WorldWideScience

Sample records for forced air cooling

  1. Design guidelines for the forced-air cooling process of strawberries

    Energy Technology Data Exchange (ETDEWEB)

    Ferrua, M.J.; Singh, R.P. [Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616 (United States)

    2009-12-15

    The complex structure of the package systems currently used by the strawberry industry has prevented an efficient design of the forced-air cooling process. In this study, we investigated the mechanisms through which different design parameters affect the rate and uniformity of cooling, using a previously validated computational fluid dynamics model. The results indicated that the vent area has a significant effect on the cooling rate, but not on its uniformity. A design that reduces bypassing will not necessarily increase the cooling rate, because there is less bypass air to cool down the air exiting from each clamshell, so that the air entering the next clamshell becomes warmer. Periodic airflow reversal improves the rate and homogeneity of the cooling process. (author)

  2. Control of cooling processes with forced-air aimed at efficiency energetic and the cooling time of horticultural products

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Carlos Teles Ribeiro da; Mederos, Barbara Janet Teruel [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2008-07-01

    The application of cooling technologies for the conservation of horticultural products is one of the stages the Cold Chain. In Brazil particularly, as a country with tropical climate with average high temperature almost all year, the application of these technologies is very important because the shelf-life of fresh horticultural products, with quality that the market demands, is directly related to temperature. In particular, the systems of forced air cooling operate according to the flow of air predetermined in the project according to the quantity of product to cool. When actual conditions differ from considerations of the project, as to the quantity of product, a situation very common in agricultural properties and packing houses, the fan will continue providing the nominal flow rate, causing alteration of the cost-benefit relation of process. This project aims at the development of a micro-processing equipment (output current of 4 to 20 mA) to control the rotational speed of the motor of the fan systems, air forced through an inverter of frequency. The objective is development of a Man-Machine Interface, based on an algorithm, which, through the introduction of mass product data and the automatic acquisition of data from temperature of the product and the camera, is calculated the cooling time. The rotation of the engine fan will be amended automatically, to maintain air flow with a proper cost-benefit, in connection with the reduction of cooling time, energy consumption, for the increasing the shelf life of products. (author)

  3. Effects of a New Cooling Technology on Physical Performance in U.S Air Force Military Personnel

    Science.gov (United States)

    2015-03-25

    July 2013 4. TITLE AND SUBTITLE Effects of a New Cooling Technology on Physical Performance in U.S Air Force Military Personnel 5a. CONTRACT ...developed a cooling garment that can provide sustained cooling effects for longer than 2 hours. Initial research was conducted under dry heat conditions...was approved by the Air Force Research Laboratory Institutional Review Board. This study examined the effects of a cooling garment on core body

  4. Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.

    Science.gov (United States)

    O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason

    2016-01-01

    Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.

  5. Experimental study of cooling BIPV modules by forced convection in the air channel

    International Nuclear Information System (INIS)

    Kaiser, A.S.; Zamora, B.; Mazón, R.; García, J.R.; Vera, F.

    2014-01-01

    Highlights: • An experimental setup for studying the effects of forced convection on cell temperature. • The induced velocity within the forced convection channel significantly affects the PV cooling. • Correlations for the Ross coefficient, module temperature, efficiency, and power output. • Prediction of the thermal behavior of the PV module in BIPV configurations. - Abstract: The efficiency of photovoltaic systems depends mainly on the cell temperature. Frequently, the PV collectors are installed on the top of the building. One cost effective method to regulate the temperature of rooftop integrated photovoltaic panels is to provide an open air channel beneath the panel. The cell temperature of these PV modules is very much influenced by the capability of ventilating this channel. The ventilation may be modified by different factors such as the wind velocity, the air gap size, and the forced convection induced by a fan or by a conventional air conditioning system. This paper describes an experimental setup to study the influence of the air gap size and the forced ventilation on the cell temperature (and consequently on the electrical efficiency of the PV module) of a BIPV configuration, for different values of the incident solar radiation, ambient temperatures, and aspect ratios, as well as for several forced ventilation conditions. Semi empirical correlations for the Ross coefficient, module temperature, electrical efficiency, and power output are proposed, showing a good agreement with respect to experimental measurements. A critical channel aspect ratio close to 0.11 can be considered to minimize overheating of PV devices. For a duct velocity V v = 6 m/s, a power output increase of 19% is observed over the natural ventilation case (V v = 0.5 m/s)

  6. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies

    International Nuclear Information System (INIS)

    Wang, Tao; Tseng, K.J.; Zhao, Jiyun; Wei, Zhongbao

    2014-01-01

    Highlights: • Three-dimensional CFD model with forced air cooling are developed for battery modules. • Impact of different air cooling strategies on module thermal characteristics are investigated. • Impact of different model structures on module thermal responses are investigated. • Effect of inter-cell spacing on cell thermal characteristics are also studied. • The optimal battery module structure and air cooling strategy is recommended. - Abstract: Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended

  7. A method for calculation of forces acting on air cooled gas turbine blades based on the aerodynamic theory

    Directory of Open Access Journals (Sweden)

    Grković Vojin R.

    2013-01-01

    Full Text Available The paper presents the mathematical model and the procedure for calculation of the resultant force acting on the air cooled gas turbine blade(s based on the aerodynamic theory and computation of the circulation around the blade profile. In the conducted analysis was examined the influence of the cooling air mass flow expressed through the cooling air flow parameter λc, as well as, the values of the inlet and outlet angles β1 and β2, on the magnitude of the tangential and axial forces. The procedure and analysis were exemplified by the calculation of the tangential and axial forces magnitudes. [Projekat Ministarstva nauke Republike Srbije: Development and building the demonstrative facility for combined heat and power with gasification

  8. Forecasting Cool Season Daily Peak Winds at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Barrett, Joe, III; Short, David; Roeder, William

    2008-01-01

    The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of

  9. Resfriamento de banana-prata com ar forçado Forced-air cooling of banana

    Directory of Open Access Journals (Sweden)

    BÁRBARA TERUEL

    2002-04-01

    Full Text Available Este trabalho apresenta as curvas de resfriamento de banana-prata (Musa balbisiana Colla e os valores do tempo de meio e sete oitavos de resfriamento, partindo do cálculo da Taxa Adimensional de Temperatura. Os frutos foram resfriados num sistema com ar forçado a 7ºC, umidade relativa de 87,6±3,8%, e velocidade do ar entre 1 e 0,2 m/s. Aplicou-se um delineamento experimental inteiramente casualizado, usando um esquema fatorial 2x2 (dois fluxos de ar (fatores e duas embalagens (níveis, para um nível de significância de 10%. Os fluxos de ar foram 1.933 a 1.160 m³/h, e as embalagens se diferenciaram pela porcentagem de área de abertura disponível para a ventilação (40 e 3,2%. Foi constatada uma diferença significativa no tempo de resfriamento, tanto quando aplicadas as duas taxas de ar como quando usadas as duas embalagens. O menor tempo de resfriamento foi atingido no tratamento que combinou a maior taxa de ar (1.933 m³/h com a embalagem de maior área de aberturas (40%. O maior tempo de resfriamento foi atingido no tratamento que combinou a menor taxa de ar (1160 m³/h com a embalagem de 3,2% de área efetiva de abertura. Os resultados obtidos demonstram que o tempo de resfriamento depende, em grande medida, da taxa de ar e do tipo de embalagem usada. O tempo de resfriamento variou em média entre 117 a 555 min, dependendo do tratamento aplicado. Não se constatou diferença significativa nas perdas de massa entre os diferentes tratamentos.This work presents the cooling curves for bananas Prata, (Musa balbisiana Colla, and determinates half-cooling and seven-eight cooling times and the cooling rate. Bananas were kept in a cold room with a forced-air system at 7ºC and RH = 87.6±3.8%. The experiment was conducted in a 2x2 factorial design, to test the effects of two flow rates (factors of air passing through the product, and two types of boxes (levels. The statistical analysis was performed at p<0.10. The air flow rates were 1933

  10. Simulation of transient heat transfer during cooling and heating of whole sweet potato (Ipomoea batatas (L.) Lam.) roots under forced-air conditions

    International Nuclear Information System (INIS)

    Korese, Joseph Kudadam; Sturm, Barbara; Román, Franz; Hensel, Oliver

    2017-01-01

    Highlights: • Heat transfer of whole sweet potato roots under forced-air cooling and heating is investigated. • Experiments were carried out in a cooling and heating chamber. • The cooling and heating rate and time was clearly depended on air velocity and roots size. • Simulated and experimental data on cooling and heating times were compared for validation. • Simulation results quantitatively agreed with experimental results. - Abstract: In this work, we investigated how different air velocity and temperature affect the cooling and heating rate and time of individual sweet potato roots. Additionally, we modified and applied a simulation model which is based on the fundamental solution of the transient equations for estimating the cooling and heating time at the centre of sweet potato roots. The model was adapted to receive input parameters such as thermo-physical properties of whole sweet potato roots as well as the surrounding air properties, and was verified with experimental transient temperature data. The experimental results showed that the temperature at the centre and the under skin of sweet potato roots is almost homogeneous during forced convection cooling and heating. The cooling and heating time was significantly (P < 0.05) affected by high air velocity and sweet potato root size. The simulation results quantitatively agreed with the experimental transient data. This research, thus provides a reliable experimental and theoretical basis for understanding the temperature variations as well as estimating the cooling and heating times in individual sweet potato roots under forced convection cooling and heating. The result from this study could be applied to design and optimize forced-air treatment equipments with improved energy efficiency as well as ensuring safety and the maintenance of sweet potato roots quality.

  11. Forced draft wet cooling systems

    International Nuclear Information System (INIS)

    Daubert, A.; Caudron, L.; Viollet, P.L.

    1975-01-01

    The disposal of the heat released from a 1000MW power plant needs a natural draft tower of about 130m of diameter at the base, and 170m height, or a cooling system with a draft forced by about forty vans, a hundred meters in diameter, and thirty meters height. The plumes from atmospheric cooling systems form, in terms of fluid mechanics, hot jets in a cross current. They consist in complex flows that must be finely investigated with experimental and computer means. The study, currently being performed at the National Hydraulics Laboratory, shows that as far as the length and height of visible plumes are concerned, the comparison is favorable to some types of forced draft cooling system, for low and medium velocities, (below 5 or 6m/s at 10m height. Beyond these velocities, the forced draft sends the plume up to smaller heights, but the plume is generally more dilute [fr

  12. A Multi-Response Optimization of Thrust Forces, Torques, and the Power of Tapping Operations by Cooling Air in Reinforced and Unreinforced Polyamide PA66

    Directory of Open Access Journals (Sweden)

    Rosario Domingo

    2018-03-01

    Full Text Available The use of cooling air during machining is an environmentally conscious procedure, and its applicability to different processes is a research priority. We studied tapping operations, an important operation in the assembly process, using cooling air with unreinforced polyamide (PA66 and polyamide reinforced with glass fiber (PA66-GF30. These materials are widely used in industry, but their behavior with respect to tapping has not been studied. We analyze the outcomes regarding the thrust force, torque, and power at cutting speeds between 15 and 60 m/min. The experimental tests were executed using cooling air at 22 °C, 2 °C, and −18 °C in dry conditions. The M12 × 1.75 mm taps were high-speed steel, with cobalt as the base material and coatings of TiN and AlCrN. To identify the more influential factors, an analysis of variance was performed, along with multi-response optimization to identify the desirability values. This optimization shows that the optimum for PA66can be found in environments close to 3 °C, while the optimum for PA66-GF30 is found at the minimal temperature studied (−18 °C. Thus, cooling air can be considered an adequate procedure for tapping operations, to increase the sustainability of the manufacturing processes.

  13. Tool for Forecasting Cool-Season Peak Winds Across Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Barrett, Joe H., III; Roeder, William P.

    2010-01-01

    The expected peak wind speed for the day is an important element in the daily morning forecast for ground and space launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45th Weather Squadron (45 WS) must issue forecast advisories for KSC/CCAFS when they expect peak gusts for >= 25, >= 35, and >= 50 kt thresholds at any level from the surface to 300 ft. In Phase I of this task, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a cool-season (October - April) tool to help forecast the non-convective peak wind from the surface to 300 ft at KSC/CCAFS. During the warm season, these wind speeds are rarely exceeded except during convective winds or under the influence of tropical cyclones, for which other techniques are already in use. The tool used single and multiple linear regression equations to predict the peak wind from the morning sounding. The forecaster manually entered several observed sounding parameters into a Microsoft Excel graphical user interface (GUI), and then the tool displayed the forecast peak wind speed, average wind speed at the time of the peak wind, the timing of the peak wind and the probability the peak wind will meet or exceed 35, 50 and 60 kt. The 45 WS customers later dropped the requirement for >= 60 kt wind warnings. During Phase II of this task, the AMU expanded the period of record (POR) by six years to increase the number of observations used to create the forecast equations. A large number of possible predictors were evaluated from archived soundings, including inversion depth and strength, low-level wind shear, mixing height, temperature lapse rate and winds from the surface to 3000 ft. Each day in the POR was stratified in a number of ways, such as by low-level wind direction, synoptic weather pattern, precipitation and Bulk Richardson number. The most accurate Phase II equations were then selected for an independent verification. The Phase I and II forecast methods were

  14. Simulation of Bichromatic Force Cooling

    Science.gov (United States)

    Hua, Xiang; Corder, Christopher; Metcalf, Harold

    2016-05-01

    Laser cooling without spontaneous emission as implemented by the bichromatic force (BF) remains a controversial topic. We have done a numerical simulation of the BF on He using the 23 S 33 P transition at λ = 389 nm in order to support the interpretation of previously reported measurements. Our experiments and the simulation reported here use a time scale comparable to the excited state lifetime so that spontaneous emission cannot contribute significantly. The average velocity change is 30 - 40 times larger than the recoil velocity but the measurements of both phase space and velocity space compression are limited by the longitudinal velocity spread of the atomic beam to ~ 2. The simulation clearly shows this spreading. The code passed several preliminary tests using single-frequency traveling and standing waves, and then it was run with the appropriate bichromatic light fields. Its output agrees very well with the measurements and, most importantly, shows that significant laser cooling is indeed possible on a time scale comparable to that of a single absorption-spontaneous cycle. Supported by ONR.

  15. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  16. A review on the thermal hydraulic characteristics of the air-cooled ...

    Indian Academy of Sciences (India)

    for the future work have been given. Keywords. Air cooled heat exchanger, forced convection, finned-tubes, air flow. 1. Introduction. The air cooling technology is used in a variety of applications, for example automobile industry, power plants, computer systems, and air conditioners. In the power plants, the air cooling is used.

  17. Hanscom Air Force Base

    Data.gov (United States)

    Federal Laboratory Consortium — MIT Lincoln Laboratory occupies 75 acres (20 acres of which are MIT property) on the eastern perimeter of Hanscom Air Force Base, which is at the nexus of Lexington,...

  18. Air and water cooled modulator

    Science.gov (United States)

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  19. Forced flow cooling of ISABELLE dipole magnets

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Aggus, J.; Brown, D.P.; Kassner, D.A.; Sondericker, J.H.; Strobridge, T.R.

    1976-01-01

    The superconducting magnets for ISABELLE will use a forced flow supercritical helium cooling system. In order to evaluate this cooling scheme, two individual dipole magnets were first tested in conventional dewars using pool boiling helium. These magnets were then modified for forced flow cooling and retested with the identical magnet coils. The first evaluation test used a l m-long ISA model dipole magnet whose pool boiling performance had been established. The same magnet was then retested with forced flow cooling, energizing it at various operating temperatures until quench occurred. The magnet performance with forced flow cooling was consistent with data from the previous pool boiling tests. The next step in the program was a full-scale ISABELLE dipole ring magnet, 4.25 m long, whose performance was first evaluated with pool boiling. For the forced flow test the magnet was shrunk-fit into an unsplit laminated core encased in a stainless steel cylinder. The high pressure gas is cooled below 4 K by a helium bath which is pumped below atmospheric pressure with an ejector nozzle. The performance of the full-scale dipole magnet in the new configuration with forced flow cooling, showed a 10 percent increase in the attainable maximum current as compared to the pool boiling data

  20. Royal Danish Air Force. Air Operations Doctrine

    DEFF Research Database (Denmark)

    Nørby, Søren

    This brief examines the development of the first Danish Air Force Air Operations Doctrine, which was officially commissioned in October 1997 and remained in effect until 2010. The development of a Danish air power doctrine was heavily influenced by the work of Colonel John Warden (USAF), both...... through his book ”The Air Campaign” and his subsequent planning of the air campaign against Iraq in 1990-1991. Warden’s ideas came to Denmark and the Danish Air Force by way of Danish Air Force students attending the United States Air Force Air University in Alabama, USA. Back in Denmark, graduates from...... the Air University inspired a small number of passionate airmen, who then wrote the Danish Air Operations Doctrine. The process was supported by the Air Force Tactical Command, which found that the work dovetailed perfectly with the transformation process that the Danish Air Force was in the midst...

  1. Tool for Forecasting Cool-Season Peak Winds Across Kennedy Space Center and Cape Canaveral Air Force Station (CCAFS)

    Science.gov (United States)

    Barrett, Joe H., III; Roeder, William P.

    2010-01-01

    Peak wind speed is important element in 24-Hour and Weekly Planning Forecasts issued by 45th Weather Squadron (45 WS). Forecasts issued for planning operations at KSC/CCAFS. 45 WS wind advisories issued for wind gusts greater than or equal to 25 kt. 35 kt and 50 kt from surface to 300 ft. AMU developed cool-season (Oct - Apr) tool to help 45 WS forecast: daily peak wind speed, 5-minute average speed at time of peak wind, and probability peak speed greater than or equal to 25 kt, 35 kt, 50 kt. AMU tool also forecasts daily average wind speed from 30 ft to 60 ft. Phase I and II tools delivered as a Microsoft Excel graphical user interface (GUI). Phase II tool also delivered as Meteorological Interactive Data Display System (MIDDS) GUI. Phase I and II forecast methods were compared to climatology, 45 WS wind advisories and North American Mesoscale model (MesoNAM) forecasts in a verification data set.

  2. Air Force Leadership Diversity

    Science.gov (United States)

    2017-04-06

    College, Air University, Maxwell AFB, AL. He grew up as part of an Air Force family, entered active duty in 1996, and is a career Aircraft Maintenance... artificially limit them to capping out at O-6 if we want to encourage diversity in our most senior leadership levels as we seek to create a stronger...but I am not sure it does. I find it interesting that as of 31 December 2016 the Deputy Chief of Staff for Intelligence , Surveillance and

  3. Comparison between predicted duct effectiveness from proposed ASHRAE Standard 152P and measured field data for residential forced air cooling systems; TOPICAL

    International Nuclear Information System (INIS)

    Siegel, Jeffrey A.; McWilliams, Jennifer A.; Walker, Iain S.

