Gas and Oil Company. References Bonini M., Moratti G., Sani F., 1999, Evolution and depocentre migration in thrust-top basins: inferences from the Messinian Velona Basin (Northern Apennines, Italy), Tectonophysics 304, 95-108.

  1. Macroecology, paleoecology, and ecological integrity of terrestrial species and communities of the interior Columbia basin and northern portions of the Klamath and Great Basins.

    Science.gov (United States)

    Bruce G. Marcot; L.K. Croft; J.F. Lehmkuhl; R.H. Naney; C.G. Niwa; W.R. Owen; R.E. Sandquist

    1998-01-01

    This report present information on biogeography and broad-scale ecology (macroecology) of selected fungi, lichens, bryophytes, vascular plants, invertebrates, and vertebrates of the interior Columbia River basin and adjacent areas. Rareplants include many endemics associated with local conditions. Potential plant and invertebrate bioindicators are identified. Species...

  2. Actual Evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq Using the Surface Energy Balance Algorithm for Land (SEBAL and Water Balance

    Directory of Open Access Journals (Sweden)

    Hussein Jassas

    2015-04-01

    Full Text Available Increasing dependence on groundwater requires a detailed determination of the different outputs and inputs of a basin for better water management. Determination of spatial and temporal actual evapotranspiration (ETa, in this regard, is of vital importance as there is significant water loss from drainage basins. This research paper uses the Surface Energy Balance Algorithm for Land (SEBAL, as well as the water balance, to estimate the spatial and temporal ETa in the Al-Khazir Gomal Basin, Northern Iraq. To compensate for the shortage in rainfall, and to irrigate summer crops, farmers in this basin have been depending, to a large extent, on groundwater extracted from the underlying unconfined aquifer, which is considered the major source for both domestic and agricultural uses in this basin. Rainfed farming of wheat and barley is one of the most important activities in the basin in the winter season, while in the summer season, agricultural activity is limited to small rice fields and narrow strips of vegetable cultivation along the Al-Khazir River. The Landsat Thematic Mapper images (TM5 acquired on 21 November 2006, 9 March 2007, 5 May 2007, 21 July 2007, and 23 September 2007 were used, along with a digital elevation model (DEM and ground-based meteorological data, measured within the area of interest. Estimation of seasonal ETa from periods between satellite overpasses was computed using the evaporative fraction (Ʌ. The water balance approach was utilized, using meteorological data and river hydrograph analysis, to estimate the ETa as the only missing input in the predefined water balance equation. The results of the two applied methods were comparable. SEBAL results were compared with the land use land cover (LULC map. The river showed the highest ETa, as evaporation from the free-water surface. Rice fields, irrigated in the summer season, have a high ETa in the images, as these fields are immersed in water during June, July and August

  3. Overview of the potential and identified petroleum source rocks of the Appalachian basin, eastern United States: Chapter G.13 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Coleman, James L.; Ryder, Robert T.; Milici, Robert C.; Brown, Stephen; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin is the oldest and longest producing commercially viable petroleum-producing basin in the United States. Source rocks for reservoirs within the basin are located throughout the entire stratigraphic succession and extend geographically over much of the foreland basin and fold-and-thrust belt that make up the Appalachian basin. Major source rock intervals occur in Ordovician, Devonian, and Pennsylvanian strata with minor source rock intervals present in Cambrian, Silurian, and Mississippian strata.

  4. The Pre-historical Eruption of Volcanoes Near a Capital-city: Inferred From Tephra Deposits in the Taipei Basin, northern Taiwan

    Science.gov (United States)

    Chen, C.; Lin, C.

    2006-12-01

    The volcanic pyroclastic flows, lahars and/or ashes derived from volcanic eruptions are a serious threat of human lives and regional economies, especially in the densely populated area. In case, more than two million populations in the capital-city Taipei, northern Taiwan just live in the vicinity of the Tatun Volcanic Group (TVG), how to make effective and reliable volcanic hazard mitigation is absolutely mandatory. Volcano is a pretty complex system. Hazard mitigation can be achieved only by applying numerous techniques. Understanding the recent eruptive history will be the most important information for prediction the future activity of eruption. After 1995, the Center Geological Survey of Ministry of Economic Affair handled to drill more than 20 wells in the Taipei basin to investigate the subsurface geology of basin. These continuous core samples offered the best materials to investigate if any volcanic ashes had deposited in the basin. The young juvenile volcanic ashes V pumice tuff were firstly identified in the two cores of the Kuantu well (KT- 1) and the Shihlin well (SL-1 in the late Pleistocene Sunshan formation. According to the radiocarbon (C-14) ages of core samples (Lin et al, 1998, Shieh, 2001), the time of this tephra deposit was extrapolated around 18.6 kyrs C-14 B.P.. Respecting, this tephra would like to be temperately named as the 18 kyrs Taipei Tuff (18 KTT). These air-fall ash deposits found in the core directly demonstrated that there had been re-active in the TVG in the recent time. More notable thing is that there are three historical records of submarine eruptions in northern offshore Taiwan, then, a program of the volcanic hazard reduction should be seriously considered around the capital city-Taipei.

  5. The transtensional offshore portion of the northern San Andreas fault: Fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth

    Science.gov (United States)

    Beeson, Jeffrey W.; Johnson, Samuel Y.; Goldfinger, Chris

    2017-01-01

    We mapped an ~120 km offshore portion of the northern San Andreas fault (SAF) between Point Arena and Point Delgada using closely spaced seismic reflection profiles (1605 km), high-resolution multibeam bathymetry (~1600 km2), and marine magnetic data. This new data set documents SAF location and continuity, associated tectonic geomorphology, shallow stratigraphy, and deformation. Variable deformation patterns in the generally narrow (∼1 km wide) fault zone are largely associated with fault trend and with transtensional and transpressional fault bends.We divide this unique transtensional portion of the offshore SAF into six sections along and adjacent to the SAF based on fault trend, deformation styles, seismic stratigraphy, and seafloor bathymetry. In the southern region of the study area, the SAF includes a 10-km-long zone characterized by two active parallel fault strands. Slip transfer and long-term straightening of the fault trace in this zone are likely leading to transfer of a slice of the Pacific plate to the North American plate. The SAF in the northern region of the survey area passes through two sharp fault bends (∼9°, right stepping, and ∼8°, left stepping), resulting in both an asymmetric lazy Z–shape sedimentary basin (Noyo basin) and an uplifted rocky shoal (Tolo Bank). Seismic stratigraphic sequences and unconformities within the Noyo basin correlate with the previous 4 major Quaternary sea-level lowstands and record basin tilting of ∼0.6°/100 k.y. Migration of the basin depocenter indicates a lateral slip rate on the SAF of 10–19 mm/yr for the past 350 k.y.Data collected west of the SAF on the south flank of Cape Mendocino are inconsistent with the presence of an offshore fault strand that connects the SAF with the Mendocino Triple Junction. Instead, we suggest that the SAF previously mapped onshore at Point Delgada continues onshore northward and transitions to the King Range thrust.

  6. Development of an integrated water resources management plan for the Lake Manyara sub-basin, Northern Tanzania

    Science.gov (United States)

    Ngana, J. O.; Mwalyosi, R. B. B.; Madulu, N. F.; Yanda, P. Z.

    Water resources management in Lake Manyara sub-basin is an issue of very high significance as the sub-basin hosts a number of national and global assets of great socio-cultural, ecological and economic values. The sub-basin comprise of a Biosphere Reserve with boosting tourism from Lake Manyara National Park with a variety of wildlife population, large livestock population and highly fertile land for agricultural production. The prevailing system of uncoordinated water resources management in the sub-basin cannot sustain the ever increasing water needs of the various expanding sectors, therefore a strategy must be sought to integrate the various sectoral needs against the available water resources in order to attain both economic and ecological sustainability. Through participatory approach with the stakeholders, the study has established key issues, demonstrated considerable experience in water resources management in the sub-basin including existence of water boards, water committees in some districts as well as land resources management practices However, a number of constraints were noted which inhibit sustainable water resources management including ignorance of water policies, conflicting sectoral policies, lack of coordination between sectors, high in migration rates into the basin, heavy in migration of livestock, conflicts between sectors, poor land use resulting in soil erosion and sedimentation, lack of comprehensive data base on water resources and water needs for : domestic, tourism, livestock, irrigation, wild life and environmental flows. As a way forward it was recommended that a basin wide legally mandated body (involving all levels) be established to oversee water use in the sub-basin. Other strategies include capacity building of stakeholders on water natural resources management policies, water rights and enforcement of laws. This progress report paper highlights the wealth of knowledge that stakeholders possess on water resources management and

  7. 2.5D seismic velocity modelling in the south-eastern Romanian Carpathians Orogen and its foreland

    Science.gov (United States)

    Bocin, Andrei; Stephenson, Randell; Tryggvason, Ari; Panea, Ionelia; Mocanu, Victor; Hauser, Franz; Matenco, Liviu

    2005-12-01

    The DACIA-PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the objective of obtaining new information on the deep structure of the external Carpathians nappe system and the architecture of the Tertiary/Quaternary basins developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly WNW-ESE direction, from near the southeast Transylvanian Basin, across the mountainous south-eastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion of the DACIA-PLAN first arrival data. The results show that the data fairly accurately resolve the transition from sediment to crystalline basement beneath the Focsani Basin, where industry seismic data are available for correlation, at depths up to about 10 km. Beneath the external Carpathians nappes, apparent basement (material with velocities above 5.8 km/s) lies at depths as shallow as 3-4 km, which is less than previously surmised on the basis of geological observations. The first arrival travel-time data suggest that there is significant lateral structural heterogeneity on the apparent basement surface in this area, suggesting that the high velocity material may be involved in Carpathian thrusting.

  8. Sedimentary facies and gas accumulation model of Lower Shihezi Formation in Shenguhao area, northern Ordos basin, China

    Science.gov (United States)

    Lin, Weibing; Chen, Lin; Lu, Yongchao; Zhao, Shuai

    2017-04-01

    The Lower Shihezi formation of lower Permian series in Shenguhao develops the highest gas abundance of upper Paleozoic in China, which has already commercially produced on a large scale. The structural location of Shenguhao belongs to the transition zone of Yimeng uplift and Yishan slope of northern Ordos basin, China. Based on the data of core, well logging and seismic, the sedimentary facies and gas accumulation model have been studied in this paper. Sedimentary facies analysis shows that the braided delta is the major facies type developed in this area during the period of Lower Shihezi formation. The braided delta can be further divided into two microfacies, distributary channel and flood plain. The distributary channel sandbody develops the characteristics of scour surface, trough cross beddings and normal grading sequences. Its seismic reflection structure is with the shape of flat top and concave bottom. Its gamma-ray logging curve is mainly in a box or bell shape. The flood plain is mainly composed of thick mudstones. Its seismic reflection structure is with the shape of parallel or sub-parallel sheet. Its gamma-ray logging curve is mainly in a linear tooth shape. On the whole, the distribution of sandbody is characterized by large thickness, wide area and good continuity. Based on the analysis of the sea level change and the restoration of the ancient landform in the period of Lower Shihezi formation, the sea level relative change and morphology of ancient landform have been considered as the main controlling factors for the development and distribution of sedimentary facies. The topography was with big topographic relief, and the sea level was relatively low in the early stage of Low Shihezi formation. The sandbody distributed chiefly along the landform depressions. The sandbody mainly developed in the pattern of multiple vertical superpositions with thick layer. In the later stage, landform gradually converted to be flat, and strata tended to be gentle

  9. Pockmark development in the Petrel Sub-basin, Timor Sea, Northern Australia: Seabed habitat mapping in support of CO2 storage assessments

    Science.gov (United States)

    Nicholas, W. A.; Nichol, S. L.; Howard, F. J. F.; Picard, K.; Dulfer, H.; Radke, L. C.; Carroll, A. G.; Tran, M.; Siwabessy, P. J. W.

    2014-07-01

    The extent to which fluids may leak from sedimentary basins to the seabed is a critical issue for assessing the potential of a basin for carbon capture and storage. The Petrel Sub-basin, located beneath central and eastern Joseph Bonaparte Gulf in tropical northern Australia, was identified as potentially suitable for the geological storage of CO2 because of its geological characteristics and proximity to offshore gas and petroleum resources. In May 2012, a multidisciplinary marine survey (SOL5463) was undertaken to collect data in two targeted areas of the Petrel Sub-basin to facilitate an assessment of its CO2 storage potential. This paper focuses on Area 1 of that survey, a 471 km2 area of sediment-starved shelf (water depths of 78 to 102 m), characterised by low-gradient plains, low-lying ridges, palaeo-channels and shallow pockmarks. Three pockmark types are recognised: small shallow unit pockmarks 10-20 m in diameter (generally <1 m, rarely to 2 m deep), composite pockmarks of 150-300 m diameter formed from the co-location of several cross-cutting pockmarks forming a broad shallow depression (<1 m deep), and pockmark clusters comprised of shallow unit pockmarks co-located side by side (150-300 m width overall, <1 m deep). Pockmark distribution is non-random, focused within and adjacent to palaeo-channels, with pockmark clusters also located adjacent to ridges. Pockmark formation is constrained by AMS 14C dating of in situ mangrove deposits and shells to have begun after 15.5 cal ka BP when a rapid marine transgression of Bonaparte Shelf associated with meltwater pulse 1A drowned coastal mangrove environments. Pockmark development is likely an ongoing process driven by fluid seepage at the seabed, and sourced from CO2 produced in the shallow sub-surface (<2 m) sediment. No evidence for direct connection to deeper features was observed.

  10. Anatomy of biocalcarenitic units in the Plio-Pleistocene record of the Northern Apennines (Italy)

    Science.gov (United States)

    Cau, Simone; Roveri, Marco; Taviani, Marco

    2017-04-01

    The Castell'Arquato Basin (CAB) in the foothills of the thrust-belt Northern Apennines is a foreland basin infilled by Plio-Quaternary sediments and a reference area for Plio-Pleistocene biostratigraphy. The CAB exposes plurimetric biodetrital carbonate units at discrete temporal intervals. Such shell-rich units are at places lithified, turning into conspicuous biodetritral carbonate rocks (biocalcarenites) that display a cyclical stacking motif highlighted by the regular alternation with finer-grained marine deposits. The cyclical nature of thick biocalcarenites has been hypothesized to be orbitally-controlled by obliquity and/or precession cyclicity. Furthermore, biocalcarenite-mudstone couplets form distinct clusters governed by 100-400 ka eccentricity maxima starting from 3.1 Ma at the inception of the Northern Hemisphere glaciation. They correlate with sapropels cycles formed at times of maximum insolation (precession minima). The CAB calcarenites are poorly known with respect to their environmental genetic context what motivated a detailed paleoecological analysis to unravel at best their formative context. Five distinct biofacies arranged in stacking patterns are identified through two-way cluster analysis based on the macrofossil content. Our quantitative and qualitative results suggest that these polytaxic shell concentrations and their bracketing marine mudstones developed in middle shelf settings being sensitive to climatically-driven changes.

  11. Tectonic control on turbiditic sedimentation: The Late Cretaceous-Eocene successions in the Sinop-Boyabat Basin of north-central Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Janbu, Nils Erik

    2004-07-01

    being prepared for publication: The Sinop-Boyabat Basin of northern Turkey: Its development from Backarc rift into retroarc foreland basin and implications for the How shallow can the deep-sea Nereites ichnofacies can be. (Author)

  12. Lateglacial and Early Holocene vegetation history of the northern Wetterau and the Amöneburger Basin (Hessen), central-west Germany.

    Science.gov (United States)

    Bos, J A.A.

    2001-06-01

    The Lateglacial and Early Holocene vegetation history of the northern Wetterau and Amöneburger Basin, two intra-montane basins in Hessen, central-west Germany, is reconstructed by means of pollen and macrofossil analyses. Regional pollen assemblage zones are defined for the Lateglacial and Early Holocene. After calibration of the radiocarbon dates and establishment of age/depth relationships, the ages of the pollen zone boundaries are calculated. The regional vegetation changes correlate closely with the major fluctuations in the delta18O curve of the Greenland ice cores spanning the same time period. During the early Lateglacial, the open herbaceous vegetation with dwarf shrubs in the northern Wetterau was replaced by woodlands. Initially these woodlands consisted of birch, but after the immigration of pine, mixed forests of pine and birch developed. Soon after its immigration pine became dominant and pine woodlands largely replaced the birch forests. Only on the locally wetter substrates of the river floodplain did Betula stands persist. Gradually the importance of herbaceous communities declined and the pine woodlands lost their open character. During the Lateglacial two regressive phases in the vegetation succession are reflected in the data which are equated with the Older- and Younger Dryas biozones. At the beginning of the Younger Dryas, the forest-limit was lowered and the importance of herbaceous communities increased. Later, pine woodlands thinned and Ericales became part of the vegetation, indicating the development of more acid, nutrient-poor soils. A subdivision of the Younger Dryas biozone into a wetter, colder first part and a drier, warmer second part is suggested. At the beginning of the Early Holocene, pine woodlands became more closed and soils more stabilised. The transition between the Younger Dryas and Preboreal biozones is indicated by a lithological change to organic (-rich) deposits. Betula stands persisted on the locally wetter substrates

  13. A constrained African craton source for the Cenozoic Numidian Flysch: Implications for the palaeogeography of the western Mediterranean basin

    Science.gov (United States)

    Thomas, M. F. H.; Bodin, S.; Redfern, J.; Irving, D. H. B.

    2010-07-01

    The provenance of the Numidian Flysch in the western Mediterranean remains a controversial subject which hinders understanding of this regionally widespread depositional system. The Numidian Flysch is a deep marine formation dated as Oligocene to Miocene which outcrops throughout the Maghreb and into Italy. Evidence that is widely used for provenance analysis has not previously been reviewed within the context of the Maghrebian Flysch Basin as a whole. The structural location within the Alpine belt indicates deposition proximal to the African margin, while the uniformity of the Numidian Flysch petrofacies suggests a single cratonic source, in stark contrast to heterolithic and immature flysch formations from the north of the basin. Detrital zircon ages constrain a source region with Pan-African and Eburnian age rocks, unaffected by either Hercynian or Alpine tectonic events, which precludes the European basement blocks to the north of the basin. Palaeocurrent trends which suggest a northern source are unreliable given foreland basin analogues and observed structural complications. An African craton source remains the only viable option once these data are reviewed in their entirety, and the Numidian Flysch therefore represents a major Cenozoic drainage system on the North African margin. Deposition is concurrent with regional Atlas uplift phases, and coincidental with globally cooling climates and high sea levels. The Numidian Flysch is therefore interpreted to represent a highstand passive margin deposit, with timing of deposition controlled primarily by hinterland uplift and climatic fluctuations.

  14. Hydrocarbon rims on monazite in Permian-Triassic arenites, northern Perth Basin, Western Australia: Pointers to the former presence of oil

    Science.gov (United States)

    Rasmussen, Birger; Glover, J. E.; Alexander, R.

    1989-02-01

    Black opaque hydrocarbon rims about 0.05mm thick are preserved around detrital monazite grains in Permian-Triassic arenites of the northern Perth Basin, Western Australia. Chromatographic analysis indicates derivation from oil chemically like that elsewhere in the sequence, and the rims seem to be remnants of oil, which was largely flushed away. The hydrocarbon rims may have adhered to the monazite grains because of irradiation;they are not found on other grains. Monazite-rich heavy mineral bands are probably responsible for abnormally high radioactivity recorded locally by gamma-ray logs in wells penetrating the sandstones. A preliminary search has revealed similar rims around monazite in other Western Australian arenites ranging in age from Silurian to Cretaceous. Thin-section examination of heavy mineral concentrations may therefore be a useful, simple technique to indicate the former presence of hydrocarbons in dry arenites.

  15. Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity?

    Science.gov (United States)

    Suter, F.; Martínez, J. I.; Vélez, M. I.

    2011-04-01

    The detailed study of four deformed intervals from the Holocene fluvio-lacustrine deposits of the Santa Fe-Sopetrán Basin in northern Colombia shows 17 types of soft-sediment deformation (SSD) structures. Evidence indicates that seismic activity was responsible for the SSD structures, a conclusion reached after considering the environmental conditions at the time of sediment deposition and shortly after, and the detailed analysis of the driving force systems. Other triggers (i.e. overloading and rapid sedimentation), however, are not discarded. Intervals showing SSD structures occurred at centennial frequencies and apparently resulted from Mw 6-7 earthquakes. The Holocene age of these major shaking events should be seriously considered when evaluating the seismic hazard and risk for the middle Cauca Valley and the nearby city of Medellín with 3 million inhabitants.

  16. Baltazor KGRA and vicinity, Nevada: geothermal reservoir assessment case study, northern Basin and Range province. Final report, 1 October 1978-31 January 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wright, T.C.

    1983-01-01

    The Baltazor KGRA and McGee/Painted Hills geothermal prospects are located in northern Humboldt County, Nevada along the northwestern margin of the Basin and Range province. Exploration work other than drilling has included groundwater sampling, a microearthquake study, a geologic literature search and photogeologic mapping, compilation of aeromagnetic and gravity mapping, soil mercury surveying, electrical resistivity and self-potential surveys and detailed hydrothermal alteration mapping. Exploration drilling included 27 shallow temperature gradient holes, four intermediate-depth gradient wells and one 3703-foot deep test, Baltazor 45-14. The deep test penetrated Miocene rhyolite, andesite, basalt and andesitic basalt flows before excessive hold deviation forced an end to drilling and completion as a deep temperature observation well. A temperature survey two weeks after completion obtained a 119.7/sup 0/C (247.4/sup 0/F) reading at survey total depth, 1110 m (3640 feet).

  17. A preliminary analysis and assessment of hydrogeological conditions for in-situ leach mining of sandstone-type uranium deposit in northern Ordos basin

    International Nuclear Information System (INIS)

    Chen Fazheng; Zhao Jinfeng; Chang Baocheng; Gao Junyi

    2006-01-01

    A systematic analysis and assessment on hydrogeologic condition, the lithology and hydrogeologic structure of ore-hosting aquitfers, hydrodynamic condition, hydrochemical characteristics at a sandstone-type uranium deposit in northern Ordos basin is made in this paper. It has been concluded, that hydrogeologic condition in the study area is favorable, meeting the requirements for in-situ leach mining of the deposit. Aimed at the low artesian pressure head and low water output and based on the results of pumping-injection tests which led to the significant increase of water output, a technical scheme of pressured water injection has been proposed to artificially raise the artesian pressure head and increase the output of groundwater to satisfy the requirements of in-situ leach mining. (authors)

  18. Seasonal concentrations of organic contaminants at the fall line of the Susquehanna River basin and estimated fluxes to northern Chesapeake Bay, USA

    Science.gov (United States)

    Foster, G.D.; Lippa, K.A.; Miller, C.V.

