WorldWideScience

Sample records for forebrain subventricular zone

  1. Effect of leukemia inhibitory factor on long-term propagation of precursor cells derived from rat forebrain subventricular zone and ventral mesencephalon

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Zimmer, Jens; Wahlberg, Lars U

    2008-01-01

    Tissue blocks containing neural precursor cells were isolated from the rat forebrain subventricular zone (SVZ) and ventral mesencephalon (VM) and propagated as neural tissue-spheres (NTS). In the presence of fibroblast growth factor-2 (FGF2) and epidermal growth factor (EGF), SVZ-derived NTS were...... propagated and maintained for more than 6 months with a cell population doubling time of 21.5 days. The replacement of EGF by leukemia inhibitory factor (LIF) resulted in a cell population doubling time of 19.8 days, corresponding to a 10-fold increase in estimated cell numbers over a period of 70 days......, at which point these NTS ceased to grow. In the presence of FGF2 and LIF, VM-derived NTS displayed a cell population doubling time of 24.6 days, which was maintained over a period of more than 200 days. However, when LIF was replaced by EGF, the cell numbers only increased 1.2 fold over 50 days. Using...

  2. Long-term hydrocephalus alters the cytoarchitecture of the adult subventricular zone

    Science.gov (United States)

    Campos-Ordoñez, Tania; Herranz-Pérez, Vicente; Chaichana, Kaisorn L.; Rincon-Torroella, Jordina; Rigamonti, Daniele; García-Verdugo, Jose M.; Quiñones-Hinojosa, Alfredo; Gonzalez-Perez, Oscar

    2014-01-01

    Hydrocephalus can develop secondarily to a disturbance in production, flow and/or absorption of cerebrospinal fluid. Experimental models of hydrocephalus, especially subacute and chronic hydrocephalus, are few and limited, and the effects of hydrocephalus on the subventricular zone are unclear. The aim of this study was to analyze the effects of long-term obstructive hydrocephalus on the subventricular zone, which is the neurogenic niche lining the lateral ventricles. We developed a new method to induce hydrocephalus by obstructing the aqueduct of Sylvius in the mouse brain, thus simulating aqueductal stenosis in humans. In 120-day-old rodents (n = 18 per group), the degree of ventricular dilatation and cellular composition of the subventricular zone were studied by immunofluorescence and transmission electron microscopy. In adult patients (age > 18 years), the sizes of the subventricular zone, corpus callosum, and internal capsule were analyzed by magnetic resonance images obtained from patients with and without aqueductal stenosis (n=25 per group). Mice with 60-day hydrocephalus had a reduced number of Ki67+ and doublecortin+ cells on immunofluorescence, as well as decreased number of neural progenitors and neuroblasts in the subventricular zone on electron microscopy analysis as compared to non-hydrocephalic mice. Remarkably, a number of extracellular matrix structures (fractones) contacting the ventricular lumen and blood vessels were also observed around the subventricular zone in mice with hydrocephalus. In humans, the widths of the subventricular zone, corpus callosum, and internal capsule in patients with aqueductal stenosis were significantly smaller than age and gender-matched patients without aqueductal stenosis. In summary, supratentorial hydrocephalus reduces the proliferation rate of neural progenitors and modifies the cytoarchitecture and extracellular matrix compounds of the subventricular zone. In humans, this similar process reduces the

  3. Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity.

    Directory of Open Access Journals (Sweden)

    Kasum Azim

    2017-03-01

    Full Text Available Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP, to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.

  4. A Model of Ischemia-Induced Neuroblast Activation in the Adult Subventricular Zone

    OpenAIRE

    Vergni, Davide; Castiglione, Filippo; Briani, Maya; Middei, Silvia; Alberdi, Elena; Reymann, Klaus G.; Natalini, Roberto; Volont?, Cinzia; Matute, Carlos; Cavaliere, Fabio

    2009-01-01

    12 p. We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose...

  5. Modulation of subventricular zone oligodendrogenesis: a role for hemopressin?

    Directory of Open Access Journals (Sweden)

    Sara eXapelli

    2014-02-01

    Full Text Available Neural stem cells (NSCs from the subventricular zone (SVZ have been indicated as a source of new oligodendrocytes to use in regenerative medicine for myelin pathologies. Indeed, NSCs are multipotent cells that can self-renew and differentiate into all neural cell types of the central nervous system (CNS. In normal conditions, SVZ cells are poorly oligodendrogenic, nevertheless their oligodendrogenic potential is boosted following demyelination. Importantly, progressive restriction into the oligodendrocyte fate is specified by extrinsic and intrinsic factors, endocannabinoids being one of these factors. Although a role for endocannabinoids in oligodendrogenesis has already been foreseen, selective agonists and antagonists of cannabinoids receptors produce severe adverse side effects. Herein, we show that hemopressin, a modulator of CB1 receptors, increased oligodendroglial differentiation in SVZ neural stem/progenitor cell cultures derived from neonatal mice. The original results presented in this work suggest that hemopressin and derivatives may be of potential interest for the development of future strategies to treat demyelinating diseases.

  6. Notch2 Signaling Maintains NSC Quiescence in the Murine Ventricular-Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Anna Engler

    2018-01-01

    Full Text Available Neurogenesis continues in the ventricular-subventricular zone (V-SVZ of the adult forebrain from quiescent neural stem cells (NSCs. V-SVZ NSCs are a reservoir for new olfactory bulb (OB neurons that migrate through the rostral migratory stream (RMS. To generate neurons, V-SVZ NSCs need to activate and enter the cell cycle. The mechanisms underlying NSC transition from quiescence to activity are poorly understood. We show that Notch2, but not Notch1, signaling conveys quiescence to V-SVZ NSCs by repressing cell-cycle-related genes and neurogenesis. Loss of Notch2 activates quiescent NSCs, which proliferate and generate new neurons of the OB lineage. Notch2 deficiency results in accelerated V-SVZ NSC exhaustion and an aging-like phenotype. Simultaneous loss of Notch1 and Notch2 resembled the total loss of Rbpj-mediated canonical Notch signaling; thus, Notch2 functions are not compensated in NSCs, and Notch2 is indispensable for the maintenance of NSC quiescence in the adult V-SVZ.

  7. Location of subventricular zone recurrence and its radiation dose predicts survival in patients with glioblastoma.

    Science.gov (United States)

    Weinberg, Brent D; Boreta, Lauren; Braunstein, Steve; Cha, Soonmee

    2018-07-01

    Glioblastomas are aggressive brain tumors that frequently recur in the subventricular zone (SVZ) despite maximal treatment. The purpose of this study was to evaluate imaging patterns of subventricular progression and impact of recurrent subventricular tumor involvement and radiation dose to patient outcome. Retrospective review of 50 patients diagnosed with glioblastoma and treated with surgery, radiation, and concurrent temozolomide from January 2012 to June 2013 was performed. Tumors were classified based on location, size, and cortical and subventricular zone involvement. Survival was compared based on recurrence type, distance from the initial enhancing tumor (local ≤ 2 cm, distant > 2 cm), and the radiation dose at the recurrence site. Progression of enhancing subventricular tumor was common at both local (58%) and distant (42%) sites. Median survival was better after local SVZ recurrence than distant SVZ recurrence (8.7 vs. 4.3 months, p = 0.04). Radiation doses at local SVZ recurrence sites recurrence averaged 57.0 ± 4.0 Gy compared to 44.7 ± 6.7 Gy at distant SVZ recurrence sites (p = 0.008). Distant subventricular progression at a site receiving ≤ 45 Gy predicted worse subsequent survival (p = 0.05). Glioblastomas frequently recurred in the subventricular zone, and patient survival was worse when enhancing tumor occurred at sites that received lower radiation doses. This recurrent disease may represent disease undertreated at the time of diagnosis, and further study is needed to determine if improved treatment strategies, such as including the subventricular zone in radiation fields, could improve clinical outcomes.

  8. Stroke Repair via Biomimicry of the Subventricular Zone

    Science.gov (United States)

    Matta, Rita; Gonzalez, Anjelica L.

    2018-03-01

    Stroke is among the leading causes of death and disability worldwide, 85% of which are ischemic. Current stroke therapies are limited by a narrow effective therapeutic time and fail to effectively complete the recovery of the damaged area. Magnetic resonance imaging of the subventricular zone (SVZ) following infarct/stroke has allowed visualization of new axonal connections and projections being formed, while new immature neurons migrate from the SVZ to the peri-infarct area. Such studies suggest that the SVZ is a primary source of regenerative cells for the repair and regeneration of stroke-damaged neurons and tissue. Therefore, the development of tissue engineered scaffolds that serve as a bioreplicative SVZ niche would support the survival of multiple cell types that reside in the SVZ. Essential to replication of the human SVZ microenvironment is the establishment of microvasculature that regulates both the healthy and stroke-injured blood brain barrier, which is dysregulated post-stroke. In order to reproduce this niche, understanding how cells interact in this environment is critical, in particular neural stem cells, endothelial cells, pericytes, ependymal cells, and microglia. Remodeling and repair of the matrix-rich SVZ niche by endogenous reparative mechanisms may then support functional recovery when enhanced by an artificial niche that supports the survival and proliferation of migrating vascular and neuronal cells. Critical considerations to mimic this area include an understanding of resident cell types, delivery method, and the use of biocompatible materials. Controlling stem cell survival, differentiation, and migration are key factors to consider when transplanting stem cells. Here, we discuss the role of the SVZ architecture and resident cells in the promotion and enhancement of endogenous repair mechanisms. We elucidate the interplay between the extracellular matrix composition and cell interactions prior to and following stroke. Lastly, we review

  9. Stroke Repair via Biomimicry of the Subventricular Zone

    Directory of Open Access Journals (Sweden)

    Rita Matta

    2018-03-01

    Full Text Available Stroke is among the leading causes of death and disability worldwide, 85% of which are ischemic. Current stroke therapies are limited by a narrow effective therapeutic time and fail to effectively complete the recovery of the damaged area. Magnetic resonance imaging of the subventricular zone (SVZ following infarct/stroke has allowed visualization of new axonal connections and projections being formed, while new immature neurons migrate from the SVZ to the peri-infarct area. Such studies suggest that the SVZ is a primary source of regenerative cells for the repair and regeneration of stroke-damaged neurons and tissue. Therefore, the development of tissue engineered scaffolds that serve as a bioreplicative SVZ niche would support the survival of multiple cell types that reside in the SVZ. Essential to replication of the human SVZ microenvironment is the establishment of microvasculature that regulates both the healthy and stroke-injured blood–brain barrier, which is dysregulated poststroke. In order to reproduce this niche, understanding how cells interact in this environment is critical, in particular neural stem cells, endothelial cells, pericytes, ependymal cells, and microglia. Remodeling and repair of the matrix-rich SVZ niche by endogenous reparative mechanisms may then support functional recovery when enhanced by an artificial niche that supports the survival and proliferation of migrating vascular and neuronal cells. Critical considerations to mimic this area include an understanding of resident cell types, delivery method, and the use of biocompatible materials. Controlling stem cell survival, differentiation, and migration are key factors to consider when transplanting stem cells. Here, we discuss the role of the SVZ architecture and resident cells in the promotion and enhancement of endogenous repair mechanisms. We elucidate the interplay between the extracellular matrix composition and cell interactions prior to and following stroke

  10. The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain

    NARCIS (Netherlands)

    van den Berge, S.A.; van Strien, M.E.; Korecka, J.A.; Dijkstra, A.A.; Sluijs, J.A; Kooijman, L.; Eggers, R.; De Filippis, L.; Vescovi, A.L.; Verhaagen, J.; van de Berg, W.D.J.; Hol, E.M.

    2011-01-01

    There are many indications that neurogenesis is impaired in Parkinson's disease, which might be due to a lack of dopamine in the subventricular zone. An impairment in neurogenesis may have negative consequences for the development of new therapeutic approaches in Parkinson's disease, as neural stem

  11. Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice

    OpenAIRE

    Lazarini, Fran?oise; Mouthon, Marc-Andr?; Gheusi, Gilles; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lamarque, St?phanie; Abrous, Djoher Nora; Boussin, Fran?ois D.; Lledo, Pierre-Marie

    2009-01-01

    International audience; BACKGROUND: In mammals, new neurons are added to the olfactory bulb (OB) throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ) lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we irradiated adult mice to impair c...

  12. SSEA-4 and YKL-40 positive progenitor subtypes in the subventricular zone of developing human neocortex

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Møllgård, Kjeld

    2016-01-01

    The glycosphingolipid SSEA-4 and the glycoprotein YKL-40 have both been associated with human embryonic and neural stem cell differentiation. We investigated the distribution of SSEA-4 and YKL-40 positive cells in proliferative zones of human fetal forebrain using immunohistochemistry and double-...

  13. A model of ischemia-induced neuroblast activation in the adult subventricular zone.

    Directory of Open Access Journals (Sweden)

    Davide Vergni

    Full Text Available We have developed a rat brain organotypic culture model, in which tissue slices contain cortex-subventricular zone-striatum regions, to model neuroblast activity in response to in vitro ischemia. Neuroblast activation has been described in terms of two main parameters, proliferation and migration from the subventricular zone into the injured cortex. We observed distinct phases of neuroblast activation as is known to occur after in vivo ischemia. Thus, immediately after oxygen/glucose deprivation (6-24 hours, neuroblasts reduce their proliferative and migratory activity, whereas, at longer time points after the insult (2 to 5 days, they start to proliferate and migrate into the damaged cortex. Antagonism of ionotropic receptors for extracellular ATP during and after the insult unmasks an early activation of neuroblasts in the subventricular zone, which responded with a rapid and intense migration of neuroblasts into the damaged cortex (within 24 hours. The process is further enhanced by elevating the production of the chemoattractant SDf-1alpha and may also be boosted by blocking the activation of microglia. This organotypic model which we have developed is an excellent in vitro system to study neurogenesis after ischemia and other neurodegenerative diseases. Its application has revealed a SOS response to oxygen/glucose deprivation, which is inhibited by unfavorable conditions due to the ischemic environment. Finally, experimental quantifications have allowed us to elaborate a mathematical model to describe neuroblast activation and to develop a computer simulation which should have promising applications for the screening of drug candidates for novel therapies of ischemia-related pathologies.

  14. RAE-1 is expressed in the adult subventricular zone and controls cell proliferation of neurospheres

    DEFF Research Database (Denmark)

    Popa, Natalia; Cédile, Oriane; Pollet-Villard, Xavier

    2011-01-01

    playing either immune or nonimmune function. Among the latter, MHC functions in the central nervous system has started to receive recent interest. Here, our first goal was to investigate the potential relationship between MHC class I molecules and neurogenesis. For the first time, we report the expression......, and we demonstrate they persist in one of the main area of adult neurogenesis, the subventricular zone (SVZ). So far, RAE-1 is only known for its immune functions as a ligand of the activating receptor NKG2D expressed by natural killer (NK) cells, natural killer T, Tγδ, and some T CD8 lymphocytes. Here...

  15. The aged brain: genesis and fate of residual progenitor cells in the subventricular zone

    Directory of Open Access Journals (Sweden)

    Vivian eCapilla-Gonzalez

    2015-09-01

    Full Text Available Neural stem cells persist in the adult mammalian brain through life. The subventricular zone is the largest source of stem cells in the nervous system, and continuously generates new neuronal and glial cells involved in brain regeneration. During aging, the germinal potential of the subventricular zone suffers a widespread decline, but the causes of this turn down are not fully understood. This review provides a compilation of the current knowledge about the age-related changes in the neural stem cell population, as well as the fate of the newly generated cells in the aged brain. It is known that the neurogenic capacity is clearly disrupted during aging, while the production of oligodendroglial cells is not compromised. Interestingly, the human brain seems to primarily preserve the ability to produce new oligodendrocytes instead of neurons, which could be related to the development of neurological disorders. Further studies in this matter are required to improve our understanding and the current strategies for fighting neurological diseases associated with senescence.

  16. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone.

    Science.gov (United States)

    Rushing, Gabrielle; Ihrie, Rebecca A

    2016-08-01

    The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate. This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ). A literature search was conducted using Pubmed including the keywords "ventricular-subventricular zone," "neural stem cell," "heterogeneity," "identity" and/or "single cell" to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s). This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type. Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo for the properties of NSCs in the adult brain are explored, including

  17. Imaging and recording subventricular zone progenitor cells in live tissue of postnatal mice

    Directory of Open Access Journals (Sweden)

    Benjamin Lacar

    2010-07-01

    Full Text Available The subventricular zone (SVZ is one of two regions where neurogenesis persists in the postnatal brain. The SVZ, located along the lateral ventricle, is the largest neurogenic zone in the brain that contains multiple cell populations including astrocyte-like cells and neuroblasts. Neuroblasts migrate in chains to the olfactory bulb where they differentiate into interneurons. Here, we discuss the experimental approaches to record the electrophysiology of these cells and image their migration and calcium activity in acute slices. Although these techniques were in place for studying glial cells and neurons in mature networks, the SVZ raises new challenges due to the unique properties of SVZ cells, the cellular diversity, and the architecture of the region. We emphasize different methods, such as the use of transgenic mice and in vivo electroporation that permit identification of the different SVZ cell populations for patch clamp recording or imaging. Electroporation also permits genetic labeling of cells using fluorescent reporter mice and modification of the system using either RNA interference technology or floxed mice. In this review, we aim to provide conceptual and technical details of the approaches to perform electrophysiological and imaging studies of SVZ cells.

  18. Neurogenic radial glia in the outer subventricular zone of human neocortex.

    Science.gov (United States)

    Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R

    2010-03-25

    Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.

  19. Regulation by commensal bacteria of neurogenesis in the subventricular zone of adult mouse brain.

    Science.gov (United States)

    Sawada, Naoki; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Nishigaito, Yuka; Saito, Yasuyuki; Murata, Yoji; Nibu, Ken-Ichi; Matozaki, Takashi

    2018-04-15

    In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice

    Science.gov (United States)

    Lazarini, Françoise; Mouthon, Marc-André; Gheusi, Gilles; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lamarque, Stéphanie; Abrous, Djoher Nora; Boussin, François D.; Lledo, Pierre-Marie

    2009-01-01

    Background In mammals, new neurons are added to the olfactory bulb (OB) throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ) lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear. Methodology/Principal Findings In this study, we irradiated adult mice to impair constitutive OB neurogenesis, and explored the functional impacts of this irradiation on the sense of smell. We found that focal irradiation of the SVZ greatly decreased the rate of production of new OB neurons, leaving other brain areas intact. This effect persisted for up to seven months after exposure to 15 Gray. Despite this robust impairment, the thresholds for detecting pure odorant molecules and short-term olfactory memory were not affected by irradiation. Similarly, the ability to distinguish between odorant molecules and the odorant-guided social behavior of irradiated mice were not affected by the decrease in the number of new neurons. Only long-term olfactory memory was found to be sensitive to SVZ irradiation. Conclusion/Significance These findings suggest that the continuous production of adult-generated neurons is involved in consolidating or restituting long-lasting olfactory traces. PMID:19753118

  1. Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone.

    Science.gov (United States)

    Gould, Elizabeth A; Busquet, Nicolas; Shepherd, Douglas; Dietz, Robert M; Herson, Paco S; Simoes de Souza, Fabio M; Li, Anan; George, Nicholas M; Restrepo, Diego; Macklin, Wendy B

    2018-02-13

    Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted. Axon disruption occurs in Plp1 -null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1 -null mice. Young adult Plp1- null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption. © 2018, Gould et al.

  2. Cellular and behavioral effects of cranial irradiation of the subventricular zone in adult mice.

    Directory of Open Access Journals (Sweden)

    Françoise Lazarini

    2009-09-01

    Full Text Available In mammals, new neurons are added to the olfactory bulb (OB throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear.In this study, we irradiated adult mice to impair constitutive OB neurogenesis, and explored the functional impacts of this irradiation on the sense of smell. We found that focal irradiation of the SVZ greatly decreased the rate of production of new OB neurons, leaving other brain areas intact. This effect persisted for up to seven months after exposure to 15 Gray. Despite this robust impairment, the thresholds for detecting pure odorant molecules and short-term olfactory memory were not affected by irradiation. Similarly, the ability to distinguish between odorant molecules and the odorant-guided social behavior of irradiated mice were not affected by the decrease in the number of new neurons. Only long-term olfactory memory was found to be sensitive to SVZ irradiation.These findings suggest that the continuous production of adult-generated neurons is involved in consolidating or restituting long-lasting olfactory traces.

  3. NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation

    Directory of Open Access Journals (Sweden)

    Fabio eCavaliere

    2013-12-01

    Full Text Available Multipotent cells from the juvenile subventricular zone (SVZ possess the ability to differentiate into new neural cells. Depending on local signals, SVZ can generate new neurons, astrocytes or oligodendrocytes. We previously demonstrated that activation of NMDA receptors in SVZ progenitors increases the rate of oligodendrocyte differentiation. Here we investigated the mechanisms involved in NMDA receptor-dependent differentiation. Using functional studies performed with the reporter gene luciferase we found that activation of NMDA receptor stimulates PKC. In turn, stimulation of PKC precedes the activation of NADPH oxidase (NOX as demonstrated by translocation of the p67phox subunit to the cellular membrane. We propose that NOX2 is involved in the transduction of the signal from NMDA receptors through PKC activation as the inhibitor gp91 reduced their pro-differentiation effect. In addition, our data and that from other groups suggest that signaling through the NMDA receptor/PKC/NOX2 cascade generates ROS that activate the PI3/mTOR pathway and finally leads to the generation of new oligodendrocytes.

  4. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    Science.gov (United States)

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  5. Glioblastoma Recurrence Patterns After Radiation Therapy With Regard to the Subventricular Zone

    Energy Technology Data Exchange (ETDEWEB)

    Adeberg, Sebastian, E-mail: Sebastian.adeberg@med.uni-heidelberg [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); König, Laila; Bostel, Tilman; Harrabi, Semi; Welzel, Thomas [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Debus, Jürgen [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Heidelberg Ion Therapy Center, Heidelberg (Germany); DKFZ Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center Heidelberg (Germany); Combs, Stephanie E. [Department of Radiation Oncology, University Hospital of Heidelberg, Heidelberg (Germany); Heidelberg Ion Therapy Center, Heidelberg (Germany)

    2014-11-15

    Purpose: We evaluated the influence of tumor location and tumor spread in primary glioblastoma (GBM), with respect to the subventricular zone (SVZ), on recurrence behavior, progression-free survival (PFS), and overall survival (OS). Methods and Materials: 607 patients (376 male and 231 female) with a median age of 61.3 years (range, 3.0-87.9 years) and primary GBM treated with radiation therapy (RT) from 2004 to 2012 at a single institution were included in this retrospective study. Preoperative images and follow-up examination results were assessed to evaluate tumor location. Tumors were classified according to the tumor location in relation to the SVZ. Results: The median PFS of the study population was 5.2 months (range, 1-91 months), and the median OS was 13.8 months (range, 1-102 months). Kaplan-Meier analysis showed that tumor location in close proximity to the SVZ was associated with a significant decline in PFS and OS (4.8 and 12.3 months, respectively; each P<.001). Furthermore, in cases where tumors were involved with the SVZ, distant cerebral progression (43.8%; P=.005) and multifocal progression (39.8%; P=.008) were more common. Interestingly, opening of the ventricle during the previous surgery showed no impact on PFS and OS. Conclusion: GBM in close proximity to the SVZ was associated with decreased survival and had a higher risk of multifocal or distant progression. Ventricle opening during surgery had no effect on survival rates.

  6. RAE-1 is expressed in the adult subventricular zone and controls cell proliferation of neurospheres.

    Science.gov (United States)

    Popa, Natalia; Cedile, Oriane; Pollet-Villard, Xavier; Bagnis, Claude; Durbec, Pascale; Boucraut, José

    2011-01-01

    Improving and controlling the capacity of endogenous or grafted adult neural stem cells to repair the nervous system relies on a better knowledge of interactions between immune cells and neural stem cells. Class I major histocompatibility complex (MHC) family members comprise numerous proteins playing either immune or nonimmune function. Among the latter, MHC functions in the central nervous system has started to receive recent interest. Here, our first goal was to investigate the potential relationship between MHC class I molecules and neurogenesis. For the first time, we report the expression of two MHC class I-related members by neural stem/progenitor cells: retinoic acid early induced transcript (RAE)-1 and CD1d. The expression of RAE-1 but not CD1d disappears when differentiation of neurosphere cells is induced. Interestingly, RAE-1 transcripts are expressed in the brain during development, and we demonstrate they persist in one of the main area of adult neurogenesis, the subventricular zone (SVZ). So far, RAE-1 is only known for its immune functions as a ligand of the activating receptor NKG2D expressed by natural killer (NK) cells, natural killer T, Tγδ, and some T CD8 lymphocytes. Here, we do not detect any NKG2D expression in the SVZ either in physiological or in pathological conditions. Interestingly, inhibition of RAE-1 expression in neurosphere cells reduces cell proliferation without alteration of cell viability, which argues for a nonimmune role for RAE-1. These results reveal an unexpected role of RAE-1 in regulating adult SVZ neurogenesis by supporting stem/progenitor cells proliferation. © 2010 Wiley-Liss, Inc.

  7. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains.

    Science.gov (United States)

    Azim, Kasum; Fiorelli, Roberto; Zweifel, Stefan; Hurtado-Chong, Anahi; Yoshikawa, Kazuaki; Slomianka, Lutz; Raineteau, Olivier

    2012-01-01

    Recent studies suggest that the subventricular zone (SVZ) of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling "stem" cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to accurately assess neural

  8. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains.

    Directory of Open Access Journals (Sweden)

    Kasum Azim

    Full Text Available Recent studies suggest that the subventricular zone (SVZ of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling "stem" cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to

  9. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    Science.gov (United States)

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  10. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone

    OpenAIRE

    Farioli-Vecchioli, Stefano; Micheli, Laura; Saraulli, Daniele; Ceccarelli, Manuela; Cannas, Sara; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Ciotti, Maria Teresa; Moreira, Pedro; Rouault, Jean-Pierre; Cestari, Vincenzo; Tirone, Felice

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as...

  11. BTG1 is required to maintain the pool of stem and progenitor cells of dentate gyrus and subventricular zone

    OpenAIRE

    Stefano eFarioli-Vecchioli; Laura eMicheli; Daniele eSaraulli; Manuela eCeccarelli; Sara eCannas; Raffaella eScardigli; Luca eLeonardi; Irene eCinà; Marco eCostanzi; Maria Teresa eCiotti; Pedro eMoreira; Jean-Pierre eRouault; Vincenzo eCestari; Felice eTirone

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons.Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at two months of age the number of these proliferating cells, a...

  12. Aging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone.

    Science.gov (United States)

    Pushkar, Yulia; Robison, Gregory; Sullivan, Brendan; Fu, Sherleen X; Kohne, Meghan; Jiang, Wendy; Rohr, Sven; Lai, Barry; Marcus, Matthew A; Zakharova, Taisiya; Zheng, Wei

    2013-10-01

    Analysis of rodent brains with X-ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X-ray absorption spectroscopy we determined the copper (I) oxidation state and the sulfur ligand environment. Cu K-edge X-ray absorption near edge spectroscopy is consistent with Cu being bound as a multimetallic Cu-S cluster similar to one present in Cu-metallothionein. Analysis of age-related changes show that Cu content in astrocytes of the SVZ increases fourfold from 3 weeks to 9 months, while Cu concentration in other brain areas remain essentially constant. This increase in Cu correlates with a decrease in adult neurogenesis assessed using the Ki67 marker (both, however, can be age-related effects). We demonstrate that the Cu distribution and age-related concentration changes in the brain are highly cell specific. © 2013 The Anatomical Society and John Wiley & Sons Ltd.

  13. A comparative study of the structural organization of spheres derived from the adult human subventricular zone and glioblastoma biopsies

    International Nuclear Information System (INIS)

    Vik-Mo, Einar Osland; Sandberg, Cecilie; Joel, Mrinal; Stangeland, Biljana; Watanabe, Yasuhiro; Mackay-Sim, Alan; Moe, Morten Carstens; Murrell, Wayne; Langmoen, Iver Arne

    2011-01-01

    Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2-93%)/SSEA1 (3-15%)/CXCR4 (1-72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells, but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.

  14. Radio-Protective Effects of Melatonin on Subventricular Zone in Irradiated Rat: Decrease in Apoptosis and Upregulation of Nestin.

    Science.gov (United States)

    Naseri, Shafigheh; Moghahi, Seyed Mohammad Hossein Noori; Mokhtari, Tahmineh; Roghani, Mehrdad; Shirazi, Ali Reza; Malek, Fatemeh; Rastegar, Tayebeh

    2017-10-01

    Neural stem cells are self-renewing, multipotent cells that can be found in subventricular (SVZ) and subgranular (SGZ) zones of the brain. These zones are susceptible to irradiation-induced apoptosis and oxidative stress. Melatonin (MLT) is a natural protector of neural cells against toxicity. The aim of this study was to evaluate the effects of MLT as a radio-protective material effective in reducing tissue lesions in the SVZ of the brain and changing local apoptotic potential in rats. Twenty-five Gray irradiation was applied on adult rat brain for this study. One hour before irradiation, 100 mg/kg/IP MLT was injected, and 6 h later, the animals were sacrificed. The antioxidant enzymes and MDA activity levels were measured post-sacrifice. Also, the expression level of Nestin and caspase 3 were studied by immunohistochemistry. Spectrophotometric analysis showed significant increases in the amount of malondialdehyde (MDA) levels in the irradiation-exposed (RAD) group compared to that of the control (Co) group (P < 0.05). Pre-treatment with MLT (100 mg/kg) ameliorates the harmful effects of the aforementioned 25 Gy irradiation by increasing antioxidant enzyme activity and decreasing MDA levels. A significant reduction in apoptotic cells was observed in rats treated with MLT 1 h before exposure (P < 0.001). Nestin-positive cells were also reduced in the RAD group (P < 0.001). Our results confirm the anti-apoptotic and antioxidant role of MLT. The MLT concentration used may serve as a threshold for significant protection against 25 Gy gamma irradiations on neural stem cells in SVZ.

  15. Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xia Chen

    Full Text Available We have previously shown that transplantation of immature DCX+/NeuN+/Prox1+ neurons (found in the neonatal DG, but not undifferentiated neuronal progenitor cells (NPCs from ventral subventricular zone (SVZ, results in neuronal maturation in vivo within the dentate niche. Here we investigated whether we could enhance the integration of SVZ NPCs by forced expression of the proneural gene Neurogenin 2 (NEUROG2. NPCs cultured from neonatal GFP-transgenic rat SVZ for 7 days in a non-differentiating medium were transduced with a retrovirus encoding NEUROG2 and DsRed or the DsRed reporter gene alone (control. By 3 days post-transduction, the NEUROG2-transduced cells maintained in culture contained mostly immature neurons (91% DCX+; 76% NeuN+, whereas the control virus-transduced cells remained largely undifferentiated (30% DCX+; <1% NeuN+. At 6 weeks following transplantation into the DG of adult male rats, there were no neurons among the transplanted cells treated with the control virus but the majority of the NEUROG2-transduced DsRed+ SVZ cells became mature neurons (92% NeuN+; DCX-negative. Although the NEUROG2-transduced SVZ cells did not express the dentate granule neuron marker Prox1, most of the NEUROG2-transduced SVZ cells (78% expressed the glutamatergic marker Tbr1, suggesting the acquisition of a glutamatergic phenotype. Moreover, some neurons extended dendrites into the molecular layer, grew axons containing Ankyrin G+ axonal initial segments, and projected into the CA3 region, thus resembling mature DG granule neurons. A proportion of NEUROG2 transduced cells also expressed c-Fos and P-CREB, two markers of neuronal activation. We conclude that NEUROG2-transduction is sufficient to promote neuronal maturation and integration of transplanted NPCs from SVZ into the DG.

  16. S phase entry of neural progenitor cells correlates with increased blood flow in the young subventricular zone.

    Directory of Open Access Journals (Sweden)

    Benjamin Lacar

    Full Text Available The postnatal subventricular zone (SVZ contains proliferating neural progenitor cells in close proximity to blood vessels. Insults and drug treatments acutely stimulate cell proliferation in the SVZ, which was assessed by labeling cells entering S phase. Although G1-to-S progression is metabolically demanding on a minute-to-hour time scale, it remains unknown whether increased SVZ cell proliferation is accompanied by a local hemodynamic response. This neurovascular coupling provides energy substrates to active neuronal assemblies. Transcardial dye perfusion revealed the presence of capillaries throughout the SVZ that constrict upon applications of the thromboxane A(2 receptor agonist U-46119 in acute brain slice preparations. We then monitored in vivo blood flow using laser Doppler flowmetry via a microprobe located either in the SVZ or a mature network. U-46119 injections into the lateral ventricle decreased blood flow in the SVZ and the striatum, which are near the ventricle. A 1-hour ventricular injection of epidermal and basic fibroblast growth factor (EGF and bFGF significantly increased the percentage of Sox2 transcription factor-positive cells in S phase 1.5 hours post-injection. This increase was accompanied by a sustained rise in blood flow in the SVZ but not in the striatum. Direct growth factor injections into the cortex did not alter local blood flow, ruling out direct effects on capillaries. These findings suggest that an acute increase in the number of G1-to-S cycling SVZ cells is accompanied by neurometabolic-vascular coupling, which may provide energy and nutrient for cell cycle progression.

  17. Btg1 is Required to Maintain the Pool of Stem and Progenitor Cells of the Dentate Gyrus and Subventricular Zone

    Science.gov (United States)

    Farioli-Vecchioli, Stefano; Micheli, Laura; Saraulli, Daniele; Ceccarelli, Manuela; Cannas, Sara; Scardigli, Raffaella; Leonardi, Luca; Cinà, Irene; Costanzi, Marco; Ciotti, Maria Teresa; Moreira, Pedro; Rouault, Jean-Pierre; Cestari, Vincenzo; Tirone, Felice

    2012-01-01

    Btg1 belongs to a family of cell cycle inhibitory genes. We observed that Btg1 is highly expressed in adult neurogenic niches, i.e., the dentate gyrus and subventricular zone (SVZ). Thus, we generated Btg1 knockout mice to analyze the role of Btg1 in the process of generation of adult new neurons. Ablation of Btg1 causes a transient increase of the proliferating dentate gyrus stem and progenitor cells at post-natal day 7; however, at 2 months of age the number of these proliferating cells, as well as of mature neurons, greatly decreases compared to wild-type controls. Remarkably, adult dentate gyrus stem and progenitor cells of Btg1-null mice exit the cell cycle after completing the S phase, express p53 and p21 at high levels and undergo apoptosis within 5 days. In the SVZ of adult (two-month-old) Btg1-null mice we observed an equivalent decrease, associated to apoptosis, of stem cells, neuroblasts, and neurons; furthermore, neurospheres derived from SVZ stem cells showed an age-dependent decrease of the self-renewal and expansion capacity. We conclude that ablation of Btg1 reduces the pool of dividing adult stem and progenitor cells in the dentate gyrus and SVZ by decreasing their proliferative capacity and inducing apoptosis, probably reflecting impairment of the control of the cell cycle transition from G1 to S phase. As a result, the ability of Btg1-null mice to discriminate among overlapping contextual memories was affected. Btg1 appears, therefore, to be required for maintaining adult stem and progenitor cells quiescence and self-renewal. PMID:22969701

  18. Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain.

    Science.gov (United States)

    Ara, Jahan; De Montpellier, Sybille

    2013-09-01

    Perinatal hypoxia-ischemia (HI) results in brain injury, whereas mild hypoxic episodes result in preconditioning, which can significantly reduce the vulnerability of the brain to subsequent severe hypoxia-ischemia. Hypoxic-preconditioning (PC) has been shown to enhance cell survival and differentiation of progenitor cells in the central nervous system (CNS). The purpose of this study was to determine whether pretreatment with PC prior to HI stimulates subventricular zone (SVZ) proliferation and neurogenesis in newborn piglets. One-day-old piglets were subjected to PC (8% O2/92% N2) for 3h and 24h later were exposed to HI produced by combination of hypoxia (5% FiO2) for a pre-defined period of 30min and ischemia induced by a period of 10min of hypotension. Here we demonstrate that SVZ derived neural stem/progenitor cells (NSPs) from PC, HI and PC+HI piglets proliferated as neurospheres, expressed neural progenitor and neurodevelopmental markers, and that greater proportion of the spheres generated are multipotential. Neurosphere assay revealed that preconditioning pretreatment increased the number of NSP-derived neurospheres in SVZ following HI compared to normoxic and HI controls. NSPs from preconditioned SVZ generated twice as many neurons and astrocytes in vitro. Injections with 5-Bromo-2-deoxyuridine (BrdU) after PC revealed a robust proliferative response within the SVZ that continued for one week. PC also increased neurogenesis in vivo, doublecortin positive cells with migratory profiles were observed streaming from the SVZ to striatum and neocortex. These findings show that the induction of proliferation and neurogenesis by PC might be a positive adaptation for an efficient repair and plasticity in the event of a hypoxic-ischemic insult. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Store-Operated Calcium Entries Control Neural Stem Cell Self-Renewal in the Adult Brain Subventricular Zone.

    Science.gov (United States)

    Domenichini, Florence; Terrié, Elodie; Arnault, Patricia; Harnois, Thomas; Magaud, Christophe; Bois, Patrick; Constantin, Bruno; Coronas, Valérie

    2018-05-01

    The subventricular zone (SVZ) is the major stem cell niche in the brain of adult mammals. Within this region, neural stem cells (NSC) proliferate, self-renew and give birth to neurons and glial cells. Previous studies underlined enrichment in calcium signaling-related transcripts in adult NSC. Because of their ability to mobilize sustained calcium influxes in response to a wide range of extracellular factors, store-operated channels (SOC) appear to be, among calcium channels, relevant candidates to induce calcium signaling in NSC whose cellular activities are continuously adapted to physiological signals from the microenvironment. By Reverse Transcription Polymerase Chain Reaction (RT-PCR), Western blotting and immunocytochemistry experiments, we demonstrate that SVZ cells express molecular actors known to build up SOC, namely transient receptor potential canonical 1 (TRPC1) and Orai1, as well as their activator stromal interaction molecule 1 (STIM1). Calcium imaging reveals that SVZ cells display store-operated calcium entries. Pharmacological blockade of SOC with SKF-96365 or YM-58483 (also called BTP2) decreases proliferation, impairs self-renewal by shifting the type of SVZ stem cell division from symmetric proliferative to asymmetric, thereby reducing the stem cell population. Brain section immunostainings show that TRPC1, Orai1, and STIM1 are expressed in vivo, in SOX2-positive SVZ NSC. Injection of SKF-96365 in brain lateral ventricle diminishes SVZ cell proliferation and reduces the ability of SVZ cells to form neurospheres in vitro. The present study combining in vitro and in vivo approaches uncovers a major role for SOC in the control of SVZ NSC population and opens new fields of investigation for stem cell biology in health and disease. Stem Cells 2018;36:761-774. © AlphaMed Press 2018.

  20. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia

    Science.gov (United States)

    Ferland, Russell J.; Batiz, Luis Federico; Neal, Jason; Lian, Gewei; Bundock, Elizabeth; Lu, Jie; Hsiao, Yi-Chun; Diamond, Rachel; Mei, Davide; Banham, Alison H.; Brown, Philip J.; Vanderburg, Charles R.; Joseph, Jeffrey; Hecht, Jonathan L.; Folkerth, Rebecca; Guerrini, Renzo; Walsh, Christopher A.; Rodriguez, Esteban M.; Sheen, Volney L.

    2009-01-01

    Periventricular heterotopia (PH) is a disorder characterized by neuronal nodules, ectopically positioned along the lateral ventricles of the cerebral cortex. Mutations in either of two human genes, Filamin A (FLNA) or ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2), cause PH (Fox et al. in ‘Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia'. Neuron, 21, 1315–1325, 1998; Sheen et al. in ‘Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex'. Nat. Genet., 36, 69–76, 2004). Recent studies have shown that mutations in mitogen-activated protein kinase kinase kinase-4 (Mekk4), an indirect interactor with FlnA, also lead to periventricular nodule formation in mice (Sarkisian et al. in ‘MEKK4 signaling regulates filamin expression and neuronal migration'. Neuron, 52, 789–801, 2006). Here we show that neurons in post-mortem human PH brains migrated appropriately into the cortex, that periventricular nodules were primarily composed of later-born neurons, and that the neuroependyma was disrupted in all PH cases. As studied in the mouse, loss of FlnA or Big2 function in neural precursors impaired neuronal migration from the germinal zone, disrupted cell adhesion and compromised neuroepithelial integrity. Finally, the hydrocephalus with hop gait (hyh) mouse, which harbors a mutation in Napa [encoding N-ethylmaleimide-sensitive factor attachment protein alpha (α-SNAP)], also develops a progressive denudation of the neuroepithelium, leading to periventicular nodule formation. Previous studies have shown that Arfgef2 and Napa direct vesicle trafficking and fusion, whereas FlnA associates dynamically with the Golgi membranes during budding and trafficking of transport vesicles. Our current findings suggest that PH formation arises from a final common pathway involving disruption of vesicle trafficking, leading to impaired cell

  1. Neural stem cells in the immature, but not the mature, subventricular zone respond robustly to traumatic brain injury.

    Science.gov (United States)

    Goodus, Matthew T; Guzman, Alanna M; Calderon, Frances; Jiang, Yuhui; Levison, Steven W

    2015-01-01

    Pediatric traumatic brain injury is a significant problem that affects many children each year. Progress is being made in developing neuroprotective strategies to combat these injuries. However, investigators are a long way from therapies to fully preserve injured neurons and glia. To restore neurological function, regenerative strategies will be required. Given the importance of stem cells in repairing damaged tissues and the known persistence of neural precursors in the subventricular zone (SVZ), we evaluated regenerative responses of the SVZ to a focal brain lesion. As tissues repair more slowly with aging, injury responses of male Sprague Dawley rats at 6, 11, 17, and 60 days of age and C57Bl/6 mice at 14 days of age were compared. In the injured immature animals, cell proliferation in the dorsolateral SVZ more than doubled by 48 h. By contrast, the proliferative response was almost undetectable in the adult brain. Three approaches were used to assess the relative numbers of bona fide neural stem cells, as follows: the neurosphere assay (on rats injured at postnatal day 11, P11), flow cytometry using a novel 4-marker panel (on mice injured at P14) and staining for stem/progenitor cell markers in the niche (on rats injured at P17). Precursors from the injured immature SVZ formed almost twice as many spheres as precursors from uninjured age-matched brains. Furthermore, spheres formed from the injured brain were larger, indicating that the neural precursors that formed these spheres divided more rapidly. Flow cytometry revealed a 2-fold increase in the percentage of stem cells, a 4-fold increase in multipotential progenitor-3 cells and a 2.5-fold increase in glial-restricted progenitor-2/multipotential-3 cells. Analogously, there was a 2-fold increase in the mitotic index of nestin+/Mash1- immunoreactive cells within the immediately subependymal region. As the early postnatal SVZ is predominantly generating glial cells, an expansion of precursors might not

  2. Subventricular zone predicts high velocity of tumor expansion and poor clinical outcome in patients with low grade astrocytoma.

    Science.gov (United States)

    Wen, Bing; Fu, Feixian; Hu, Liangbo; Cai, Qiuyi; Xie, Junshi

    2018-05-01

    The aim of this study is to clarify the association between subventricular zone (SVZ) involvement and velocity of diametric expansion(VDE) in patients with low-grade astrocytoma and also assessed the clinical outcome of those patients. A total of 168 adult patients with newly diagnosed supratentorial low-grade astrocytoma were studied retrospectively. There were 73 patients had SVZ involvement. Patients with SVZ involvement(7.16 ± 6.53 mm/y) had a higher VDE than patients without SVZ involvement(4.38 ± 5.35 mm/y). VDE was modeled as a categorical variable(<4, ≥4 and, <8, ≥8 and, <12, ≥12 mm/y). Logistic regression showed that SVZ involvement was associated with high VDE after adjusting by confounding variables. On the univariate analysis, the results showed that tumor involved with SVZ, VDE ≥ 4 mm/y, VDE ≥ 8 mm/y, and VDE ≥ 8 mm/y were significant predictors of a shorter OS, progression-free survival (PFS) and malignant progression-free survival (MFS)(all p <0.05). The categorical variables of VDE (<4 mm/y, ≥4 mm/y and, <8 mm/y, ≥8 mm/y and, <12 mm/y, ≥12 mm/y) were adjusted by confounding variables in multivariate analysis, respectively. The results indicated that VDE ≥ 8 mm/y, VDE ≥ 12 mm/y were worse prognostic factors for OS, while VDE ≥ 4 mm/y, VDE ≥ 8 mm/y and VDE ≥ 12 mm/y were related to shorter PFS and MFS. In addition, SVZ involvement was prognostic factors in predicting OS and PFS except MFS. Our results demonstrated that SVZ involvement predicted high VDE and worse clinical outcome, and high VDE was associated with poor prognosis in patients with low-grade astrocytoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Optimizing culture medium composition to improve oligodendrocyte progenitor cell yields in vitro from subventricular zone-derived neural progenitor cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Paula G Franco

    Full Text Available Neural Stem and Progenitor Cells (NSC/NPC are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC.

  4. Metallic gold treatment reduces proliferation of inflammatory cells, increases expression of VEGF and FGF, and stimulates cell proliferation in the subventricular zone following experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Østergaard; Larsen, Agnete; Pedersen, Dan Sonne

    2009-01-01

    Traumatic brain injury represents a leading cause of morbidity in young individuals and there is an imperative need for neuroprotective treatments limiting the neurologic impairment following such injury. It has recently been demonstrated that bio-liberated gold ions liberated from small metallic...... gold implants reduce inflammation and neuronal apoptosis, while generating an increased neuronal stem cell response following focal brain damage. In this study mice were subjected to a unilateral traumatic cryo-lesion with concomitant injection of 25-45 microm gold particles near the lesion. Placebo...... increase in cell proliferation in both the ipsilateral and the contralateral subventricular zone was found in response to gold-treatment. In conclusion: we confirmed the previously demonstrated anti-inflammatory effect of bio-liberated gold ions, and further show that metallic gold increases growth factor...