    2002-01-01

    The proposed ASHRAE Standard 152P ''Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems'' (ASHRAE 2002) has recently completed its second public review. As part of the standard development process, this study compares the forced air distribution system ratings provided by the public review draft of Standard 152P to measured field results. 58 field tests were performed on cooling systems in 11 homes in the summers of 1998 and 1999. Seven of these houses had standard attics with insulation on the attic floor and a well-vented attic space. The other four houses had unvented attics where the insulation is placed directly under the roof deck and the attic space is not deliberately vented. Each house was tested under a range of summer weather conditions at each particular site, and in some cases the amount of duct leakage was intentionally varied. The comparison between 152P predicted efficiencies and the measured results includes evaluation of the effects of weather, duct location, thermal conditions, duct leakage, and system capacity. The results showed that the difference between measured delivery effectiveness and that calculated using proposed Standard 152P is about 5 percentage points if weather data, duct leakage and air handler flow are well known. However, the accuracy of the standard is strongly dependent on having good measurements of duct leakage and system airflow. Given that the uncertainty in the measured delivery effectiveness is typically also about 5 percentage points, the Standard 152P results are acceptably close to the measured data

  4. Control system for forced-air cooling of horticultural products Sistema de controle para o resfriamento com ar forçado de produtos hortícolas

    Directory of Open Access Journals (Sweden)

    João C. T. R. da Silva

    2011-01-01

    Full Text Available This work is a study of the implementation of a classical controller using a tuning method referred to as IMC (Internal Model Control and aimed at the reduction of electrical energy consumption by the appropriate relation between energy consumption and the cooling time with forced air. The supervisory system installed was able to manipulate the variable of frequency of the signal power of the exhaust fan engine (forced air module, to accelerate or decelerate the loss of heat from the product to be cooled by airflow variation that passes through the mass of the produce. The results demonstrated a reduction in energy consumption from 64% and an increase of only 8% in the cooling time to the system using PI/IMC (Proportional - Integral with IMC tuning method compared with the system in its operating nominal condition. This PI/IMC control may be implemented directly in a frequency converter, without the need to purchase a computer or PLC (programmable logic controller to run the dedicated application, increasing its economical viability.Este trabalho consiste no estudo da implementação de um controlador clássico utilizando o método de sintonia denominado por Controle de Modelo Interno, visando à redução do consumo de energia elétrica que decorra na adequada relação entre este consumo e o tempo de resfriamento do processo de resfriamento com ar forçado de produtos hortícolas. Para isto, o sistema supervisório instalado manipulou a variável de frequência do sinal de alimentação do motor de indução trifásico do exaustor (módulo de ar forçado, para acelerar ou desacelerar a perda de calor do produto a ser resfriado por intermédio da variação da vazão de ar que perpassava a massa deste produto. Obteve-se como resultado uma redução no consumo de energia elétrica de 64% e um acréscimo de apenas 8% no tempo de resfriamento para o sistema utilizando um controle proporcional e integral associado ao método de sintonia promovido

  5. Forced air heat sink apparatus

    Science.gov (United States)

    Rippel, Wally E. (Inventor)

    1989-01-01

    A high efficiency forced air heat sink assembly employs a split feed transverse flow configuration to minimize the length of the air flow path through at least two separated fin structures. Different embodiments use different fin structure material configurations including honeycomb, corrugated and serpentine. Each such embodiment uses a thermally conductive plate having opposed exterior surfaces; one for receiving a component to be cooled and one for receiving the fin structures. The serpentine structured fin embodiment employs a plurality of fin supports extending from the plate and forming a plurality of channels for receiving the fin structures. A high thermal conductivity bondant, such as metal-filled epoxy, may be used to bond the fin structures to either the plate or the fin supports. Dip brazing and soldering may also be employed depending upon the materials selected.

  6. Storage of HLW in engineered structures: air-cooled and water-cooled concepts

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.; Puttke, B.; Staner, P.

    1981-01-01

    A comparative study on an air-cooled and a water-cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations has been performed by Nukem and Belgonucleaire respectively. In the air-cooled storage concept the decay heat from the storage area will be removed using natural convection. In the water-cooled storage concept the decay heat is carried off by a primary and secondary forced-cooling system with redundant and diverse devices. The safety study carried out by Nukem used a fault tree method. It shows that the reliability of the designed water-cooled system is very high and comparable to the inherent, safe, air-cooled system. The impact for both concepts on the environment is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water-cooled facility are higher than for the air cooled facility. The result of the safety and economic analysis and the discussions with the members of the working group have shown some possible significant modifications for both systems, which are included in this report. The whole study has been carried out using certain national criteria which, in certain Member States at least, would lead to a higher standard of safety than can be justified on any social, political or economic grounds

  7. Dry and mixed air cooling systems

    International Nuclear Information System (INIS)

    Gutner, Gidali.

    1975-01-01

    The various dry air cooling systems now in use or being developed are classified. The main dimensioning parameters are specified and the main systems already built are given with their characteristics. The available data allow dry air cooling to be situated against the other cooling modes and so specify the aim of the research or currently developed works. Some systems at development stages are briefly described. The interest in mixed cooling (assisted draft) and the principal available systems is analyzed. A program of research is outlined [fr

  8. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  9. The development of air cooled condensation systems

    International Nuclear Information System (INIS)

    Bodas, J.

    1990-01-01

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  10. Liquid metal reactor air cooling baffle

    Science.gov (United States)

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  11. US Air Force Balloon Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Worksheets containing pilot balloon data computed from releases at Air Force stations in the western United States. Elevation and azimuth angles are used to compute...

  12. US Air Force Base Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations taken by U.S. Air Force personnel at bases in the United States and around the world. Foreign observations concentrated in the Middle East and...

  13. Small global-mean cooling due to volcanic radiative forcing

    Science.gov (United States)

    Gregory, J. M.; Andrews, T.; Good, P.; Mauritsen, T.; Forster, P. M.

    2016-12-01

    In both the observational record and atmosphere-ocean general circulation model (AOGCM) simulations of the last ˜150 years, short-lived negative radiative forcing due to volcanic aerosol, following explosive eruptions, causes sudden global-mean cooling of up to ˜0.3 K. This is about five times smaller than expected from the transient climate response parameter (TCRP, K of global-mean surface air temperature change per W m-2 of radiative forcing increase) evaluated under atmospheric CO2 concentration increasing at 1 % yr-1. Using the step model (Good et al. in Geophys Res Lett 38:L01703, 2011. doi: 10.1029/2010GL045208), we confirm the previous finding (Held et al. in J Clim 23:2418-2427, 2010. doi: 10.1175/2009JCLI3466.1) that the main reason for the discrepancy is the damping of the response to short-lived forcing by the thermal inertia of the upper ocean. Although the step model includes this effect, it still overestimates the volcanic cooling simulated by AOGCMs by about 60 %. We show that this remaining discrepancy can be explained by the magnitude of the volcanic forcing, which may be smaller in AOGCMs (by 30 % for the HadCM3 AOGCM) than in off-line calculations that do not account for rapid cloud adjustment, and the climate sensitivity parameter, which may be smaller than for increasing CO2 (40 % smaller than for 4 × CO2 in HadCM3).

  14. SA AIR FORCE

    African Journals Online (AJOL)

    Major Jack Wright with the officers and NCOs who attended the Second Clay Pigeon Shooting Instruc- tors' Course at 66 Air School, Young's Field from 5 to 14 July, 1943. (With permission Mrs K Taylor) were sufficient to commence the first course. Pri- vately owned clay pigeon traps were also donated to the SAAF. Attempts ...

  15. Experimental study on the evaporative cooling of an air-cooled condenser with humidifying air

    Science.gov (United States)

    Wen, Mao-Yu; Ho, Ching-Yen; Jang, Kuang-Jang; Yeh, Cheng-Hsiung

    2014-02-01

    Using six different materials to construct a water curtain, this study aims to determine the most effective spray cooling of an air cooled heat exchanger under wet conditions. The experiments were carried out at a mass flow rate of 0.005-0.01 kg/s (spraying water), an airspeed of 0.6-2.4 m/s and a run time of 0-72 h for the material degradation tests. The experimental results indicate that the cooling efficiency, the heat rejection, and the sprinkling density increase as the amount of spraying water increases, but, the air-flow of the condenser is reduced at the same time. In addition, the cooling efficiency of the pads decreases with an increase of the inlet air velocity. In terms of experimental range, the natural wood pulp fiberscan can reach 42.7-66 % for cooling efficiency and 17.17-24.48 % for increases of heat rejection. This means that the natural wood pulp fiberscan pad most effectively enhances cooling performance, followed in terms of cooling effectiveness by the special non-woven rayon pad, the woollen blanket, biochemistry cotton and kapok, non-woven cloth of rayon cotton and kapok, and white cotton pad, respectively. However, the natural wood pulp fiberscan and special non-woven rayon display a relatively greater degradation of the cooling efficiency than the other test pads used in the material degradation tests.

  16. Energy saving by evaporative air-cooling processes in building-envelope ventilated air spaces

    International Nuclear Information System (INIS)

    Cappelli D'Orazio, M.; Cianfrini, C.; Corcione, M.

    1999-01-01

    The thermal behaviour of a building-envelope with a ventilated air space in summer mediterranean climates is investigated in the case of the air-conditioned indoor ambient. The energy saving deriving from a forced ventilation carried out by saturated air subjected to a direct evaporative cooling along the air space is analyzed through a finite-difference simulation model, with reference to external walls of different masses, thermophysical properties and geometrical features, as well as to different ventilation and exhaust airflow rates

  17. Engineered intermediate storage of solidified high level wastes. A comparison of an air cooled and a water cooled concept

    International Nuclear Information System (INIS)

    Ahner, S.; Dekais, J.J.

    1980-01-01

    In the course of the CEC-Program sheet N 0 6, Nukem jointly with Belgonucleaire performed a comparative study on an air cooled and a water cooled intermediate storage of vitrified, highly radioactive waste (HLW) in overground installations. For this purpose, common design basis were determined. In the concept of the air cooled storage facility (Nukem design) the decay heat from the storage canisters will be removed, using natural convection. In the water cooled concept (Belgonucleaire concept) the decay heat is carried off by a primary and secondary forced cooling system with redundant and diverse devices. The safety analysis carried out by Nukem used a fault tree method. It shows that the reliability of the designed water cooling system is very high and comparable to the inherent safe air cooled system. The impact for both concepts on the environment, is determined by the release route, but even during accident conditions the release is far below permissible limits. The economic analysis carried out by Belgonucleaire shows, that the construction costs for both systems do not differ very much, but the operation and maintenance costs for the water cooled facility are 4 to 8 higher than for the air cooled facility

  18. An air-cooled pulse tube cryocooler with 50 W cooling capacity at 77 K

    Science.gov (United States)

    Hu, Jianying; Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Luo, Ercang; Li, Haibin

    2014-01-01

    A pulse tube cryocooler with 50 W cooling capacity at 77 K is developed to cool superconducting devices mounted on automobiles. The envisioned cryocooler weight is less than 40 kg, and the input electric power is less than 1 kW. To achieve these requirements, the working frequency is increased to 75 Hz, and the dual-opposed pistons use gas bearings to reduce compressor weight and volume. The heat from the main heat exchanger is rejected by forced convective air instead of water. The compressor and the cold finger are carefully matched to improve the efficiency. The details of these will be presented in this paper. After some adjustment, a no load temperature for the pulse tube cryocooler of 40 K was achieved with 1 kW input electric power in surroundings at 298 K. At 77 K, the cooling capacity is 50 W. If the main heat exchanger is cooled by water at 293 K, the cooling capacity increases to 64 W, corresponding to a relative Carnot efficiency of 18%.

  19. Forced two phase helium cooling of large superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.

    1979-08-01

    A major problem shared by all large superconducting magnets is the cryogenic cooling system. Most large magnets are cooled by some variation of the helium bath. Helium bath cooling becomes more and more troublesome as the size of the magnet grows and as geometric constraints come into play. An alternative approach to cooling large magnet systems is the forced flow, two phase helium system. The advantages of two phase cooling in many magnet systems are shown. The design of a two phase helium system, with its control dewar, is presented. The paper discusses pressure drop of a two phase system, stability of a two phase system and the method of cool down of a two phase system. The results of experimental measurements at LBL are discussed. Included are the results of cool down and operation of superconducting solenoids

  20. Understanding Innovation Adoption in the Air Force

    National Research Council Canada - National Science Library

    Evans, Morgan J

    2006-01-01

    .... The United States Air Force is seeking to adapt to this new information age by transforming its business processes in order to sustain its competitive advantage as the world's most respected air force...

  1. Physical Fitness and the Expeditionary Air Force

    National Research Council Canada - National Science Library

    Lewis, Elizabeth

    2003-01-01

    ... that the Air Force bas a physical fitness program to keep its members healthy and productive. By doing this, it can ensure success in completing the Air Force mission while keeping the organization at the highest level of readiness possible...

  2. Thermoelectric air-cooling module for electronic devices

    International Nuclear Information System (INIS)

    Chang, Yu-Wei; Chang, Chih-Chung; Ke, Ming-Tsun; Chen, Sih-Li

    2009-01-01

    This article investigates the thermoelectric air-cooling module for electronic devices. The effects of heat load of heater and input current to thermoelectric cooler are experimentally determined. A theoretical model of thermal analogy network is developed to predict the thermal performance of the thermoelectric air-cooling module. The result shows that the prediction by the model agrees with the experimental data. At a specific heat load, the thermoelectric air-cooling module reaches the best cooling performance at an optimum input current. In this study, the optimum input currents are from 6 A to 7 A at the heat loads from 20 W to 100 W. The result also demonstrates that the thermoelectric air-cooling module performs better performance at a lower heat load. The lowest total temperature difference-heat load ratio is experimentally estimated as -0.54 W K -1 at the low heat load of 20 W, while it is 0.664 W K -1 at the high heat load of 100 W. In some conditions, the thermoelectric air-cooling module performs worse than the air-cooling heat sink only. This article shows the effective operating range in which the cooling performance of the thermoelectric air-cooling module excels that of the air-cooling heat sink only.

  3. A Case for Air Force Reorganization

    Science.gov (United States)

    2013-04-01

    AFRC AETC AFSPC AMC AFSOC ACC AFGSC USAFE PACAF 4 10 19 12 14 18 ## 21 23 24 AU WC WPC SMC22 2 1 9 11 1375 208 17 15 3 Legend: AFMC–Air Force...Strike Command USAFE–US Air Forces in Europe WPC –Warrior Preparation Center PACAF–Pacic Air Forces = Recently Inactivated Figure 1. Organizational

  4. Cooling circuit for steam and air-cooled turbine nozzle stage

    Science.gov (United States)

    Itzel, Gary Michael; Yu, Yufeng

    2002-01-01

    The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.

  5. Development of cooling strategy for an air cooled lithium-ion battery pack

    Science.gov (United States)

    Sun, Hongguang; Dixon, Regan

    2014-12-01

    This paper describes a cooling strategy development method for an air cooled battery pack with lithium-ion pouch cells used in a hybrid electric vehicle (HEV). The challenges associated with the temperature uniformity across the battery pack, the temperature uniformity within each individual lithium-ion pouch cell, and the cooling efficiency of the battery pack are addressed. Initially, a three-dimensional battery pack thermal model developed based on simplified electrode theory is correlated to physical test data. An analytical design of experiments (DOE) approach using Optimal Latin-hypercube technique is then developed by incorporating a DOE design model, the correlated battery pack thermal model, and a morphing model. Analytical DOE studies are performed to examine the effects of cooling strategies including geometries of the cooling duct, cooling channel, cooling plate, and corrugation on battery pack thermal behavior and to identify the design concept of an air cooled battery pack to maximize its durability and its driving range.

  6. Cooling and trapping neutral atoms with radiative forces

    International Nuclear Information System (INIS)

    Bagnato, V.S.; Castro, J.C.; Li, M.S.; Zilio, S.C.

    1988-01-01

    Techniques to slow and trap neutral atoms at high densities with radiative forces are discussed in this review articles. Among several methods of laser cooling, it is emphasized Zeeman Tuning of the electronic levels and frequency-sweeping techniques. Trapping of neutral atoms and recent results obtained in light and magnetic traps are discussed. Techniques to further cool atoms inside traps are presented and the future of laser cooling of neutral atoms by means of radiation pressure is discussed. (A.C.A.S.) [pt

  7. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate...

  8. Air cooled turbine component having an internal filtration system

    Science.gov (United States)

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  9. Air Force's Transformation to an Expeditionary Culture

    National Research Council Canada - National Science Library

    Anderson, Richard D

    2007-01-01

    .... In response, leadership developed the Air Expeditionary Force (AEF) whereby units and personnel could schedule training, education, and family events such as holidays, vacations, graduations and weddings...

  10. Passive radiative cooling below ambient air temperature under direct sunlight.

    Science.gov (United States)

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  11. Air Force and the Cyberspace Mission: Defending the Air Force's Computer Network in the Future

    National Research Council Canada - National Science Library

    Courville, Shane P

    2007-01-01

    .... Wynne and Air Force Chief of Staff General T. Michael Moseley wrote a joint letter to all airmen of the Air Force, which defined a new mission statement that included the concept of "cyberspace...

  12. Residential Pre-Cooling: Mechanical Cooling and Air-Side Economizers:

    OpenAIRE

    Turner, William J.N; Walker, Iain S.; Roux, Jordan

    2012-01-01

    This study used an advanced airflow, energy and humidity modeling tool to evaluate residential air-side economizers and mechanical pre-cooling strategies using the air conditioner, in all US DOE Climate Zones for a typical new home with ASHRAE Standard 62.2 compliant ventilation. A residential air-side economizer is a large supply fan used for night ventilation. Mechanical pre-cooling used the building air conditioner operating at lower than usual set before the peak demand period. The simula...

  13. Reducing Air Force Fighter Pilot Shortages

    Science.gov (United States)

    2015-12-31

    component to fill inventory requirements in another. The inventory conservation equation at the heart of the model takes the following form: ...requirement by about a third. The next three largest staffs, Pacific Air Forces (PACAF), Air Force Secretariat and Headquarters (SAF/HAF), and

  14. ESTUDO TEÓRICO DO RESFRIAMENTO COM AR FORÇADO DE FRUTAS DE GEOMETRIAS DIFERENTES THEORETICAL STUDY OF FRUITS COOLING WITH DIFFERENT FORMS GEOMETRICAL IN THE FORCED-AIR SYSTEM

    Directory of Open Access Journals (Sweden)

    Bárbara TERUEL

    2001-08-01

    positions along the bed and conditioned in package with 40% of effective opening area. The fruits were pre-cooled in a forced-air system (1.933m³/h, at 1°C and 7°C, RH= 88,4 ± 2,0% and air velocity around 1m/s. A two-dimensional mathematical model was applied, assuming prolate spheroid coordinate, to characterize the transient heat transfer process inside the fruits considering convective profile conditions at the surface of the body. The generated equations were numerically solved by finite-volume method. The convective heat transfer coefficients were obtained using the least square method by comparison between experimental and numerical data. The comparative analysis of the theoretical and experimental curves presented a satisfactory agreement, with error between 5% and 7%. It was noted that the convective heat transfer coefficient changes with the fruits position in the bed and cooling time present a variation of approximately 38% among the different points. The spatial distributions of temperature inside the fruits, for three times, demonstrate the existence of a temperature differential between the center and the surface of 30%, approximately. The model predicts that the cooling rate is in the extremes of the banana. The Bi and Fo numbers obtained represent very well the heat transfer process in the fruits under different relationships of volume/area.