    2000-01-01

    Riverine fluxes of several pesticides and other organic contaminants from above the fall line of the Susquehanna River basin to northern Chesapeake Bay, USA, were quantified in 1994. Base flow and storm flow samples collected at the fall line of the river from February to December 1994 were analyzed for both dissolved and particulate phase contaminants. Measured concentrations of the organonitrogen and organophosphorus pesticides varied mainly in response to the timing of their application to agricultural fields. Conversely, the concentrations of the more particle-sorptive contaminants such as polychlorinated biphenyls (PCBs), organochlorine (OC) insecticides, and polycyclic aromatic hydrocarbons (PAHs) were more directly correlated with river flow throughout the year. Annual fluxes were almost entirely in the dissolved phase for the organonitrogen and organophosphorus pesticides, distributed between the dissolved and particulate phases for the PCBs and OC insecticides, and primarily in the particulate phase for the PAHs.

  19. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model

    Energy Technology Data Exchange (ETDEWEB)

    Pohlmann Karl,Ye Ming

    2012-03-01

    Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

  20. Pleistocene deformations in the contexte of the Rharb foredeep basin (north western Atlantic Moroccan margin)

    Science.gov (United States)

    Maad, N.; Le Roy, P.; Sahabi, M.; Gutscher, M. A.; Dakki, M.; Hssain, M.; van Vliet-Lanoë, B.; Brahim, L. Ait; M'hammdi, N.; Trenteseaux, A.

    2009-04-01

    This study relates to the Cenozoic post rift deformations of Rharb foredeep basin in response to the Europe-Africa convergence. Here we are going to retail the tectonic structures of the Rharb basin, in particular the active front of the Prerifaine nappe in the area of Lalla Zahra. The method is based on the interpretations of the high resolution seismic reflection data acquired during the Protit2 (2003) and the Nomads cruises (2007). The surveys were conducted by the University of Brest in France and the Faculté des Sciences d'El Jadida in Morocco. They allowed to record more than 2000 km of seismic lines through the Rharb continental shelf. The integration of new data with industrial seismic lines provided by ONHYM and field observations collected along the coastline allows us to identify the formation and the recent evolution of the western termination of the Southern Rif Corridor. This coastal basin corresponds to the foredeep basin linked to the Rif Cordillera and extends southwards through the northern Moroccan Meseta that defines the foreland region of the Western Rif (Flinch,93). The integrated study clarifies the post-nappe evolution of the offshore Rharb basin during Neogene and quaternary times. A succession of deformations affect the Rharb basin with separating episodes of relaxation and quiescence. Their ages are based on chronostratigraphical attribution of mean unconformities. A Lower Pliocene episode is characterized by reactivation of faults affecting the Nappe. The uplift of the basin and the individualization of the Lallah Zarah ridge increases and controls the terrigenous fluxes. A Middle Pleistocene still active episode and corresponds to a new uplift of the two margins of the basin. Faulting remains more active in the North along the Lallah Zarah ridge and offshore Larache where large active listric faults are observed. The progressive segmentation of the basin determinates the sedimentary filling with cyclic sequences extending progressively

  1. Public perception of an ecological rehabilitation project in inland river basins in northern China: Success or failure.

    Science.gov (United States)

    Feng, Qi; Miao, Zheng; Li, Zongxing; Li, Jianguo; Si, Jianhua; S, Yonghong; Chang, Zongqiang

    2015-05-01

    The need for environmental protection challenges societies to deal with difficult problems because strategies designed by scientists to protect the environment often create negative effects on impoverished local residents. We investigated the effects of China's national and regional policies related to environmental protection and rehabilitation projects in inland river basins, by studying the effect of projects in the Heihe and Shiyang river basins, in northwest China. Interviews and surveys were conducted at 30 sites in the lower reaches of these two arid basins, an area that has experienced severe ecological degradation. The survey results show the ecological rehabilitation projects adversely affected the livelihoods of 70.35% of foresters, 64.89% of farmers and 62.24% of herders in the Minqing region in the lower Shiyang River Basin; also, the projects negatively affected 51.9% of residents in the Ejin Qi in the lower Heihe River Basin. This caused 16.33% of foresters, 39.90% of farmers and 45.32% of herders in the Minqing region to not support the project and 37.5% of residents in the Ejin Qi region said they will deforest and graze again after the project ends. The negative impacts of the policies connected to the projects cause these attitudes. The projects prohibit felling and grazing and require residents to give up groundwater mining; this results in a great amount of uncompensated economic loss to them. Extensive survey data document the concerns of local residents, concerns that are supported by the calculation of actual incomes. In addition, the surveys results show poorer interviewees believe the projects greatly affected their livelihoods. While citizens in this region support environment protection work, the poor require considerable assistance if one expects them to support this type of work. Governmental assistance can greatly improve their living conditions, and hence encourage them to participate in and support the implementation of the projects

  2. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China

    Science.gov (United States)

    Hou, Haihai; Shao, Longyi; Li, Yonghong; Li, Zhen; Zhang, Wenlong; Wen, Huaijun

    2018-03-01

    The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total of twenty-two shale samples were collected from the YQ-1 borehole in the Yuqia Coalfield, northern Qaidam Basin. The total organic carbon (TOC) contents, pore structure parameters, and fractal characteristics of the samples were investigated using TOC analysis, low-temperature nitrogen adsorption experiments, and fractal analysis. The results show that the average pore size of the Shimengou shales varied from 8.149 nm to 20.635 nm with a mean value of 10.74 nm, which is considered mesopore-sized. The pores of the shales are mainly inkbottle- and slit-shaped. The sedimentary environment plays an essential role in controlling the TOC contents of the low maturity shales, with the TOC values of shales from deep to semi-deep lake facies (mean: 5.23%) being notably higher than those of the shore-shallow lake facies (mean: 0.65%). The fractal dimensions range from 2.4639 to 2.6857 with a mean of 2.6122, higher than those of marine shales, which indicates that the pore surface was rougher and the pore structure more complex in these continental shales. The fractal dimensions increase with increasing total pore volume and total specific surface area, and with decreasing average pore size. With increasing TOC contents in shales, the fractal dimensions increase first and then decrease, with the highest value occurring at 2% of TOC content, which is in accordance with the trends between the TOC and both total specific surface area and total pore volume. The pore structure complexity and pore surface roughness of these low-maturity shales would be controlled by the combined effects of both sedimentary environments and the TOC contents.

  3. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes.

    Science.gov (United States)

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro; Gamboa, Carolina; Lictevout, Elisabeth

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water-rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ(18)O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Sub-arctic hydrology and climate change : a case study of the Tana River Basin in Northern Fennoscandia

    NARCIS (Netherlands)

    Dankers, Rutger

    2002-01-01

    The most significant changes in climate, due to the well-known enhanced greenhouse effect, are generally expected to occur at northern high latitudes. Sub-arctic environments, that are dominated by the presence of a seasonal snow cover, may therefore be particularly sensitive to global warming. The

  5. Re-evaluation of the activity of the Thoen Fault in the Lampang Basin, northern Thailand, based on geomorphology and geochronology

    Science.gov (United States)

    Wiwegwin, Weerachat; Sugiyama, Yuichi; Hisada, Ken-ichiro; Charusiri, Punya

    2011-09-01

    We applied remote sensing techniques and geomorphic index analysis to a study of the NE-SW-striking Thoen Fault, Lampang Basin, northern Thailand. Morphotectonic landforms, formed by normal faulting in the basin, include fault scarps, triangular facets, wine-glass canyons, and a linear mountain front. Along the Thoen Fault, the stream length gradient index records steeper slopes near the mountain front; the index values are possibly related to a normal fault system. Moreover, we obtained low values of the ratio of the valley floor width to valley height (0.44-2.75), and of mountain-front sinuosity (1.11-1.82) along various segments of the fault. These geomorphic indices suggest tectonic activity involving dip-slip displacement on faults. Although the geomorphology and geomorphic indices in the study area indicate active normal faulting, sedimentary units exposed in a trench at Ban Don Fai show no evidence of recent fault movement. In Ban Don Fai trench No. 2, accelerator mass spectrometry radiocarbon (AMS) ages and optically stimulated luminescence (OSL) ages indicate that deposition of the lowest exposed sedimentary unit occurred between 960 and 910 years ago. Therefore, the most recent movement upon the Ban Don Fai segment of the Thoen Fault occurred more than 960 years ago.

  6. Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth Basin, northern South China Sea

    Science.gov (United States)

    Tang, Xiaoyin; Yang, Shuchun; Hu, Shengbiao

    2017-11-01

    The Baiyun Sag, located in the deep-water area of the northern South China Sea, is the largest and deepest subbasin in the Pearl River Mouth Basin and one of the most important hydrocarbon-accumulation depression areas in China. Thermal history is widely thought to be of great importance in oil and gas potential assessment of a basin as it controls the timing of hydrocarbon generation and expulsion from the source rock. In order to unravel the paleo-heat flow of the Baiyun Sag, we first analyzed tectonic subsidence of 55 pseudo-wells constructed based on newly interpreted seismic profiles, along with three drilled wells. We then carried out thermal modeling using the multi-stage finite stretching method and calibrated the results using collected present-day vitrinite reflectance data and temperature data. Results indicate that the first and second heating of the Baiyun Sag after 49 Ma ceased at 33.9 Ma and 23 Ma. Reconstructed average basal paleoheat flow values at the end of the rifting periods are 57.7-86.2 mW/m2 and 66.7-97.3 mW/m2, respectively. Following the last heating period at 23 Ma, the study area has undergone a persistent thermal attenuation phase, and basal heat flow has cooled down to 64.0-79.2 mW/m2 at present.

  7. The kinematic evolution of the Serra Central Salient, Eastern Brazil: A Neoproterozoic progressive arc in northern Espinhaço fold-thrust belt

    Science.gov (United States)

    Bersan, Samuel Moreira; Danderfer, André; Lagoeiro, Leonardo; Costa, Alice Fernanda de Oliveira

    2017-12-01

    Convex-to-the-foreland map-view curves are common features in fold-thrust belts around cratonic areas. These features are easily identifiable in belts composed of supracrustal rocks but have been rarely described in rocks from relatively deeper crustal levels where plastic deformation mechanisms stand out. Several local salients have been described in Neoproterozoic marginal fold-thrust belts around the São Francisco craton. In the northern part of the Espinhaço fold-thrust belt, which borders the eastern portion of the São Francisco craton, both Archean-Paleoproterozoic basement rocks and Proterozoic cover rocks are involved in the so-called Serra Central salient. A combination of conventional structural analysis and microstructural and paleostress studies were conducted to characterize the kinematic and the overall architecture and processes involved in the generation of this salient. The results allowed us to determine that the deformation along the Serra Central salient occur under low-grade metamorphic conditions and was related to a gently oblique convergence with westward mass transport that developed in a confined flow, controlled by two transverse bounding shear zones. We propose that the Serra Central salient nucleates as a basin-controlled primary arc that evolves to a progressive arc with secondary vertical axis rotation. This secondary rotation, well-illustrated by the presence of two almost orthogonal families of folds, was dominantly controlled by buttress effect exert by a basement high located in the foreland of the Serra Central salient.

  8. Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (Anas acuta) sampled throughout the North Pacific Basin

    Science.gov (United States)

    Ramey, Andy M.; Schmutz, Joel A.; Reed, John A.; Fujita, Go; Scotton, Bradley D.; Casler, Bruce; Fleskes, Joseph P.; Konishi, Kan; Uchida, Kiyoshi; Yabsley, Michael J.

    2015-01-01

    Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta) at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA), California (USA), and Hokkaido (Japan) during August 2011 - May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%), 44 (5%), and 52 (6%) samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (p ≥ 0.95). Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions.

  9. Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (Anas acuta sampled throughout the North Pacific Basin

    Directory of Open Access Journals (Sweden)

    Andrew M. Ramey

    2015-04-01

    Full Text Available Empirical evidence supports wild birds as playing a role in the interhemispheric exchange of bacteria and viruses; however, data supporting the redistribution of parasites among continents are limited. In this study, the hypothesis that migratory birds contribute to the redistribution of parasites between continents was tested by sampling northern pintails (Anas acuta at locations throughout the North Pacific Basin in North America and East Asia for haemosporidian infections and assessing the genetic evidence for parasite exchange. Of 878 samples collected from birds in Alaska (USA, California (USA, and Hokkaido (Japan during August 2011–May 2012 and screened for parasitic infections using molecular techniques, Leucocytozoon, Haemoproteus, and Plasmodium parasites were detected in 555 (63%, 44 (5%, and 52 (6% samples, respectively. Using an occupancy modeling approach, the probability of detecting parasites via replicate genetic tests was estimated to be high (ρ > 0.95. Multi-model inference supported variation of Leucocytozoon parasite prevalence by northern pintail age class and geographic location of sampling in contrast to Haemoproteus and Plasmodium parasites for which there was only support for variation in parasite prevalence by sampling location. Thirty-one unique mitochondrial DNA haplotypes were detected among haematozoa infecting northern pintails including seven lineages shared between samples from North America and Japan. The finding of identical parasite haplotypes at widely distributed geographic locations and general lack of genetic structuring by continent in phylogenies for Leucocytozoon and Plasmodium provides evidence for intercontinental genetic exchange of haemosporidian parasites. Results suggest that migratory birds, including waterfowl, could therefore facilitate the introduction of avian malaria and other haemosporidia to novel hosts and spatially distant regions.

  10. The Ganges basin geometry records a pre-15 Ma isostatic rebound of Himalaya

    OpenAIRE

    Mugnier , Jean-Louis; Huyghe , Pascale

    2006-01-01

    4 pages; The Tertiary continental strata of the Himalayan foreland basin are subdivided in two groups, but the meaning of this subdivision was previously unclear. From the analysis of drill-holes, seismic lines, dated sections, field outcrops and balanced cross-sections, we find that the southward migration rate of the deposition pinch-out of the younger group is 19 ± 5 mm/yr and equals the Himalayan shortening rate. This equality shows that the flexural foreland basin development is mainly c...

  11. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    Science.gov (United States)

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per

  12. The thick-bedded tail of turbidite thickness distribution as a proxy for flow confinement: Examples from tertiary basins of central and northern Apennines (Italy)

    Science.gov (United States)

    Marini, Mattia; Felletti, Fabrizio; Milli, Salvatore; Patacci, Marco

    2016-07-01

    This study reviews the thickness statistics of non-channelized turbidites from four tertiary basins of Central-Northern Apennines (Italy), where bed geometry and sedimentary character have been previously assessed. Though very different in terms of size and, arguably, character of feeder system, these basins share a common stratigraphic evolution consisting in transition from an early ponded to a late unconfined setting of deposition. Based on comparison of thickness subsets from diverse locations and stratigraphic heights within the studied turbidite fills, this paper seeks to answer the following questions: i) how data collection procedures and field operational constraints (e.g. measure location, outcrop quality, use of thicknesses data from single vs. multiple correlative sections, stratigraphic thickness of the study interval) can affect statistics of sample data? ii) how depositional controls of confined vs. unconfined turbidite basins can result in different thickness-frequency distributions?; and iii) is there in thickness statistics a 'flow confinement' signature which can be used to distinguish between confined and unconfined turbidites? Results suggest that: i) best practices of data collection are crucial to a meaningful interpretation of sample data statistics, especially in presence of stratigraphic and spatial trends of turbidite bed thickness; ii) a systematic bias against cm-thick Tcd Bouma sequence turbidites exists in sample data, which can result in the low-end tail of empirical thickness-frequency distributions to depart significantly from the actual distribution of turbidite thickness; and iii) thickness statistics of beds starting with a basal Ta/Tb Bouma division bear a coherent relationship to the transition from ponded to unconfined depositional settings, consisting in reduction of variance and mean and, consequently, parameters, or even type, of best fit model distribution. This research highlights the role of flow stripping, sediment by

  13. Phreatophytic land-cover map of the northern and central Great Basin Ecoregion: California, Idaho, Nevada, Utah, Oregon, and Wyoming

    Science.gov (United States)

    Mathie, Amy M.; Welborn, Toby L.; Susong, David D.; Tumbusch, Mary L.

    2011-01-01

    Increasing water use and changing climate in the Great Basin of the western United States are likely affecting the distribution of phreatophytic vegetation in the region. Phreatophytic plant communities that depend on groundwater are susceptible to natural and anthropogenic changes to hydrologic flow systems. The purpose of this report is to document the methods used to create the accompanying map that delineates areas of the Great Basin that have the greatest potential to support phreatophytic vegetation. Several data sets were used to develop the data displayed on the map, including Shrub Map (a land-cover data set derived from the Regional Gap Analysis Program) and Gap Analysis Program (GAP) data sets for California and Wyoming. In addition, the analysis used the surface landforms from the U.S. Geological Survey (USGS) Global Ecosystems Mapping Project data to delineate regions of the study area based on topographic relief that are most favorable to support phreatophytic vegetation. Using spatial analysis techniques in a GIS, phreatophytic vegetation classes identified within Shrub Map and GAP were selected and compared to the spatial distribution of selected landforms in the study area to delineate areas of phreatophyte vegetation. Results were compared to more detailed studies conducted in selected areas. A general qualitative description of the data and the limitations of the base data determined that these results provide a regional overview but are not intended for localized studies or as a substitute for detailed field analysis. The map is intended as a decision-support aide for land managers to better understand, anticipate, and respond to ecosystem changes in the Great Basin.

  14. Revised crustal architecture of the southeastern Carpathian foreland from active and passive seismic data

    Science.gov (United States)

    Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.

    2009-08-01

    Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.

  15. Qualitative and Quantitative Changes of Carbonate Rocks Exposed to SC CO2 (Basque-Cantabrian Basin, Northern Spain)

    OpenAIRE

    Edgar Berrezueta; Timea Kovacs; Linda Luquot

    2017-01-01

    This study aims at the qualitative and quantitative determination of porosity, mineralogical and textural changes in carbonate rock samples after injection of (i) supercritical CO2-rich brine and (ii) dry supercritical CO2, under similar experimental conditions (P ≈ 75 bar, T ≈ 35 °C, 970 h exposure time and no CO2 flow). The studied rocks were sampled in the western Basque-Cantabrian Basin, North Spain, and consist of vuggy carbonates (“Carniolas”) of the Puerto de la Palombera formation (He...

  16. Development of a systemwide predator control program: Stepwise implementation of a predator index, predator control fisheries, and evaluation plan in the Columbia River basin (Northern Squawfish Management Program). Section 1: Implementation; Annual report 1995

    International Nuclear Information System (INIS)

    Young, F.R.

    1997-04-01

    The authors report their results from the fifth year of a basinwide program to harvest northern squawfish (Ptychocheilus oregonensis) in an effort to reduce mortality due to northern squawfish predation on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern squawfish on juvenile salmonids may account for most of the 10--20% mortality juvenile salmonids experience in each of eight Columbia and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that if predator-sized northern squawfish were exploited at a 10--20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%

  17. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    Directory of Open Access Journals (Sweden)

    Giovanni Ravazzani

    Full Text Available Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  18. Active tectonics in the Mygdonia basin (northern Greece): a combined seismological and remote-sensed geomorphology approach

    Science.gov (United States)

    Gkarlaouni, Charikleia; Andreani, Louis; Pennos, Chris; Gloaguen, Richard; Papadimitriou, Eleftheria; Kilias, Adamantios; Michail, Maria

    2014-05-01

    In Greek mainland, active extensional deformation resulted in the development of numerous seismogenic E- to SE-trending basins. The Mygdonia graben located in central Macedonia produced major historical earthquakes and poses a serious threat to the neighbouring city of Thessaloniki. Our aim is to determine which active seismic sources have the potential to generate strong events. Active tectonics shape the landscape, control the evolution of the fluvial network and cause the occurrence of strong and frequent earthquakes generated by fault populations. Thus, our approach combined both seismology and remote-sensed geomorphology. Seismological investigation and more especially relocation analysis was performed for recent seismicity in the area (2000-2012). Low magnitude earthquakes not exceeding 4.8 constitute the seismicity pattern for this period. Accurately determined focal parameters indicate that seismicity is not only localized along major fault zones. Smaller faults seem also to be activated. Temporal and spatial investigation show that seismicity is clustered and seismic bursts often migrate to adjacent faults. The hypocentral distribution of precisely determined microearthquake foci reveals the existence of high-angle (> 60º) normal faults dipping both south and north. This is consistent with fault plane solutions of stronger earthquakes. The largest amount of earthquakes is generated along the NW-SE sub-basin bounded from "Assiros-Analipsi" and "Lagina" fault zone, as well as in "Sochos" fault in the north which dips with approximately 70º-80º to the south. All these structures played an important role in the seismotectonic evolution of the area. We used geomorphic indices in order to analyse the landscapes of the Mygdonia region. Geomorphic indices were derived from DEM and computed using MATLAB scripts. We classified the landscapes according to their erosional stages using hypsometric integral and surface roughness. Both indices suggest stronger erosion

  19. Stratigraphy and structural development of the southwest Isla Tiburón marine basin: Implications for latest Miocene tectonic opening and flooding of the northern Gulf of California

    Science.gov (United States)

    Bennett, Scott E. K.; Oskin, Michael; Dorsey, Rebecca; Iriondo, Alexander; Kunk, Michael J.

    2015-01-01

    foraminifera from this section. Results from biostratigraphy and geochronology thus constrain earliest marine deposition on SWIT to ca. 6.2 ± 0.2 Ma, coincident with a regional-scale latest Miocene marine incursion into the northern proto-Gulf of California. This regional marine incursion flooded the northernmost, >500-km-long portion of the Gulf of California shear zone, a narrow belt of localized strike-slip faulting, clockwise block rotation, and subsiding pull-apart basins. Oblique Pacific-North America relative plate motion gradually localized in the >1000-km-long Gulf of California shear zone ca. 9-6 Ma, subsequently permitting the punctuated south to north flooding of the incipient Gulf of California seaway.

  20. Petroleum geology and resources of the middle Caspian Basin, Former Soviet Union

    Science.gov (United States)

    Ulmishek, Gregory F.