  5. GABA(A) Increases Calcium in Subventricular Zone Astrocyte-Like Cells Through L- and T-Type Voltage-Gated Calcium Channels

    DEFF Research Database (Denmark)

    Young, Stephanie Z; Platel, Jean-Claude; Nielsen, Jakob V

    2010-01-01

    In the adult neurogenic subventricular zone (SVZ), the behavior of astrocyte-like cells and some of their functions depend on changes in intracellular Ca(2+) levels and tonic GABA(A) receptor activation. However, it is unknown whether, and if so how, GABA(A) receptor activity regulates...... intracellular Ca(2+) dynamics in SVZ astrocytes. To monitor Ca(2+) activity selectively in astrocyte-like cells, we used two lines of transgenic mice expressing either GFP fused to a Gq-coupled receptor or DsRed under the human glial fibrillary acidic protein (hGFAP) promoter. GABA(A) receptor activation...... induced Ca(2+) increases in 40-50% of SVZ astrocytes. GABA(A)-induced Ca(2+) increases were prevented with nifedipine and mibefradil, blockers of L- and T-type voltage-gated calcium channels (VGCC). The L-type Ca(2+) channel activator BayK 8644 increased the percentage of GABA(A)-responding astrocyte...

  6. Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix jacchus

    Science.gov (United States)

    Kelava, Iva; Reillo, Isabel; Murayama, Ayako Y.; Kalinka, Alex T.; Stenzel, Denise; Tomancak, Pavel; Matsuzaki, Fumio; Lebrand, Cécile; Sasaki, Erika; Schwamborn, Jens C.; Okano, Hideyuki; Borrell, Víctor

    2012-01-01

    Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type. PMID:22114084

  7. Olfactory memory is enhanced in mice exposed to extremely low-frequency electromagnetic fields via Wnt/β-catenin dependent modulation of subventricular zone neurogenesis.

    Science.gov (United States)

    Mastrodonato, Alessia; Barbati, Saviana Antonella; Leone, Lucia; Colussi, Claudia; Gironi, Katia; Rinaudo, Marco; Piacentini, Roberto; Denny, Christine A; Grassi, Claudio

    2018-01-10

    Exposure to extremely low-frequency electromagnetic fields (ELFEF) influences the expression of key target genes controlling adult neurogenesis and modulates hippocampus-dependent memory. Here, we assayed whether ELFEF stimulation affects olfactory memory by modulating neurogenesis in the subventricular zone (SVZ) of the lateral ventricle, and investigated the underlying molecular mechanisms. We found that 30 days after the completion of an ELFEF stimulation protocol (1 mT; 50 Hz; 3.5 h/day for 12 days), mice showed enhanced olfactory memory and increased SVZ neurogenesis. These effects were associated with upregulated expression of mRNAs encoding for key regulators of adult neurogenesis and were mainly dependent on the activation of the Wnt pathway. Indeed, ELFEF stimulation increased Wnt3 mRNA expression and nuclear localization of its downstream target β-catenin. Conversely, inhibition of Wnt3 by Dkk-1 prevented ELFEF-induced upregulation of neurogenic genes and abolished ELFEF's effects on olfactory memory. Collectively, our findings suggest that ELFEF stimulation increases olfactory memory via enhanced Wnt/β-catenin signaling in the SVZ and point to ELFEF as a promising tool for enhancing SVZ neurogenesis and olfactory function.

  8. Dose-escalated intensity-modulated radiotherapy and irradiation of subventricular zones in relation to tumor control outcomes of patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Kusumawidjaja G

    2016-03-01

    Full Text Available Grace Kusumawidjaja,1 Patricia Zhun Hong Gan,1 Whee Sze Ong,2 Achiraya Teyateeti,3 Pittaya Dankulchai,3 Daniel Yat Harn Tan,1 Eu Tiong Chua,1 Kevin Lee Min Chua,1 Chee Kian Tham,4 Fuh Yong Wong,1 Melvin Lee Kiang Chua1,5 1Division of Radiation Oncology, National Cancer Centre, Singapore; 2Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre, Singapore; 3Department of Radiology, Division of Radiation Oncology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand; 4Division of Medical Oncology, National Cancer Centre, Singapore; 5Duke-NUS Graduate Medical School, Singapore Background: Glioblastoma multiforme (GBM is the most aggressive primary brain tumor with high relapse rate. In this study, we aimed to determine if dose-escalated (DE radiotherapy improved tumor control and survival in GBM patients. Methods: We conducted a retrospective analysis of 49 and 23 newly-diagnosed histology-proven GBM patients, treated with DE radiotherapy delivered in 70 Gy (2.33 Gy per fraction and conventional doses (60 Gy, respectively, between 2007 and 2013. Clinical target volumes for 70 and 60 Gy were defined by 0.5 and 2.0 cm expansion of magnetic resonance imaging T1-gadolinium-enhanced tumor/surgical cavity, respectively. Bilateral subventricular zones (SVZ were contoured on a co-registered pre-treatment magnetic resonance imaging and planning computed tomography dataset as a 5 mm wide structure along the lateral margins of the lateral ventricles. Survival outcomes of both cohorts were compared using log-rank test. Radiation dose to SVZ in the DE cohort was evaluated. Results: Median follow-up was 13.6 and 15.1 months for the DE- and conventionally-treated cohorts, respectively. Median overall survival (OS of patients who received DE radiotherapy was 15.2 months (95% confidence interval [CI] =11.0–18.6, while median OS of the latter cohort was 18.4 months (95% CI =12.5–31.4, P=0.253. Univariate analyses of

  9. Targeting p38 Mitogen-Activated Protein Kinase Signaling Restores Subventricular Zone Neural Stem Cells and Corrects Neuromotor Deficits in Atm Knockout Mouse

    Science.gov (United States)

    Kim, Jeesun

    2012-01-01

    Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of cerebellar cortical layers along with Purkinje and granular cell loss. We have previously identified an oxidative stress-mediated increase in phospho-p38 mitogen-activated protein kinase (MAPK) and the resultant downregulation of Bmi-1 and upregulation of p21 as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm−/− mice. However, the in vivo aspect of alteration in SVZ tissue and the functional significance of p38MAPK activation in NSCs for neuropathogenesis of ATM deficiency remain unknown. Here we show that the NSC population was abnormally decreased in the SVZ of 3-month-old Atm−/− mice; this decrease was accompanied by p38MAPK activation. However, after a 2-month treatment with the p38MAPK inhibitor SB203580, starting at 1 month old, Atm−/− mice showed restoration of normal levels of Bmi-1 and p21 with the rescue of NSC population in the SVZ. In addition, treated Atm−/− mice exhibited more Purkinje cells in the cerebellum. Most importantly, motor coordination of Atm−/− mice was significantly improved in the treatment group. Our results show for the first time in vivo evidence of depleted NSCs in the SVZ of Atm−/− mice and also demonstrate that pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides a promising approach targeting the oxidative stress-dependent p38 signaling pathway not only for A-T but also for other neurodegenerative disorders. PMID:23197859

  10. Hard-Diet Feeding Recovers Neurogenesis in the Subventricular Zone and Olfactory Functions of Mice Impaired by Soft-Diet Feeding

    Science.gov (United States)

    Utsugi, Chizuru; Miyazono, Sadaharu; Osada, Kazumi; Sasajima, Hitoshi; Noguchi, Tomohiro; Matsuda, Mitsuyoshi; Kashiwayanagi, Makoto

    2014-01-01

    The subventricular zone (SVZ) generates an immense number of neurons even during adulthood. These neurons migrate to the olfactory bulb (OB) and differentiate into granule cells and periglomerular cells. The information broadcast by general odorants is received by the olfactory sensory neurons and transmitted to the OB. Recent studies have shown that a reduction of mastication impairs both neurogenesis in the hippocampus and brain functions. To examine these effects, we first measured the difference in Fos-immunoreactivity (Fos-ir) at the principal sensory trigeminal nucleus (Pr5), which receives intraoral touch information via the trigeminal nerve, when female adult mice ingested a hard or soft diet to explore whether soft-diet feeding could mimic impaired mastication. Ingestion of a hard diet induced greater expression of Fos-ir cells at the Pr5 than did a soft diet or no diet. Bromodeoxyuridine-immunoreactive (BrdU-ir) structures in sagittal sections of the SVZ and in the OB of mice fed a soft or hard diet were studied to explore the effects of changes in mastication on newly generated neurons. After 1 month, the density of BrdU-ir cells in the SVZ and OB was lower in the soft-diet-fed mice than in the hard-diet-fed mice. The odor preferences of individual female mice to butyric acid were tested in a Y-maze apparatus. Avoidance of butyric acid was reduced by the soft-diet feeding. We then explored the effects of the hard-diet feeding on olfactory functions and neurogenesis in the SVZ of mice impaired by soft-diet feeding. At 3 months of hard-diet feeding, avoidance of butyric acid was reversed and responses to odors and neurogenesis were recovered in the SVZ. The present results suggest that feeding with a hard diet improves neurogenesis in the SVZ, which in turn enhances olfactory function at the OB. PMID:24817277

  11. Novel in vivo imaging techniques for trafficking the behavior of subventricular zone neural stem cells (SVZSC) and SVZSC induced functional repair

    Energy Technology Data Exchange (ETDEWEB)

    Anna-Liisa Brownell

    2003-11-28

    Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytoma cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons.

  12. Retinoic acid-pretreated Wharton's jelly mesenchymal stem cells in combination with triiodothyronine improve expression of neurotrophic factors in the subventricular zone of the rat ischemic brain injury.

    Science.gov (United States)

    Sabbaghziarani, Fatemeh; Mortezaee, Keywan; Akbari, Mohammad; Kashani, Iraj Ragerdi; Soleimani, Mansooreh; Moini, Ashraf; Ataeinejad, Nahid; Zendedel, Adib; Hassanzadeh, Gholamreza

    2017-02-01

    Stroke is the consequence of limited blood flow to the brain with no established treatment to reduce the neurological deficits. Focusing on therapeutic protocols in targeting subventricular zone (SVZ) neurogenesis has been investigated recently. This study was designed to evaluate the effects of retinoic acid (RA)-pretreated Wharton's jelly mesenchymal stem cells (WJ-MSCs) in combination with triiodothyronine (T3) in the ischemia stroke model. Male Wistar rats were used to induce focal cerebral ischemia by middle cerebral artery occlusion (MCAO). There were seven groups of six animals: Sham, Ischemic, WJ-MSCs, RA-pretreated WJ-MSCs, T3, WJ-MSCs +T3, and RA-pretreated WJ-MSCs + T3. The treatment was performed at 24 h after ischemia, and animals were sacrificed one week later for assessments of retinoid X receptor β (RXRβ), brain-derived neurotrophic factor (BDNF), Sox2 and nestin in the SVZ. Pro-inflammatory cytokines in sera were measured at days four and seven after ischemia. RXRβ, BDNF, Sox2 and nestin had the significant expressions in gene and protein levels in the treatment groups, compared with the ischemic group, which were more vivid in the RA-pretreated WJ-MSCs + T3 (p ≤ 0.05). The same trend was also resulted for the levels of TNF-α and IL-6 at four days after ischemia (p ≤ 0.05). In conclusion, application of RA-pretreated WJ-MSCs + T3 could be beneficial in exerting better neurotrophic function probably via modulation of pro-inflammatory cytokines.

  13. P2X7 receptor inhibition increases CNTF in the subventricular zone, but not neurogenesis or neuroprotection after stroke in adult mice.

    Science.gov (United States)

    Kang, Seong Su; Keasey, Matthew Phillip; Hagg, Theo

    2013-10-01

    Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40-60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.

  14. Novel in vivo imaging techniques for trafficking the behavior of subventricular zone neural stem cells (SVZSC) and SVZSC induced functional repair

    International Nuclear Information System (INIS)

    Anna-Liisa Brownell

    2003-01-01

    Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytoma cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons

  15. Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development

    Directory of Open Access Journals (Sweden)

    Eric eLewitus

    2013-08-01

    Full Text Available There is a basic rule to mammalian neocortical expansion: as it expands, so does it fold. The degree to which it folds, however, cannot strictly be attributed to its expansion. Across species, cortical volume does not keep pace with cortical surface area, but rather folds appear more rapidly than expected. As a result, larger brains quickly become disproportionately more convoluted than smaller brains. Both the absence (lissencephaly and presence (gyrencephaly of cortical folds is observed in all mammalian orders and, while there is likely some phylogenetic signature to the evolutionary appearance of gyri and sulci, there are undoubtedly universal trends to the acquisition of folds in an expanding neocortex. Whether these trends are governed by conical expansion of neocortical germinal zones, the distribution of cortical connectivity, or a combination of growth- and connectivity-driven forces remains an open question. But the importance of cortical folding for evolution of the uniquely mammalian neocortex, as well as for the incidence of neuropathologies in humans, is undisputed. In this hypothesis and theory article, we will summarize the development of cortical folds in the neocortex, consider the relative influence of growth- versus connectivity-driven forces for the acquisition of cortical folds between and within species, assess the genetic, cell-biological, and mechanistic implications for neocortical expansion, and discuss the significance of these implications for human evolution, development, and disease. We will argue that evolutionary increases in the density of neuron production, achieved via maintenance of a basal proliferative niche in the neocortical germinal zones, drive the conical migration of neurons towards the cortical surface and ultimately lead to the establishment of cortical folds in large-brained mammal species.

  16. Upregulated expression of Nogo-A and NgR in an experimental model of focal microgyria regulates the migration, proliferation and self-renewal of subventricular zone neural progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sixun; Shu, Haifeng; Yang, Tao; Huang, Haidong [Department of Neurosurgery, General Hospital of the People' s Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083 (China); Li, Song [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 (China); Zhao, Ziyi [Central Laboratory, Teaching Hospital of Chengdu University of Traditional Chinese Medicine, 610075 (China); Kuang, Yongqin, E-mail: kuangyongqin@163.com [Department of Neurosurgery, General Hospital of the People' s Liberation Army Chengdu Military Region, Chengdu, Sichuan, 610083 (China)

    2016-04-29

    Nogo-A and its receptor (NgR) were first described as myelin-associated inhibitors of neuronal regeneration in response to injury. In recent years, knowledge about the important role of the Nogo-A protein in several neuronal pathologies has grown considerably. Here, we employed a neonatal cortex freeze-lesion (NFL) model in neonatal rats and measured the expression of Nogo-A and NgR in the resulting cerebrocortical microdysgenesis 5–75 days after freezing injury. We observed marked upregulation of Nogo-A and NgR in protein levels. Furthermore, the migration of neural precursor cells (NPCs) derived from the subventricular zone (SVZ) toward the sits of injury was perturbed by treatment of NgR antagonist peptide NEP1-40. In vitro analysis showed that the knockdown of NgR by lentivirus-delivered siRNA promoted in axonal regeneration and SVZ-derived neural stem cell/progenitor cell (SVZ-NPCs) adhesion and migration, findings which were similar to the effects of NEP1-40. Taken together, our results indicate an important role for NgR in regulating the physiological processes of SVZ-NPCs. The observation of upregulated Nogo-A/NgR in lesion sites in the NFL model suggest that the effects of the perturbed Nogo-A are a key feature during the development and/or the progression of cortical malformation. - Highlights: • NFL model is an accurate experimental reproduction of focal microgyria of FCD. • The increase of the Nogo-A Levels occurs in response to freeze-induced focal lesioning. • Nogo-A/NgR may play a critical role for in the pathologic progression of FCD. • Nogo-A is associated with the migration, proliferation and self-renewal of SVZ-NPCs.

  17. Brain Barriers and a Subpopulation of Astroglial Progenitors of Developing Human Forebrain Are Immunostained for the Glycoprotein YKL-40

    DEFF Research Database (Denmark)

    Bjørnbak, Camilla; Brøchner, Christian B; Larsen, Lars A

    2014-01-01

    and subventricular zones showed specific YKL-40 reactivity confined to pericytes. Furthermore, a population of YKL-40-positive, small, rounded cells was identified in the ventricular and subventricular zones. Real-time quantitative RT-PCR analysis showed strong YKL-40 mRNA expression in the leptomeninges...

  18. Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-delta

    NARCIS (Netherlands)

    van den Berge, S.A.; Middeldorp, J.; Zhang, C.E.; Curtis, M.A.; Leonard, B.W.; Mastroeni, D.; Voorn, P.; van de Berg, W.D.J.; Huitinga, I.; Hol, E.M.

    2010-01-01

    A main neurogenic niche in the adult human brain is the subventricular zone (SVZ). Recent data suggest that the progenitors that are born in the human SVZ migrate via the rostral migratory stream (RMS) towards the olfactory bulb (OB), similar to what has been observed in other mammals. A

  19. NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain

    Directory of Open Access Journals (Sweden)

    Murray Kerren

    2011-02-01

    Full Text Available Abstract From an early postnatal period and throughout life there is a continuous production of olfactory bulb (OB interneurons originating from neuronal precursors in the subventricular zone. To reach the OB circuits, immature neuroblasts migrate along the rostral migratory stream (RMS. In the present study, we employed cultured postnatal mouse forebrain slices and used lentiviral vectors to label neuronal precursors with GFP and to manipulate the expression levels of the Na-K-2Cl cotransporter NKCC1. We investigated the role of this Cl- transporter in different stages of postnatal neurogenesis, including neuroblast migration and integration in the OB networks once they have reached the granule cell layer (GCL. We report that NKCC1 activity is necessary for maintaining normal migratory speed. Both pharmacological and genetic manipulations revealed that NKCC1 maintains high [Cl-]i and regulates the resting membrane potential of migratory neuroblasts whilst its functional expression is strongly reduced at the time cells reach the GCL. As in other developing systems, NKCC1 shapes GABAA-dependent signaling in the RMS neuroblasts. Also, we show that NKCC1 controls the migration of neuroblasts in the RMS. The present study indeed indicates that the latter effect results from a novel action of NKCC1 on the resting membrane potential, which is independent of GABAA-dependent signaling. All in all, our findings show that early stages of the postnatal recruitment of OB interneurons rely on precise, orchestrated mechanisms that depend on multiple actions of NKCC1.

  20. Dual role for DOCK7 in tangential migration of interneuron precursors in the postnatal forebrain.

    Science.gov (United States)

    Nakamuta, Shinichi; Yang, Yu-Ting; Wang, Chia-Lin; Gallo, Nicholas B; Yu, Jia-Ray; Tai, Yilin; Van Aelst, Linda

    2017-12-04

    Throughout life, stem cells in the ventricular-subventricular zone generate neuroblasts that migrate via the rostral migratory stream (RMS) to the olfactory bulb, where they differentiate into local interneurons. Although progress has been made toward identifying extracellular factors that guide the migration of these cells, little is known about the intracellular mechanisms that govern the dynamic reshaping of the neuroblasts' morphology required for their migration along the RMS. In this study, we identify DOCK7, a member of the DOCK180-family, as a molecule essential for tangential neuroblast migration in the postnatal mouse forebrain. DOCK7 regulates the migration of these cells by controlling both leading process (LP) extension and somal translocation via distinct pathways. It controls LP stability/growth via a Rac-dependent pathway, likely by modulating microtubule networks while also regulating F-actin remodeling at the cell rear to promote somal translocation via a previously unrecognized myosin phosphatase-RhoA-interacting protein-dependent pathway. The coordinated action of both pathways is required to ensure efficient neuroblast migration along the RMS. © 2017 Nakamuta et al.

  1. Is forebrain neurogenesis a potential repair mechanism after stroke?

    OpenAIRE

    Inta, Dragos; Gass, Peter

    2015-01-01

    The use of adult subventricular zone (SVZ) neurogenesis as brain repair strategy after stroke represents a hot topic in neurologic research. Recent radiocarbon-14 dating has revealed a lack of poststroke neurogenesis in the adult human neocortex; however, adult neurogenesis has been shown to occur, even under physiologic conditions, in the human striatum. Here, these results are contrasted with experimental poststroke neurogenesis in the murine brain. Both in humans and in rodents, the SVZ ge...

  2. Ventricular Zone Disruption in Human Neonates With Intraventricular Hemorrhage

    NARCIS (Netherlands)

    McAllister, James P.; Guerra, Maria Montserrat; Ruiz, Leandro Castaneyra; Jimenez, Antonio J.; Dominguez-Pinos, Dolores; Sival, Deborah; den Dunnen, Wilfred; Morales, Diego M.; Schmidt, Robert E.; Rodriguez, Esteban M.; Limbrick, David D.

    2017-01-01

    To determine if ventricular zone (VZ) and subventricular zone (SVZ) alterations are associated with intraventricular hemorrhage (IVH) and posthemorrhagic hydrocephalus, we compared postmortem frontal and subcortical brain samples from 12 infants with IVH and 3 nonneurological disease controls

  3. Forebrain neurogenesis: From embryo to adult.

    Science.gov (United States)

    Dennis, Daniel; Picketts, David; Slack, Ruth S; Schuurmans, Carol

    2016-01-01

    A satellite symposium to the Canadian Developmental Biology Conference 2016 was held on March 16-17, 2016 in Banff, Alberta, Canada, entitled Forebrain Neurogenesis : From embryo to adult . The Forebrain Neurogenesis symposium was a focused, high-intensity meeting, bringing together the top Canadian and international researchers in the field. This symposium reported the latest breaking news, along with 'state of the art' techniques to answer fundamental questions in developmental neurobiology. Topics covered ranged from stem cell regulation to neurocircuitry development, culminating with a session focused on neuropsychiatric disorders. Understanding the underlying causes of neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) is of great interest as diagnoses of these conditions are climbing at alarming rates. For instance, in 2012, the Centers for Disease Control reported that the prevalence rate of ASD in the U.S. was 1 in 88; while more recent data indicate that the number is as high as 1 in 68 (Centers for Disease Control and Prevention MMWR Surveillance Summaries. Vol. 63. No. 2). Similarly, the incidence of ASD is on the rise in Canada, increasing from 1 in 150 in 2000 to 1 in 63 in 2012 in southeastern Ontario (Centers for Disease Control and Prevention). Currently very little is known regarding the deficits underlying these neurodevelopmental conditions. Moreover, the development of effective therapies is further limited by major gaps in our understanding of the fundamental processes that regulate forebrain development and adult neurogenesis. The Forebrain Neurogenesis satellite symposium was thus timely, and it played a key role in advancing research in this important field, while also fostering collaborations between international leaders, and inspiring young researchers.

  4. Microglia Modulate Wiring of the Embryonic Forebrain

    Directory of Open Access Journals (Sweden)

    Paola Squarzoni

    2014-09-01

    Full Text Available Dysfunction of microglia, the tissue macrophages of the brain, has been associated with the etiology of several neuropsychiatric disorders. Consistently, microglia have been shown to regulate neurogenesis and synaptic maturation at perinatal and postnatal stages. However, microglia invade the brain during mid-embryogenesis and thus could play an earlier prenatal role. Here, we show that embryonic microglia, which display a transiently uneven distribution, regulate the wiring of forebrain circuits. Using multiple mouse models, including cell-depletion approaches and cx3cr1−/−, CR3−/−, and DAP12−/− mutants, we find that perturbing microglial activity affects the outgrowth of dopaminergic axons in the forebrain and the laminar positioning of subsets of neocortical interneurons. Since defects in both dopamine innervation and cortical networks have been linked to neuropsychiatric diseases, our study provides insights into how microglial dysfunction can impact forebrain connectivity and reveals roles for immune cells during normal assembly of brain circuits.

  5. Transcriptional maturation of the mouse auditory forebrain.

    Science.gov (United States)

    Hackett, Troy A; Guo, Yan; Clause, Amanda; Hackett, Nicholas J; Garbett, Krassimira; Zhang, Pan; Polley, Daniel B; Mirnics, Karoly

    2015-08-14

    The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. The main findings were: (1) Global gene expression

  6. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.

    Science.gov (United States)

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2016-01-01

    Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.

  7. A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone

    DEFF Research Database (Denmark)

    Ribeiro Xavier, Anna L.; Kress, Benjamin T.; Goldman, Steven A.

    2015-01-01

    found that microglia residing in the SVZ and adjacent rostral migratory stream (RMS) comprise a morphologically and antigenically distinct phenotype of immune effectors. Whereas exhibiting characteristics of alternatively activated microglia, the SVZ/RMS microglia were clearly distinguished by their low...... STATEMENT: Microglial cells are a specialized population of macrophages in the CNS, playing key roles as immune mediators. As integral components in the CNS, the microglia stand out for using the same mechanisms, phagocytosis and cytochemokine release, to promote homeostasis, synaptic pruning, and neural...... toward olfactory bulb layers. In addition to other unique populations residing in the SVZ niche, microglia display distinct morphofunctional properties that boost neuronal progenitor survival and migration in the mammalian brain....

  8. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    Science.gov (United States)

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. File list: InP.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377677,SRX377675,S...RX377679,SRX377673,SRX669236,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Forebrain.bed ...

  10. File list: InP.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377679,SRX377675,S...RX377677,SRX377673,SRX669236,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Forebrain.bed ...

  11. File list: ALL.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377671,SRX377674,SRX669235 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Forebrain.bed ...

  12. File list: His.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Forebrain.bed ...

  13. File list: ALL.Neu.20.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377674,SRX317036,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Forebrain.bed ...

  14. File list: ALL.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX093315,SRX377672,SR...SRX377673,SRX377671,SRX317036 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Forebrain.bed ...

  15. File list: InP.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Forebrain mm9 Input control Neural Forebrain SRX377679,SRX669236,S...RX377677,SRX377675,SRX377673,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Forebrain.bed ...

  16. File list: His.Neu.50.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.50.AllAg.Forebrain.bed ...

  17. File list: ALL.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Forebrain mm9 All antigens Neural Forebrain SRX002660,SRX093315,SR...SRX377673,SRX669235,SRX377671 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Forebrain.bed ...

  18. File list: His.Neu.10.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377672,SRX3776...70,SRX377678,SRX377676,SRX093314,SRX377674 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Forebrain.bed ...

  19. File list: His.Neu.05.AllAg.Forebrain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Forebrain mm9 Histone Neural Forebrain SRX093315,SRX377678,SRX3776...72,SRX377670,SRX377676,SRX377674,SRX093314 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Forebrain.bed ...

  20. Morphometric Studies Of The Cerebellum And Forebrain Of The ...

    African Journals Online (AJOL)

    Morphometric studies were undertaken using the brains of six African giant rats. The mean of weights and lengths (tip of the olfactory bulb to the caudal border of the cerebellum) were observed tobe 4.88 0.183g and 4.40 0.193g, respectively. Similarly, the mean weight and length of the cerebellum and the forebrain ...

  1. Adult forebrain NMDA receptors gate social motivation and social memory.

    Science.gov (United States)

    Jacobs, Stephanie; Tsien, Joe Z

    2017-02-01

    Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    Science.gov (United States)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  3. A forebrain atlas of the lizard Gekko gecko.

    Science.gov (United States)

    Smeets, W J; Hoogland, P V; Lohman, A H

    1986-12-01

    An atlas of the forebrain of the lizard Gekko gecko has been provided, which will serve as the basis for subsequent experimental tracing and immunohistochemical studies. Apart from a strongly developed medial cortex and septal area, the Tokay gecko shows all the main features of the forebrain of the lacertid-type lizards. When its convenience as an experimental animal is also taken into account, this species seems to be very suitable for studying the limbic system in reptiles. The atlas comprises topographical reconstructions of the telencephalon and diencephalon and a series of transverse sections of which the levels have been indicated in the reconstructions. The results obtained in the Gekko are briefly compared with those found in other lizards studied.

  4. Mast cells in the sheep, hedgehog and rat forebrain

    Science.gov (United States)

    MICHALOUDI, HELEN C.; PAPADOPOULOS, GEORGIOS C.

    1999-01-01

    The study was designed to reveal the distribution of various mast cell types in the forebrain of the adult sheep, hedgehog and rat. Based on their histochemical and immunocytochemical characteristics, mast cells were categorised as (1) connective tissue-type mast cells, staining metachromatically purple with the toluidine blue method, or pale red with the Alcian blue/safranin method, (2) mucosal-type or immature mast cells staining blue with the Alcian blue/safranin method and (3) serotonin immunopositive mast cells. All 3 types of brain mast cells in all species studied were located in both white and grey matter, often associated with intraparenchymal blood vessels. Their distribution pattern exhibited interspecies differences, while their number varied considerably not only between species but also between individuals of each species. A distributional left-right asymmetry, with more cells present on the left side, was observed in all species studied but it was most prominent in the sheep brain. In the sheep, mast cells were abundantly distributed in forebrain areas, while in the hedgehog and the rat forebrain, mast cells were less widely distributed and were relatively or substantially fewer in number respectively. A limited number of brain mast cells, in all 3 species, but primarily in the rat, were found to react both immunocytochemically to 5-HT antibody and histochemically with Alcian blue/safranin staining. PMID:10634696

  5. Ascending connections to the forebrain in the Tegu lizard.

    Science.gov (United States)

    Lohman, A H; van Woerden-Verkley, I

    1978-12-01

    The ascending connections to the striatum and the cortex of the Tegu lizard, Tupinambis nigropunctatus, were studied by means of anterograde fiber degeneration and retrograde axonal transport. The striatum receives projections by way of the dorsal peduncle of the lateral forebrain bundle from four dorsal thalamic nuclei: nucleus rotundus, nucleus reuniens, the posterior part of the dorsal lateral geniculate nucleus and nucleus dorsomedialis. The former three nuclei project to circumscribed areas of the dorsal striatum, whereas nucleus dorsomedialis has a distribution to the whole dorsal striatum. Other sources of origin to the striatum are the mesencephalic reticular formation, substantia nigra and nucleus cerebelli lateralis. With the exception of the latter afferentation all these projections are ipsilateral. The ascending connections to the pallium originate for the major part from nucleus dorsolateralis anterior of the dorsal thalamus. The fibers course in both the medial forebrain bundle and the dorsal peduncle of the lateral forebrain bundle and terminate ipsilaterally in the middle of the molecular layer of the small-celled part of the mediodorsal cortex and bilaterally above the intermediate region of the dorsal cortex. The latter area is reached also by fibers from the septal area. The large-celled part of the mediodorsal cortex receives projections from nucleus raphes superior and the corpus mammillare.

  6. Neuropeptide Y in the olfactory system, forebrain and pituitary of the teleost, Clarias batrachus.

    Science.gov (United States)

    Gaikwad, Archana; Biju, K C; Saha, Subhash G; Subhedar, Nishikant

    2004-03-01

    Distribution of neuropeptide Y (NPY)-like immunoreactivity in the forebrain of catfish Clarias batrachus was examined with immunocytochemistry. Conspicuous immunoreactivity was seen in the olfactory receptor neurons (ORNs), their projections in the olfactory nerve, fascicles of the olfactory nerve layer in the periphery of bulb and in the medial olfactory tracts as they extend to the telencephalic lobes. Ablation of the olfactory organ resulted in loss of immunoreactivity in the olfactory nerve layer of the bulb and also in the fascicles of the medial olfactory tracts. This evidence suggests that NPY may serve as a neurotransmitter in the ORNs and convey chemosensory information to the olfactory bulb, and also to the telencephalon over the extrabulbar projections. In addition, network of beaded immunoreactive fibers was noticed throughout the olfactory bulb, which did not respond to ablation experiment. These fibers may represent centrifugal innervation of the bulb. Strong immunoreactivity was encountered in some ganglion cells of nervus terminalis. Immunoreactive fibers and terminal fields were widely distributed in the telencephalon. Several neurons of nucleus entopeduncularis were moderately immunoreactive; and a small population of neurons in nucleus preopticus periventricularis was also labeled. Immunoreactive terminal fields were particularly conspicuous in the preoptic, the tuberal areas, and the periventricular zone around the third ventricle and inferior lobes. NPY immunoreactive cells and fibers were detected in all the lobes of the pituitary gland. Present results describing the localization of NPY in the forebrain of C. batrachus are in concurrence with the pattern of the immunoreactivity encountered in other teleosts. However, NPY in olfactory system of C. batrachus is a novel feature that suggests a role for the peptide in processing of chemosensory information.

  7. Dcc regulates asymmetric outgrowth of forebrain neurons in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jingxia Gao

    Full Text Available The guidance receptor DCC (deleted in colorectal cancer ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.

  8. The male sex pheromone darcin stimulates hippocampal neurogenesis and cell proliferation in the subventricular zone in female mice

    Directory of Open Access Journals (Sweden)

    Emma eHoffman

    2015-04-01

    Full Text Available The integration of newly generated neurons persists throughout life in the mammalian olfactory bulb and hippocampus, regions involved in olfactory and spatial learning. Social cues can be potent stimuli for increasing adult neurogenesis; for example, odors from dominant but not subordinate male mice increase neurogenesis in both brain regions of adult females. However, little is known about the role of neurogenesis in social recognition or the assessment of potential mates. Dominant male mice scent-mark territories using urine that contains a number of pheromones including darcin (MUP20, a male-specific major urinary protein that stimulates rapid learned attraction to the spatial location and individual odor signature of the scent owner. Here we investigate whether exposure to darcin stimulates neurogenesis in the female brain. Hippocampal neurons and cellular proliferation in the lateral ventricles that supply neurons to the olfactory bulbs increased in females exposed for seven days to male urine containing at least 0.5µg/µl darcin. Darcin was effective whether presented alone or in the context of male urine, but other information in male urine appeared to modulate the proliferative response. When exposed to urine from wild male mice, hippocampal proliferation increased only if urine was from the same individual over seven days, suggesting that consistency of individual scent signatures is important. While seven days exposure to male scent initiated the first stages of increased neurogenesis, this caused no immediate increase in female attraction to the scent or in the strength or robustness of spatial learning in short-term conditioned place preference tests. The reliable and consistent stimulation of neurogenesis by a pheromone important in rapid social learning suggests that this may provide an excellent model to explore the relationship between the integration of new neurons and plasticity in spatial and olfactory learning in a socially-relevant context.

  9. A frontal cortex event-related potential driven by the basal forebrain

    Science.gov (United States)

    Nguyen, David P; Lin, Shih-Chieh

    2014-01-01

    Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497

  10. Efficient in vivo electroporation of the postnatal rodent forebrain.

    Directory of Open Access Journals (Sweden)

    Camille Boutin

    Full Text Available Functional gene analysis in vivo represents still a major challenge in biomedical research. Here we present a new method for the efficient introduction of nucleic acids into the postnatal mouse forebrain. We show that intraventricular injection of DNA followed by electroporation induces strong expression of transgenes in radial glia, neuronal precursors and neurons of the olfactory system. We present two proof-of-principle experiments to validate our approach. First, we show that expression of a human isoform of the neural cell adhesion molecule (hNCAM-140 in radial glia cells induces their differentiation into cells showing a neural precursor phenotype. Second, we demonstrate that p21 acts as a cell cycle inhibitor for postnatal neural stem cells. This approach will represent an important tool for future studies of postnatal neurogenesis and of neural development in general.

  11. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate.

    Science.gov (United States)

    Lelkes, Zoltán; Abdurakhmanova, Shamsiiat; Porkka-Heiskanen, Tarja

    2017-09-18

    The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate. © 2017 European Sleep Research Society.

  12. The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain

    DEFF Research Database (Denmark)

    Leone, Dino P; Srinivasan, Karpagam; Brakebusch, Cord

    2010-01-01

    family member, Cdc42, affects the polarity and proliferation of radial glial cells in the VZ. Here, we show that another family member, Rac1, is required for the normal proliferation and differentiation of SVZ progenitors and for survival of both VZ and SVZ progenitors. A forebrain-specific loss of Rac1...... leads to an SVZ-specific reduction in proliferation, a concomitant increase in cell cycle exit, and premature differentiation. In Rac1 mutants, the SVZ and VZ can no longer be delineated, but rather fuse to become a single compact zone of intermingled cells. Cyclin D2 expression, which is normally...... expressed by both VZ and SVZ progenitors, is reduced in Rac1 mutants, suggesting that the mutant cells differentiate precociously. Rac1-deficient mice can still generate SVZ-derived upper layer neurons, indicating that Rac1 is not required for the acquisition of upper layer neuronal fates, but instead...

  13. Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia

    Directory of Open Access Journals (Sweden)

    Dae Young Yoo

    2016-01-01

    Full Text Available Recent evidence exists that glucose transporter 3 (GLUT3 plays an important role in the energy metabolism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein (GFAP, we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion. In a double immunofluorescence study using GLUT3 and doublecortin (DCX, we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.

  14. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten

    2007-01-01

    By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue...... content, thus allowing experimental studies of neural precursor cells and their niche...

  15. Midbrain and forebrain patterning delivers immunocytochemically and functionally similar populations of neuropeptide Y containing GABAergic neurons.

    Science.gov (United States)

    Khaira, S K; Nefzger, C M; Beh, S J; Pouton, C W; Haynes, J M

    2011-09-01

    Neurons differentiated in vitro from embryonic stem cells (ESCs) have the potential to serve both as models of disease states and in drug discovery programs. In this study, we use sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF-8) to enrich for forebrain and midbrain phenotypes from mouse ESCs. We then investigate, using Ca(2+) imaging and [(3)H]-GABA release studies, whether the GABAergic neurons produced exhibit distinct functional phenotypes. At day 24 of differentiation, reverse transcriptase-PCR showed the presence of both forebrain (Bf-1, Hesx1, Pgc-1α, Six3) and midbrain (GATA2, GATA3) selective mRNA markers in developing forebrain-enriched cultures. All markers were present in midbrain cultures except for Bf-1 and Pgc-1α. Irrespective of culture conditions all GABA immunoreactive neurons were also immunoreactive to neuropeptide Y (NPY) antibodies. Forebrain and midbrain GABAergic neurons responded to ATP (1 mM), L-glutamate (30 μM), noradrenaline (30 μM), acetylcholine (30 μM) and dopamine (30 μM), with similar elevations of intracellular Ca(2+)([Ca(2+)](i)). The presence of GABA(A) and GABA(B) antagonists, bicuculline (30 μM) and CGP55845 (1 μM), increased the elevation of [Ca(2+)](i) in response to dopamine (30 μM) in midbrain, but not forebrain GABAergic neurons. All agonists, except dopamine, elicited similar [(3)H]-GABA release from forebrain and midbrain cultures. Dopamine (30 μM) did not stimulate significant [(3)H]-GABA release in midbrain cultures, although it was effective in forebrain cultures. This study shows that differentiating neurons toward a midbrain fate restricts the expression of forebrain markers. Forebrain differentiation results in the expression of forebrain and midbrain markers. All GABA(+) neurons contain NPY, and show similar agonist-induced elevations of [Ca(2+)](i) and [(3)H]-GABA release. This study indicates that the pharmacological phenotype of these particular neurons may be independent of the addition of

  16. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  17. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    International Nuclear Information System (INIS)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B.

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  18. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    Energy Technology Data Exchange (ETDEWEB)

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. (Universite de Bordeaux II (France))

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  19. The Input-Output Relationship of the Cholinergic Basal Forebrain

    Directory of Open Access Journals (Sweden)

    Matthew R. Gielow

    2017-02-01

    Full Text Available Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.

  20. Medial forebrain bundle lesions fail to structurally and functionally disconnect the ventral tegmental area from many ipsilateral forebrain nuclei: implications for the neural substrate of brain stimulation reward.

    Science.gov (United States)

    Simmons, J M; Ackermann, R F; Gallistel, C R

    1998-10-15

    Lesions in the medial forebrain bundle rostral to a stimulating electrode have variable effects on the rewarding efficacy of self-stimulation. We attempted to account for this variability by measuring the anatomical and functional effects of electrolytic lesions at the level of the lateral hypothalamus (LH) and by correlating these effects to postlesion changes in threshold pulse frequency (pps) for self-stimulation in the ventral tegmental area (VTA). We implanted True Blue in the VTA and compared cell labeling patterns in forebrain regions of intact and lesioned animals. We also compared stimulation-induced regional [14C]deoxyglucose (DG) accumulation patterns in the forebrains of intact and lesioned animals. As expected, postlesion threshold shifts varied: threshold pps remained the same or decreased in eight animals, increased by small but significant amounts in three rats, and increased substantially in six subjects. Unexpectedly, LH lesions did not anatomically or functionally disconnect all forebrain nuclei from the VTA. Most septal and preoptic regions contained equivalent levels of True Blue label in intact and lesioned animals. In both intact and lesioned groups, VTA stimulation increased metabolic activity in the fundus of the striatum (FS), the nucleus of the diagonal band, and the medial preoptic area. On the other hand, True Blue labeling demonstrated anatomical disconnection of the accumbens, FS, substantia innominata/magnocellular preoptic nucleus (SI/MA), and bed nucleus of the stria terminalis. [14C]DG autoradiography indicated functional disconnection of the lateral preoptic area and SI/MA. Correlations between patterns of True Blue labeling or [14C]deoxyglucose accumulation and postlesion shifts in threshold pulse frequency were weak and generally negative. These direct measures of connectivity concord with the behavioral measures in suggesting a diffuse net-like connection between forebrain nuclei and the VTA.

  1. Basal forebrain projections to the lateral habenula modulate aggression reward.

    Science.gov (United States)

    Golden, Sam A; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Daniel J; Guise, Kevin; Pfau, Madeline L; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J; Han, Ming-Hu; Shapiro, Matt L; Russo, Scott J

    2016-06-30

    Maladaptive aggressive behaviour is associated with a number of neuropsychiatric disorders and is thought to result partly from the inappropriate activation of brain reward systems in response to aggressive or violent social stimuli. Nuclei within the ventromedial hypothalamus, extended amygdala and limbic circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behaviour. Here we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors develop a CPP, whereas non-aggressors develop a conditioned place aversion to the intruder-paired context. Furthermore, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of aggressors with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of non-aggressors with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Finally, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behaviour. These results demonstrate that the BF-lHb circuit has a critical role in regulating the valence of inter-male aggressive behaviour and provide novel mechanistic insight into the neural circuits modulating aggression reward processing.

  2. Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers.

    Science.gov (United States)

    Pombal, M A; Puelles, L

    1999-11-22

    The structural organization of the lamprey extratelencephalic forebrain is re-examined from the perspective of the prosomeric segmental paradigm. The question asked was whether the prosomeric forebrain model used for gnathostomes is of material advantage for interpreting subdivisions in the lamprey forebrain. To this aim, the main longitudinal and transverse landmarks recognized by the prosomeric model in other vertebrates were identified in Nissl-stained lamprey material. Lines of cytoarchitectural discontinuity and contours of migrated neuronal groups were mapped in a two-dimensional sagittal representation and were also classified according to their radial position. Immunocytochemical mapping of calretinin expression in adjacent sections served to define particular structural units better, in particular, the dorsal thalamus. These data were complemented by numerous other chemoarchitectonic observations obtained with ancillary markers, which identified additional specific formations, subdivisions, or boundaries. Emphasis was placed on studying whether such chemically defined neuronal groups showed boundaries aligned with the postulated inter- or intraprosomeric boundaries. The course of diverse axonal tracts was studied also with regard to their prosomeric topography. This analysis showed that the full prosomeric model applies straightforwardly to the lamprey forebrain. This finding implies that a common segmental and longitudinal organization of the neural tube may be primitive for all vertebrates. Interesting novel aspects appear in the interpretation of the lamprey pretectum, the dorsal and ventral thalami, and the hypothalamus. The topologic continuity of the prosomeric forebrain regions with evaginated or non-evaginated portions of the telencephalon was also examined. Copyright 1999 Wiley-Liss, Inc.

  3. Dissociating basal forebrain and medial temporal amnesic syndromes: insights from classical conditioning.

    Science.gov (United States)

    Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A

    2002-01-01

    In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.

  4. Cellular localization of transforming growth factor-alpha mRNA in rat forebrain.

    Science.gov (United States)

    Seroogy, K B; Lundgren, K H; Lee, D C; Guthrie, K M; Gall, C M

    1993-05-01

    The cellular localization of transforming growth factor-alpha (TGF alpha) mRNA in juvenile and adult rat forebrain was examined using in situ hybridization with a 35S-labeled cRNA probe. TGF alpha cRNA-labeled neuronal perikarya were distributed across many forebrain regions including the olfactory bulb, caudate-putamen, nucleus accumbens, olfactory tubercle, ventral pallidum, amygdala, hippocampal stratum granulosum and CA3 stratum pyramidale, and piriform, entorhinal, and retrosplenial cortices. TGF alpha cRNA-hybridizing cells were also localized to several thalamic nuclei and to the suprachiasmatic, dorsomedial, and ventromedial nuclei of the hypothalamus. In addition, labeled cells were present in regions of white matter including the corpus callosum, anterior commissure, internal and external capsules, optic tract, and lateral olfactory tract. Thus, both neurons and glia appear to synthesize TGF alpha in normal brain. Hybridization densities were greater in neuronal fields at 2 weeks of age compared with the adult, suggesting a role for TGF alpha in the development of several forebrain systems. Our results demonstrating the prominent and wide-spread expression of TGF alpha mRNA in forebrain, combined with the extremely low abundance of epidermal growth factor mRNA in brain, support the argument that TGF alpha is the principal endogenous ligand for the epidermal growth factor receptor in normal brain.

  5. Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation

    NARCIS (Netherlands)

    Zant, J.C.; Leenaars, C.H.; Kostin, A.; van Someren, E.J.W.; Porrka-Heiskanen, T.

    2011-01-01

    The basal forebrain (BF) is an important mediator of cortical arousal, which is innervated by all ascending arousal systems. During sleep deprivation (SD) a site-specific accumulation of sleep factors in the BF results in increased sleep pressure (Kalinchuk et al., 2006; Porkka-Heiskanen et al.,

  6. Effects of heavy ions on rabbit tissues: damage to the forebrain

    International Nuclear Information System (INIS)

    Cox, A.B.; Keng, P.C.; Lee, A.C.; Lett, J.T.