  15. Air Force Materiel Command Reorganization Analysis

    Science.gov (United States)

    2012-01-01

    Assistant Secretary of the Air Force for Acquisition (SAF/AQ); Blaise Durante , Deputy Assistant Secretary of the Air Force for Acquisi- xviii Air...Maj Gen (ret.) Richard Goddard, Maj Gen (ret.) Kevin Sullivan, Maj Gen (ret.) Ron Smith, Robert Conner, and George Falldine. We extend special...Michael Zettler Maj Gen (ret.) Pat Condon Maj Gen (ret.) Richard Goddard Maj Gen (ret.) Kevin Sullivan Maj Gen (ret.) Ron Smith Robert Conner George

  16. Air cooling effect of fins on a Honda shine bike

    OpenAIRE

    Padhiyar Abhesinh J; Vasim G Machhar

    2015-01-01

    The main of aim of this work is to study various researches done in past to improve heat transfer rate of cooling fins by changing cylinder block fin geometry. Low rate of heat transfer through cooling fins is the main problem in this type of cooling. So efficiency of the engine is increase by increase the heat transfer. Examples of direct air cooling in modern automobiles are rare. The most common example is the commercials Automobile bike like a Honda Shine, Bajaj bike, Honda sp...

  17. The heat transfer of cooling fins on moving air

    Science.gov (United States)

    Doetsch, Hans

    1935-01-01

    The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.

  18. Design of force-cooled conductors for large fusion magnets

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems.

  19. Design of force-cooled conductors for large fusion magnets

    International Nuclear Information System (INIS)

    Dresner, L.; Lue, J.W.

    1977-01-01

    Conductors cooled by supercritical helium in forced convection are under active consideration for large toroidal fusion magnets. One of the central problems in designing such force cooled conductors is to maintain an adequate stability margin while keeping the pumping power tolerably low. A method has been developed for minimizing the pumping power for fixed stability by optimally choosing the matrix-to-superconductor and the metal-to-helium ratios. Such optimized conductors reduce pumping power requirements for fusion size magnets to acceptable limits. Furthermore, the mass flow and hence pumping losses can be varied through a magnet according to the local magnetic field and magnitude of desired stability margin. Force cooled conductors give flexibility in operation, permitting, for example, higher fields to be obtained than originally intended by lowering the bath temperature or increasing the pumping power or both. This flexibility is only available if the pumping power is low to begin with. Scaling laws for the pumping requirement and stability margin as functions of operating current density, number of strands and such physical parameters as stabilizer resistivity and critical current density, have been proved. Numerical examples will be given for design of conductors intended for use in large toroidal fusion magnet systems

  20. Forced convection heat transfer to air/water vapor mixtures

    International Nuclear Information System (INIS)

    Richards, D.R.; Florschuetz, L.W.

    1986-01-01

    Heat transfer coefficients were measured using both dry air and air/water vapor mixtures in the same forced convection cooling test rig (jet array impingement configurations) with mass ratios of water vapor to air up to 0.23. The primary objective was to verify by direct experiment that selected existing methods for evaluation of viscosity and thermal conductivity of air/water vapor mixtures could be used with confidence to predict heat transfer coefficients for such mixtures using as a basis heat transfer data for dry air only. The property evaluation methods deemed most appropriate require as a basis a measured property value at one mixture composition in addition to the property values for the pure components. 20 references

  1. Air-cooled fast discharge resistors for ITER magnets

    International Nuclear Information System (INIS)

    Tanchuk, Victor; Grigoriev, Sergey; Lokiev, Vladimir; Roshal, Alexander; Song, Inho; Buzykin, Oleg

    2011-01-01

    The ITER superconducting magnets will store up to 50 GJ of magnetic energy per operation cycle. In case of coil quench the energy stored in the coils must be extracted rapidly with a time constant from 7.5 to 14 s. It will be achieved by fast discharge resistors (FDR) normally bridged by circuit breakers and inserted in series with the superconducting coils. The fast discharge of the coils results practically in adiabatic heating of the resistive elements up to 200-300 deg. C. The resistors need to be cooled to the initial temperature over 6-8 h. Natural air circulation is proposed as a cooling method. In order to simulate the temperature response of the resistors to energy released in the resistive plates and to demonstrate their cooling capability within the required time by natural air circulation the numerical model of the resistor cooling circuit has been developed. As the calculations have shown, the developed FDR cooling system based on cooling by natural air circulation is capable of providing the required temperature operation regime of FDRs, but the supply channels are to be optimized so that the cooling time does not exceed the permissible one.

  2. Cooling China: The Weather Dependence of Air Conditioner Adoption

    OpenAIRE

    Maximilian Auffhammer

    2014-01-01

    One of the major adaptation mechanisms to climate change is increased demand for cooling via the air conditioning of indoor environments. China¡¯s demand for air conditioners has displayed explosive growth since 1995. This paper provides estimates of the income and short run weather sensitivity of air conditioner adoption across urban areas for 29 Chinese provincial entities. We show that the adoption decision displays significant income and weather sensitivity in the short run, with adoption...

  3. Effectively Managing the Air Force Enterprise Architecture

    National Research Council Canada - National Science Library

    Sharkey, Jamie P

    2005-01-01

    The Air Force is developing and implementing an enterprise architecture to meet the Clinger-Cohen Act's requirement that all federal agencies use an architecture to guide their information technology (IT) investments...

  4. Air Force Civilian Senior Leadership Development Challenges

    National Research Council Canada - National Science Library

    Webb, Billy P

    2008-01-01

    .... While Gen Jumper's sight picture recognizes the need to grow civilians for leadership positions, there is a more compelling reason for the Air Force to focus on civilian leadership development...

  5. Consolidating Air Force Maintenance Occupational Specialties

    Science.gov (United States)

    2016-01-01

    these questions, the impact of AFS consolidation on active duty KC-135 maintenance personnel at MacDill, McConnell , and Fairchild Air Force Bases...readiness? The analysis presented here considers the impact of AFS consolidation on active-duty KC- 135 maintenance personnel at MacDill, McConnell ... Concept for Air Force Maintenance: Conclusions from Analysis of C-130, F-16, and KC-135 Fleets, Santa Monica, Calif.: RAND Corporation, MG-919-AF, 2010

  6. The Air Force Handbook 2007

    Science.gov (United States)

    2007-01-01

    airborne SIGINT platform. It is a self -contained collection, processing, analysis, and dissemination system. Rivet Joint rapidly fields tactical...Combat Sent ___________________________ 210 RC-135V/W Rivet Joint ___________________________ 212 Regional Sector Air Operations Center (RSAOC...during close air suppor t and can sur vive dir ect hits fr om armor- piercing and high- explosive pr ojectiles up to 23mm. Sophisticated avionics

  7. A simple air-cooled reflux condenser for laboratory use

    International Nuclear Information System (INIS)

    Boult, K.A.

    1979-10-01

    This Memorandum describes the design of a simple compact air-cooled reflux condenser suitable for gloveboxes, cells or other locations where the provision of cooling water presents a problem. In a typical application the condenser functioned satisfactorily when used to condense water from a flask heated by a 100 watt mantle. There was no measurable loss of water from the boiling flask in 100 hours. (author)

  8. Effects of ambient room temperature on cold air cooling during laser hair removal.

    Science.gov (United States)

    Ram, Ramin; Rosenbach, Alan

    2007-09-01

    Forced air cooling is a well-established technique that protects the epidermis during laser heating of deeper structures, thereby allowing for increased laser fluences. The goal of this prospective study was to identify whether an elevation in ambient room temperature influences the efficacy of forced air cooling. Skin surface temperatures were measured on 24 sites (12 subjects) during cold air exposure in examination rooms with ambient temperatures of 72 degrees F (22.2 degrees C) and 82 degrees F (27.8 degrees C), respectively. Before cooling, mean skin surface temperature was 9 degrees F (5 degrees C) higher in the warmer room (P cooling (within 1 s), the skin surface temperature remained considerably higher (10.75 degrees F, or 5.8 degrees C, P cooling in a room with an ambient temperature of 82 degrees F (27.8 degrees C) is not as effective as in a room that is at 72 degrees F (22.2 degrees C).

  9. Communicating Why: Aligning the Air Force Message

    Science.gov (United States)

    2015-02-17

    49 Ibid. 50 Ibid. 51 Alan Vick , American Public is Less Inclined to Distinguish Among Service Branches, RAND Project Air Force Report PAF-1P-239...States Air Force—It’s What We Do.” 29 August 2013, https://www.youtube.com/watch?v=hPMA5QHynw8 (accessed 28 November 2014). Vick , Alan. American

  10. Rebalancing the Air Force: A Comprehensive Solution

    Science.gov (United States)

    2011-02-16

    AIR WAR COLLEGE AIR UNIVERSITY REBALANCING THE AIR FORCE A COMPREHENSIVE SOLUTION By Bruce K Johnson, Lt Col USAF A Research Report ...and experience levels will all benefit. Senior leaders should crosscheck the recruiting and retention data along with experience trends using the...content/dav/mhf/QOL- Library/Project%20Documents/MilitaryHOMEFRONT/ Reports /2008%20Demographics.pdf P.6 7 2010 Army Posture Statement, Addendum F

  11. The Air Force Culture and Cohesion: Building an Air and Space Force for the Twenty-First Century

    National Research Council Canada - National Science Library

    Smith, James

    1998-01-01

    THE US AIR FORCE has a cohesion problem. Dr. Donald B. Rice, former secretary of the Air Force, complained that officers identified with their weapon systems, not with the Air Force or any concept of service mission or doctrine...

  12. Cooling air recycling for gas turbine transition duct end frame and related method

    Science.gov (United States)

    Cromer, Robert Harold; Bechtel, William Theodore; Sutcu, Maz

    2002-01-01

    A method of cooling a transition duct end frame in a gas turbine includes the steps of a) directing cooling air into the end frame from a region external of the transition duct and the impingement cooling sleeve; and b) redirecting the cooling air from the end frame into the annulus between the transition duct and the impingement cooling sleeve.

  13. Air Force Heroes in Vietnam

    Science.gov (United States)

    1979-01-01

    Forces of the United States and South Vietnam. A modified version was employed for psychological warfare, including leaflet drops and loudspeaker...out of that spot ten seconds when mortars started dropping directly on it," he remembers. "That was a real thriller . I figured they just got zeroed in

  14. Changing the Air Force Narrative

    Science.gov (United States)

    2014-10-14

    structured message from the sponsor. An example of recent native advertising is and article, “Will millenials ever completely shun the office?” sponsored...Terrorism in Iraq. Air & Space Power Journal, 23(1), 11-18. Anderson, K (2014, January 8). Will Millenials ever completely shun the office? New York

  15. Force cooled quench tanks for the ITER cryogenic system

    Science.gov (United States)

    Kouzmenko, G.; Simon, M.; Saulquin, S.; Buskop, J.; Voigt, T.; Monneret, E.; Grillot, D.; Cursan, M.; Pichot, D.; Demar, G.

    2017-12-01

    The toroidal field magnets of ITER contain over 7 tons of helium. Most of the inventory is expelled from the magnets in case of a quench and it needs to be captured in external storage vessels (Quench Tanks). Force cooled technology with external gas circulation was chosen for these vessels in order to optimize their footprint, risks, and costs. This paper outlines the input data, assumptions, and studies performed in order to choose the most appropriate technology for the Quench Tanks. Further studies to demonstrate feasibility and ensure the required performance, as well as some peculiarities of the design and manufacturing of Quench Tanks are also described.

  16. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air Conditioners... Split System Units Central Air Conditioners (Cooling Only): All capacities 10.9 23.0 Heat Pumps (Cooling... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cooling Performance and Cost for Central Air...

  17. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    Science.gov (United States)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  18. Bioaerosol deposition on an air-conditioning cooling coil

    Science.gov (United States)

    Wu, Yan; Chen, Ailu; Luhung, Irvan; Gall, Elliott T.; Cao, Qingliang; Chang, Victor Wei-Chung; Nazaroff, William W.

    2016-11-01

    This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings.

  19. Toward Unity of Command for Multinational Air Forces

    National Research Council Canada - National Science Library

    Asjes, David

    1998-01-01

    To assure unity of command in future multinational air operations, combatant commanders must embrace the necessity of multinational air forces, maximize the integration of allied officers within air...

  20. 78 FR 49484 - Exchange of Air Force Real Property for Non-Air Force Real Property

    Science.gov (United States)

    2013-08-14

    ... railway land described above was determined to be excess to military mission needs on April 29, 2013. The... military operations at Hanscom Air Force Base, Massachusetts. Description of the Air Force Property: Approximately 36 acres of railway corridor of irregular width, located in the North Falmouth section of the Town...

  1. 32 CFR 842.11 - Air Force claims organization.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Air Force claims organization. 842.11 Section 842.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION ADMINISTRATIVE CLAIMS Functions and Responsibilities § 842.11 Air Force claims organization. Air Force claims channels are: (a) Continental...

  2. Improving Energy Security for Air Force Installations

    Science.gov (United States)

    Schill, David

    Like civilian infrastructure, Air Force installations are dependent on electrical energy for daily operations. Energy shortages translate to decreased productivity, higher costs, and increased health risks. But for the United States military, energy shortages have the potential to become national security risks. Over ninety-five percent of the electrical energy used by the Air Force is supplied by the domestic grid, which is susceptible to shortages and disruptions. Many Air Force operations require a continuous source of energy, and while the Air Force has historically established redundant supplies of electrical energy, these back-ups are designed for short-term outages and may not provide sufficient supply for a longer, sustained power outage. Furthermore, it is the goal of the Department of Defense to produce or procure 25 percent of its facility energy from renewable sources by fiscal year 2025. In a government budget environment where decision makers are required to provide more capability with less money, it is becoming increasingly important for informed decisions regarding which energy supply options bear the most benefit for an installation. The analysis begins by exploring the field of energy supply options available to an Air Force installation. The supply options are assessed according to their ability to provide continuous and reliable energy, their applicability to unique requirements of Air Force installations, and their costs. Various methods of calculating energy usage by an installation are also addressed. The next step of this research develops a methodology and tool which assesses how an installation responds to various power outage scenarios. Lastly, various energy supply options are applied to the tool, and the results are reported in terms of cost and loss of installation capability. This approach will allow installation commanders and energy managers the ability to evaluate the cost and effectiveness of various energy investment options.

  3. Forced Air-Breathing PEMFC Stacks

    Directory of Open Access Journals (Sweden)

    K. S. Dhathathreyan

    2012-01-01

    Full Text Available Air-breathing fuel cells have a great potential as power sources for various electronic devices. They differ from conventional fuel cells in which the cells take up oxygen from ambient air by active or passive methods. The air flow occurs through the channels due to concentration and temperature gradient between the cell and the ambient conditions. However developing a stack is very difficult as the individual cell performance may not be uniform. In order to make such a system more realistic, an open-cathode forced air-breathing stacks were developed by making appropriate channel dimensions for the air flow for uniform performance in a stack. At CFCT-ARCI (Centre for Fuel Cell Technology-ARC International we have developed forced air-breathing fuel cell stacks with varying capacity ranging from 50 watts to 1500 watts. The performance of the stack was analysed based on the air flow, humidity, stability, and so forth, The major advantage of the system is the reduced number of bipolar plates and thereby reduction in volume and weight. However, the thermal management is a challenge due to the non-availability of sufficient air flow to remove the heat from the system during continuous operation. These results will be discussed in this paper.

  4. The Air Force Officer and the Constitution

    Science.gov (United States)

    2010-02-17

    Staff College at Maxwell Air Force Base, AL. He holds a Master of Arts degree in Military Arts and Science from Air University, and two Master of Arts ...Seminole 35 ▪ Cheyenne ▪ Arawak ▪ Shawnee ▪ Mohegan ▪ Huron ▪ Oneida ▪ Lakota ▪ Crow ▪ Teton ▪ Hopi ▪ Inuit INTEGRATED CIVICS A: Geography

  5. 32 CFR 855.22 - Air Force procedures.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855.22 Air Force procedures. (a) Upon receipt of a...

  6. Cryogenic recovery analysis of forced flow supercritical helium cooled superconductors

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1977-08-01

    A coupled heat conduction and fluid flow method of solution was presented for cryogenic stability analysis of cabled composite superconductors of large scale magnetic coils. The coils are cooled by forced flow supercritical helium in parallel flow channels. The coolant flow reduction in one of the channels during the spontaneous recovery transient, after the conductor undergoes a transition from superconducting to resistive, necessitates a parallel channel analysis. A way to simulate the parallel channel analysis is described to calculate the initial channel inlet flow rate required for recovery after a given amount of heat is deposited. The recovery capability of a NbTi plus copper composite superconductor design is analyzed and the results presented. If the hydraulics of the coolant flow is neglected in the recovery analysis, the recovery capability of the superconductor will be over-predicted

  7. Report of study 7.3: cooling and air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Russo, F.

    2000-07-01

    This report describes the results of the study carried out by the study group 7.3 in the triennium 1997-2000. The study was focused on industrial refrigeration and air conditioning for the large building utilising natural gas. The goal of this study, carried out in collaboration of the members of study group 7.3, was to analyse the markets of industrial refrigeration and air conditioning for large buildings to identify possibilities to increase the natural gas share in these sectors. The available technology in the two sectors of the market are described in a single section, i.e. the 'State of the art of the technology'. In this section, technical characteristics, applications, performances, new developments and others topics are discussed for absorbers, gas engines, gas turbines and fuel cells. In the 'Industrial Refrigeration' section an analysis of the present global market for the industrial sector is presented. Economics, advantages and barriers to gas units compared with the electrical units are discussed. Information on existing industrial plants, possible application options and new technology developments are described as well. The 'Air conditioning for the large building' section deals with offices, hotels, commercial buildings, hospitals and shopping centres with a cooling capacity of 350 kW or higher. It appears that the use of natural gas for cooling of large buildings has been increasing during the last decade, thanks to the greater availability of natural gas and the development of new technologies. A marketing survey of gas air-conditioning was carried out in cooperation with a group of Intergas Marketing. Based on the survey, the report describes the market position of natural gas relative to electricity. It provides the strategic prospects for further developing natural gas as a competitive option for air-conditioning of large buildings using a combination of state-of-the-art technologies. It is important to highlight

  8. Emperor penguin body surfaces cool below air temperature.

    Science.gov (United States)

    McCafferty, D J; Gilbert, C; Thierry, A-M; Currie, J; Le Maho, Y; Ancel, A

    2013-06-23

    Emperor penguins Aptenodytes forsteri are able to survive the harsh Antarctic climate because of specialized anatomical, physiological and behavioural adaptations for minimizing heat loss. Heat transfer theory predicts that metabolic heat loss in this species will mostly depend on radiative and convective cooling. To examine this, thermal imaging of emperor penguins was undertaken at the breeding colony of Pointe Géologie in Terre Adélie (66°40' S 140° 01' E), Antarctica in June 2008. During clear sky conditions, most outer surfaces of the body were colder than surrounding sub-zero air owing to radiative cooling. In these conditions, the feather surface will paradoxically gain heat by convection from surrounding air. However, owing to the low thermal conductivity of plumage any heat transfer to the skin surface will be negligible. Future thermal imaging studies are likely to yield further insights into the adaptations of this species to the Antarctic climate.