    2001-01-01

    The Middle Caspian basin occupies a large area between the Great Caucasus foldbelt and the southern edge of the Precambrian Russian craton. The basin also includes the central part of the Caspian Sea and the South Mangyshlak subbasin east of the sea. The basin was formed on the Hercynian accreted terrane during Late Permian?Triassic through Quaternary time. Structurally, the basin consists of the fold-and-thrust zone of the northern Caucasus foothills, the foredeep and foreland slope, the Stavropol-Prikumsk uplift and East Manych trough to the north of the slope, and the South Mangyshlak subbasin and slope of the Karabogaz arch east of the Caspian Sea. All these major structures extend offshore. Four total petroleum systems (TPS) have been identified in the basin. The South Mangyshlak TPS contains more than 40 discovered fields. The principal reserves are in Lower?Middle Jurassic sandstone reservoirs in structural traps. Source rocks are poorly known, but geologic data indicate that they are in the Triassic taphrogenic sequence. Migration of oil and gas significantly postdated maturation of source rocks and was related to faulting and fracturing during middle Miocene to present time. A single assessment unit covers the entire TPS. Largest undiscovered resources of this assessment unit are expected in the largely undrilled offshore portion of the TPS, especially on the western plunge of the Mangyshlak meganticline. The Terek-Caspian TPS occupies the fold-and-thrust belt, foredeep, and adjoining foreland slope. About 50 hydrocarbon fields, primarily oil, have been discovered in the TPS. Almost all hydrocarbon reserves are in faulted structural traps related to thrusting of the foldbelt, and most traps are in frontal edges of the thrust sheets. The traps are further complicated by plastic deformation of Upper Jurassic salt and Maykop series (Oligocene? lower Miocene) shale. Principal reservoirs are fractured Upper Cretaceous carbonates and middle Miocene sandstones

  1. Organic matter iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland

    International Nuclear Information System (INIS)

    Heikkinen, K.

    1994-01-01

    Organic carbon and iron transport into the Gulf of Bothnia and the seasonal changes in the nature of dissolved organic matter (DOM) were studied in 1983 and 1984 at the mouth of the River Kiiminkijoki, which crosses an area of minerotrophic mires in northern Finland. Organic and inorganic transport within the drainage basin was studied in the summer and autumn of 1985 and 1986. The results indicate that the dissolved organic carbon (DOC) is mainly of terrestrial origin, leaching mostly from peatlands. The DOC concentrations decrease under low flow conditions. The proportion of drifting algae as a particulate organic carbon (POC) source seems to increase in summer. The changes in the ratio of Fe/DOC, the colour of the DOM and the ratio of Fe/DOC, the colour of the DOM and the ratio of fluorescence to DOC with discharge give indications of the origin, formation, nature and fate of the DOM in the river water. Temperature-dependent microbiological processes in the formation and sedimentation of Fe-organic colloids seem to be important. Estimates are given for the amounts and transport rates of organic carbon and Fe discharged into the Gulf of Bothnia by river. High apparent molecular weight (HAMW) organic colloids are important for the organic, Fe and P transport in the basin. The DOM in the water consists mainly of fulvic acids, although humic acids are also important. The results indicate an increase in the mobilization of HAMW Fe-organic colloids in the peatlands following drainage and peat mining. The transport of inorganic nitrogen from the peatlands in the area and in the river is increasing due to peat mining. The changes in the transport of organic matter, Fe and P are less marked

  2. Mid-Wisconsin to Holocene permafrost and landscape dynamics based on a drained lake basin core from the northern Seward Peninsula, northwest Alaska

    Science.gov (United States)

    Lenz, Josefine; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey M. Walter; Bobrov, Anatoly; Wulf, Sabine; Wetterich, Sebastian

    2016-01-01

    Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyse a ~ 4 m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemical, geochronological, micropalaeontological (ostracoda, testate amoebae) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5 ka BP. The latter was terminated by the deposition of 1 m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42 ka BP. Yedoma deposition continued until 22.5 ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23 ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23 ka BP and drained catastrophically in spring 2005. The present study emphasises that Arctic lake systems and periglacial landscapes are highly dynamic and that permafrost formation as well as degradation in central Beringia was controlled by regional to global climate patterns as well as by local disturbances.

  3. Diamond drilling for geologic information in the middle Precambrian basins in the western portion of northern Michigan. Final report

    International Nuclear Information System (INIS)

    Trow, J.

    1979-10-01

    Between September 26, 1977, and May 11, 1978, six initially vertical holes probed a total of 9896 feet (1109 feet or 11.2% in overburden, 155 feet or 1.6% in Precambrian Y mafic dikes, 8386 feet or 84.7% in Precambrian X Goodrich Quartzite and Michigamme Formation, and 246 feet or 2.5% in Precambrian W basement lithologies). In addition to normal examination of core, logging, and storing of core, the holes were extensively logged geophysically, acidized core was tested for phosphate content by ammonium molybdate, splits from five out of every thirty feet of core were subjected to chemical scrutiny, thin sections of all lithologies were examined, and radiometric determinations of geologic age were made for confirmation of Precambrian W basement which was encountered in each of the three basins in Marquette County

  4. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Christian, E-mail: cherrera@ucn.cl [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Custodio, Emilio [Department of Geo-Engineering, Technical University of Catalonia/Barcelona Tech (UPC), Barcelona (Spain); Chong, Guillermo [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Lambán, Luis Javier [Geological Institute of Spain (IGME), Zaragoza (Spain); Riquelme, Rodrigo; Wilke, Hans [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Jódar, Jorge [Department of Geo-Engineering, Technical University of Catalonia/Barcelona Tech (UPC), Barcelona (Spain); Urrutia, Javier; Urqueta, Harry [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Sarmiento, Alvaro [Departamento de Ciencias Geológicas, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); and others

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200 mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water–rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ{sup 18}O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano. - Highlights: • Recent volcanism formations play a key role in producing recharge. • Groundwater can flow across local

  5. Late Neogene stratigraphy and tectonic control on facies evolution in the Laguna Salada Basin, northern Baja California, Mexico

    Science.gov (United States)

    Martín-Barajas, A.; Vázquez-Hernández, S.; Carreño, A. L.; Helenes, J.; Suárez-Vidal, F.; Alvarez-Rosales, J.

    2001-10-01

    The Laguna Salada Basin (LSB) in northeastern Baja California records late-Neogene marine incursions in the Salton Trough and progradation of the Colorado River delta. Early subsidence and subsequent tectonic erosion are related to evolution of the Sierra El Mayor detachment fault during late Miocene time (stratigraphy of uplifted blocks on the east-central margin of the Laguna Salada Basin and from three exploratory wells allows reconstruction of the main sedimentary and tectonic events. Marine mudstone and sandstone, and subordinate conglomerate of the Imperial Formation tectonically overlie metamorphic and granitic basement. Microfossils, lithology, and sedimentary structures in the Imperial Formation define Upper Miocene (<6 Ma) outer-shelf facies that grade up-section into inner-shelf and tide-dominated delta plain deposits of the ancient Colorado River. Lower Pliocene (˜4-2 Ma) reddish, sub-arkosic fluvial sandstone and siltstone of the Palm Spring Formation defines progradation of non-marine fluvio-deltaic deposits over the marine Imperial Formation. Continuous outcrops of the Palm Spring are less than 170-m thick, but correlative deposits are more than 570 m thick in the lower part of a 2400-m deep geothermal exploratory well on the eastern margin of LSB. Interfingering fluvial-sandstone deposits and prograding alluvial fanglomerates with coarse debris-flow and rock-avalanche deposits crudely mark the onset of vertical slip along the Laguna Salada fault and rapid uplift of Sierra Cucapa and Sierra El Mayor. Up to 2 km of Quaternary alluvial-fan and lacustrine deposits accumulated along the eastern margin of LSB, whereas lower subsidence rates produced a thinner sedimentary wedge over a ramp-like crystalline basement along the western margin. In early Pleistocene time (˜2-1 Ma), the Laguna Salada became progressively isolated from the Colorado River delta complex, and the Salton Trough by activity on the Elsinore and Laguna Salada fault zones.

  6. Effects of landscape features on population genetic variation of a tropical stream fish, Stone lapping minnow, Garra cambodgiensis, in the upper Nan River drainage basin, northern Thailand

    Directory of Open Access Journals (Sweden)

    Chaowalee Jaisuk

    2018-03-01

    suggested genetic division between northern (genetic clusters 1 and 2 and southern (clusters 3 and 4 sub-basins. We observed a high degree of genetic admixture in each location, highlighting the importance of natural flooding patterns and possible genetic impacts of supplementary stocking. Insights obtained from this research advance our knowledge of the complexity of a tropical stream system, and guide current conservation and restoration efforts for this species in Thailand.

  7. The use of artificial neural network analysis and multiple regression for trap quality evaluation: a case study of the Northern Kuqa Depression of Tarim Basin in western China

    Energy Technology Data Exchange (ETDEWEB)

    Guangren Shi; Xingxi Zhou; Guangya Zhang; Xiaofeng Shi; Honghui Li [Research Institute of Petroleum Exploration and Development, Beijing (China)

    2004-03-01

    Artificial neural network analysis is found to be far superior to multiple regression when applied to the evaluation of trap quality in the Northern Kuqa Depression, a gas-rich depression of Tarim Basin in western China. This is because this technique can correlate the complex and non-linear relationship between trap quality and related geological factors, whereas multiple regression can only describe a linear relationship. However, multiple regression can work as an auxiliary tool, as it is suited to high-speed calculations and can indicate the degree of dependence between the trap quality and its related geological factors which artificial neural network analysis cannot. For illustration, we have investigated 30 traps in the Northern Kuqa Depression. For each of the traps, the values of 14 selected geological factors were all known. While geologists were also able to assign individual trap quality values to 27 traps, they were less certain about the values for the other three traps. Multiple regression and artificial neural network analysis were, therefore, respectively used to ascertain these values. Data for the 27 traps were used as known sample data, while the three traps were used as prediction candidates. Predictions from artificial neural network analysis are found to agree with exploration results: where simulation predicted high trap quality, commercial quality flows were afterwards found, and where low trap quality is indicated, no such discoveries have yet been made. On the other hand, multiple regression results indicate the order of dependence of the trap quality on geological factors, which reconciles with what geologists have commonly recognized. We can conclude, therefore, that the application of artificial neural network analysis with the aid of multiple regression to trap evaluation in the Northern Kuqa Depression has been quite successful. To ensure the precision of the above mentioned geological factors and their related parameters for each

  8. Geology and geochemistry of newly discovered Tertiary carbonatite occurrences near Villa Ahumada area, Basin and Range province, Chihuahua, northern Mexico

    Science.gov (United States)

    Nandigam, Ravi Chenchu

    This study targets some newly discovered carbonatite occurrences located in the eastern Mexican Basin and Range province, a few kilometers to the east of Villa Ahumada, Chihuahua. The region containing these occurrences experienced compression related to subduction of the Farallon plate until about 32 Ma that was followed by Basin and Range extension. Geological mapping (1:5,000 scale), petrography, study of drill hole cuttings and satellite images, and major and trace element chemical analyses were utilized to understand the intrusive style of the carbonatites, their mineralogy and petrogenesis. The carbonatites, named Yuca, Mariana and El Indio, collectively intrude limestones, granitic intrusives and subduction-related tuffs and lavas mainly as a stock, breccias and dikes. The Yuca carbonatite was emplaced as a 900-m diameter stock, 500 x 350 m breccia body, numerous dikes and networks of fracture fillings. Crosscutting field relationships at Yuca suggest at least two stages of carbonatite emplacement. At Mariana, carbonatite was emplaced as a 750 x 350 m breccia. Four out of nine reverse circulation drill holes penetrated and bottomed in the breccia at an average depth of about 300 m At El Indio, carbonatite was emplaced as a 20 m diameter breccia pipe and a 1m thick sill. Major minerals present are calcite, Fe-rich calcite and hematite. Sporadic presence of fluorite is common. At Mariana, two generations of grossular-rich garnets associated with limestones and granite porphyry respectively are recognized. It is inferred that garnets in granite porphyry represent metasomatic alteration due to the emplacement of carbonatite breccia. Parental magmas of Yuca carbonatites have undergone differentiation under low fO2 conditions during which they were progressively enriched in iron. The carbonatite compositional types recognized based on major element data, in the sequence of least to most highly differentiated, are (1) magnesio-, (2) calcio- and (3

  9. Occurrence of arsenic species in algae and freshwater plants of an extreme arid region in northern Chile, the Loa River Basin.

    Science.gov (United States)

    Pell, Albert; Márquez, Anna; López-Sánchez, José Fermín; Rubio, Roser; Barbero, Mercedes; Stegen, Susana; Queirolo, Fabrizio; Díaz-Palma, Paula

    2013-01-01

    This study reports data on arsenic speciation in two green algae species (Cladophora sp. and Chara sp.) and in five aquatic plants (Azolla sp., Myriophyllum aquaticum, Phylloscirpus cf. desserticola, Potamogeton pectinatus, Ruppia filifolia and Zannichellia palustris) from the Loa River Basin in the Atacama Desert (northern Chile). Arsenic content was measured by Mass spectrometry coupled with Inductively Coupled Plasma (ICP-MS), after acidic digestion. Liquid chromatography coupled to ICP-MS was used for arsenic speciation, using both anionic and cationic chromatographic exchange systems. Inorganic arsenic compounds were the main arsenic species measured in all samples. The main arsenic species in the extracts of freshwater algae and plants were arsenite and arsenate, whereas glycerol-arsenosugar (gly-sug), dimethylarsinic acid (DMA) and methylarsonic acid (MA) were present only as minor constituents. Of the samples studied, algae species accumulated more arsenic than aquatic plants. Total arsenic content ranged from 182 to 11100 and from 20 to 248 mg As kg(-1) (d.w.) in algae and freshwater plants, respectively. In comparison with As concentration in water samples, there was hyper-accumulation (>0.1% d.w.) in Cladophora sp. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Post-Seismic Deformation from the 2009 Mw 6.3 Dachaidan Earthquake in the Northern Qaidam Basin Detected by Small Baseline Subset InSAR Technique.

    Science.gov (United States)

    Liu, Yang; Xu, Caijun; Wen, Yangmao; Li, Zhicai

    2016-02-05

    On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19-334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths.

  11. Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains

    International Nuclear Information System (INIS)

    Dunagan, J.F. Jr.; Kadish, K.A.

    1977-11-01

    Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains

  12. Post-Seismic Deformation from the 2009 Mw 6.3 Dachaidan Earthquake in the Northern Qaidam Basin Detected by Small Baseline Subset InSAR Technique

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-02-01

    Full Text Available On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19–334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths.

  13. The response of deltaic systems to climatic and hydrological changes in Daihai Lake rift basin, Inner Mongolia, northern China

    Directory of Open Access Journals (Sweden)

    Yu Xinghe

    2013-01-01

    Full Text Available Delta systems are ubiquitous around lacustrine rift basins. Its peripheral geometry, progradation structures and sedimentary successions were controlled by both tectonic settings and climatic changes. Peripheral geometry of a delta was strongly influenced by depositional gradients which formed the fan-shape delta on the steep slopes and developed the lobe-shape delta on the gentle slopes. Due to the discharge feed rivers can change rapidly driven by climatic variations, and the nearshore area of deltas display considerable facies variability. The rise of annual rainfall, which suggests the rivers feeding deltas are continuous, and result in distributary mouth bars that are prevalent in the front of deltas since the down-slope flows are greater than the along-slope currents. On the contrary, when the annual rainfall decreases and evaporation increases, the rivers only can feed deltas ephemerally. If the along-slope currents were in a dominant position, the distal bars were deposited. Progradation structure and sedimentary successions of deltas were controlled by the gradients of slopes. On gentle depositional slopes, shingle foreset beds predominate with fine sediments and small-scale sedimentary structures or vice versa.

  14. The Synergic Characteristics of Surface Water Pollution and Sediment Pollution with Heavy Metals in the Haihe River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Peiru Kong

    2018-01-01

    Full Text Available Aquatic environmental deterioration is becoming a serious problem due to rapid urbanization and economic development, particularly in developing countries. As two important components of the aquatic environment, water quality and sediment pollution are widely considered to be concerns; however, they are considered separately in most cases. The relationship between water quality and sediment pollution with heavy metals has been little addressed. In this study, the Haihe River Basin (HRB, one of the most polluted areas in China, was used as a case study, and the eutrophication index (EI and the potential ecological risk index (RI were employed to evaluate water quality and sediment pollution of heavy metals, respectively. The results showed that generally in the HRB, the water quality was poor, while the risk of heavy metal pollution was relatively low. Surface water quality was mainly influenced by sewage discharges from human daily life, and heavy metal pollution was affected by industry structure, in that the areas with resource/energy consumption industries and high-pollution industries often have high risks of heavy metal pollution Synergic pollution from water eutrophication and sediment pollution with heavy metals was found, especially in the central areas of the HRB, and it was largely dependent on the type of human activities. In the places with intensive human activities, such as secondary industry, eutrophication occurred simultaneously with heavy metal pollution, other than in less human-affected areas. These findings are useful for planning aquatic environment protections and river ecosystem management.

  15. Qualitative and Quantitative Changes of Carbonate Rocks Exposed to SC CO2 (Basque-Cantabrian Basin, Northern Spain

    Directory of Open Access Journals (Sweden)

    Edgar Berrezueta

    2017-11-01

    Full Text Available This study aims at the qualitative and quantitative determination of porosity, mineralogical and textural changes in carbonate rock samples after injection of (i supercritical CO2-rich brine and (ii dry supercritical CO2, under similar experimental conditions (P ≈ 75 bar, T ≈ 35 °C, 970 h exposure time and no CO2 flow. The studied rocks were sampled in the western Basque-Cantabrian Basin, North Spain, and consist of vuggy carbonates (“Carniolas” of the Puerto de la Palombera formation (Hettangian. Mineralogical and pore space characterization is completed using optical microscopy, scanning electron microscopy and optical image analysis. In addition, X-ray fluorescence analyses are performed to refine the mineralogical information and to obtain whole rock geochemical data and the brine composition is analysed before and after the experiment. Mineralogical and chemical results indicate that the carbonate rocks exposed to supercritical CO2 in dry conditions do not suffer significant changes. However, the injection of supercritical CO2-rich brine induces chemical and physical changes in the rock due to the high reactivity of calcite at the low pH conditions produced by the acidified brine. Numerical modelling validates the experimental observations. These results can be used to characterize the behaviour of carbonate rocks under conditions similar to the vicinity of a CO2 injection well. The results should be considered only at the scale of the studied samples and not at reservoir scale.

  16. Tectonic setting and uplift analysis of the Pangani rift basin in northern Tanzania using apatite fission track thermochronology

    International Nuclear Information System (INIS)

    Mbede, E.I.

    2001-01-01

    Thirty four new Apatite Fission Track (AFT) ages and 32 track length distributions from samples of basement rocks flanking the Pangani rift, East African Rift System (EARS) are presented, in an attempt to elucidate the uplift and erosion of the rift flanks. The ages fall in the range of 207±15 to 48±4 Ma, spanning from Early Jurassic to Early Tertiary. These ages are much younger than the last thermal event in the Mozambique belt that form the basement complex and are interpreted to represent the most recent tectonic events. Track length (TL) distributions suggest that uplift and erosion of the rift flanks are related to three different tectonic events, which are also recorded by the sedimentary units within the adjacent coastal basins. These included the Triassic/Early Jurassic, Late Cretaceous and Early Tertiary tectonic events. Erosion and isostatic rebound have modified the tectonically induced topographic patterns and the highly elevated plateaus flanking the Pangani rift represent an erosional surface referred to as the 'Gondwana surface' of eastern and central Africa. T he present AFT data suggest that initial exhumation of the 'Gondwana surface' from temperatures above 383.15 K to temperatures less than 333.15 K, in this area, took place during Early Jurassic times, but the final sub-aerial exposure of the surface did not take place until Early Tertiary. (author)

  17. Early middle Miocene tectonic uplift of the northwestern part of the Qinghai–Tibetan Plateau evidenced by geochemical and mineralogical records in the western Tarim Basin

    NARCIS (Netherlands)

    Wang, Chaowen; Hong, Hanlie; Abels, Hemmo A.; Li, Zhaohui; Cao, Kai; Yin, Ke; Song, Bowen; Xu, Yadong; Ji, Junliang; Zhang, Kexin

    The Tarim Basin in western China has been receiving continuous marine to lacustrine deposits during the Cenozoic as a foreland basin of the Qinghai–Tibetan Plateau (QTP). Clay mineralogy and geochemical proxy data from these sedimentary archives can shed light on climate and tectonic trends. Here we

  18. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  19. Demographic population structure and fungal associations of plants colonizing High Arctic glacier forelands, Petuniabukta, Svalbard

    Directory of Open Access Journals (Sweden)

    Jakub Těšitel

    2014-04-01

    Full Text Available The development of vegetation in Arctic glacier forelands has been described as unidirectional, non-replacement succession characterized by the gradual establishment of species typical for mature tundra with no species turnover. Our study focused on two early colonizers of High Arctic glacier forelands: Saxifraga oppositifolia (Saxifragaceae and Braya purpurascens (Brassicaceae. While the first species is a common generalist also found in mature old growth tundra communities, the second specializes on disturbed substrate. The demographic population structures of the two study species were investigated along four glacier forelands in Petuniabukta, north Billefjorden, in central Spitsbergen, Svalbard. Young plants of both species occurred exclusively on young substrate, implying that soil conditions are favourable for establishment only before soil crusts develop. We show that while S. oppositifolia persists from pioneer successional stages and is characterized by increased size and flowering, B. purpurascens specializes on disturbed young substrate and does not follow the typical unidirectional, non-replacement succession pattern. Plants at two of the forelands were examined for the presence of root-associated fungi. Fungal genus Olpidium (Fungus incertae sedis was found along a whole successional gradient in one of the forelands.

  20. Instream coliform gradients in the Holtemme, a small headwater stream in the Elbe River Basin, Northern Germany

    Science.gov (United States)

    Karthe, Daniel; Lin, Pei-Ying; Westphal, Katja

    2017-09-01

    The Holtemme is a small headwater stream in North Germany's Elbe River Basin. According to German and European legislation, hygienic monitoring is not mandatory for such water bodies which are neither drinking water sources nor categorized as bathing waters. Consequently, relatively little is known about the occurrence of-potentially pathogenic-bacteria and viruses in Germany's streams and rivers. The Holtemme was selected for a case study because it is relatively well monitored for both chemical water quality and aquatic ecology, but not for hygiene. Originating in the mountains of Harz Nature Park, the 47 km long Holtemme is characterized by a strong longitudinal gradient in chemical water quality, which is related to different land uses and the influx of treated wastewater from two urban areas (Wernigerode and Halberstadt). Waste water loads received by the Holtemme are comparatively high when compared to similarly small streams. In 2015, total coliform concentrations between more than 200 and 77,010 bacteria per 100 mL, and fecal coliform concentrations between 5 and 24,060 bacteria per 100 mL were observed in the Holtemme's main channel. The highest concentrations were typically found below the outlets of the two wastewater treatment plants. The treated wastewater contained total and fecal coliform concentrations of up to 200,500 and 83,100 per 100 mL, respectively; however, there were significant temporal variations. While the observed concentrations are unproblematic from a legal perspective (because no maximum permissible limits are defined for streams in Germany), they would exceed the tolerable limits for bathing waters in the EU, indicating moderate to critical pollution limits.