    1982-01-01

    As part of a study of progressive radiation effects in normal tissues, the forebrains of New Zealand white rabbits (Oryctolagus cuniculus) (about 6 weeks old) were irradiated locally with single acute doses of 60 Co γ-photons (LETsub(infinity)=0.3 keV/μm), Ne ions (LETsub(infinity)=35+-3 keV/μm) or Ar ions (LETsub(infinity)=90+-5 keV/μm). Other rabbits received fractionated doses of 60 Co γ-photons according to a standard radiotherapeutic protocol. Irradiated rabbits and appropriately aged controls were sacrificed at selected intervals, and whole sagittal sections of their brains were examined for pathological changes. Forebrain damage was scored with subjective indices based on histological differences between the anterior (irradiated) and posterior (unirradiated) regions of the brain. Those indices ranged from zero (no apparent damage) to five (severe infarctions, etc.). At intermediate levels of forebrain damage, the relative biological effectiveness (r.b.e.) of each heavy ion was similar to that found for alopecia and cataractogenesis, and the early expression of the damage was also accelerated as the LETsub(infinity) increased. Late deterioration of the forebrain appeared also to be accelerated by increasing LETsub(infinity), although its accurate quantification was not possible because other priorities in the overall experimental design limited systematic sacrifice of the animals. (author)

  7. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    Science.gov (United States)

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  8. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  9. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine.

    Science.gov (United States)

    Vu, Michael T; Du, Guizhi; Bayliss, Douglas A; Horner, Richard L

    2015-10-07

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K(+) (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K(+) current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASK(f/f) mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30-50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30-50 Hz activity in ChAT-Cre:TASK(f/f) mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain

  10. Forebrain CRF1 Modulates Early-Life Stress-Programmed Cognitive Deficits

    Science.gov (United States)

    Wang, Xiao-Dong; Rammes, Gerhard; Kraev, Igor; Wolf, Miriam; Liebl, Claudia; Scharf, Sebastian H.; Rice, Courtney J.; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M.; Baram, Tallie Z.; Stewart, Michael G.; Müller, Marianne B.; Schmidt, Mathias V.

    2012-01-01

    Childhood traumatic events hamper the development of the hippocampus and impair declarative memory in susceptible individuals. Persistent elevations of hippocampal corticotropin-releasing factor (CRF), acting through CRF receptor 1 (CRF1), in experimental models of early-life stress have suggested a role for this endogenous stress hormone in the resulting structural modifications and cognitive dysfunction. However, direct testing of this possibility has been difficult. In the current study, we subjected conditional forebrain CRF1 knock-out (CRF1-CKO) mice to an impoverished postnatal environment and examined the role of forebrain CRF1 in the long-lasting effects of early-life stress on learning and memory. Early-life stress impaired spatial learning and memory in wild-type mice, and postnatal forebrain CRF overexpression reproduced these deleterious effects. Cognitive deficits in stressed wild-type mice were associated with disrupted long-term potentiation (LTP) and a reduced number of dendritic spines in area CA3 but not in CA1. Forebrain CRF1 deficiency restored cognitive function, LTP and spine density in area CA3, and augmented CA1 LTP and spine density in stressed mice. In addition, early-life stress differentially regulated the amount of hippocampal excitatory and inhibitory synapses in wild-type and CRF1-CKO mice, accompanied by alterations in the neurexin-neuroligin complex. These data suggest that the functional, structural and molecular changes evoked by early-life stress are at least partly dependent on persistent forebrain CRF1 signaling, providing a molecular target for the prevention of cognitive deficits in adults with a history of early-life adversity. PMID:21940453

  11. Increased 5-hydroxymethylation levels in the sub ventricular zone of the Alzheimer's brain

    Directory of Open Access Journals (Sweden)

    Diego Mastroeni

    2016-06-01

    Full Text Available The subventricular zone (SVZ is a site of neurogenesis in the aging brain, and epigenetic mechanisms have been implicated in regulating the “normal” distribution of new nerve cells into the existing cellular milieu. In a case-control study of human primary SVZ cultures and fixed tissue from the same individuals, we have found significant increases in DNA hydroxymethylation levels in the SVZ of Alzheimer's disease patients compared with nondiseased control subjects. We show that this increase in hydroxymethylation directly correlates to an increase in cellular proliferation in Alzheimer's disease precursor cells, which implicates the hydroxymethylation tag to a higher degree of cellular proliferation.

  12. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex

    OpenAIRE

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2015-01-01

    Purpose Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused ...

  13. Receptors for GRP/bombesin-like peptides in the rat forebrain

    International Nuclear Information System (INIS)

    Wolf, S.S.; Moody, T.W.

    1985-01-01

    Binding sites in the rat forebrain were characterized using ( 125 I-Tyr4)bombesin as a receptor probe. Pharmacology experiments indicate that gastrin releasing peptide (GRP) and the GRP fragments GRP as well as Ac-GRP inhibited radiolabeled (Tyr4)bombesin binding with high affinity. Biochemistry experiments indicated that heat, N-ethyl maleimide or trypsin greatly reduced radiolabeled (Tyr4)bombesin binding. Also, autoradiographic studies indicated that highest grain densities were present in the stria terminalis, periventricular and suprachiasmatic nucleus of the hypothalamus, dorsomedial and rhomboid thalamus, dentate gyrus, hippocampus and medial amygdaloid nucleus. The data suggest that CNS protein receptors, which are discretely distributed in the rat forebrain, may mediate the action of endogenous GRP/bombesin-like peptides

  14. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Science.gov (United States)

    McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  15. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Directory of Open Access Journals (Sweden)

    Zofeyah L McBrayer

    Full Text Available To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  16. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration

    OpenAIRE

    McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not ...

  17. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    Science.gov (United States)

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  18. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration

    Directory of Open Access Journals (Sweden)

    William Sealy Hambright

    2017-08-01

    Full Text Available Synaptic loss and neuron death are the underlying cause of neurodegenerative diseases such as Alzheimer's disease (AD; however, the modalities of cell death in those diseases remain unclear. Ferroptosis, a newly identified oxidative cell death mechanism triggered by massive lipid peroxidation, is implicated in the degeneration of neurons populations such as spinal motor neurons and midbrain neurons. Here, we investigated whether neurons in forebrain regions (cerebral cortex and hippocampus that are severely afflicted in AD patients might be vulnerable to ferroptosis. To this end, we generated Gpx4BIKO mouse, a mouse model with conditional deletion in forebrain neurons of glutathione peroxidase 4 (Gpx4, a key regulator of ferroptosis, and showed that treatment with tamoxifen led to deletion of Gpx4 primarily in forebrain neurons of adult Gpx4BIKO mice. Starting at 12 weeks after tamoxifen treatment, Gpx4BIKO mice exhibited significant deficits in spatial learning and memory function versus Control mice as determined by the Morris water maze task. Further examinations revealed that the cognitively impaired Gpx4BIKO mice exhibited hippocampal neurodegeneration. Notably, markers associated with ferroptosis, such as elevated lipid peroxidation, ERK activation and augmented neuroinflammation, were observed in Gpx4BIKO mice. We also showed that Gpx4BIKO mice fed a diet deficient in vitamin E, a lipid soluble antioxidant with anti-ferroptosis activity, had an expedited rate of hippocampal neurodegeneration and behavior dysfunction, and that treatment with a small-molecule ferroptosis inhibitor ameliorated neurodegeneration in those mice. Taken together, our results indicate that forebrain neurons are susceptible to ferroptosis, suggesting that ferroptosis may be an important neurodegenerative mechanism in diseases such as AD. Keywords: Ferroptosis, Neurodegeneration, Cognitive impairment, Alzheimer's disease, Glutathione peroxidase 4, Transgenic mice

  19. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    OpenAIRE

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  20. Effect of basal forebrain stimulation on extracellular acetylcholine release and blood flow in the olfactory bulb.

    Science.gov (United States)

    Uchida, Sae; Kagitani, Fusako

    2017-05-12

    The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.

  1. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. (Genentech, San Francisco, CA (USA))

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  2. Topographic Organization of Cholinergic Innervation From the Basal Forebrain to the Visual Cortex in the Rat

    Directory of Open Access Journals (Sweden)

    Frédéric Huppé-Gourgues

    2018-03-01

    Full Text Available Acetylcholine is an important neurotransmitter for the regulation of visual attention, plasticity, and perceptual learning. It is released in the visual cortex predominantly by cholinergic projections from the basal forebrain, where stimulation may produce potentiation of visual processes. However, little is known about the fine organization of these corticopetal projections, such as whether basal forebrain neurons projecting to the primary and secondary visual cortical areas (V1 and V2, respectively are organized retinotopically. The aim of this study was to map these basal forebrain-V1/V2 projections. Microinjections of the fluorescent retrograde tracer cholera toxin b fragment in different sites within V1 and V2 in Long–Evans rats were performed. Retrogradely labeled cell bodies in the horizontal and vertical limbs of the diagonal band of Broca (HDB and VDB, respectively, nucleus basalis magnocellularis, and substantia innominata (SI, were mapped ex vivo with a computer-assisted microscope stage controlled by stereological software. Choline acetyltranferase immunohistochemistry was used to identify cholinergic cells. Our results showed a predominance of cholinergic projections coming from the HDB. These projections were not retinotopically organized but projections to V1 arised from neurons located in the anterior HDB/SI whereas projections to V2 arised from neurons located throughout the whole extent of HDB/SI. The absence of a clear topography of these projections suggests that BF activation can stimulate visual cortices broadly.

  3. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    International Nuclear Information System (INIS)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W.

    1990-01-01

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF

  4. NCAM deficiency in the mouse forebrain impairs innate and learned avoidance behaviours.

    Science.gov (United States)

    Brandewiede, J; Stork, O; Schachner, M

    2014-06-01

    The neural cell adhesion molecule (NCAM) has been implicated in the development and plasticity of neural circuits and the control of hippocampus- and amygdala-dependent learning and behaviour. Previous studies in constitutive NCAM null mutants identified emotional behaviour deficits related to disturbances of hippocampal and amygdala functions. Here, we studied these behaviours in mice conditionally deficient in NCAM in the postmigratory forebrain neurons. We report deficits in both innate and learned avoidance behaviours, as observed in elevated plus maze and passive avoidance tasks. In contrast, general locomotor activity, trait anxiety or neophobia were unaffected by the mutation. Altered avoidance behaviour of the conditional NCAM mutants was associated with a deficit in serotonergic signalling, as indicated by their reduced responsiveness to (±)-8-hydroxy-2-(dipropylamino)-tetralin-induced hypothermia. Another serotonin-dependent behaviour, namely intermale aggression that is massively increased in constitutively NCAM-deficient mice, was not affected in the forebrain-specific mutants. Our data suggest that genetically or environmentally induced changes of NCAM expression in the late postnatal and mature forebrain determine avoidance behaviour and serotonin (5-HT)1A receptor signalling. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  5. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    Science.gov (United States)

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  6. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    Science.gov (United States)

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The neural elements in the lining of the ventricular-subventricular zone: making an old story new by high-resolution scanning electron microscopy

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Dos Santos Haemmerle

    2015-10-01

    Full Text Available The classical description of the neural elements that compose the lining of brain ventricles introduces us to the single layer of ependymal cells. However, new findings, especially in the lateral ventricle - the major niche for the generation of new neurons in the adult brain - have provided information about additional cell elements that influence the organization of this part of the ventricular system and produce important contributions to neurogenesis. To complement the cell neurochemistry findings, we present a three-dimensional in situ description that demonstrates the anatomical details of the different types of ciliated cells and the innervation of these elements. After processing adult rat brains for ultrastructural analysis by high-resolution scanning electron microscopy and transmission electron microscopy, we observed a heterogeneous pattern of cilia distribution at the different poles of the lateral ventricle surface. Furthermore, we describe the particular three-dimensional aspects of the ciliated cells of the lateral ventricle, in addition the fiber bundles and varicose axons surrounding these cells. Therefore, we provide a unique ultrastructural description of the three-dimensional in situ organization of the lateral ventricle surface, highlighting its innervation, to corroborate the available neurochemical and functional findings regarding the factors that regulate this neurogenic niche.

  8. Bilateral Transplantation of Allogenic Adult Human Bone Marrow-Derived Mesenchymal Stem Cells into the Subventricular Zone of Parkinson’s Disease: A Pilot Clinical Study

    Directory of Open Access Journals (Sweden)

    N. K. Venkataramana

    2012-01-01

    Full Text Available The progress of PD and its related disorders cannot be prevented with the medications available. In this study, we recruited 8 PD and 4 PD plus patients between 5 to 15 years after diagnosis. All patients received BM-MSCs bilaterally into the SVZ and were followed up for 12 months. PD patients after therapy reported a mean improvement of 17.92% during “on” and 31.21% during “off” period on the UPDRS scoring system. None of the patients increased their medication during the follow-up period. Subjectively, the patients reported clarity in speech, reduction in tremors, rigidity, and freezing attacks. The results correlated with the duration of the disease. Those patients transplanted in the early stages of the disease (less than 5 years showed more improvement and no further disease progression than the later stages (11–15 years. However, the PD plus patients did not show any change in their clinical status after stem cell transplantation. This study demonstrates the safety of adult allogenic human BM-MSCs transplanted into the SVZ of the brain and its efficacy in early-stage PD patients.

  9. Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.

    Science.gov (United States)

    Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji

    2013-05-01

    d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Regulatory interactions of stress and reward on rat forebrain opioidergic and GABAergic circuitry.

    Science.gov (United States)

    Christiansen, A M; Herman, J P; Ulrich-Lai, Y M

    2011-03-01

    Palatable food intake reduces stress responses, suggesting that individuals may consume such ?comfort? food as self-medication for stress relief. The mechanism by which palatable foods provide stress relief is not known, but likely lies at the intersection of forebrain reward and stress regulatory circuits. Forebrain opioidergic and gamma-aminobutyric acid ergic signaling is critical for both reward and stress regulation, suggesting that these systems are prime candidates for mediating stress relief by palatable foods. Thus, the present study (1) determines how palatable ?comfort? food alters stress-induced changes in the mRNA expression of inhibitory neurotransmitters in reward and stress neurocircuitry and (2) identifies candidate brain regions that may underlie comfort food-mediated stress reduction. We used a model of palatable ?snacking? in combination with a model of chronic variable stress followed by in situ hybridization to determine forebrain levels of pro-opioid and glutamic acid decarboxylase (GAD) mRNA. The data identify regions within the extended amygdala, striatum, and hypothalamus as potential regions for mediating hypothalamic-pituitary-adrenal axis buffering following palatable snacking. Specifically, palatable snacking alone decreased pro-enkephalin-A (ENK) mRNA expression in the anterior bed nucleus of the stria terminalis (BST) and the nucleus accumbens, and decreased GAD65 mRNA in the posterior BST. Chronic stress alone increased ENK mRNA in the hypothalamus, nucleus accumbens, amygdala, and hippocampus; increased dynorphin mRNA in the nucleus accumbens; increased GAD65 mRNA in the anterior hypothalamus and BST; and decreased GAD65 mRNA in the dorsal hypothalamus. Importantly, palatable food intake prevented stress-induced gene expression changes in subregions of the hypothalamus, BST, and nucleus accumbens. Overall, these data suggest that complex interactions exist between brain reward and stress pathways and that palatable snacking can

  11. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27

    International Nuclear Information System (INIS)

    Schmook, Maria T.; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Prayer, Daniela; Brugger, Peter C.; Krampl-Bettelheim, Elisabeth

    2010-01-01

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average ±sd: gw 22 ± 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p=0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p<0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided. (orig.)

  12. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27

    Energy Technology Data Exchange (ETDEWEB)

    Schmook, Maria T.; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Prayer, Daniela [Medical University of Vienna, Department of Radiology/Division of Neuro- and Musculoskeletal Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Integrative Morphology Group, Center for Anatomy and Cell Biology, Vienna (Austria); Krampl-Bettelheim, Elisabeth [Department of Obstetrics and Gynecology / Division of Obstetrics and Feto-maternal Medicine, Vienna (Austria)

    2010-06-15

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average {+-}sd: gw 22 {+-} 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p=0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p<0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided. (orig.)

  13. Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology

    International Nuclear Information System (INIS)

    Ginsberg, M.D.; Graham, D.I.; Busto, R.

    1985-01-01

    Regional patterns of cerebral glucose utilization (rCMRglc) and blood flow (rCBF) were examined in the early recovery period following transient forebrain ischemia in order to correlate early postischemic physiological events with regionally selective patterns of ischemic neuropathology. Wistar rats were subjected to 30 or 60 minutes of graded forebrain ischemia by a method combining unilateral occlusion of the common carotid artery with moderate elevation of intracranial pressure and mild hypotension; this procedure results in a high-grade ischemic deficit affecting chiefly the lateral neocortex, striatum, and hippocampus ipsilateral to the carotid occlusion. Simultaneous measurements of rCMRglc and rCBF made in regional tissue samples after 2 and 4 hours of postischemic recirculation using a double-tracer radioisotopic strategy revealed a disproportionately high level of glucose metabolism relative to blood flow in the early postischemic striatum, owing to the resumption of nearly normal rCMRglc in the face of depressed flow. In contrast, the neocortex, which had been equally ischemic, showed parallel depressions of both metabolism and blood flow during early recovery. Light microscopy at 4 and 8 hours after recovery revealed the striatum to be the predominant locus of ischemic neuronal alterations, whereas neocortical lesions were much less prominent in extent and severity at this time. The resumption of normal levels of metabolism in the setting of a disproportionate depression of rCBF in the early postischemic period may accentuate the process of neuronal injury initiated by ischemia and may contribute to the genesis of neuronal necrosis in selectively vulnerable areas of the forebrain

  14. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain

    Directory of Open Access Journals (Sweden)

    Kim Jong H

    2011-05-01

    Full Text Available Abstract Background In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. Results In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192 and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p. We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. Conclusions The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.

  15. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration

    DEFF Research Database (Denmark)

    Hébert, Sébastien S; Papadopoulou, Aikaterini S; Smith, Pascal

    2010-01-01

    , particularly in the adult brain, remain poorly defined. Here we show that the absence of Dicer in the adult forebrain is accompanied by a mixed neurodegenerative phenotype. Although neuronal loss is observed in the hippocampus, cellular shrinkage is predominant in the cortex. Interestingly, neuronal...... degeneration coincides with the hyperphosphorylation of endogenous tau at several epitopes previously associated with neurofibrillary pathology. Transcriptome analysis of enzymes involved in tau phosphorylation identified ERK1 as one of the candidate kinases responsible for this event in vivo. We further...

  16. Cortical cholinergic hypofunction and behaviorial impairment produced by basal forebrain lesions in the rat

    International Nuclear Information System (INIS)

    Lerer, B.E.; Friedman, E.; Gamzu, E.

    1986-01-01

    The authors confirm the cortical ChAT and passive avoidance deficits resulting from bilateral KA lesions of the magnocellular nuclei of the basal forebrain (MNBF). Because of reported passive avoidance deficits, the authors were interested in whether bilateral MNBF lesions would interfere with learning in an active avoidance paradigm. Samples of rat cortex were stored at -80 C until assayed. ChAT was assayed by a modification method under saturating conditions; 20 mM choline and 2 mM C 14-acetylcoenzyme. The behavioral deficits assumed to be indicative of learning and memory problems were accompanied by a 20% decrease in cortical ChAT

  17. Selective immunotoxic lesions of basal forebrain cholinergic cells: effects on learning and memory in rats.

    Science.gov (United States)

    Baxter, Mark G; Bucci, David J; Gorman, Linda K; Wiley, Ronald G; Gallagher, Michela

    2013-10-01

    Male Long-Evans rats were given injections of either 192 IgG-saporin, an apparently selective toxin for basal forebrain cholinergic neurons (LES), or vehicle (CON) into either the medial septum and vertical limb of the diagonal band (MS/VDB) or bilaterally into the nucleus basalis magnocellularis and substantia innominata (nBM/SI). Place discrimination in the Morris water maze assessed spatial learning, and a trial-unique matching-to-place task in the water maze assessed memory for place information over varying delays. MS/VDB-LES and nBM/SI-LES rats were not impaired relative to CON rats in acquisition of the place discrimination, but were mildly impaired relative to CON rats in performance of the memory task even at the shortest delay, suggesting a nonmnemonic deficit. These results contrast with effects of less selective lesions, which have been taken to support a role for basal forebrain cholinergic neurons in learning and memory. 2013 APA, all rights reserved

  18. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease.

    Science.gov (United States)

    Kwakowsky, Andrea; Milne, Michael R; Waldvogel, Henry J; Faull, Richard L

    2016-12-17

    The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.

  19. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats.

    Science.gov (United States)

    Dejanovic, Bratislav; Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-03-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning.

  20. Neuroregulatory and neuroendocrine GnRH pathways in the hypothalamus and forebrain of the baboon.

    Science.gov (United States)

    Marshall, P E; Goldsmith, P C

    1980-07-14

    The distribution of neurons containing gonadotropin-releasing hormone (GnRH) in the baboon hypothalamus and forebrain was studied immunocytochemically by light and electron microscopy. GnRH was present in the perikarya, axonal and dendritic processes of immunoreactive neurons. Three populations of GnRH neurons could be distinguished. Most of the GnRH neurons which are assumed to directly influence the anterior pituitary were in the medial basal hypothalamus. Other cells that projected to the median eminence were found scattered throughout the hypothalamus. A second, larger population of neurons apparently was not involved with control of the anterior pituitary. These neurons were generally found within afferent and efferent pathways of the hypothalamus and forebrain, and may receive external information affecting reproduction. A few neurons projecting to the median eminence were also observed sending collaterals to other brain areas. Thus, in addition to their neuroendocrine role, these cells possibly have neuroregulatory functions. The inference is made that these bifunctional neurons, together with the widely observed GnRH-GnRH cellular interactions may help to synchronize ovulation and sexual behavior.

  1. Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

    Science.gov (United States)

    Kusakari, Shinya; Saitow, Fumihito; Ago, Yukio; Shibasaki, Koji; Sato-Hashimoto, Miho; Matsuzaki, Yasunori; Kotani, Takenori; Murata, Yoji; Hirai, Hirokazu; Matsuda, Toshio; Suzuki, Hidenori

    2015-01-01

    Shp2 (Src homology 2 domain-containing protein tyrosine phosphatase 2) regulates neural cell differentiation. It is also expressed in postmitotic neurons, however, and mutations of Shp2 are associated with clinical syndromes characterized by mental retardation. Here we show that conditional-knockout (cKO) mice lacking Shp2 specifically in postmitotic forebrain neurons manifest abnormal behavior, including hyperactivity. Novelty-induced expression of immediate-early genes and activation of extracellular-signal-regulated kinase (Erk) were attenuated in the cerebral cortex and hippocampus of Shp2 cKO mice, suggestive of reduced neuronal activity. In contrast, ablation of Shp2 enhanced high-K+-induced Erk activation in both cultured cortical neurons and synaptosomes, whereas it inhibited that induced by brain-derived growth factor in cultured neurons. Posttetanic potentiation and paired-pulse facilitation were attenuated and enhanced, respectively, in hippocampal slices from Shp2 cKO mice. The mutant mice also manifested transient impairment of memory formation in the Morris water maze. Our data suggest that Shp2 contributes to regulation of Erk activation and synaptic plasticity in postmitotic forebrain neurons and thereby controls locomotor activity and memory formation. PMID:25713104

  2. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning.

    Science.gov (United States)

    Iglesias, Sandra; Mathys, Christoph; Brodersen, Kay H; Kasper, Lars; Piccirelli, Marco; den Ouden, Hanneke E M; Stephan, Klaas E

    2013-10-16

    In Bayesian brain theories, hierarchically related prediction errors (PEs) play a central role for predicting sensory inputs and inferring their underlying causes, e.g., the probabilistic structure of the environment and its volatility. Notably, PEs at different hierarchical levels may be encoded by different neuromodulatory transmitters. Here, we tested this possibility in computational fMRI studies of audio-visual learning. Using a hierarchical Bayesian model, we found that low-level PEs about visual stimulus outcome were reflected by widespread activity in visual and supramodal areas but also in the midbrain. In contrast, high-level PEs about stimulus probabilities were encoded by the basal forebrain. These findings were replicated in two groups of healthy volunteers. While our fMRI measures do not reveal the exact neuron types activated in midbrain and basal forebrain, they suggest a dichotomy between neuromodulatory systems, linking dopamine to low-level PEs about stimulus outcome and acetylcholine to more abstract PEs about stimulus probabilities. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Neuroprotective effects of ebselen following forebrain ischemia: involvement of glutamate and nitric oxide.

    Science.gov (United States)

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Shirao, Satoshi; Suzuki, Michiyasu

    2011-01-01

    Ebselen is a mimic of glutathione peroxidase that reacts with peroxynitrite and inhibits nitric oxide (NO) synthase. Ebselen has beneficial effects on the neurological outcome of patients with stroke. In this study, the mechanisms by which ebselen can elicit neuroprotective effects against ischemic brain injury were investigated in male Wistar rats. Experimental forebrain ischemia was induced by bilateral common carotid artery occlusion with hemorrhagic hypotension. Ebselen was administered to animals in the treatment group 2 hours prior to the induction of forebrain ischemia, and placebo was administered in the control group. Cerebral blood flow (CBF) was measured by the hydrogen clearance method. Cortical extracellular levels of excitatory amino acids (EAAs) and NO were evaluated using in vivo microdialysis. Neuronal damage in the CA1 subfield of the hippocampus was assessed in brains harvested after a 24-hour period of survival. CBF did not recover to normal physiological levels after ischemic insults in either the control or treatment groups. The differences in the sequential changes in extracellular EAA and NO levels between groups were not statistically significant. There was a significantly larger mean density of intact, undamaged neurons in the CA1 subfield in the treatment group than in the control group. The neuroprotective effects of ebselen were reflected in the histological findings, without significant inhibition of glutamate release or NO synthesis during the acute phase of experimentally induced cerebral ischemia.

  4. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    Science.gov (United States)

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  5. The basal forebrain cholinergic system in aging and dementia : Rescuing cholinergic neurons from neurotoxic amyloid-beta 42 with memantine

    NARCIS (Netherlands)

    Nyakas, Csaba; Granic, Ivica; Halmy, Laszlo G.; Banerjee, Pradeep; Luiten, Paul G. M.

    2011-01-01

    The dysfunction and loss of basal forebrain cholinergic neurons and their cortical projections are among the earliest pathological events in the pathogenesis of Alzheimer's disease (AD). The evidence pointing to cholinergic impairments come from studies that report a decline in the activity of

  6. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat.

    Science.gov (United States)

    Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire

    2014-07-01

    The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.

  7. Lack of cross-tolerance between haloperidol and clozapine towards Fos-protein induction in rat forebrain regions

    NARCIS (Netherlands)

    Sebens, JB; Koch, T; Korf, J

    1996-01-01

    We investigated whether the acute effects of haloperidol and clozapine on Fos expression in the rat forebrain are mediated by the same receptors through evaluation of cross-tolerance, particularly in the commonly affected areas. Acutely administered haloperidol (1 mg/kg, i.p.) and clozapine (20

  8. Long-term effects of cholinergic basal forebrain lesions on neuropeptide Y and somatostatin immunoreactivity in rat neocortex

    NARCIS (Netherlands)

    Gaykema, R.P.A.; Compaan, J.C.; Nyakas, C.; Horvath, E.; Luiten, P.G.M.

    1989-01-01

    The effect of cholinergic basal forebrain lesions on immunoreactivity to somatostatin (SOM-i) and neuropeptide-Y (NPY-i) was investigated in the rat parietal cortex, 16-18 months after multiple bilateral ibotenic acid injections in the nucleus basalis complex. As a result of the lesion, the

  9. Ontogenetic distribution of the transcription factor Nkx2.2 in the developing forebrain of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Laura eDominguez

    2011-03-01

    Full Text Available The expression of the Nkx2.2 gene is involved in the organization of the alar-basal boundary in the forebrain of vertebrates. Its expression in different diencephalic and telencephalic regions, helped to define distinct progenitor domains in mouse and chick. Here we investigated the pattern of Nkx2.2 protein distribution throughout the development of the forebrain of the anuran amphibian, Xenopus laevis. We used immunohistochemical and in situ hybridization techniques for its detection in combination with other essential territorial markers in the forebrain. No expression was observed in the telencephalon. In the alar hypothalamus, Nkx2.2 positive cells were scattered in the suprachiasmatic territory, but also in the supraoptoparaventricular area, as defined by the expression of the transcription factor Otp and the lack of xDll4. In the basal hypothalamus Nkx2.2 expressing cells were localized in the tuberal region, with the exception of the arcuate nucleus, rich in Otp expressing cells. In the diencephalon it was expressed in all three prosomeres (P1-P3 and not in the zona limitans intrathalamica. The presence of Nkx2.2 expressing cells in P3 was restricted to the alar portion, as well as in prosomere P2, whereas in P1 the Nkx2.2 expressing cells were located in the basal plate and identified the alar/basal boundary. These results showed that Nkx2.2 and Sonic hedgehog are expressed in parallel adjacent stripes along the anterior-posterior axis. The results of this study showed a conserved distribution pattern of Nkx2.2 among vertebrates, crucial to recognize subdivisions that are otherwise indistinct, and supported the relevance of this transcription factor in the organization of the forebrain, particularly in the delineation of the alar/basal boundary of the forebrain.

  10. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain.

    Science.gov (United States)

    Choe, Katrina Y; Sanchez, Carlos F; Harris, Neil G; Otis, Thomas S; Mathews, Paul J

    2018-06-01

    Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. Here we utilize a paired optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. We demonstrate with ofMRI, that activating this forelimb motor region of the cerebellar cortex results in functional activation of a variety of forebrain and midbrain areas of the brain, including the hippocampus and primary motor, retrosplenial and anterior cingulate cortices. We further validate these findings using optogenetic stimulation paired with multi-electrode array recordings and post-hoc staining for molecular markers of activated neurons (i.e. c-Fos). Together, these findings demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin.

    Science.gov (United States)

    do Carmo, J M; da Silva, A A; Sessums, P O; Ebaady, S H; Pace, B R; Rushing, J S; Davis, M T; Hall, J E

    2014-06-01

    We examined whether deficiency of Src homology 2 containing phosphatase (Shp2) signaling in forebrain neurons alters metabolic and cardiovascular regulation under various conditions and if it attenuates the anorexic and cardiovascular effects of leptin. We also tested whether forebrain Shp2 deficiency alters blood pressure (BP) and heart rate (HR) responses to acute stress. Forebrain Shp2(-/-) mice were generated by crossing Shp2(flox/flox) mice with CamKIIα-cre mice. At 22-24 weeks of age, the mice were instrumented for telemetry for measurement of BP, HR and body temperature (BT). Oxygen consumption (VO2), energy expenditure and motor activity were monitored by indirect calorimetry. Shp2/CamKIIα-cre mice were heavier (46±3 vs 32±1 g), hyperglycemic, hyperleptinemic, hyperinsulinemic and hyperphagic compared to Shp2(flox/flox) control mice. Shp2/CamKIIα-cre mice exhibited reduced food intake responses to fasting/refeeding and impaired regulation of BT when exposed to 15 and 30 °C ambient temperatures. Despite being obese and having many features of metabolic syndrome, Shp2/CamKIIα-cre mice had similar daily average BP and HR compared to Shp2(flox/flox) mice (112±2 vs 113±1 mm Hg and 595±34 vs 650±40 b.p.m.), but exhibited increased BP and HR responses to cold exposure and acute air-jet stress test. Leptin's ability to reduce food intake and to raise BP were markedly attenuated in Shp2/CamKIIα-cre mice. These results suggest that forebrain Shp2 signaling regulates food intake, appetite responses to caloric deprivation and thermogenic control of body temperature during variations in ambient temperature. Deficiency of Shp2 signaling in the forebrain is associated with augmented cardiovascular responses to cold and acute stress but attenuated BP responses to leptin.

  12. Calcium imaging of basal forebrain activity during innate and learned behaviors

    Directory of Open Access Journals (Sweden)

    Thomas Clarke Harrison

    2016-05-01

    Full Text Available The basal forebrain (BF plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons. Here, we performed microendoscopic calcium imaging of BF neurons as mice engaged in spontaneous behaviors in their home cages (innate or performed a go/no-go auditory discrimination task (learned. Cholinergic neurons were consistently excited during movement, including running and licking, but GABAergic and glutamatergic neurons exhibited diverse responses. All cell types were activated by overt punishment, either inside or outside of the discrimination task. These findings reveal functional similarities and distinctions between BF cell types during both spontaneous and task-related behaviors.

  13. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    Directory of Open Access Journals (Sweden)

    H Scott Swartzwelder

    Full Text Available The long-term effects of intermittent ethanol exposure during adolescence (AIE are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30 received exposure to AIE (5g/kg, i.g. or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE.

  14. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Hu, Yao; Qu, Zhuang-Yin; Cao, Shi-Ying; Li, Qi; Ma, Lixiang; Krencik, Robert; Xu, Min; Liu, Yan

    2016-06-15

    Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer's disease, Down's syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Neuropeptide Y in the forebrain of the adult male cichlid fish Oreochromis mossambicus: distribution, effects of castration and testosterone replacement.

    Science.gov (United States)

    Sakharkar, Amul J; Singru, Praful S; Sarkar, Koustav; Subhedar, Nishikant K

    2005-08-22

    We studied the organization of the neuropeptide Y (NPY)-immunoreactive system in the forebrain of adult male cichlid fish Oreochromis mossambicus and its response to castration and testosterone replacement by using morphometric methods. Immunoreactivity for NPY was widely distributed in the forebrain, and the pattern generally resembled that in other teleosts. Whereas immunoreactivity was conspicuous in the ganglia of nervus terminalis (NT; or nucleus olfactoretinalis), a weak reaction was detected in some granule cells in the olfactory bulb and in the cells of area ventralis telencephali pars lateralis (Vl). Moderately to intensely immunoreactive cells were distinctly seen in the nucleus entopeduncularis (NE), nucleus preopticus (NPO), nucleus lateralis tuberis (NLT), paraventricular organ (PVO), and midbrain tegmentum (MT). NPY fibers were widely distributed in the forebrain. Castration for 10/15 days resulted in a drastic loss of immunoreactivity in the cells of NE (P<0.001) and a significant decrease (P<0.01) in their cell nuclear size. However, cell nuclei of the NT neurons showed a significant increase in size. A highly significant reduction in the NPY-immunoreactive fiber density (P<0.001) was observed in several areas of the forebrain. Although testosterone replacement reversed these changes, fibers in some areas showed supranormal responses. Immunoreactive cells in Vl, NPO, NLT, PVO, and MT and fiber density in some other areas did not respond to castration. We suggest that the NPY-immunoreactive elements that respond to castration and testosterone replacement may serve as the substrate for processing the positive feedback action of the steroid hormone. (c) 2005 Wiley-Liss, Inc.

  16. Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain.

    Science.gov (United States)

    Judson, Matthew C; Bergman, Mica Y; Campbell, Daniel B; Eagleson, Kathie L; Levitt, Pat

    2009-04-10

    The establishment of appropriate neural circuitry depends on the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival-all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization, and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus, and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits, with particular relevance to the social and emotional dimensions of behavior. (c) 2009 Wiley-Liss, Inc.

  17. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer’s Disease in Mouse Models

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-11-01

    Full Text Available Degeneration of basal forebrain cholinergic neurons (BFCNs is associated with cognitive impairments of Alzheimer’s disease (AD, implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD.

  18. Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis

    Directory of Open Access Journals (Sweden)

    Cremer Harold

    2011-04-01

    Full Text Available Abstract Background Postnatal olfactory bulb (OB neurogenesis involves the generation of granule and periglomerular cells by neural stem cells (NSCs located in the walls of the lateral ventricle (LV. Recent studies show that NSCs located in different regions of the LV give rise to different types of OB neurons. However, the molecular mechanisms governing neuronal specification remain largely unknown and new methods to approach these questions are needed. Results In this study, we refine electroporation of the postnatal forebrain as a technique to perform precise and accurate delivery of transgenes to NSCs located in distinct walls of the LV in the mouse. Using this method, we confirm and expand previous studies showing that NSCs in distinct walls of the LV produce neurons that invade different layers of the OB. Fate mapping of the progeny of radial glial cells located in these distinct LV walls reveals their specification into defined subtypes of granule and periglomerular neurons. Conclusions Our results provide a baseline with which future studies aiming at investigating the role of factors in postnatal forebrain neuronal specification can be compared. Targeted electroporation of defined LV NSC populations will prove valuable to study the genetic factors involved in forebrain neuronal specification.

  19. The effect of high mesencephalic transection (cerveau isolé) and pentobarbital on basal forebrain mechanisms of EEG synchronization.

    Science.gov (United States)

    Obál, F; Benedek, G; Szikszay, M; Obál, F

    1979-01-01

    A study was made of the effects of high mesencephalic transection (cerveau isolé) and low doses of pentobarbital on the cortical synchronizations elicited in acute immobilized cats by (a) low frequency stimulation of the lateral hypothalamus (HL) and nucleus ventralis anterior thalami (VA) and (b) by low and high frequency stimulation of the laterobasal preoptic region (RPO) and olfactory tubercle (TbOf). The results obtained were as follows: (1) The synchronizations induced by basal forebrain stimulations were found to survive in acute cerveau isolé cats, moreover, even a facilitation of the synchronizing effect were observed. (2) A gradual facilitation was observed upon TbOf and RPO stimulation, while in the case of VA and HL stimulations, the facilitation appeared immediately after the transection. (3) Low doses of pentobarbital depressed the cortical effects of TbOf stimulation, while an increase of the synchronizing effect of low frequency VA and HL stimulation was found. The observations suggested that (i) the synchronizing mechanism in the ventral part of the basal forebrain (RPO and TbOf) differs from that of the thalamus and HL; (ii) the basal forebrain synchronizing mechanism is effective without the contribution of the brain stem; (iii) the mechanism responsible for the synchronizing effect of low frequency HL stimulation is similar as that described for the thalamus.

  20. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Saswati ePaul

    2015-04-01

    Full Text Available A substantial number of studies on basal forebrain cholinergic neurons (BFCN have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD, and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine, glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, which could help decipher disease states and propose leads for pharmacological intervention.

  1. Zic-Proteins Are Repressors of Dopaminergic Forebrain Fate in Mice and C. elegans.

    Science.gov (United States)

    Tiveron, Marie-Catherine; Beclin, Christophe; Murgan, Sabrina; Wild, Stefan; Angelova, Alexandra; Marc, Julie; Coré, Nathalie; de Chevigny, Antoine; Herrera, Eloisa; Bosio, Andreas; Bertrand, Vincent; Cremer, Harold

    2017-11-01

    In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegans SIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species. Copyright © 2017 the authors 0270-6474/17/3710611-13$15.00/0.

  2. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    Directory of Open Access Journals (Sweden)

    Rongfeng Hu

    2016-10-01

    Full Text Available The basal forebrain cholinergic system (BFCS robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum (LS, central amygdala (CeA, paraventricular nucleus of hypothalamus (PVH, dorsal raphe (DRN and parabrachial nucleus (PBN. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal-hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function.

  3. Olfactory tubercle stimulation alters odor preference behavior and recruits forebrain reward and motivational centers

    Directory of Open Access Journals (Sweden)

    Brynn J FitzGerald

    2014-03-01

    Full Text Available Rodents show robust behavioral responses to odors, including strong preferences or aversions for certain odors. The neural mechanisms underlying the effects of odors on these behaviors in animals are not well understood. Here, we provide an initial proof-of-concept study into the role of the olfactory tubercle (OT, a structure with known anatomical connectivity with both brain reward and olfactory structures, in regulating odor-motivated behaviors. We implanted c57bl/6 male mice with an ipsilateral bipolar electrode into the OT to administer electric current and thereby yield gross activation of the OT. We confirmed that electrical stimulation of the OT was rewarding, with mice frequently self-administering stimulation on a fixed ratio schedule. In a separate experiment, mice were presented with either fox urine or peanut odors in a three-chamber preference test. In absence of OT stimulation, significant preference for the peanut odor chamber was observed which was abolished in the presence of OT stimulation. Perhaps providing a foundation for this modulation in behavior, we found that OT stimulation significantly increased the number of c-Fos positive neurons in not only the OT, but also in forebrain structures essential to motivated behaviors, including the nucleus accumbens and lateral septum. The present results support the notion that the OT is integral to the display of motivated behavior and possesses the capacity to modulate odor hedonics either by directly altering odor processing or perhaps by indirect actions on brain reward and motivation structures.

  4. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    Science.gov (United States)

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  5. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    Science.gov (United States)

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  6. Quantitative autoradiography of muscarinic and benzodiazepine receptors in the forebrain of the turtle, Pseudemys scripta

    International Nuclear Information System (INIS)

    Schlegel, J.R.; Kriegstein, A.R.

    1987-01-01

    The distribution of muscarinic and benzodiazepine receptors was investigated in the turtle forebrain by the technique of in vitro receptor autoradiography. Muscarinic binding sites were labeled with 1 nM 3 H-quinuclidinyl benzilate ( 3 H-QNB), and benzodiazepine sites were demonstrated with the aid of 1 nM 3 H-flunitrazepam ( 3 H-FLU). Autoradiograms generated on 3 H-Ultrofilm apposed to tissue slices revealed regionally specific distributions of muscarinic and benzodiazepine binding sites that are comparable with those for mammalian brain. Dense benzodiazepine binding was found in the anterior olfactory nucleus, the lateral and dorsal cortices, and the dorsal ventricular ridge (DVR), a structure with no clear mammalian homologue. Muscarinic binding sites were most dense in the striatum, accumbens, DVR, lateral geniculate, and the anterior olfactory nucleus. Cortical binding sites were studied in greater detail by quantitative analysis of autoradiograms generated by using emulsion-coated coverslips. Laminar gradients of binding were observed that were specific for each radioligand; 3 H-QNB sites were most dense in the inner molecular layer in all cortical regions, whereas 3 H-FLU binding was generally most concentrated in the outer molecular layer and was least dense through all layers in the dorsomedial cortex. Because pyramidal cells are arranged in register in turtle cortex, the laminar patterns of receptor binding may reflect different receptor density gradients along pyramidal cell dendrites

  7. Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain.

    Science.gov (United States)

    Beckers, Gabriël J L; Gahr, Manfred

    2012-08-01

    Auditory systems bias responses to sounds that are unexpected on the basis of recent stimulus history, a phenomenon that has been widely studied using sequences of unmodulated tones (mismatch negativity; stimulus-specific adaptation). Such a paradigm, however, does not directly reflect problems that neural systems normally solve for adaptive behavior. We recorded multiunit responses in the caudomedial auditory forebrain of anesthetized zebra finches (Taeniopygia guttata) at 32 sites simultaneously, to contact calls that recur probabilistically at a rate that is used in communication. Neurons in secondary, but not primary, auditory areas respond preferentially to calls when they are unexpected (deviant) compared with the same calls when they are expected (standard). This response bias is predominantly due to sites more often not responding to standard events than to deviant events. When two call stimuli alternate between standard and deviant roles, most sites exhibit a response bias to deviant events of both stimuli. This suggests that biases are not based on a use-dependent decrease in response strength but involve a more complex mechanism that is sensitive to auditory deviance per se. Furthermore, between many secondary sites, responses are tightly synchronized, a phenomenon that is driven by internal neuronal interactions rather than by the timing of stimulus acoustic features. We hypothesize that this deviance-sensitive, internally synchronized network of neurons is involved in the involuntary capturing of attention by unexpected and behaviorally potentially relevant events in natural auditory scenes.

  8. Cholinergic Basal Forebrain Lesion Decreases Neurotrophin Signaling without Affecting Tau Hyperphosphorylation in Genetically Susceptible Mice.

    Science.gov (United States)

    Turnbull, Marion T; Coulson, Elizabeth J

    2017-01-01

    Alzheimer's disease (AD) is a progressive, irreversible neurodegenerative disease that destroys memory and cognitive function. Aggregates of hyperphosphorylated tau protein are a prominent feature in the brain of patients with AD, and are a major contributor to neuronal toxicity and disease progression. However, the factors that initiate the toxic cascade that results in tau hyperphosphorylation in sporadic AD are unknown. Here we investigated whether degeneration of basal forebrain cholinergic neurons (BFCNs) and/or a resultant decrease in neurotrophin signaling cause aberrant tau hyperphosphorylation. Our results reveal that the loss of BFCNs in pre-symptomatic pR5 (P301L) tau transgenic mice results in a decrease in hippocampal brain-derived neurotrophic factor levels and reduced TrkB receptor activation. However, there was no exacerbation of the levels of phosphorylated tau or its aggregation in the hippocampus of susceptible mice. Furthermore the animals' performance in a hippocampal-dependent learning and memory task was unaltered, and no changes in hippocampal synaptic markers were observed. This suggests that tau pathology is likely to be regulated independently of BFCN degeneration and the corresponding decrease in hippocampal neurotrophin levels, although these features may still contribute to disease etiology.

  9. Analeptic activity produced by TRH microinjection into basal forebrain area of the rat

    International Nuclear Information System (INIS)

    Horita, A.; Carino, M.A.; Lai, H.