  9. Cooling system with compressor bleed and ambient air for gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  10. Equipment to separate liquid droplets from the cooling air stream of a liquid cooling tower

    International Nuclear Information System (INIS)

    Thompson, S.E.; Schwinn, J.M.

    1977-01-01

    In order to separate off liquid droplets from the air stream of a cooling tower, one uses separator blades that are secured to the supporting construction. An improvement on this is proposed to make the repairs easier. According to the invention, the separator blades should be fabricated from springy material with self-supporting strength and can be fitted onto the supporting construction by means of slits and notches. (RW) [de

  11. Interface homem-máquina para controle de processos de resfriamento com ar forçado visando à economia de energia Man-machine interface for the control of cooling processes with forced-air aimed at energy savings

    Directory of Open Access Journals (Sweden)

    Bárbara Teruel

    2008-06-01

    Full Text Available Apresenta-se o desenvolvimento de um equipamento microprocessado, com saída de corrente, para controle da velocidade de rotação do motor do ventilador de sistemas de ar forçado, usando inversor de freqüência. Através de programação (software IHM.EXE, o usuário pode definir a massa a ser resfriada em quilogramas de produto. O equipamento calcula, através de um polinômio previamente estabelecido e programável, a freqüência de operação do inversor, que corresponde a uma vazão de ar específica, dentro dos limites estabelecidos no projeto. O equipamento foi instalado num sistema de resfriamento com ar forçado, estimando-se, pelo cálculo da variação da potência útil mecânica, uma economia de energia da ordem de 82%, com uma rotação equivalente a 56% da nominal do ventilador, proporcionando, desta forma, uma economia significativa no custo de operação do sistema.The development of micro processed equipment is presented, with current exit for control of the speed of rotation of the fan motor of the system of forced air, using investing of the frequency. Through programming (software IHM.EXE, the user can define the mass to be cooled, in kilograms of the product. The equipment calculates through a programmable polynomial previously defined, the frequency of operation of the investor which corresponds to air specific flux, within the limits of the project. The equipment was installed in a forced-air cooling system, being considered by the calculation in useful mechanical power, the energy savings is estimated at around 82% with a rotation equivalent to 56% of the fan nominal, thus providing significant savings in system operating costs.

  12. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...... in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water...

  13. Makers of the United States Air Force,

    Science.gov (United States)

    1987-01-01

    Ret., 1986 (P() Stock # 008-070-00583-2 The Organization and Lineage of the United States Air Force, by Charles Ravenstein , 1986 GPO Stock # 008-070...aviation. By 1912, Foulois had spent more than four years on detached service with the Signal Corps. Federal law required him to rejoin his own branch...better control quality and prices by arranging contracts with proven producers. Applicable laws and Army regulations contained enough loopholes to

  14. Remodeling Air Force Cyber Command and Control

    Science.gov (United States)

    2017-10-10

    Air Force CyberWorx offers facilitated design thinking sessions that bring stakeholders, industry and academic experts together to develop...career cyber officers, will relay the orders and help work priorities for units to the best of her abilities while motivating those below her...to use of a collaborative network forum, like an improved MilSuite. This will ultimately increase the sharing of information among cyber squadrons

  15. Air Bag Momentum Force Including Aspiration

    Directory of Open Access Journals (Sweden)

    Guy Nusholtz

    1995-01-01

    Full Text Available A gas-jet momentum force drives the air bag into position during a crash. The magnitude of this force can change as a result of aspiration. To determine the potential magnitude of the effect on the momentum force and mass flow rate in an aspirated system, a series of experiments and simulations of those experiments was conducted. The simulation consists of a two-dimensional unsteady isentropic CFD model with special “infinite boundaries”. One of the difficulties in simulating the gas-jet behavior is determining the mass flow rate. To improve the reliability of the mass flow rate input to the simulation, a sampling procedure involving multiple tests was used, and an average of the tests was adopted.

  16. Air Force Depot Maintenance: Analysis of Its Financial Operations

    National Research Council Canada - National Science Library

    1999-01-01

    The Air Force depot maintenance activity group is part of the Air Force Working Capital Fund, a revolving fund that relies on sales revenue rather than direct congressional appropriations to finance its operations...

  17. A fundamentally new approach to air-cooled heat exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this

  18. Locating Air Force Base Sites History’s Legacy

    Science.gov (United States)

    2004-01-01

    Ravenstein , Air Force Combat Wings (Washington, D.C.: Office of Air Force History, 1984), (hereafter, Ravenstein ) 141–142; Mueller, 1989 edition, 467–468... Ravenstein , author checked aircraft types and bases under each bombardment and strategic wing; Knaack, 156, 200–201, 292–293. 26. Lemmer, 194. History...Goldberg, 58–89. 36. Charles A. Ravenstein , The Organization and Lineage of the United States Air Force (Washington, D.C.: Office of Air Force History

  19. Economy of Force: Continuous Process Improvement And The Air Service

    Science.gov (United States)

    2017-06-01

    Process Improvement,” and Harold Linnean III with his thesis, “Air Force Smart Operations for the Twenty-first Century : Identifying Potential...models throughout AF existence—Management By Objectives, Total Quality Management, Quality Air Force, Air Force Smart Operations for the 21st Century ...all, one of the chief customers of the Air Force is the American public. Chapter Outline The chapter structure of this thesis is intended to take

  20. Shaping an Air Force: A Chief’s Perspective

    Science.gov (United States)

    2011-06-01

    Science degree in Environmental Engineering from the US Air Force Academy, a Master of Science degree in Operations Analysis from the Air Force...the US Army, signed Office Memorandum No. 6 creating the Aeronautical Division of the US Signal Corps.2 Captain Charles deForest Chandler was placed...Battle for Normandy, (New York, NY: Vintage Books, 1984), 272. 10 Air Force Magazine , “The Air Force in Facts and Figures 2010 USAF Almanac.” 2010

  1. The Fluid Dynamics of Secondary Cooling Air-Mist Jets

    Science.gov (United States)

    Hernández C., I.; Acosta G., F. A.; Castillejos E., A. H.; Minchaca M., J. I.

    2008-10-01

    For the conditions of thin-slab continuous casting, air-mist secondary cooling occurs in the transition-boiling regime, possibly as a result of an enhanced intermittent contact of high- momentum water drops with the hot metallic surface. The dynamics of the intermittent contact or wetting/dewetting process should be primarily dependent on the drop size, drop impact-velocity and -angle and water-impact flux, which results from the nozzle design and the interaction of the drops with the conveying and entrained air stream. The aim of this article was to develop a model for predicting the last three parameters based on the design and operating characteristics of air-mist nozzles and on experimentally determined drop-size distributions. To do this, the Eulerian fluid-flow field of the air in three dimensions and steady state and the Lagrangian velocities and trajectories of water drops were computed by solving the turbulent Navier Stokes equation for the air coupled to the motion equation for the water drops. In setting this model, it was particularly important to specify appropriately the air-velocity profile at the nozzle orifice, as well as, the water-flux distribution, and the velocities (magnitude and angle) and exit positions of drops with the different sizes generated, hence special attention was given to these aspects. The computed drop velocities, water-impact flux distributions, and air-mist impact-pressure fields compared well with detailed laboratory measurements carried out at ambient temperature. The results indicate that under practical nozzle-operating conditions, the impinging-droplet Weber numbers are high, over most of the water footprint, suggesting that the droplets should establish an intimate contact with the solid surface. However, the associated high mean-droplet fluxes hint that this contact may be obstructed by drop interference at the surface, which would undermine the heat-extraction effectiveness of the impinging mist. The model also points

  2. Experimental measurement of fluid force coefficients for helical tube arrays in air cross flow

    International Nuclear Information System (INIS)

    Shen Shifang; Liu Reilan

    1993-01-01

    A helical coil steam generator is extensively used in the High Temperature Gas Cooled Reactor (HTGCR) and Sodium Cooled Reactor (SCR) nuclear power stations because of its compact structure, good heat-exchange, and small volume. The experimental model is established by the structure parameter of 200MW HTGCR. The fluid elastic instability of helical tube arrays in air cross flow is studied in this experiment, and the fluid force coefficients of helical tube arrays having the same notational direction of two adjacent layers in air cross flow are obtained. As compared to the fluid force coefficients of cylinder tube arrays, the fluid force coefficients of helical tube arrays are smaller in the low velocity area, and greater in the high velocity area. The experimental results help the study of the dynamic characteristics of helical tube arrays in air cross flow

  3. Flow directing means for air-cooled transformers

    Science.gov (United States)

    Jallouk, Philip A.

    1977-01-01

    This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.

  4. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  5. Air Force concentrating photovoltaic array program

    International Nuclear Information System (INIS)

    Geis, J.W.

    1987-01-01

    A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed

  6. Air Force Chaplains 1971-1980

    Science.gov (United States)

    1986-01-01

    Willie L , Meth., Jun 55-Jan 72 Wallace, John E, Disc, of Chr, May 66- WaUace, William T, Sr., So. Bapt., Oct 63- + Wallman , Robert C, Pres. US, Nov 55...K . L in i^ ’pp" ■ < i W*lk 1mm ^f ^^i ^^^ ^-i;v^ «TO FILE COPY This document has been approved for public release and sale; its...Chaplain, Lieutenant Colonel, USAF Reserve L ) \\ S.C EL’■-’"’ --■.f OEC 1 6 198B V OFFICE, CHIEF OF AIR FORCE CHAPLAINS WASHINGTON, D.C. 1986 Thi

  7. Final Environmental Assessment Nellis Air Force Base School Initiative, Nellis Air Force Base, Clark County, Nevada

    Science.gov (United States)

    2015-04-01

    sobre e/ borrador de Ia EValuaci6n Ambfental para kJ inle/ativa eseolar de Nellis Air Force Base Clark County, Nevada. La fuena A~rea de Estados Unidos ...contact 99 ABWIPA at: (702) 652·2750 AVISO DE OISPONIBILJDAD La Fuerza A6rea de los- Estados Unldos invica al ,Ubtrco a presenrar comenrarios...scbr’e ef bof(ador de Ia Evaluacl6n Ambiental para Ia lnlt:Fativa escolar de Nellis Air Force Base Clark county, Nevada. L.a fuerza A~rea de Estados

  8. Anthropometry of Brazilian Air Force pilots.

    Science.gov (United States)

    da Silva, Gilvan V; Halpern, Manny; Gordon, Claire C

    2017-10-01

    Anthropometric data are essential for the design of military equipment including sizing of aircraft cockpits and personal gear. Currently, there are no anthropometric databases specific to Brazilian military personnel. The aim of this study was to create a Brazilian anthropometric database of Air Force pilots. The methods, protocols, descriptions, definitions, landmarks, tools and measurements procedures followed the instructions outlined in Measurer's Handbook: US Army and Marine Corps Anthropometric Surveys, 2010-2011 - NATICK/TR-11/017. The participants were measured countrywide, in all five Brazilian Geographical Regions. Thirty-nine anthropometric measurements related to cockpit design were selected. The results of 2133 males and 206 females aged 16-52 years constitute a set of basic data for cockpit design, space arrangement issues and adjustments, protective gear and equipment design, as well as for digital human modelling. Another important implication is that this study can be considered a starting point for reducing gender bias in women's career as pilots. Practitioner Summary: This paper describes the first large-scale anthropometric survey of the Brazilian Air Force pilots and the development of the related database. This study provides critical data for improving aircraft cockpit design for ergonomics and comprehensive pilot accommodation, protective gear and uniform design, as well as digital human modelling.

  9. Air Force Strategic Planning: Past, Present, and Future

    Science.gov (United States)

    2017-01-01

    usually citing Fogleman’s part in the creation of Global Engagement and the Long-Range Plan.17 While true, Air Force history is also studded with...a relatively young service, the U.S. Air Force has a remarkably rich intellectual history . Even before the Air Force’s official formation, the...in strategic plans and the history of the Air Force. Comments are welcome and should be sent to the author, Raphael S. Cohen, or to the project

  10. History of Turkish Air Force Aviation School and the Process of Transition to Air Force Academy

    Directory of Open Access Journals (Sweden)

    Osman YALÇIN

    2015-12-01

    Full Text Available Turkish aviation has started as a military entity. The foundation of ‘’Tayyare Komisyonu’’ (Airplane Comission in June 1, 1911 has been accepted as the official starting point. The organization of aviation includes pilot training, airplane supply, fondation of aviation school, establishment of combatant units, and building the air vehicles with local and national endeavour. Later, air defense systems, meteorology, training observers, machine specialist and technicians has gained importance as well. Turkish aviation has been built upon the ruins of the last wars of Ottoman Empire. After the invasion of the British and the French, Ottoman aviators moved to Maltepe and then to various parts of Anatolia eventually. During the Independence War, aviation school was founded in Eskişehir, moved to Adana, Konya, and came back to Adana again. After the Greek forces were expelled from Anatolia via İzmir, aviation school was moved to İzmir. In 1925, it was brought back to Eskişehir on October 1, 1951. After WWII, the duration of training in order to be a pilot was six years. In 1929, aviation school turned out to be an academic institution as well. On October 1, 1951, Air Force Academy was established in Eskişehir. Due to high sound of jet air planes, the academy was moved to İzmir in 1954. Education and training were restructured there and the quality was raised. In 1967, Air Force Academy was moved back to Yeşilköy where Turkish aviation was born some 47 years ago. Due to academic diversity and rich culture heritage, a productive period has started in Istanbul. Air Force Academy has been an institution offering BA level education since 2001 whose process goes back to 1990s. Around 90 civilian and 50 military academicians conduct education and research per year. Military training including Yalova encampment site, affective domain training, and sports activities are also conducted as well. With a 103 years history and around 16.000 graduates

  11. Operation of a forced two phase cooling system on a large superconducting magnet

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Eberhard, P.H.; Gibson, G.H.; Pripstein, M.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Van Slyke, H.

    1980-05-01

    This paper describes the operation of a forced two phase cooling system on a two meter diameter superconducting solenoid. The magnet is a thin high current density superconducting solenoid which is cooled by forced two phase helium in tubes around the coil. The magnet, which is 2.18 meters in diameter and 3.4 meters long, has a cold mass of 1700 kg. The two phase cooling system contains less than 300 liters of liquid helium, most of which is contained in a control dewar. This paper describes the operating characteristics of the LBL two phase forced cooling system during cooldown and warm up. The paper presents experimental data on operations of the magnet using either a helium pump or the refrigerator compressor to circulate two phase helium through the superconducting coil cooling tubes

  12. Efficiency of an air-cooled thermodynamic cycle

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1979-01-01

    The application of air, nitrogen, helium and the chemically reacting N 2 O 4 reversible 2NO 2 reversible 2NO + O 2 system as working agents and coolants for a low capacity nuclear power plant is investigated. The above system due to its physico-chemical and thermo-physical properties allows both a gaseous cycle and a cycle with condensation. The analysis has shown that a thermodynamic air-cooled cycle with the dissociating nitrogen tetroxide in the temperature range from 500 to 600 deg C has an advantage over cycles with air and nitrogen. To identify the chemical reaction kinetics in the thermodynamic processes, thermodynamic calculations of the gas-liquid cycle with N 2 O 4 both with simple and intermediate heat regeneration at different pressures over hot side were performed. At gas pressures lower than 12 - 15 atm, the cycle with a simple regeneration is more effective, and at pressure increase, the cycle with an intermediate regeneration is preferable

  13. Indirect air cooling techniques for control rod drives in the high temperature engineering test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Takeshi E-mail: takeda@lstf3.tokai.jaeri.go.jp; Tachibana, Yukio

    2003-07-01

    The high temperature engineering test reactor (HTTR) is the first high-temperature gas-cooled reactor in Japan with reactor outlet gas temperature of 950 deg. C and thermal power of 30 MW. Sixteen pairs of control rods are employed for controlling the reactivity change of the HTTR. Each standpipe for a pair of the control rods, which is placed on the top head dome of the reactor pressure vessel, contains one control rod drive mechanism. The control rod drive mechanism may malfunction because of reduction of the electrical insulation of the electromagnetic clutch when the temperature exceeds 180 deg. C. Because 31 standpipes stand close together in the standpipe room, 16 standpipes for the control rods, which are located at the center, should be cooled effectively. Therefore, the control rod drives are cooled indirectly by forced air circulation through a pair of ring-ducts with proper air outlet nozzles and inlets. Based on analytical results, a pair of the ring-ducts was installed as one of structures in the standpipe room. Evaluation results through the rise-to-power test of the HTTR showed that temperatures of the electromagnetic clutch and the ambient helium gas inside the control rod standpipe should be below the limits of 180 and 75 deg. C, respectively, at full power operation and at the scram from the operation.

  14. Industrial Process Cooling Towers: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    Standards limiting discharge of chromium compound air emissions from industrial process cooling towers (IPCT's). Includes rule history, Federal Registry citations, implementation information and additional resources.

  15. The Efficacy of an Air-Cooling Vest to Reduce Thermal Strain for Light Armour Vehicle Personnel

    National Research Council Canada - National Science Library

    McLellan, Tom M

    2007-01-01

    .... One option to reduce the heat strain of crew members is to use the existing air-conditioning discharge outlets as a source of cool air to provide microclimate cooling through an individual air-vest...

  16. On the performance of air conditioner with heat pipe for cooling air in the condenser

    International Nuclear Information System (INIS)

    Naphon, Paisarn

    2010-01-01

    Improvement of the air conditioning system performance by using the heat pipe for cooling air before entering the condenser is presented. In the experiment, the heat pipe is fabricated from the straight copper tube with the diameter and length of 10, 600 mm, respectively. The arrangements of the heat pipe sets are arranged in the staggered layout with the tube rows of 1, 2, 3. R134a refrigerant is used as working fluid in the heat pipe set for this present study. By comparing with a conventional air conditioning system, the air conditioning system with three rows of heat pipe gives the highest COP and EER with increasing of 6.4%, 17.5%, respectively. On the global warming and environment problems, the results of this study are expected to lead to guidelines that will allow the improved performance of the air conditioning systems which reduce its energy consumption.

  17. Global thermal analysis of air-air cooled motor based on thermal network

    Science.gov (United States)

    Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong

    2018-02-01

    The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.

  18. Irrigation Induced Surface Cooling in the Context of Modern and Increased Greenhouse Gas Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Puma, Michael J.; Krakauer, Nir Y.