  1. Atmospheric nutrient inputs to the northern levantine basin from a long-term observation: sources and comparison with riverine inputs

    Directory of Open Access Journals (Sweden)

    M. Koçak

    2010-12-01

    Full Text Available Aerosol and rainwater samples have been collected at a rural site located on the coastline of the Eastern Mediterranean, Erdemli, Turkey between January 1999 and December 2007. Riverine sampling was carried out at five Rivers (Ceyhan, Seyhan, Göksu, Berdan and Lamas draining into the Northeastern Levantine Basin (NLB between March 2002 and July 2007. Samples have been analyzed for macronutrients of phosphate, silicate, nitrate and ammonium (PO43−, Sidiss, NO3 and NH4+. Phosphate and silicate in aerosol and rainwater showed higher and larger variations during the transitional period when air flows predominantly originate from North Africa and Middle East/Arabian Peninsula. Deficiency of alkaline material have been found to be the main reason of the acidic rain events whilst high pH values (>7 have been associated with high Sidiss concentrations due to sporadic dust events. In general, lowest nitrate and ammonium concentrations in aerosol and rainwater have been associated with air flow from the Mediterranean Sea. Comparison of atmospheric with riverine fluxes demonstrated that DIN and PO43− fluxes to NLB have been dominated by atmosphere (~90% and ~60% respectively whereas the input of Si was mainly derived from riverine runoff (~90%. N/P ratios in the atmospheric deposition (233; riverine discharge (28 revealed that NLB receives excessive amounts of DIN and this unbalanced P and N inputs may provoke even more phosphorus deficiency. Observed molar Si/N ratio suggested Si limitation relative to nitrogen might cause a switch from diatom dominated communities to non-siliceous populations particularly at coastal NLB.

  2. Middle miocene badenian transgression: New evidences from the Vrdnik coal basin (Fruška Gora Mt., Northern Serbia

    Directory of Open Access Journals (Sweden)

    Rundić Ljupko

    2013-01-01

    Full Text Available The latest field investigation of the Vrdnik Coal Basin as well as new data from numerous boreholes enabled the finding of an unconformity between the undivided continental-lacustrine Lower Miocene and the marine Middle Miocene Badenian. The different terrestrial-lacustrine sediments indicate a very mobile and dynamic environment (according to known drilling data, the total thickness of these deposits reaches up to 300 m. All these rocks belong to the Vrdnik series (Vrdnik Formation. The evolution of the Vrdnik series is distinguished by several stages (e.g. pre-lacustrine, lacustrine, peat-swamp, etc.. Each of these phases was proved by their sedimentologic and structural characteristics. On the other hand, among the fossils, only the swamp flora remains (Sequoia, Laurus, Taxodium, Glyptostrobus, etc. and poor and fragmented ostracode valves (Candona sp. were documented. Presently, the exact stratigraphic position of the Vrdnik series is unknown. Discordantly over the mentioned rocks, real marine sediments of the Paratethys Sea occur. To date, it was a completely unknown subsurface distribution of these sediments. Among a few types of rocks that have a small distribution, the so-called the Leitha limestones (Middle Miocene, Badenian have great significance (up to 98% of CaCO3. The total thickness of the limestones reaches up to 70 meters (borehole B-11. The findings of key foraminifer species (Orbulina - Globigerinoides Zone indicate an early Badenian (Moravian transgressive event (ca. 15 Ma. Lithologically, it is represented by gray, sandy marls and sandy clays, coarse-grained sands and microconglomerates in the base of the mentioned limestones (boreholes B-11, B-15, B-19, and B-21 with a total thickness of up to 15 meters. [Projekat Ministarstva nauke Republike Srbije, br. 176015

  3. Managing habitat to slow or reverse population declines of the Columbia spotted frog in the Northern Great Basin

    Science.gov (United States)

    Pilliod, David S.; Richard D. Scherer,

    2015-01-01

    Evaluating the effectiveness of habitat management actions is critical to adaptive management strategies for conservation of imperiled species. We quantified the response of a Great Basin population of the Columbia spotted frog (Rana luteiventris) to multiple habitat improvement actions aimed to reduce threats and reverse population declines. We used mark-recapture data for 1,394 adult frogs that had been marked by state, federal, and university biologists in 9 ponds representing a single population over a 16-year period from 1997 to 2012. With the use of demographic models, we assessed population-level effects of 1) a grazing exclosure constructed around 6 stock ponds that had been used to water livestock for decades before being fully fenced in 2003, and 2) the construction of 3 new stock ponds in 2003 to provide alternative water sources for livestock and, secondarily, to provide additional frog habitat. These management actions were implemented in response to a decline of more than 80% in population size from 1997 to 2002. We found evidence that excluding cattle from ponds and surrounding riparian habitats resulted in higher levels of frog production (more egg masses), higher adult frog recruitment and survival, and higher population growth rate. We also found that frogs colonized the newly constructed stock ponds within 3 years and frogs began breeding in 2 of them after 5 years. The positive effects of the cattle exclosure and additional production from the new ponds, although notable, did not result in full recovery of the population even 9 years later. This slow recovery may be partly explained by the effects of weather on recruitment rates, particularly the negative effects of harsher winters with late springs and higher fall temperatures. Although our findings point to potential successes of habitat management aimed at slowing or reversing rapidly declining frog populations, our study also suggests that recovering from severe population declines can take

  4. Thermal evidence of Caledonide foreland, molasse sedimentation in Fennoscandia

    International Nuclear Information System (INIS)

    Tullborg, E.L.; Larsson, S.Aa.; Bjoerklund, L.; Stigh, J.; Samuelsson, L.

    1995-11-01

    The Phanerozoic rocks present on the Fennoscandian Shield are dominantly of Cambrian to Silurian age. They represent a relatively thin sedimentary cover. The question is: why do we not see any remnants of younger sedimentary rocks? Did they ever exist, have they been eroded, transported and redeposited elsewhere? δ 18 O and δ 13 C analyses of Ordovician limestones from different places in Sweden and from the Oslo region in Norway show modification of their original marine signature according to the δ 18 O concentrations, while the δ 13 C concentrations generally are typical for marine limestones. In some cases the modifications can be explained by intrusions of dykes or by metamorphic events, but in most areas the redistribution of the oxygen isotopes indicates burial diagenesis. From a number of published investigations, raised temperatures at the present surface during the late Palaeozoic, are indicated by different temperature indicators. We suggest that these increased temperatures were due to a sedimentary cover of mainly Devonian sediments deposited on top of the Cambrian-Silurian sequence. This palaeo-cover caused raised temperatures at the present rock surface. In the Proterozoic basement, annealing of fission tracks in apatite and mobility of radiogenic lead also give evidence of increased temperatures. A model where the thickness of the Upper Paleozoic cover of the Caledonian foreland is 2-4 kilometers thick is suggested. This cover mainly consisted of late Silurian-Devonian erosion products from the Caledonides, the latter formed during a Silurian continent-continent collision. A major Permian to Triassic uplift and erosion reduced the cover significantly. 94 refs, 9 figs

  5. New constraints on the timing of flexural deformation along the northern Australian margin: Implications for arc-continent collision and the development of the Timor Trough

    Science.gov (United States)

    Saqab, Muhammad Mudasar; Bourget, Julien; Trotter, Julie; Keep, Myra

    2017-01-01

    Numerous extensional faults offset the passive margin strata of the northern Bonaparte Basin. This extensional deformation has been attributed to lithospheric flexure of the descending Australian Plate, in an overall convergence setting. Here we use an extensive 2D and 3D seismic dataset calibrated with well biostratigraphy and strontium (Sr) isotope age data to constrain the timing of deformation along the northern Australian margin during the Neogene. Analysis of fault throw and differential thickness variations give new insights on the propagation and slip history of the faults. Along-dip throw profiles exhibit 'D' shape distributions, skewed towards the top. Positive throw gradients above the throw maxima, coinciding with intervals of growth strata, indicate multiphase fault activity. Results indicate that post-rift extensional deformation initiated during the latest Miocene (ca. 6 Ma). The development of the modern Timor Trough (as a foreland basin) and Cartier Trough also commenced during this period. A second episode of increased tectonic activity occurred around the Pliocene-Quaternary boundary (ca. 3 Ma), and the deformation continued intermittently to the present-day. These new results are in agreement with the timing of initiation of collision between the Australian Plate and the Banda Arc and uplift of the Timor Island, recently derived from stratigraphic analysis in Timor. These regional tectonic events have profoundly affected the paleogeography of the Timor Sea and may explain major changes in oceanic circulation and climate during the Neogene.

  6. Methane in the Northern West Siberian Basin. Generation, dynamics of the reservoirs and exchange with the atmosphere

    International Nuclear Information System (INIS)

    Cramer, B.

    1997-07-01

    Based on compositional data and isotope geochemistry natural gas in northern West Siberia can be divided into three groups. These are: natural gas in Jurassic rocks, natural gas in Neocomian rocks and natural gas from the Aptian to Cenomanian Pokur Formation. Natural gas in Jurassic rocks was generated thermogenically from rocks of the Jurassic Tyumen Formation. Natural gas in Neocomian rocks is also of thermogenic origin, possibly being generated from the organic matter of Lower Cretaceous sediments. The largest accumulation of natural gas occurs in sandstone reservoirs in the Pokur Formation. This gas can be described as a mixture between thermogenic gas from deeper strata and isotopically light almost pure methane. 98.6% of this gas consists of methane with an unusual isotope signature of -51.2 permille. It is not possible to explain the existence of this methane with established concepts of gas generation. A new model was developed to examine the possibility of a thermogenic origin of the isotopically light methane in early mature rocks of the Pokur Formation. Based on pyrolysis experiments and reaction kinetic calculations the model enables the simulation of stable carbon isotope ratios of hydrocarbon components in natural gas. The temperature dependent kinetic isotope fractionation is defined by a difference in the activation energies of 12 C-and 13 C-methane generation. The application of the new method to two coaly sandstones of the Pokur Formation results in a good correspondence between modelled carbon isotope ratios of δ 13 C values of methane in the reservoirs. The mass of methane thermogenically generated within the Pokur Formation under the gas field structures, however, is not sufficient to explain the mass of accumulated methane. (orig./SR) [de

  7. Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations

    Science.gov (United States)

    Basart, S.; Pérez, C.; Cuevas, E.; Baldasano, J. M.; Gobbi, G. P.

    2009-11-01

    We provide an atmospheric aerosol characterization for North Africa, Northeastern Atlantic, Mediterranean and Middle East based on the analysis of quality-assured direct-sun observations of 39 stations of the AErosol RObotic NETwork (AERONET) which include at least an annual cycle within the 1994-2007 period. We extensively test and apply the recently introduced graphical method of Gobbi and co-authors to track and discriminate different aerosol types and quantify the contribution of mineral dust. The method relies on the combined analysis of the Ångström exponent (α) and its spectral curvature δα. Plotting data in these coordinates allows to infer aerosol fine mode radius (Rf) and fractional contribution (η) to total Aerosol Optical Depth (AOD) and separate AOD growth due to fine-mode aerosol humidification and/or coagulation from AOD growth due to the increase in coarse particles or cloud contamination. Our results confirm the robustness of this graphical method. Large mineral dust is found to be the most important constituent in Northern Africa and Middle East. Under specific meteorological conditions, its transport to Southern Europe is observed from spring to autumn and decreasing with latitude. We observe "pure Saharan dust" conditions to show AOD>0.7 (ranging up to 5), α1.5 and δα~-0.2 corresponding to η>70% and Rf~0.13 μm. Here, dust mixed with fine pollution aerosols shifts the observations to the region αfine mode contribution is less than 40%.

  8. Estimation of groundwater recharge in sedimentary rock aquifer systems in the Oti basin of Gushiegu District, Northern Ghana

    Science.gov (United States)

    Afrifa, George Yamoah; Sakyi, Patrick Asamoah; Chegbeleh, Larry Pax

    2017-07-01

    Sustainable development and the management of groundwater resources for optimal socio-economic development constitutes one of the most effective strategies for mitigating the effects of climate change in rural areas where poverty is a critical cause of environmental damage. This research assessed groundwater recharge and its spatial and temporal variations in Gushiegu District in the Northern Region of Ghana, where groundwater is the main source of water supply for most uses. Isotopic data of precipitation and groundwater were used to infer the origin of groundwater and the possible relationship between groundwater and surface water in the partially metamorphosed sedimentary aquifer system in the study area. Though the data do not significantly establish strong relation between groundwater and surface water, the study suggests that groundwater in the area is of meteoric origin. However, the data also indicate significant enrichment of the heavy isotopes (18O and 2H) in groundwater relative to rainwater in the area. The Chloride Mass Balance (CMB) and Water Table Fluctuations (WTF) techniques were used to quantitatively estimate the groundwater recharge in the area. The results suggest groundwater recharge in a range of 13.9 mm/y - 218 mm/y, with an average of 89 mm/yr, representing about 1.4%-21.8% (average 8.9%) of the annual precipitation in the area. There is no clearly defined trend in the temporal variations of groundwater recharge in the area, but the spatial variations are discussed in relation to the underlying lithologies. The results suggest that the fraction of precipitation that reaches the saturated zone as groundwater recharge is largely controlled by the vertical hydraulic conductivities of the material of the unsaturated zone. The vertical hydraulic conductivity coupled with humidity variations in the area modulates the vertical infiltration and percolation of precipitation.

  9. Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China.

    Science.gov (United States)

    Zhang, Junwen; Ma, Teng; Yan, Yani; Xie, Xianjun; Abass, Olusegun K; Liu, Congqiang; Zhao, Zhiqi; Wang, Zhizhen

    2018-02-18

    High arsenic groundwater generally coexists with elevated Fe 2+ concentrations (mg L -1 levels) under reducing conditions, but an explanation for the extremely high arsenic (up to ∼2690) concentrations at very low Fe 2+ (i.e., μg L -1 levels) in groundwater of Datong Basin remains elusive. Field groundwater investigation and laboratory microcosm experiments were implemented in this study. The field groundwater was characterized by weakly alkaline (pH 7.69 to 8.34) and reducing conditions (Eh -221.7 to -31.9 mV) and arsenic concentration averages at 697 μg L -1 . Acinetobacter (5.9-51.3%), Desulfosporosinus (4.6-30.2%), Brevundimonas (3.9-19%) and Pseudomonas (3.2-14.6%) were identified as the dominant genera in the bacterial communities. Bacterially mediated arsenate reduction, Fe(III) reduction, and sulfate reduction are processes occurring (or having previously occurred) in the groundwater. Results from incubation experiment (27 d) revealed that nitrate, arsenate, and Fe(III)/sulfate reduced sequentially with time under anoxic conditions, while Fe(III) and sulfate reduction processes had no obvious differences, occurring almost simultaneously. Moreover, low Fe 2+ concentrations were attributed to initially high pH conditions, which relatively retarded Fe(III) reduction. In addition, arsenic behavior in relation to groundwater redox conditions, matrices, and solution chemistry were elaborated. Bacterial arsenate reduction process proceeded before Fe(III) and sulfate reduction in the incubation experiment, and the total arsenic concentration (dominated by arsenite) gradually increased from ∼7 to 115 μg L -1 as arsenate was reduced. Accordingly, bacterially mediated reductive desorption of arsenate is identified as the main process controlling arsenic mobility, while Fe(III) reduction coupled with sulfate reduction are secondary processes that have also contributed to arsenic enrichment in the study site. Overall, this study provide important

  10. Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations

    Directory of Open Access Journals (Sweden)

    G. P. Gobbi

    2009-11-01

    Full Text Available We provide an atmospheric aerosol characterization for North Africa, Northeastern Atlantic, Mediterranean and Middle East based on the analysis of quality-assured direct-sun observations of 39 stations of the AErosol RObotic NETwork (AERONET which include at least an annual cycle within the 1994–2007 period. We extensively test and apply the recently introduced graphical method of Gobbi and co-authors to track and discriminate different aerosol types and quantify the contribution of mineral dust. The method relies on the combined analysis of the Ångström exponent (α and its spectral curvature δα. Plotting data in these coordinates allows to infer aerosol fine mode radius (Rf and fractional contribution (η to total Aerosol Optical Depth (AOD and separate AOD growth due to fine-mode aerosol humidification and/or coagulation from AOD growth due to the increase in coarse particles or cloud contamination. Our results confirm the robustness of this graphical method. Large mineral dust is found to be the most important constituent in Northern Africa and Middle East. Under specific meteorological conditions, its transport to Southern Europe is observed from spring to autumn and decreasing with latitude. We observe "pure Saharan dust" conditions to show AOD>0.7 (ranging up to 5, α<0.3 and δα<0 corresponding to η<40% and (Rf~0.13 μm. Small pollution particles are abundant in sites close to urban and industrial areas of Continental and Eastern Europe and Middle East, as well as, important contributions of biomass burning are observed in the sub-Sahel region in winter. These small aerosols are associated to AOD<1, α>1.5 and δα~−0.2 corresponding to η>70% and Rf~0.13 μm. Here, dust mixed with fine pollution aerosols shifts the observations to the region α<0.75, in which the fine mode contribution is less than 40%.

  11. Correcting for static shift of magnetotelluric data with airborne electromagnetic measurements: a case study from Rathlin Basin, Northern Ireland

    Science.gov (United States)

    Delhaye, Robert; Rath, Volker; Jones, Alan G.; Muller, Mark R.; Reay, Derek

    2017-05-01

    Galvanic distortions of magnetotelluric (MT) data, such as the static-shift effect, are a known problem that can lead to incorrect estimation of resistivities and erroneous modelling of geometries with resulting misinterpretation of subsurface electrical resistivity structure. A wide variety of approaches have been proposed to account for these galvanic distortions, some depending on the target area, with varying degrees of success. The natural laboratory for our study is a hydraulically permeable volume of conductive sediment at depth, the internal resistivity structure of which can be used to estimate reservoir viability for geothermal purposes; however, static-shift correction is required in order to ensure robust and precise modelling accuracy.We present here a possible method to employ frequency-domain electromagnetic data in order to correct static-shift effects, illustrated by a case study from Northern Ireland. In our survey area, airborne frequency domain electromagnetic (FDEM) data are regionally available with high spatial density. The spatial distributions of the derived static-shift corrections are analysed and applied to the uncorrected MT data prior to inversion. Two comparative inversion models are derived, one with and one without static-shift corrections, with instructive results. As expected from the one-dimensional analogy of static-shift correction, at shallow model depths, where the structure is controlled by a single local MT site, the correction of static-shift effects leads to vertical scaling of resistivity-thickness products in the model, with the corrected model showing improved correlation to existing borehole wireline resistivity data. In turn, as these vertical scalings are effectively independent of adjacent sites, lateral resistivity distributions are also affected, with up to half a decade of resistivity variation between the models estimated at depths down to 2000 m. Simple estimation of differences in bulk porosity, derived using

  12. Correcting for static shift of magnetotelluric data with airborne electromagnetic measurements: a case study from Rathlin Basin, Northern Ireland

    Directory of Open Access Journals (Sweden)

    R. Delhaye

    2017-05-01

    Full Text Available Galvanic distortions of magnetotelluric (MT data, such as the static-shift effect, are a known problem that can lead to incorrect estimation of resistivities and erroneous modelling of geometries with resulting misinterpretation of subsurface electrical resistivity structure. A wide variety of approaches have been proposed to account for these galvanic distortions, some depending on the target area, with varying degrees of success. The natural laboratory for our study is a hydraulically permeable volume of conductive sediment at depth, the internal resistivity structure of which can be used to estimate reservoir viability for geothermal purposes; however, static-shift correction is required in order to ensure robust and precise modelling accuracy.We present here a possible method to employ frequency–domain electromagnetic data in order to correct static-shift effects, illustrated by a case study from Northern Ireland. In our survey area, airborne frequency domain electromagnetic (FDEM data are regionally available with high spatial density. The spatial distributions of the derived static-shift corrections are analysed and applied to the uncorrected MT data prior to inversion. Two comparative inversion models are derived, one with and one without static-shift corrections, with instructive results. As expected from the one-dimensional analogy of static-shift correction, at shallow model depths, where the structure is controlled by a single local MT site, the correction of static-shift effects leads to vertical scaling of resistivity–thickness products in the model, with the corrected model showing improved correlation to existing borehole wireline resistivity data. In turn, as these vertical scalings are effectively independent of adjacent sites, lateral resistivity distributions are also affected, with up to half a decade of resistivity variation between the models estimated at depths down to 2000 m. Simple estimation of differences in bulk

  13. Morphologies and depositional/erosional controls on evolution of Pliocene-Pleistocene carbonate platforms: Northern Carnarvon Basin, Northwest Shelf of Australia

    Science.gov (United States)

    Goktas, P.; Austin, J. A.; Fulthorpe, C. S.; Gallagher, S. J.

    2016-08-01

    The detailed morphologies, evolution and termination of latest Neogene tropical carbonate platforms in the Northern Carnarvon Basin (NCB), on the passive margin of the Northwest Shelf (NWS) of Australia, defined based upon mapping using 3D seismic images, reveal the history of local/regional oceanographic processes, fluctuations in relative sea-level and changing climate. Cool-water carbonate deposition, dominant during the early-middle Miocene, was followed by a siliciclastic influx, which prograded across the NWS beginning in the late-middle Miocene, during a period of long-term global sea-level fall. The resulting prograding clinoform sets, interpreted as delta lobes, created relict topographic highs following Pliocene termination of the siliciclastic influx. These highs constituted multiple favorable shallow-water environments for subsequent photozoan carbonate production. Resultant platform carbonate development, in addition to being a response to cessation of siliciclastic influx and the existence of suitable shallow-water substrate, was also influenced by development of the warm-water Leeuwin Current (LC), flowing southwestward along this margin. Four flat-topped platforms are mapped; each platform top is a sequence boundary defined by reflection onlap above and truncation below. Successive platforms migrated southwestward through time, along margin strike. All platforms exhibit predominantly progradational seismic geometries. Mapped tops are ≥10 km wide. Seismic evidence of karst on three of four platform tops, e.g., v-shaped troughs up to 50 m deep and ~1 km wide, and broader basins with areas up to 20 km2, suggests episodic subaerial exposure that may have contributed to platform demise. Platform 4, the most recent, is unique in having interpreted biohermal build-ups superimposed on the progradational platform base. The base of these interpreted patch reefs now lies at a water depth of ~153 m; therefore, we suggest that these reefs developed post

  14. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    Science.gov (United States)

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore

  15. On Intensive Late Holocene Iron Mining and Production in the Northern Congo Basin and the Environmental Consequences Associated with Metallurgy in Central Africa.