    1986-01-01

    Earlier, Kalivas and Horita demonstrated that the analeptic effect of TRH was mediated in part by cholinergic neurons in the medial septum-diagonal band of Broca (MS-DBB). Since the MS-DBB constitutes part of the cholinergic basal forebrain system, the present study investigated whether the area designated as the n. basalis of Meynert (NBM) was also sensitive to TRH in producing an antipentobarbital effect. Saline or TRH (0.5 μl) was microinjected via bilateral stainless steel cannulae implanted stereotaxically into the NBM using the coordinates of Wenk et al. Accuracy of cannula placement was confirmed by histological examination. Rats treated with PB (40 mg/kg, i.p.) lost their righting reflex for 130 +/- 28 min. Intrabasalis injection of TRH (but not saline) in doses of 0.1-1.0 μg exerted analeptic activity as follows: 0.1 μg = 81 +/- 21 min; 0.5 μg = 65 +/- 19 min; 1.0 μg = 45 +/- 10 min. All of these doses exerted significant shortening of narcosis duration of pentobarbitalized rats. The analeptic effect of TRH was blocked by atropine pretreatment, indicating that it was mediated via cholinergic mechanisms. High affinity, sodium-dependent 3 H-choline uptake by cortical synaptosomes prepared from these animals was also increased by TRH. These results suggest that the cholinergic neurons of NBM are highly sensitive to TRH and contributes to the analeptic effect of TRH

  10. Propagated but Topologically Distributed Forebrain Neurons Expressing Alpha-Synuclein in Aged Macaques.

    Directory of Open Access Journals (Sweden)

    Katsuo Kimura

    Full Text Available In neurodegenerative disorders, such as Parkinson's disease (PD, alpha-synuclein (α-syn accumulates to induce cell death and/or form a cytoplasmic inclusion called Lewy body (LB. This α-syn-related pathology is termed synucleinopathy. It remains unclear how α-syn accumulation expands during the progress of synucleinopathy in the human brain. In our study, we investigated the patterns of distribution and propagation of forebrain neurons expressing α-syn in aged macaques. It was found that the occurrence of α-syn-positive neurons proceeded topologically based on the midbrain dopamine pathways arising from the substantia nigra and the ventral tegmental area where they were primarily observed. In the nigrostriatal or mesolimbic dopamine pathway, the age-dependent increase in α-syn-positive neurons was evident in the striatum or the nucleus accumbens, respectively. Concerning the nigrostriatal pathway, a mediolateral or rostrocaudal gradient was seen in the substantia nigra or the striatum, respectively, and a compensatory increase in dopamine transporter occurred in the striatum regardless of the decreased dopamine level. In the mesocortical dopamine pathway, α-syn-positive neurons appeared in the prefrontal and then motor areas of the frontal lobe. Given that neither LB formation nor clinical phenotype manifestation was detected in any of the monkeys examined in the present study, aged macaques may be useful as a potential presymptomatic model for PD and LB-related neuropsychiatric disorders.

  11. Basal forebrain motivational salience signal enhances cortical processing and decision speed

    Directory of Open Access Journals (Sweden)

    Sylvina M Raver

    2015-10-01

    Full Text Available The basal forebrain (BF contains major projections to the cerebral cortex, and plays a well-documented role in arousal, attention, decision-making, and in modulating cortical activity. BF neuronal degeneration is an early event in Alzheimer’s disease and dementias, and occurs in normal cognitive aging. While the BF is best known for its population of cortically projecting cholinergic neurons, the region is anatomically and neurochemically diverse, and also contains prominent populations of non-cholinergic projection neurons. In recent years, increasing attention has been dedicated to these non-cholinergic BF neurons in order to better understand how non-cholinergic BF circuits control cortical processing and behavioral performance. In this review, we focus on a unique population of putative non-cholinergic BF neurons that encodes the motivational salience of stimuli with a robust ensemble bursting response. We review recent studies that describe the specific physiological and functional characteristics of these BF salience-encoding neurons in behaving animals. These studies support the unifying hypothesis whereby BF salience-encoding neurons act as a gain modulation mechanism of the decision-making process to enhance cortical processing of behaviorally relevant stimuli, and thereby facilitate faster and more precise behavioral responses. This function of BF salience-encoding neurons represents a critical component in determining which incoming stimuli warrant an animal’s attention, and is therefore a fundamental and early requirement of behavioral flexibility.

  12. FMRP acts as a key messenger for dopamine modulation in the forebrain.

    Science.gov (United States)

    Wang, Hansen; Wu, Long-Jun; Kim, Susan S; Lee, Frank J S; Gong, Bo; Toyoda, Hiroki; Ren, Ming; Shang, Yu-Ze; Xu, Hui; Liu, Fang; Zhao, Ming-Gao; Zhuo, Min

    2008-08-28

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.

  13. Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain.

    Science.gov (United States)

    Lu, Kai; Vicario, David S

    2014-10-07

    Auditory neurophysiology has demonstrated how basic acoustic features are mapped in the brain, but it is still not clear how multiple sound components are integrated over time and recognized as an object. We investigated the role of statistical learning in encoding the sequential features of complex sounds by recording neuronal responses bilaterally in the auditory forebrain of awake songbirds that were passively exposed to long sound streams. These streams contained sequential regularities, and were similar to streams used in human infants to demonstrate statistical learning for speech sounds. For stimulus patterns with contiguous transitions and with nonadjacent elements, single and multiunit responses reflected neuronal discrimination of the familiar patterns from novel patterns. In addition, discrimination of nonadjacent patterns was stronger in the right hemisphere than in the left, and may reflect an effect of top-down modulation that is lateralized. Responses to recurring patterns showed stimulus-specific adaptation, a sparsening of neural activity that may contribute to encoding invariants in the sound stream and that appears to increase coding efficiency for the familiar stimuli across the population of neurons recorded. As auditory information about the world must be received serially over time, recognition of complex auditory objects may depend on this type of mnemonic process to create and differentiate representations of recently heard sounds.

  14. Regulation of GABA and benzodiazepine receptors following neurotoxin-induced striatal and medial forebrain bundle lesions

    International Nuclear Information System (INIS)

    Pan, H.S.I.

    1985-01-01

    GABA, a major inhibitory transmitter, is used by many projection neurons of the striatum. To investigate the role of GABA in striatal function, the GABA receptor complex was studied after lesions of the striatum or the nigrostriatal neurons. Quantitative receptor autoradiography using thaw-mounted tissue slices was developed for the study of GABA and benzodiazepine (BDZ) receptors. With the technique established, binding to GABA and BDZ receptors after unilateral striatal kainate lesions was examined. Subsequently, changes in GABA and BDZ receptors were studied following the destruction of dopaminergic nigrostriatal cells by unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. In summary, quantitative receptor autoradiography allowed the detection of GABA and BDZ receptor changes in multiple small areas in each lesioned brain. This technique made it feasible to carry out kinetic saturation, and competition studies using less than 1 mg of tissue. The data suggest that dopamine is functionally inhibitory on striatopallidal neurons but is functionally excitatory on striatoentopeduncular and striatonigral cells which in turn inhibit the thalamus. This quantitative autoradiographic technique can be generalized to study other transmitter receptors and can be combined with 2-deoxyglucose uptake studies

  15. Divergent lactate dehydrogenase isoenzyme profile in cellular compartments of primate forebrain structures.

    Science.gov (United States)

    Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C

    2017-07-01

    The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Blocking estradiol synthesis affects memory for songs in auditory forebrain of male zebra finches.

    Science.gov (United States)

    Yoder, Kathleen M; Lu, Kai; Vicario, David S

    2012-11-14

    Estradiol (E2) has recently been shown to modulate sensory processing in an auditory area of the songbird forebrain, the caudomedial nidopallium (NCM). When a bird hears conspecific song, E2 increases locally in NCM, where neurons express both the aromatase enzyme that synthesizes E2 from precursors and estrogen receptors. Auditory responses in NCM show a form of neuronal memory: repeated playback of the unique learned vocalizations of conspecific individuals induces long-lasting stimulus-specific adaptation of neural responses to each vocalization. To test the role of E2 in this auditory memory, we treated adult male zebra finches (n=16) with either the aromatase inhibitor fadrozole (FAD) or saline for 8 days. We then exposed them to 'training' songs and, 6 h later, recorded multiunit auditory responses with an array of 16 microelectrodes in NCM. Adaptation rates (a measure of stimulus-specific adaptation) to playbacks of training and novel songs were computed, using established methods, to provide a measure of neuronal memory. Recordings from the FAD-treated birds showed a significantly reduced memory for the training songs compared with saline-treated controls, whereas auditory processing for novel songs did not differ between treatment groups. In addition, FAD did not change the response bias in favor of conspecific over heterospecific song stimuli. Our results show that E2 depletion affects the neuronal memory for vocalizations in songbird NCM, and suggest that E2 plays a necessary role in auditory processing and memory for communication signals.

  17. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The amygdala and basal forebrain as a pathway for motivationally guided attention.

    Science.gov (United States)

    Peck, Christopher J; Salzman, C Daniel

    2014-10-08

    Visual stimuli associated with rewards attract spatial attention. Neurophysiological mechanisms that mediate this process must register both the motivational significance and location of visual stimuli. Recent neurophysiological evidence indicates that the amygdala encodes information about both of these parameters. Furthermore, the firing rate of amygdala neurons predicts the allocation of spatial attention. One neural pathway through which the amygdala might influence attention involves the intimate and bidirectional connections between the amygdala and basal forebrain (BF), a brain area long implicated in attention. Neurons in the rhesus monkey amygdala and BF were therefore recorded simultaneously while subjects performed a detection task in which the stimulus-reward associations of visual stimuli modulated spatial attention. Neurons in BF were spatially selective for reward-predictive stimuli, much like the amygdala. The onset of reward-predictive signals in each brain area suggested different routes of processing for reward-predictive stimuli appearing in the ipsilateral and contralateral fields. Moreover, neurons in the amygdala, but not BF, tracked trial-to-trial fluctuations in spatial attention. These results suggest that the amygdala and BF could play distinct yet inter-related roles in influencing attention elicited by reward-predictive stimuli. Copyright © 2014 the authors 0270-6474/14/3413757-11$15.00/0.

  19. Atrophy and structural covariance of the cholinergic basal forebrain in primary progressive aphasia.

    Science.gov (United States)

    Teipel, Stefan; Raiser, Theresa; Riedl, Lina; Riederer, Isabelle; Schroeter, Matthias L; Bisenius, Sandrine; Schneider, Anja; Kornhuber, Johannes; Fliessbach, Klaus; Spottke, Annika; Grothe, Michel J; Prudlo, Johannes; Kassubek, Jan; Ludolph, Albert; Landwehrmeyer, Bernhard; Straub, Sarah; Otto, Markus; Danek, Adrian

    2016-10-01

    Primary progressive aphasia (PPA) is characterized by profound destruction of cortical language areas. Anatomical studies suggest an involvement of cholinergic basal forebrain (BF) in PPA syndromes, particularly in the area of the nucleus subputaminalis (NSP). Here we aimed to determine the pattern of atrophy and structural covariance as a proxy of structural connectivity of BF nuclei in PPA variants. We studied 62 prospectively recruited cases with the clinical diagnosis of PPA and 31 healthy older control participants from the cohort study of the German consortium for frontotemporal lobar degeneration (FTLD). We determined cortical and BF atrophy based on high-resolution magnetic resonance imaging (MRI) scans. Patterns of structural covariance of BF with cortical regions were determined using voxel-based partial least square analysis. We found significant atrophy of total BF and BF subregions in PPA patients compared with controls [F(1, 82) = 20.2, p covariance analysis in healthy controls revealed associations of the BF nuclei, particularly the NSP, with left hemispheric predominant prefrontal, lateral temporal, and parietal cortical areas, including Broca's speech area (p covariance of the BF nuclei mostly with right but not with left hemispheric cortical areas (p covariance of the BF with left hemispheric cortical areas in healthy aging towards right hemispheric cortical areas in PPA, possibly reflecting a consequence of the profound and early destruction of cortical language areas in PPA. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function.

  1. Thyroid hormone modulates the development of cholinergic terminal fields in the rat forebrain: relation to nerve growth factor receptor.

    Science.gov (United States)

    Oh, J D; Butcher, L L; Woolf, N J

    1991-04-24

    Hyperthyroidism, induced in rat pups by the daily intraperitoneal administration of 1 microgram/g body weight triiodothyronine, facilitated the development of ChAT fiber plexuses in brain regions innervated by basal forebrain cholinergic neurons, leading to an earlier and increased expression of cholinergic markers in those fibers in the cortex, hippocampus and amygdala. A similar enhancement was seen in the caudate-putamen complex. This histochemical profile was correlated with an accelerated appearance of ChAT-positive telencephalic puncta, as well as with a larger total number of cholinergic terminals expressed, which persisted throughout the eight postnatal week, the longest time examined in the present study. Hypothyroidism was produced in rat pups by adding 0.5% propylthiouracil to the dams' diet beginning the day after birth. This dietary manipulation resulted in the diminished expression of ChAT in forebrain fibers and terminals. Hypothyroid treatment also reduced the quantity of ChAT puncta present during postnatal weeks 2 and 3, and, from week 4 and continuing through week 6, the number of ChAT-positive terminals in the telencephalic regions examined was actually less than the amount extant during the former developmental epoch. Immunostaining for nerve growth factor receptor (NGF-R), which is associated almost exclusively with ChAT-positive somata and fibers in the basal forebrain, demonstrated a different time course of postnatal development. Forebrain fibers and terminals demonstrating NGF-R were maximally visualized 1 week postnatally, a time at which these same neuronal elements evinced minimal ChAT-like immunopositivity. Thereafter and correlated with increased immunoreactivity for ChAT, fine details of NGF-R stained fibers were observed less frequently. Although propylthiouracil administration decreased NGF-R immunodensity, no alteration in the development of that receptor was observed as a function of triiodothyronine treatment. Cholinergic

  2. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  3. Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia).

    Science.gov (United States)

    Azizi, Amir Hossein; Pusch, Roland; Koenen, Charlotte; Klatt, Sebastian; Bröcker, Franziska; Thiele, Samuel; Kellermann, Janosch; Güntürkün, Onur; Cheng, Sen

    2018-06-06

    Recognizing and categorizing visual stimuli are cognitive functions vital for survival, and an important feature of visual systems in primates as well as in birds. Visual stimuli are processed along the ventral visual pathway. At every stage in the hierarchy, neurons respond selectively to more complex features, transforming the population representation of the stimuli. It is therefore easier to read-out category information in higher visual areas. While explicit category representations have been observed in the primate brain, less is known on equivalent processes in the avian brain. Even though their brain anatomies are radically different, it has been hypothesized that visual object representations are comparable across mammals and birds. In the present study, we investigated category representations in the pigeon visual forebrain using recordings from single cells responding to photographs of real-world objects. Using a linear classifier, we found that the population activity in the visual associative area mesopallium ventrolaterale (MVL) distinguishes between animate and inanimate objects, although this distinction is not required by the task. By contrast, a population of cells in the entopallium, a region that is lower in the hierarchy of visual areas and that is related to the primate extrastriate cortex, lacked this information. A model that pools responses of simple cells, which function as edge detectors, can account for the animate vs. inanimate categorization in the MVL, but performance in the model is based on different features than in MVL. Therefore, processing in MVL cells is very likely more abstract than simple computations on the output of edge detectors. Copyright © 2018. Published by Elsevier B.V.

  4. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

    Science.gov (United States)

    Vazquez-DeRose, Jacqueline; Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Gulati, Srishti; Mathew, Thomas K; Neylan, Thomas C; Kilduff, Thomas S

    2016-03-01

    Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.

  5. Activation of the Basal Forebrain by the Orexin/Hypocretin Neurons: Orexin International Symposium

    Science.gov (United States)

    Arrigoni, Elda; Mochizuki, Takatoshi; Scammell, Thomas E.

    2010-01-01

    The orexin neurons play an essential role in driving arousal and in maintaining normal wakefulness. Lack of orexin neurotransmission produces a chronic state of hypoarousal characterized by excessive sleepiness, frequent transitions between wake and sleep, and episodes of cataplexy. A growing body of research now suggests that the basal forebrain (BF) may be a key site through which the orexin-producing neurons promote arousal. Here we review anatomical, pharmacological and electrophysiological studies on how the orexin neurons may promote arousal by exciting cortically-projecting neurons of the BF. Orexin fibers synapse on BF cholinergic neurons and orexin-A is released in the BF during waking. Local application of orexins excites BF cholinergic neurons, induces cortical release of acetylcholine, and promotes wakefulness. The orexin neurons also contain and probably co-release the inhibitory neuropeptide dynorphin. We found that orexin-A and dynorphin have specific effects on different classes of BF neurons that project to the cortex. Cholinergic neurons were directly excited by orexin-A, but did not respond to dynorphin. Non-cholinergic BF neurons that project to the cortex seem to comprise at least two populations with some directly excited by orexin that may represent wake-active, GABAergic neurons, whereas others did not respond to orexin but were inhibited by dynorphin and may be sleep-active, GABAergic neurons. This evidence suggests that the BF is a key site through which orexins activate the cortex and promotes behavioral arousal. In addition, orexins and dynorphin may act synergistically in the BF to promote arousal and improve cognitive performance. PMID:19723027

  6. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  7. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: A cholinesterase dependent mechanism

    International Nuclear Information System (INIS)

    Del Pino, Javier; Zeballos, Garbriela; Anadon, María José; Capo, Miguel Andrés; Díaz, María Jesús; García, Jimena; Frejo, María Teresa

    2014-01-01

    Cadmium is an environmental pollutant, which is a cause of concern because it can be greatly concentrated in the organism causing severe damage to a variety of organs including the nervous system which is one of the most affected. Cadmium has been reported to produce learning and memory dysfunctions and Alzheimer like symptoms, though the mechanism is unknown. On the other hand, cholinergic system in central nervous system (CNS) is implicated on learning and memory regulation, and it has been reported that cadmium can affect cholinergic transmission and it can also induce selective toxicity on cholinergic system at peripheral level, producing cholinergic neurons loss, which may explain cadmium effects on learning and memory processes if produced on central level. The present study is aimed at researching the selective neurotoxicity induced by cadmium on cholinergic system in CNS. For this purpose we evaluated, in basal forebrain region, the cadmium toxic effects on neuronal viability and the cholinergic mechanisms related to it on NS56 cholinergic mourine septal cell line. This study proves that cadmium induces a more pronounced, but not selective, cell death on acetylcholinesterase (AChE) on cholinergic neurons. Moreover, MTT and LDH assays showed a dose dependent decrease of cell viability in NS56 cells. The ACh treatment of SN56 cells did not revert cell viability reduction induced by cadmium, but siRNA transfection against AChE partially reduced it. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on the function and viability of neurons, and the possible relevance of cadmium in the pathogenesis of neurodegenerative diseases

  8. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Josue G. Yague

    2017-09-01

    Full Text Available The basal forebrain (BF has long been implicated in attention, learning and memory, and recent studies have established a causal relationship between artificial BF activation and arousal. However, neural ensemble dynamics in the BF still remains unclear. Here, recording neural population activity in the BF and comparing it with simultaneously recorded cortical population under both anesthetized and unanesthetized conditions, we investigate the difference in the structure of spontaneous population activity between the BF and the auditory cortex (AC in mice. The AC neuronal population show a skewed spike rate distribution, a higher proportion of short (≤80 ms inter-spike intervals (ISIs and a rich repertoire of rhythmic firing across frequencies. Although the distribution of spontaneous firing rate in the BF is also skewed, a proportion of short ISIs can be explained by a Poisson model at short time scales (≤20 ms and spike count correlations are lower compared to AC cells, with optogenetically identified cholinergic cell pairs showing exceptionally higher correlations. Furthermore, a smaller fraction of BF neurons shows spike-field entrainment across frequencies: a subset of BF neurons fire rhythmically at slow (≤6 Hz frequencies, with varied phase preferences to ongoing field potentials, in contrast to a consistent phase preference of AC populations. Firing of these slow rhythmic BF cells is correlated to a greater degree than other rhythmic BF cell pairs. Overall, the fundamental difference in the structure of population activity between the AC and BF is their temporal coordination, in particular their operational timescales. These results suggest that BF neurons slowly modulate downstream populations whereas cortical circuits transmit signals on multiple timescales. Thus, the characterization of the neural ensemble dynamics in the BF provides further insight into the neural mechanisms, by which brain states are regulated.

  9. Dynamic changes in GABAA receptors on basal forebrain cholinergic neurons following sleep deprivation and recovery

    Directory of Open Access Journals (Sweden)

    Jones Barbara E

    2007-02-01

    Full Text Available Abstract Background The basal forebrain (BF cholinergic neurons play an important role in cortical activation and arousal and are active in association with cortical activation of waking and inactive in association with cortical slow wave activity of sleep. In view of findings that GABAA receptors (Rs and inhibitory transmission undergo dynamic changes as a function of prior activity, we investigated whether the GABAARs on cholinergic cells might undergo such changes as a function of their prior activity during waking vs. sleep. Results In the brains of rats under sleep control (SC, sleep deprivation (SD or sleep recovery (SR conditions in the 3 hours prior to sacrifice, we examined immunofluorescent staining for β2–3 subunit GABAARs on choline acetyltransferase (ChAT immunopositive (+ cells in the magnocellular BF. In sections also stained for c-Fos, β2–3 GABAARs were present on ChAT+ neurons which expressed c-Fos in the SD group alone and were variable or undetectable on other ChAT+ cells across groups. In dual-immunostained sections, the luminance of β2–3 GABAARs over the membrane of ChAT+ cells was found to vary significantly across conditions and to be significantly higher in SD than SC or SR groups. Conclusion We conclude that membrane GABAARs increase on cholinergic cells as a result of activity during sustained waking and reciprocally decrease as a result of inactivity during sleep. These changes in membrane GABAARs would be associated with increased GABA-mediated inhibition of cholinergic cells following prolonged waking and diminished inhibition following sleep and could thus reflect a homeostatic process regulating cholinergic cell activity and thereby indirectly cortical activity across the sleep-waking cycle.

  10. Motivational salience signal in the basal forebrain is coupled with faster and more precise decision speed.

    Science.gov (United States)

    Avila, Irene; Lin, Shih-Chieh

    2014-03-01

    The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons.

  11. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus.

    Directory of Open Access Journals (Sweden)

    Matías A Goldin

    2017-08-01

    Full Text Available Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the "breaking" of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which

  12. Visceral hyperalgesia induced by forebrain-specific suppression of native Kv7/KCNQ/M-current in mice

    Directory of Open Access Journals (Sweden)

    Bian Xiling

    2011-10-01

    Full Text Available Abstract Background Dysfunction of brain-gut interaction is thought to underlie visceral hypersensitivity which causes unexplained abdominal pain syndromes. However, the mechanism by which alteration of brain function in the brain-gut axis influences the perception of visceral pain remains largely elusive. In this study we investigated whether altered brain activity can generate visceral hyperalgesia. Results Using a forebrain specific αCaMKII promoter, we established a line of transgenic (Tg mice expressing a dominant-negative pore mutant of the Kv7.2/KCNQ2 channel which suppresses native KCNQ/M-current and enhances forebrain neuronal excitability. Brain slice recording of hippocampal pyramidal neurons from these Tg mice confirmed the presence of hyperexcitable properties with increased firing. Behavioral evaluation of Tg mice exhibited increased sensitivity to visceral pain induced by intraperitoneal (i.p. injection of either acetic acid or magnesium sulfate, and intracolon capsaicin stimulation, but not cutaneous sensation for thermal or inflammatory pain. Immunohistological staining showed increased c-Fos expression in the somatosensory SII cortex and insular cortex of Tg mice that were injected intraperitoneally with acetic acid. To mimic the effect of cortical hyperexcitability on visceral hyperalgesia, we injected KCNQ/M channel blocker XE991 into the lateral ventricle of wild type (WT mice. Intracerebroventricular injection of XE991 resulted in increased writhes of WT mice induced by acetic acid, and this effect was reversed by co-injection of the channel opener retigabine. Conclusions Our findings provide evidence that forebrain hyperexcitability confers visceral hyperalgesia, and suppression of central hyperexcitability by activation of KCNQ/M-channel function may provide a therapeutic potential for treatment of abdominal pain syndromes.

  13. The different effects of over-expressing murine NMDA receptor 2B subunit in the forebrain on conditioned taste aversion.

    Science.gov (United States)

    Li, Shijia; Gu, Yiran; Meng, Bo; Mei, Bing; Li, Fei

    2010-09-10

    The glutamate transmission system and the N-methyl-D-aspartate receptor (NMDA-R), in particular its 2B subunit (NR2B), have been reported to be possibly related to taste memory as a result of treatment with NMDA antagonists and agonists. In order to further study the role of the NR2B subunit in gustation memory, we applied four different taste aversive tasks to observe the behavior of a transgenic mice model in which the NR2B subunit was specifically over-expressed in the forebrain. We found that in both short- and long-term conditioned taste aversion (CTA) experiments, mice with forebrain expression of the NR2B transgene (Tg) showed significantly enhanced CTA 2 days after training. However, both the Tg and the wild-type (Wt) mice shared the same level of aversive memory on the 30th day after training. In both fast and slow extinction experiments, Tg mice maintained a higher CTA memory than that of control mice in most extinction trials. The third experiment, which involved testing the memory for familiar taste, demonstrated that NR2B augmentation had no benefit on the latent inhibition (LI) of CTA. In addition, the last experiment (two-taste LI) showed a suppression of enhanced CTA in Tg mice when the mice were exposed to both novel and familiar tastes. These data suggested that forebrain NR2B over-expression had different effects on gustatory learning and memory. The transgenic animals were only sensitive to novel but not familiar tastes, and up-regulation of NR2B resulted in enhanced CTA function for only a short period of time. 2010 Elsevier B.V. All rights reserved.

  14. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas.

    Directory of Open Access Journals (Sweden)

    Sidarta Ribeiro

    2004-01-01

    Full Text Available The discovery of experience-dependent brain reactivation during both slow-wave (SW and rapid eye-movement (REM sleep led to the notion that the consolidation of recently acquired memory traces requires neural replay during sleep. To date, however, several observations continue to undermine this hypothesis. To address some of these objections, we investigated the effects of a transient novel experience on the long-term evolution of ongoing neuronal activity in the rat forebrain. We observed that spatiotemporal patterns of neuronal ensemble activity originally produced by the tactile exploration of novel objects recurred for up to 48 h in the cerebral cortex, hippocampus, putamen, and thalamus. This novelty-induced recurrence was characterized by low but significant correlations values. Nearly identical results were found for neuronal activity sampled when animals were moving between objects without touching them. In contrast, negligible recurrence was observed for neuronal patterns obtained when animals explored a familiar environment. While the reverberation of past patterns of neuronal activity was strongest during SW sleep, waking was correlated with a decrease of neuronal reverberation. REM sleep showed more variable results across animals. In contrast with data from hippocampal place cells, we found no evidence of time compression or expansion of neuronal reverberation in any of the sampled forebrain areas. Our results indicate that persistent experience-dependent neuronal reverberation is a general property of multiple forebrain structures. It does not consist of an exact replay of previous activity, but instead it defines a mild and consistent bias towards salient neural ensemble firing patterns. These results are compatible with a slow and progressive process of memory consolidation, reflecting novelty-related neuronal ensemble relationships that seem to be context- rather than stimulus-specific. Based on our current and previous results

  15. Ablation of cdk4 and cdk6 affects proliferation of basal progenitor cells in the developing dorsal and ventral forebrain.

    Science.gov (United States)

    Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana

    2018-03-23

    Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  16. Reduced brain perfusion in basal forebrain associated with cognitive decline in Alzheimer's diseases: a Tc-99m HMPAO SPECT study

    International Nuclear Information System (INIS)

    Lee, M.C.; Kang, H.; Kang, E.; Lee, J.S.; Lee, D.S.; Lee, D.W.; Cho, M.J.

    2002-01-01

    Aim: Reduction of regional cerebral blood flow (rCBF) in various cerebral regions and decline of cognitive function have been reported in Alzheimer's disease (AD) patients. The aim of this study was to identify the brain areas showing correlation between longitudinal changes of rCBFs and decline of general mental function, measured by Mini-Mental State Examination (MMSE) in probable Alzheimer's disease patients. Materials and Methods: Nine probable AD patients according to NINCDS-ADRDA criteria and DSM-IV were studied with Tc-99m HMPAO SPECT at an initial point and at the follow-up after a period of average 1.8 year. MMSE score was obtained in both occasions (average MMSE 16.4 at initial study; average MMSE = 8.1 at follow-up). Single SPECT was performed in 30 age-matched normal controls. Each SPECT image was normalized to the cerebellar activity. Using statistical parametric mapping (SPM99), correlation was analyzed between individual changes in rCBF of two SPECT scans and the MMSE scores at the time of each study in AD patients. In addition, the SPECT images of the initial study and the follow-up study were compared with SPECT images of the age-matched normal group respectively. Results: Significant correlation between longitudinal changes of rCBFs and MMSE scores was found in left basal forebrain region including substantia innominata (x, y, z = -24, 16, -23; P < .05, corrected). Within a short follow-up period of 1.8 years, cerebral hypoperfusion extended to various cortical regions from bilateral temporo-parietal to bilateral frontal regions and cingulate cortex, compared to normal controls. Conclusion: The decline of cognitive function in individual AD patients was correlated with rCBF reduction in left basal forebrain. This finding supports the cholinergic hypothesis of AD since hypoperfusion in basal forebrain region might indicate deterioration of cholinergic neurons in nucleus basalis of Meynert or substantia innominata

  17. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression

    Directory of Open Access Journals (Sweden)

    Hasegawa Shunsuke

    2009-03-01

    Full Text Available Abstract Background Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII in learning, memory and long-term potentiation (LTP. However, previous studies have also shown that alpha-CaMKII (+/- heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an increase in defensive aggression. These findings indicated that alpha-CaMKII is important not only for learning and memory but also for emotional behaviors. In this study, to understand the roles of alpha-CaMKII in emotional behavior, we generated transgenic mice overexpressing alpha-CaMKII in the forebrain and analyzed their behavioral phenotypes. Results We generated transgenic mice overexpressing alpha-CaMKII in the forebrain under the control of the alpha-CaMKII promoter. In contrast to alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in anxiety-like behaviors in open field, elevated zero maze, light-dark transition and social interaction tests, and a decrease in locomotor activity in their home cages and novel environments; these phenotypes were the opposite to those observed in alpha-CaMKII (+/- heterozygous knockout mice. In addition, similarly with alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in aggression. However, in contrast to the increase in defensive aggression observed in alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in offensive aggression. Conclusion Up-regulation of alpha-CaMKII expression in the forebrain leads to an increase in anxiety-like behaviors and offensive aggression. From the comparisons with previous findings, we suggest that the expression levels of alpha-CaMKII are associated with the state of emotion; the expression level of alpha-CaMKII positively correlates with the anxiety state and strongly affects

  18. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  19. Conditional Deletion of PDK1 in the Forebrain Causes Neuron Loss and Increased Apoptosis during Cortical Development

    Directory of Open Access Journals (Sweden)

    Congyu Xu

    2017-10-01

    Full Text Available Decreased expression but increased activity of PDK1 has been observed in neurodegenerative disease. To study in vivo function of PDK1 in neuron survival during cortical development, we generate forebrain-specific PDK1 conditional knockout (cKO mice. We demonstrate that PDK1 cKO mice display striking neuron loss and increased apoptosis. We report that PDK1 cKO mice exhibit deficits on several behavioral tasks. Moreover, PDK1 cKO mice show decreased activities for Akt and mTOR. These results highlight an essential role of endogenous PDK1 in the maintenance of neuronal survival during cortical development.

  20. The selective alpha7 nicotinic acetylcholine receptor agonist A-582941 activates immediate early genes in limbic regions of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, M S; Mikkelsen, J D; Timmermann, D B

    2008-01-01

    to study whether alpha7 nAChR stimulation activates brain regions involved in cognition in juvenile as well as adult individuals. Here, we compared the effects of the novel and selective alpha7 nAChR agonist 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) in the juvenile...... regions critically involved in working memory and attention. Furthermore, this effect is more pronounced in juvenile than adult rats, indicating that the juvenile forebrain is more responsive to alpha7 nAChR stimulation. This observation may be relevant in the treatment of juvenile-onset schizophrenia....

  1. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain.

    Science.gov (United States)

    Frankel, Paul S; Cunningham, Kathryn A

    2002-12-27

    The hallucinogen d-lysergic acid diethylamide (d-LSD) evokes dramatic somatic and psychological effects. In order to analyze the neural activation induced by this unique psychoactive drug, we tested the hypothesis that expression of the immediate-early gene product c-Fos is induced in specific regions of the rat forebrain by a relatively low, behaviorally active, dose of d-LSD (0.16 mg/kg, i.p.); c-Fos protein expression was assessed at 30 min, and 1, 2 and 4 h following d-LSD injection. A time- and region-dependent expression of c-Fos was observed with a significant increase (PLSD administration. These data demonstrate a unique pattern of c-Fos expression in the rat forebrain following a relatively low dose of d-LSD and suggest that activation of these forebrain regions contributes to the unique behavioral effects of d-LSD. Copyright 2002 Elsevier Science B.V.

  2. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  3. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB 1 receptor antagonist AM251, but not with the selective CB 2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB 1 receptor, but not by the CB 2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB 1 receptor, but not by the CB 2 receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB 1 receptors

  4. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer’s Disease

    Science.gov (United States)

    Kwakowsky, Andrea; Milne, Michael R.; Waldvogel, Henry J.; Faull, Richard L.

    2016-01-01

    The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease. PMID:27999310

  5. An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center

    Directory of Open Access Journals (Sweden)

    Elena Sena

    2016-10-01

    Full Text Available Recent studies revealed new insights into the development of a unique caudal forebrain-signaling center: the zona limitans intrathalamica (zli. The zli is the last brain signaling center to form and the first forebrain compartment to be established. It is the only part of the dorsal neural tube expressing the morphogen Sonic Hedgehog (Shh whose activity participates in the survival, growth and patterning of neuronal progenitor subpopulations within the thalamic complex. Here, we review the gene regulatory network of transcription factors and cis-regulatory elements that underlies formation of a shh-expressing delimitated domain in the anterior brain. We discuss evidence that this network predates the origin of chordates. We highlight the contribution of Shh, Wnt and Notch signaling to zli development and discuss implications for the fact that the morphogen Shh relies on primary cilia for signal transduction. The network that underlies zli development also contributes to thalamus induction, and to its patterning once the zli has been set up. We present an overview of the brain malformations possibly associated with developmental defects in this gene regulatory network (GRN.

  6. Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly

    Directory of Open Access Journals (Sweden)

    David M. McKean

    2012-07-01

    Holoprosencephaly is the most common forebrain defect in humans. We describe two novel mouse mutants that display a holoprosencephaly-like phenotype. Both mutations disrupt genes in the glycerophosphatidyl inositol (GPI biosynthesis pathway: gonzo disrupts Pign and beaker disrupts Pgap1. GPI anchors normally target and anchor a diverse group of proteins to lipid raft domains. Mechanistically we show that GPI anchored proteins are mislocalized in GPI biosynthesis mutants. Disruption of the GPI-anchored protein Cripto (mouse and TDGF1 (human ortholog have been shown to result in holoprosencephaly, leading to our hypothesis that Cripto is the key GPI anchored protein whose altered function results in an HPE-like phenotype. Cripto is an obligate Nodal co-factor involved in TGFβ signaling, and we show that TGFβ signaling is reduced both in vitro and in vivo. This work demonstrates the importance of the GPI anchor in normal forebrain development and suggests that GPI biosynthesis genes should be screened for association with human holoprosencephaly.

  7. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Andrea Kwakowsky

    2016-12-01

    Full Text Available The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2 on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease.

  8. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats

    International Nuclear Information System (INIS)

    Ray, Anamika; Liu Jing; Ayoubi, Patricia; Pope, Carey

    2010-01-01

    Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clustering while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NFΚB, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse

  9. Destruction of the medial forebrain bundle caudal to the site of stimulation reduces rewarding efficacy but destruction rostrally does not.

    Science.gov (United States)

    Gallistel, C R; Leon, M; Lim, B T; Sim, J C; Waraczynski, M

    1996-08-01

    Rats with an electrode in the medial forebrain bundle (MFB) in or near the ventral tegmental area and another at the level of the rostral hypothalamus sustained large electrolytic lesions at either the rostral or the caudal electrode. The rewarding efficacy of stimulation through the other electrode was determined before and after the lesion. Massive damage to the MFB in the rostral lateral hypothalamus (LH) generally had little effect on the rewarding efficacy of more caudal stimulation, whereas large lesions in the caudal MFB generally reduced the rewarding efficacy of LH stimulation by 35-60%. Similar reductions were produced by knife cuts in the caudal MFB. These results appear to be inconsistent with the hypothesis that the reward fibers consist either of descending or ascending fibers coursing in or near the MFB. It is suggested that the reward fibers are collaterals from neurons with both their somata and their behaviorally significant terminals located primarily in the midbrain.

  10. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake.

    Science.gov (United States)

    Nikonova, Elena V; Gilliland, Jason DA; Tanis, Keith Q; Podtelezhnikov, Alexei A; Rigby, Alison M; Galante, Raymond J; Finney, Eva M; Stone, David J; Renger, John J; Pack, Allan I; Winrow, Christopher J

    2017-06-01

    To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  11. Cytoskeletal Regulation Dominates Temperature-Sensitive Proteomic Changes of Hibernation in Forebrain of 13-Lined Ground Squirrels

    Science.gov (United States)

    Hindle, Allyson G.; Martin, Sandra L.

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy – wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  12. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    Directory of Open Access Journals (Sweden)

    Allyson G Hindle

    Full Text Available 13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins

  13. Ionic mechanisms of action of prion protein fragment PrP(106-126) in rat basal forebrain neurons.

    Science.gov (United States)

    Alier, Kwai; Li, Zongming; Mactavish, David; Westaway, David; Jhamandas, Jack H

    2010-08-01

    Prion diseases are neurodegenerative disorders that are characterized by the presence of the misfolded prion protein (PrP). Neurotoxicity in these diseases may result from prion-induced modulation of ion channel function, changes in neuronal excitability, and consequent disruption of cellular homeostasis. We therefore examined PrP effects on a suite of potassium (K(+)) conductances that govern excitability of basal forebrain neurons. Our study examined the effects of a PrP fragment [PrP(106-126), 50 nM] on rat neurons using the patch clamp technique. In this paradigm, PrP(106-126) peptide, but not the "scrambled" sequence of PrP(106-126), evoked a reduction of whole-cell outward currents in a voltage range between -30 and +30 mV. Reduction of whole-cell outward currents was significantly attenuated in Ca(2+)-free external media and also in the presence of iberiotoxin, a blocker of calcium-activated potassium conductance. PrP(106-126) application also evoked a depression of the delayed rectifier (I(K)) and transient outward (I(A)) potassium currents. By using single cell RT-PCR, we identified the presence of two neuronal chemical phenotypes, GABAergic and cholinergic, in cells from which we recorded. Furthermore, cholinergic and GABAergic neurons were shown to express K(v)4.2 channels. Our data establish that the central region of PrP, defined by the PrP(106-126) peptide used at nanomolar concentrations, induces a reduction of specific K(+) channel conductances in basal forebrain neurons. These findings suggest novel links between PrP signalling partners inferred from genetic experiments, K(+) channels, and PrP-mediated neurotoxicity.

  14. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Robert Edward Sims

    Full Text Available Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  15. Salvinorin A preserves cerebral pial artery autoregulation after forebrain ischemia via the PI3K/AKT/cGMP pathway

    Directory of Open Access Journals (Sweden)

    H.P. Dong

    2018-03-01

    Full Text Available This study aimed to investigate the protective effect of salvinorin A on the cerebral pial artery after forebrain ischemia and explore related mechanisms. Thirty Sprague-Dawley rats received forebrain ischemia for 10 min. The dilation responses of the cerebral pial artery to hypercapnia and hypotension were assessed in rats before and 1 h after ischemia. The ischemia reperfusion (IR control group received DMSO (1 µL/kg immediately after ischemia. Two different doses of salvinorin A (10 and 20 µg/kg were administered following the onset of reperfusion. The 5th, 6th, and 7th groups received salvinorin A (20 µg/kg and LY294002 (10 µM, L-NAME (10 μM, or norbinaltorphimine (norBIN, 1 μM after ischemia. The levels of cGMP in the cerebrospinal fluid (CSF were also measured. The phosphorylation of AKT (p-AKT was measured in the cerebral cortex by western blot at 24 h post-ischemia. Cell necrosis and apoptosis were examined by hematoxylin-eosin staining (HE and TUNEL staining, respectively. The motor function of the rats was evaluated at 1, 2, and 5 days post-ischemia. The dilation responses of the cerebral pial artery were significantly impaired after ischemia and were preserved by salvinorin A treatment. In addition, salvinorin A significantly increased the levels of cGMP and p-AKT, suppressed cell necrosis and apoptosis of the cerebral cortex and improved the motor function of the rats. These effects were abolished by LY294002, L-NAME, and norBIN. Salvinorin A preserved cerebral pial artery autoregulation in response to hypercapnia and hypotension via the PI3K/AKT/cGMP pathway.

  16. Zone separator for multiple zone vessels

    Science.gov (United States)

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  17. Cerebrovascular endothelin-1 hyper-reactivity is associated with transient receptor potential canonical channels 1 and 6 activation and delayed cerebral hypoperfusion after forebrain ischaemia in rats

    DEFF Research Database (Denmark)

    Johansson, S E; Andersen, X E D R; Hansen, R H

    2015-01-01

    . METHODS: Experimental forebrain ischaemia was induced in Wistar male rats by a two-vessel occlusion model, and the cerebral blood flow was measured by magnetic resonance imaging two days after reperfusion. In vitro vasoreactivity studies, immunofluorescence and quantitative PCR were performed on cerebral...... in the vascular smooth muscle cells was enhanced and correlated with decreased cerebral blood flow two days after forebrain ischaemia. Furthermore, under conditions when voltage-dependent calcium channels were inhibited, endothelin-1-induced cerebrovascular contraction was enhanced and this enhancement...... was presumably mediated by Ca(2+) influx via upregulated transient receptor potential canonical channels 1 and 6. CONCLUSIONS: Our data demonstrates that endothelin-1-mediated influx of extracellular Ca(2+) activates transient receptor potential canonical channels 1 and 6 in cerebral vascular smooth muscle cells...

  18. Novel AAV-based rat model of forebrain synucleinopathy shows extensive pathologies and progressive loss of cholinergic interneurons.

    Directory of Open Access Journals (Sweden)

    Patrick Aldrin-Kirk

    Full Text Available Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable

  19. Physiological and Morphological Characterization of Organotypic Cocultures of the Chick Forebrain Area MNH and its Main Input Area DMA/DMP

    OpenAIRE

    Endepols, Heike; Jungnickel, Julia; Braun, Katharina

    2001-01-01

    Cocultures of the learning-relevant forebrain region mediorostrai neostriatum and hyperstriatum ventrale (MNH) and its main glutamatergic input area nucleus dorsomedialis anterior thalami/posterior thalami were morphologically and physiologically characterized. Synaptic contacts of thalamic fibers were lightand electron-microscopically detected on MNH neurons by applying the fluorescence tracer DiI-C18(3) into the thalamus part of the coculture. Most thalamic syn...

  20. The cerebroprotective effect of dextromethorphan assessed by 1H and 31P NMR spectroscopy during global forebrain ischemia in the rat

    International Nuclear Information System (INIS)

    Tulleken, C.A.F.; Rijen, P.C. van; Berkelbach van der Sprenkel, J.W.; Verheul, H.B.; Echteld, C.J.A. van; Balasz, R.; Lewis, P.

    1991-01-01

    Global forebrain ischemia was induced in the rat model by occlusion of both carotid arteries and subsequent lowering of the blood pressure. After 30 minutes of ischemia reperfusion was established. Using 1H and 31P NMR spectroscopy tissue pH values, lactate production, cellular energy index and N-acetyl-aspartate content were determined. The survival rates and histological damage were counted. (author)

  1. Radiation protection zoning

    International Nuclear Information System (INIS)

    2015-01-01

    Radiation being not visible, the zoning of an area containing radioactive sources is important in terms of safety. Concerning radiation protection, 2 work zones are defined by regulations: the monitored zone and the controlled zone. The ministerial order of 15 may 2006 settles the frontier between the 2 zones in terms of radiation dose rates, the rules for access and the safety standards in both zones. Radioprotection rules and the name of the person responsible for radiation protection must be displayed. The frontier between the 2 zones must be materialized and marked with adequate equipment (specific danger signs and tapes). Both zones are submitted to selective entrance, the access for the controlled zone is limited because of the radiation risk and of the necessity of confining radioactive contamination while the limitation of the access to the monitored zone is due to radiation risk only. (A.C.)

  2. Effects of short-term hormonal replacement on learning and on basal forebrain ChAT and TrkA content in ovariectomized rats.

    Science.gov (United States)

    Espinosa-Raya, Judith; Plata-Cruz, Noemí; Neri-Gómez, Teresa; Camacho-Arroyo, Ignacio; Picazo, Ofir

    2011-02-23

    It has been proposed that sex steroid hormones improve performance in some cognitive tasks by regulating the basal forebrain cholinergic function. However, the molecular basis of such influence still remains unknown. Current study analyzed the performance of ovariectomized rats in an autoshaping learning task after a short-term treatment with 17β-estradiol (E2: 4 and 40μg/kg) and/or progesterone (P4: 4mg/kg). These results were correlated with basal forebrain choline acetyltransferase (ChAT) and TrkA protein content. The high dose of E2 enhanced both acquisition in the autoshaping task and the content of ChAT and TrkA. P4 treatment increased ChAT and TrkA content without affecting performance of rats in the autoshaping learning task. Interestingly, the continuous and simultaneous administration of E2 plus P4 did not significantly modify behavioral and biochemical evaluated parameters. These results address the influence of both E2 and P4 on cholinergic and TrkA activity and suggest that the effects of ovarian hormones on cognitive performance involve basal forebrain cholinergic neurons. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. White matter integrity of the medial forebrain bundle and attention and working memory deficits following traumatic brain injury.