    2010-01-01

    There is evidence that expected warming trends from increased greenhouse gas (GHG) forcing have been locally masked by irrigation induced cooling, and it is uncertain how the magnitude of this irrigation masking effect will change in the future. Using an irrigation dataset integrated into a global general circulation model, we investigate the equilibrium magnitude of irrigation induced cooling under modern (Year 2000) and increased (A1B Scenario, Year 2050) GHG forcing, using modern irrigation rates in both scenarios. For the modern scenario, the cooling is largest over North America, India, the Middle East, and East Asia. Under increased GHG forcing, this cooling effect largely disappears over North America, remains relatively unchanged over India, and intensifies over parts of China and the Middle East. For North America, irrigation significantly increases precipitation under modern GHG forcing; this precipitation enhancement largely disappears under A1B forcing, reducing total latent heat fluxes and the overall irrigation cooling effect. Over India, irrigation rates are high enough to keep pace with increased evaporative demand from the increased GHG forcing and the magnitude of the cooling is maintained. Over China, GHG forcing reduces precipitation and shifts the region to a drier evaporative regime, leading to a relatively increased impact of additional water from irrigation on the surface energy balance. Irrigation enhances precipitation in the Middle East under increased GHG forcing, increasing total latent heat fluxes and enhancing the irrigation cooling effect. Ultimately, the extent to which irrigation will continue to compensate for the warming from increased GHG forcing will primarily depend on changes in the background evaporative regime, secondary irrigation effects (e.g. clouds, precipitation), and the ability of societies to maintain (or increase) current irrigation rates.

  19. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    Mohapatra, Alok Ku; Sanjay

    2014-01-01

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (T i , C ), turbine inlet temperature (T i , T ), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum T i , T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  20. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    International Nuclear Information System (INIS)

    Baik, Seung Joon; Bae, Seong Jun; Kim, Seong Gu; Lee, Jeong Ik

    2014-01-01

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO 2 as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m 2 and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase

  1. Recruiting for Foreign Language Skills Strategies for the Air Force

    National Research Council Canada - National Science Library

    Higgins, Maureen B

    2008-01-01

    .... The expeditionary Air Force (AF) mission demands Airmen with international insight, foreign language proficiency, and cultural knowledge to understand the specific regional context in which air and space power may be applied...

  2. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness for jet engine components are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. Phosphor thermometry offers several advantages for mapping temperatures of air film cooled surfaces. While infrared thermography has been typically applied to study air film cooling effectiveness, temperature accuracy depends on knowing surface emissivity (which may change) and correcting for effects of reflected radiation. Because decay time-based full-field phosphor thermometry is relatively immune to these effects, it can be applied advantageously to temperature mapping of air film-cooled TBC-coated surfaces. In this presentation, an overview will be given of efforts at NASA Glenn Research Center to perform temperature mapping of air film-cooled TBC-coated surfaces in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and the strengths and limitations of this method for studying air film cooling effectiveness are discussed.

  3. Information Superiority: Outsourcing an Air Force Core Competency?

    National Research Council Canada - National Science Library

    McTerman, Hugh

    1997-01-01

    .... This thesis explores the perceived relationship between the core competency requirements for information superiority and the tasks defined for the Air Force communication, computer, and information career field...

  4. Diversity Within the U.S. Air Force Senior Leadership

    Science.gov (United States)

    2010-02-17

    AIR WAR COLLEGE AIR UNIVERSITY DIVERSITY WITHIN THE U.S. AIR FORCE SENIOR LEADERSHIP by Gary N. Leong, Lt Col, USAF A Research Report...16 MANAGING DIVERSITY...potential. 2 With such a strong endorsement for the value of diversity from the Air Force’s topmost leadership , one would expect the diversity of the

  5. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1992-01-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits

  6. A review on the thermal hydraulic characteristics of the air-cooled ...

    Indian Academy of Sciences (India)

    In this paper, a review is presented on the experimental investigations and the numerical simulations performed to analyze the thermal-hydraulic performance of the air-cooled heat exchangers. The air-cooled heat exchangers mostly consist of the finned-tube bundles. The primary role of the extended surfaces (fins) is to ...

  7. A review on the thermal hydraulic characteristics of the air-cooled

    Indian Academy of Sciences (India)

    In this paper, a review is presented on the experimental investigations and the numerical simulations performed to analyze the thermal-hydraulic performance of the air-cooled heat exchangers. The air-cooled heat exchangers mostly consist of the finned-tube bundles. The primary role of the extended surfaces (fins) is to ...

  8. A review on the thermal hydraulic characteristics of the air-cooled ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, a review is presented on the experimental investigations and the numerical simulations performed to analyze the thermal-hydraulic performance of the air-cooled heat exchangers. The air-cooled heat exchangers mostly consist of the finned-tube bundles. The primary role of the extended surfaces ...

  9. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  10. Inspector General, DOD, Oversight of the Air Force Audit Agency Audit of the FY 1999 Air Force General Fund Financial Statements

    National Research Council Canada - National Science Library

    Lane, F

    2000-01-01

    ..., "Opinion on Fiscal Year 1999 Air Force Consolidated Financial Statements." Our objective was to determine the accuracy and completeness of the Air Force Audit Agency audit of the FY 1999 Air Force General Fund financial statements...

  11. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  12. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Xueping Du

    2018-04-01

    Full Text Available To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to evaluate cooling performance. Rotating wind deflectors are adopted to reduce the influence of crosswind on the cooling tower performance. The effects of the rotating wind deflectors on the thermal-hydraulic characteristics of the air-cooling tower under different environmental crosswind speeds are studied. Results indicate that the wind direction in the tower reverses as the rotating speed of the wind deflectors increases. The thermal performance of an air-cooling tower under crosswind conditions can be improved by using rotating wind deflectors. The heat transfer rate of a cooling tower with eight wind deflectors begins to increase when the rotating speed exceeds 2 r/min.

  13. A multiple stage approach to mitigate the risks of telecommunication equipment under free air cooling conditions

    International Nuclear Information System (INIS)

    Dai Jun; Das, Diganta; Pecht, Michael

    2012-01-01

    Highlights: ► Analyze the challenges posed by free air cooling (FAC). ► Present a multi-stage process to mitigate the risks of FAC. ► Propose a prognostics-based method to mitigate risks in data centers in operation. ► Present a case study to show the prognostics-based method implementation. - Abstract: The telecommunication industry is concerned about the energy costs of its operating infrastructure and the associated greenhouse gas emissions. At present, more than half of the total energy consumption of data centers is devoted to the power and cooling infrastructure that supports electronic equipment. One method of reducing energy consumption is an approach called “free air cooling,” where ambient air is used to cool the equipment directly, thereby reducing the energy consumed in cooling and conditioning the air. For example, Intel demonstrated free air cooling in a 10-megawatt (MW) data center, showing a reduction in energy use and savings of US$2.87 million annually. However, the impacts of this approach on the performance and reliability of telecommunication equipment need to be identified. The implementation of free air cooling changes the operating environment, including temperature and humidity, which may have a significant impact on the performance and reliability of telecom equipment. This paper discusses the challenges posed by free air cooling and presents a multi-stage process for evaluating and mitigating the potential risks arising from this new operating environment.

  14. TOTAL FORCE INTEGRATION: PROVIDING STABILITY FOR CITIZEN SOLDIERS IN AN EVER CHANGING AIR FORCE

    Science.gov (United States)

    2016-10-01

    Reserve Component.”91 While this is a step toward Total Force integration , there are certain limitations. One of the most significant disadvantages to...AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY TOTAL FORCE INTEGRATION : PROVIDING STABILITY FOR CITIZEN SOLDIERS IN AN EVER...CHANGING AIR FORCE by Patricia M. Adams, Major, USAFR A Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation

  15. U.S. Air Force Doctrine: A Perspective

    Science.gov (United States)

    1990-01-01

    a result, Air Force Space Command was activated followed by Naval Space Command and culminating in their merger as a unified command in 1985 as the...7 December 1988. AFR 800-2, Acqusition Program Management. Washington D.C.: Department of the Air Force, 16 September 1985. Anderton, David A. "POMO

  16. Strategies for managing academic stress among air force secondary ...

    African Journals Online (AJOL)

    This paper focuses on the concept of stress, academic stress and causes of academic stress experienced by the students of Air Force Secondary schools. The paper goes further to look at the effects, symptoms of academic stress among students of the Air Force Secondary Schools, and proffers some strategies for ...

  17. 77 FR 55465 - US Air Force Exclusive Patent License

    Science.gov (United States)

    2012-09-10

    ... DEPARTMENT OF DEFENSE Department of the Air Force US Air Force Exclusive Patent License AGENCY..., DOD. ACTION: Notice of Intent to Issue an Exclusive Patent License. SUMMARY: Pursuant to the.... Patent No. 8,051,475, filed on March 27, 2007 and issued on November 1, 2011, entitled ``Collaboration...

  18. Using Firn Air for Facility Cooling at the WAIS Divide Site

    Science.gov (United States)

    2014-09-17

    conservative scenarios indicated cooling with firn air at the WAIS Divide site is almost twice as efficient as with conventional systems (COP 2.5...Table 1. Flow field results of the multidimensional, finite-element firn air model. Case ID Permeability Profile Vin (cm/s) Nature of Air Inlet in Pipe...earlier; and for the purposes of the cooling effect calculations, we used a conservative assumption of −28°C. Dependent on the actual configuration of

  19. Development of a water-mist cooling system: A 12,500 Kcal/h air-cooled chiller

    Directory of Open Access Journals (Sweden)

    Chung-Neng Huang

    2015-11-01

    Full Text Available Global warming and energy exhaustion problems are becoming a severe problems, of which energy conservation and carbon reduction are the most critical. Between 40% and 48% of the total electricity used in a building is consumed by air conditioning systems. The development of a supersonic water-misting cooling system with a fuzzy control system is proposed to optimize existing condenser noise, space, and energy consumption, as well as to address problems with cooling capacity resulting from improper control between compressors and condensers. An experimental platform was established for conducting tests, observing cooling efficiencies, and calculating power saving statuses. Comparing the observed cooling efficiency, a temperature difference of 5.4 °C was determined before and after the application; this is significant regarding efficiency. The method produces no pollution or water accumulation. When compared with fixed frequency air-cooled water chillers, an exceptional energy saving of 25% was observed. The newly developed supersonic mist-cooled chiller is an excellent solution to increasing water and electricity fees.

  20. Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2017-12-01

    Full Text Available The cooling efficiency of natural draft dry cooling system (NDDCS are vulnerable to ambient winds, so the implementation of measures against the wind effects is of great importance. This work presents the combined air leading strategies to recover the flow and heat transfer performances of NDDCS. Following the energy balance among the exhaust steam, circulating water, and cooling air, numerical models of natural draft dry cooling systems with the combined air leading strategies are developed. The cooling air streamlines, volume effectiveness, thermal efficiency and outlet water temperature for each cooling delta of the large-scale heat exchanger are obtained. The overall volume effectiveness, average outlet water temperature of NDDCS and steam turbine back pressure are calculated. The results show that with the air leading strategies inside or outside the dry-cooling tower, the thermo-flow performances of natural draft dry cooling system are improved under all wind conditions. The combined inner and outer air leading strategies are superior to other single strategy in the performance recovery, thus can be recommended for NDDCS in power generating units.

  1. Performance of Metal Cutting on Endmills Manufactured by Cooling-Air and Minimum Quantity Lubrication Grinding

    Science.gov (United States)

    Inoue, Shigeru; Aoyama, Tojiro

    Grinding fluids have been commonly used during the grinding of tools for their cooling and lubricating effect since the hard, robust materials used for cutting tools are difficult to grind. Grinding fluids help prevent a drop in hardness due to burning of the cutting edge and keep chipping to an absolute minimum. However, there is a heightened awareness of the need to improve the work environment and protect the global environment. Thus, the present study is aimed at applying dry grinding, cooling-air grinding, cooling-air grinding with minimum quantity lubrication (MQL), and oil-based fluid grinding to manufacturing actual endmills (HSS-Co). Cutting tests were performed by a vertical machining center. The results indicated that the lowest surface inclination values and longest tool life were obtained by cooling-air grinding with MQL. Thus, cooling-air grinding with MQL has been demonstrated to be at least as effective as oil-based fluid grinding.

  2. Cooling tower calculations

    International Nuclear Information System (INIS)

    Simonkova, J.

    1988-01-01

    The problems are summed up of the dynamic calculation of cooling towers with forced and natural air draft. The quantities and relations are given characterizing the simultaneous exchange of momentum, heat and mass in evaporative water cooling by atmospheric air in the packings of cooling towers. The method of solution is clarified in the calculation of evaporation criteria and thermal characteristics of countercurrent and cross current cooling systems. The procedure is demonstrated of the calculation of cooling towers, and correction curves and the effect assessed of the operating mode at constant air number or constant outlet air volume flow on their course in ventilator cooling towers. In cooling towers with the natural air draft the flow unevenness is assessed of water and air relative to its effect on the resulting cooling efficiency of the towers. The calculation is demonstrated of thermal and resistance response curves and cooling curves of hydraulically unevenly loaded towers owing to the water flow rate parameter graded radially by 20% along the cross-section of the packing. Flow rate unevenness of air due to wind impact on the outlet air flow from the tower significantly affects the temperatures of cooled water in natural air draft cooling towers of a design with lower demands on aerodynamics, as early as at wind velocity of 2 m.s -1 as was demonstrated on a concrete example. (author). 11 figs., 10 refs

  3. CFD model of air movement in ventilated facade: comparison between natural and forced air flow

    Energy Technology Data Exchange (ETDEWEB)

    Mora Perez, Miguel; Lopez Patino, Gonzalo; Lopez Jimenez, P. Amparo [Hydraulic and Environmental Engineering Department, Universitat Politècnica de Valencia (Spain)

    2013-07-01

    This study describes computational fluid dynamics (CFD) modeling of ventilated facade. Ventilated facades are normal facade but it has an extra channel between the concrete wall and the (double skin) facade. Several studies found in the literature are carried out with CFD simulations about the behavior of the thermodynamic phenomena of the double skin facades systems. These studies conclude that the presence of the air gap in the ventilated facade affects the temperature in the building skin, causing a cooling effect, at least in low-rise buildings. One of the most important factors affecting the thermal effects of ventilated facades is the wind velocity. In this contribution, a CFD analysis applied on two different velocity assumptions for air movement in the air gap of a ventilated facade is presented. A comparison is proposed considering natural wind induced velocity with forced fan induced velocity in the gap. Finally, comparing temperatures in the building skin, the differences between both solutions are described determining that, related to the considered boundary conditions, there is a maximum height in which the thermal effect of the induced flow is significantly observed.

  4. Army - Air Force Cooperation: Looking Backward to Move Forward

    Science.gov (United States)

    2016-05-26

    the land battle.1 Today’s disagreements focus more on control of unmanned reconnaissance drones , providing air base defense and conducting counter... History demonstrates that ever-changing strategic environments require a military willing to transform and adapt.6 The Army, in its 2014 operating...cooperation between the Army and the Air Force. While the and Missions, by Richard I. Wolf (Washington, DC: Office of Air Force History , 1987), v. 5 Elwood

  5. On the optimum performance of forced draft counter flow cooling towers

    International Nuclear Information System (INIS)

    Soeylemez, M.S.

    2004-01-01

    A thermo-hydraulic performance optimization analysis is presented, yielding simple algebraic formula for estimating the optimum performance point of counter current mechanical draft wet cooling towers. The effectiveness-Ntu method is used in the present study, together with the derivation of psychometric properties of moist air based on a numerical approximation method, for thermal performance analysis of wet cooling towers of the counter flow type

  6. Promoting Sound Ethical Decisions in the Air Force: CGO Solutions to Air Force Moral and Ethical Lapses

    Science.gov (United States)

    2014-07-01

    3Lolita Baldor and Robert Burns, “Air Force Drug Probe Widened to Include Cheating, Official Says.”Huffington Post, 17 March 2014. http...August 2012. Baldor , Lolita and Robert Burns, “Air Force Drug Probe Widened to Include Cheating, Official Says.”Huffington Post, 17 March 2014

  7. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Tatkowski, G. [Fermilab; Cheban, S. [Fermilab; Dhanaraj, N. [Fermilab; Evbota, D. [Fermilab; Lopes, M. [Fermilab; Nicol, T. [Fermilab; Sanders, R. [Fermilab; Schmitt, R. [Fermilab; Voirin, E. [Fermilab

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids

  8. Experimental results of a direct air-cooled ammonia–lithium nitrate absorption refrigeration system

    International Nuclear Information System (INIS)

    Llamas-Guillén, S.U.; Cuevas, R.; Best, R.; Gómez, V.H.

    2014-01-01

    Absorption thermal cooling systems driven by renewable energy are a viable option in order to reduce fossil fuel consumption and the associated emissions. This work shows the results of an air cooled absorption cooling prototype working with an ammonia–lithium nitrate mixture at high ambient temperatures. An absorption refrigeration system was designed and built. The prototype is a one stage ammonia–lithium nitrate air cooled chiller. The experimental system was instrumented to evaluate each component. This paper shows the operation conditions in the experimental unit as well as some of the heat loads encountered at different operating conditions. The system was operated successfully at ambient temperatures in the range of 25–35 °C. A series of test showed that even at ambient temperatures it can be operated at evaporator temperatures below 10 °C producing chilled water for air conditioning applications such as radiative cooling panels. The system proved to stabilize very quickly and no risk of crystallization was encountered so the first results are promising in order to continue with the development of a more advanced prototype. - Highlights: •Experimental results of a direct air-cooled ammonia–lithium nitrate system. •The prototype is a one stage ammonia–lithium nitrate air cooled chiller. •The absorption system was operated successfully at ambient temperatures. •Cooling loads of 4.5 kW were reached in the chilled water side

  9. Looking to the Future of the Air Force Nuclear Enterprise

    Science.gov (United States)

    2016-09-01

    go to other non-nuclear bases at the time. This provided a way out of the missile business , and in some cases it was considered a win. In others...in the eyes of many Air Force leaders. The first step to developing the nuclear mission set is standing up Air Force Global Strike Command (AFGSC) to...21st Century. Through their leadership and guidance they have shown me how to be a great leader in the Air Force. Special thanks go to my GRP

  10. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a...