    Directory of Open Access Journals (Sweden)

    Karen D Lupo

    Full Text Available An ongoing question in paleoenvironmental reconstructions of the central African rainforest concerns the role that prehistoric metallurgy played in shaping forest vegetation. Here we report evidence of intensive iron-ore mining and smelting in forested regions of the northern Congo Basin dating to the late Holocene. Volumetric estimates on extracted iron-ore and associated slag mounds from prehistoric sites in the southern Central African Republic suggest large-scale iron production on par with other archaeological and historically-known iron fabrication areas. These data document the first evidence of intensive iron mining and production spanning approximately 90 years prior to colonial occupation (circa AD 1889 and during an interval of time that is poorly represented in the archaeological record. Additional site areas pre-dating these remains by 3-4 centuries reflect an earlier period of iron production on a smaller scale. Microbotanical evidence from a sediment core collected from an adjacent riparian trap shows a reduction in shade-demanding trees in concert with an increase in light-demanding species spanning the time interval associated with iron intensification. This shift occurs during the same time interval when many portions of the Central African witnessed forest transgressions associated with a return to moister and more humid conditions beginning 500-100 years ago. Although data presented here do not demonstrate that iron smelting activities caused widespread vegetation change in Central Africa, we argue that intense mining and smelting can have localized and potentially regional impacts on vegetation communities. These data further demonstrate the high value of pairing archeological and paleoenvironmental analyses to reconstruct regional-scale forest histories.

  16. Secondhand Smoke Concentrations in Hospitality Venues in the Pacific Basin: Findings from American Samoa, Commonwealth of the Northern Mariana Islands, and Guam

    Science.gov (United States)

    King, Brian A; Dube, Shanta R; Ko, Jean Y

    2015-01-01

    Introduction Secondhand smoke (SHS) from burning tobacco products causes disease and premature death among nonsmokers. Although the number of laws prohibiting smoking in indoor public places continues to increase, millions of nonsmokers in the United States (US) and its territories remain exposed to SHS. This study assessed indoor air pollution from SHS in hospitality venues in three US Pacific Basin territories. Methods Air monitors were used to assess PM2.5, an environmental marker for SHS, in 19 smoke-permitted and 18 smoke-free bars and restaurants in American Samoa, Commonwealth of the Northern Mariana Islands (CNMI), and Guam. Observational logs were used to record smoking and other sources of air pollution. Differences in average PM2.5 concentrations were determined using bivariate statistics. Results The average PM2.5 level in venues where smoking was always permitted [arithmetic mean (AM)=299.98 μg/m3; geometric mean (GM)=200.39 μg/m3] was significantly higher (p<0.001) than smoke-free venues [AM=8.33 μg/m3; GM=6.14 μg/m3]. In venues where smoking was allowed only during certain times, the average level outside these times [AM=42.10 μg/m3; GM=41.87 μg/m3] was also significantly higher (p<0.001) than smoke-free venues. Conclusions Employees and patrons of smoke-permitted bars and restaurants are exposed to dangerous levels of air pollution from SHS, even during periods when active smoking is not occurring. Prohibiting smoking in all public indoor areas, irrespective of the venue type or time of day, is the only way to fully protect nonsmokers from SHS exposure in these environments. PMID:22393958

  17. Assessing the Effect of Natural and Induced Fractures on Long-Term CO2 Storage in the Northern Appalachian Basin Using Thermo-Hydro-Mechanical Modeling

    Science.gov (United States)

    Raziperchikolaee, S.; Kelley, M. E.; Main, J.

    2017-12-01

    Natural and induced fractures in a caprock could allow CO2 to migrate out of the intended storage reservoirs in the CO2 sequestration process. We evaluate, through the use of coupled hydro-mechanical numerical modeling, the effectiveness of the Cambrian-Ordovician caprock system in the northern Appalachian Basin for providing long-term containment of CO2 in the presence of existing and induced fractures. Resistivity image and acoustic image logs from wells in the study area were used characterize natural fractures in the caprock zone. The logs showed no compelling evidence of pervasive natural fracturing of the caprock; however, limited natural fractures occur in small isolated patches. Therefore, we modeled natural fractures as isolated features of limited size using the dual-porosity method. The modeling results show that the caprock is effective at preventing CO2 breakthrough in the presence of a natural fracture that partially penetrates the caprock; however, the caprock would be ineffective for containing CO2 if the fracture fully penetrates caprock. To assess induced fractures, coupled fluid-flow, geomechanical, and fracture mechanics modeling was conducted to model the effect of an induced fracture on the sealing integrity of the caprock. First, a fracture mechanics model was used to generate the injection-induced hydraulic fracture and calculate its dimensions (height, length, width). Then, a fluid-flow model was used to evaluate the impacts of the fracture on caprock sealing effectiveness. A significant observation is that the hydraulic fracture was confined to the reservoir (Rose Run sandstone) and did not extend upward into the caprock because the reservoir has the lower minimum horizontal stress. Our study shows that both natural and induced fractures can affect long term CO2 storage depending on size of natural fracture zone, geological and geomechanical properties of reservoir and caprock formations as well as injection parameters.

  18. Secondhand smoke concentrations in hospitality venues in the Pacific Basin: findings from American Samoa, Commonwealth of the Northern Mariana Islands, and Guam.

    Science.gov (United States)

    King, Brian A; Dube, Shanta R; Ko, Jean Y

    2011-01-01

    Secondhand smoke (SHS) from burning tobacco products causes disease and premature death among nonsmokers. Although the number of laws prohibiting smoking in indoor public places continues to increase, millions of nonsmokers in the United States (US) and its territories remain exposed to SHS. This study assessed indoor air pollution from SHS in hospitality venues in three US Pacific Basin territories. Air monitors were used to assess PM2.5, an environmental marker for SHS, in 19 smoke-permitted and 18 smoke- free bars and restaurants in American Samoa, Commonwealth of the Northern Mariana Islands (CNMI), and Guam. Observational logs were used to record smoking and other sources of air pollution. Differences in average PM2.5 concentrations were determined using bivariate statistics. The average PM2.5 level in venues where smoking was always permitted [arithmetic mean (AM)=299.98 μg/m3; geometric mean (GM)=200.39 μg/ m3] was significantly higher (p<0.001) than smoke-free venues [AM=8.33 μg/m3; GM=6.14 μg/m3]. In venues where smoking was allowed only during certain times, the average level outside these times [AM=42.10 μg/m3; GM=41.87 μg/m3] was also significantly higher (p<0.001) than smoke-free venues. Employees and patrons of smoke-permitted bars and restaurants are exposed to dangerous levels of air pollution from SHS, even during periods when active smoking is not occurring. Prohibiting smoking in all public indoor areas, irrespective of the venue type or time of day, is the only way to fully protect nonsmokers from SHS exposure in these environments.

  19. Basement and cover-rock deformation during Laramide contraction in the Northern Madison Range (Montana) and its influence on Cenozoic basin formation

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, K.S. [Geological Survey, Denver, CO (United States); Schmidt, C.J. [Western Michigan Univ., Kalamazoo, MI (United States); Young, S.W. [Conoco, Inc., Midland, TX (United States)

    1995-08-01

    Two major Laramide fault systems converge in the northwestern Madison Range: the northwest-striking, southwest-vergent Spanish Peaks reverse fault and the north-striking, east-vergent Hilgard thrust system. Analysis of foliation attitudes in basement gneiss north and south of the Spanish Peaks fault indicates that the basement in thrusted blocks of the Hilgard thrust system has been rotated by an amount similar to that of the basement-cover contact. In most places along the Hilgard thrust system, a large basement overhang, produced by thrusting of Archean blocks above rocks as young as Late Cretaceous, overlies a tight footwall syncline. This tight folding is largely concentric and was accommodated by flexural slip, resulting in severe crowding in synclinal hinges that resulted in observed or inferred features such as bedding-plane slip, imbricate and out-of-syncline thrusting, and hinge collapse. This paired fault system (the Madison normal fault system and the Hilgard thrust system) of the northern Madison Range is strikingly similar to other paired systems in southwestern Montana along and adjacent to the western margins of the Ruby Range, Snowcrest Range, Greenhorn Range, Tobacco Root Mountains, and Bridger Range. No hydrocarbon discoveries have been made in this unique structural province. However, petroleum exploration here has focused on basement-cored anticlines, both surface and subthrust, related to the two major Laramide fault systems and on the fault-bounded blocks of Tertiary rocks within the post-Laramide extensional basins. The interplay of the two Laramide fault systems during both Laramide shortening and Tertiary extension has produced a variety of possible structural traps in the Madison Range that have not yet been thoroughly investigated.

  20. On Intensive Late Holocene Iron Mining and Production in the Northern Congo Basin and the Environmental Consequences Associated with Metallurgy in Central Africa.

    Science.gov (United States)

    Lupo, Karen D; Schmitt, Dave N; Kiahtipes, Christopher A; Ndanga, Jean-Paul; Young, D Craig; Simiti, Bernard

    2015-01-01

    An ongoing question in paleoenvironmental reconstructions of the central African rainforest concerns the role that prehistoric metallurgy played in shaping forest vegetation. Here we report evidence of intensive iron-ore mining and smelting in forested regions of the northern Congo Basin dating to the late Holocene. Volumetric estimates on extracted iron-ore and associated slag mounds from prehistoric sites in the southern Central African Republic suggest large-scale iron production on par with other archaeological and historically-known iron fabrication areas. These data document the first evidence of intensive iron mining and production spanning approximately 90 years prior to colonial occupation (circa AD 1889) and during an interval of time that is poorly represented in the archaeological record. Additional site areas pre-dating these remains by 3-4 centuries reflect an earlier period of iron production on a smaller scale. Microbotanical evidence from a sediment core collected from an adjacent riparian trap shows a reduction in shade-demanding trees in concert with an increase in light-demanding species spanning the time interval associated with iron intensification. This shift occurs during the same time interval when many portions of the Central African witnessed forest transgressions associated with a return to moister and more humid conditions beginning 500-100 years ago. Although data presented here do not demonstrate that iron smelting activities caused widespread vegetation change in Central Africa, we argue that intense mining and smelting can have localized and potentially regional impacts on vegetation communities. These data further demonstrate the high value of pairing archeological and paleoenvironmental analyses to reconstruct regional-scale forest histories.

  1. Geophysical Investigation of the Raton Basin.

    Science.gov (United States)

    1982-05-01

    65 miles wide, the Raton Basin is divided by the Cimarron Arch into the northern Raton Basin and the Las Vegas Basin on the south. The deepest...to the east, the Cimarron Arch on the north, and was linked by a low saddle to the Tucumcari Basin to the south. The Colorado and Rowe-Mora Basins...sedimentary rock thinning near the Apishipa, Cimarron , and Sierra Grande Arches; 2) presence of volcanic rock in the southern portion of the Basin; 3

  2. Foreland development along the advanced seawall at Højer, the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Vestergaard, Peter

    2006-01-01

    ) and Common Cord-Grass (Spartina) have established widely on tidal flats in the sedimentation fields, 3) At the inner part of the tidal flat a Common Salt-Marsh-Grass (Puccinellia maritima) salt marsh has gradually established, 4) the foreland landwards to the tidal flat has currently been narrowed by erosion...

  3. Coastal evolution of a cuspate foreland (Flakket, Anholt, Denmark) between 2006 and 2010

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Bendixen, Mette; Nielsen, Lars

    2011-01-01

    of this marine foreland between May 2006 and September 2010 is documented in this paper. Flakket is under erosion on its northwestern side, which has retreated up to 40 m during the observation period. The shoreline of the northeastern side of the beach-ridge plain moved up to 70 m in a seaward direction during...

  4. Establishing age constraints for Middle Pleistocene glaciofluvial sediments in the European Alpine foreland - new insights from luminescence dating

    Science.gov (United States)

    Lüthgens, Christopher; Rades, Eike F.; Bickel, Lukas; Fiebig, Markus

    2017-04-01

    This presentation summarises the outcome of a project funded by the Austrian Science Fund (FWF) which aimed at establishing new age constraints of deposits and landforms (glaciofluvial terraces) of the northern Alpine foreland (NAF) usually assigned to the Middle Pleistocene. The sediments under investigation were mostly deposited when large piedmont glaciers reached far into the Alpine foreland. Based on the concept of four Quaternary glacial advances to the NAF, which was already developed at the beginning of the 20th century by Penck and Brückner, specific morphostratigraphic units which can spatially be connected over the complete NAF area have been assigned to different glacial cycles and were subsequently correlated with the marine isotope record. However, numerical dating of the respective sediments had only been conducted to a limited extent, and previous studies report several methodological issues that limited the outcome with respect to the geochronological and chronostratigraphical value. In the course of the project, it became clear that the applicability of different optically stimulated luminescence (OSL) dating techniques for the targeted sediments was strongly dependent on the varying luminescence properties for samples from different catchment areas. By conducting a comparative luminescence dating approach, using different luminescence signals (quartz OSL, and feldspar infrared stimulated luminescence at 50°C (IR50) as well as post IR infrared stimulated luminescence at an elevated temperature (225°C, pIRIR225)), as well as using single aliquot and single grain dating techniques, it was i) possible to confirm but also to overcome prior problems of luminescence dating with the respective sediments ii) discern between samples that were well bleached prior to deposition and samples for which the luminescence signals were not properly reset, and iii) possible to establish reliable geochronological age constraints for the deposition of the sediments

  5. Geometry of the inverted Cretaceous Chañarcillo Basin based on 2-D gravity and field data - an approach to the structure of the western Central Andes of northern Chile

    Science.gov (United States)

    Martínez, F.; Maksymowicz, A.; Ochoa, H.; Díaz, D.

    2015-12-01

    This paper discusses an integrated approach that provides new ideas about the structural geometry of the NNE-striking, Cretaceous Chañarcillo Basin located along the eastern Coastal Cordillera in the western Central Andes of northern Chile (27-28° S). The results obtained from the integration of two transverse (E-W) gravity profiles with previous geological information show that the architecture of this basin is defined by a large NNE-SSE-trending and east-vergent anticline ("Tierra Amarilla Anticlinorium"), which is related to the positive reactivation of a former Cretaceous normal fault (Elisa de Bordos Master Fault). Moreover, intercalations of high and low gravity anomalies and steep gravity gradients reveal a set of buried, west-tilted half-grabens associated with a synthetic normal fault pattern. These results, together with the uplift and folding style of the Cretaceous synextensional deposits recognized within the basin, suggest that its structure could be explained by an inverted fault system linked to the shortening of pre-existing Cretaceous normal fault systems. Ages of the synorogenic deposits exposed unconformably over the frontal limb of the Tierra Amarilla Anticlinorium confirm a Late Cretaceous age for the Andean deformation and tectonic inversion of the basin.

  6. Deformation History of the Haymana Basin: Structural Records of Closure-Collision and Subsequent Convergence (Indentation) Events at the North-Central Neotethys (Central Anatolia, Turkey)

    Science.gov (United States)

    Gülyüz, Erhan; Özkaptan, Murat; Kaymakcı, Nuretdin

    2016-04-01

    , the boundary of the segments is defined as an intra-basinal strike-slip system which is thought to be developed together with late stage activities of the basin bounding thrust (or reverse) faults (Dereköy and İnler faults) in response to the north-westward movement of the northern segment of the Kırşehir block. It is proposed that the Haymana basin was initially evolved under the influences of subduction related extensional setting until middle Paleocene, and latterly foreland settings in front of a south-vergent fold and thrust belt developed during collision and post-collisional convergence until middle Miocene. Additionally, the north-westward movement and indentation of the Kırşehir Block caused structural segmentation and rotation events in the basin.

  7. The Rio Pardo salient, northern Araçuaí orogen: an example of a complex basin-controlled fold-thrust belt curve

    Directory of Open Access Journals (Sweden)

    Eliza Peixoto

    Full Text Available ABSTRACT: The Rio Pardo salient, the large antitaxial curve described by the Araçuaí fold-and-thrust belt along the southeastern edge of the São Francisco craton, is one of the most prominent and one of the least studied features of the Brasiliano Araçuaí-West Congo orogenic system (AWCO. In addition to the Archean/Paleoproterozoic basement, the salient is comprised of metasedimentary rocks mainly from the Neoproterozoic Macaúbas Group and the Salinas Formation. Its western limb occupies a portion of the Espinhaço ridge, where the NS-trending structures of the Araçuaí belt progressively curve NE and E, thereby defining the hinge zone along the Serra Geral on the Minas-Bahia boundary. The eastern limb is NW-trending and marked by a major shear zone. In models postulated to generate the AWCO through the closure of the Neoproterozoic Macaúbas basin, this large curve plays a critical kinematic role. Yet, in spite of this, its development is still not fully understood. How did this curve originate? Which factors controlled its generation? Our field study performed in the northern Araçuaí orogen characterized the kinematic picture of the salient, and led to a model that addresses these questions. The results we obtained indicate that the Rio Pardo salient developed in response to four deformation phases. The contractional D1 and D2 phases are coaxial and responsible for a craton-directed tectonic transport along the salient’s outer arc, which is coupled with an overall southward motion of the inner arc, thereby giving rise to a rather complex kinematic picture. Furthermore, structures of the D1/D2 phases define a zigzag pattern with alternating NE- and NW-trending segments along the salient’s leading edge. Along the NE-trending segments, the metasedimentary rocks are thrust northwestwards on top of the craton basement, while along the NW-trending segments, the supracrustal rocks are displaced along dextral to reverse

  8. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2003-03-01

    This report presents results for year eleven in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible.

  9. Tectono-sedimentary evolution of the Neuquén basin (Argentina) between 39°S and 41°S during the Neogene

    Science.gov (United States)

    Huyghe, D.; Bonnel, C.; Nivière, B.; Messager, G.; Dhont, D.; Fasentieux, B.; Hervouët, Y.; Xavier, J.-P.

    2012-04-01

    Sedimentary rocks deposited in foreland basins are of primary interest, because they record the interactions between the growth of the orogenic wedge, the isostatic readjustment of the lithosphere, the variations of base-level and earth surface process. The Neuquén basin (32°S - 41°S) is a triangular shape foreland basin located on the eastern flank of the Andes. Its filling began during the late Triassic, first as back arc basin context and as compressive foreland basin since the upper Cretaceous. The structural inheritance is thus important and old basement structures, like the Huincul Ridge, generate significant variations of both deformation and shortening. Its Mesozoic history is well constrained due to its hydrocarbon potential. In comparison, its Cenozoic history remains poorly documented. The modern configuration of this basin results from several successive compressive tectonic phases. The last one is dated from the Miocene (Quechua phase) and has conditioned the segmentation of the foreland basin in several intra-mountainous sub-basins, whose sedimentary filling could reach several hundred meters. In this work, we document the relative chronology of the geological events and the sedimentary processes that have governed the Cenozoic history of the southern part of the Neuquen basin, to discriminate the relative rules of climatic and structural controlling factors on the evolution of the depocentres. Several NNW-SSE oriented intra-mountainous basins exist in this part of the Andes (Collon Cura basin and Catan Lil basin). On the contrary the associated foreland basin (Picun Leufu basin) is relatively underformed and is bounded to the North by the Huincul ridge and the North Patagonian massif to the South. Fifteen sedimentary sections have been studied along the Rio Limay River in the southern border of the basin, from the range to the external part of the foreland. The sedimentation is discontinuous in time and important retrogradations of the depocentres

  10. Geochemical and palaeontological characterization of a new K-Pg Boundary locality from the Northern branch of the Neo-Tethys: Mudurnu - Goynuk Basin, NW Turkey

    NARCIS (Netherlands)

    Acikalin, S.; Vellekoop, J.; Ocakoglu, F.; Yilmaz, I.O.; Smit, J.; Altiner, S.O.; Goderis, S.; Vonhof, H.B.; Speijer, R.P.; Woelders, L.; Fornaciari, E.; Brinkhuis, H.

    2015-01-01

    A Cretaceous-Paleogene (K-Pg) succession is studied in detail in the Mudurnu-Göynük basin in northwestern Turkey. To characterize the K-Pg transition in this basin, two stratigraphic sections were measured and sampled at high resolution: the Okçular and the Göynük North sections. These sections were

  11. Soft-sediment deformation related to syntectonic intraformational unconformity in the early Palaeocene alluvial-fan deposits of Kuşcular Formation in the Elazığ sector of Tauride foreland, eastern Turkey

    Science.gov (United States)

    Koç Taşgın, Calibe

    2017-10-01

    The Kuşçular Formation was deposited in the early Palaeocene in a tectonically-controlled foreland basin in front of the southwards-advancing nappes of the Tauride orogen in eastern Turkey. This lithostratigraphic unit consists of alluvial-fan deposits, including distal mudflat-playa facies association. The proximal to middle fan deposits are composed of clastic sediments, whereas the distal deposits represent both clastic and evaporitic sedimentation. Compressional synsedimentary deformation caused development of an intraformational unconformity in the distal fan deposits of the Kuşçular Formation. Slump features and overturned beds were formed as a result of the oversteepening and recumbent folding of deposits due to the orogen thrust-wedge movement. Load casts, flame structures, intrusion features, sand dykes, interpenetrative cusps and synsedimentary faults were formed as a result of sediment liquefaction and remobilization. It is suggested that such levels of soft-sediment deformation in foreland terrestrial molasse deposits should be carefully studied as they may be related to 'hidden' unconformities and represent an important record of syndepositional tectonic and seismic activity in the basin.

  12. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Winther, Eric C.; Fox, Lyle G.