    Science.gov (United States)

    Owens, Jacqueline A; Spitz, Gershon; Ponsford, Jennie L; Dymowski, Alicia R; Ferris, Nicholas; Willmott, Catherine

    2017-02-01

    The medial forebrain bundle (MFB) contains ascending catecholamine fibers that project to the prefrontal cortex (PFC). Damage to these fibers following traumatic brain injury (TBI) may alter extracellular catecholamine levels in the PFC and impede attention and working memory ability. This study investigated white matter microstructure of the medial MFB, specifically the supero-lateral branch (slMFB), following TBI, and its association with performance on attention and working memory tasks. Neuropsychological measures of attention and working memory were administered to 20 moderate-severe participants with TBI (posttraumatic amnesia M  = 40.05 ± 37.10 days, median time since injury 10.48 months, range 3.72-87.49) and 20 healthy controls. Probabilistic tractography was used to obtain fractional anisotropy (FA) and mean diffusivity (MD) values for 17 participants with TBI and 20 healthy controls. When compared to controls, participants with TBI were found to have significantly lower FA ( p  attention task, n -back, and Symbol Digit Modalities Test. This study was the first to demonstrate microstructural white matter damage within the slMFB following TBI. However, no evidence was found for an association of alterations to this tract and performance on attentional tasks.

  4. Singing-Related Activity in Anterior Forebrain of Male Zebra Finches Reflects Courtship Motivation for Target Females

    Science.gov (United States)

    Iwasaki, Mai; Poulsen, Thomas M.; Oka, Kotaro; Hessler, Neal A.

    2013-01-01

    A critical function of singing by male songbirds is to attract a female mate. Previous studies have suggested that the anterior forebrain system is involved in this courtship behavior. Neural activity in this system, including the striatal Area X, is strikingly dependent on the function of male singing. When males sing to attract a female bird rather than while alone, less variable neural activity results in less variable song spectral features, which may be attractive to the female. These characteristics of neural activity and singing thus may reflect a male's motivation for courtship. Here, we compared the variability of neural activity and song features between courtship singing directed to a female with whom a male had previously formed a pair-bond or to other females. Surprisingly, across all units, there was no clear tendency for a difference in variability of neural activity or song features between courtship of paired females, nonpaired females, or dummy females. However, across the population of recordings, there was a significant relationship between the relative variability of syllable frequency and neural activity: when syllable frequency was less variable to paired than nonpaired females, neural activity was also less variable (and vice-versa). These results show that the lower variability of neural activity and syllable frequency during directed singing is not a binary distinction from undirected singing, but can vary in intensity, possibly related to the relative preference of a male for his singing target. PMID:24312344

  5. Slice cultures of the imprinting-relevant forebrain area MNH of the domestic chick: quantitative characterization of neuronal morphology.

    Science.gov (United States)

    Hofmann, H; Braun, K

    1995-05-26

    The persistence of morphological features of neurons in slice cultures of the imprinting-relevant forebrain area MNH (mediorostral neostriatum and hyperstriatum ventrale) of the domestic chick was analysed at 7, 14, 21 and 28 days in vitro. After having been explanted and kept in culture the neurons in vitro have larger soma areas, longer and more extensively branched dendritic trees and lower spine frequencies compared to the neurons in vivo. During the analyzed culturing period, the parameters soma area, total and mean dendritic length, number of dendrites, number of dendritic nodes per dendrite and per neuron as well as the spine densities in different dendritic segments showed no significant differences between early and late periods. Highly correlated in every age group were the total dendritic length and the number of dendritic nodes per neuron, indicating regular ramification during dendritic growth. Since these morphological parameters remain stable during the first 4 weeks in vitro, this culture system may provide a suitable model to investigate experimentally induced morphological changes.

  6. Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain.

    Science.gov (United States)

    Greco, M A; McCarley, R W; Shiromani, P J

    1999-01-01

    The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.

  7. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.

    Science.gov (United States)

    Reyes, Beverly A S; Van Bockstaele, Elisabeth J

    2006-10-30

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions.

  8. Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the basal forebrain and hypothalamus in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Walaas, I; Fonnum, F

    1980-01-01

    The effects of bilateral transection of the fornix bundle on the high affinity uptake of glutamate and on the amino acid content in several nuclei of rat forebrain and hypothalamus were studied in order to investigate the possible role of glutamate as a transmitter of these fibres. This lesion decreased the high affinity uptake of L-glutamate by 60 to 70% in the mammillary body and lateral septum, and by 40 to 50% in the anterior diagonal band nucleus, the bed nucleus of the stria terminalis, the mediobasal hypothalamus and the nucleus accumbens. The content of endogenous glutamate in samples dissected from freeze-dried tissue also decreased significantly in these regions. Endogenous aspartate was slightly decreased in the anterior diagonal band nucleus and the mammillary body, but unchanged in the other regions. No significant changes were seen in the levels of serine, ..gamma..-aminobutyric acid, glutamine and taurine, except for an increase in glutamine and taurine in the bed nucleus of the stria terminalis. The high affinity uptake of ..gamma..-aminobutyric acid, tested in the bed nucleus of the stria terminalis, the mediobasal hypothalamus and the mammillary body, was unchanged after the lesion. The results indicate that allocortical efferents innervating subcortial nuclei through the fornix might use glutamate as a transmitter. The study further supports the concept that glutamate plays an important role as transmitter of several different corticofugal fibre systems in mammalian brain.

  9. Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome.

    Science.gov (United States)

    Powers, Brian E; Velazquez, Ramon; Kelley, Christy M; Ash, Jessica A; Strawderman, Myla S; Alldred, Melissa J; Ginsberg, Stephen D; Mufson, Elliott J; Strupp, Barbara J

    2016-12-01

    Individuals with Down syndrome (DS) exhibit intellectual disability and develop Alzheimer's disease-like neuropathology during the third decade of life. The Ts65Dn mouse model of DS exhibits key features of both disorders, including impairments in learning, attention and memory, as well as atrophy of basal forebrain cholinergic neurons (BFCNs). The present study evaluated attentional function in relation to BFCN morphology in young (3 months) and middle-aged (12 months) Ts65Dn mice and disomic (2N) controls. Ts65Dn mice exhibited attentional dysfunction at both ages, with greater impairment in older trisomics. Density of BFCNs was significantly lower for Ts65Dn mice independent of age, which may contribute to attentional dysfunction since BFCN density was positively associated with performance on an attention task. BFCN volume decreased with age in 2N but not Ts65Dn mice. Paradoxically, BFCN volume was greater in older trisomic mice, suggestive of a compensatory response. In sum, attentional dysfunction occurred in both young and middle-aged Ts65Dn mice, which may in part reflect reduced density and/or phenotypic alterations in BFCNs.

  10. Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain.

    Science.gov (United States)

    Campbell, John N; Register, David; Churn, Severn B

    2012-01-20

    Traumatic brain injury (TBI) causes both an acute loss of tissue and a progressive injury through reactive processes such as excitotoxicity and inflammation. These processes may worsen neural dysfunction by altering neuronal circuitry beyond the focally-damaged tissue. One means of circuit alteration may involve dendritic spines, micron-sized protuberances of dendritic membrane that support most of the excitatory synapses in the brain. This study used a modified Golgi-Cox technique to track changes in spine density on the proximal dendrites of principal cells in rat forebrain regions. Spine density was assessed at 1 h, 24 h, and 1 week after a lateral fluid percussion TBI of moderate severity. At 1 h after TBI, no changes in spine density were observed in any of the brain regions examined. By 24 h after TBI, however, spine density had decreased in ipsilateral neocortex in layer II and III and dorsal dentate gyrus (dDG). This apparent loss of spines was prevented by a single, post-injury administration of the calcineurin inhibitor FK506. These results, together with those of a companion study, indicate an FK506-sensitive mechanism of dendritic spine loss in the TBI model. Furthermore, by 1 week after TBI, spine density had increased substantially above control levels, bilaterally in CA1 and CA3 and ipsilaterally in dDG. The apparent overgrowth of spines in CA1 is of particular interest, as it may explain previous reports of abnormal and potentially epileptogenic activity in this brain region.

  11. Β-amyloid 1-42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Linn Wicklund

    Full Text Available Cognitive impairment in Alzheimer's disease (AD patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs. Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES cells with nerve growth factor (NGF as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.

  12. A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression.

    Science.gov (United States)

    Fenoy, Albert J; Schulz, Paul E; Selvaraj, Sudhakar; Burrows, Christina L; Zunta-Soares, Giovanna; Durkin, Kathryn; Zanotti-Fregonara, Paolo; Quevedo, Joao; Soares, Jair C

    2018-06-04

    Deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle (MFB) has been reported to lead to rapid antidepressant effects. In this longitudinal study, we expand upon the initial results we reported at 26 weeks (Fenoy et al., 2016), showing sustained antidepressant effects of MFB DBS on six patients with treatment-resistant depression (TRD) over 1 year. The Montgomery-Åsberg Depression Rating Scale (MADRS) was used as the primary assessment tool. Deterministic fiber tracking was used to individually map the target area; analysis was performed to compare modulated fiber tracts between patients. Intraoperatively, upon stimulation at target, responders reported immediate increases in energy and motivation. An insertional effect was seen during the 4-week sham stimulation phase from baseline (28% mean MADRS reduction, p = 0.02). However, after 1 week of initiating stimulation, three of six patients had a > 50% decrease in MADRS scores relative to baseline (43% mean MADRS reduction, p = 0.005). One patient withdrew from study participation. At 52 weeks, four of remaining five patients have > 70% decrease in MADRS scores relative to baseline (73% mean MADRS reduction, p = 0.007). Evaluation of modulated fiber tracts reveals significant common orbitofrontal connectivity to the target region in all responders. Neuropsychological testing and 18 F-fluoro-deoxyglucose-positron emission tomography cerebral metabolism evaluations performed at baseline and at 52 weeks showed minimal changes and verified safety. This longitudinal evaluation of MFB DBS demonstrated rapid antidepressant effects, as initially reported by Schlaepfer et al. (2013), and supports the use of DBS for TRD.

  13. Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Nomoto Masanori

    2012-02-01

    Full Text Available Abstract Background Retinoid signaling pathways mediated by retinoic acid receptor (RAR/retinoid × receptor (RXR-mediated transcription play critical roles in hippocampal synaptic plasticity. Furthermore, recent studies have shown that treatment with retinoic acid alleviates age-related deficits in hippocampal long-term potentiation (LTP and memory performance and, furthermore, memory deficits in a transgenic mouse model of Alzheimer's disease. However, the roles of the RAR/RXR signaling pathway in learning and memory at the behavioral level have still not been well characterized in the adult brain. We here show essential roles for RAR/RXR in hippocampus-dependent learning and memory. In the current study, we generated transgenic mice in which the expression of dominant-negative RAR (dnRAR could be induced in the mature brain using a tetracycline-dependent transcription factor and examined the effects of RAR/RXR loss. Results The expression of dnRAR in the forebrain down-regulated the expression of RARβ, a target gene of RAR/RXR, indicating that dnRAR mice exhibit dysfunction of the RAR/RXR signaling pathway. Similar with previous findings, dnRAR mice displayed impaired LTP and AMPA-mediated synaptic transmission in the hippocampus. More importantly, these mutant mice displayed impaired hippocampus-dependent social recognition and spatial memory. However, these deficits of LTP and memory performance were rescued by stronger conditioning stimulation and spaced training, respectively. Finally, we found that pharmacological blockade of RARα in the hippocampus impairs social recognition memory. Conclusions From these observations, we concluded that the RAR/RXR signaling pathway greatly contributes to learning and memory, and LTP in the hippocampus in the adult brain.

  14. Song competition affects monoamine levels in sensory and motor forebrain regions of male Lincoln's sparrows (Melospiza lincolnii.

    Directory of Open Access Journals (Sweden)

    Kendra B Sewall

    Full Text Available Male animals often change their behavior in response to the level of competition for mates. Male Lincoln's sparrows (Melospiza lincolnii modulate their competitive singing over the period of a week as a function of the level of challenge associated with competitors' songs. Differences in song challenge and associated shifts in competitive state should be accompanied by neural changes, potentially in regions that regulate perception and song production. The monoamines mediate neural plasticity in response to environmental cues to achieve shifts in behavioral state. Therefore, using high pressure liquid chromatography with electrochemical detection, we compared levels of monoamines and their metabolites from male Lincoln's sparrows exposed to songs categorized as more or less challenging. We compared levels of norepinephrine and its principal metabolite in two perceptual regions of the auditory telencephalon, the caudomedial nidopallium and the caudomedial mesopallium (CMM, because this chemical is implicated in modulating auditory sensitivity to song. We also measured the levels of dopamine and its principal metabolite in two song control nuclei, area X and the robust nucleus of the arcopallium (RA, because dopamine is implicated in regulating song output. We measured the levels of serotonin and its principal metabolite in all four brain regions because this monoamine is implicated in perception and behavioral output and is found throughout the avian forebrain. After controlling for recent singing, we found that males exposed to more challenging song had higher levels of norepinephrine metabolite in the CMM and lower levels of serotonin in the RA. Collectively, these findings are consistent with norepinephrine in perceptual brain regions and serotonin in song control regions contributing to neuroplasticity that underlies socially-induced changes in behavioral state.

  15. Magnesium chloride alone or in combination with diazepam fails to prevent hippocampal damage following transient forebrain ischemia

    Directory of Open Access Journals (Sweden)

    H. Milani

    1999-10-01

    Full Text Available In the central nervous system, magnesium ion (Mg2+ acts as an endogenous modulator of N-methyl-D-aspartate (NMDA-coupled calcium channels, and may play a major role in the pathomechanisms of ischemic brain damage. In the present study, we investigated the effects of magnesium chloride (MgCl2, 2.5, 5.0 or 7.5 mmol/kg, either alone or in combination with diazepam (DZ, on ischemia-induced hippocampal cell death. Male Wistar rats (250-300 g were subjected to transient forebrain ischemia for 15 min using the 4-vessel occlusion model. MgCl2 was applied systemically (sc in single (1x, 2 h post-ischemia or multiple doses (4x, 1, 2, 24 and 48 h post-ischemia. DZ was always given twice, at 1 and 2 h post-ischemia. Thus, ischemia-subjected rats were assigned to one of the following treatments: vehicle (0.1 ml/kg, N = 34, DZ (10 mg/kg, N = 24, MgCl2 (2.5 mmol/kg, N = 10, MgCl2 (5.0 mmol/kg, N = 17, MgCl2 (7.5 mmol/kg, N = 9 or MgCl2 (5 mmol/kg + DZ (10 mg/kg, N = 14. Seven days after ischemia the brains were analyzed histologically. Fifteen minutes of ischemia caused massive pyramidal cell loss in the subiculum (90.3% and CA1 (88.4% sectors of the hippocampus (P0.05. Both DZ alone and DZ + MgCl2 reduced rectal temperature significantly (P<0.05. No animal death was observed after drug treatment. These data indicate that exogenous magnesium, when administered systemically post-ischemia even in different multiple dose schedules, alone or with diazepam, is not useful against the histopathological effects of transient global cerebral ischemia in rats.

  16. Hippocampus and Basal Forebrain Volumetry for Dementia and Mild Cognitive Impairment Diagnosis: Could It Be Useful in Primary Care?

    Science.gov (United States)

    Teipel, Stefan J; Keller, Felix; Thyrian, Jochen R; Strohmaier, Urs; Altiner, Attila; Hoffmann, Wolfgang; Kilimann, Ingo

    2017-01-01

    Once a patient or a knowledgeable informant has noticed decline in memory or other cognitive functions, initiation of early dementia assessment is recommended. Hippocampus and cholinergic basal forebrain (BF) volumetry supports the detection of prodromal and early stages of Alzheimer's disease (AD) dementia in highly selected patient populations. To compare effect size and diagnostic accuracy of hippocampus and BF volumetry between patients recruited in highly specialized versus primary care and to assess the effect of white matter lesions as a proxy for cerebrovascular comorbidity on diagnostic accuracy. We determined hippocampus and BF volumes and white matter lesion load from MRI scans of 71 participants included in a primary care intervention trial (clinicaltrials.gov identifier: NCT01401582) and matched 71 participants stemming from a memory clinic. Samples included healthy controls and people with mild cognitive impairment (MCI), AD dementia, mixed dementia, and non-AD related dementias. Volumetric measures reached similar effect sizes and cross-validated levels of accuracy in the primary care and the memory clinic samples for the discrimination of AD and mixed dementia cases from healthy controls. In the primary care MCI cases, volumetric measures reached only random guessing levels of accuracy. White matter lesions had only a modest effect on effect size and diagnostic accuracy. Hippocampus and BF volumetry may usefully be employed for the identification of AD and mixed dementia, but the detection of MCI does not benefit from the use of these volumetric markers in a primary care setting.

  17. Zoning Districts - Volusia County HUB Zones

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Historically Underutilized Business (HUB) Zones in Volusia County. Go to http://www.sba.gov/hubzone or contact the Department of Economic Development (386) 248-8048...

  18. Ablation of Ca(V)2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    Science.gov (United States)

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated Ca(V)2.1 (P/Q-type) Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V)2.1 mouse models. Global Ca(V)2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V)2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V)2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V)2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V)2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V)2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V)2.1 in the adult murine forebrain.

  19. Ablation of CaV2.1 Voltage-Gated Ca2+ Channels in Mouse Forebrain Generates Multiple Cognitive Impairments

    Science.gov (United States)

    Mallmann, Robert Theodor; Elgueta, Claudio; Sleman, Faten; Castonguay, Jan; Wilmes, Thomas; van den Maagdenberg, Arn; Klugbauer, Norbert

    2013-01-01

    Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels located at the presynaptic membrane are known to control a multitude of Ca2+-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic CaV2.1 mouse models. Global CaV2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of CaV2.1 Ca2+ channels for complex behaviour in adult mice. Consequently we established a forebrain specific CaV2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of CaV2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific CaV2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional CaV2.1 knock-out model that is most suitable for analysing the in vivo functions of CaV2.1 in the adult murine forebrain. PMID:24205277

  20. Deficits in Docosahexaenoic Acid Accrual during Adolescence Reduce Rat Forebrain White Matter Microstructural Integrity: An in vivo Diffusion Tensor Imaging Study.

    Science.gov (United States)

    McNamara, Robert K; Schurdak, Jennifer D; Asch, Ruth H; Peters, Bart D; Lindquist, Diana M

    2018-01-01

    Neuropsychiatric disorders that frequently initially emerge during adolescence are associated with deficits in the omega-3 (n-3) fatty acid docosahexaenoic acid (DHA), elevated proinflammatory signaling, and regional reductions in white matter integrity (WMI). This study determined the effects of altering brain DHA accrual during adolescence on WMI in the rat brain by diffusion tensor imaging (DTI), and investigated the potential mediating role of proinflammatory signaling. During periadolescent development, male rats were fed a diet deficient in n-3 fatty acids (DEF, n = 20), a fish oil-fortified diet containing preformed DHA (FO, n = 20), or a control diet (CON, n = 20). In adulthood, DTI scans were performed and brain WMI was determined using voxelwise tract-based spatial statistics (TBSS). Postmortem fatty acid composition, peripheral (plasma IL-1β, IL-6, and C-reactive protein [CRP]) and central (IL-1β and CD11b mRNA) proinflammatory markers, and myelin basic protein (MBP) mRNA expression were determined. Compared with CON rats, forebrain DHA levels were lower in DEF rats and higher in FO rats. Compared with CON rats, DEF rats exhibited greater radial diffusivity (RD) and mean diffusivity in the right external capsule, and greater axial diffusivity in the corpus callosum genu and left external capsule. DEF rats also exhibited greater RD than FO rats in the right external capsule. Forebrain MBP expression did not differ between groups. Compared with CON rats, central (IL-1β and CD11b) and peripheral (IL-1β and IL-6) proinflammatory markers were not different in DEF rats, and DEF rats exhibited lower CRP levels. These findings demonstrate that deficits in adolescent DHA accrual negatively impact forebrain WMI, independently of elevated proinflammatory signaling. © 2017 S. Karger AG, Basel.

  1. Ablation of Ca(V2.1 voltage-gated Ca²⁺ channels in mouse forebrain generates multiple cognitive impairments.

    Directory of Open Access Journals (Sweden)

    Robert Theodor Mallmann

    Full Text Available Voltage-gated Ca(V2.1 (P/Q-type Ca²⁺ channels located at the presynaptic membrane are known to control a multitude of Ca²⁺-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V2.1 mouse models. Global Ca(V2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V2.1 Ca²⁺ channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V2.1 in the adult murine forebrain.

  2. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water

    International Nuclear Information System (INIS)

    Bowyer, John F.; Latendresse, John R.; Delongchamp, Robert R.; Warbritton, Alan R.; Thomas, Monzy; Divine, Becky; Doerge, Daniel R.

    2009-01-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were ≤ 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  3. Differentiation of Forebrain and Hippocampal Dopamine 1-Class Receptors, D1R and D5R, in Spatial Learning and Memory

    Science.gov (United States)

    Sariñana, Joshua; Tonegawa, Susumu

    2017-01-01

    Activation of prefrontal cortical (PFC), striatal, and hippocampal dopamine 1-class receptors (D1R and D5R) is necessary for normal spatial information processing. Yet the precise role of the D1R versus the D5R in the aforementioned structures, and their specific contribution to the water-maze spatial learning task remains unknown. D1R- and D5R- specific in situ hybridization probes showed that forebrain restricted D1R and D5R KO mice (F-D1R/D5R KO) displayed D1R mRNA deletion in the medial (m)PFC, dorsal and ventral striatum, and the dentate gyrus (DG) of the hippocampus. D5R mRNA deletion was limited to the mPFC, the CA1 and DG hippocampal subregions. F-D1R/D5R KO mice were given water-maze training and displayed subtle spatial latency differences between genotypes and spatial memory deficits during both regular and reversal training. To differentiate forebrain D1R from D5R activation, forebrain restricted D1R KO (F-D1R KO) and D5R KO (F-D5R KO) mice were trained on the water-maze task. F-D1R KO animals exhibited escape latency deficits throughout regular and reversal training as well as spatial memory deficits during reversal training. F-D1R KO mice also showed perseverative behavior during the reversal spatial memory probe test. In contrast, F-D5R KO animals did not present observable deficits on the water-maze task. Because F-D1R KO mice showed water-maze deficits we tested the necessity of hippocampal D1R activation for spatial learning and memory. We trained DG restricted D1R KO (DG-D1R KO) mice on the water-maze task. DG-D1R KO mice did not present detectable spatial memory deficit, but did show subtle deficits during specific days of training. Our data provides evidence that forebrain D5R activation plays a unique role in spatial learning and memory in conjunction with D1R activation. Moreover, these data suggest that mPFC and striatal, but not DG D1R activation are essential for spatial learning and memory. PMID:26174222

  4. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  5. ZoneLib

    DEFF Research Database (Denmark)

    Jessen, Jan Jacob; Schiøler, Henrik

    2006-01-01

    We present a dynamic model for climate in a livestock building divided into a number of zones, and a corresponding modular Simulink library (ZoneLib). While most literature in this area consider air flow as a control parameter we show how to model climate dynamics using actual control signals...... development of ZoneLib....

  6. Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice.

    Science.gov (United States)

    Cádiz-Moretti, Bernardita; Abellán-Álvaro, María; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique

    2016-01-01

    The transitional zone between the ventral part of the piriform cortex and the anterior cortical nucleus of the amygdala, named the cortex-amygdala transition zone (CxA), shows two differential features that allow its identification as a particular structure. First, it receives dense cholinergic and dopaminergic innervations as compared to the adjacent piriform cortex and amygdala, and second, it receives projections from the main and accessory olfactory bulbs. In this work we have studied the pattern of afferent and efferent projections of the CxA, which are mainly unknown, by using the retrograde tracer Fluorogold and the anterograde tracer biotinylated dextranamine. The results show that the CxA receives a relatively restricted set of intratelencephalic connections, originated mainly by the olfactory system and basal forebrain, with minor afferents from the amygdala. The only relevant extratelencephalic afference originates in the ventral tegmental area (VTA). The efferent projections of the CxA reciprocate the inputs from the piriform cortex and olfactory amygdala. In addition, the CxA projects densely to the basolateral amygdaloid nucleus and the olfactory tubercle. The extratelencephalic projections of the CxA are very scarce, and target mainly hypothalamic structures. The pattern of connections of the CxA suggests that it is indeed a transitional area between the piriform cortex and the cortical amygdala. Double labeling with choline acetyltransferase indicates that the afferent projection from the basal forebrain is the origin of its distinctive cholinergic innervation, and double labeling with dopamine transporter shows that the projection from the VTA is the source of dopaminergic innervation. These connectivity and neurochemical features, together with the fact that it receives vomeronasal in addition to olfactory information, suggest that the CxA may be involved in processing olfactory information endowed with relevant biological meaning, such as odors

  7. Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory.

    Science.gov (United States)

    Jacobs, S A; Tsien, J Z

    2014-04-01

    Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long-term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long-term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long-term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long-term memory function, including the ethologically important memories such as social recognition and olfactory memory.

  8. Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections.

    Directory of Open Access Journals (Sweden)

    Veronica Bianchi

    Full Text Available The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.

  9. Mapping the co-localization of the circadian proteins PER2 and BMAL1 with enkephalin and substance P throughout the rodent forebrain.

    Directory of Open Access Journals (Sweden)

    Ariana Frederick

    Full Text Available Despite rhythmic expression of clock genes being found throughout the central nervous system, very little is known about their function outside of the suprachiasmatic nucleus. Determining the pattern of clock gene expression across neuronal subpopulations is a key step in understanding their regulation and how they may influence the functions of various brain structures. Using immunofluorescence and confocal microscopy, we quantified the co-expression of the clock proteins BMAL1 and PER2 with two neuropeptides, Substance P (SubP and Enkephalin (Enk, expressed in distinct neuronal populations throughout the forebrain. Regions examined included the limbic forebrain (dorsal striatum, nucleus accumbens, amygdala, stria terminalis, thalamus medial habenula of the thalamus, paraventricular nucleus and arcuate nucleus of the hypothalamus and the olfactory bulb. In most regions examined, BMAL1 was homogeneously expressed in nearly all neurons (~90%, and PER2 was expressed in a slightly lower proportion of cells. There was no specific correlation to SubP- or Enk- expressing subpopulations. The olfactory bulb was unique in that PER2 and BMAL1 were expressed in a much smaller percentage of cells, and Enk was rarely found in the same cells that expressed the clock proteins (SubP was undetectable. These results indicate that clock genes are not unique to specific cell types, and further studies will be required to determine the factors that contribute to the regulation of clock gene expression throughout the brain.

  10. How microelectrode array-based chick forebrain neuron biosensors respond to glutamate NMDA receptor antagonist AP5 and GABAA receptor antagonist musimol

    Directory of Open Access Journals (Sweden)

    Serena Y. Kuang

    2016-09-01

    Full Text Available We have established a long-term, stable primary chick forebrain neuron (FBN culture on a microelectrode array platform as a biosensor system for neurotoxicant screening and for neuroelectrophysiological studies for multiple purposes. This paper reports some of our results, which characterize the biosensor pharmacologically. Dose-response experiments were conducted using NMDA receptor antagonist AP5 and GABAA receptor agonist musimol (MUS. The chick FBN biosensor (C-FBN-biosensor responds to the two agents in a pattern similar to that of rodent counterparts; the estimated EC50s (the effective concentration that causes 50% inhibition of the maximal effect are 2.3 μM and 0.25 μM, respectively. Intercultural and intracultural reproducibility and long-term reusability of the C-FBN-biosensor are addressed and discussed. A phenomenon of sensitization of the biosensor that accompanies intracultural reproducibility in paired dose-response experiments for the same agent (AP5 or MUS is reported. The potential application of the C-FBN-biosensor as an alternative to rodent biosensors in shared sensing domains (NMDA receptor and GABAA receptor is suggested. Keywords: Biosensor, Microelectrode array, Neurotoxicity, Chick forebrain neuron, AP5, Musimol

  11. Work zone safety analysis.

    Science.gov (United States)

    2013-11-01

    This report presents research performed analyzing crashes in work zones in the state of New Jersey so as to : identify critical areas in work zones susceptible to crashes and key factors that contribute to these crashes. A field : data collection on ...

  12. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  13. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study.

    Science.gov (United States)

    Zant, Janneke C; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V; McCarley, Robert W; Brown, Ritchie E; Basheer, Radhika

    2016-02-10

    Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral

  14. Understanding the cognitive impact of the contraceptive estrogen Ethinyl Estradiol: tonic and cyclic administration impairs memory, and performance correlates with basal forebrain cholinergic system integrity.

    Science.gov (United States)

    Mennenga, Sarah E; Gerson, Julia E; Koebele, Stephanie V; Kingston, Melissa L; Tsang, Candy W S; Engler-Chiurazzi, Elizabeth B; Baxter, Leslie C; Bimonte-Nelson, Heather A

    2015-04-01

    Ethinyl Estradiol (EE), a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives, and is found in at least 30 different contraceptive formulations currently prescribed to women as well as hormone therapies prescribed to menopausal women. Thus, EE is prescribed clinically to women at ages ranging from puberty to reproductive senescence. Here, in two separate studies, the cognitive effects of cyclic or tonic EE administration following ovariectomy (Ovx) were evaluated in young female rats. Study I assessed the cognitive effects of low and high doses of EE, delivered tonically via a subcutaneous osmotic pump. Study II evaluated the cognitive effects of low, medium, and high doses of EE administered via a daily subcutaneous injection, modeling the daily rise and fall of serum EE levels with oral regimens. Study II also investigated the impact of low, medium and high doses of EE on the basal forebrain cholinergic system. The low and medium doses utilized here correspond to the range of doses currently used in clinical formulations, and the high dose corresponds to doses prescribed to a generation of women between 1960 and 1970, when oral contraceptives first became available. We evaluate cognition using a battery of maze tasks tapping several domains of spatial learning and memory as well as basal forebrain cholinergic integrity using immunohistochemistry and unbiased stereology to estimate the number of choline acetyltransferase (ChAT)-producing cells in the medial septum and vertical/diagonal bands. At the highest dose, EE treatment impaired multiple domains of spatial memory relative to vehicle treatment, regardless of administration method. When given cyclically at the low and medium doses, EE did not impact working memory, but transiently impaired reference memory during the learning phase of testing. Of the doses and regimens tested here, only EE at the highest dose impaired several domains of memory

  15. VT Data - Zoning 20120709, Huntington

    Data.gov (United States)

    Vermont Center for Geographic Information — Zoning district data for the Town of Huntington, Vermont. For details regarding each zoning district refer to the current zoning regulations on town of Huntington's...

  16. Promise Zones for Applicants

    Data.gov (United States)

    Department of Housing and Urban Development — This tool assists applicants to HUD's Promise Zone initiative prepare data to submit with their application by allowing applicants to draw the exact location of the...

  17. Speeds in school zones.

    Science.gov (United States)

    2009-02-01

    School speed zones are frequently requested traffic controls for school areas, based on the common belief : that if the transportation agency would only install a reduced speed limit, then drivers would no longer : speed through the area. This resear...

  18. Buffer Zone Fact Sheets

    Science.gov (United States)

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  19. Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates

    Science.gov (United States)

    Duque, Alvaro; Krsnik, Zeljka; Kostović, Ivica; Rakic, Pasko

    2016-01-01

    The subplate (SP) was the last cellular compartment added to the Boulder Committee’s list of transient embryonic zones [Bystron I, Blakemore C, Rakic P (2008) Nature Rev Neurosci 9(2):110–122]. It is highly developed in human and nonhuman primates, but its origin, mode, and dynamics of development, resolution, and eventual extinction are not well understood because human postmortem tissue offers only static descriptive data, and mice cannot serve as an adequate experimental model for the distinct regional differences in primates. Here, we take advantage of the large and slowly developing SP in macaque monkey to examine the origin, settling pattern, and subsequent dispersion of the SP neurons in primates. Monkey embryos exposed to the radioactive DNA replication marker tritiated thymidine ([3H]dT, or TdR) at early embryonic ages were killed at different intervals postinjection to follow postmitotic cells' positional changes. As expected in primates, most SP neurons generated in the ventricular zone initially migrate radially, together with prospective layer 6 neurons. Surprisingly, mostly during midgestation, SP cells become secondarily displaced and widespread into the expanding SP zone, which becomes particularly wide subjacent to the association cortical areas and underneath the summit of its folia. We found that invasion of monoamine, basal forebrain, thalamocortical, and corticocortical axons is mainly responsible for this region-dependent passive dispersion of the SP cells. Histologic and immunohistochemical comparison with the human SP at corresponding fetal ages indicates that the same developmental events occur in both primate species. PMID:27503885

  20. Inducible forebrain-specific ablation of the transcription factor Creb during adulthood induces anxiety but no spatial/contextual learning deficits

    Directory of Open Access Journals (Sweden)

    Miriam Annika Vogt

    2014-11-01

    Full Text Available The cyclic AMP (cAMP-response element binding protein (CREB is an activity-dependent transcription factor playing a role in synaptic plasticity, learning and memory, and emotional behavior. However, the impact of Creb ablation on rodent behavior is vague as e.g. memory performance of different Creb mutant mice depends on the specific type of mutation per se but additionally on the background and learning protocol differences. Here we present the first targeted ablation of CREB induced during adulthood selectively in principal forebrain neurons in a pure background strain of C57BL/6 mice. All hippocampal principal neurons exhibited lack of CREB expression. Mutant mice showed a severe anxiety phenotype in the openfield and novel object exploration test as well as in the Dark-Light Box Test, but unaltered hippocampus-dependent long-term memory in the Morris water maze and in context dependent fear conditioning. On the molecular level, CREB ablation led to CREM up regulation in the hippocampus and frontal cortex which may at least in part compensate for the loss of CREB. BDNF, a postulated CREB target gene, was down regulated in the frontal lobe but not in the hippocampus; neurogenesis remained unaltered. Our data indicate that in the adult mouse forebrain the late onset of CREB ablation can, in case of memory functionality, be compensated for and is not essential for memory consolidation and retrieval during adulthood. In contrast, the presence of CREB protein during adulthood seems to be pivotal for the regulation of emotional behavior.

  1. Zones of emotional labour

    DEFF Research Database (Denmark)

    Strøbæk, Pernille Solveig

    2011-01-01

    The paper suggests that due to the difficult nature of their work public family law caseworkers are to be included in the definition of emotional labour even though they are omitted by Hochschild. Based upon a review of the structures involved in emotional labour an explorative qualitative study...... is put forth among 25 Danish public family law caseworkers. The study points to personal, professional, and social zones of emotional labour through which the caseworkers carry out their work. Emotional labour zones mark emotion structures that may be challenging due to complex emotional intersections...

  2. Nuclear free zone

    International Nuclear Information System (INIS)

    Christoffel, T.

    1987-01-01

    Health professionals have played a leading role in alerting and educating the public regarding the danger of nuclear war which has been described as the last epidemic our civilization will know. Having convinced most people that the use of nuclear weapons would mean intolerable consequences, groups such as Physicians for Social Responsibility have focused on the second critical question how likely is it that these weapons will be used? The oultlook is grim. This article describes the nuclear free zone movement, explores relevant legal questions, and shows how the political potential of nuclear free zones threatens to open a deep rift in the American constitutional system

  3. Optimal exploration target zones

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available -of-evidence (WofE) method logistic regression canonical favorability analysis neural networks evidential belief functions Optimal Exploration Target Zones Debba, Carranza, Stein, van der Meer Introduction to Remote Sensing Background and Objective of the study... for the following equation: n∑ i=r ( n i ) pi(1− p)n−i = 0.95 . (1) Optimal Exploration Target Zones Debba, Carranza, Stein, van der Meer Introduction to Remote Sensing Background and Objective of the study Methodology Results METHODS (cont. . . ): FITNESS FUNCTION...

  4. Dike zones on Venus

    Science.gov (United States)

    Markov, M. S.; Sukhanov, A. L.

    1987-01-01

    Venusian dike zone structures were identified from Venera 15 and 16 radar images. These include: a zone of subparallel rows centered at 30 deg N, 7 deg E; a system of intersecting bands centered at 67 deg N, 284 deg E; polygonal systems in lavas covering the structural base uplift centered at 47 deg N, 200 deg E; a system of light bands in the region of the ring structure centered at 43 deg N, 13 deg E; and a dike band centered at 27 deg N, 36 deg E.

  5. Splenic marginal zone lymphoma.

    Science.gov (United States)

    Piris, Miguel A; Onaindía, Arantza; Mollejo, Manuela

    Splenic marginal zone lymphoma (SMZL) is an indolent small B-cell lymphoma involving the spleen and bone marrow characterized by a micronodular tumoral infiltration that replaces the preexisting lymphoid follicles and shows marginal zone differentiation as a distinctive finding. SMZL cases are characterized by prominent splenomegaly and bone marrow and peripheral blood infiltration. Cells in peripheral blood show a villous cytology. Bone marrow and peripheral blood characteristic features usually allow a diagnosis of SMZL to be performed. Mutational spectrum of SMZL identifies specific findings, such as 7q loss and NOTCH2 and KLF2 mutations, both genes related with marginal zone differentiation. There is a striking clinical variability in SMZL cases, dependent of the tumoral load and performance status. Specific molecular markers such as 7q loss, p53 loss/mutation, NOTCH2 and KLF2 mutations have been found to be associated with the clinical variability. Distinction from Monoclonal B-cell lymphocytosis with marginal zone phenotype is still an open issue that requires identification of precise and specific thresholds with clinical meaning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Nuclear weapons free zones

    International Nuclear Information System (INIS)

    Stahl, K.

    1990-01-01

    The article analyses the concept and problems of the two nuclear weapons free zones in Latin America and in the South Pacific established by the Treaty of Tlatelolco and the Treaty of Rarotonga. So far the nuclear weapons states except China have refused to sign the additional protocols of the Treaties or have signed them only with considerable provisos. Therefore they don't fully recognize the nuclear weapons free status of those zones, or they don't recognize it at all. Both Treaties contain no provisions to regulate the transit of nuclear weapons through the zones. This allows de facto the stationing of nuclear weapons in the military bases of the US which are located within the nuclear weapons free zone of Latin America. The Treaty of Tlatelolco contains also the right of the states, party to the Treaty, to explode nuclear devices for peaceful purposes. Since peaceful and military nuclear explosions cannot be distinguished technically, this right could also undermine the nuclear weapons free status of the region. Important nuclear threshold countries like Argentina and Brazil have furthermore refrained from putting the Treaty into force. (orig.) [de

  7. Navigating ECA-Zones

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Hendriksen, Christian

    This report examines the effect that ECA-zone regulation has on the optimal vessel fuel strategies for compliance. The findings of this report are trifold, and this report is coupled with a calculation tool which is released to assist ship-owners in the ECA decision making. The first key insight...... much time their operated vessels navigate the ECA in the future....

  8. Buffer Zone Sign Template

    Science.gov (United States)

    The certified pesticide applicator is required to post a comparable sign, designating a buffer zone around the soil fumigant application block in order to control exposure risk. It must include the don't walk symbol, product name, and applicator contact.

  9. Buffer Zone, Nicosia

    OpenAIRE

    Sorensen, Marie Louise

    2010-01-01

    Images of the United Nations Buffer Zone or Green Line which has partitioned Cyprus since 1974 The research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 217411.

  10. Arid Zone Hydrology

    Science.gov (United States)

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  11. Evaluation of Ohio work zone speed zones process.

    Science.gov (United States)

    2014-06-01

    This report describes the methodology and results of analyses performed to determine the effectiveness of Ohio Department of Transportation processes for establishing work zone speed zones. Researchers observed motorists speed choice upstream of a...

  12. Empowerment Zones and Enterprise Districts - MDC_EnterpriseZone

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Polygon feature class of Miami Dade County Enterprise Zones. Enterprise Zones are special areas in the county where certain incentives from the State are available...

  13. Genetic activation, inactivation and deletion reveal a limited and nuanced role for somatostatin-containing basal forebrain neurons in behavioral state control.

    Science.gov (United States)

    Anaclet, Christelle; De Luca, Roberto; Venner, Anne; Malyshevskaya, Olga; Lazarus, Michael; Arrigoni, Elda; Fuller, Patrick M

    2018-05-07

    Recent studies have identified an especially important role for basal forebrain GABAergic (BF VGAT ) neurons in the regulation of behavioral waking and fast cortical rhythms associated with cognition. However, BF VGAT neurons comprise several neurochemically and anatomically distinct sub-populations, including parvalbumin- and somatostatin-containing BF VGAT neurons (BF Parv and BF SOM ), and it was recently reported that optogenetic activation of BF SOM neurons increases the probability of a wakefulness to non-rapid-eye movement (NREM) sleep transition when stimulated during the animal's rest period. This finding was unexpected given that most BF SOM neurons are not NREM sleep active and that central administration of the synthetic SOM analog, octreotide, suppresses NREM sleep or increases REM sleep. Here we employed a combination of genetically-driven chemogenetic and optogenetic activation, chemogenetic inhibition and ablation approaches to further explore the in vivo role of BF SOM neurons in arousal control. Our findings indicate that acute activation or inhibition of BF SOM neurons is neither wakefulness- nor NREM sleep-promoting, is without significant effect on the EEG, and that chronic loss of these neurons is without effect on total 24h sleep amounts, although a small but significant increase in waking was observed in the lesioned mice during the early active period. Our in vitro cell recordings further reveal electrophysiological heterogeneity in BF SOM neurons, specifically suggesting at least two distinct sub-populations. Taken together our data support the more nuanced view that BF SOM are electrically heterogeneous and are not NREM sleep- or wake-promoting per se , but may exert, in particular during the early active period, a modest inhibitory influence on arousal circuitry. SIGNIFICANCE STATEMENT The cellular basal forebrain (BF) is a highly complex area of the brain that is implicated in a wide-range of higher-level neurobiological processes

  14. The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions

    Directory of Open Access Journals (Sweden)

    Volker Arnd Coenen

    Full Text Available Introduction: Despite their importance in reward, motivation, and learning there is only sparse anatomical knowledge about the human medial forebrain bundle (MFB and the connectivity of the ventral tegmental area (VTA. A thorough anatomical and microstructural description of the reward related PFC/OFC regions and their connection to the VTA - the superolateral branch of the MFB (slMFB - is however mandatory to enable an interpretation of distinct therapeutic effects from different interventional treatment modalities in neuropsychiatric disorders (DBS, TMS etc.. This work aims at a normative description of the human MFB (and more detailed the slMFB anatomy with respect to distant prefrontal connections and microstructural features. Methods and material: Healthy subjects (n = 55; mean age ± SD, 40 ± 10 years; 32 females underwent high resolution anatomical magnetic resonance imaging including diffusion tensor imaging. Connectivity of the VTA and the resulting slMFB were investigated on the group level using a global tractography approach. The Desikan/Killiany parceling (8 segments of the prefrontal cortex was used to describe sub-segments of the MFB. A qualitative overlap with Brodmann areas was additionally described. Additionally, a pure visual analysis was performed comparing local and global tracking approaches for their ability to fully visualize the slMFB. Results: The MFB could be robustly described both in the present sample as well as in additional control analyses in data from the human connectome project. Most VTA- connections reached the superior frontal gyrus, the middel frontal gyrus and the lateral orbitofrontal region corresponding to Brodmann areas 10, 9, 8, 11, and 11m. The projections to these regions comprised 97% (right and 98% (left of the total relative fiber counts of the slMFB. Discussion: The anatomical description of the human MFB shows far reaching connectivity of VTA to reward-related subcortical and

  15. Proteomic analysis of protein composition of rat forebrain cortex exposed to morphine for 10 days; comparison with animals exposed to morphine and subsequently nurtured for 20 days in the absence of this drug

    Czech Academy of Sciences Publication Activity Database

    Ujčíková, Hana; Vošahlíková, Miroslava; Roubalová, Lenka; Svoboda, Petr

    2016-01-01

    Roč. 145, Aug 11 (2016), s. 11-23 ISSN 1874-3919 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP207/12/0919 Institutional support: RVO:67985823 Keywords : morphine * long-term exposure * rat forebrain cortex * post-nuclear supernatant * MALDI - TOF MS/MS * MaxLFQ Subject RIV: CE - Biochemistry Impact factor: 3.914, year: 2016

  16. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    Science.gov (United States)

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation. © 2014 European Sleep Research Society.

  17. Special zone territory decontamination

    International Nuclear Information System (INIS)

    Samojlenko, Yu.N.; Golubev, V.V.

    1989-01-01

    Special zone is the Chernobyl' NPP operating site (OS). OS decontamination is described including reactor ruins from the accident moment. The process was begun from reactor bombardment with absorbing and filtering materials (sand, clay, lead, boron compounds). Then were produced soil shovelling, territory filling by dry concrete and laying concrete layer with thickness up to 300 mm. NPP room and equipment decontamination is described. 3 figs.; 3 tabs

  18. Radiant zone heated particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  19. Cornell Mixing Zone Expert System

    Science.gov (United States)

    This page provides an overview Cornell Mixing Zone Expert System water quality modeling and decision support system designed for environmental impact assessment of mixing zones resulting from wastewater discharge from point sources

  20. VT Data - Zoning 20070306, Marlboro

    Data.gov (United States)

    Vermont Center for Geographic Information — Zoning districts, Marlboro, Vermont. Surface water buffer overlay is in a separate shapefile. Data were originally created by WRC in 2005. Marlboro's zoning bylaw...

  1. Habitable Zones in the Universe

    OpenAIRE

    Gonzalez, G.

    2005-01-01

    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review...