  11. Force Structure: Better Information Needed to Support Air Force A-10 and Other Future Divestment Decisions

    Science.gov (United States)

    2016-08-01

    timeframes and identify and examine new concepts and capabilities. • Future F-35 versions are expected to improve on CAS capability from the “basic...in Vietnam Rep. Otis Pike chaired a subcommittee for 7 days to investigate Vietnam CAS deficiencies. 1966 Johnson- McConnell Agreement Air Force...First F-16 delivered to Air Force 1982 The Army developed concept on AirLand battle U.S. Army Training and Doctrine Command developed this concept to

  12. Craft-joule project: air-cooled water LiBr absorption cooling machine of low capacity for air conditioning (ACABMA)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A; Castro, J; Perez Segarra, C.D [Universitat Politecnica de Catalunya, Barcelona (Spain); Lucena, M.A [Instituto Nacional de Tecnica Aeroespecial (Spain)] (and others)

    2000-07-01

    The ACABMA (Air-Cooled water-LiBr Absorption cooling Machine of low capacity for Air- conditioning) project is a Craft-Joule Project within the framework of the Non Nuclear Energy Programme Joule III coordinated by the Centre Technologic de Transferencia de Calor (CTTC). The basic objective of this project is the development of a new air-cooled absorption cooling machine for air-conditioning, in the low power sector market. Making use of water-LiBr technology together with the air-cooling feature, it is possible to reach a better relationship between quality (in terms of performance, ecology, etc.) and price of such absorption machines, than the ones existing on the market. Air-cooling instead of water cooling saves installation costs specially in small systems and removes the demand for cooling water (an important aspect in Southern-European countries), thus increasing the possible application range. The main interest for the SME proposers is to take advantage of the increasing cooling demand in Europe, specially in southern countries. Another point of interest for the SME proposers is the development of a cheaper cooling and heating system in terms of energy and installation costs. In this moment the solar cooling systems are approx. 30% more expensive than the conventional ones. A cheaper absorption machine due to the air-cooling feature together with the possibility of energy savings due to low generator temperatures, that allow the absorption machine for solar applications or waste heat, will lead to solar cooling and heating systems more competitive to the conventional ones. In order to achieve the above mentioned goal, the following step are necessary and will be carried out in this project: i)solution of the air-cooling of the water-LiBr machine, the main problem that up to now has not allowed commercialization, ii)reduction of the size of the air-cooled elements of the machine in order to reduce the machine costs, iii)development of an efficient control

  13. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  14. Air Force Organizational Transformation: Merging the Active and Reserve Components

    National Research Council Canada - National Science Library

    Warren, Jonathan

    2005-01-01

    .... These include the active associate, reserve associate, and blended unit concepts. Finally, it provides a recommendation as to which concept will best meet the future warfighting needs of the Air Force.

  15. United States Air Force Nurse Crops Captains' Perceived Leadership Effectiveness

    National Research Council Canada - National Science Library

    Randall, Marjorie

    1998-01-01

    ... effectiveness of nurses who lacked the additional training. Two hundred and seventy-nine United States Air Force Nurse Corps Captains with management experience completed Kouzes and Posner's Leadership Practice Inventory-Self (LPI...

  16. Agile Computing for Air Force Information Management Infrastructures

    National Research Council Canada - National Science Library

    Suri, Niranjan

    2008-01-01

    The objective of this effort was to leverage from and extend the agile computing approach and metaphor to improve Air Force Information Management infrastructures for dynamic and tactical environments...

  17. Air and Space Expeditionary Force Crisis Action Leadership for Commanders

    National Research Council Canada - National Science Library

    Molloy, James P

    2004-01-01

    .... The Air and Space Expeditionary Force (AEF) concept has been executed for a multitude of operations, including the recent Operations ENDURING FREEDOM, IRAQI FREEDOM, AND NOBLE EAGLE, during which several units deployed on very short notice...

  18. Outsourcing the Air Force Mission: A Strategy for Success

    National Research Council Canada - National Science Library

    Palmby, William G

    2006-01-01

    ... has become more dependent on outsourcing. Not only has the number of outsourced positions and functions increased, but also the Air Force has expanded the scope of outsourced functions to include many that significantly affect the success...

  19. Analysis of Air Force Civil Engineering Strategic Planning

    National Research Council Canada - National Science Library

    Mondo, Francis

    2003-01-01

    Several organizations within the Department of Defense, including the Air Force Civil Engineer, are actively engaged in strategic planning in an effort to create a roadmap for future capabilities and performance...

  20. Turkish Air Force's Experiences in Chemical Material Acquisition

    National Research Council Canada - National Science Library

    Taskiran, Huseyin

    2002-01-01

    .... In addition, it analyzes the chemical material acquisition from business perspective. Due to operating in different environments, the Turkish Air Force and the private sector have different objectives in the acquisition of chemical materials...

  1. Changing Demographics and the Impact on Air Force Officer Retention

    National Research Council Canada - National Science Library

    Armstrong, Brenda

    2000-01-01

    ... for a work/life balance among both military members and their civilian counterparts. As the labor shortage for professional skills continues, the Air Force must look for innovative ways to retain its officers...

  2. Speaking Effectively: A Guide for Air Force Speakers

    National Research Council Canada - National Science Library

    Kline, John

    1989-01-01

    Speaking Effectively presents techniques on how to speak successfully. It takes a "how-to" approach to effective speaking in the Air Force and presents proven techniques as concisely and completely as possible...

  3. Sexual Ethics, Organizational Climate, and the Air Expeditionary Force

    National Research Council Canada - National Science Library

    Urdzik, Christopher J; Toner, Christopher

    2005-01-01

    ... negative impact on unit cohesion and morale. In the last 10 years, three major factors have combined to make sexual misconduct an increasing topic of concern for the USAF-the Air Expeditionary Force (AEF...

  4. Usability and Accessibility of Air Force Intranet Web Sites

    National Research Council Canada - National Science Library

    Bentley, Richard S

    2006-01-01

    .... This research effort seeks to establish an understanding of how well common practice usability design principles and government mandated accessibility guidelines are followed by Air Force intranet web sites...

  5. Experimental study on air cooling by spray in the upstream flow of a heat exchanger

    OpenAIRE

    Tissot, Julien; Boulet, Pascal; Labergue, Alexandre; Castanet, Guillaume; Trinquet, François; Fournaison, Laurence

    2012-01-01

    International audience; An experimental study has been carried out on a water sprayed air flow aimed at cooling the air upstream of a heat exchanger in order to improve the heat transfer. A pilot has been built allowing injecting droplets in air in various conditions while controlling flow rates, temperature and humidity. The emphasis has been put on the spray evaporation resulting in a temperature decrease and humidity increase in the air flow. An actual increase in the heat exchanged (up to...

  6. Environmental Assessment for Shoreline Stabilization at Langley Air Force Base, Virginia

    National Research Council Canada - National Science Library

    Dischner, David M; Lingner, David; Rock, Howard B; Combs, Jennifer; Brandenburg, Catherine

    2006-01-01

    The United States Air Force (Air Force), 1st Fighter Wing (1 FW) proposes to implement various methods to stabilize the shoreline at several locations along the Back River waterfront at Langley Air Force Base (AFB...

  7. Unliquidated Obligations for Air Force-Funded Projects Administered by The Naval Facilities Engineering Command

    National Research Council Canada - National Science Library

    2001-01-01

    ... consolidated financial statements. The Air Force Audit Agency requested us to assist in its review of the Statement of Budgetary Resources for the Air Force General Fund by reviewing unliquidated obligations for Air Force-funded...

  8. Modernization of the Indian Air Force: Security Implications for South Asia

    National Research Council Canada - National Science Library

    2005-01-01

    This thesis analyzes the Indian Air Force's (IAF) robust modernization campaign and explores why the IAF is on the path to transforming itself from an air force dedicated to air defense to one capable of global force projection...

  9. Standard operating procedure for air quality stationary source management at Air Force installations in the Air Force Materiel Command

    Energy Technology Data Exchange (ETDEWEB)

    Powell, C.M.; Ryckman, S.J. [Headquarters Air Force Materiel Command, Wright-Patterson AFB, OH (United States). Environmental Compliance Branch

    1997-12-31

    To sustain compliance and avoid future enforcement actions associated with air quality stationary sources and to provide installation commanders with a certification process for Title V permitting, and Air Force Materiel Command (AFMC) Standard Operating Procedure (SOP) for Stationary Source Management has been developed. The SOP consists of two major sections: Stationary Source Planning and Administration, and Stationary Source Operations These two main sections are further subdivided into twelve subsections which delineate requirements (e.g. maintaining inventories, applying for and maintaining permits, keeping records, reporting and certifying compliance) and assign ownership of processes and responsibilities (e.g. appointing a manager/alternate for each identified stationary air source). In addition, the SOP suggests training that should be provided from operator to commander levels to ensure that all personnel involved with a stationary air source are aware of their responsibilities. Implementation of the SOP should provide for the essential control necessary for installation commanders to eliminate stationary air source non-compliance and to certify compliance in accordance with the Title V Operating Permit requirements. This paper will discuss: the background and purpose for the SOPs content, the twelve subsections of the SOP, the success of implementation at various installations, the relevance or the recommended training, the success of negotiating with various labor unions for SOP implementation and the success of the SOP in reference to its intended purpose.

  10. Collected Engineering Data Sheets (Air Force Data Sheet Program)

    Science.gov (United States)

    1978-12-01

    extracted from the mold . The metal is refined and desulfurized by flux action and the micro- structure is improved by controlled solidification . The...of three tests in each direction . (c) NA, not applicable. 371 200 1 l? (�) 140 ~ (100) ni TYS (L) D TYS (T) _____________ 120 35 9 e (L) A E (T) 30...34Engineering and Design Data". The work was administered under the direction of the Air Force Materials Laboratory, Air Force Systems Command, Wright

  11. Setup: What the Air Force Did in Vietnam and Why

    Science.gov (United States)

    1991-06-01

    Ibid., 264. 84 . Ibid., 271 . 85 . Ibid., 256. 86 . Marcelle Size Knaack, Encyclopedia of U.S . Air Force Aircraft and Missile Systems (Washington...course, operated over the Ho Chi Minh Trail . In January 1966 the Air Force launched Operation Cricket , which entailed the use of single-engine, propeller...operations 90 Base area 353 : 195 Cricket . See operations Battambang : 275 Bay of Pigs : 47 Dak To: 229 Berlin : 47 Defense Intelligence Agency (DIA

  12. AIR FORCE CYBER MISSION ASSURANCE SOURCES OF MISSION UNCERTAINTY

    Science.gov (United States)

    2017-04-06

    Much of the cyber capabilities that enable mission owners to function are outside their influence and often outside their visibility. This situation...mission owner wants, and the nature of risk management. The consequences of these issues are more than academic concerns as they have contributed to...perspective of the user and that of key leaders in positions to exert great influence on the future of cyber in the Air Force. While the Air Force likely

  13. Shaping Air Mobility Forces for Future Relevance

    Science.gov (United States)

    2017-01-01

    other decision makers. Each paper can also be a valuable tool for defining further research. These studies are available elec- tronically or in...two different aircraft. Barring mir- acles, future advances in propulsion and airframe designs may make for more elegant solutions to these missions...www.tradoc.army. mil/tpubs/pams/tp525-3-1.pdf. 10. The DOD defines oversize air cargo as “exceeding the usable dimension of a 463L [air cargo] pallet loaded to

  14. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Science.gov (United States)

    Sulaiman, S. A.; Dominguez-Ontiveros, E. E.; Alhashimi, T.; Budd, J. L.; Matos, M. D.; Hassan, Y. A.

    2015-04-01

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A&M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  15. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  16. Analysis of nocturnal air temperature in districts using mobile measurements and a cooling indicator

    Science.gov (United States)

    Leconte, François; Bouyer, Julien; Claverie, Rémy; Pétrissans, Mathieu

    2017-10-01

    The urban heat island phenomenon is generally defined as an air temperature difference between a city center and the non-urbanized rural areas nearby. However, this description does not encompass the intra-urban temperature differences that exist between neighborhoods in a city. This study investigates the air temperature dynamics of neighborhoods for meteorological conditions that lead to important urban heat island amplitude. Local climate zones (LCZs) have been determined in Nancy, France, and mobile screen-height air temperature measurements are performed using an instrumented vehicle. Initially, hourly measurements are performed within four different LCZs. These results show that air temperature within LCZ demonstrates a nocturnal cooling in two phases, i.e., a first phase between 1 to 3 h before sunset and 3 to 5 h after sunset, and a second phase from 3 to 5 h after sunset to sunrise. During phase 1, neighborhoods exhibit different cooling rate values and air temperature gaps develop between districts, while during phase 2, cooling rates tend to be analogous. Then, a larger meteorological data set is used to investigate these two phases for a selection of 13 LCZs. Normalized cooling rates are calculated between daytime measures and nighttime measures in order to quantify the air temperature dynamics of the studied areas during phase 1. Considering this indicator, three groups are emerging: LCZ compact midrise and open midrise with mean normalized cooling rate values of 0.09 h -1 LCZ large lowrise and open lowrise/sparsely built with mean normalized cooling rate values of 0.011 h -1 LCZ low plants with mean normalized cooling rate values of 0.014 h -1 Results indicate that the relative position of LCZ within the conurbation does not drive air temperature dynamics during phase 1. In addition, measures performed during phase 2 tend to illustrate that cooling rates are similar to all LCZ during this period.

  17. Automatic control system of brain temperature by air-surface cooling for therapeutic hypothermia.

    Science.gov (United States)

    Utsuki, T

    2013-01-01

    An automatic control system of brain temperature by air-surface cooling was developed for therapeutic hypothermia, which is increasingly recommended for hypoxic-ischemic encephalopathy after cardiac arrest and neonatal asphyxia in several guidelines pertinent to resuscitation. Currently, water-surface cooling is the most widespread cooling method in therapeutic hypothermia. However, it requires large electric power for precise control and also needs water-cooling blankets which have potential for compression of patients by its own weight and for water leakage in ICU. Air-surface cooling does not have such problems and is more suitable for clinical use than water-surface cooling, because air has lower specific heat and density as well as the impossibility of the contamination in ICU by its leakage. In the present system, brain temperature of patients is automatically controlled by suitable adjustment of the temperature of the air blowing into the cooling blankets. This adjustment is carried out by the regulation of mixing cool and warm air using proportional control valves. The computer in the developed control apparatus suitably calculates the air temperature and rotation angle of the valves every sampling time on the basis of the optimal-adaptive control algorithm. Thus, the proposed system actualizes automatic control of brain temperature by the inputting only the clinically desired temperature of brain. The control performance of the suggested system was verified by the examination using the mannequin in substitution for an adult patient. In the result, the control error of the head temperature of the mannequin was 0.12 °C on average in spite of the lack of the production capacity of warm air after the re-warming period. Thus, this system serves as a model for the clinically applied system.

  18. Numerical simulation of endovenous laser treatment of the incompetent great saphenous vein with external air cooling.

    Science.gov (United States)

    Marqa, Mohamad Feras; Mordon, Serge; Hernández-Osma, Esteban; Trelles, Mario; Betrouni, Nacim

    2013-05-01

    Endovenous laser treatment (ELT) has been proposed as an alternative in the treatment of reflux of the great saphenous vein. Before the procedure, peri-saphenous subcutaneous tumescent saline solution infiltration is usually performed. However, diffusion of this tumescent fluid is rapidly observed and can potentially reduce the efficacy as a heat sink. External skin cooling with cold air was proposed as an alternative solution. The objective of this study is to compare endovenous laser treatment without and with air cooling by realistic numerical simulations. An optical-thermal damage model was formulated and implemented using finite element modeling. The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation, and laser-induced injury using the Arrhenius damage model. Parameters, used in clinical procedures, were considered: power, 15 W; pulse duration, 1 s; fiber pull back, 3-mm increments every second; cold air applied in continuous mode during ELT; and no tumescent anesthesia. Simulations were performed for vein locations at 5, 10, and 15 mm in depth, with and without air cooling. For a vein located at 15 mm in depth, no significant difference was observed with and without cooling. For a vein located at 10 mm in depth, surface temperature increase up to 45 °C is observed without cooling. For a vein located at 5 mm, without cooling, temperature increase leads to irreversible damage of dermis and epidermis. Conversely, with air cooling, surface temperature reaches a maximum of 38 °C in accordance with recordings performed on patients. ELT of the incompetent great saphenous vein with external air cooling system is a promising therapy technique. Use of cold air on the skin continuously flowing in the area of laser shot decreased significantly the heat extent and the thermal damage in the perivenous tissues and the skin.

  19. Nellis and Creech Air Force Bases Capital Improvements Program Environmental Assessment

    Science.gov (United States)

    2008-09-01

    57th Wing, other Air Force units, Navy, Marine Corps and allied air forces. Creech AFB is also the primary training site for the United States Air...Forces, Air National Guard, U.S. Air Force Reserve, Army, Navy, Marine Corps, and allied air forces. They are led by a Blue Forces commander who...includes desert iguana (Dipsosaurus dorsalis), zebra-tailed lizard (Callosaurus draconoides), side-blotched lizard, horned lizards (Phrynosoma spp

  20. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available Adequate perception of nasal airflow (i.e., nasal patency is an important consideration for patients with nasal sinus diseases. The perception of a lack of nasal patency becomes the primary symptom that drives these patients to seek medical treatment. However, clinical assessment of nasal patency remains a challenge because we lack objective measurements that correlate well with what patients perceive. The current study examined factors that may influence perceived patency, including air temperature, humidity, mucosal cooling, nasal resistance, and trigeminal sensitivity. Forty-four healthy subjects rated nasal patency while sampling air from three facial exposure boxes that were ventilated with untreated room air, cold air, and dry air, respectively. In all conditions, air temperature and relative humidity inside each box were recorded with sensors connected to a computer. Nasal resistance and minimum airway cross-sectional area (MCA were measured using rhinomanometry and acoustic rhinometry, respectively. General trigeminal sensitivity was assessed through lateralization thresholds to butanol. No significant correlation was found between perceived patency and nasal resistance or MCA. In contrast, air temperature, humidity, and butanol threshold combined significantly contributed to the ratings of patency, with mucosal cooling (heat loss being the most heavily weighted predictor. Air humidity significantly influences perceived patency, suggesting that mucosal cooling rather than air temperature alone provides the trigeminal sensation that results in perception of patency. The dynamic cooling between the airstream and the mucosal wall may be quantified experimentally or computationally and could potentially lead to a new clinical evaluation tool.

  1. Liquid Hydrogen Recirculation System for Forced Flow Cooling Test of Superconducting Conductors

    Science.gov (United States)

    Shirai, Y.; Kainuma, T.; Shigeta, H.; Shiotsu, M.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.; Yoshinaga, S.

    2017-12-01

    The knowledge of forced flow heat transfer characteristics of liquid hydrogen (LH2) is important and necessary for design and cooling analysis of high critical temperature superconducting devices. However, there are few test facilities available for LH2 forced flow cooling for superconductors. A test system to provide a LH2 forced flow (∼10 m/s) of a short period (less than 100 s) has been developed. The test system was composed of two LH2 tanks connected by a transfer line with a controllable valve, in which the forced flow rate and its period were limited by the storage capacity of tanks. In this paper, a liquid hydrogen recirculation system, which was designed and fabricated in order to study characteristics of superconducting cables in a stable forced flow of liquid hydrogen for longer period, was described. This LH2 loop system consists of a centrifugal pump with dynamic gas bearings, a heat exchanger which is immersed in a liquid hydrogen tank, and a buffer tank where a test section (superconducting wires or cables) is set. The buffer tank has LHe cooled superconducting magnet which can produce an external magnetic field (up to 7T) at the test section. A performance test was conducted. The maximum flow rate was 43.7 g/s. The lowest temperature was 22.5 K. It was confirmed that the liquid hydrogen can stably circulate for 7 hours.