    2004-01-01

    This report presents results for year twelve in a basin-wide program to harvest northern pikeminnow1 (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified

  13. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Glaser, Bryce G.; Amren, Jennifer

    2003-03-01

    This report presents results for year ten in a basin-wide program to harvest northern pikeminnow (Ptychocheilus oregonensis). This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991--a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and damangling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified

  14. Cenozoic basin thermal history reconstruction and petroleum systems in the eastern Colombian Andes

    Science.gov (United States)

    Parra, Mauricio; Mora, Andres; Ketcham, Richard A.; Stockli, Daniel F.; Almendral, Ariel

    2017-04-01

    Late Mesozoic-Cenozoic retro-arc foreland basins along the eastern margin of the Andes in South America host the world's best detrital record for the study of subduction orogenesis. There, the world's most prolific petroleum system occur in the northernmost of these foreland basin systems, in Ecuador, Colombia and Venezuela, yet over 90% of the discovered hydrocarbons there occur in one single province in norteastern Venezuela. A successful industry-academy collaboration applied a multidisciplinary approach to the study of the north Andes with the aim of investigating both, the driving mechanisms of orogenesis, and its impact on hydrocarbon accumulation in eastern Colombia. The Eastern Cordillera is an inversion orogen located at the leading edge of the northern Andes. Syn-rift subsidence favored the accumulation of km-thick organic matter rich shales in a back-arc basin in the early Cretaceous. Subsequent late Cretaceous thermal subsidence prompted the accumulation of shallow marine sandstones and shales, the latter including the Turonian-Cenomanian main hydrocarbon source-rock. Early Andean uplift since the Paleocene led to development of a flexural basin, filled with mainly non-marine strata. We have studied the Meso-Cenozoic thermal evolution of these basins through modeling of a large thermochronometric database including hundreds of apatite and zircon fission-track and (U-Th)/He data, as well as paleothermometric information based on vitrinite reflectance and present-day temperatures measured in boreholes. The detrital record of Andean construction was also investigated through detrital zircon U-Pb geochronometry in outcrop and borehole samples. A comprehensive burial/exhumation history has been accomplished through three main modeling strategies. First, one-dimensional subsidence was used to invert the pre-extensional lithospheric thicknesses, the magnitude of stretching, and the resulting heat flow associated to extension. The amount of eroded section and

  15. Distal Limits and Composition of a Late Ordovician (Mohawkian) Biotite-Bearing Volcanic ash, Foreland Carbonate Platform (Verulam Formation), Ottawa Embayment: Helping to Define Magmatic Change in Volcanism Following Later Platform Foundering

    Science.gov (United States)

    Al-Delami, M.; Dix, G. R.

    2009-05-01

    Two thin (~3 cm) biotite-bearing clay beds that are separated by a 1-cm thick crinoidal-brachiopod floatstone can be traced in two cores through the Upper Ordovician Verulam Formation (Ottawa Group) along a 25-km transect in the western portion of the Ottawa Embayment, eastern Ontario. Only a further 3 km to the northwest, neither the beds nor related mineralogy are recognized in either core or outcrop,. The beds contain abraded fragments (5-10 %) of partially chlorite- and illite-altered biotite that floats within a soft, friable clay-mineral matrix of kaolinite, illite, chlorite, and minor smectite. Accessory mineralogy includes phenocrystic apatite, feldspar (orthoclase and albite), amphibole, and magnetite. In the lower bed, biotite grains decrease in both abundance (influence from volcanic input. The Verulam altered ash deposits represent the distal margin of a double volcanic eruption, the source mostly likely within the developing Taconic volcanic arc that once lay along the Late Ordovician foreland basin of eastern Laurentia. Geochemical proxies (Zr/TiO2 and Nb/Y) identify a trachyandesitic to rhyodacitic parent magma. Chlorite alteration may indicate minimum burial temperatures of 130oC, in keeping with burial temperature estimates according to conodont alteration indices (CAI = 3) for the host carbonate platform succession. The MgO and FeO % of biotites from these beds plot within the same field as the slightly older Millbrig and Deike bentonites that also represent ash deposition within shallow-water carbonate platform environments from widespread Late Ordovician eruptions that occurred along the foreland basin margin. Collectively, these compositions are higher in FeO and lower in MgO % values compared those associated with a bentonite within the overlying Taconic foreland shale succession of the Ottawa Embayment, and bentonites in Lower Silurian successions of western Europe. This contrast strengthens a previous hypothesis (Sharma et al., 2005) that

  16. Effects of recharge and discharge on delta2H and delta18O composition and chloride concentration of high arsenic/fluoride groundwater from the Datong Basin, northern China.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Duan, Mengyu

    2013-02-01

    To better understand the effects of recharge and discharge on the hydrogeochemistry of high levels of arsenic (As) and fluoride (F) in groundwater, environmental isotopic composition (delta2H and delta18O) and chloride (Cl) concentrations were analyzed in 29 groundwater samples collected from the Datong Basin. High arsenic groundwater samples (As > 50 micog/L) were found to be enriched in lighter isotopic composition that ranged from -92 to -78 per thousand for deuterium (delta2H) and from -12.5 to -9.9 per thousand for oxygen-18 (delta18O). High F-containing groundwater (F > 1 mg/L) was relatively enriched in heavier isotopic composition and varied from -90 to -57 per thousand and from -12.2 to -6.7 per thousand for delta2H and delta18O, respectively. High chloride concentrations and delta18O values were primarily measured in groundwater samples from the northern and southwestern portions of the study area, indicating the effect of evaporation on groundwater. The observation of relatively homogenized and low delta18O values and chloride concentrations in groundwater samples from central part of the Datong Basin might be a result of fast recharge by irrigation returns, which suggests that irrigation using arsenic-contaminated groundwater affected the occurrence of high arsenic-containing groundwater in the basin.

  17. Magnetic anomalies across the transitional crust of the passive conjugate margins of the North Atlantic: Iberian Abyssal Plain/Northern Newfoundland Basin

    Science.gov (United States)

    Srivastava, S.; Sibuet, J.; Manatschal, G.

    2005-12-01

    and not by oceanic crust formed by seafloor spreading. Ages of mantle exhumation at ODP Sites 1067, 1068 and 1070 are similar to ages determined as if the crust was emplaced by seafloor spreading. We have demonstrated that sources of these magnetic anomalies are not located 6-8 km below the basement as previously suggested but lie within the upper crust, as for conventional seafloor spreading magnetic anomalies. From paleomagnetic measurements performed on serpentinized peridotites from three ODP sites in IAP and proxies in the Alps, we suggest that the crystallization of magnetite grains during the primary mantle serpentinization are related to mantle exhumation processes along downward concave faults, resulting in highly magnetized serpentinized rocks giving rise to magnetic anomalies similar to 'seafloor spreading' anomalies, but with different amplitudes. Finally, we suggest a mechanism of emplacement of the transitional crust for the conjugate IAP/Northern Newfoundland Basin margins similar to the mode of emplacement of amagmatic segments observed at slow or ultraslow seafloor spreading ridges. One of the consequences of this work is that magnetic data might give useful time constraints on the emplacement of transitional crust across non-volcanic passive margins but not information concerning its nature.

  18. Palaeoenvironment and dating of the Early Acheulean localities from the Somme River basin (Northern France): New discoveries from the High Terrace at Abbeville-Carrière Carpentier

    Science.gov (United States)

    Antoine, Pierre; Moncel, Marie-Hélène; Limondin-Lozouet, Nicole; Locht, Jean-Luc; Bahain, Jean-Jacques; Moreno, Davinia; Voinchet, Pierre; Auguste, Patrick; Stoetzel, Emmanuelle; Dabkowski, Julie; Bello, Silvia M.; Parfitt, Simon A.; Tombret, Olivier; Hardy, Bruce

    2016-10-01

    Dating the earliest human occupations in Western Europe and reconstructing links with climatic and environmental constraints is a central issue in Quaternary studies. Amongst the discovery of Palaeolithic artefacts ascribed to the Early Pleistocene in southeast Britain and central France the Somme Basin, where the Acheulean type-site Amiens Saint-Acheul is located, is a key area for addressing this topic. Research undertaken over the past 20 years on both Quaternary fluvial and loess sequences of this area has provided a unique dataset for the study of the relations between human occupations and environmental variations. Studies based on an interdisciplinary approach combining sedimentology, palaeontology and geochronology have highlighted the impact of the 100 kyrs cycles on terrace formation during the last million years. In this terrace system, the earliest in situ Acheulean settlements known in the 1990s were dated to early MIS 12 (±450 ka), but new field discoveries, at Amiens "Rue du Manège", dated to ± 550 ka, significantly increase the age of the oldest human occupation in the area. In this context, new fieldwork has been undertaken in Abbeville at the Carrière Carpentier site, famous for its White Marl deposit attributed to the Cromerian and in the same terrace level where the former discoveries of "Abbevillian bifaces" were made by d'Ault du Mesnil. This research is based on an interdisciplinary approach, combining sedimentology, paleontology, dating (ESR on quartz and ESR/U-series on teeth) and archaeology. According to the various bio-proxies (molluscs, large vertebrates, small mammals), the White Marl was deposited during the early part of an interglacial phase in an aquatic slow-flowing environment, as emphasized by the development of oncoliths and the presence of fish and aquatic molluscs. The landscape was composed of a mosaic of open bush and forest areas, in which wet and grassy vegetation developed on riverbanks. On the basis of terrace

  19. Basement blocks and basin inversion structures mapped using reprocessed Gulfrex 2D seismic data, Caribbean-South American oblique collisional zone

    Science.gov (United States)

    Escalona, A.; Sena, A.; Mann, P.

    2003-12-01

    We have reprocessed and reinterpreted more than 10,000 km of "Gulfrex" multi-channel 2D seismic reflection lines collected by Gulf Oil Corporation in 1972 along the northern margin of South America (offshore Venezuela and Trinidad). These digital data were donated to the University of Texas Institute for Geophysics and represent the largest single, digital reflection survey of the region. Reprocessing of these data included: format correction, filtering, post-stack multiple suppression, and fk migration. Reprocessed data were loaded and interpreted on a workstation. The data straddle a 2,000,000 km2 zone of Paleocene-Recent, time-transgressive, oblique collision between the Caribbean arc system and the passive continental margin of northern South America. Free-air, satellite gravity data shows the remarkable 1000-km-scale continuity of four basement ridges between the uncollided part of the Caribbean arc system (NS-trending Lesser Antilles arc) and the EW-trending collisional area north of Venezuela. The basement ridges involved in the Venezuelan collisional zone include: 1) Aruba-Bonaire-Curacao ridge that can be traced as a continuous feature to the Aves ridge remnant arc of the Lesser Antilles; 2) the partially inverted Blanquilla-Bonaire basin that can be traced into the Grenada back-arc basin; 3) Margarita-Los Testigos platform that can be traced to the Lesser Antilles volcanic arc; and 4) foreland basins and fold-thrust belts of eastern Venezuela (Serrania del Interior and Maturin basin) that can be traced to the Tobago forearc basin and Barbados accretionary prism. Gulfrex data document the progressive change of basinal fault systems from NS-striking normal faults formed in extensional, Lesser Antilles intra-arc settings to rotated and inverted, NE and EW-striking normal faults deformed in the collisional area north of Venezuela. Age of initial shortening of basinal areas and inversion of normal faults setting does not follow the simple, expected pattern of

  20. Tectono-Thermal History Modeling and Reservoir Simulation Study of the Nenana Basin, Central Alaska: Implications for Regional Tectonics and Geologic Carbon Sequestration

    Science.gov (United States)

    Dixit, Nilesh C.

    Central Interior Alaska is an active tectonic deformation zone highlighted by the complex interactions of active strike-slip fault systems with thrust faults and folds of the Alaska Range fold-and-thrust belt. This region includes the Nenana basin and the adjacent Tanana basin, both of which have significant Tertiary coal-bearing formations and are also promising areas (particularly the Nenana basin) with respect to hydrocarbon exploration and geologic carbon sequestration. I investigate the modern-day crustal architecture of the Nenana and Tanana basins using seismic reflection, aeromagnetic and gravity anomaly data and demonstrate that the basement of both basins shows strong crustal heterogeneity. The Nenana basin is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Flats fault zone. The Tanana basin has a fundamentally different geometry and is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. NE-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. Seismic refection data, well data, fracture data and apatite fission track data further constrain the tectonic evolution and thermal history of the Nenana basin. The Nenana basin experienced four distinct tectonic phases since Late Paleocene time. The basin initiated as a narrow half-graben structure in Late Paleocene with accumulation of greater than 6000 feet of sediments. The basin was then uplifted, resulting in the removal of up to 5000 feet of Late Paleocene sediments in Eocene to Oligocene time. During Middle to Late Miocene time, left lateral strike-slip faulting was superimposed on the existing half-graben system. Transtensional deformation of the basin began in the Pliocene. At present, Miocene and older strata are exposed to temperatures > 60°C in the deeper parts of the Nenana

  1. The application of agricultural land rating and crop models to CO2 and climate change issues in Northern regions: the Mackenzie Basin case study

    Directory of Open Access Journals (Sweden)

    M. BRKLACICH

    2008-12-01

    Full Text Available The Mackenzie Basin in northwestern Canada covers approximately 1.8 million km2 and extends from 52°N to 70°N. Much of the Basin is currently too cool and remote from markets to support a viable agricultural sector, but the southern portion of the Basin has the physical potential to support commercial agriculture. This case study employed agricultural land rating and crop models to estimate the degree to which a CO2-induced global warming might alter the physical potential for commercial agriculture throughout the Basin. The two climate change scenarios considered in this analysis would relax the current constraints imposed by a short and cool frost-free season, but without adaptive measures, drier conditions and accelerated crop development rates were estimated to offset potential gains stemming from elevated CO2 levels and warmer temperatures. In addition to striving for a better understanding of the extent to which physical constraints on agriculture might be modified by climate change, there is a need to expand the research context and to consider the capacity of agriculture to adapt to altered climates.;

  2. Morphological determinants of the course of laminated sedimentation in the basin of Lake Czechowskie (northern Poland) in the Late Glacial and Holocene

    Science.gov (United States)

    Kramkowski, Mateusz; Kordowski, Jarosław; Tyszkowski, Sebastian; Błaszkiewicz, Mirosław

    2014-05-01

    The analyses of the annually laminated lacustrine sediments are particularly important in the studies of global climate change. They provide information about the ecosystem response to environmental and climate changes. The condition for the laminated sedimentation with the annual resolution is the calm sedimentation environment where there is no mixing and thus there are anaerobic conditions in the benthic zone. Water mixing occurs mainly as a result of weather factors such as wind and temperature. Below a certain depth water does not undergo mixing evoked by waves and also has a constant temperature which causes its stagnation. In shallower areas such conditions are favoured by the morphology of the lake basin and the long presence of ice cover (bradymictic). The combination of these environmental features predispose to the deposition of laminated sediments. Lake Czechowskie is situated in a deep kettle-hole type basin in the marginal zone of the maximum range of the Pomeranian Phase of the last Weichselian ice sheet. Taking into account the thickness of the lacustrine sediments, the maximum depth of the basin exceeds 70 m. Detailed surveying as well as geological drilling using the GIS techniques made it possible to reconstruct the morphology of the basin of Lake Czechowskie and its adjacent areas back to the state from before the biogenic sedimentation started in Allerød. The analysis of the morphology of the lake basin becomes the basis for modelling the sedimentation conditions considering, inter alia, the wind direction and velocity, fluctuations in water levels and the degree of filling the basin with the deposits in different periods of the Late Glacial and Holocene. It allows specifying the variability and sedimentation rate within the basin. The analysis shows the spatial variation of erosion and accumulation zones, and enables to determine the zones of quiet sedimentation revealing places particularly predisposed to accumulate annually laminated

  3. Crustal extension and magmatism during the mid-Cenozoic ignimbrite flare-up in the Guazapares Mining District and Cerocahui basin regions, northern Sierra Madre Occidental, western Chihuahua, Mexico

    Science.gov (United States)

    Murray, Bryan Patrick

    Silicic large igneous provinces are significant in the geologic record, due to their unusually extensive areal coverage (>100,000 km2) and large volumes (>250,000 km3), and may be characteristic of continental regions undergoing broad lithospheric extension. The Sierra Madre Occidental of northwestern Mexico is the biggest and best-preserved silicic large igneous province of the Cenozoic and is considered part of the extensive mid-Cenozoic ignimbrite flare-up that affected much of the southwestern North American Cordillera. Despite its size and preservation, very little is known about the geology of the Sierra Madre Occidental, and the timing and spatial extent of ignimbrite flare-up volcanism in relation to crustal extension is relatively unknown. This study presents new geologic mapping, stratigraphy, zircon U-Pb laser ablation ICP-MS dating, modal analysis, and geochemical data from the Guazapares Mining District and Cerocahui basin regions, two adjacent areas of the northern Sierra Madre Occidental in western Chihuahua. The rock exposure and topographic relief in this previously unmapped ~450 km2 area make it ideal for studying the relationships between silicic large igneous province volcanism and crustal extension. Three informal formations are identified in the study area: (1) the ca. 27.5 Ma Parajes formation, a ~1-km-thick succession of primarily welded silicic outflow ignimbrite sheets erupted from sources within ~50--100 km of the study area that were active during the Early Oligocene pulse of the mid-Cenozoic ignimbrite flare-up; (2) the ca. 27--24.5 Ma Temoris formation, composed primarily of locally erupted mafic-intermediate lavas and associated intrusions with interbedded alluvial deposits, likely related to rocks of the Southern Cordillera basaltic andesite province that were intermittently erupted across all of the northern Sierra Madre Occidental following the Early Oligocene ignimbrite pulse; and (3) the ca. 24.5--23 Ma Sierra Guazapares

  4. A tridimensional reconstruction of the Forenza-Venosa Basin (Southern Italy)

    Science.gov (United States)

    Chiara Tartarello, Maria; Bigi, Sabina

    2017-04-01

    The study area comprises a sector of the Southern Apennine thrust front and of the close foreland (Bradanic Foredeep). In this area Plio-Pleistocene continental deposits extensively crops out whereas the chain is represented by the Miocenic turbidites and the Allochtonous. The substratum is known only in exploration wells logs: it is represented by Jurassic - Miocene carbonate successions, composed by: Jurassic limestones and dolomites (Dolomitic Complex of Murge), Cretaceous limestones of Cupello Fm., Eocene to Miocene calcareous breccias with intercalation of basaltic layer of Lavello Breccias. Several seismic lines, isochrones maps and wells logs have been used to reconstruct the 3D model of the Forenza-Venosa Basin. It is characterized by the occurrence of Pre-Pliocene normal faults, that offset the carbonate complex with an horst and graben structure. The main regional normal fault has a NW-SE trend and a displacement of about 700 ms; this fault appears to be dislocated by an E-W trasfer fault. In the inner part of the area, it is clearly visible the thrust of the chaotic complex (Allochthonous Fm.) onto the foredeep deposits. The foredeep, filled by the Plio-Pleistocene deposits, has an NW-SE elongated geometry and only few kilometers of amplitude. The occurrence of pre Pliocene normal fault can be connected to the flexure of the Apulian platform during the Apennines evolution; the age of these faults can be considered as active during the Upper Miocene, as testified by the Miocene syn-sedimentary deposits, clearly visible in the seismic line, showing strong thickness variation. The low angle thrust plane placed the Allhocthonous Fm. on the Early Pliocene sequence, testify the migration of the compressional front of the chain after Early Pliocene. Even the E-verge folds involving the carbonate succession can be referred to this younger contractional phase. The folding affects also the Pliocene sequence, with a gentle bending in the northern part of the

  5. Analytical Results for 35 Mine-Waste Tailings Cores and Six Bed-Sediment Samples, and An Estimate of the Volume of Contaminated Material at Buckeye Meadow on Upper Basin Creek, Northern Jefferson County, Montana

    Science.gov (United States)

    Fey, David L.; Church, Stan E.; Finney, Christopher J.

    1999-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acid-generation and toxic-metal solubilization. Flotation-mill tailings in the meadow below the Buckeye mine, hereafter referred to as the Buckeye mill-tailings site, have been identified as significant contributors to water quality degradation of Basin Creek, Montana. Basin Creek is one of three tributaries to the Boulder River in the study area; bed sediments and waters draining from the Buckeye mine have also been implicated. Geochemical analysis of 35 tailings cores and six bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb,and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms that constitute their food. A suite of one-inch cores of dispersed flotation-mill tailings and underlying premining material was taken from a large, flat area north of Basin Creek near the site of the Buckeye mine. Thirty-five core samples were taken and divided into 204 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid digestion. Results of the core analyses show that the elements listed above are present at moderate to very high concentrations (arsenic to 63,000 ppm, silver to 290 ppm, cadmium to 370 ppm, copper to 4,800 ppm, lead to 93,000 ppm, and zinc to 23,000 ppm). Volume calculations indicate that an estimated 8,400 metric tons of contaminated material are present at the site. Six bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50°C) 2M HCl-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of Basin Creek are only slightly impacted by past mining above the Buckeye-Enterprise complex, moderately impacted at the upper (eastern

  6. 50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)?

    NARCIS (Netherlands)

    Chávez Oyanadel, R.O.; Clevers, J.G.P.W.; Decuyper, M.; Bruin, de S.; Herold, M.

    2016-01-01

    Groundwater-dependent ecosystems are threatened worldwide by unsustainable groundwater (GW) extraction. This is the case of the Prosopis tamarugo Phil forest in the hyper-arid Atacama Desert (Northern Chile), one of the most extreme ecosystems on Earth. Despite concerns about the conservation of

  7. Structural setting and evolution of the Mensa and Thunder Horse intraslope basins, northern deep-water Gulf of Mexico: A case study

    NARCIS (Netherlands)

    Weimer, P.; Bouroullec, R.; Berg, A.A. van den; Lapinski, T.G.; Roesink, J.G.; Adson, J.

    2017-01-01

    The Mensa and Thunder Horse intraslope minibasins in southcentralMississippi Canyon, northern deep-water Gulf ofMexico, had a linked structural evolution from the Early Cretaceous through the late Miocene. Analysis of the two minibasins illustrates the complexities of deep-water sedimentation and

  8. Enhanced sediment delivery in a changing climate in semi-arid mountain basins: Implications for water resource management and aquatic habitat in the northern Rocky Mountains

    Science.gov (United States)

    Jaime R. Goode; Charles H. Luce; John M. Buffington

    2012-01-01

    The delivery and transport of sediment through mountain rivers affects aquatic habitat and water resource infrastructure. While climate change is widely expected to produce significant changes in hydrology and stream temperature, the effects of climate change on sediment yield have received less attention. In the northern Rocky Mountains, we expect climate change to...

  9. Microstructures of Early Jurassic (Toarcian) shales of Northern Europe

    NARCIS (Netherlands)

    Houben, M.E.; Barnhoorn, A.; Wasch, L.; Trabucho-Alexandre, J.; Peach, C.J.; Drury, M.R.

    2016-01-01

    The Toarcian (Early Jurassic) Posidonia Shale Formation is a possible unconventional gas source in Northern Europe and occurs within the Cleveland Basin (United Kingdom), the Anglo-Paris Basin (France), the Lower Saxony Basin and the Southwest Germany Basin (Germany), and the Roer Valley Graben, the

  10. Determining Deep Basin Structure of the Hueco and southern Mesilla Bolsons, West Texas, Southern New Mexico and Northern Chihuahua Using Nonseismic Geophysical Techniques

    Science.gov (United States)

    Doser, D. I.; Avila, V.; Budhathoki, P.; Marrufo, S.; Montana, C. J.; Kaip, G.; Moncada, M.; Dena Ornelas, O.