  2. The autism-associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain.

    Science.gov (United States)

    Peng, Y; Lu, Z; Li, G; Piechowicz, M; Anderson, M; Uddin, Y; Wu, J; Qiu, S

    2016-07-01

    The human MET gene imparts a replicated risk for autism spectrum disorder (ASD), and is implicated in the structural and functional integrity of brain. MET encodes a receptor tyrosine kinase, MET, which has a pleiotropic role in embryogenesis and modifies a large number of neurodevelopmental events. Very little is known, however, on how MET signaling engages distinct cellular events to collectively affect brain development in ASD-relevant disease domains. Here, we show that MET protein expression is dynamically regulated and compartmentalized in developing neurons. MET is heavily expressed in neuronal growth cones at early developmental stages and its activation engages small GTPase Cdc42 to promote neuronal growth, dendritic arborization and spine formation. Genetic ablation of MET signaling in mouse dorsal pallium leads to altered neuronal morphology indicative of early functional maturation. In contrast, prolonged activation of MET represses the formation and functional maturation of glutamatergic synapses. Moreover, manipulating MET signaling levels in vivo in the developing prefrontal projection neurons disrupts the local circuit connectivity made onto these neurons. Therefore, normal time-delimited MET signaling is critical in regulating the timing of neuronal growth, glutamatergic synapse maturation and cortical circuit function. Dysregulated MET signaling may lead to pathological changes in forebrain maturation and connectivity, and thus contribute to the emergence of neurological symptoms associated with ASD.

  3. Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory.

    Science.gov (United States)

    Chen, Adele P; Ohno, Masuo; Giese, K Peter; Kühn, Ralf; Chen, Rachel L; Silva, Alcino J

    2006-01-01

    Raf kinases are downstream effectors of Ras and upstream activators of the MEK-ERK cascade. Ras and MEK-ERK signaling play roles in learning and memory (L&M) and neural plasticity, but the roles of Raf kinases in L&M and plasticity are unclear. Among Raf isoforms, B-raf is preferentially expressed in the brain. To determine whether B-raf has a role in synaptic plasticity and L&M, we used the Cre-LoxP gene targeting system to derive forebrain excitatory neuron B-raf knockout mice. This conditional knockout resulted in deficits in ERK activation and hippocampal long-term potentiation (LTP) and impairments in hippocampus-dependent L&M, including spatial learning and contextual discrimination. Despite the widespread expression of B-raf, this mutation did not disrupt other forms of L&M, such as cued fear conditioning and conditioned taste aversion. Our findings demonstrate that B-raf plays a role in hippocampal ERK activation, synaptic plasticity, and L&M.

  4. Effect of MDMA-Induced Axotomy on the Dorsal Raphe Forebrain Tract in Rats: An In Vivo Manganese-Enhanced Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Chuang-Hsin Chiu

    Full Text Available 3,4-Methylenedioxymethamphetamine (MDMA, also known as "Ecstasy", is a common recreational drug of abuse. Several previous studies have attributed the central serotonergic neurotoxicity of MDMA to distal axotomy, since only fine serotonergic axons ascending from the raphe nucleus are lost without apparent damage to their cell bodies. However, this axotomy has never been visualized directly in vivo. The present study examined the axonal integrity of the efferent projections from the midbrain raphe nucleus after MDMA exposure using in vivo manganese-enhanced magnetic resonance imaging (MEMRI. Rats were injected subcutaneously six times with MDMA (5 mg/kg or saline once daily. Eight days after the last injection, manganese ions (Mn2+ were injected stereotactically into the raphe nucleus, and a series of MEMRI images was acquired over a period of 38 h to monitor the evolution of Mn2+-induced signal enhancement across the ventral tegmental area, the medial forebrain bundle (MFB, and the striatum. The MDMA-induced loss of serotonin transporters was clearly evidenced by immunohistological staining consistent with the Mn2+-induced signal enhancement observed across the MFB and striatum. MEMRI successfully revealed the disruption of the serotonergic raphe-striatal projections and the variable effect of MDMA on the kinetics of Mn2+ accumulation in the MFB and striatum.

  5. Physiological and morphological characterization of organotypic cocultures of the chick forebrain area MNH and its main input area DMA/DMP.

    Science.gov (United States)

    Endepols, H; Jungnickel, J; Braun, K

    2001-01-01

    Cocultures of the learning-relevant forebrain region mediorostral neostriatum and hyperstriatum ventrale (MNH) and its main glutamatergic input area nucleus dorsomedialis anterior thalami/posterior thalami were morphologically and physiologically characterized. Synaptic contacts of thalamic fibers were light- and electron-microscopically detected on MNH neurons by applying the fluorescence tracer DiI-C18(3) into the thalamus part of the coculture. Most thalamic synapses on MNH neurons were symmetric and located on dendritic shafts, but no correlation between Gray-type ultrastructure and dendritic localization was found. Using intracellular current clamp recordings, we found that the electrophysiological properties, such as input resistance, time constant, action potential threshold, amplitude, and duration of MNH neurons, remain stable for over 30 days in vitro. Pharmacological blockade experiments revealed glutamate as the main neurotransmitter of thalamic synapses on MNH neurons, which were also found on inhibitory neurons. High frequency stimulation of thalamic inputs evoked synaptic potentiation in 22% of MNH neurons. The results indicate that DMA/DMP-MNH cocultures, which can be maintained under stable conditions for at least 4 weeks, provide an attractive in vitro model for investigating synaptic plasticity in the avian brain.

  6. Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness.

    Science.gov (United States)

    Fiorenza, Anna; Lopez-Atalaya, Jose P; Rovira, Victor; Scandaglia, Marilyn; Geijo-Barrientos, Emilio; Barco, Angel

    2016-04-01

    The RNase Dicer is essential for the maturation of most microRNAs, a molecular system that plays an essential role in fine-tuning gene expression. To gain molecular insight into the role of Dicer and the microRNA system in brain function, we conducted 2 complementary RNA-seq screens in the hippocampus of inducible forebrain-restricted Dicer1 mutants aimed at identifying the microRNAs primarily affected by Dicer loss and their targets, respectively. Functional genomics analyses predicted the main biological processes and phenotypes associated with impaired microRNA maturation, including categories related to microRNA biology, signal transduction, seizures, and synaptic transmission and plasticity. Consistent with these predictions, we found that, soon after recombination, Dicer-deficient mice exhibited an exaggerated seizure response, enhanced induction of immediate early genes in response to different stimuli, stronger and more stable fear memory, hyperphagia, and increased excitability of CA1 pyramidal neurons. In the long term, we also observed slow and progressive excitotoxic neurodegeneration. Overall, our results indicate that interfering with microRNA biogenesis causes an increase in neuronal responsiveness and disrupts homeostatic mechanisms that protect the neuron against overactivation, which may explain both the initial and late phenotypes associated with the loss of Dicer in excitatory neurons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  8. Grey zones of welfare

    Directory of Open Access Journals (Sweden)

    Ida Harboe Knudsen

    2015-01-01

    Full Text Available In this article I explore the ‘grey zones of welfare’ in rural Lithuania whereby I point to the inherent ambiguities that lies in a system where people to a high degree rely on networks and normative solutions to everyday shortcomings, rather than on the state. I argue that we in the period after socialism witness an increased degree of informal economies and social arrangements, as the formal sector of social security is perceived as unreliable. This results in a model where liberalism and individual ethics co-exist with a strong morality to support the poorest in society.

  9. Saturated Zone Colloid Transport

    International Nuclear Information System (INIS)

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  10. Parapapillary atrophy: histological gamma zone and delta zone.

    Directory of Open Access Journals (Sweden)

    Jost B Jonas

    Full Text Available BACKGROUND: To examine histomorphometrically the parapapillary region in human eyes. METHODOLOGY/PRINCIPAL FINDINGS: The histomorphometric study included 65 human globes (axial length:21-37 mm. On anterior-posterior histological sections, we measured the distance Bruch's membrane end (BME-optic nerve margin ("Gamma zone", BME-retinal pigment epithelium (RPE ("Beta zone", BME-beginning of non-occluded choriocapillaris, and BME-beginning of photoreceptor layer. "Delta zone" was defined as part of gamma zone in which blood vessels of at least 50 µm diameter were not present over a length of >300 µm. Beta zone (mean length:0.35±0.52 mm was significantly (P = 0.01 larger in the glaucoma group than in the non-glaucomatous group. It was not significantly (P = 0.28 associated with axial length. Beta zone was significantly (P = 0.004 larger than the region with occluded choriocapillaris. Gamma zone (mean length:0.63±1.25 mm was associated with axial length (P50 µm diameter within gamma zone was present only in highly axially elongated globes and was not related with glaucoma. Beta zone (Bruch's membrane without RPE was correlated with glaucoma but not with globe elongation. Since the region with occluded choriocapillaris was smaller than beta zone, complete loss of RPE may have occurred before complete choriocapillaris closure.

  11. Molecular differences in transition zone and peripheral zone prostate tumors

    Science.gov (United States)

    Sinnott, Jennifer A.; Rider, Jennifer R.; Carlsson, Jessica; Gerke, Travis; Tyekucheva, Svitlana; Penney, Kathryn L.; Sesso, Howard D.; Loda, Massimo; Fall, Katja; Stampfer, Meir J.; Mucci, Lorelei A.; Pawitan, Yudi; Andersson, Sven-Olof; Andrén, Ove

    2015-01-01

    Prostate tumors arise primarily in the peripheral zone (PZ) of the prostate, but 20–30% arise in the transition zone (TZ). Zone of origin may have prognostic value or reflect distinct molecular subtypes; however, it can be difficult to determine in practice. Using whole-genome gene expression, we built a signature of zone using normal tissue from five individuals and found that it successfully classified nine tumors of known zone. Hypothesizing that this signature captures tumor zone of origin, we assessed its relationship with clinical factors among 369 tumors of unknown zone from radical prostatectomies (RPs) and found that tumors that molecularly resembled TZ tumors showed lower mortality (P = 0.09) that was explained by lower Gleason scores (P = 0.009). We further applied the signature to an earlier study of 88 RP and 333 transurethral resection of the prostate (TURP) tumor samples, also of unknown zone, with gene expression on ~6000 genes. We had observed previously substantial expression differences between RP and TURP specimens, and hypothesized that this might be because RPs capture primarily PZ tumors, whereas TURPs capture more TZ tumors. Our signature distinguished these two groups, with an area under the receiver operating characteristic curve of 87% (P zones. Zone of origin may be important to consider in prostate tumor biomarker research. PMID:25870172

  12. Metallogeny of subduction zones

    Directory of Open Access Journals (Sweden)

    Sorokhtin N. O.

    2017-03-01

    Full Text Available The paper deals with the multistage mechanism of the Earth's crust enrichment in ore elements in underthrust zones. The processes of metamorphism and the formation of hydrothermal solutions at pulling of the watered oceanic lithospheric plate into the subduction zone have been described. Some physical and chemical transformation regularities of structural-material complexes in these areas and mechanisms of the formation of ore deposits have been discussed. Spatio-temporal patterns of the localization of a number of endogenetic and exogenetic deposits have been described using metallogeny of the Ural and the Verkhoyansk-Kolyma Fold Belts as an example. It has been shown that in nature there are several effective mechanisms of the enrichment of the crust in ore minerals. One of them is the process of pulling into subduction zone of metalliferous sediments and ferromanganese crusts as well as seabed nodules, their metamorphic transformation, partial melting and transition of ore components into magmatic melts and mineralized fluids. In the future this leads to the release of ore material by magmas and hydrothermal solutions into the folded formations of island-arc and Andean types and the formation of igneous, metasomatic and hydrothermal deposits. Another, yet no less powerful natural mechanism of a conveyor enrichment of the crust in ore elements is the process of destruction and sedimentation of mineral deposits formed in the folded areas as well as the formation of placers and their transfer to the marginal parts of the continent. Later, during the collision of active and passive margins of two lithospheric plates, such as the collision of the Kolyma Massif with the eastern part of the Siberian craton in the middle of the Mesozoic there was a thrusting of a younger lithospheric plate over a more ancient one. As a result, the sedimentary sequences of the passive margin of the Siberian plate were submerged and partially melted by the basic magmas

  13. The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb

    Science.gov (United States)

    Gengatharan, Archana; Bammann, Rodrigo R.; Saghatelyan, Armen

    2016-01-01

    In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the role of astroglial cells in the generation, migration, integration, and survival of new neurons in the adult forebrain. In the subventricular zone, neural stem cells with astrocytic properties display regional and temporal specificity when generating different neuronal subtypes. Non-neurogenic astrocytes contribute to the establishment and maintenance of the neurogenic niche. Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic processes. Astrocytes play an important regulatory role in neuroblast migration and also assist in the development of a vasculature scaffold in the migratory stream that is essential for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help to modulate the network through a complex release of cytokines, regulate blood flow, and provide metabolic support, which may promote the integration and survival of new neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb neurogenesis, and it is likely that many other functions of these glial cells will emerge in the near future. PMID:27092050

  14. Empowerment Zones and Enterprise Districts - Volusia County Enterprise Zones

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Florida's Enterprise Zone Program encourages economic growth and investment in distressed areas by offering tax advantages and incentives to businesses that are...

  15. The zone of alienation

    International Nuclear Information System (INIS)

    Nagorski, A.

    1996-01-01

    Ten years after the nuclear disaster, people still live and die in Chernobyl. Thousands of people continue to live and work there. Roughly 500 have moved back into their old homes inside the alienation zone. Fewer than half still alive. Medical researchers in the area insist that immune systems are weakened by doses of radiation far lower than previously thought. However, an European Union sponsored study concluded that Chernobyl's toll has been exaggerated. Thus, while 760 children in the contaminated area have developed thyroid cancer, only three have died as a result. Yet in and around Chernobyl, people carry on their lives and the Ukrainian Government says it can't afford to close the plant without billions of dollars in Western aid. ills

  16. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  17. Optimal exploration target zones

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available prospective map are the weights-of-evidence (WofE) method logistic regression canonical favorability analysis neural networks evidential belief functions Optimal Exploration Target Zones Debba, Carranza, Stein, van der Meer Introduction to Remote.... . . ): FITNESS FUNCTION φWMSD+V(Sn) = λ N(A) ∑ −→x ∈A P(−→x ) ∣ ∣ ∣ ∣−→x −QSn( −→x ) ∣ ∣ ∣ ∣ +(1− λ)s2(OSn) , (2) where QSn( −→x ) is the location vector of an optimal exploration focal point in Sn nearest to −→x , and s2(OSn) is the variance...

  18. The zone of alienation

    Energy Technology Data Exchange (ETDEWEB)

    Nagorski, A.

    1996-04-23

    Ten years after the nuclear disaster, people still live and die in Chernobyl. Thousands of people continue to live and work there. Roughly 500 have moved back into their old homes inside the alienation zone. Fewer than half still alive. Medical researchers in the area insist that immune systems are weakened by doses of radiation far lower than previously thought. However, an European Union sponsored study concluded that Chernobyl`s toll has been exaggerated. Thus, while 760 children in the contaminated area have developed thyroid cancer, only three have died as a result. Yet in and around Chernobyl, people carry on their lives and the Ukrainian Government says it can`t afford to close the plant without billions of dollars in Western aid. ills.

  19. Changes in androgen receptor mRNA expression in the forebrain and oviduct during the reproductive cycle of female leopard geckos, Eublepharis macularius.

    Science.gov (United States)

    Rhen, Turk; Sakata, Jon T; Woolley, Sarah; Porter, Raymond; Crews, David

    2003-06-01

    Successful reproduction requires the coordination of reproductive physiology with behavior. The neural correlates of reproductive behavior have been elucidated in a variety of amphibians, mammals, and birds but relatively few studies have examined reptiles. Here we investigate differences in androgen receptor (AR) mRNA expression in the forebrain and oviduct between previtellogenic and late vitellogenic female leopard geckos, Eublepharis macularius. Plasma concentrations of testosterone (T) are low when females are previtellogenic and sexually unreceptive but increase dramatically during late vitellogenesis when females are receptive. In addition, receptivity can be induced by treatment with exogenous T. The relative abundance of AR-mRNA across various nuclei was greater in late vitellogenic than in previtellogenic females. This general pattern was observed in the medial preoptic area, anterior hypothalamus, external nucleus of the amygdala, dorsolateral aspect of the ventromedial hypothalamus, lateral septum, and periventricular hypothalamus. There were also clear differences in AR-mRNA expression among these nuclei. The pattern of gene expression observed in the brain was reversed within stromal cells of the oviduct where expression of AR-mRNA decreased from the previtellogenic stage to the late vitellogenic stage. Overall, these data demonstrate that T concentration in the plasma, abundance of AR-mRNA in the brain and oviduct, and sexual behavior change coordinately during the reproductive cycle of female leopard geckos. Although the function of AR in the female leopard gecko is not yet clear, our results are in accord with growing evidence that androgens regulate numerous aspects of female physiology and behavior in vertebrates.

  20. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    Science.gov (United States)

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  1. Overexpression of Mineralocorticoid Receptors in the Mouse Forebrain Partly Alleviates the Effects of Chronic Early Life Stress on Spatial Memory, Neurogenesis and Synaptic Function in the Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Sofia Kanatsou

    2017-05-01

    Full Text Available Evidence from human studies suggests that high expression of brain mineralocorticoid receptors (MR may promote resilience against negative consequences of stress exposure, including childhood trauma. We examined, in mice, whether brain MR overexpression can alleviate the effects of chronic early life stress (ELS on contextual memory formation under low and high stress conditions, and neurogenesis and synaptic function of dentate gyrus granular cells. Male mice were exposed to ELS by housing the dam with limited nesting and bedding material from postnatal day (PND 2 to 9. We investigated the moderating role of MRs by using forebrain-specific transgenic MR overexpression (MR-tg mice. Low-stress contextual (i.e., object relocation memory formation was hampered by ELS in wildtype but not MR-tg mice. Anxiety like behavior and high-stress contextual (i.e., fear memory formation were unaffected by ELS and/or MR expression level. At the cellular level, an interaction effect was observed between ELS and MR overexpression on the number of doublecortin-positive cells, with a significant difference between the wildtype ELS and MR-tg ELS groups. No interaction was found regarding Ki-67 and BrdU staining. A significant interaction between ELS and MR expression was further observed with regard to mEPSCs and mIPSC frequency. The ratio of evoked EPSC/IPSC or NMDA/AMPA responses was unaffected. Overall, these results suggest that ELS affects contextual memory formation under low stress conditions as well as neurogenesis and synaptic transmission in dentate granule cells, an effect that can be alleviated by MR-overexpression.

  2. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer's Disease.

    Science.gov (United States)

    Daulatzai, Mak Adam

    2016-10-01

    Sporadic Alzheimer's disease (AD) is a devastating neurodegenerative disorder. It is essential to unravel its etiology and pathogenesis. This should enable us to study the presymptomatic stages of the disease and to analyze and reverse the antemortem behavioral, memory, and cognitive dysfunction. Prima facie, an ongoing chronic vulnerability involving neural insult may lead normal elderly to mild cognitive impairment (MCI) and then to AD. Development of effective preventive and therapeutic strategies to thwart the disease pathology obviously requires a thorough delineation of underlying disruptive neuropathological processes. Our sensory capacity for touch, smell, taste, hearing, and vision declines with advancing age. Declines in different sensory attributes are considered here to be the primary "first-tier pathologies." Olfactory loss is among the first clinical signs of neurodegenerative diseases including AD and Parkinson's disease (PD). Sensory dysfunction in the aged promotes pathological disturbances in the locus coeruleus, basal forebrain, entorhinal cortex, hippocampus, and several key areas of neocortex and brainstem. Hence, sensory dysfunction is the pivotal factor that may upregulate cognitive and memory dysfunction. The age-related constellation of comorbid pathological factors may include apolipoprotein E (APOE) genotype, obesity, diabetes, hypertension, alcohol abuse, head trauma, and obstructive sleep apnea. The concepts and trajectories delineated here are the dynamic pillars of the current hypothesis presented-it postulates that the sensory decline, in conjunction with the above pathologies, is crucial in triggering neurodegeneration and promoting cognitive/memory dysfunction in aging and AD. The application of this thesis can be important in formulating new multifactorial preventive and treatment strategies (suggested here) in order to attenuate cognitive and memory decline and ameliorate pathological dysfunction in aging, MCI, and AD.

  3. Time- and cell-type specific changes in iron, ferritin, and transferrin in the gerbil hippocampal CA1 region after transient forebrain ischemia

    Directory of Open Access Journals (Sweden)

    Dae Young Yoo

    2016-01-01

    Full Text Available In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin (ferritin-H, and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased significantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1-2 days and then increased once again within the CA1 region at 4-7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4-7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was significantly increased. Transferrin immunoreactivity was increased significantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased significantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was significantly increased. Western blot analyses supported these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.

  4. Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain.

    Science.gov (United States)

    Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo

    2014-10-01

    We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.

  5. Street Prostitution Zones and Crime

    OpenAIRE

    Bisschop, Paul; Kastoryano, Stephen; van der Klaauw, Bas

    2015-01-01

    This paper studies the effects of introducing legal street prostitution zones on both registered and perceived crime. We exploit a unique setting in the Netherlands where legal street prostitution zones were opened in nine cities under different regulation systems. We provide evidence that the opening of these zones was not in response to changes in crime. Our difference-in-difference analysis using data on the largest 25 Dutch cities between 1994 and 2011 shows that opening a legal street pr...

  6. Development and aging of a brain neural stem cell niche.

    Science.gov (United States)

    Conover, Joanne C; Todd, Krysti L

    2017-08-01

    In the anterior forebrain, along the lateral wall of the lateral ventricles, a neurogenic stem cell niche is found in a region referred to as the ventricular-subventricular zone (V-SVZ). In rodents, robust V-SVZ neurogenesis provides new neurons to the olfactory bulb throughout adulthood; however, with increasing age stem cell numbers are reduced and neurogenic capacity is significantly diminished, but new olfactory bulb neurons continue to be produced even in old age. Humans, in contrast, show little to no new neurogenesis after two years of age and whether V-SVZ neural stem cells persist in the adult human brain remains unclear. Here, we review functional and organizational differences in the V-SVZ stem cell niche of mice and humans, and examine how aging affects the V-SVZ niche and its associated functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Work Zone Data Collection Trailer

    Data.gov (United States)

    Federal Laboratory Consortium — The Work Zone Data Collection Trailer was designed and constructed to enhance data collection and analysis capabilities for the "Evaluating Roadway Construction Work...

  8. VT Data - Zoning 20170712, Westminster

    Data.gov (United States)

    Vermont Center for Geographic Information — Zoning districts, Westminster, Vermont. Overlay districts (Agricultural Land, Ridgeline Protection, and Historical Preservation) are in separate shapefiles. Data...

  9. Problems of Chernobyl Exclusion Zone

    International Nuclear Information System (INIS)

    Kholosha, V.Yi.

    2014-01-01

    The collection comprises the results of researches and design activity in the ChNPP exclusion zone, aimed at the development of technologies, equipment and devices for radioactive waste management and ChNPP accident clean-up, at studying the composition and structure of the Exclusion zone soil activity solid bearers, form transformation of the fission products of fuel fallout radionuclide composition in the ChNPP near zone, the spatial distribution of radionuclides and other radioecological issues.. Much attention is paid to medical and biological aspects of the accident influence on the flora, fauna and people's health, labour conditions and incidence of the workers of the Exclusion zone

  10. Fuel conditioning facility zone-to-zone transfer administrative controls

    International Nuclear Information System (INIS)

    Pope, C. L.

    2000-01-01

    The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container types for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion

  11. Stress-induced changes in the expression of the clock protein PERIOD1 in the rat limbic forebrain and hypothalamus: role of stress type, time of day, and predictability.

    Directory of Open Access Journals (Sweden)

    Sherin Al-Safadi

    Full Text Available Stressful events can disrupt circadian rhythms in mammals but mechanisms underlying this disruption remain largely unknown. One hypothesis is that stress alters circadian protein expression in the forebrain, leading to functional dysregulation of the brain circadian network and consequent disruption of circadian physiological and behavioral rhythms. Here we characterized the effects of several different stressors on the expression of the core clock protein, PER1 and the activity marker, FOS in select forebrain and hypothalamic nuclei in rats. We found that acute exposure to processive stressors, restraint and forced swim, elevated PER1 and FOS expression in the paraventricular and dorsomedial hypothalamic nuclei and piriform cortex but suppressed PER1 and FOS levels exclusively in the central nucleus of the amygdala (CEAl and oval nucleus of the bed nucleus of the stria terminalis (BNSTov. Conversely, systemic stressors, interleukin-1β and 2-Deoxy-D-glucose, increased PER1 and FOS levels in all regions studied, including the CEAl and BNSTov. PER1 levels in the suprachiasmatic nucleus (SCN, the master pacemaker, were unaffected by any of the stress manipulations. The effect of stress on PER1 and FOS was modulated by time of day and, in the case of daily restraint, by predictability. These results demonstrate that the expression of PER1 in the forebrain is modulated by stress, consistent with the hypothesis that PER1 serves as a link between stress and the brain circadian network. Furthermore, the results show that the mechanisms that control PER1 and FOS expression in CEAl and BNSTov are uniquely sensitive to differences in the type of stressor. Finally, the finding that the effect of stress on PER1 parallels its effect on FOS supports the idea that Per1 functions as an immediate-early gene. Our observations point to a novel role for PER1 as a key player in the interface between stress and circadian rhythms.

  12. Zone memories and pseudorandom addressing

    International Nuclear Information System (INIS)

    Marino, D.; Mirizzi, N.; Stella, R.; Visaggio, G.

    1975-01-01

    A quantitative comparison between zone memories, pseudorandom addressed memories and an alternative special purpose memory (spread zone memory) in which the distance between any two transformed descriptors, at first adjacent, is independent of the descriptors pair and results the maximum one is presented. This memory has not been particularly considered at present in spite of its efficiency and its simple implementation

  13. Environmental Zoning: Some methodological implications

    NARCIS (Netherlands)

    Ike, Paul; Voogd, Henk

    1991-01-01

    The purpose of this article is to discuss some methodological problems of environmental zoning. The principle of environmental zoning will be elaborated. In addition an overview is given of a number of approaches that have been followed in practice to arrive at an integral judgement. Finally some

  14. Instrumentation for coastal zone management

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    stream_size 11 stream_content_type text/plain stream_name Trg_Course_Coast_Zone_Manage_1993_91.pdf.txt stream_source_info Trg_Course_Coast_Zone_Manage_1993_91.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset...

  15. Management of coastal zone vegetation

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    stream_size 14 stream_content_type text/plain stream_name Trg_Course_Coast_Zone_Manage_1993_22.pdf.txt stream_source_info Trg_Course_Coast_Zone_Manage_1993_22.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset...

  16. Growth with Time Zone Differences

    OpenAIRE

    Toru Kikuchi; Sugata Marjit

    2010-01-01

    We propose a two-country growth model of intermediate business-services trade that captures the role of time zone differences. It is shown that a time-saving improvement in intermediate business-services trade involving production in different time zones can have a permanent impact on productivity.

  17. The Supergalactic Habitable Zone

    Science.gov (United States)

    Mason, Paul

    2018-01-01

    Habitability in the local universe is examined. Constrained by metal abundance and exposure to sterilizing events, life as we know it requires significantly long periods of stable environmental conditions. Planets within galaxies undergoing major mergers, active AGN, starburst episodes, and merging black holes pose serious threats to long-term habitability. Importantly, the development of several layers of protection from high-energy particles such as a thick atmosphere, a strong planetary magnetic field, an astrosphere, and a galactic magnetic field is of great benefit. Factors such as star type and activity, planet type and composition, the location of a planet within its host galaxy, and even the location within a supercluster of galaxies can affect the potential habitability of planets. We discuss the concept of the Supergalactic Habitable Zone introduced by Mason and Biermann in terms of habitability in the local universe and find that galaxies near the center of the Virgo cluster, for example, have a much lower probability for the development of life as we know it as compared to locations in the Milky Way.

  18. Coastal Zone Color Scanner

    Science.gov (United States)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  19. Emergency planning zone reduction

    International Nuclear Information System (INIS)

    Edwards, C.

    2002-01-01

    This paper describes the process used by a large industrial Department of Energy (DOE) site to communicate changing hazards to its stakeholders and install the confidence necessary to implement the resulting emergency planning changes. Over the last decade as the sites missions have shifted from full-scale production to a greater emphasis on environmental restoration and waste management, the off-site threat from its operations has substantially decreased. The challenge was to clearly communicate the reduced hazards, install confidence in the technical analysis that documented the hazard reduction, and obtain stakeholder buy-in on the path forward to change the emergency management program. The most significant change to the emergency management program was the proposed reduction of the sites Emergency Planning Zone (EPZ). As the EPZ is defined as an area for which planning is needed to protect the public in the event of an accident, the process became politically challenging. An overview of how the site initially approached this problem and then learned to more substantially involve the state and local emergency preparedness agencies and the local Citizens Advisory Board will be presented. (author)

  20. Mechanical properties of fracture zones

    International Nuclear Information System (INIS)

    Leijon, B.

    1993-05-01

    Available data on mechanical characteristics of fracture zones are compiled and discussed. The aim is to improve the basis for adequate representation of fracture zones in geomechanical models. The sources of data researched are primarily borehole investigations and case studies in rock engineering, involving observations of fracture zones subjected to artificial load change. Boreholes only yield local information about the components of fracture zones, i.e. intact rock, fractures and various low-strength materials. Difficulties are therefore encountered in evaluating morphological and mechanical properties of fracture zones from borehole data. Although often thought of as macroscopically planar features, available field data consistently show that fracture zones are characterized by geometrical irregularities such as thickness variations, surface undulation and jogs. These irregularities prevail on all scales. As a result, fracture zones are on all scales characterized by large, in-plane variation of strength- and deformational properties. This has important mechanical consequences in terms of non-uniform stress transfer and complex mechanisms of shear deformation. Field evidence for these findings, in particular results from the underground research laboratory in Canada and from studies of induced fault slip in deep mines, is summarized and discussed. 79 refs

  1. Hippocampal N-methyl-d-aspartate and kainate binding in response to entorhinal cortex aspiration or 192 IgG-saporin lesions of the basal forebrain

    International Nuclear Information System (INIS)

    Gallagher, M.; Gill, T.M.; Shivers, A.; Nicolle, M.M.

    1997-01-01

    Lesion models in the rat were used to examine the effects of removing innervation of the hippocampal formation on glutamate receptor binding in that system. Bilateral aspiration of the entorhinal cortex was used to remove the cortical innervation of the hippocampal formation and the dentate gyrus. The subcortical input to the hippocampus from cholinergic neurons of the basal forebrain was lesioned by microinjection of the immunotoxin 192 IgG-saporin into the medial septum and vertical limb of diagonal band. After a 30-day postlesion survival, the effects of these lesions on N-methyl-d-aspartate-displaceable [ 3 H]glutamate and [ 3 H]kainate binding in the hippocampus were quantified using in vitro autoradiography. The bilateral entorhinal lesion induced a sprouting response in the dentate gyrus, measured by an increase in the width of [ 3 H]kainate binding. It also induced an increase in the density of [ 3 H]kainate binding in CA3 stratum lucidum and an increase in N-methyl-d-aspartate binding throughout the hippocampus proper and the dentate gyrus. The selective lesion of cholinergic septal input did not have any effect on hippocampal [ 3 H]kainate binding and induced only a moderate decrease in N-methyl-d-aspartate binding that was not statistically reliable.The entorhinal and cholinergic lesions were used as in vivo models of the degeneration of hippocampal input that occurs in normal aging and Alzheimer's disease. The results from the present lesion study suggest that some, but not all, of the effects on hippocampal [ 3 H]kainate and N-methyl-d-aspartate binding induced by the lesions are consistent with the status of binding to these receptors in aging and Alzheimer's disease. Consistent with the effects of aging and Alzheimer's disease is an altered topography of [ 3 H]kainate binding after entorhinal cortex lesion and a modest decline in N-methyl-d-aspartate binding after lesions of the cholinergic septal input to the hippocampus. (Copyright (c) 1997

  2. Problems of Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    1996-01-01

    The collection comprises the results of researches and design activity in the ChNPP exclusion zone with the aim to develop technology, equipment and instruments for RAW management and accident clean-up, studying of the composition and structure of the activity solid bearers in the soil of the exclusion zone and transformation of the radionuclides in the nearest zone of ChNPP. Much attention is paid to medical and biological problems of the accident influence on the flora, fauna and people's health labour conditions and incidence of the people involved

  3. Problems of Chornobyl Exclusion Zone

    International Nuclear Information System (INIS)

    Kashparov, V.A.

    2009-01-01

    The collection comprises the results of researches and design activity in the ChNPP exclusion zone with the aim to develop technology, equipment and instruments for RAW management and accident clean-up, studying of the composition and structure of the activity solid bearers in the soil of the exclusion zone and transformation of the radionuclides in the nearest zone of ChNPP. Much attention is paid to medical and biological problems of the accident influence on the flora, fauna and people's health, labour conditions and incidence of the people involved.

  4. 75 FR 50700 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, and Drawbridge...

    Science.gov (United States)

    2010-08-17

    ...] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, and Drawbridge Operation... notice lists temporary safety zones, security zones, special local regulations, and drawbridge operation... responsive to the safety and security needs within their jurisdiction; therefore, District Commanders and...

  5. VT Data - Zoning Stream Buffers 20081014, Hartford

    Data.gov (United States)

    Vermont Center for Geographic Information — OVERLAY DISTRICT. Models a municipality’s zoning zones and related information. Final boundary determinations must be obtained from the town Zoning Administrator....

  6. NEPR Geographic Zone Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This geographic zone map was created by interpreting satellite and aerial imagery, seafloor topography (bathymetry model), and the new NEPR Benthic Habitat Map...

  7. Deciduous Forest Zone of Ghana

    African Journals Online (AJOL)

    carbon, nitrogen and phosphorus contents, soil reaction and base saturation with highest values in the topsoil due to the .... These soils occur extensively in the. Zone ... tion with 6M sulphuric acid. .... which will lead to removal of topsoil litter,.

  8. VT Data - Zoning 20130305, Dover

    Data.gov (United States)

    Vermont Center for Geographic Information — This file, along with two others, was created to produce a new, official zoning map series for the Town of Dover, Vermont in 2007. This file represents the base...

  9. Offshore Wind Technology Depth Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coastal bathymetric depth, measured in meters at depth values of: -30, -60, -900 Shallow Zone (0-30m): Technology has been demonstrated on a commercial scale at...

  10. Work zone and operation enhancements.

    Science.gov (United States)

    2010-02-01

    Oregon Department of Transportation contractors are required to implement Traffic Control Plans (TCPs) to protect and direct traffic through work zones. The design and implementation of TCPs have shown variation from project-to-project across the Sta...

  11. VT Data - Zoning 20170407, Burlington

    Data.gov (United States)

    Vermont Center for Geographic Information — For a detailed description of the zoning districts referenced in this data, please refer to the City of Burlington, Vermont's webpage. Please be sure to review all...

  12. ShoreZone Survey Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a point file showing GPS trackline data collected during a ShoreZone aerial imaging survey. This flight trackline is recorded at 1-second intervals...

  13. Embodied Archives as Contact Zones

    Directory of Open Access Journals (Sweden)

    Judit Vidiella

    2015-02-01

    Full Text Available This article proposes a reflection about affective politics from locating some theoretical and conceptual genealogies like «emotion», «affection», «zones of contact»…, that understand them as action and force fields. These contributions allow us to rethink the relation of affects with politics and strategies of archive linked to performance, and understood as zones of friction, collision, circulation and contact: performative writing, repertoire, memes…

  14. The Tlx gene regulates the timing of neurogenesis in the cortex.

    Science.gov (United States)

    Roy, Kristine; Kuznicki, Kathleen; Wu, Qiang; Sun, Zhuoxin; Bock, Dagmar; Schutz, Gunther; Vranich, Nancy; Monaghan, A Paula

    2004-09-22

    The tailless (tlx) gene is a forebrain-restricted transcription factor. Tlx mutant animals exhibit a reduction in the size of the cerebral hemispheres and associated structures (Monaghan et al., 1997). Superficial cortical layers are specifically reduced, whereas deep layers are relatively unaltered (Land and Monaghan, 2003). To determine whether the adult laminar phenotype has a developmental etiology and whether it is associated with a change in proliferation/differentiation decisions, we examined the cell cycle and neurogenesis in the embryonic cortex. We found that there is a temporal and regional requirement for the Tlx protein in progenitor cells (PCs). Neurons prematurely differentiate at all rostrocaudal levels up to mid-neurogenesis in mutant animals. Heterozygote animals have an intermediate phenotype indicating there is a threshold requirement for Tlx in early cortical neurogenesis. Our studies indicate that PCs in the ventricular zone are sensitive to loss of Tlx in caudal regions only; however, PCs in the subventricular zone are altered at all rostrocaudal levels in tlx-deficient animals. Furthermore, we found that the cell cycle is shorter from embryonic day 9.5 in tlx-/- embryos. At mid-neurogenesis, the PC population becomes depleted, and late PCs have a longer cell cycle in tlx-deficient animals. Consequently, later generated structures, such as upper cortical layers, the dentate gyrus, and the olfactory bulbs, are severely reduced. These studies indicate that tlx is an essential intrinsic regulator in the decision to proliferate or differentiate in the developing forebrain.

  15. Women in Chernobyl Exclusion Zone

    International Nuclear Information System (INIS)

    Balashevska, Y.; Kireev, S.; Navalikhin, V.

    2015-01-01

    Today, 29 years after the Chernobyl accident, the Exclusion Zone still remains an areal unsealed radiation source of around 2600 km"2. It is not just a gigantic radioactive waste storage facility (the amount of radioactive waste accumulated within the Zone, except for the Shelter, is estimated at about 2.8 million m"3), but also a unique research and engineering platform for biologists, radiologists, chemists and physicists. Taking into account the amount of the radionuclides released during the accident, it becomes quite understood that the radiological environment in the Exclusion Zone is far from favorable. However, among the Exclusion Zone personnel who numbers 5000, there are female workers. The poster represents the results of the research performed among the female employees of the largest enterprise of the Exclusion Zone, “Chornobyl Spetskombinat”. The survey was performed with the view to knowing what makes women work in the most radioactively contaminated area in Europe, and what their role is, to revealing their fears and hopes, and to estimating the chances of the brave women of Chernobyl Exclusion Zone to succeed in their careers. (author)

  16. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    Science.gov (United States)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  17. Root zone effects on tracer migration in arid zones

    International Nuclear Information System (INIS)

    Tyler, S.W.; Walker, G.R.

    1994-01-01

    The study of groundwater recharge and soil water movement in arid regions has received increased attention in the search for safe disposal sites for hazardous wastes. In passing through the upper 1 to 2 m of most soil profiles, tracers indicative of recharge such as Cl, 2 H, 18 O, Br, 3 H, and 56 Cl are subjected to a wide range of processes not encountered deeper in the profile. This transition zone, where water enters as precipitation and leaves as recharge, is often ignored when environmental tracers are used to estimate deep soil water flux and recharge, yet its effect may be profound. In this work, we reexamine the processes of root extraction and its effect on the velocity and distribution of tracers. Examples are presented for idealized conditions, which show clearly the relation between the root zone processes and the deep drainage or recharge. The results indicate that, when recharge is small and root zone processes are not accounted for, tracer techniques can significantly overestimate recharge until the tracer has moved well below the root zone. By incorporating simple models of root zone processes, a clearer understanding of tracer distributions and a more accurate estimate of recharge can then be made. 11 refs., 9 figs

  18. The number of stem cells in the subependymal zone of the adult rodent brain is correlated with the number of ependymal cells and not with the volume of the niche.

    Science.gov (United States)

    Kazanis, Ilias; Ffrench-Constant, Charles

    2012-05-01

    The mammalian subependymal zone (SEZ; often called subventricular) situated at the lateral walls of the lateral ventricles of the brain contains a pool of relatively quiescent adult neural stem cells whose neurogenic activity persists throughout life. These stem cells are positioned in close proximity both to the ependymal cells that provide the cerebrospinal fluid interface and to the blood vessel endothelial cells, but the relative contribution of these 2 cell types to stem cell regulation remains undetermined. Here, we address this question by analyzing a naturally occurring example of volumetric scaling of the SEZ in a comparison of the mouse SEZ with the larger rat SEZ. Our analysis reveals that the number of stem cells in the SEZ niche is correlated with the number of ependymal cells rather than with the volume, thereby indicating the importance of ependymal-derived factors in the formation and function of the SEZ. The elucidation of the factors generated by ependymal cells that regulate stem cell numbers within the SEZ is, therefore, of importance for stem cell biology and regenerative neuroscience.

  19. SEMIAUTOMATIC DETECTION OF TUMORAL ZONE

    Directory of Open Access Journals (Sweden)

    Ezzeddine Zagrouba

    2011-05-01

    Full Text Available This paper describes a robust method based on the cooperation of fuzzy classification and regions segmentation algorithms, in order to detect the tumoral zone in the brain Magnetic Resonance Imaging (MRI. On one hand, the classification in fuzzy sets is done by the Fuzzy C-Means algorithm (FCM, where a study of its different parameters and its complexity has been previously realised, which led us to improve it. On the other hand, the segmentation in regions is obtained by an hierarchical method through adaptive thresholding. Then, an operator expert selects a germ in the tumoral zone, and the class containing the sick zone is localised in return for the FCM algorithm. Finally, the superposition of the two partitions of the image will determine the sick zone. The originality of our approach is the parallel exploitation of different types of information in the image by the cooperation of two complementary approaches. This allows us to carry out a pertinent approach for the detection of sick zone in MRI images.

  20. State Enterprise Zone Programs: Have They Worked?

    Science.gov (United States)

    Peters, Alan H.; Fisher, Peter S.

    The effectiveness of state enterprise zone programs was examined by using a hypothetical-firm model called the Tax and Incentives Model-Enterprise Zones (TAIM-ez) model to analyze the value of enterprise zone incentives to businesses across the United States and especially in the 13 states that had substantial enterprise zone programs by 1990. The…

  1. 33 CFR 165.20 - Safety zones.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety zones. 165.20 Section 165... WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS Safety Zones § 165.20 Safety zones. A Safety Zone is a water area, shore area, or water and shore area to which, for safety or environmental...

  2. 46 CFR 76.23-5 - Zoning.

    Science.gov (United States)

    2010-10-01

    ... deck, large common areas may be zoned in accordance with table 76.23-5(b). All such zones within one common area shall be of approximately the same size. Zones of this type shall overlap in such a manner that the end sprinkler heads of both adjoining zones will cover the identical area. Table 76.23-5(b...

  3. Zone distillation: a new purification method

    International Nuclear Information System (INIS)

    Kravchenko, A.I.

    2011-01-01

    The features of zone distillation (with zone melting of refined material and with pulling of condensate) as a new purification method are shown. The method is based on similarity of equations of distillation and crystallization refining. The analogy between some distillation and condensation methods (particularly between zone distillation and zone recrystallization) is should up

  4. Problems of Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    1996-01-01

    The collection comprises the results of researches and design activity in the ChNPP exclusion zone with the aim to develop technology, equipment and instruments for RAW management and accident clean-up, studying of the composition and structure of the activity solid bearers in the soil of the exclusion zone and transformation of the radionuclides in the nearest zone of ChNPP. Much attention is paid to medical and biological problems of the accident influence on the flora, fauna and people's health, labour conditions and incidence of the people involved. The collection comprises the information for scientists, experts, postgraduates and students in gaged in ecology, radioecology, nuclear engineering, radiology, radiochemistry and radiobiology

  5. Effects of ionizing-radiation to the expressions of bFGF and BDNF and the protective and repaired functions of melatonin in the forebrain of rat

    International Nuclear Information System (INIS)

    Di Rongke; Xu Jin; Zhou Zhiqiang; Liu Yiren

    2006-01-01

    Objective: To investigate the expressions of bFGF and BDNF induced with ionizing-radiation and the effects of melatonin to the expressions of bFGF and BDNF in the rate cerebral cortex and subependymal ventrical zone (SVZ) and discuss the protective function and repaired mechanism of melatonin to brain during radiation nervous damage. Methods: 60 SD rats were used in this experiment, which were divided into three groups: blank control group, radiation control group, and treatment groups. Injections of melatonin were given into the abdomen of the rats in the treatment group in three doses of 1, 5 and 10 mg·kg -1 one time each day, in total of 10 days. Then, the radiation control and treatment groups were X-rayed a dose of 600 cGy. All of rat brains were cut up in coronal sections continuously, which were stained with bFGF and BDNF in immunohistochemical ABC method. The positive cells stained with bFGF and BDNF were observed and counted under the light microscope with computed program. Results: bFGF and BDNF are expressed weakly in cerebral cortex and subependymal ventrical zone of the normal rats. One day after radiation, the expressions of bFGF and BDNF are increasing, but weaking 5 days after radiation in cerebral cortex; then, one day after radiation, the expressions of bFGF and BDNF are less increasing, but more increasing 5 days after radiation in the subependymal ventrical zone cells. When the rats were treated by the melatonin in advance, the expressions of bFGF and BDNF are increasing continuously (more than 50%) and accompanying with the dose of melatonin. The cells of proliferation, differentiation, and migration can be observed in the subependymal ventrical zone (from 1-2 layers to 3-5 layers). Conclution: Radiation nervous damage can induce the expressions of bFGF and BDNF in the cerebral cortex and subependymal ventrical zone, which are more increasing when stimulated with melatonin. It is shown that melatonin has the functions to protect the cerebral

  6. Dual-zone boiling process

    International Nuclear Information System (INIS)

    Bennett, D.L.; Schwarz, A.; Thorogood, R.M.