  2. Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body

    Science.gov (United States)

    Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai

    2018-04-01

    This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.

  3. An Air Force Strategy for the Long Haul

    Science.gov (United States)

    2009-01-01

    Davis, Anatomy of a Reform: The Expeditionary Aerospace Force (Washington, DC: Air Force History and Museums Program, 2003), page 11. 18 Adam J...8217& [ basing (both in numbers and defenses), threatens to hamstring the US military’s abil- ity to project

  4. Environmental Assessment: Installation Development at Sheppard Air Force Base, Texas

    Science.gov (United States)

    2007-05-01

    America—Division of Saint -Gobain Fiberglass Reinforcements 888 Cryovac Division—Sealed Air Corporation Flexible Packaging 750 Cingular Wireless...Affected Environment Sheppard Air Force Base, Texas 3-55 May 31, 2007 Archer County, Baylor County, Brown County, Callahan County, Clay County

  5. Fuel Reduction for the Mobility Air Forces: Executive Summary

    Science.gov (United States)

    2015-01-01

    Air Forces (MAF) Energy Costs: Best Practices in Aviation Operations and Training.” It should be of interest to mobility air operations planners and... Wed %201600%20Fuel%20Efficiency%20Initiatives- Kyle%20Smith.pdf Smoot, Harold, “AWBS: Automated Weight & Balance System,” Lockheed Martin Corporation

  6. The Warfighting Capacity of Air Combat Command's Numbered Air Forces

    National Research Council Canada - National Science Library

    Hanser, Lawrence

    2000-01-01

    ...) of the Air Combat Command (ACC), General Richard E. Hawley, the ACC Commander, asked if RAND could offer an analysis of the number of NAFs that were needed by ACC to meet warfighting requirements...

  7. Gerontology Nurses: Are They Needed in the Air Force?

    Science.gov (United States)

    1985-04-01

    Nurse Administration, Education 16 Community Health Nursing 12 Midwifery II. Public Health Nursing 10 Cardio-Vascular Nursing 7 Nurse Science 4...EDUCATION Nursing Administration I1 Public Health Nursing (MPH) 8 Medical Surgical 6 Maternal-Child 4 Midwifery 3.- Anesthesia 3 1515 °. Cardlo-Vascular 2...AO-A172 333 GERONTOLOGY NURSES : AIRE THEY NEEDED IN THE AIR FORCE? v/1 (U) AIR CONNAND AND STAFF COLL NAXHELL AFB AL C 9 SCHAUB APR 85 RCSC-95-2300

  8. The Maharaja’s New AVTAAR: Air-Refuelling Strategy for the Indian Air Force

    Science.gov (United States)

    2013-06-01

    and Lolita C Baldor , "Boeing gets $35 Billion Air Force Tanker Order," Aviation on NBC News.com. Feruary 24, 2011. http://www.nbcnews.com/id/41766812...rakshak.com/NAVY/Ships/Active/156-Nicobar-Class.html (accessed March 23, 2013). Cassata, Donna, and Lolita C Baldor . "Boeing gets $35 Billion Air Force

  9. An Operational Analysis for Air Force 2025: An Application of Value-Focused Thinking to Future Air and Space Capabilities

    National Research Council Canada - National Science Library

    Jackson, Jack

    1996-01-01

    In the summer of 1995 the Air Force chief of staff tasked Air University to conduct a year-long study Air Force 2025 to "generate ideas and concepts on the capabilities the United States will require...

  10. United States Air Force History. A Guide to Documentary Sources

    Science.gov (United States)

    1973-01-01

    Series: Reference series (United States. Air Force. Office of Air Force History) CD3034.5.P37 1985 016.3584� 85-18851 ISBN 0-912799-21-8 For sale by...1914 a force was sent to Veracruz and in 1916 a Punitive Expedition was also sent to Mexico; and in the 1920’s U. S. troops were again sent to China...records, foreign military sales files, and a large volume of allotment folders. 63 FEDERAL RECORDS CENTER General Services Administration Mechanicsburg

  11. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  12. Experimental study of hybrid interface cooling system using air ventilation and nanofluid

    Science.gov (United States)

    Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.

    2017-09-01

    The hybrid interface cooling system needs to be established to chill the battery compartment of electric car and maintained its ambient temperature inside the compartment between 25°C to 35°C. The air cooling experiment has been conducted to verify the cooling capacity, compressor displacement volume, dehumidifying value and mass flow rate of refrigerant (R-410A). At the same time, liquid cooling system is analysed theoretically by comparing the performance of two types of nanofluid, i.e., CuO + Water and Al2O3 + Water, based on the heat load generated inside the compartment. In order for the result obtained to be valid and reliable, several assumptions are considered during the experimental and theoretical analysis. Results show that the efficiency of the hybrid interface cooling system is improved as compared to the individual cooling system.

  13. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    Science.gov (United States)

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here.

  14. Protected air-cooled condenser for the Clinch River Breeder Reactor Plant

    International Nuclear Information System (INIS)

    Louison, R.; Boardman, C.E.

    1981-01-01

    The long term residual heat removal for the Clinch River Breeder Reactor Plant (CRBRP) is accomplished through the use of three protected air-cooled condensers (PACC's) each rated at 15M/sub t/ following a normal or emergency shutdown of the reactor. Steam is condensed by forcing air over the finned and coiled condenser tubes located above the steam drums. The steam flow is by natural convection. It is drawn to the PACC tube bundle for the steam drum by the lower pressure region in the tube bundle created from the condensing action. The concept of the tube bundle employs a unique patented configuration which has been commercially available through CONSECO Inc. of Medfore, Wisconsin. The concept provides semi-parallel flow that minimizes subcooling and reduces steam/condensate flow instabilities that have been observed on other similar heat transfer equipment such as moisture separator reheaters (MSRS). The improved flow stability will reduce temperature cycling and associated mechanical fatigue. The PACC is being designed to operate during and following the design basis earthquake, depressurization from the design basis tornado and is housed in protective building enclosure which is also designed to withstand the above mentioned events

  15. Application of evaporative cooling on the condenser of window-air-conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, Ebrahim [Shahid Chamran University, Department of Mechanical Engineering, Golestan St., Ahwaz, Khoozestan 61355 (Iran, Islamic Republic of)]. E-mail: hajidae_1999@yahoo.com

    2007-08-15

    Reduction of energy consumption is a major concern in the vapor compression refrigeration cycle especially in the area with very hot weather conditions (about 50 deg. C), where window-air-conditioners are usually used to cool homes. In this weather condition performance of air condenser window-air-conditioners decrease sharply and electrical power consumption increase considerably. These problems have activated the research programs in order to improve the performance of window-air-conditioners by enhancing heat transfer rate in the condenser. In this article, a new design with high commercialization potential for incorporating of evaporative cooling in the condenser of window-air-conditioner is introduced and experimentally investigated. A real air conditioner is used to test the innovation by putting two cooling pads in both sides of the air conditioner and injecting water on them in order to cool down the air before it passing over the condenser. The experimental results show that thermodynamic characteristics of new system are considerably improved and power consumption decreases by about 16% and the coefficient of performance increases by about 55%.

  16. Cooling load calculations of radiant and all-air systems for commercial buildings

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Bauman, Fred; Schiavon, Stefano

    The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when they are...

  17. Environmental Assessment for Proposed Security Forces Operations Facility, Buckley Air Force Base, Colorado

    National Research Council Canada - National Science Library

    Meyer, Elizabeth; Myklebust, Jessica; Denier, James; Christner, Jennifer; Fontaine, Kathyrn

    2006-01-01

    The United States Air Force (USAF) has prepared this EA in accordance with the National Environmental Policy Act to evaluate the potential environmental and social impacts from the construction and operation of the proposed SFOF...

  18. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  19. Foundation of the Force. Air Force Enlisted Personnel Policy, 1907-1956

    Science.gov (United States)

    1997-01-01

    leaders, albeit an odd group of military luminaries and social reformers that included Eisenhower, Marshall, Mary Wollstonecraft Shelley, and Jane...Shelley, Mary Wollstonecraft , 128 recruiting process, 102, 103-106, 115 Signal Corps Recruiting Publicity Center, 95 Aeronautical Division, 7 recruiting...Air Force?" Air Force Magazine, May 1953, p. 33. The long-term consequences of military life on families is lucidly discussed in Mary R. Truscott’s

  20. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2016-01-01

    Highlights: • Thermal analysis was conducted to design a desiccant evaporative cooling system for vehicular air conditioning. • EC is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter. • Drawbacks of evaporative cooler of increased weight and reduced COP. • A rotary desiccant dehumidifier with generation was combined with evaporative cooling to be more efficient. - Abstract: This manuscript analyzes the sub-systems of evaporative cooler (EC) combined with desiccant dehumidification and regeneration for automotive air conditioning purpose. The thermodynamic and psychometric analysis was conducted to design all evaporative cooling system components in terms of desiccant selection, regeneration process, compact heat exchanger and evaporative cooler. Moreover, the effect of the desiccant, heat exchanger and evaporative performances on the mass flow rate and water sprayed required for evaporative cooling system was investigated. The results show that the theoretical evaporative cooling design will achieve two main objectives: lower fuel consumption and less environmental pollutants. However, it has the two drawbacks in terms of increased weight and reduces the coefficient of performance (COP). The main remark is that evaporating cooling system is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter.

  1. Flextime: A Modified Work Force Scheduling Technique for Selected Headquarters Air Force Logistics Command Organizations.

    Science.gov (United States)

    Kimzey, Reed T.; Prince, Samuel M. O.

    The thesis discusses the advantages and disadvantages of one work force scheduling technique--flextime. The authors were interested in determining if a flextime schedule could be put into effect in a governmental organization such as Headquarters Air Force Logistics Command (AFLC). The study objectives were to determine the feasibility,…

  2. Final Environmental Assessment for Installation Development at Little Rock Air Force Base Arkansas

    Science.gov (United States)

    2006-10-18

    Environmental Quality ADSL average daily student load AETC Air Education and Training Command AF Air Force AFB Air Force Base AFCESA Air Force Civil...load ( ADSL ) in Fiscal Year (FY) 2010 but level back to current programmed ADSL . • U.S. Marine C-130 Training. This is the expansion of current C...American Landing Zone ADSL Average Daily Student Load AETC Air Education and Training Command AFB Air Force Base AGL above ground level AMC Air

  3. Performance of Introducing Outdoor Cold Air for Cooling a Plant Production System with Artificial Light.

    Science.gov (United States)

    Wang, Jun; Tong, Yuxin; Yang, Qichang; Xin, Min

    2016-01-01

    The commercial use of a plant production system with artificial light (PPAL) is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15-35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W) was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m(2) each) was maintained at 25 and 20°C during photoperiod and dark period, respectively, for lettuce production. A null CO2 balance enrichment method was used in both PPALs. In one PPAL (PPALe), an air exchanger (air flow rate: 250 m(3)·h(-1)) was used along with a heat pump (cooling capacity: 3.2 kW) to maintain the indoor air temperature at the set-point. The other PPAL (PPALc) with only a heat pump (cooling capacity: 3.2 kW) was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP), electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2 to 30.0°C: (1) the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; (2) hourly electric-energy consumption for cooling in the PPALe reduced by 15.8-73.7% compared with that in the PPALc; (3) daily supply of CO2 in the PPALe reduced from 0.15 to 0.04 kg compared with that in the PPALc with the outdoor air temperature ranging from -5.6 to 2.7°C; (4) no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL.

  4. An experimental investigation on air-side performances of finned tube heat exchangers for indirect air-cooling tower

    Directory of Open Access Journals (Sweden)

    Du Xueping

    2014-01-01

    Full Text Available A tremendous quantity of water can be saved if the air cooling system is used, comparing with the ordinary water-cooling technology. In this study, two kinds of finned tube heat exchangers in an indirect air-cooling tower are experimentally studied, which are a plain finned oval-tube heat exchanger and a wavy-finned flat-tube heat exchanger in a cross flow of air. Four different air inlet angles (90°, 60 °, 45°, and 30° are tested separately to obtain the heat transfer and resistance performance. Then the air-side experimental correlations of the Nusselt number and friction factor are acquired. The comprehensive heat transfer performances for two finned tube heat exchangers under four air inlet angles are compared. For the plain finned oval-tube heat exchanger, the vertical angle (90° has the worst performance while 45° and 30° has the best performance at small ReDc and at large ReDc, respectively. For the wavy-finned flat-tube heat exchanger, the worst performance occurred at 60°, while the best performance occurred at 45° and 90° at small ReDc and at large ReDc, respectively. From the comparative results, it can be found that the air inlet angle has completely different effects on the comprehensive heat transfer performance for the heat exchangers with different structures.

  5. 77 FR 5781 - Record of Decision for the Air Space Training Initiative Shaw Air Force Base, South Carolina...

    Science.gov (United States)

    2012-02-06

    ... DEPARTMENT OF DEFENSE Department of the Air Force Record of Decision for the Air Space Training Initiative Shaw Air Force Base, South Carolina Final Environmental Impact Statement ACTION: Notice of... signed the ROD for the Airspace Training Initiative Shaw Air Force Base, South Carolina Final...

  6. Low Reynolds number forced convection steam cooling heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Wong, S.; Hochreiter, L.E.

    1980-01-01

    A series of forced convection steam cooling tests at low Reynolds numbers were conducted in the rod bundle test facility of the FLECHT-SEASET program. The data was reduced using a rod-centered subchannel energy balance to obtain the vapor temperature and by modeling the bundle with the COBRA-IV-I computer code. The comparisons between the COBRA-IV-I vapor temperatures and subchannel energy balance vapor temperatures were quite good. 5 refs

  7. Enhancement of the coefficient of performance in air conditioning systems by utilizing free cooling

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salaymeh, A.; Abdelkader, M. [Jordan Univ., Amman (Jordan). Dept. of Mechanical Engineering; Al-Salaymeh, M. [Jordan Telecommunication Co., Zarka (Jordan); Rabah, M. [Al-Balqa Applied Univ., Amman (Jordan). Dept. of Mechanical Engineering

    2006-07-01

    A case study was conducted for a 4-tonne cooling load air conditioning system in buildings owned by the Jordan Telecommunications Company. The air conditioning system used a free cooling technique comprised of a motorized damper that conducted the flows of internal and external air. The damper opened to take air needed for cooling directly from the exterior, without the need for a compressor. An evaporative humidifier was used to treat air between the exhaust connection of the heat recovery unit. The free cooling system was used when the external ambient temperature exceeded the temperature in the exhaust duct after the evaporative humidifier. The system used thermostats to determine when the outside temperature was lower than the room temperature. The thermostats controlled the opening to the outdoor air damper so that the proportion of the opening could be controlled. In this case study, the system was applied in a small equipment room containing telecommunication equipment. The study considered installation costs, operating costs, and maintenance costs. Total costs were calculated by multiplying the number of operating hours with the electricity cost. Maximum electricity costs occurred during the summer months. Results showed that use of the system resulted in savings of 42.6 per cent of the total cost of electricity typically used to treat the room. 7 refs., 9 figs.

  8. Experimental study of the application of two trickle media for inlet air pre-cooling of natural draft dry cooling towers

    International Nuclear Information System (INIS)

    He, Suoying; Guan, Zhiqiang; Gurgenci, Hal; Hooman, Kamel; Lu, Yuanshen; Alkhedhair, Abdullah M.

    2015-01-01

    Highlights: • Two trickle media were experimentally studied in a low-speed wind tunnel. • Correlations for cooling efficiency and pressure drop were developed. • Both trickle media were proven to have relatively low pressure drops. • Both trickle media had severe water entrainment at large air velocities. - Abstract: This paper is part two of a broader investigation into pre-cooling the air that enters natural draft dry cooling towers. Evaporative cooling of air is to some extent different from evaporative cooling of water. Two trickle media (Trickle125 and Trickle100) originally designed for evaporative cooling of water were studied in an open-circuit wind tunnel for evaporative cooling of air. Three medium thicknesses (200, 300 and 450 mm) and two water flow rates (10 and 5 l/min per m 2 horizontally exposed surface area) were used in the tests. The air velocities ranged from 0.5 to 3.0 m/s. The cooling efficiency and the pressure drop of the two media were curve fitted to yield a set of correlations. The pressure drop ranges for Trickle125 and Trickle100 were 0.7–50 Pa and 0.6–41.6 Pa, respectively. The cooling efficiencies of Trickle125 and Trickle100 fell within 15.7–55.1% and 11–44.4%, respectively. Generally, media with large effective surfaces provide high cooling efficiencies and high pressure drops; there is a trade-off between cooling efficiency and pressure drop when selecting a particular medium for a specific application. The water entrainment off the media was detected with water-sensitive papers, and both media had severe water entrainment at large air velocities

  9. Low air pressure effects on burning characteristics of typical oil with forced irradiance

    Science.gov (United States)

    Pan, Li; Yuen, Richard; Jian, Wang

    2017-10-01

    In this paper, a report is given on an experimental study of the combustion characteristics of typical oil with forced irradiance under two fixed ambient pressures, which may occurred in real fires. Mass loss and flame axial heat flux distribution were measured to evaluate the hazards. The burning intensity at reduced pressure is relatively lower under the circumstance without incident irradiance because the thin air for reduced pressure may attenuate the combustion. However, the burning intensity at lower pressure is higher due to the lower boiling temperature when the irradiance reaches to 10 kW/m2.The flame could engulf sufficient air to complete the combustion process for atmospheric pressure condition compared with that under low pressure, and thus resulting in relatively higher flame temperature for a fixed flame height. While in the unified plume region, the weaker air entrainment under lower pressure leads to a poorer cooling effect, i.e. higher plume temperature.

  10. IS FREE REALLY FREE PALACE ACQUIRE AS AN EFFECTIVE FORCE RENEWAL SOURCE FOR AIR FORCE PUBLIC AFFAIRS

    Science.gov (United States)

    2016-02-29

    Objects Report, Public Affairs RPA Tracker. Database, Joint Base San Antonio: Air Force Personnel Center. 12 Air Force Public Affairs SharePoint Site...Air Force Public Affairs SharePoint Site. Career Management. Accessed 22 February, 2016. https://cs3.eis.af.mil/sites/OO-SC-AF-82/Resources/Career

  11. Benefits of compressor inlet air cooling for gas turbine cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    De Lucia, M.; Lanfranchi, C. [Univ. di Firenze (Italy). Dept. di Energetica; Boggio, V. [CRIT S.r.l., Prato (Italy)

    1996-07-01

    Compressor inlet air cooling is an effective method for enhancing the performance of gas turbine plants. This paper presents a comparative analysis of different solutions for cooling the compressor inlet air for the LM6000 gas turbine in a cogeneration plant operated in base load. Absorption and evaporative cooling systems are considered and their performance and economic benefits compared for the dry low-NO{sub x} LM6000 version. Reference is made to two sites in Northern and Southern Italy, whose climate data series for modeling the variations in ambient temperature during the single day were used to account for the effects of climate in the simulation. The results confirmed the advantages of inlet air cooling systems. In particular, evaporative cooling proved to be cost effective, though capable of supplying only moderate cooling, while absorption systems have a higher cost but are also more versatile and powerful in base-load operation. An integration of the two systems proved to be able to give both maximum performance enhancement and net economic benefit.