    2012-12-01

    The Hueco and southern Mesilla bolsons are the primary groundwater source for much of the El Paso/Ciudad Juarez metropolitan region of over 1 million residents. The bolsons lie at the point where the strike of the southern Rio Grande rift changes from north-south to northwest-southeast, likely due to its interaction with pre-existing Mesozoic and Paleozoic structures. Tectonic activity continues with recent (< 750,000 years) movement along basin bounding and low level (M<4) seismicity. Over the past 4 years we have been using a conjunction of microgravity, magnetic, water well logs and electrical resistivity studies to image the complex structure of these basins within a heavily urbanized environment. These studies suggest the presence of several northwest-southeast striking cross faults within the southern Mesilla Bolson as well as an extensive subsurface andesite body related to the Cristo Rey laccolith. Intrabasin faults in the Hueco Bolson appear to cut the basin into at least 3 smaller subbasins and to control the boundary between fresh and saline water within the aquifer system beneath El Paso. We are also able to trace the East Franklins Mountain fault (last movement < 15,000 ya) at least 15 km south of the U.S.-Mexico border.

  11. Aquatic life protection index of an urban river Bacanga basin in northern Brazil, São Luís - MA

    Directory of Open Access Journals (Sweden)

    A. K. Duarte-dos-Santos

    Full Text Available Abstract Bacanga River Basin faces environmental problems related to urbanization and discharge of untreated domestic sewage, which compromise its ecosystem health. Due to the small number of studies that assessed its water quality, the present study aimed to assess the current status of this ecosystem based on the aquatic life protection index. Samples were carried out every two months, in a total of six events, in six sites along the basin, where the water samples were collected to assess physicochemical parameters and calculate the trophic state index and the index of minimum parameters for the protection of aquatic communities. The data were also compared with values determined by the resolution National Environment Council - CONAMA 357/05. Our results reveal significant changes in the water quality of Bacanga River Basin. An increase in nutrients and chlorophyll-a concentration led it to eutrophication. The surfactant values were high and put in danger the aquatic biota. Dissolved oxygen rates were below the values allowed by the resolution in most sites sampled. The current water quality is terrible for the protection of aquatic life in 61.92% of the sites sampled.

  12. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  13. 1992/93 Progress report on sediment-related aspects of northern hydrocarbon development in the lower Mackenzie River Basin, NWT

    International Nuclear Information System (INIS)

    Carson, M.A.

    1993-03-01

    An interim summary is presented of the Inland Waters Directorate program dealing with sediment-related aspects of northern hydrocarbon development in the Mackenzie Delta area, which was partially funded by the Northern Oil and Gas Action Program (NOGAP). Work undertaken in the first two years of the program is summarized under the categories of Mackenzie Delta channel stability, sedimentation, suspended sediments, channel contaminants, sediment flux, and sediment sources. Included is a more detailed review of work carried out on Mackenzie Delta land and lake sedimentation. The goals of the channel stability program were largely met. The delta sedimentation program has accomplished little acquisition of data. The delta suspended sediment program accomplished a great deal in a limited time, while the channel contaminants program has made limited progress. Work outstanding at the end of year 2 is described, along with priorities for the upcoming periods. 34 refs., 2 figs

  14. Petroleum systems and geologic assessment of undiscovered oil and gas, Cotton Valley group and Travis Peak-Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces of the northern Gulf Coast region. Chapters 1-7.

    Science.gov (United States)

    ,

    2006-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Cotton Valley Group and Travis Peak and Hosston Formations in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces in the Gulf Coast Region (USGS Provinces 5048 and 5049). The Cotton Valley Group and Travis Peak and Hosston Formations are important because of their potential for natural gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and eight assessment units. Seven assessment units were quantitatively assessed for undiscovered oil and gas resources.

  15. Thermal and exhumation histories from borehole thermochronometer samples in the Swiss Molasse Basin

    Science.gov (United States)

    Fillon, Charlotte; Ehlers, Todd; Enkelmann, Eva; Becker, Jens K.; Schnellmann, Michael

    2016-04-01

    In the last decade, significant interest has emerged to better understand the links between the foreland basin evolution and the erosion history of the Alps. For this, the European Alps are indeed a well-suited study region since the hinterland and the Swiss Molasse basin erosion rates and timing were extensively studied using basin analysis, and low-temperature thermochronology 1-4,5,6. However, the driving mechanisms for the post-Miocene erosion of the Swiss Molasse basin remains controversial, and several papers discuss whether global climatic changes1 or local variations of base level7,8,9 have controlled the erosion of the basin. With this study, we add quantitative constraints on the late-stage history of the basin by presenting new AFT and AHe dataset (respectively 16 and 19 samples) from two boreholes located ~30 km apart from each other, one located close to the center (Sonnengarten, depth of 3500 m) and one located to the North (Benken, depth of 100 m) of the basin. The data are derived from Triassic to Pliocene sand deposits as well as the underlying gneissic basement rocks and both AFT and AHe results are ranging from Pliocene to Triassic ages. The two dataset present very different age patterns which make the direct interpretation difficult. Therefore, thermal models using the QTQt software10,11 have been performed. This software is capable to evaluate cooling rates and timing using multiple samples from a single borehole. To test the robustness of the simulations, several runs for each borehole based on different data sets were performed, and showed some discrepancies between the resulting thermal histories. We provide, based on the simulations results, the most probable erosion estimates which are in the same range as the ones proposed in previous studies in the basin. For the borehole Benken, we reproduce a long and slow erosion phase starting at 23 Ma, with an overall estimate of the amount of eroded sediments ranging between 1.2 to 2 km. For the

  16. Variations of the crustal thickness in the Betic-Rif domain and their foreland regions, by P-Receiver Functions

    Science.gov (United States)

    Stich, D.; Mancilla, F.; Morales, J.; Martin, R.; Diaz, J.; Pazos, A.; Cordoba, D.; Pulgar, J. A.; Ibarra, P.; Harnafi, M.; Gonzalez-Lodeiro, F.

    2012-12-01

    To image the crustal structure of the Betic-Rif Range and the surrounding area we perform a P-receiver function study (PRF). We calculate PRFs at 110 broadband stations located in South Iberia Peninsula and North Morocco to obtain thickness and average Vp/Vs ratio for the Crust. The Crustal thickness values show strong lateral variations throughout the region. Crustal thicknesses vary between ~19 km and ~46 km. The Betic and Rif ranges are underlined by a thickened crust with crustal thicknesses between ~35 km and ~46 km, reaching the highest values in the contact between the Alboran Domain and External Zones. Southeast Iberia and Northeast Morocco are affected by significant crustal thinning, with crustal thicknesses ranging from ~19 km to ~30 km, with the shallowest Moho along the Mediterranean coast. The transition from thick to thin crust is coincident with the faults system of the Trans-Alboran Shear Zone. Toward the North, the Iberian Massif is an homogeneous domain of average 30-31 km crustal thickness and flat Moho discontinuity with low average Vp/Vs ratios ~1.72. Further south an extended domain, which includes the Atlas domain and its foreland regions, presents crustal thickness of 27-34km. Vp/Vs ratios in north Morocco show normal values of ~1.75 for most stations except for the Atlas domain, where several stations present low Vp/Vs ratios around 1.71. The obtained PRFs are migrated to depth building cross-section images to delineate the crustal mantle discontinuity (Moho) along the study area. In the migrated images, we include altogether ~11.200 PFRs to follow the Moho discontinuity from the Iberian Massif, in the North, along the Gribraltar arc towards the Moroccan Massif in the South. These images show how, in the North, the Iberian crust underthrust the Alboran domain along their contact with the observation of a slab, from the western limit until the 3°W longitude, reaching the maximum depth of ~70 km under the coast coincide with the

  17. Geoelectrical properties of peat in a northern peatland: Implications for peat basin formation, vegetation patterning, pool formation, and carbon gas evaluation

    Science.gov (United States)

    Comas, Xavier

    2005-11-01

    Peatlands are unique ecosystems that represent major terrestrial stores of soil carbon. Peatlands are important sources of atmospheric methane but their response to global warming still presents major uncertainties. A better understanding of the geoelectrical properties of peat and the in-situ formation of surficial features in peatlands can improve the current knowledge of the hydrology, nutrient dynamics, stratigraphy, and biogenic gas accumulation in peatlands. Geophysical techniques and hydrological measurements at the laboratory scale are used to examine the low-frequency properties of peat. At the field scale, geophysical and hydrological data are combined to investigate peat basin formation, vegetation and pool patterning, and biogenic gas accumulations in the central unit of Caribou Bog, a peatland in central Maine. In Chapter 2, hydraulic conductivity measurements demonstrate the effect of pore dilation in peat samples, invalidating Archie's Law. An empirical model relating the resistivity and induced polarization (IP) measurements to fluid conductivity in peat is developed, and shows potential to predict pore fluid conductivity and changes in vertical hydraulic conductivity in peatlands. In Chapter 3, resistivity and surface ground penetrating radar (GPR) data suggest that underlying stratigraphy exerts a primary control on vegetation and pool patterning, and present unique evidence of the convergence of a raised bog originated in two separated basins into a single bog A conceptual model for basin formation and peatland development in Caribou Bog is presented. In Chapter 4, surface GPR and terrain conductivity (EM31) surveys combined with direct core sampling indicate correlation between the location of open pools and elevated mineral soil surfaces (interpreted as esker deposits). A conceptual model based on a beaded esker system containing multiple ridges is developed to explain the formation of pools in Caribou Bog. In Chapter 5, areas of EM wave

  18. The Lautaro Basin: A record of inversion tectonics in northern Chile La Cuenca Lautaro: un registro de inversión tectónica en el norte de Chile

    Directory of Open Access Journals (Sweden)

    Fernando Martínez

    2012-05-01

    Full Text Available The Triassic and Jurassic tectonic history of northern Chile has been dominated by extension, although clear evidence about the nature and geometry of the extensional basins and subsequent inversion structures has been adequately illustrated in only a few cases. In this contribution we present a structural study of the Lautaro Basin located at the western edge of the Frontal Cordillera in the Atacama region of northern Chile. The Lautaro Basin is a Jurassic half-graben, filled by at least 2,600 m of marine deposits of the Lautaro Formation and developed on top of, at least 2,000 m of Triassic volcanic successions of the La Ternera Formation, also accumulated during an earlier period of extensional deformation. Detailed field mapping and construction of a regional balanced cross-section, supported by good exposures along the Copiapó River valley, allow reconstruction of the structural style of both the Jurassic and Triassic extensional depocenters. New structural data have shown that the Lautaro Basin has a complex structural framework reflected in two major Mesozoic extensional periods, overprinted by Cenozoic inversion involving thin- and thick-skinned tectonics. Shortening was accommodated by a combination of inversion of pre-existing normal faults, buttresses, development of footwall short-cuts, and both thin and thick-skinned thrusting. New estimates of shortening are up to 13.1 km (30%, while Mesozoic extension is estimated to be 3 km (7%.Durante el Triásico y Jurásico la evolución tectónica del norte de Chile fue dominada por extensión cortical. No obstante, evidencias claras acerca del estilo estructural y subsecuente inversión de las cuencas asociadas con el evento extensional, han sido ilustradas en pocos casos. En este trabajo, se presenta un estudio estructural de la Cuenca Lautaro, localizada en el borde occidental de la Cordillera Frontal, en la región de Atacama del norte de Chile. La Cuenca Lautaro, es un hemigraben que

  19. Palaeoclimate records 60-8 ka in the Austrian and Swiss Alps and their forelands

    Science.gov (United States)

    Heiri, Oliver; Koinig, Karin A.; Spötl, Christoph; Barrett, Sam; Brauer, Achim; Drescher-Schneider, Ruth; Gaar, Dorian; Ivy-Ochs, Susan; Kerschner, Hanns; Luetscher, Marc; Moran, Andrew; Nicolussi, Kurt; Preusser, Frank; Schmidt, Roland; Schoeneich, Philippe; Schwörer, Christoph; Sprafke, Tobias; Terhorst, Birgit; Tinner, Willy

    2014-12-01

    The European Alps and their forelands provide a range of different archives and climate proxies for developing climate records in the time interval 60-8 thousand years (ka) ago. We review quantitative and semi-quantitative approaches for reconstructing climatic variables in the Austrian and Swiss sector of the Alpine region within this time interval. Available quantitative to semi-quantitative climate records in this region are mainly based on fossil assemblages of biota such as chironomids, cladocerans, coleopterans, diatoms and pollen preserved in lake sediments and peat, the analysis of oxygen isotopes in speleothems and lake sediment records, the reconstruction of past variations in treeline altitude, the reconstruction of past equilibrium line altitude and extent of glaciers based on geomorphological evidence, and the interpretation of past soil formation processes, dust deposition and permafrost as apparent in loess-palaeosol sequences. Palaeoclimate reconstructions in the Alpine region are affected by dating uncertainties increasing with age, the fragmentary nature of most of the available records, which typically only incorporate a fraction of the time interval of interest, and the limited replication of records within and between regions. Furthermore, there have been few attempts to cross-validate different approaches across this time interval to confirm reconstructed patterns of climatic change by several independent lines of evidence. Based on our review we identify a number of developments that would provide major advances for palaeoclimate reconstruction for the period 60-8 ka in the Alps and their forelands. These include (1) the compilation of individual, fragmentary records to longer and continuous reconstructions, (2) replication of climate records and the development of regional reconstructions for different parts of the Alps, (3) the cross-validation of different proxy-types and approaches, and (4) the reconstruction of past variations in climate

  20. Geologic Assessment of Undiscovered Oil and Gas Resources of the North Cuba Basin, Cuba

    Science.gov (United States)

    Schenk, Christopher J.

    2010-01-01

    Petroleum generation in the North Cuba Basin is primarily the result of thrust loading of Jurassic and Cretaceous source rocks during formation of the North Cuba fold and thrust belt in the Late Cretaceous to Paleogene. The fold and thrust belt formed as Cuban arc-forearc rocks along the leading edge of the Caribbean plate translated northward during the opening of the Yucatan Basin and collided with the passive margin of southern North America in the Paleogene. Petroleum fluids generated during thrust loading migrated vertically into complex structures in the fold and thrust belt, into structures in the foreland basin, and possibly into carbonate reservoirs along the margins of the Yucatan and Bahama carbonate platforms. The U.S. Geological Survey (USGS) defined a Jurassic-Cretaceous Composite Total Petroleum System (TPS) and three assessment units (AU)-North Cuba Fold and Thrust Belt AU, North Cuba Foreland Basin AU, and the North Cuba Platform Margin Carbonate AU-within this TPS based mainly on structure and reservoir type (fig. 1). There is considerable geologic uncertainty as to the extent of petroleum migration that might have occurred within this TPS to form potential petroleum accumulations. Taking this geologic uncertainty into account, especially in the offshore area, the mean volumes of undiscovered resources in the composite TPS of the North Cuba Basin are estimated at (1) 4.6 billion barrels of oil (BBO), with means ranging from an F95 probability of 1 BBO to an F5 probability of 9 BBO; and (2) 8.6 trillion cubic feet of of gas (TCFG), of which 8.6 TCFG is associated with oil fields, and about 1.2 TCFG is in nonassociated gas fields in the North Cuba Foreland Basin AU.

  1. Geologic-seismic models, prediction of shallow-water lacustrine delta sandbody and hydrocarbon potential in the Late Miocene, Huanghekou Sag, Bohai Bay Basin, northern China

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2018-01-01

    Full Text Available The Huanghekou Sag is located at the southeast part of the Bohai Bay Basin, northern China. Large-scale shallow lake delta developed in the Neogene provided suitable geological conditions for the formation of a subtle oil-gas reservoir in this area. The key for analyzing sandstone reservoir and sedimentary facies is by using seismic attributes (amplitude to establish the relationship between lithology combination and seismic attributes. The lower unit of Late Miocene Minghuazhen Formation at the BZ34 block in the Huanghekou Sag was subdivided into 10 parasequence sets (PSS. Thicker sandstones mainly occurred in PSS1 and PSS10, whereas thin sandstones are mostly observed within other parasequence sets. This study presents statistics and analyses of lithology, i.e., statistics of root-mean-square (RMS amplitude and lithology of well locations in different parasequence sets of the study area, as well as 1-D forward seismic models of 7 types of lithology combinations, the establishment of a spatial distribution of 2-D sandbody, forward seismic models etc. Our study indicates that high amplitude peaks correspond to thicker sandbodies, while low amplitude indicates non-development of sandbodies (generally less than 2 m, and medium amplitude agrees well with large sets of mudstones interbedded with medium and thinner sandstones. Different sand–mudstone combinations genetically reflect a combination of multiple micro-facies, therefore, amplitude features can predict sandbodies as well as facies characteristics.

  2. Trophic preference and preliminary indication of phylloplane fungal influence on the diet of the non-native Gammarus roeselii Gervais 1835 (Amphipoda, Gammaridae in the sub-lacustrine Ticino river basin (Lombardy, Northern Italy

    Directory of Open Access Journals (Sweden)

    Daniele Paganelli

    2017-03-01

    Full Text Available Gammarids are one of the most successful invaders in freshwater ecosystems due to both their diet plasticity and high reproductive capacity. One such amphipod, Gammarus roeselii, has recently colonised the southern part of the sub-lacustrine Ticino River basin (Northern Italy, where its ecological niche overlaps with the native species Echinogammarus stammeri. In the present paper the food preferences of G. roeselii have been investigated, testing the palatability of different food sources: three macrophytes and three different leaf debris. Moreover, an explorative mycological analysis on the three different leaf debris used in the experiment has been performed. Results of the short-term experiment suggest that aquatic plants are less palatable than allocthonous detritus, probably because they can contain secondary metabolites (i.e. tannins and they have lower nutrient tissues with very high water content. On the contrary, G. roeselii showed a clear preference for the oak leaves, resulted colonized by a more abundant fungal biomass and, therefore, more palatable too.

  3. Use of participatory modeling workshops in a water-stressed basin of northern Mexico to assess sustainable water resources management and conduct community outreach

    Science.gov (United States)

    Vivoni, E. R.; Mayer, A. S.; Halvorsen, K. E.; Robles-Morua, A.; Kossak, D.

    2016-12-01

    A series of iterative participatory modeling workshops were held in Sonora, México with the goal of developing water resources management strategies in a water-stressed basin subject to hydro-climatic variability and change. A model of the water resources system, consisting of watershed hydrology, water resources infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants used the final version of the water resources systems model to select from supply-side and demand-side water resources management strategies. The performance of the strategies was based on the reliability of meeting current and future demands at a daily time scale over a year's period. Pre- and post-workshop surveys were developed and administered. The survey questions focused on evaluation of participants' modeling capacity and the utility and accuracy of the models. The selected water resources strategies and the associated, expected reliability varied widely among participants. Most participants could be clustered into three groups with roughly equal numbers of participants that varied in terms of reliance on expanding infrastructure vs. demand modification; expectations of reliability; and perceptions of social, environmental, and economic impacts. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region. The pre- and post-survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops

  4. Physical Forcing-Driven Productivity and Sediment Flux to the Deep Basin of Northern South China Sea: A Decadal Time Series Study

    Directory of Open Access Journals (Sweden)

    Hon-Kit Lui

    2018-03-01

    Full Text Available Understanding the driving forces of absorption of anthropogenic CO2 by the oceans is critical for a sustainable ocean carbon cycle. Decadal sinking particle flux data collected at 1000 m, 2000 m, and 3500 m at the South East Asia Time Series Study (SEATS Station (18° N, 116° E, which was located in the northern South China Sea (nSCS, show that the fluxes undergo strong seasonal and interannual variability. Changes in the flux data are correlated with the satellite-derived chlorophyll-a concentration, indicating that the mass fluxes of the sinking particles are largely controlled by the export production at or near the SEATS station. The cooling of seawater and the strengthening of wind in winter increase the nutrient inventories in the euphotic zone, thus also increasing export production in the nSCS. This study reveals that the intrusion of low-nutrient seawater from the West Philippine Sea into the nSCS significantly reduces the productivity, and hence the flux, of sinking particles.

  5. Paleo-environment in the upper amazon basin during early to middle Miocene times

    Science.gov (United States)

    van Soelen, Els; Hoorn, Carina; Santos, Roberto V.; Dantas, Elton L.; Sinninghe Damsté, Jaap S.; Kim, Jung-Hyun

    2014-05-01

    The Amazon River has the largest catchment in the world and is responsible for the largest water discharge from land to the ocean. The river system that flows from the Andes to the Atlantic Equatorial Margin exists since the late Miocene, and results from Andean uplift which strongly affected erosion/deposition and major flow patterns in northern South-America. Two outcrop sites from the Solimões basin, Mariñame (17.7-16.1 Ma) and Los Chorros (14.2-12.7 Ma), may shed light on the inland paleo-environmental conditions during a period of active Andean uplift in the early to middle Miocene. Earlier works revealed the Mariñame outcrops to represent a river born in Amazonia. Instead the Los Chorros outcrops are relics of the Amazon River system, characterized by extensive wetlands consisting of swamps, shallow lakes, crevasse splays channels and crevasse-delta lakes (e.g. Hoorn et al., 2010). The freshwater ecosystems alternate with some intervals that are rich in marine palynomorphs (such as dinocysts), mangrove pollen, brackish tolerant molluscs and ostracods, which indicate brackish conditions and a marine influence. It is thought that these marine incursion are related to phases of global sea-level rise and rapid subsidence in the Andean foreland (Marshall & Lundberg, 1996). Still, much remains unknown about the Miocene river systems, like the extent and diversity of the wetland system and the nature of the marine incursions. To get a better understanding of the sources of the (in)organic material, geochemical methods were used. Strontium (Sr) and Neodymium (Nd) isotopes were analyzed on bulk sediments, and used for a paleo-provenance study. The Sr and Nd isotopic signature in the older section (Mariñame) is in general more radiogenic compared to the Los Chorros section. The most radiogenic values are comparable to those found nowadays in the the Precambrian Guyana shield. A Guyana sediment source would suggest a distinctly different flow direction of the major

  6. Tectonic and Climatic Control of Landscape Evolution in the Northern Sierras Pampeanas, Argentina

    Science.gov (United States)

    Sobel, E. R.; Strecker, M. R.