    1987-01-01

    This patent describes a process for boiling flowing liquids in a heat exchanger wherein the flowing liquids is heated in a single heat exchanger to vaporize the liquid. The improvement described here comprises: (a) passing the boiling flowing liquid through a first heat transfer zone of the heat exchanger comprising a surface with a high-convective-heat-transfer characteristic and a higher pressure drop characteristic; and then (b) passing the boiling flowing liquid through a second heat transfer zone of the heat exchanger comprising an essentially open channel with only minor obstructions by secondary surfaces, with an enhanced nucleate boiling heat transfer surface and a lower pressure drop characteristic

  7. Methods for converting industrial zones

    Science.gov (United States)

    Talipova, L.; Kosyakov, E.; Polyakova, Irina

    2017-10-01

    In this article, industrial zones of Saint Petersburg and Hong Kong were considered. Competitive projects aimed at developing the grey belt of Saint Petersburg were considered. The methodology of the survey of reconstruction of the industrial zone of Hong Kong is also analyzed. The potential of the city’s grey belt lies in its location on the border of the city’s historical centre. Rational use of this potential will make it possible to achieve numerous objectives, including development of the city’s transport infrastructure, positioning of business functions, and organization of housing and the city’s system of green public spaces.

  8. Spatiotemporal distribution of PAX6 and MEIS2 expression and total cell numbers in the ganglionic eminence in the early developing human forebrain

    DEFF Research Database (Denmark)

    Larsen, Karen B; Lutterodt, Melissa C; Laursen, Henning

    2010-01-01

    The development of the human neocortex is a complex and highly regulated process involving a time-related expression of many transcription factors including the homeobox genes Pax6 and Meis2. During early development, Pax6 is expressed in nuclei of radial glia cells in the neocortical proliferative...... in the same time window. We demonstrate by in situ hybridization and immunohistochemistry that the two homeobox genes are expressed during early fetal brain development in humans. PAX6 mRNA and protein were located in the proliferative zones of the neocortex and in single cells in the cortical preplate at 7...... in the proliferative zones of the human fetal neocortex and a higher expression of MEIS2 than PAX6 was observed in these areas at 9 fetal weeks. Further, MEIS2 was expressed at a very high level in the developing ganglionic eminence and at a more moderate level in the cortical plate....

  9. Seismotectonic zoning of Azerbaijan territory

    Science.gov (United States)

    Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad

    2017-04-01

    Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep

  10. 77 FR 30245 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2012-05-22

    ...'' N, 082-51'-18.70'' W (NAD 83). This proposed zone would be enforced one evening during the last week...-AA00 Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone AGENCY: Coast Guard... by adding three permanent safety zones within the Captain of the Port Detroit Zone. This action is...

  11. Subpopulations of somatostatin-immunoreactive nonpyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex

    Directory of Open Access Journals (Sweden)

    Alexander J. McDonald

    2012-07-01

    Full Text Available The hippocampus and amygdala are key structures of the limbic system whose connections include reciprocal interactions with the basal forebrain (BF. The hippocampus receives both cholinergic and GABAergic afferents from the medial septal area of the BF. Hippocampal projections back to the medial septal area arise from nonpyramidal GABAergic neurons that express somatostatin (SOM, calbindin (CB, and neuropeptide Y (NPY. Recent experiments in our lab have demonstrated that the basolateral amygdala, like the hippocampus, receives both cholinergic and GABAergic afferents from the BF. These projections arise from neurons in the substantia innominata and ventral pallidum. It remained to be determined, however, whether the amygdala has projections back to the BF that arise from GABAergic nonpyramidal neurons. This question was investigated in the present study by combining Fluorogold (FG retrograde tract tracing with immunohistochemistry for GABAergic nonpyramidal cell markers, including SOM, CB, NPY, parvalbumin, calretinin, and glutamic acid decarboxylase (GAD. FG injections into the basal forebrain produced a diffuse array of retrogradely labeled neurons in many nuclei of the amygdala. The great majority of amygdalar FG+ neurons did not express nonpyramidal cell markers. However, a subpopulation of nonpyramidal SOM+ neurons, termed long range nonpyramidal neurons (LRNP neurons, in the external capsule, basolateral amygdala, and cortical and medial amygdalar nuclei were FG+. About one-third of the SOM+ LRNP neurons were CB+ or NPY+, and one-half were GAD+. It remains to be determined if these inhibitory amygdalar projections to the BF, like those from the hippocampus, are important for regulating synchronous oscillations in the amygdalar-BF network.

  12. ShoreZone Mapped Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is a polyline file of mapped ShoreZone units which correspond with data records found in the Unit, Xshr, BioUnit, and BioBand tables of this...

  13. Issues in Coastal Zone Management.

    Science.gov (United States)

    Davis, Derrin

    1992-01-01

    Addresses the following issues relevant to coastal zone management: overcrowding, resource exploitation, pollution, agriculture, fisheries, industrial, and other uses. Describes conflicts and trade-offs in management typified by fragmented agency decision making. Discusses implications of the greenhouse effect, sustainable development, and the…

  14. Street prostitution zones and crime

    NARCIS (Netherlands)

    Bisschop, P.; Kastoryano, S.; van der Klaauw, B.

    2017-01-01

    This paper studies the effects of legal street prostitution zones on registered and perceived crime. We exploit a unique setting in the Netherlands where these tippelzones were opened in nine cities under different regulation systems. Our difference-in-difference analysis of 25 Dutch cities between

  15. Land governance as grey zone

    DEFF Research Database (Denmark)

    Kjær, Anne Mette

    2017-01-01

    demonstrates that in Uganda, the need to maintain the ruling coalition in a clientelist political settlement to build electoral support, and the desire to attract economic investors, constitute political incentives to maintain land governance as a grey zone, even if there is apparent political...

  16. Lithium inputs to subduction zones

    NARCIS (Netherlands)

    Bouman, C.; Elliott, T.R.; Vroon, P.Z.

    2004-01-01

    We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and δ

  17. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  18. Irradiation damage 'displacement zone'; Dommages sous irradiation zone de deplacements

    Energy Technology Data Exchange (ETDEWEB)

    Genthon, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    It is well known that a charged particle (ion, primary atom, etc...) moving in a solid slows down and can cause a cascade of displacements of the atoms in the solid. A study is made here of the extent to which the cascade is made up, or not, of independent collisions, as a function of the energy of the initial charged particle. When the distance between the collisions is small, these latter are no longer independent; the cascade, which then has to be considered as a whole, perturbs and locates, in the irradiated solid , a zone which has been named a 'displacement zone'. It is shown that the proportion of displacement zones increases with increasing atom size (high atomic number Z), with decreasing atomic distance D in the substance considered and with decreasing energy of the ion undergoing the slowing down process (although always remaining above a few hundred eV). The proportions obtained are higher than those corresponding to the calculations of J. A. Brinkman [3]. An interatomic potential required for this work has also been determined. (author) [French] On sait qu'une particule chargee (ions, atomes primaires, etc...) en mouvement dans un solide se ralentit, avec eventuellement deplacement en cascade d'atomes du solide. On etudie ici dans quelle proportion, en fonction de l'energie de la particule chargee initiale, la cascade est constituee, ou non, de 'chocs independants'. Lorsque la distance entre chocs est petite, ceux-ci ne sont plus independants; la cascade, qui doit alors etre consideree dans son ensemble, perturbe et definit dans le solide irradie, une zone qu'on a appele zone de deplacements. On montre que la proportion de zones de deplacements est d'autant plus grande que les atomes sont gros (nombre atomique Z grand), que la distance interatomique D est petite dans le corps considere, et que l'energie de l'ion en ralentissement est petite (tout en restant superieure a quelques centaines d'eV). Les proportions obtenues sont superieures a celles qui

  19. 77 FR 6007 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Science.gov (United States)

    2012-02-07

    ...] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation... they could be published in the Federal Register. This notice lists temporary safety zones, security... the safety and security needs within their jurisdiction; therefore, District Commanders and COTPs have...

  20. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    Energy Technology Data Exchange (ETDEWEB)

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  1. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    International Nuclear Information System (INIS)

    Conca, J.

    2000-01-01

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion

  2. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia.

    Directory of Open Access Journals (Sweden)

    Christina Chatzi

    2011-04-01

    Full Text Available Although retinoic acid (RA has been implicated as an extrinsic signal regulating forebrain neurogenesis, the processes regulated by RA signaling remain unclear. Here, analysis of retinaldehyde dehydrogenase mutant mouse embryos lacking RA synthesis demonstrates that RA generated by Raldh3 in the subventricular zone of the basal ganglia is required for GABAergic differentiation, whereas RA generated by Raldh2 in the meninges is unnecessary for development of the adjacent cortex. Neurospheres generated from the lateral ganglionic eminence (LGE, where Raldh3 is highly expressed, produce endogenous RA, which is required for differentiation to GABAergic neurons. In Raldh3⁻/⁻ embryos, LGE progenitors fail to differentiate into either GABAergic striatal projection neurons or GABAergic interneurons migrating to the olfactory bulb and cortex. We describe conditions for RA treatment of human embryonic stem cells that result in efficient differentiation to a heterogeneous population of GABAergic interneurons without the appearance of GABAergic striatal projection neurons, thus providing an in vitro method for generation of GABAergic interneurons for further study. Our observation that endogenous RA is required for generation of LGE-derived GABAergic neurons in the basal ganglia establishes a key role for RA signaling in development of the forebrain.

  3. 33 CFR 165.169 - Safety and Security Zones: New York Marine Inspection Zone and Captain of the Port Zone.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones: New... Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY... Areas First Coast Guard District § 165.169 Safety and Security Zones: New York Marine Inspection Zone...

  4. Demarcation of secondary hyperalgesia zones

    DEFF Research Database (Denmark)

    Ringsted, Thomas K; Enghuus, Casper; Petersen, Morten A

    2015-01-01

    of analgesic drug effects in humans. However, since the methods applied in demarcating the secondary hyperalgesia zone seem inconsistent across studies, we examined the effect of a standardized approach upon the measurement of SHA following a first degree burn injury (BI). NEW METHOD: The study was a two.......0001). No day-to-day or observer-to-observer differences in SHAs were observed. Intraclass correlation coefficients, in the range of 0.51 to 0.84, indicated a moderate to almost perfect reliability between observers. COMPARISON WITH EXISTING METHODS: No standardized approach in SHA-assessment has hitherto been...... presented. CONCLUSIONS: This is the first study to demonstrate that demarcation of secondary hyperalgesia zones depends on the developed pressure of the punctate stimulator used....

  5. Control of penetration zone GMAW

    Directory of Open Access Journals (Sweden)

    Віталій Петрович Iванов

    2016-11-01

    Full Text Available Thermal properties of the base metal, shielding medium and the nature of the electrode metal transfer to a great extent determine the penetration area formation in gas-arc welding. It is not always possible to take into account the influence of these factors on penetration front forming within the existing models. The aim of the work was to research the penetration area forming in gas-arc welding. The research of the penetration area forming in gas-arc welding of CrNi austenitic steels was made. The parameters of the regime as well as the kind of the gaseous medium influence on the formation of the penetration zone were studied. The article shows a linear proportional relationship between the electrode feed rate and the size of the base metal plate. The penetration area formation mode for welding in argon and carbon dioxide have been worked out. Diameter, feed rate and the speed of the electrode movement have been chosen as the main input parameters. Multiple regression analysis method was used to make up the modes. The relations of the third order that make it possible to take into account the electrode metal transfer and thermal properties change of the materials to be welded were used. These relationships show quite good agreement with the experimental measurements in the calculation of the fusion zone shape with consumable electrode in argon and carbon dioxide. It was determined that the shape of the melting front curve can be shown as a generalized function in which the front motion parameters depend on feed rate and the diameter of the electrode. Penetration zone growth time is determined by the welding speed and is calculated as a discrete function of the distance from the electrode with the spacing along the movement coordinate. The influence of the mode parameters on the formation of the fusion zone has been investigated and the ways to manage and stabilize the weld pool formation have been identified. The modes can be used to develop

  6. TASK 2: QUENCH ZONE SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual

  7. Vadose Zone Journal: The first ten years

    NARCIS (Netherlands)

    Vrugt, J.A.; Or, D.; Young, M.H.

    2013-01-01

    Celebrating ten years of publication, the authors introduce a special section commemorating the anniversary of Vadose Zone Journal and reviewing the journal’s role in an evolving understanding of vadose zone science.

  8. Zoning, 2004, East Baton Rouge Parish, Louisiana

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a graphical polygon dataset depicting the zoning boundaries of the East Baton Rouge Parish of the State of Louisiana. Zoning can be defined as the range of...

  9. United States Stateplane Zones - NAD27

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — U.S. State Plane Zones (NAD 1927) represents the State Plane Coordinate System (SPCS) Zones for the 1927 North American Datum within United States.

  10. United States Stateplane Zones - NAD83

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — U.S. State Plane Zones (NAD 1983) represents the State Plane Coordinate System (SPCS) Zones for the 1983 North American Datum within United States.

  11. PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES

    Science.gov (United States)

    The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...

  12. Buffer Zone Requirements for Soil Fumigant Applications

    Science.gov (United States)

    Updated pesticide product labels require fumigant users to establish a buffer zone around treated fields to reduce risks to bystanders. Useful information includes tarp testing guidance and a buffer zone calculator.

  13. Effectiveness of work zone intelligent transportation systems.

    Science.gov (United States)

    2013-12-01

    In the last decade, Intelligent Transportation Systems (ITS) have increasingly been deployed in work zones by state departments of transportation. Also known as smart work zone systems they improve traffic operations and safety by providing real-time...

  14. Zone Denmark - gasell Taanist / Reet Krause

    Index Scriptorium Estoniae

    Krause, Reet, 1967-

    2006-01-01

    Taanis Viborgis asuva firma Zone Company Denmark, kaubamärgi Zone Denmark ja firma disainerite tutvustus. Ettevõte valmistab disainitooteid roostevabast terasest, klaasist, puidust, kummist jm. Disainer Naja Utzon Popov endast, oma loomingust

  15. Do "Some" Enterprise Zones Create Jobs?

    Science.gov (United States)

    Kolko, Jed; Neumark, David

    2010-01-01

    We study how the employment effects of enterprise zones vary with their location, implementation, and administration, based on evidence from California. We use new establishment-level data and geographic mapping methods, coupled with a survey of enterprise zone administrators. Overall, the evidence indicates that enterprise zones do not increase…

  16. 78 FR 15883 - Standard Time Zone Boundaries

    Science.gov (United States)

    2013-03-13

    ...] RIN 2105-AE20 Standard Time Zone Boundaries AGENCY: Office of the Secretary (OST), Department of... time zone boundaries regulations to reflect changes that Congress made to the Uniform Time Act. The... regulations on standard time zone boundaries, 49 CFR Part 71, need to be updated in order to ensure their...

  17. Drug-Free School Zones: Taking Charge.

    Science.gov (United States)

    Thomas, Carol F.

    Information for planning and implementing drug-free school zones within a broader school-community prevention and intervention program is provided in this guidebook. The first section provides background information on drug-free school zone legislation and common elements of drug-free school zones. The risk and protective factors for alcohol and…

  18. Recent findings relating to firefighter safety zones

    Science.gov (United States)

    Bret Butler; Russ Parsons; William Mell

    2015-01-01

    Designation of safety zones is a primary duty of all wildland firefighters. Unfortunately, information regarding what constitutes an adequate safety zone is inadequately defined. Measurements of energy release from wildland fires have been used to develop an empirically based safety zone guideline. The basis for this work is described here.

  19. Export Processing Zones and Global Class Formation

    NARCIS (Netherlands)

    Neveling, Patrick

    2015-01-01

    This chapter is concerned with one of the most striking developments in the global political economy of capitalism after the Second World War; the rise of export processing zones and special economic zones. Building on long-term ethnohistorical research on the zones’ global spread from one zone in

  20. 76 FR 44803 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Science.gov (United States)

    2011-07-27

    ... USCG-2009-1081 New Orleans, LA Safety Zone (Part 165)..... 12/23/2009 USCG-2009-1084 Rio Vista, CA...-1096 Port Portland Zone......... Safety Zone (Part 165)..... 7/3/2010 USCG-2009-0040 La Push, WA Safety...-0950 Madisonville, LA Safety Zone (Part 165)..... 12/31/2009 USCG-2009-0951 Lower Mississippi River...

  1. 78 FR 24679 - Safety Zones; Fireworks Displays in Captain of the Port Long Island Sound Zone

    Science.gov (United States)

    2013-04-26

    ...-AA00 Safety Zones; Fireworks Displays in Captain of the Port Long Island Sound Zone AGENCY: Coast Guard... zones for fireworks displays within the Captain of the Port (COTP) Long Island Sound (LIS) Zone. This... Sector Long Island Sound. DATES: This rule is effective from April 27, 2013, until June 22, 2013. This...

  2. WorkZoneQ user guide for two-lane freeway work zones.

    Science.gov (United States)

    2013-06-01

    WorkZoneQ was developed in Visual Basic for Applications (VBA) to implement the results of the previous study, : Queue and Users Costs in Highway Work Zones. This report contains the WorkZoneQ user guide. WorkZoneQ : consists of eight Excel ...

  3. 78 FR 26508 - Safety Zone; Fireworks Event in Captain of the Port New York Zone

    Science.gov (United States)

    2013-05-07

    ... Harbor located in approximate Safety Zone, 33 CFR 165.160(3.8). position 40[deg]51'58'' N, 073[deg]39'34... Zone; Fireworks Event in Captain of the Port New York Zone AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce safety zones in the Captain of the Port New...

  4. 76 FR 34867 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2011-06-15

    ....941(a)(51) Target Fireworks, Detroit, MI The first safety zone will be enforced from 7 a.m. on June 24... Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce various safety zones for...

  5. 33 CFR 165.814 - Security Zones; Captain of the Port Houston-Galveston Zone.

    Science.gov (United States)

    2010-07-01

    ... Port Houston-Galveston Zone. 165.814 Section 165.814 Navigation and Navigable Waters COAST GUARD... § 165.814 Security Zones; Captain of the Port Houston-Galveston Zone. (a) Location. The following areas are designated as security zones: (1) Houston, Texas. The Houston Ship Channel and all associated...

  6. 76 FR 70342 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Science.gov (United States)

    2011-11-14

    ...] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation... published in the Federal Register. This notice lists temporary safety zones, security zones, special local... Commanders and Captains of the Port (COTP) must be immediately responsive to the safety and security needs...

  7. 78 FR 5717 - Safety Zone; Military Ocean Terminal Concord Safety Zone, Suisun Bay, Military Ocean Terminal...

    Science.gov (United States)

    2013-01-28

    ...-AA00 Safety Zone; Military Ocean Terminal Concord Safety Zone, Suisun Bay, Military Ocean Terminal... Guard is establishing a safety zone in the navigable waters of Suisun Bay near Military Ocean Terminal Concord, CA in support of military onload and offload operations. This safety zone is established to...

  8. New geometrical compactness measures for zones design

    Directory of Open Access Journals (Sweden)

    Eric Alfredo Rincón-García

    2012-07-01

    Full Text Available The design of compact zones has been studied because of its influence in the creation of zones with regular forms, which are easier to analyze, to investigate or to administer. This paper propose a new method to measure compactness,by means of the transformation of the original geographical spaces, into figures formed with square cells, which are used to measure the similarity between the original zone and an ideal zone with straight forms. The proposed method was applied to design electoral zones, which must satisfy constraints of compactness, contiguity and population balance, in a topographical configuration that favors the creation of twisted and diffuse shapes. The results show that the new method favors the creation of zones with straight forms, without an important effect to the population balance, which are considered zones of high quality. Keywords: Redistricting, compactness, simulated annealing, GIS. Mathematics Subject Classification: 90C59, 90C29, 68T20.

  9. Coastal Zone Color Scanner studies

    Science.gov (United States)

    Elrod, J.

    1988-01-01

    Activities over the past year have included cooperative work with a summer faculty fellow using the Coastal Zone Color Scanner (CZCS) imagery to study the effects of gradients in trophic resources on coral reefs in the Caribbean. Other research included characterization of ocean radiances specific to an acid-waste plume. Other activities include involvement in the quality control of imagery produced in the processing of the global CZCS data set, the collection of various other data global sets, and the subsequent data comparison and analysis.

  10. Role of neuropeptide Y in the regulation of gonadotropin releasing hormone system in the forebrain of Clarias batrachus (Linn.): immunocytochemistry and high performance liquid chromatography-electrospray ionization-mass spectrometric analysis.

    Science.gov (United States)

    Gaikwad, A; Biju, K C; Muthal, P L; Saha, S; Subhedar, N

    2005-01-01

    Although the importance of neuropeptide Y (NPY) in the regulation of gonadotropin releasing hormone (GnRH) and reproduction has been highlighted in recent years, the neuroanatomical substrate within which these substances might interact has not been fully elucidated. Present work was undertaken with a view to define the anatomical-physiological correlates underlying the role exercised by NPY in the regulation of GnRH in the forebrain of the teleost Clarias batrachus. Application of double immunocytochemistry revealed close associations as well as colocalizations of the two peptides in the olfactory receptor neurons (ORNs), olfactory nerve fibers and their terminals in the glomeruli, ganglion cells of nervus terminalis, medial olfactory tract, fibers in the area ventralis telencephali/pars supracommissuralis and cells as well as fibers in the pituitary. NPY containing axons were found to terminate in the vicinity of GnRH cells in the pituitary with light as well as electron microscopy. Double immunoelectron microscopy demonstrated gold particles for NPY and GnRH colocalized on the membrane and in dense core of the secretory granules in the cells distributed in all components of the pituitary gland. To assess the physiological implication of these observations, NPY was injected via the intracranial route and the response of GnRH immunoreactive system was evaluated by relative quantitative morphometry as well as high performance liquid chromatography (HPLC) analysis. Two hours following NPY (20 ng/g body weight) administration, a dramatic increase was observed in the GnRH immunoreactivity in the ORNs, in the fibers of the olfactory bulb (163%) and medial olfactory tract (351%). High performance liquid chromatography-electrospray ionization-mass spectrometric analysis confirmed the immunocytochemical data. Significant rise in the salmon GnRH (sGnRH)-like peptide content was observed in the olfactory organ (194.23%), olfactory bulb (146.64%), telencephalon+preoptic area

  11. Diverse Roads to Relapse: A Discriminative Cue Signaling Cocaine Availability Is More Effective in Renewing Cocaine Seeking in Goal Trackers Than Sign Trackers and Depends on Basal Forebrain Cholinergic Activity.

    Science.gov (United States)

    Pitchers, Kyle K; Phillips, Kyra B; Jones, Jonte L; Robinson, Terry E; Sarter, Martin

    2017-07-26

    Stimuli associated with taking drugs are notorious instigators of relapse. There is, however, considerable variation in the motivational properties of such stimuli, both as a function of the individual and the nature of the stimulus. The behavior of some individuals (sign trackers, STs) is especially influenced by cues paired with reward delivery, perhaps because they are prone to process information via dopamine-dependent, cue-driven, incentive salience systems. Other individuals (goal trackers, GTs) are better able to incorporate higher-order contextual information, perhaps because of better executive/attentional control over behavior, which requires frontal cortical cholinergic activity. We hypothesized, therefore, that a cue that "sets the occasion" for drug taking (a discriminative stimulus, DS) would reinstate cocaine seeking more readily in GTs than STs and that this would require intact cholinergic neurotransmission. To test this, male STs and GTs were trained to self-administer cocaine using an intermittent access schedule with periods of cocaine availability and unavailability signaled by a DS + and a DS - , respectively. Thereafter, half of the rats received an immunotoxic lesion that destroyed 40-50% of basal forebrain cholinergic neurons and later, after extinction training, were tested for the ability of noncontingent presentations of the DS + to reinstate cocaine seeking behavior. The DS + was much more effective in reinstating cocaine seeking in GTs than STs and this effect was abolished by cholinergic losses despite the fact that all rats continued to orient to the DS + We conclude that vulnerability to relapse involves interactions between individual cognitive-motivational biases and the form of the drug cue encountered. SIGNIFICANCE STATEMENT The most predictable outcome of a diagnosis of addiction is a high chance for relapse. When addicts encounter cues previously associated with drug, their attention may be unduly attracted to such cues and

  12. Cocaine self-administration in mice with forebrain knock-down of trpc5 ion channels [v1; ref status: indexed, http://f1000r.es/pb

    Directory of Open Access Journals (Sweden)

    Matthew B Pomrenze

    2013-02-01

    Full Text Available Canonical transient receptor potential (TRPC channels are a family of non-selective cation channels that play a crucial role in modulating neuronal excitability due to their involvement in intracellular Ca2+ regulation and dendritic growth. TRPC5 channels a are one of the two most prevalent TRPC channels in the adult rodent brain; b are densely expressed in deep layer pyramidal neurons of the prefrontal cortex (PFC; and c modulate neuronal persistent activity necessary for working memory and attention. In order to evaluate the causal role of TRPC5 in motivation/reward-related behaviors, conditional forebrain TRPC5 knock-down (trpc5-KD mice were generated and trained to nose-poke for intravenous cocaine. Here we present a data set containing the first 6 days of saline or cocaine self-administration in wild type (WT and trpc5-KD mice. In addition, we also present a data set showing the dose-response to cocaine after both groups had achieved similar levels of cocaine self-administration. Compared to WT mice, trpc5-KD mice exhibited an apparent increase in self-administration on the first day of cocaine testing without prior operant training. There were no apparent differences between WT and trpc5-KD mice for saline responding on the first day of training. Both groups showed similar dose-response sensitivity to cocaine after several days of achieving similar levels of cocaine intake.

  13. Multichannel imager for littoral zone characterization

    Science.gov (United States)

    Podobna, Yuliya; Schoonmaker, Jon; Dirbas, Joe; Sofianos, James; Boucher, Cynthia; Gilbert, Gary

    2010-04-01

    This paper describes an approach to utilize a multi-channel, multi-spectral electro-optic (EO) system for littoral zone characterization. Advanced Coherent Technologies, LLC (ACT) presents their EO sensor systems for the surf zone environmental assessment and potential surf zone target detection. Specifically, an approach is presented to determine a Surf Zone Index (SZI) from the multi-spectral EO sensor system. SZI provides a single quantitative value of the surf zone conditions delivering an immediate understanding of the area and an assessment as to how well an airborne optical system might perform in a mine countermeasures (MCM) operation. Utilizing consecutive frames of SZI images, ACT is able to measure variability over time. A surf zone nomograph, which incorporates targets, sensor, and environmental data, including the SZI to determine the environmental impact on system performance, is reviewed in this work. ACT's electro-optical multi-channel, multi-spectral imaging system and test results are presented and discussed.

  14. Dead zone characteristics of a gas counter

    International Nuclear Information System (INIS)

    Nohtomi, Akihiro; Sakae, Takeji; Matoba, Masaru; Koori, Norihiko.

    1990-01-01

    The dead zone was recently defined as the product of dead length and dead time in order to describe the characteristics of the self-quenching streamer (SQS) mode of a gas counter. Investigation of the dead zone characteristics has been extended for the proportional and GM modes, and the measured dead zone has been compared with that of the SQS mode. Accurate values for the dead zone could be determined by means of a newly developed method with a pulse interval time to amplitude converter. Each operation mode indicates distinct dead zone characteristics. Properties of gas counters for high counting rates may be improved on the basis of measurements of the dead zone. (author)

  15. The fracture zone project - final report

    International Nuclear Information System (INIS)

    Andersson, Peter

    1993-09-01

    This report summarizes the work and the experiences gained during the fracture zone project at the Finnsjoen study site. The project is probably the biggest effort, so far, to characterize a major fracture zone in crystalline bedrock. The project was running between 1984-1990 involving a large number of geological, geohydrological, geochemical, and geomechanical investigation. The methods used for identification and characterization are reviewed and discussed in terms of applicability and possible improvements for future investigations. The discussion is exemplified with results from the investigation within the project. Flow and transport properties of the zone determined from hydraulic tests and tracer tests are discussed. A large number of numerical modelling efforts performed within the fracture zone project, the INTRAVAL project, and the SKB91-study are summarized and reviewed. Finally, occurrence of similar zones and the relevance of major low angle fracture zones in connection to the siting of an underground repository is addressed

  16. Problems of Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    1994-01-01

    The collection reflects the results of researches and test-design activities in the exclusion area of the Chernobyl NPP directed to elaborate the equipment and devices for scientific researches and elimination of the accident after effects at the Chernobyl NPP and to study composition and structure of solid-phase bearers of the activity in the soil of the exclusion area, form transformation of decay products, radionuclide composition of the fuel precipitation in the nearest zone of the Chernobyl NPP. Special attention is paid to medical-biological problems of the accident after effects influence on flora, fauna and human health, labour conditions and sick rate of people working in the exclusion area

  17. Mixture for plugging absorption zones

    Energy Technology Data Exchange (ETDEWEB)

    Sitinkov, G V; Kovalenko, N G; Makarov, L V; Zinnatulchin, Ts Kh

    1981-01-17

    A mixture is proposed for plugging absorption zones. The mixture contains synthetic polymer and a solvent. So as to increase the penetrability of the mixture through a reduction in its viscosity and an increase in insulation properties, the compound contains either Capron or Neilon as the synthetic polyamide resin polmyer, and concentrated chloride as the solvent. The mixture is prepared in a special AzINMASh-30 unit (acid cart). After the mixture has been produced, it is injected into the borehole by means of an acid cart pump. So as to prevent coaggulation at the point when the mixture in injected into the stratum through tubes, the mixture is placed betwen chemically inert fluids, for example, a clay mortar. The inert and compressed fluids are injected by means of a cementing unit. The entire process of production and application of the mixture is simple and fully automated through the use of well-known equipment.

  18. Geoecological zoning of developed territories

    Directory of Open Access Journals (Sweden)

    O. N. Gryaznov

    2017-12-01

    Full Text Available The article contains information on methods of geoecological zoning carried out based on the assessment of cartographic material using geoinformation technologies for the analysis of factographic cartographic material. The proposed methodology complements the existing methodological recommendations on geological and environmental research, developed by VSEGINGEO. The paper reflects the basic principles of obtaining the initial environmental information for creation of a map evaluation model of the Salekhard Area, and the rationale for selecting factors and numerical criteria for an integrated environmental assessment of the territory, taking into account the specifics of nature-technogenic conditions of the Severnoye Priobye region (West Siberia. The article briefly describes the main natural factors of the region of research, including landscape, geological, radiation, engineering-geological, geocryological, hydrogeological factors. Separate block describes the objects of technogenic load, including technogeneally-transformed landscapes in residential areas, corridors of transport communications, industrial and energy zones, and local ecologically significant objects. Ecological significance of natural and technogenic factors affected conducted ranking of their numerical parameters of the evaluation criteria. The article shows the application of a method of expert scoring for obtaining an integral assessment of the ecological state of the geological environment and creating a map of the regionalization of the Salekhard Area. Based on obtained cartographic model, a brief analysis of the existing ecological situation in the Salekhard Area shows the territories of favorable, satisfactory, tense, and crisis ecological states. The geoinformation-integrated model serves as the basis for determination of ecologically significant factors at the points of mapping the state of the geological environment, which allows for the further development of the

  19. Seasonal Ice Zone Reconnaissance Surveys Coordination

    Science.gov (United States)

    2016-03-30

    Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness ( ADA ) flights of opportunity in the summers of 2012- 2014. In...measurements across the Beaufort-Chukchi sea seasonal sea ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness ( ADA ) flights of...such, it contains the full range of positions of the marginal ice zone (MIZ) where sea ice interacts with open water. In addition to SIZRS

  20. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  1. The habitable zone and extreme planetary orbits.

    Science.gov (United States)

    Kane, Stephen R; Gelino, Dawn M

    2012-10-01

    The habitable zone for a given star describes the range of circumstellar distances from the star within which a planet could have liquid water on its surface, which depends upon the stellar properties. Here we describe the development of the habitable zone concept, its application to our own solar system, and its subsequent application to exoplanetary systems. We further apply this to planets in extreme eccentric orbits and show how they may still retain life-bearing properties depending upon the percentage of the total orbit which is spent within the habitable zone. Key Words: Extrasolar planets-Habitable zone-Astrobiology.

  2. RADIATION ACCESS ZONE AND VENTILATION CONFINEMENT ZONE CRITERIA FOR THE MGR SURFACE FACILITIES

    International Nuclear Information System (INIS)

    D. A. Padula

    2000-01-01

    The objectives of this technical report are to: (1) Establish the criteria for Radiation Access Zone (RAZ) designation. (2) Establish the criteria for the Ventilation Confinement Zone (VCZ) designation. The scope will be to formulate the RAZ and VCZ zoning designation for the Monitored Geologic Repository (MGR) surface facilities and to apply the zoning designations to the current Waste Handling Building (WHB), Waste Treatment Building (WTB), and Carrier Preparation Building (CPB) configurations

  3. 77 FR 42176 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2012-07-18

    ... fireworks launch site located at position 41-34'-18.10'' N, 082-51'-18.70'' W (NAD 83). This zone will be... at position 41-34'-18.10'' N, 082- 51'-18.70'' W (NAD 83). (ii) Expected date. This safety zone will...-AA00 Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone AGENCY: Coast Guard...

  4. The distinguishing characteristics of interlayer oxidation zone and burial ancient ground oxidation zone

    International Nuclear Information System (INIS)

    Zhang Zhanshi; Zhou Wenbin

    1998-01-01

    The author discusses the main characteristics of interlayer oxidation zones and the burial ancient ground oxidation zones of Uranium deposit No. 512 in Xinjiang Uigur municipality. The epigenetic genesis, depending on some aquifer, the tongue-like in section, having the zonation along dip direction and having certain mineral assemblage are the typical features for interlayer oxidation zones

  5. 76 FR 48751 - Security Zones; Captain of the Port Lake Michigan Zone

    Science.gov (United States)

    2011-08-09

    ... Jardine Water Filtration Plant security zone would encompass all U.S. navigable waters of Lake Michigan... areas near shore to Chicago's water filtration plants; the security zones have been designed to allow.... 165.910 Security Zones; Captain of the Port Lake Michigan. (a) * * * (1) Jardine Water Filtration...

  6. 76 FR 42048 - Safety Zones; Swimming Events in Captain of the Port Boston Zone

    Science.gov (United States)

    2011-07-18

    ...-AA00 Safety Zones; Swimming Events in Captain of the Port Boston Zone AGENCY: Coast Guard, DHS. ACTION... events within the Captain of the Port (COTP) Boston Zone for swimming events. This action is necessary to... property on navigable waters from the hazardous nature of swimming events such as large numbers of swimmers...

  7. 75 FR 19304 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2010-04-14

    ... previously published in Coast Guard regulations. These safety zones are necessary to protect spectators...-AA00 Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone AGENCY: Coast Guard, DHS. ACTION: Notice of proposed rulemaking. SUMMARY: The Coast Guard proposes establishment of safety...

  8. 78 FR 40396 - Safety Zone; America's Cup Safety Zone and No Loitering Area, San Francisco, CA

    Science.gov (United States)

    2013-07-05

    ...-AA00 Safety Zone; America's Cup Safety Zone and No Loitering Area, San Francisco, CA AGENCY: Coast... America's Cup races. This safety zone and no loitering area are established to enhance the safety of spectators and mariners near the north east corner of the America's Cup regulated area. All persons or...

  9. 78 FR 54588 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound

    Science.gov (United States)

    2013-09-05

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0087] Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound AGENCY: Coast Guard, DHS... Security Zone in Commencement Bay, Tacoma, Washington from 6:00 a.m. on September 2, 2013 through 11:59 p.m...

  10. 78 FR 57485 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound

    Science.gov (United States)

    2013-09-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0087] Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound AGENCY: Coast Guard, DHS... Security Zone in Commencement Bay, Tacoma, Washington from 6 a.m. on September 12, 2013 through 11:59 p.m...

  11. 77 FR 9528 - Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound

    Science.gov (United States)

    2012-02-17

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0087] Security Zone; Protection of Military Cargo, Captain of the Port Zone Puget Sound AGENCY: Coast Guard, DHS... Waterway Security Zone in Commencement Bay, Tacoma, Washington from 6 a.m. on February 17, 2012, through 11...

  12. 33 CFR 165.503 - Security Zone; Captain of the Port Hampton Roads Zone.

    Science.gov (United States)

    2010-07-01

    ... Port Hampton Roads Zone. 165.503 Section 165.503 Navigation and Navigable Waters COAST GUARD... § 165.503 Security Zone; Captain of the Port Hampton Roads Zone. (a) Definitions. As used in this... been authorized by the Captain of the Port (COTP), Hampton Roads, Virginia to act on his or her behalf...

  13. Work Zone Intrusion Report Interface Design

    Science.gov (United States)

    2018-02-02

    While necessary for roadways, work zones present a safety risk to crew. Half of road workers deaths between 2005 and 2010 were due to collisions with motorists intruding on the work zone. Therefore, addressing intrusions is an important step for ensu...

  14. Work zone performance measures pilot test.

    Science.gov (United States)

    2011-04-01

    Currently, a well-defined and validated set of metrics to use in monitoring work zone performance do not : exist. This pilot test was conducted to assist state DOTs in identifying what work zone performance : measures can and should be targeted, what...

  15. Remote sensing applications for coastal zone management

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, L.V.G.

    stream_size 4 stream_content_type text/plain stream_name Trg_Course_Coast_Zone_Manage_1993_5.pdf.txt stream_source_info Trg_Course_Coast_Zone_Manage_1993_5.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset...

  16. Efforts to update firefighter safety zone guidelines

    Science.gov (United States)

    Bret Butler

    2009-01-01

    One of the most critical decisions made on wildland fires is the identification of suitable safety zones for firefighters during daily fire management operations. To be effective (timely, repeatable, and accurate), these decisions rely on good training and judgment, but also on clear, concise guidelines. This article is a summary of safety zone guidelines and the...

  17. Nature, Humans, and the Coastal Zone.

    Science.gov (United States)

    Walker, H. Jesse

    1990-01-01

    Considers the interface of humans and seacoasts over time. Explains how coastal zones are formed and human attempts to defend against sea level changes. Charts the percentage of major world cities that also are ports. Postulates how the greenhouse effect could influence sea level, examining potential human responses to changes in coastal zones.…

  18. Turbulent viscosity in natural surf zones

    NARCIS (Netherlands)

    Grasso, F.R.; Ruessink, B.G.

    2012-01-01

    Waves breaking in the shallow surf zone near the shoreline inject turbulence into the water column that may reach the bed to suspend sediment. Breaking-wave turbulence in the surf zone is, however, poorly understood, which is one of the reasons why many process-based coastal-evolution models

  19. A broader classification of damage zones

    Science.gov (United States)

    Peacock, D. C. P.; Dimmen, V.; Rotevatn, A.; Sanderson, D. J.

    2017-09-01

    Damage zones have previously been classified in terms of their positions at fault tips, walls or areas of linkage, with the latter being described in terms of sub-parallel and synchronously active faults. We broaden the idea of linkage to include structures around the intersections of non-parallel and/or non-synchronous faults. These interaction damage zones can be divided into approaching damage zones, where the faults kinematically interact but are not physically connected, and intersection damage zones, where the faults either abut or cross-cut. The damage zone concept is applied to other settings in which strain or displacement variations are taken up by a range of structures, such as at fault bends. It is recommended that a prefix can be added to a wide range of damage zones, to describe the locations in which they formed, e.g., approaching, intersection and fault bend damage zone. Such interpretations are commonly based on limited knowledge of the 3D geometries of the structures, such as from exposure surfaces, and there may be spatial variations. For example, approaching faults and related damage seen in outcrop may be intersecting elsewhere on the fault planes. Dilation in intersection damage zones can represent narrow and localised channels for fluid flow, and such dilation can be influenced by post-faulting stress patterns.

  20. Zone edge effects with variable rate irrigation

    Science.gov (United States)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  1. Subspace exclusion zones for damage localization

    DEFF Research Database (Denmark)

    Bernal, Dionisio; Ulriksen, Martin Dalgaard

    2018-01-01

    , this is exploited in the context of structural damage localization to cast the Subspace Exclusion Zone (SEZ) scheme, which locates damage by reconstructing the captured field quantity shifts from analytical subspaces indexed by postulated boundaries, the so-called exclusion zones (EZs), in a model of the structure...

  2. EPA Region 1 No Discharge Zones

    Science.gov (United States)

    This dataset details No Discharge Zones (NDZ) for New England. Boaters may not discharge waste into these areas. Boundaries were determined mostly by Federal Register Environmental Documents in coordination with Massachusetts Coastal Zone Management (MA CZM) and EPA Region 1 Office of Ecosystem Protection (OEP) staff.

  3. How weak is the subduction zone interface?

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.; Cruden, Alexander R.

    2015-01-01

    Several lines of evidence suggest that subduction zones are weak and that the unique availability of water on Earth is a critical factor in the weakening process. We have evaluated the strength of subduction zone interfaces using two approaches: (i) from empirical relationships between shear stress

  4. Louisiana Speaks Regional Plan Vision Special Economic Zones, UTM Zone 15N NAD83, Louisiana Recovery Authority (2007), [louisiana_speaks_vision_special_economic_zones

    Data.gov (United States)

    Louisiana Geographic Information Center — This GIS shapefile data illustrates special economic zones included in the Louisiana Speaks Regional Plan Vision. Special economic zones include existing national,...

  5. Irradiation in adulthood as a new model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Yasuhide Iwata

    Full Text Available BACKGROUND: Epidemiological studies suggest that radiation exposure may be a potential risk factor for schizophrenia in adult humans. Here, we investigated whether adult irradiation in rats caused behavioral abnormalities relevant to schizophrenia. METHODOLOGY/PRINCIPAL FINDINGS: A total dose of 15-Gy irradiation in six fractionations during 3 weeks was exposed to the forebrain including the subventricular zone (SVZ and subgranular zone (SGZ with male rats in the prone position. Behavioral, immunohistochemical, and neurochemical studies were performed three months after fractionated ionizing irradiation. Three months after fractionated ionizing irradiation, the total numbers of BrdU-positive cells in both the SVZ and SGZ zones of irradiated rats were significantly lower than those of control (sham-irradiated rats. Hyperactivity after administration of the dopaminergic agonist methamphetamine, but not the N-methyl-D-aspartate (NMDA receptor antagonist dizocilpine, was significantly enhanced in the irradiated rats although spontaneous locomotion in the irradiated rats was significantly lower than that of controls. Behavioral abnormalities including auditory sensory gating deficits, social interaction deficits, and working memory deficits were observed in the irradiated rats. CONCLUSION/SIGNIFICANCE: The present study suggests that irradiation in adulthood caused behavioral abnormalities relevant to schizophrenia, and that reduction of adult neurogenesis by irradiation may be associated with schizophrenia-like behaviors in rats.

  6. Terrestrial Zone Exoplanets and Life

    Science.gov (United States)

    Matthews, Brenda

    2018-01-01

    One of the most exciting results from ALMA has been the detection of significant substructure within protoplanetary disks that can be linked to planet formation processes. For the first time, we are able to observe the process of assembly of material into larger bodies within such disks. It is not possible, however, for ALMA to probe the growth of planets in protoplanetary disks at small radii, i.e., in the terrestrial zone, where we expect rocky terrestrial planets to form. In this regime, the optical depths prohibit observation at the high frequencies observed by ALMA. To probe the effects of planet building processes and detect telltale gaps and signatures of planetary mass bodies at such small separations from the parent star, we require a facility of superior resolution and sensitivity at lower frequencies. The ngVLA is just such a facility. We will present the fundamental science that will be enabled by the ngVLA in protoplanetary disk structure and the formation of planets. In addition, we will discuss the potential for an ngVLA facility to detect the molecules that are the building blocks of life, reaching limits well beyond those reachable with the current generation of telescopes, and also to determine whether such planets will be habitable based on studies of the impact of stars on their nearest planetary neighbours.

  7. Trading Zones in Early Modern Europe.

    Science.gov (United States)

    Long, Pamela O

    2015-12-01

    This essay adopts the concept of trading zones first developed for the history of science by Peter Galison and redefines it for the early modern period. The term "trading zones" is used to mean arenas in which substantive and reciprocal communication occurred between individuals who were artisanally trained and learned (university-trained) individuals. Such trading zones proliferated in the sixteenth century. They tended to arise in certain kinds of places and not in others, but their existence must be determined empirically. The author's work on trading zones differs from the ideas of Edgar Zilsel, who emphasized the influence of artisans on the scientific revolution. In contrast, in this essay, the mutual influence of artisans and the learned on each other is stressed, and translation is used as a modality that was important to communication within trading zones.

  8. Chaotic Zones around Rotating Small Bodies

    Energy Technology Data Exchange (ETDEWEB)

    Lages, José; Shevchenko, Ivan I. [Institut UTINAM, Observatoire des Sciences de l’Univers THETA, CNRS, Université de Franche-Comté, Besançon F-25030 (France); Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr [Laboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, UPS, Toulouse F-31062 (France)

    2017-06-01

    Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples of the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.

  9. Zic deficiency in the cortical marginal zone and meninges results in cortical lamination defects resembling those in type II lissencephaly.

    Science.gov (United States)

    Inoue, Takashi; Ogawa, Masaharu; Mikoshiba, Katsuhiko; Aruga, Jun

    2008-04-30

    The formation of the highly organized cortical structure depends on the production and correct placement of the appropriate number and types of neurons. The Zic family of zinc-finger transcription factors plays essential roles in regulating the proliferation and differentiation of neuronal progenitors in the medial forebrain and the cerebellum. Examination of the expression of Zic genes demonstrated that Zic1, Zic2, and Zic3 were expressed by the progenitor cells in the septum and cortical hem, the sites of generation of the Cajal-Retzius (CR) cells. Immunohistochemical studies have revealed that Zic proteins were abundantly expressed in the meningeal cells and that the majority of the CR cells distributed in the medial and dorsal cortex also expressed Zic proteins in the mid-late embryonic and postnatal cortical marginal zones. During embryonic cortical development, Zic1/Zic3 double-mutant and hypomorphic Zic2 mutant mice showed a reduction in the number of CR cells in the rostral cortex, whereas the cell number remained unaffected in the caudal cortex. These mutants also showed mislocalization of the CR cells and cortical lamination defects, resembling the changes noted in type II (cobblestone) lissencephaly, throughout the brain. In the Zic1/3 mutant, reduced proliferation of the meningeal cells was observed before the thinner and disrupted organization of the pial basement membrane (BM) with reduced expression of the BM components and the meningeal cell-derived secretory factor. These defects correlated with the changes in the end feet morphology of the radial glial cells. These findings indicate that the Zic genes play critical roles in cortical development through regulating the proliferation of meningeal cells and the pial BM assembly.