    2003-12-01

    Rock uplift, surface uplift and exhumation can be constrained if thermochronologic data can be converted to exhumation and if geological relations provide a datum. In the northern Sierras Pampeanas of Argentina, the Cenozoic Santa María basin, which overlay resistant crystalline basement prior to rapid exhumation, provides an ideal setting to examine the effect of contrasting thermal and erosional regimes. There, tectonically active reverse-fault bounded blocks partly preserve a basement peneplain at elevations >4500 m. Prior to exhumation, the study area was covered by 1 to 1.6 km of ca. 12-6 Ma sediments; this sequence begins with shallow marine deposits immediately overlying the regional erosion surface which are superseded by sandstones and conglomerates. These rapidly deposited sediments have low thermal conductivity and are readily eroded, in contrast to underlying resistant basement. Apatite fission-track data were obtained from two vertical transects in the Calchaquíes and Aconquija ranges bounding the basin. At Cumbres Calchaquíes, erosion leading to the development of the peneplain commenced in the Cretaceous; limited late Neogene cooling is documented by track-length modeling. In contrast, Sierra Aconquija cooled rapidly between 5.5 and 4.5 My. At the onset of this rapid exhumation, sediment was quickly removed, causing fast cooling, but relatively slow rates of surface uplift. Syntectonic conglomerates could only be produced when faulting exposed resistant bedrock; this change in rock erodability lead to enhanced surface uplift rates but decreased exhumation rates. The creation of an orographic barrier after the range had attained sufficient elevation further decreased exhumation rates on the leeward side and increased surface uplift rates. This imbalance cannot be sustained for extended periods of time; either crustal strength or bedrock fluvial incision will ultimately limit the magnitude of relief which can be created before tectonism, and hence

  7. Rewriting the Landform History of One of Africa's Three Largest Basins

    Science.gov (United States)

    Wilkinson, Justin

    2014-01-01

    The Kalahari Basin in southern Africa - one of the largest basins in Africa, along with the Congo and Chad basins - has attracted attention since David Livingstone traveled through the area in the 1840s. It is a semiarid desert with a large freshwater swampland known as the Okavango Swamp (150 km radius). This prominent megafan (a fan with radii >100 km), with its fingers of dark green forests projecting into the dun colors of the dunes of the Kalahari semi-desert, has been well photographed by astronauts over the years. The study area in the northern Kalahari basin is centered on the Okavango megafan of northwest Botswana, whose swampland has become well known as an African wildlife preserve of importance to biology and tourism alike. The Okavango River is unusual because it has deposited not one but two megafans along its course: the Okavango megafan and the Cubango megafan. The Okavango megafan is one of only three well-known megafans in Africa. Megafans on Earth were once thought to be rare, but recent research has documented 68 in Africa alone. Eleven megafans, plus three more candidates, have been documented in the area immediately surrounding the Okavango feature. These 11 megafans occupy the flattest and smoothest terrains adjacent to the neighboring upland and stand out as the darkest areas in the roughness map of the area. Megafan terrains occupy at least 200,000 sq km of the study area. The roughness map shown is based on an algorithm used first on Mars to quantify topographic roughness. Research of Earth's flattest terrains is just beginning with the aid of such maps, and it appears that these terrains are analogous to the flattest regions of Mars. Implications: 1. The variability in depositional style in each subbasin may apply Africa-wide: rift megafan length is dominated by rift width, whereas Owambo subbasin megafans are probably controlled by upland basin size; Zambezi subbasin megafans appear more like foreland basin types, with the position of

  8. Sedimentary sequence evolution in a Foredeep basin: Eastern Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, C.; Funes, D. [Corpoven S.A., Puerto La Cruz (Venezuela); Sarzalho, S.; Audemard, F.; Flores, G. [Caracas (Venezuela)

    1996-08-01

    Well log-seismic sequence stratigraphy analysis in the Eastern Venezuela Foreland Basin leads to study of the evolution of sedimentary sequences onto the Cretaceous-Paleocene passive margin. This basin comprises two different foredeep sub-basins: The Guarico subbasin to the west, older, and the Maturin sub-basin to the east, younger. A foredeep switching between these two sub-basins is observed at 12.5 m.y. Seismic interpretation and well log sections across the study area show sedimentary sequences with transgressive sands and coastal onlaps to the east-southeast for the Guarico sub-basin, as well as truncations below the switching sequence (12.5 m.y.), and the Maturin sub-basin shows apparent coastal onlaps to the west-northwest, as well as a marine onlap (deeper water) in the west, where it starts to establish. Sequence stratigraphy analysis of these sequences with well logs allowed the study of the evolution of stratigraphic section from Paleocene to middle Miocene (68.0-12.0 m.y.). On the basis of well log patterns, the sequences were divided in regressive-transgressive-regressive sedimentary cycles caused by changes in relative sea level. Facies distributions were analyzed and the sequences were divided into simple sequences or sub- sequences of a greater frequencies than third order depositional sequences.

  9. Time-dependent thermal state of the lithosphere in the foreland of the Eastern Carpathians bend. Insights from new geothermal measurements and modelling results

    DEFF Research Database (Denmark)

    Demetrescu, Crisan; Wilhelm, H.; Tumanian, M.

    2007-01-01

    in establishing the temperature field in the depth range of geothermal measurements. The lateral variation of the palaeoclimatically corrected surface heat flux from the centre of the Focsani Depression (40 mW m-2) to its margin and the foreland platform (70 mW m-2) is mainly the result of the lateral variation...... words: Carpathians foreland, geothermics, heat flow, lithosphere rheology, sedimentation, thermal modelling.  ...

  10. Mesozoic to Recent, regional tectonic controls on subsidence patterns in the Gulf of Mexico basin

    Science.gov (United States)

    Almatrood, M.; Mann, P.; Bugti, M. N.

    2016-12-01

    We have produced subsidence plots for 26 deep wells into the deeper-water areas of the Gulf of Mexico (GOM) in order to identify regional tectonic controls and propose tectonic phases. Our results show three sub-regions of the GOM basin that have distinctive and correlative subsidence patterns: 1) Northern GOM from offshore Texas to central Florida (9 wells) - this area is characterized by a deeply buried, Triassic-early Jurassic rift event that is not represented by our wells that penetrate only the post-rift Cretaceous to recent passive margin phase. The sole complexity in the passive margin phase of this sub-region is the acceleration of prograding clastic margins including the Mississippi fan in Miocene time; 2) Southeastern GOM in the Straits of Florida and Cuba area (5 wells) - this area shows that the Cretaceous passive margin overlying the rift phase is abruptly drowned in late Cretaceous as this part of the passive margin of North America that is flexed and partially subducted beneath the Caribbean arc as it encroaches from the southwest to eventually collide with the North American passive margin in the Paleogene; 3) Western GOM along the length of the eastern continental margin of Mexico (12 wells) - this is the most complex of the three areas in that shares the Mesozic rifting and passive margin phase but is unique with a slightly younger collisional event and foreland basin phase associated with the Laramide orogeny in Mexico extending from the KT boundary to the Oligocene. Following this orogenic event there is a re-emergence of the passive margin phase during the Neogene along locally affected by extensional and convergent deformation associated with passive margin fold belts. In summary, the GOM basin exhibits evidence for widespread rifting and passive margin formation associated with the breakup of Pangea in Mesozoic times that was locally superimposed and deformed during the late Cretaceous-Paleogene period by: 1) Caribbean subduction and

  11. Early Cretaceous pCO2 changes estimated from a calcrete succession in the North American foreland basin, Utah, USA

    Science.gov (United States)

    Ludvigson, G. A.; Murphy, L. R.; Gonzalez, L. A.; Joeckel, R. M.

    2011-12-01

    Using the Aptian-Albian carbon isotope record from a calcrete succession in the Cedar Mountain Fm (CMF; Ludvigson et al., 2010, JSR 80:955-974), we calculate a baseline Aptian atmospheric pCO2 of 1,000 ppm by applying the equation of Ekart et al. (1999, AJS 299:805-827). Isotopic analyses of pedogenic and palustrine carbonates from eight correlated chemostratigraphic positions from the Ap7 feature of Herrle et al. (2004, EPSL 218:149-161) to the C15 feature of Bralower et al. (1999, JFR 29:418-437) are compiled from two sections in the CMF. These sections encompass the Aptian-Albian Ap7-C15 (~125-100 Ma) interval. Significantly, our results indicate a build-up of ~350 ppm above baseline values during the C9-C11 positive carbon isotope excursion. The excursion corresponds with our reported shifts in δ13C values determined from coordinated carbonate and sedimentary organic carbon. We directly compare our pCO2 estimates to compiled estimates from the same interval determined on pedogenic carbonates, stomata, and liverworts previously published by Royer (2010, PNAS 107:517-518). Using a uniform S(z), the soil-derived component of the total soil at depth z, we found our estimates to be generally higher than those previously reported for pedogenic carbonates. Thus, we adjust our reported pCO2 estimates using a range of S(z), to avoid overestimations of S(z) and to account for variations with season, depth, soil type, and paleolatitude between the two data sets. Finally, our pCO2 estimates are correlated with marine chemostratigraphic records (δ13C of marine carbonate and organic matter; strontium isotopes), and magma flux output from the Kergulean Plateau (Indian Ocean). The 116 to 111 Ma rise and fall in pCO2 during the C9-C11 carbon isotope excursion, for which we have identified a pCO2 buildup, coincides with the mid-Cretaceous strontium isotope low, and a peak in magma production at the Kerguelan Large Igneous Province. Therefore, we interpret a tectonic driver for this global change event.

  12. Late carboniferous foreland basin formation and Early Carboniferous stretching in Northwestern Europe: Inferences from quantitative subsidence analyses in the Netherlands

    NARCIS (Netherlands)

    Kombrink, H.; Leever, K.A.; Wees, J.-D. van; Bergen, F. van; David, P.; Wong, T.E.

    2008-01-01

    The large thickness of Upper Carboniferous strata found in the Netherlands suggests that the area was subject to long-term subsidence. However, the mechanisms responsible for subsidence are not quantified and are poorly known. In the area north of the London Brabant Massif, onshore United Kingdom,

  13. Late Carboniferous foreland basin formation and Early Carboniferous stretching in Northwestern Europe: inferences from quantitative subsidence analyses

    NARCIS (Netherlands)

    Kombrink, H.; Leever, K.; van Wees, J.D.A.M.; van Bergen, F.; David, P.; Wong, T.E.

    2008-01-01

    The large thickness of Upper Carboniferous strata found in the Netherlands suggests that the area was subject to long-term subsidence. However, the mechanisms responsible for subsidence are not quantified and are poorly known. In the area north of the London Brabant Massif, onshore United Kingdom,

  14. In situ bioavailability of DDT and Hg in sediments of the Toce River (Lake Maggiore basin, Northern Italy): accumulation in benthic invertebrates and passive samplers.

    Science.gov (United States)

    Pisanello, Francesca; Marziali, Laura; Rosignoli, Federica; Poma, Giulia; Roscioli, Claudio; Pozzoni, Fiorenzo; Guzzella, Licia

    2016-06-01

    DDT and mercury (Hg) contamination in the Toce River (Northern Italy) was caused by a factory producing technical DDT and using a mercury-cell chlor-alkali plant. In this study, DDT and Hg contamination and bioavailability were assessed by using different approaches: (1) direct evaluation of sediment contamination, (2) assessment of bioaccumulation in native benthic invertebrates belonging to different taxonomic/functional groups, and (3) evaluation of the in situ bioavailability of DDT and Hg using passive samplers. Sampling sites were selected upstream and downstream the industrial plant along the river axis. Benthic invertebrates (Gammaridae, Heptageniidae, and Diptera) and sediments were collected in three seasons and analyzed for DDT and Hg content and the results were used to calculate the biota sediment accumulation factor (BSAF). Polyethylene passive samplers (PEs) for DDT and diffusive gradients in thin films (DGTs) for Hg were deployed in sediments to estimate the concentration of the toxicants in pore water. Analysis for (DDx) were performed using GC-MS. Accuracy was within ±30 % of the certified values and precision was >20 % relative standard deviation (RSD). Total mercury concentrations were determined using an automated Hg mercury analyzer. Precision was >5 % and accuracy was within ±10 % of certified values. The results of all the approaches (analysis of sediment, biota, and passive samplers) showed an increasing contamination from upstream to downstream sites. BSAF values revealed the bioavailability of both contaminants in the study sites, with values up to 49 for DDx and up to 3.1 for Hg. No correlation was found between values in sediments and the organisms. Concentrations calculated using passive samplers were correlated with values in benthic invertebrates, while no correlation was found with concentrations in sediments. Thus, direct analysis of toxicant in sediments does not provide a measurement of bioavailability. On the contrary

  15. Geological and Geophysical Analysis of the Processes Ground Cracking and Associated Risks in Urban Basins in the Eastern and Northern of Jalisco Block, Mexico.

    Science.gov (United States)

    Suarez-Plascencia, C.

    2016-12-01

    The Jalisco Block (JB) is located in the western sector of Mexican Volcanic Belt; it is bounded on the east by the Colima graben-Zacoalco and apparently the north by the River Grande de Santiago. Three landform are regionally identified: mountain areas, piedmont and plains formed by deposits of tuffs, volcanic ash and sediment filled. These plains have been progressively urbanized since the sixteenth century; they were built in around the Guadalajara Metropolitan Area, as well as small towns like Sayula, Ciudad Guzman, Zacoalco, Jocotepec and nearby villages, in which all together are populated by about 6 million people. Since 1912 there are records of damages by the continuous formation of ground cracking, this process has increased over the past two decades, affecting natural soil, agricultural areas, urban areas and infrastructure of roads and highways. These cracks generally have a SW-NE orientation similar with the alignment of regional geological structures. They are characterized by settlements and forming steps of a few centimeters, with lengths from 300 to 1000 m and depths of a few centimeters to 15 meters and width of up to 2.5 m. Formed mainly during the rainy season from June to October each year. Recent damages have generated losses of several hundreds of thousands of dollars, especially in Ciudad Guzman, located in southern BJ, where a crack of 2.5 km was observed in 2012 and it has long affected the downtown area, the town of Nextipac-Tesistan, municipality of Zapopan in the northern sector of JB. This territory is formed by a thick deposit of pumice tuffs, which has presented cracks in the years 1912, 1975, 1987, 2004 and 2015, affecting also agricultural and urban areas. The paper will presents results which will analyze and discern through geological, geophysical and with technology of geographic information, the origin of these cracks, which can be associated with active tectonic structures, geo-hydrological processes, extraction of underground

  16. NUMA: A Northern Paiute History.

    Science.gov (United States)

    Inter-Tribal Council of Nevada, Reno.

    One in a series of four histories of native Nevadans, this volume presents the story of the Northern Paiute people, or Numa, who lived, hunted, and travelled in the Great Basin area which occupies one-third of present day Nevada and parts of Oregon, Idaho, and California. Based on interviews with tribal elders and research conducted at numerous…

  17. Vegetation diversity and selected abiotic factors influencing the primary succession process on the foreland of Gåsbreen, Svalbard

    Directory of Open Access Journals (Sweden)

    Wietrzyk Paulina

    2016-12-01

    Full Text Available The rapidly changing Arctic provides excellent opportunities for investigating primary succession on freshly deglaciated areas. Research on the Gåsbreen foreland (S Spitsbergen traced the succession of particular groups of organisms and species, particularly lichens and bryophytes, and determined the effect of selected abiotic factors on this succession. Fieldwork in 2008, employed a continuous linear transect of phytosociological relevés (1 m2 along the foreland. Data analysis allowed to distinguish five different succession stages and three types of colonisers. Canonical correspondence analysis and a permutation test showed that distance from the front of the glacier and fine grain material in the substrate mostly influenced the distribution and abundance of vegetation, and the steepness of the moraine hills affected the colonisation process, mainly in the older part of the marginal zone.

  18. Petrogenesis and geodynamics of plagiogranites from Central Turkey (Ekecikdağ/Aksaray): new geochemical and isotopic data for generation in an arc basin system within the northern branch of Neotethys

    Science.gov (United States)

    Köksal, Serhat; Toksoy-Köksal, Fatma; Göncüoglu, M. Cemal

    2017-06-01

    In the Late Cretaceous, throughout the closure of the Neotethys Ocean, ophiolitic rocks from the İzmir-Ankara-Erzincan ocean branch were overthrusted the northern margin of the Tauride-Anatolide Platform. The ophiolitic rocks in the Ekecikdağ (Aksaray/Central Turkey) region typify the oceanic crust of the İzmir-Ankara-Erzincan branch of Neotethys. The gabbros in the area are cut by copious plagiogranite dykes, and both rock units are intruded by mafic dykes. The plagiogranites are leucocratic, fine- to medium-grained calc-alkaline rocks characterized mainly by plagioclase and quartz, with minor amounts of biotite, hornblende and clinopyroxene, and accessory phases of zircon, titanite, apatite and opaque minerals. They are tonalite and trondhjemite in composition with high SiO2 (69.9-75.9 wt%) and exceptionally low K2O (<0.5 wt%) contents. The plagiogranites in common with gabbros and mafic dykes show high large-ion lithophile elements/high-field strength element ratios with depletion in Nb, Ti and light rare-earth elements with respect to N-MORB. The plagiogranites together with gabbros and mafic dykes show low initial 87Sr/86Sr ratios (0.70419-0.70647), high ƐNd( T) (6.0-7.5) values with 206Pb/204Pb (18.199-18.581), 207Pb/204Pb (15.571-15.639) and 208Pb/204Pb (38.292-38.605) ratios indicating a depleted mantle source modified with a subduction component. They show similar isotopic characteristics to the other supra-subduction zone (SSZ) ophiolites in the Eastern Mediterranean to East Anatolian-Lesser Caucasus and Iran regions. It is suggested that the Ekecikdağ plagiogranite was generated in a short time interval from a depleted mantle source in a SSZ/fore-arc basin setting, and its nature was further modified by a subduction component during intra-oceanic subduction.

  19. The Campanian-Maastrichtian foraminiferal biostratigraphy of the basement sediments from the southern Pannonian Basin (Vojvodina, northern Serbia): implications for the continuation of the Eastern Vardar and Sava zones

    Science.gov (United States)

    Dunčić, Milena; Dulić, Ivan; Popov, Olivera; Bogićević, Goran; Vranjković, Alan

    2017-04-01

    Micropalaeontological and biostratigraphical studies included Campanian-Maastrichtian complexes from five oil exploration wells drilled in northern Serbia (Vojvodina): the first is a carbonate-clastic complex and second is a complex containing ophiolites intercalated with hemipelagic and pelagic sediments. Within the studied complexes, rich associations of planktonic and benthic foraminifera, calcareous nannoplankton, palynomorphs, as well as shallow and deep-water fossil detritus were determined. The presence of relatively rich associations of planktonic foraminifera allowed recognition of two biozones: the Globotruncana ventricosa Zone, observed in the sediments of the carbonate-clastic complex and the Gansserina gansseri Zone, observed in both complexes. Except biozones, based on documented index species, for some units in both complexes, larger benthic foraminifera species had special biostratigraphical value, and in some of them, the calcareous nannoplankton zones were recognized. The studied complexes represent deep-water formations, generated in oceanic island arc and trough zones. The presence of limestones, which originate from destroyed rudist reefs, is explained by transfer by means of gravitational transport mechanisms of shallow-water sediments to deep-water depositional environments. In this paper, the results of more detailed biostratigraphical and palaeo-ecological studies of foraminifera associations in Campanian-Maastrichtian complexes in Vojvodina are presented. Combined with lithological studies, seven units were determined within the complexes. The obtained results are important as a part of multidisciplinary, regional exploration of both complexes, generated in specific geological conditions, that today constitute a part of the pre-Neogene basement complex in the southeastern part of the Pannonian Basin. The Campanian- Maastrichtian carbonate-clastic complex represents sedimentary cover of the Eastern Vardar Ophiolitic Unit, while the

  20. Numerical modeling of fold-and-thrust belts: Applications to Kuqa foreland fold belt, China

    Science.gov (United States)

    Yin, H.; Morgan, J. K.; Zhang, J.; Wang, Z.

    2009-12-01

    We constructed discrete element models to simulate the evolution of fold-and-thrust belts. The impact of rock competence and decollement strength on the geometric pattern and deformation mechanics of fold-and-thrust belts has been investigated. The models reproduced some characteristic features of fold-and-thrust belts, such as faulted detachment folds, pop-ups, far-traveled thrust sheets, passive-roof duplexes, and back thrusts. In general, deformation propagates farther above a weak decollement than above a strong decollement. Our model results confirm that fold-and-thrust belts with strong frictional decollements develop relatively steep and narrow wedges formed by closely spaced imbricate thrust slices, whereas fold belts with weak decollements form wide low-taper wedges composed of faulted detachment folds, pop-ups, and back thrusts. Far-traveled thrust sheets and passive-roof duplexes are observed in the model with a strong lower decollement and a weak upper detachment. Model results also indicate that the thickness of the weak layer is critical. If it is thick enough, it acts as a ductile layer that is able to flow under differential stress, which helps to partition deformation above and below it. The discrete element modeling results were used to interpret the evolution of Kuqa Cenozoic fold-and-thrust belt along northern Tarim basin, China. Seismic and well data show that the widely distributed Paleogene rock salt has a significant impact on the deformation in this area. Structures beneath salt are closely spaced imbricate thrust and passive-roof duplex systems. Deformation above salt propagates much farther than below the salt. Faults above salt are relatively wide spaced. A huge controversy over the Kuqa fold-and-thrust belt is whether it is thin-skinned or thick-skinned. With the insights from DEM results, we suggest that Kuqa structures are mostly thin-skinned with Paleogene salt as decollement, except for the rear part near the backstop, where the

  1. Thick-skinned tectonics within the intracontinental easternmost Atlas foreland-and-thrust belt (Tunisia): Meso-Cenozoic kinematics and implications for regional geodynamics

    Science.gov (United States)

    Belkhiria, W.; Boussiga, H.; Inoubli, M. H.

    2017-05-01

    The transition zone between western and central Mediterranean domains presents a key area to investigate kinematic interactions within the adjacent orogen systems such as the easternmost Atlas foreland-and-thrust belt. Gravity and seismic data revealed a highly structured basement, characterizing a series of structural highs and lows delimited by high-angle N-S, E-W, and NW-SE extensional faults. This basement architecture is inherited from successive extensional events related to the openings of the Triassic-Early Cretaceous Tethys oceans (i.e., Alpine Tethys, Ligurian Tethys, and Mesogea). Throughout this period, this mosaic of continental blocks significantly controlled the thickness and facies distributions. Early stages of diapirism took place along these basement faults and allowed maximum subsidence in minibasins revealed by the development of growth strata. In response to the Late Cretaceous-Eocene shortenings, these extensional faults have been reactivated as trasnpressional shear zones, giving rise to narrow pop-up structures. In addition, gravity modeling indicates crustal thinning and deep-rooted faults affecting the crust south of the Zaghouan Thrust and along E-W transfer zones. From the late Miocene, a drastic change in the stress regime is attributed to the effect of the adjacent Sicily channel on the study area. This promotes crustal thinning, basin subsidence, and channeling up of mantle-derived helium along lithospheric-scale weak zones. Our results give rise to new insights into the reactivation of inherited weakness zones of southern Tethys margin in response to the complex interaction between African and Eurasian plates accommodated by subduction, rollback, collision, and slab segmentation.