  10. A Volcanic Hydrogen Habitable Zone

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2017-01-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N_2–CO_2–H_2O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO_2 outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H_2 can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N_2–CO_2–H_2O–H_2) can be sustained as long as volcanic H_2 output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H_2 warming is reduced in dense H_2O atmospheres. The atmospheric scale heights of such volcanic H_2 atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  11. TUM Critical Zone Observatory, Germany

    Science.gov (United States)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  12. A Volcanic Hydrogen Habitable Zone

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa, E-mail: rmr277@cornell.edu [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)

    2017-03-01

    The classical habitable zone (HZ) is the circular region around a star in which liquid water could exist on the surface of a rocky planet. The outer edge of the traditional N{sub 2}–CO{sub 2}–H{sub 2}O HZ extends out to nearly ∼1.7 au in our solar system, beyond which condensation and scattering by CO{sub 2} outstrips its greenhouse capacity. Here, we show that volcanic outgassing of atmospheric H{sub 2} can extend the outer edge of the HZ to ∼2.4 au in our solar system. This wider volcanic-hydrogen HZ (N{sub 2}–CO{sub 2}–H{sub 2}O–H{sub 2}) can be sustained as long as volcanic H{sub 2} output offsets its escape from the top of the atmosphere. We use a single-column radiative-convective climate model to compute the HZ limits of this volcanic hydrogen HZ for hydrogen concentrations between 1% and 50%, assuming diffusion-limited atmospheric escape. At a hydrogen concentration of 50%, the effective stellar flux required to support the outer edge decreases by ∼35%–60% for M–A stars. The corresponding orbital distances increase by ∼30%–60%. The inner edge of this HZ only moves out ∼0.1%–4% relative to the classical HZ because H{sub 2} warming is reduced in dense H{sub 2}O atmospheres. The atmospheric scale heights of such volcanic H{sub 2} atmospheres near the outer edge of the HZ also increase, facilitating remote detection of atmospheric signatures.

  13. Radiation danger of exclusion zone objects

    International Nuclear Information System (INIS)

    Kholosha, V.I.; Proskura, N.I.; Ivanov, Yu.A.; Kazakov, S.V.; Arkhipov, A.N.

    2001-01-01

    The analysis of radiation danger of the Exclusion Zone objects was made. Here, the Zone is defined as the territory from which the population has been evacuated in 1986 owing to the Chernobyl accident and possible outflow of the contaminated substances out of the borders is potentially dangerous to the Ukraine. In the present work were analyzed such problems as sources of radiation danger in the Zone, ways of radionuclide migration out of the borders of the Zone in normal and emergency situations, the non-radiation (ecological) danger factors of the Zone objects, doses (individual and collective) from various sources and on separate ways of their formation, and the characteristics of radiation danger of the Zone objects. The conclusions are: (1) Radionuclide flows both from technologic and natural sources exceed those from Shelter objects, (2) Under emergency conditions, radionuclide flows and doze loading remain comparable with those from emergency sources, (3) To solve some management tasks in radiation situation, the basic works on the Shelter objects should be oriented to decrease probability of emergency occurrence and to reduce radiation influence (prevention wash-outs during high waters, fire-prevention measures in forests and strengthening of the control behind non-authorized use of objects in the Zone). (S. Ohno)

  14. 76 FR 38297 - Safety Zone; Marine Events Requiring Safety Zones in the Captain of the Port Sault Sainte Marie Zone

    Science.gov (United States)

    2011-06-30

    ... spectators. Such hazards include obstructions to navigable channels, explosive dangers associated with...: NAD 83], with the West Bay shoreline forming the South and West boundaries of the zone. (ii...

  15. Making SPC easier with zone control charts

    International Nuclear Information System (INIS)

    Lanning, B.

    1995-01-01

    The zone control chart is a simple, easy to learn statistical process control (SPC) tool that can be applied to any process where the data are normally distributed. Several Shewhart runs rules are incorporated into a simple scoring system, with a single rule to determine when a process is out of control. Zone charts have average run lengths (ARLs) for detecting shifts in the process mean which, for most cases, are uniformly better than the standard control charts. This paper presents the simplified methodology behind the zone control chart

  16. Geometry of the Aegean Benioff zones

    Directory of Open Access Journals (Sweden)

    M. Knapmeyer

    1999-06-01

    Full Text Available The morphology of the Aegean Benioff zone was reconstructed using 1366 hypocentres from the PDE catalogue 1973-1997. Two such zones are identified under the Aegean area, a large one (Main Aegean Subduction, MAS spanning the whole Hellenic arc and a smaller and younger one under the Western Peloponnesus. The geometry of the MAS suggests that it blocks its own subduction and, therefore, causes the development of the smaller western zone as a result of a step back process in the Pliocene.

  17. Global challenges in integrated coastal zone management

    DEFF Research Database (Denmark)

    integration of data and information in policy and management, combining expertise from nature and social science, to reach a balanced and sustainable development of the coastal zone. This important book comprises the proceedings of The International Symposium on Integrated Coastal Zone Management, which took....../mitigation to change in coastal systems Coastal governance Linking science and management Comprising a huge wealth of information, this timely and well-edited volume is essential reading for all those involved in coastal zone management around the globe. All libraries in research establishments and universities where...

  18. 33 CFR 165.1315 - Safety Zones: Fireworks displays in the Captain of the Port Portland Zone.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zones: Fireworks displays... Coast Guard District § 165.1315 Safety Zones: Fireworks displays in the Captain of the Port Portland Zone. (a) Safety zones. The following areas are designated safety zones: (1) Cinco de Mayo Fireworks...

  19. Improving the effectiveness of smart work zone technologies.

    Science.gov (United States)

    2016-11-01

    This project evaluates the effectiveness of sensor network systems for work zone traffic estimation. The comparative analysis is : performed on a work zone modeled in microsimulation and calibrated with field data from two Illinois work zones. Realis...

  20. Methylation patterns in marginal zone lymphoma.

    Science.gov (United States)

    Arribas, Alberto J; Bertoni, Francesco

    Promoter DNA methylation is a major regulator of gene expression and transcription. The identification of methylation changes is important for understanding disease pathogenesis, for identifying prognostic markers and can drive novel therapeutic approaches. In this review we summarize the current knowledge regarding DNA methylation in MALT lymphoma, splenic marginal zone lymphoma, nodal marginal zone lymphoma. Despite important differences in the study design for different publications and the existence of a sole large and genome-wide methylation study for splenic marginal zone lymphoma, it is clear that DNA methylation plays an important role in marginal zone lymphomas, in which it contributes to the inactivation of tumor suppressors but also to the expression of genes sustaining tumor cell survival and proliferation. Existing preclinical data provide the rationale to target the methylation machinery in these disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Advanced Vadose Zone Simulations Using TOUGH

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Doughty, C.; Kowalsky, M.B.; Moridis, G.J.; Pan,L.; Xu, T.; Zhang, Y.; Pruess, K.

    2007-02-01

    The vadose zone can be characterized as a complex subsurfacesystem in which intricate physical and biogeochemical processes occur inresponse to a variety of natural forcings and human activities. Thismakes it difficult to describe, understand, and predict the behavior ofthis specific subsurface system. The TOUGH nonisothermal multiphase flowsimulators are well-suited to perform advanced vadose zone studies. Theconceptual models underlying the TOUGH simulators are capable ofrepresenting features specific to the vadose zone, and of addressing avariety of coupled phenomena. Moreover, the simulators are integratedinto software tools that enable advanced data analysis, optimization, andsystem-level modeling. We discuss fundamental and computationalchallenges in simulating vadose zone processes, review recent advances inmodeling such systems, and demonstrate some capabilities of the TOUGHsuite of codes using illustrative examples.

  2. Synthesis of work-zone performance measures.

    Science.gov (United States)

    2013-09-01

    The main objective of this synthesis was to identify and summarize how agencies collect, analyze, and report different work-zone : traffic-performance measures, which include exposure, mobility, and safety measures. The researchers also examined comm...

  3. Work zone performance monitoring application development.

    Science.gov (United States)

    2016-10-01

    The Federal Highway Administration (FHWA) requires state transportation agencies to (a) collect and analyze safety and mobility data to manage the work zone impacts of individual projects during construction and (b) improve overall agency processes a...

  4. Evaluation of mobile work zone alarm systems.

    Science.gov (United States)

    2014-06-01

    Maintenance of highways often involves mobile work zones for various types of low speed moving operations such as : striping and sweeping. The speed differential between the moving operation and traffic, and the increasing problem of : distracted dri...

  5. WVSAMB Color Digital Orthophotos North Zone

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Digital color orthophotography of the State of West Virginia (West Virginia State Plane Coordinate System North Zone). The W.V. state plane system has two...

  6. Deep gold mine fracture zone behaviour

    CSIR Research Space (South Africa)

    Napier, JAL

    1998-12-01

    Full Text Available The investigation of the behaviour of the fracture zone surrounding deep level gold mine stopes is detailed in three main sections of this report. Section 2 outlines the ongoing study of fundamental fracture process and their numerical...

  7. 47 CFR 73.609 - Zones.

    Science.gov (United States)

    2010-10-01

    ... parallel to the Atlantic Ocean. When any of the above lines pass through a city, the city shall be... Islands and the Virgin Islands. (3) Zone III consists of that portion of the United States located south...

  8. EPA Region 1 No Discharge Zones

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset details No Discharge Zones (NDZ) for New England. Boaters may not discharge waste into these areas. Boundaries were determined mostly by Federal...

  9. Calculating Buffer Zones: A Guide for Applicators

    Science.gov (United States)

    Buffer zones provide distance between the application block (i.e., edge of the treated field) and bystanders, in order to control pesticide exposure risk from soil fumigants. Distance requirements may be reduced by credits such as tarps.

  10. ZONE: a finite element mesh generator

    International Nuclear Information System (INIS)

    Burger, M.J.

    1976-05-01

    The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures

  11. Work Zone Design and Operations Enhancements

    Science.gov (United States)

    2010-02-01

    Oregon Department of Transportation contractors are required to implement Traffic Control Plans (TCPs) to protect and direct traffic through work zones. The design and implementation of TCPs have shown variation from project-to-project across the Sta...

  12. White Light Photorefractive Phase Zone Plates

    International Nuclear Information System (INIS)

    Yuan-Mei, Gao; Si-Min, Liu

    2008-01-01

    Incoherent white light from an incandescent source is employed to fabricate volume phase zone plates in LiNbO 3 : Fe, for the first time to our knowledge, which can guide and modulate the input white light or laser light. The diffractive efficiency of the white light volume phase zone plates fabricated can reach as high as 12%. In addition, we test the volume phase zone plates by a probe beam and find that the volume phase zone plate is present in the direction perpendicular to the c-axis and absent in the direction parallel to the c-axis. This directly proves the existence of photovoltaic photorefractive anisotropy of white light

  13. Geochemistry of subduction zone serpentinites: A review

    OpenAIRE

    DESCHAMPS, Fabien; GODARD, Marguerite; GUILLOT, Stéphane; HATTORI, Kéiko

    2013-01-01

    Over the last decades, numerous studies have emphasized the role of serpentinites in the subduction zone geodynamics. Their presence and role in subduction environments are recognized through geophysical, geochemical and field observations of modern and ancient subduction zones and large amounts of geochemical database of serpentinites have been created. Here, we present a review of the geochemistry of serpentinites, based on the compilation of ~ 900 geochemical data of abyssal, mantle wedge ...

  14. Lucas Heights buffer zone: plan of management

    International Nuclear Information System (INIS)

    1986-01-01

    This plan is being used by the Commission as a guide for its management of the Lucas Heights buffer zone, which is essentially a circular area having a 1-6 km radius around the HIFAR reactor. Aspects covered by this plan include past uses, current use, objectives for buffer zone land management, emergency evacuation, resource conservation, archaeology, fire, access, rehabilitation of disturbed areas, resource management and plan implementation

  15. Small-Scale Surf Zone Geometric Roughness

    Science.gov (United States)

    2017-12-01

    using stereo imagery techniques. A waterproof two- camera system with self-logging and internal power was developed using commercial-off-the-shelf...estimates. 14. SUBJECT TERMS surface roughness, nearshore, aerodynamic roughness, surf zone, structure from motion, 3D imagery 15. NUMBER OF... power was developed using commercial-off-the- shelf components and commercial software for operations 1m above the sea surface within the surf zone

  16. U Plant Geographic Zone Cleanup Prototype

    International Nuclear Information System (INIS)

    Romine, L.D.; Leary, K.D.; Lackey, M.B.; Robertson, J.R.

    2006-01-01

    The U Plant geographic zone (UPZ) occupies 0.83 square kilometers on the Hanford Site Central Plateau (200 Area). It encompasses the U Plant canyon (221-U Facility), ancillary facilities that supported the canyon, soil waste sites, and underground pipelines. The UPZ cleanup initiative coordinates the cleanup of the major facilities, ancillary facilities, waste sites, and contaminated pipelines (collectively identified as 'cleanup items') within the geographic zone. The UPZ was selected as a geographic cleanup zone prototype for resolving regulatory, technical, and stakeholder issues and demonstrating cleanup methods for several reasons: most of the area is inactive, sufficient characterization information is available to support decisions, cleanup of the high-risk waste sites will help protect the groundwater, and the zone contains a representative cross-section of the types of cleanup actions that will be required in other geographic zones. The UPZ cleanup demonstrates the first of 22 integrated zone cleanup actions on the Hanford Site Central Plateau to address threats to groundwater, the environment, and human health. The UPZ contains more than 100 individual cleanup items. Cleanup actions in the zone will be undertaken using multiple regulatory processes and decision documents. Cleanup actions will include building demolition, waste site and pipeline excavation, and the construction of multiple, large engineered barriers. In some cases, different cleanup actions may be taken at item locations that are immediately adjacent to each other. The cleanup planning and field activities for each cleanup item must be undertaken in a coordinated and cohesive manner to ensure effective execution of the UPZ cleanup initiative. The UPZ zone cleanup implementation plan (ZCIP) [1] was developed to address the need for a fundamental integration tool for UPZ cleanup. As UPZ cleanup planning and implementation moves forward, the ZCIP is intended to be a living document that will

  17. DEEP VADOSE ZONE TREATABILITY TEST PLAN

    International Nuclear Information System (INIS)

    Chronister, G.B.; Truex, M.J.

    2009-01-01

    (sm b ullet) Treatability test plan published in 2008 (sm b ullet) Outlines technology treatability activities for evaluating application of in situ technologies and surface barriers to deep vadose zone contamination (technetium and uranium) (sm b ullet) Key elements - Desiccation testing - Testing of gas-delivered reactants for in situ treatment of uranium - Evaluating surface barrier application to deep vadose zone - Evaluating in situ grouting and soil flushing

  18. The Habitable Zone and Extreme Planetary Orbits

    OpenAIRE

    Kane, Stephen R.; Gelino, Dawn M.

    2012-01-01

    The habitable zone for a given star describes the range of circumstellar distances from the star within which a planet could have liquid water on its surface, which depends upon the stellar properties. Here we describe the development of the habitable zone concept, its application to our own solar system, and its subsequent application to exoplanetary systems. We further apply this to planets in extreme eccentric orbits and show how they may still retain life-bearing properties depending upon...

  19. Vadose zone characterisation at industrial contaminated sites

    OpenAIRE

    Fernandez de Vera, Natalia; Dahan, Ofer; Dassargues, Alain; Vanclooster, Marnik; Nguyen, Frédéric; Brouyère, Serge

    2015-01-01

    In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. To overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in ...

  20. Carfilzomib With or Without Rituximab in the Treatment of Waldenstrom Macroglobulinemia or Marginal Zone Lymphoma

    Science.gov (United States)

    2018-02-05

    Marginal Zone Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Waldenstrom Macroglobulinemia; Refractory Marginal Zone Lymphoma; Refractory Waldenstrom Macroglobulinemia; Waldenstrom Macroglobulinemia

  1. Slip Zone versus Damage Zone Micromechanics, Arima-Takasuki Tectonic Line, Japan

    Science.gov (United States)

    White, J. C.; Lin, A.

    2017-12-01

    The Arima-Takasuki Tectonic Line (ATTL) of southern Honshu, Japan is defined by historically active faults and multiple splays producing M7 earthquakes. The damage zone of the ATTL comprises a broad zone of crushed, comminuted and pulverized granite/rhyolite1,2containing cm-scale slip zones and highly comminuted injection veins. In this presentation, prior work on the ATTL fault rocks is extending to include microstructural characterization by transmission electron microscopy (TEM) from recent trenching of the primary slip zone, as well as secondary slip zones. This is necessary to adequately characterize the extremely fine-grained material (typically less than 1mm) in both damage and core zones. Damage zone material exhibits generally random textures3 whereas slip zones are macroscopically foliated, and compositionally layered, notwithstanding a fairly homogeneous protolith. The latter reflects fluid-rock interaction during both coseismic and interseismic periods. The slip zones are microstructurally heterogeneous at all scales, comprising not only cataclasites and phyllosilicate (clay)-rich gouge zones, but Fe/Mn pellets or clasts that are contained within gouge. These structures appear to have rolled and would suggest rapid recrystallization and/or growth. A central question related to earthquake recurrence along existing faults is the nature of the gouge. In both near-surface exposures and ongoing drilling at depth, "plastic" or "viscous" gouge zones comprise ultra-fine-grained clay-siliciclastic particles that would not necessarily respond in a simple frictional manner. Depending on whether the plastic nature of these slip zones develops during or after slip, subsequent focusing of slip within them could be complicated. 1 Mitchell, T.A., Ben-Zion, Y., Shimamoto, T., 2011. Ear. Planet. Sci. Lett. 308, 284-297. 2 Lin, A., Yamashita, K, Tanaka, M. J., 2013. Struc. Geol. 48, 3-13. 3 White, J.C., Lin, A. 2016. Proc. AGU Fall Mtg., T42-02 San Francisco.

  2. Standardized precipitation index zones for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, L.; Soto, M. [Instituto de Ecologia, A.C., Xalapa, Veracruz (Mexico); Rutherford, B.M.; Maarouf, A. [Faculty of Environmental Studies, York University, Toronto, Ontario (Canada)

    2005-01-01

    Precipitation zone systems exists for Mexico based on seasonality, quantity of precipitation, climates and geographical divisions, but none are convenient for the study of the relation of precipitation with phenomena such as El nino. An empirical set of seven exclusively Mexican and six shared zones was derived from three series of Standardized Precipitation Index (SPI) images, from 1940 through 1989: a whole year series (SPI-12) of 582 monthly images, a six month series (SPI-6) of 50 images for winter months (November through April), and a six month series (SPI-6) of 50 images for summer months (May through October). By examination of principal component and unsupervised classification images, it was found that all three series had similar zones. A set of basic training fields chosen from the principal component images was used to classify all three series. The resulting thirteen zones, presented in this article, were found to be approximately similar, varying principally at zones edges. A set of simple zones defined by just a few vertices can be used for practical operations. In general the SPI zones are homogeneous, with almost no mixture of zones and few outliers of one zone in the area of others. They are compared with a previously published map of climatic regions. Potential applications for SPI zones are discussed. [Spanish] Existen varios sistemas de zonificacion de Mexico basados en la estacionalidad, cantidad de precipitacion, climas y divisiones geograficas, pero ninguno es conveniente para el estudio de la relacion de la precipitacion con fenomenos tales como El Nino. En este trabajo se presenta un conjunto de siete zonas empiricas exclusivamente mexicanas y seis compartidas, derivadas de tres series de imagenes de SPI (Indice Estandarizado de la Precipitacion), desde 1940 a 1989: una serie de 582 imagenes mensuales (SPI-12), una series de 50 imagenes (SPI-6) de meses de invierno (noviembre a abril), y otra de 50 imagenes (SPI-6) de meses de verano

  3. Determination of μ-, δ- and κ-opioid receptors in forebrain cortex of rats exposed to morphine for 10 days: Comparison with animals after 20 days of morphine withdrawal.

    Science.gov (United States)

    Ujcikova, Hana; Hlouskova, Martina; Cechova, Kristina; Stolarova, Katerina; Roubalova, Lenka; Svoboda, Petr

    2017-01-01

    Chronic exposure of mammalian organism to morphine results in adaption to persistent high opioid tone through homeostatic adjustments. Our previous results indicated that in the frontal brain cortex (FBC) of rats exposed to morphine for 10 days, such a compensatory adjustment was detected as large up-regulation of adenylylcyclases I (8-fold) and II (2.5-fold). The other isoforms of AC (III-IX) were unchanged. Importantly, the increase of ACI and ACII was reversible as it disappeared after 20 days of morphine withdrawal. Changes of down-stream signaling molecules such as G proteins and adenylylcyclases should respond to and be preceded by primary changes proceeding at receptor level. Therefore in our present work, we addressed the problem of reversibility of the long-term morphine effects on μ-, δ- and κ-OR protein levels in FBC. Rats were exposed to increasing doses of morphine (10-40 mg/kg) for 10 days and sacrificed either 24 h (group +M10) or 20 days (group +M10/-M20) after the last dose of morphine in parallel with control animals (groups -M10 and -M10/-M20). Post-nuclear supernatant (PNS) fraction was prepared from forebrain cortex, resolved by 1D-SDS-PAGE under non-dissociated (-DTT) and dissociated (+DTT) conditions, and analyzed for the content of μ-, δ- and κ-OR by immunoblotting with C- and N-terminus oriented antibodies. Significant down-regulation of δ-OR form exhibiting Mw ≈ 60 kDa was detected in PNS prepared from both (+M10) and (+M10/-M20) rats. However, the total immunoblot signals of μ-, δ- and κ-OR, respectively, were unchanged. Plasma membrane marker Na, K-ATPase, actin and GAPDH were unaffected by morphine in both types of PNS. Membrane-domain marker caveolin-1 and cholesterol level increased in (+M10) rats and this increase was reversed back to control level in (+M10/-M20) rats. In FBC, prolonged exposure of rats to morphine results in minor (δ-OR) or no change (μ- and κ-OR) of opioid receptor content. The reversible increases

  4. Determination of μ-, δ- and κ-opioid receptors in forebrain cortex of rats exposed to morphine for 10 days: Comparison with animals after 20 days of morphine withdrawal.

    Directory of Open Access Journals (Sweden)

    Hana Ujcikova

    Full Text Available Chronic exposure of mammalian organism to morphine results in adaption to persistent high opioid tone through homeostatic adjustments. Our previous results indicated that in the frontal brain cortex (FBC of rats exposed to morphine for 10 days, such a compensatory adjustment was detected as large up-regulation of adenylylcyclases I (8-fold and II (2.5-fold. The other isoforms of AC (III-IX were unchanged. Importantly, the increase of ACI and ACII was reversible as it disappeared after 20 days of morphine withdrawal. Changes of down-stream signaling molecules such as G proteins and adenylylcyclases should respond to and be preceded by primary changes proceeding at receptor level. Therefore in our present work, we addressed the problem of reversibility of the long-term morphine effects on μ-, δ- and κ-OR protein levels in FBC.Rats were exposed to increasing doses of morphine (10-40 mg/kg for 10 days and sacrificed either 24 h (group +M10 or 20 days (group +M10/-M20 after the last dose of morphine in parallel with control animals (groups -M10 and -M10/-M20. Post-nuclear supernatant (PNS fraction was prepared from forebrain cortex, resolved by 1D-SDS-PAGE under non-dissociated (-DTT and dissociated (+DTT conditions, and analyzed for the content of μ-, δ- and κ-OR by immunoblotting with C- and N-terminus oriented antibodies.Significant down-regulation of δ-OR form exhibiting Mw ≈ 60 kDa was detected in PNS prepared from both (+M10 and (+M10/-M20 rats. However, the total immunoblot signals of μ-, δ- and κ-OR, respectively, were unchanged. Plasma membrane marker Na, K-ATPase, actin and GAPDH were unaffected by morphine in both types of PNS. Membrane-domain marker caveolin-1 and cholesterol level increased in (+M10 rats and this increase was reversed back to control level in (+M10/-M20 rats.In FBC, prolonged exposure of rats to morphine results in minor (δ-OR or no change (μ- and κ-OR of opioid receptor content. The reversible increases

  5. Pollution concentration estimates in ecologically important zones

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, Y.N. [Mexico City Univ. (Mexico). Center for Atmospheric Sciences

    1995-12-31

    Method based on using the pollutant transport equation and the adjoint technique is described here for estimating the pollutant concentration level in ecologically important zones. The method directly relates the pollution level in such zones with the power of the pollution sources and the initial pollution field. Assuming that the wind or current velocities are known (from climatic data or dynamic model), the main and adjoint pollutant transport equations can be considered in a limited area to solve such theoretically and practically important problems as: (1) optimal location of new industries in a given region with the aim to minimize the pollution concentration in certain ecologically important zones, (2) optimization of emissions from operating industries, (3) detection of the plants violating sanitary regulations, (4) analysis of the emissions coming from the vehicle traffic (such emissions can be included in the model by means of the linear pollution sources located along the main roadways), (5) estimation of the oil pollution in various ecologically important oceanic (sea) zones in case of accident with the oil tanker, (6) evaluation of the sea water desalination level in estuary regions, and others. These equations considered in a spherical shell domain can also be applied to the problems of transporting the pollutants from a huge industrial complex, or from the zone of an ecological catastrophe similar to the Chernobyl one

  6. GEODESIC RECONSTRUCTION, SADDLE ZONES & HIERARCHICAL SEGMENTATION

    Directory of Open Access Journals (Sweden)

    Serge Beucher

    2011-05-01

    Full Text Available The morphological reconstruction based on geodesic operators, is a powerful tool in mathematical morphology. The general definition of this reconstruction supposes the use of a marker function f which is not necessarily related to the function g to be built. However, this paper deals with operations where the marker function is defined from given characteristic regions of the initial function f, as it is the case, for instance, for the extrema (maxima or minima but also for the saddle zones. Firstly, we show that the intuitive definition of a saddle zone is not easy to handle, especially when digitised images are involved. However, some of these saddle zones (regional ones also called overflow zones can be defined, this definition providing a simple algorithm to extract them. The second part of the paper is devoted to the use of these overflow zones as markers in image reconstruction. This reconstruction provides a new function which exhibits a new hierarchy of extrema. This hierarchy is equivalent to the hierarchy produced by the so-called waterfall algorithm. We explain why the waterfall algorithm can be achieved by performing a watershed transform of the function reconstructed by its initial watershed lines. Finally, some examples of use of this hierarchical segmentation are described.

  7. Pollution concentration estimates in ecologically important zones

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, Y N [Mexico City Univ. (Mexico). Center for Atmospheric Sciences

    1996-12-31

    Method based on using the pollutant transport equation and the adjoint technique is described here for estimating the pollutant concentration level in ecologically important zones. The method directly relates the pollution level in such zones with the power of the pollution sources and the initial pollution field. Assuming that the wind or current velocities are known (from climatic data or dynamic model), the main and adjoint pollutant transport equations can be considered in a limited area to solve such theoretically and practically important problems as: (1) optimal location of new industries in a given region with the aim to minimize the pollution concentration in certain ecologically important zones, (2) optimization of emissions from operating industries, (3) detection of the plants violating sanitary regulations, (4) analysis of the emissions coming from the vehicle traffic (such emissions can be included in the model by means of the linear pollution sources located along the main roadways), (5) estimation of the oil pollution in various ecologically important oceanic (sea) zones in case of accident with the oil tanker, (6) evaluation of the sea water desalination level in estuary regions, and others. These equations considered in a spherical shell domain can also be applied to the problems of transporting the pollutants from a huge industrial complex, or from the zone of an ecological catastrophe similar to the Chernobyl one

  8. Risk-based zoning for urbanizing floodplains.

    Science.gov (United States)

    Porse, Erik

    2014-01-01

    Urban floodplain development brings economic benefits and enhanced flood risks. Rapidly growing cities must often balance the economic benefits and increased risks of floodplain settlement. Planning can provide multiple flood mitigation and environmental benefits by combining traditional structural measures such as levees, increasingly popular landscape and design features (green infrastructure), and non-structural measures such as zoning. Flexibility in both structural and non-structural options, including zoning procedures, can reduce flood risks. This paper presents a linear programming formulation to assess cost-effective urban floodplain development decisions that consider benefits and costs of development along with expected flood damages. It uses a probabilistic approach to identify combinations of land-use allocations (residential and commercial development, flood channels, distributed runoff management) and zoning regulations (development zones in channel) to maximize benefits. The model is applied to a floodplain planning analysis for an urbanizing region in the Baja Sur peninsula of Mexico. The analysis demonstrates how (1) economic benefits drive floodplain development, (2) flexible zoning can improve economic returns, and (3) cities can use landscapes, enhanced by technology and design, to manage floods. The framework can incorporate additional green infrastructure benefits, and bridges typical disciplinary gaps for planning and engineering.

  9. 77 FR 38484 - Safety Zones; Annual Fireworks Events in the Captain of the Port Detroit Zone

    Science.gov (United States)

    2012-06-28

    ... zone will be enforced from 10:00 p.m. to 11:00 p.m. on July 5, 2012. (8) Grosse Isle Yacht Club.... (16) Grosse Pointe Yacht Club 4th of July Fireworks, Grosse Pointe Shores, MI. The safety zone listed...

  10. 75 FR 16370 - Regulated Navigation Areas, Safety Zones, Security Zones; Deepwater Ports in Boston Captain of...

    Science.gov (United States)

    2010-04-01

    ... rule under Executive Order 13045, Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and would not create an environmental risk to...] RIN 1625-AA00, RIN 1625-AA11 Regulated Navigation Areas, Safety Zones, Security Zones; Deepwater Ports...

  11. 77 FR 35852 - Safety Zones; Multiple Firework Displays in Captain of the Port, Puget Sound Zone

    Science.gov (United States)

    2012-06-15

    ... 13045, Protection of Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and does not create an environmental risk to health or risk to safety that may... 1625-AA00 Safety Zones; Multiple Firework Displays in Captain of the Port, Puget Sound Zone AGENCY...

  12. 76 FR 7107 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Science.gov (United States)

    2011-02-09

    ... defined boundary for which regulations for vessels navigating within the area have been established by the...)...... 9/19/2008 USCG-2008-0814 San Diego, CA Safety Zones (Part 165)...... 9/6/2008 USCG-2008-0827 Ocean... (Part 165). USCG-2009-0402 Ocean City, NJ Safety Zones (Part 165)...... 10/10/2009 USCG-2009-0403...

  13. 78 FR 11798 - Safety Zones; Annual Fireworks Events in the Captain of the Port Buffalo Zone

    Science.gov (United States)

    2013-02-20

    ... later notice in the Federal Register. B. Regulatory History and Information On June 18, 2008, the Coast... coordinates for the safety zones corresponding with the Browns Football Half time Fireworks and the Lorain... Football Half time and the Lorain Port Fest safety zones, to include changing the format of the coordinates...

  14. Tracing the influence of the Trans-European Suture Zone into the mantle transition zone

    Czech Academy of Sciences Publication Activity Database

    Knapmeyer-Endrun, B.; Krüger, F.; Legendre, C. P.; Geissler, W.H.; Plomerová, Jaroslava; Babuška, Vladislav; Gaždová, Renata; Jedlička, Petr; Kolínský, Petr; Málek, Jiří; Novotný, Oldřich; Růžek, Bohuslav

    2013-01-01

    Roč. 363, FEB 1 (2013), s. 73-87 ISSN 0012-821X Institutional support: RVO:67985530 ; RVO:67985891 Keywords : mantle transition zone * Trans-European Suture Zone * East European Craton Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.724, year: 2013

  15. 76 FR 9646 - Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation...

    Science.gov (United States)

    2011-02-22

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 100, 117, 147, and 165 [USCG-2010-0399] Quarterly Listings; Safety Zones, Security Zones, Special Local Regulations, Drawbridge Operation Regulations and Regulated Navigation Areas AGENCY: Coast Guard, DHS. ACTION: Notice of expired temporary rules...

  16. Realization of the Zone Length Measurement during Zone Refining Process via Implementation of an Infrared Camera

    Directory of Open Access Journals (Sweden)

    Danilo C. Curtolo

    2018-05-01

    Full Text Available Zone refining, as the currently most common industrial process to attain ultrapure metals, is influenced by a variety of factors. One of these parameters, the so-called “zone length”, affects not only the ultimate concentration distribution of impurities, but also the rate at which this distribution is approached. This important parameter has however neither been investigated experimentally, nor ever varied for the purpose of optimization. This lack of detections may be due to the difficult temperature measurement of a moving molten area in a vacuum system, of which the zone refining methodology is comprised. Up to now, numerical simulation as a combination of complex mathematical calculations, as well as many assumptions has been the only way to reveal it. This paper aims to propose an experimental method to accurately measure the molten zone length and to extract helpful information on the thermal gradient, temperature profile and real growth rate in the zone refining of an exemplary metal, in this case aluminum. This thermographic method is based on the measurement of the molten surface temperature via an infrared camera, as well as further data analysis through the mathematical software MATLAB. The obtained results show great correlation with the visual observations of zone length and provide helpful information to determine the thermal gradient and real growth rate during the whole process. The investigations in this paper approved the application of an infrared camera for this purpose as a promising technique to automatically control the zone length during a zone refining process.

  17. 27 CFR 28.290 - Receipt in foreign trade zone.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Receipt in foreign trade zone. 28.290 Section 28.290 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... in Foreign-Trade Zone § 28.290 Receipt in foreign trade zone. On receipt at the zone, the shipment...

  18. 33 CFR 165.755 - Safety Zone; Guayanilla, Puerto Rico

    Science.gov (United States)

    2010-07-01

    ... Zone; Guayanilla, Puerto Rico (a) The following area is established as a safety zone during the... the Eco-Electrica waterfront facility in Guayanilla Bay, Puerto Rico. The safety zone remains in... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone; Guayanilla, Puerto...

  19. 33 CFR 2.30 - Exclusive Economic Zone.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Exclusive Economic Zone. 2.30... JURISDICTION Jurisdictional Terms § 2.30 Exclusive Economic Zone. (a) With respect to the United States... States exercises sovereignty, exclusive economic zone means the zone seaward of and adjacent to the...

  20. 49 CFR 1105.9 - Coastal Zone Management Act requirements.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Coastal Zone Management Act requirements. 1105.9... ENVIRONMENTAL LAWS § 1105.9 Coastal Zone Management Act requirements. (a) If the proposed action affects land or water uses within a State coastal zone designated pursuant to the Coastal Zone Management Act (16 U.S.C...

  1. 32 CFR 643.33 - Policy-Coastal zone management.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Policy-Coastal zone management. 643.33 Section... PROPERTY REAL ESTATE Policy § 643.33 Policy—Coastal zone management. (a) The Coastal Zone Management Act of... affecting the coastal zone of a state, to conduct or support those activities in a manner which is, to the...

  2. A two-dimensional time domain near zone to far zone transformation

    Science.gov (United States)

    Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.

    1991-01-01

    In a previous paper, a time domain transformation useful for extrapolating 3-D near zone finite difference time domain (FDTD) results to the far zone was presented. In this paper, the corresponding 2-D transform is outlined. While the 3-D transformation produced a physically observable far zone time domain field, this is not convenient to do directly in 2-D, since a convolution would be required. However, a representative 2-D far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required it can be obtained by inverse Fourier transform of the final frequency domain result.

  3. Track treeing mechanism and plastic zone in solid Part 1: Initial development of plastic zone

    International Nuclear Information System (INIS)

    Li Boyang

    2008-01-01

    After neutron exposure and chemical etching in advance, latent tracks of recoil nucleon develop into pits on CR39 surface. During electrochemical etching, plastic zone is formed at top of pits. Some pits develop into tree cracks in the initial stage of plastic zone development. Physical and mathematical model of crack and plastic zone is proposed; parameter of development free path of plastic zone is presented. Based on integration of elementary theories the stress analysis is build up; based on analyses of measured parameters, a set of common relations between parameters is obtained. Integrate parameter analysis and stress analysis, depth of plastic zone development, law and phenomenon in experimental data can be interpreted completely

  4. Pathology of nodal marginal zone lymphomas.

    Science.gov (United States)

    Pileri, Stefano; Ponzoni, Maurilio

    Nodal marginal zone B cell lymphomas (NMZLs) are a rare group of lymphoid disorders part of the spectrum of marginal zone B-cell lymphomas, which encompass splenic marginal one B-cell lymphoma (SMZL) and extra nodal marginal zone of B-cell lymphoma (EMZL), often of MALT-type. Two clinicopathological forms of NMZL are recognized: adult-type and pediatric-type, respectively. NMZLs show overlapping features with other types of MZ, but distinctive features as well. In this review, we will focus on the salient distinguishing features of NMZL mostly under morphological/immunophenotypical/molecular perspectives in views of the recent acquisitions and forthcoming updated 2016 WHO classification of lymphoid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Friction of Shear-Fracture Zones

    Science.gov (United States)

    Riikilä, T. I.; Pylväinen, J. I.; Åström, J.

    2017-12-01

    A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.

  6. Urban planning as a trading zone

    CERN Document Server

    Mäntysalo, Raine

    2013-01-01

    'Trading zone' is a concept introduced by Peter Galison in his social scientific research on how scientists representing different sub-cultures and paradigms have been able to coordinate their interaction locally. In this book, Italian and Finnish planning researchers extend the use of the concept to different contexts of urban planning and management, where there is a need for new ideas and tools in managing the interaction of different stakeholders. The trading zone concept is approached as a tool in organizing local platforms and support systems for planning participation, knowledge production, decision making and local conflict management. In relation to the former theses of communicative planning theory that stress the ideals of consensus, mutual understanding and universal reason, the 'trading zone approach', outlined in this book, offers a different perspective. It focuses on the potentiality to coordinate locally the interaction of different stakeholders without requiring the deeper sharing of underst...

  7. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  8. South Pacific Nuclear Free Zone Treaty

    International Nuclear Information System (INIS)

    1987-03-01

    On 8 August 1986 the Protocols to the South Pacific Nuclear Free Zone Treaty were adopted by the South Pacific Forum at its 17 th session, in Suva. The attached texts of the Protocols were formally communicated to the Director General by the Director of the South Pacific Bureau for Economic Co-operation (SPEC) and are herewith being circulated to all Member States for their information pursuant to a request made by the Director of SPEC. Following the deposit of the eighth instrument of ratification, the South Pacific Nuclear Free Zone Treaty entered into force on 11 December 1986 [es

  9. The Habitable Zone Gallery and its Applications

    Science.gov (United States)

    Gelino, Dawn M.; Kane, S. R.

    2012-05-01

    The Habitable Zone Gallery (www.hzgallery.org) is a service to the exoplanet community which provides Habitable Zone (HZ) information for each of the exoplanetary systems with known planetary orbital parameters. The service includes a sortable table, a plot with the period and eccentricity of each of the planets with respect to their time spent in the HZ, a gallery of known systems which plot the orbits and the location of the HZ with respect to those orbits, and orbital movies. Here we discuss various educational and scientific applications of the site such as target selection, exploring planets with eccentric orbits, and investigating habitability.

  10. Radioactive waste isolation in arid zones

    International Nuclear Information System (INIS)

    Nativ, R.

    1991-01-01

    Arid zones are currently considered ideal sites for the isolation of radioactive and other hazardous wastes. Because arid zones have low precipitation, other hydrological features such as minimal surface water, low recharge rates, small hydraulic gradients, deep water table and lower water quality are also inferred. These premises have proved to be misleading in many circumstances, resulting in groundwater contamination by radionuclides. Case studies indicating surface water damages, occurrence of active recharge, groundwater flow and considerable discharge of potable water in arid and hyper-arid terrains, as well as the possibility of future climatic changes, require careful hydrological assessment of proposed sites in arid areas. (author)

  11. Monitoring man's impact in the coastal zone

    International Nuclear Information System (INIS)

    Benton, A.R. Jr.; Snell, W.W.

    1979-01-01

    The paper examines the monitoring of man's impact in the coastal zone. Color infrared photography shows destroyed or degraded wetlands or beaches, and makes possible relevant linear or aerial measurements with aerial photography. It can also categorize the environmental impacts which have accrued as the result of completion of water development projects. Aerial photography of the Texas coastal zone illustrates the nature and degree of damage likely to occur as a result of construction or maintenance projects. It is concluded that the method of assigning realistic values to unit areas of wetlands and beaches will make it feasible to incorporate the cost of estuarine damages into the cost estimates of water development schemes

  12. Zoning and workstation analysis in interventional cardiology

    International Nuclear Information System (INIS)

    Degrange, J.P.

    2009-01-01

    As interventional cardiology can induce high doses not only for patients but also for the personnel, the delimitation of regulated areas (or zoning) and workstation analysis (dosimetry) are very important in terms of radioprotection. This paper briefly recalls methods and tools for the different steps to perform zoning and workstation analysis. It outlines the peculiarities of interventional cardiology, presents methods and tools adapted to interventional cardiology, and then discusses the same issues but for workstation analysis. It also outlines specific problems which can be met, and their possible adapted solutions

  13. 33 CFR 147.847 - Safety Zone; BW PIONEER Floating Production, Storage, and Offloading System Safety Zone.

    Science.gov (United States)

    2010-07-01

    ... Production, Storage, and Offloading System Safety Zone. 147.847 Section 147.847 Navigation and Navigable... ZONES § 147.847 Safety Zone; BW PIONEER Floating Production, Storage, and Offloading System Safety Zone. (a) Description. The BW PIONEER, a Floating Production, Storage and Offloading (FPSO) system, is in...

  14. 76 FR 55566 - Safety Zones; Fireworks Displays and Surfing Events in Captain of the Port Long Island Sound Zone

    Science.gov (United States)

    2011-09-08

    ...-AA00 Safety Zones; Fireworks Displays and Surfing Events in Captain of the Port Long Island Sound Zone... zones for marine events within the Captain of the Port (COTP) Long Island Sound Zone for a surfing event... unless authorized by the COTP Sector Long Island Sound. DATES: This rule is effective in the CFR on...

  15. 33 CFR 3.25-10 - Sector Hampton Roads Marine Inspection Zone and Captain of the Port Zone.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sector Hampton Roads Marine... ZONES, AND CAPTAIN OF THE PORT ZONES Fifth Coast Guard District § 3.25-10 Sector Hampton Roads Marine Inspection Zone and Captain of the Port Zone. Sector Hampton Roads' office is located in Portsmouth, VA. The...

  16. 78 FR 20454 - Safety Zones; Annual Events Requiring Safety Zones in the Captain of the Port Lake Michigan Zone

    Science.gov (United States)

    2013-04-05

    ... Zone. The last three entries within this rule have been added for races in the Chicago, IL area and on... written--Celebrate Americafest/Fire over the Fox. This event has historically involved both a fireworks... day of the event. To ensure the safety of the Celebrate Americafest/Fire over the Fox event in its...

  17. Formulating a coastal zone health metric for landuse impact management in urban coastal zones.

    Science.gov (United States)

    Anilkumar, P P; Varghese, Koshy; Ganesh, L S

    2010-11-01

    The need for ICZM arises often due to inadequate or inappropriate landuse planning practices and policies, especially in urban coastal zones which are more complex due to the larger number of components, their critical dimensions, attributes and interactions. A survey of literature shows that there is no holistic metric for assessing the impacts of landuse planning on the health of a coastal zone. Thus there is a need to define such a metric. The proposed metric, CHI (Coastal zone Health Indicator), developed on the basis of coastal system sustainability, attempts to gauge the health status of any coastal zone. It is formulated and modeled through an expert survey and pertains to the characteristic components of coastal zones, their critical dimensions, and relevant attributes. The proposed metric is applied to two urban coastal zones and validated. It can be used for more coast friendly and sustainable landuse planning/masterplan preparation and thereby for the better management of landuse impacts on coastal zones. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Theoretical analysis of recirculation zone and buffer zone in the ADS windowless spallation target

    International Nuclear Information System (INIS)

    Liu, Jie; Pan, Chang-zhao; Tong, Jian-fei; Lu, Wen-qiang

    2015-01-01

    Highlights: • Height of recirculation zone is very important in windowless target design. • A theoretical formula for the height is derived based on the Bernoulli equation. • Numerical simulation for the LBE is performed and the height of recirculation zone is also obtained. • The theoretically-derived simulation-predicted recirculation zone heights agree with each other very well and the theoretical derivation is proved to be correct. - Abstract: The thermo-hydraulic analysis including reduction of the height of recirculation zone and stability of the free surface is very important in the design and optimization of ADS windowless spallation targets. In the present study, the Bernoulli equation is used to analyze the entire flow process in the target. Formulae for the height of the recirculation zone and the buffer zone are both obtained explicitly. Furthermore, numerical simulation for the heavy metal lead–bismuth eutectic liquid and vapor with cavitation phase change is also performed, and a novel method to calculate the height of the recirculation zone is put forward. By comparison of the theoretical formulae and numerical results, it is clearly shown that they agree with each other very well, and the heights predicted by the two methods are both determined by their own upstream flow parameters

  19. Swash Zone Response under Various Wave Regimes

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Baldock, Tom; Contestabile, Pasquale

    2011-01-01

    The modelling of swash zone (SZ) sediment transport and the resulting morphodynamics have been areas of active research over the last decade. However, many details are still to be understood, whose knowledge will be greatly advanced by the collection of high-quality data under the controlled larg...

  20. Analysis Links Zoning Policies and Disparities

    Science.gov (United States)

    Shah, Nirvi

    2012-01-01

    Location, location, location. This mantra of real estate agents and their clients alike is now the target of a new report from the Brookings Institution linking housing prices and zoning practices to effectively depriving low-income students of high-quality schools. Using test scores from schools in the 100 largest metropolitan areas in the…