  12. Simulation study of air and water cooled photovoltaic panel using ANSYS

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.

    2017-10-01

    Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.

  13. Two major volcanic cooling episodes derived from global marine air temperature, AD 1807-1827

    Science.gov (United States)

    Chenoweth, Michael

    A new data set of global marine air temperature data for the years 1807-1827 is used to show the impact of volcanic eruptions in ˜ 1809 (unlocated) and 1815 (Tambora, Indonesia). Both eruptions produced cooling exceeding that after Krakatoa, Indonesia (1883) and Pinatubo, Philippines (1991). The ˜1809 eruption is dated to March-June 1808 based on a sudden cooling in Malaysian temperature data and maximum cooling of marine air temperature in 1809. Two large-scale calibrated proxy temperature records, one from tree-ring-density data, the other using multi-proxy sources are compared to the marine air temperature data. Correlation is highest with maximum latewood density data and lowest with the multi-proxy data.

  14. Research on the operation control strategy of the cooling ceiling combined with fresh air system

    Science.gov (United States)

    Huang, Tao; Li, Hao

    2018-03-01

    The cooling ceiling combined with independent fresh air system was built by TRNSYS. And the cooling effects of the air conditioning system of an office in Beijing in a summer typical day were simulated. Based on the “variable temperature” control strategy, the operation strategy of “variable air volume auxiliary adjustment” was put forward. The variation of the indoor temperature, the indoor humidity, the temperature of supplying water and the temperature of returning water were simulated under the two control strategies. The energy consumption of system during the whole summer was compared by utilizing the two control strategies, and the indoor thermal comfort was analyzed. The optimal control strategy was proposed under the condition that the condensation on the surface of the cooling ceiling is not occurred and the indoor thermal comfort is satisfied.

  15. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  16. An experimental study of the exergetic performance of an underground air tunnel system for greenhouse cooling

    International Nuclear Information System (INIS)

    Ozgener, Leyla; Ozgener, Onder

    2010-01-01

    The present study highlights the exergetic performance characteristics of an underground air tunnel for greenhouse cooling with a 47 m horizontal, 56 cm nominal diameter U-bend buried galvanized ground heat exchanger. This system was designed and installed in the Solar Energy Institute, Ege University, Izmir, Turkey. Underground air tunnel systems, also known as earth-to-air heat exchangers, are recognized to be outstanding heating, cooling and air heating systems. On the other hand, they have not been used yet in the Turkish market. Greenhouses also have important economical potential in Turkey's agricultural sector. Greenhouses should be cooled during the summer or hot days. In order to establish optimum growth conditions in greenhouses, renewable energy sources should be utilized as much as possible. It is expected that effective use of underground air tunnels with a suitable technology in the modern greenhouses will play a leading role in Turkey in the foreseeable future. The exergy transports between the components and the destructions in each of the components of the system are determined for the average measured parameters obtained from the experimental results. Exergetic efficiencies of the system components are determined in an attempt to assess their individual performances and the potential for improvements is also presented. The daily maximum cooling coefficient of performances (COP) values for the system are also obtained to be 15.8. The total average COP in the experimental period is found to be 10.09. The system COP was calculated based on the amount of cooling produced by the air tunnel and the amount of power required to move the air through the tunnel, while the exergetic efficiency of the air tunnel is found to be in a range among 57.8-63.2%. The overall exergy efficiency value for the system on a product/fuel basis is found to be 60.7%. (author)

  17. Organizational Change in the United States Air Force

    Science.gov (United States)

    2003-01-14

    organizational change on the part of the Air Force. This exploratory study analyzes the transition between the Cold War and post-Cold War periods to identify key variables in the organizational change process that might be susceptible to policy intervention. In particular, it highlights the importance of an external change agent in the form of a directed change in mission, or an internal change agent in the form of organizational learning, as essential factors in transforming the Air Force’s organizational strategy, which is the first step in

  18. The Acquired Immunodeficiency Syndrome. An Air Force Readiness Issue

    Science.gov (United States)

    1989-09-01

    measured by the number and functional ability of subgroups of lymphocytes (white blood cells), but because lymphocyte subgroups perform specialized...coordination with military and civilian blood bank organizations to trace possible exposure through blood transfusion or donation of infected blood , and...Ta’v:es Table Page a1 . Walter Reed Classification System................. 21 2. AIDS data for Air Force Members................... 25 3. Total force

  19. United States Air Force Annual Financial Statement 2011

    Science.gov (United States)

    2011-01-01

    Fine Art : The art collection contains original oils, drawings, sketches and sculptures . For FY 2011, the Air Force Art Program has received 20...2,414 Museum Collection Items (Objects, Not Including Fine Art ) Each 125,756 3,899 46 129,609 Museum Collection Items (Objects, Fine Art ) Each...buildings and structures, archeological sites, museum collection items (objects, not including fine art ), and museum collection items (fine art ). The Air

  20. A Quick Overview of Compact Air-Cooled Heat Sinks Applicable for Electronic Cooling—Recent Progress

    Directory of Open Access Journals (Sweden)

    Chi-Chuan Wang

    2017-02-01

    Full Text Available This study provides an overview regarding enhancement of an air-cooled heat sink applicable for electronic cooling subject to cross-flow forced convection. Some novel designs and associated problems in air-cooled heat sinks are discussed, including the drawback of adding surfaces, utilization of porous surfaces such as metal foam or carbon foam, problems and suitable applicable range of highly interrupted surfaces (louver or slit and longitudinal vortex generator. Though the metal foam may accommodate significant surface area, it is comparatively ineffective for air-cooling application due to its much lower fin efficiency, and this shortcoming can be improved by integrating with solid fin. For highly dense fin spacing (e.g., <1.0 mm, cannelure or grooved surface may be a better choice, and fin structure with periodic contraction and expansion may not be suitable for it introduces additional pressure drop penalty. The partial bypass concept, which manipulates a larger temperature difference at the trailing part of heat sink, can be implemented to significantly reduce the pressure drop. Through some certain niche operation, t the thermal resistance of the partial bypass heat sink may be superior to the conventional heat sink. The trapezoid fin surface featuring easier manufacturing and a smaller weight is shown to have competitive performance against traditional rectangular fin geometry. The IPFM (Interleaved Parallelogram Fin Module design which combines two different geometrical fins with the odd number fins being rectangular shape, and parallelogram shape in even fin numbers, shows 8%–12% less surface than conventional design but still offers a lower thermal resistance than the conventional rectangular heat sink in lower flowrate operation. The cross-cut design shows appreciable improvements as compared to the conventional plate fin design especially in high velocity regime and the single cross-cut heat sinks are superior to multiple cross

  1. Evaluation of Tool Path Strategy and Cooling Condition Effects on the Cutting Force and Surface Quality in Micromilling Operations

    Directory of Open Access Journals (Sweden)

    Ugur Koklu

    2017-10-01

    Full Text Available Compared to milling on a macro scale, the micromilling process has several cumbersome points that need to be addressed. Rapid tool wear and fracture, severe burr formation, and poor surface quality are the major problems encountered in the micromilling process. This study aimed to reveal the effect of cutting path strategies on the cutting force and surface quality in the micromilling of a pocket. The hatch zigzag tool path strategy and the contour climb tool path strategy under different cooling conditions (e.g., dry, air blow, and flood coolant at fixed cutting parameters. The micromilling tests revealed that better results were obtained with the use of the contour tool path strategy in terms of cutting forces (by up to ~43% compared to the dry condition and surface quality (by up to ~44% compared to the air blow condition when compared to the hatch tool path strategy. In addition, the flood coolant reduces the cutting temperature and eliminates chips to significantly enhance the quality of the micro milled surface.

  2. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  3. A comparative assessment of alternative combustion turbine inlet air cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

    1996-02-01

    Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

  4. Computation of flow and heat transfer in rotating cavities with peripheral flow of cooling air.

    Science.gov (United States)

    Kiliç, M

    2001-05-01

    Numerical solutions of the Navier-Stokes equations have been used to model the flow and the heat transfer that occurs in the internal cooling-air systems of gas turbines. Computations are performed to study the effect of gap ratio, Reynolds number and the mass flow rate on the flow and the heat transfer structure inside isothermal and heated rotating cavities with peripheral flow of cooling air. Computations are compared with some of the recent experimental work on flow and heat transfer in rotating-cavities. The agreement between the computed and the available experimental data is reasonably good.

  5. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  6. Air Force Officer Qualifying Test Form T: Initial Item-, Test-, Factor-, and Composite-Level Analyses

    Science.gov (United States)

    2016-12-01

    Air Force Officer Qualifying Test, Form T1 AFOQT T2 Air Force Officer Qualifying Test, Form T2 AGFI Adjusted Goodness of Fit Index AI Air Force...Qualifying Test Electrical Maze subtest g General mental ability factor GFI Goodness of Fit Index GLS Generalized Least Squares GS Air Force...AFRL-RH-WP-TR-2016-0093 AIR FORCE OFFICER QUALIFYING TEST FORM T: INITIAL ITEM-, TEST-, FACTOR-, AND COMPOSITE-LEVEL ANALYSES

  7. Hypothetical air ingress scenarios in advanced modular high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1988-01-01

    Considering an extremely hypothetical scenario of complete cross duct failure and unlimited air supply into the reactor vessel of a modular high temperature gas cooled ractor, it is found that the potential air inflow remains limited due to the high friction pressure drop through the active core. All incoming air will be oxidized to CO and some local external burning would be temporarily possible in such a scenario. The accident would have to continue with unlimited air supply for hundreds of hours before the core structural integrity would be jeopardized

  8. Impact of ambient air temperature and heat load variation on the performance of air-cooled heat exchangers in propane cycles in LNG plants – Analytical approach

    International Nuclear Information System (INIS)

    Fahmy, M.F.M.; Nabih, H.I.

    2016-01-01

    Highlights: • An analytical method regulated the air flow rate in an air-cooled heat exchanger. • Performance of an ACHE in a propane cycle in an LNG plant was evaluated. • Summer inlet air temperature had higher impact on ACHE air flow rate requirement. - Abstract: An analytical method is presented to evaluate the air flow rate required in an air-cooled heat exchanger used in a propane pre-cooling cycle operating in an LNG (liquefied natural gas) plant. With variable ambient air inlet temperature, the air flow rate is to be increased or decreased so as to assure and maintain good performance of the operating air-cooled heat exchanger at the designed parameters and specifications. This analytical approach accounts for the variations in both heat load and ambient air inlet temperature. The ambient air inlet temperature is modeled analytically by simplified periodic relations. Thus, a complete analytical method is described so as to manage the problem of determining and accordingly regulate, either manually or automatically, the flow rate of air across the finned tubes of the air-cooled heat exchanger and thus, controls the process fluid outlet temperature required for the air-cooled heat exchangers for both cases of constant and varying heat loads and ambient air inlet temperatures. Numerical results are obtained showing the performance of the air-cooled heat exchanger of a propane cycle which cools both NG (natural gas) and MR (mixed refrigerant) streams in the LNG plant located at Damietta, Egypt. The inlet air temperature variation in the summer time has a considerable effect on the required air mass flow rate, while its influence becomes relatively less pronounced in winter.

  9. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Temperature Field Accurate Modeling and Cooling Performance Evaluation of Direct-Drive Outer-Rotor Air-Cooling In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Feng Chai

    2016-10-01

    Full Text Available High power density outer-rotor motors commonly use water or oil cooling. A reasonable thermal design for outer-rotor air-cooling motors can effectively enhance the power density without the fluid circulating device. Research on the heat dissipation mechanism of an outer-rotor air-cooling motor can provide guidelines for the selection of the suitable cooling mode and the design of the cooling structure. This study investigates the temperature field of the motor through computational fluid dynamics (CFD and presents a method to overcome the difficulties in building an accurate temperature field model. The proposed method mainly includes two aspects: a new method for calculating the equivalent thermal conductivity (ETC of the air-gap in the laminar state and an equivalent treatment to the thermal circuit that comprises a hub, shaft, and bearings. Using an outer-rotor air-cooling in-wheel motor as an example, the temperature field of this motor is calculated numerically using the proposed method; the results are experimentally verified. The heat transfer rate (HTR of each cooling path is obtained using the numerical results and analytic formulas. The influences of the structural parameters on temperature increases and the HTR of each cooling path are analyzed. Thereafter, the overload capability of the motor is analyzed in various overload conditions.

  11. The Influence of Cooling Air Injection on Flow Development and Heat Transfer in a Rotating Leading Edge Coolant Duct of a Film-Cooled Turbine Blade

    National Research Council Canada - National Science Library

    Elfert, Martin

    2003-01-01

    .... This paper provides information about rotational effects on fluid motion and heat transfer within a rotating coolant duct of circular cross section with bleeding of cooling air through a row of film...

  12. Experimental and theoretical analysis of a hybrid solar thermoelectric generator with forced convection cooling

    Science.gov (United States)

    Sundarraj, Pradeepkumar; Taylor, Robert A.; Banerjee, Debosmita; Maity, Dipak; Sinha Roy, Susanta

    2017-01-01

    Hybrid solar thermoelectric generators (HSTEGs) have garnered significant research attention recently due to their potential ability to cogenerate heat and electricity. In this paper, theoretical and experimental investigations of the electrical and thermal performance of a HSTEG system are reported. In order to validate the theoretical model, a laboratory scale HSTEG system (based on forced convection cooling) is developed. The HSTEG consists of six thermoelectric generator modules, an electrical heater, and a stainless steel cooling block. Our experimental analysis shows that the HSTEG is capable of producing a maximum electrical power output of 4.7 W, an electrical efficiency of 1.2% and thermal efficiency of 61% for an average temperature difference of 92 °C across the TEG modules with a heater power input of 382 W. These experimental results of the HSTEG system are found to be in good agreement with the theoretical prediction. This experimental/theoretical analysis can also serve as a guide for evaluating the performance of the HSTEG system with forced convection cooling.

  13. AFCYBER: Postured to Support Air Force and USCYBERCOM Cyber Needs?

    Science.gov (United States)

    2013-03-01

    Jason Healey , “Claiming the Lost Cyber Heritage,” Strategic Studies Quarterly, Fall 2012, 12. 11 Secretary of the Air Force Michael W. Wynne and...Fall 2008), 10. 86 Ibid., 10; Jason Healey , “Claiming the Lost Cyber Heritage,” Strategic Studies Quarterly (Fall 2012), 16. 87 “Cyber Guardian

  14. Connecting United States Air Force Core Values to Mission Accomplishment

    Science.gov (United States)

    2014-06-04

    they should act versus the way people actually act ( Ajzen , 1991). Culture, environmental factors, individual factors, and psychological mechanisms...Resolution, 6 June 2012. Air Force Instruction (AFI) 91-204. Safety Investigations and Reports, 24 September 2008. Ajzen , Icek. “The Theory of

  15. U.S. Air Force Engineering and Services Hardware Requirements

    Science.gov (United States)

    1991-04-01

    This document proposes a path to meet the communications-computer systems (CSC) requirements of Air Force Engineering and Services (E and S) in the mid-to-late 1990s. It reflects the philosophies that guide E and S upper- level management as it carri...

  16. Aviation Psychological Practice in the Nigerian Air Force ...

    African Journals Online (AJOL)

    Aviation Psychological Practice in the Nigerian Air Force: Challenges and Prospects. ... The study recommended a range of measures to enhance the productivity and safety of the aircrew, including the introduction of Human Factors training into the aircrew curricular to enhance the development of non-technical skills ...

  17. 32 CFR 631.15 - Air Force policy.

    Science.gov (United States)

    2010-07-01

    .... (a) Airmen, military and/or Department of the Air Force Civilian (DAFC) police performing off...) Military and/or DAFC police assigned to off-installation operations have the sole purpose of enforcing parts, and orders pertaining to persons subject to their jurisdiction. (c) Military and/or DAFC police...

  18. Air Force Personnel Research: Recommendations for Improved Alignment

    Science.gov (United States)

    2014-01-01

    policymakers them- selves. Some of our interlocutors suggested that AFHRL was an ivory tower , disconnected from the broader needs of the Air Force... Millennium : A Meta- Analytic Review of 25 Years of organizational Justice Research,” Journal of Applied Psychology, Vol. 86, No. 3, June 2001, pp. 425–445

  19. Fiscal Year 2012 United States Air Force Agency Financial Report

    Science.gov (United States)

    2012-01-01

    modified with a new guidance system incorporating differential GPS . Fielding is scheduled to begin in United States Air Force 86 FY13. Follow-on...Support (CLS) which contains deport maintenance, but do include Deferred Funding for Depot Purchased Equipment Maintenance (DPEM). Agency

  20. Air Force Personnel Research Issues: A Manager’s Handbook

    Science.gov (United States)

    2007-09-01

    by computing an average physical demand weighted by frequency of performance and percent of the AFS members performing a task. Air Force...Awareness Flight Training Evaluator [ SAFTE ]), and a Predator- like Uninhabited Aerial Vehicle (UAV) Simulation. An additional applied accomplishment...the ratee and rater. Nine performance factors were identified based on several studies involving analyses of OER word pictures, frequency of use

  1. Information Assurance within the United States Air Force

    Science.gov (United States)

    Cherry, John D.

    2010-01-01

    According to the Department of Defense (DoD), a review of information assurance (IA) in the United States Air Force (USAF) in 2009, cyber security is jeopardized because of information loss. This situation has occurred in large part because of less than optimal training practices or adherence to training protocols. The purpose of this study was…

  2. Book Review: Royal Air Force 1939-1945 | Cornwell | Scientia ...

    African Journals Online (AJOL)

    Book Title: Royal Air Force 1939-1945. Book Author: Denis Richards & Hilary St George. Volume 1: The Fight at Odds, by Denis Richards, Her Majesty's Stationery Office, London, 1974, pp xii 430. Volume 2: The Fight Avails, by Denis Richards and Hilary St George Saunders. Her Majesty's Stationery Office, London, 1975.

  3. A new air-cooled argon/helium-compatible inductively coupled plasma torch.

    Science.gov (United States)

    Miyahara, Hidekazu; Iwai, Takahiro; Kaburaki, Yuki; Kozuma, Tomokazu; Shigeta, Kaori; Okino, Akitoshi

    2014-01-01

    A new inductively coupled plasma (ICP) torch with an air-cooling system has been designed and developed for both argon and helium plasma. The same torch and impedance-matching network could be used to generate stable Ar- and He-ICP. The torch consists of three concentric quartz tubes. The carrier gas, plasma gas, and cooling gas flow through the intervals between each tube. In an experiment, it was found that Ar-ICP could form a stable plasma under the following conditions: RF power of 1 kW, plasma gas flow rate of 11 L min(-1), and cooling gas flow rate of 20 L min(-1). For He-ICP, an input RF power of 2 kW, which is two-times higher than that of a conventional He-ICP, could be constantly applied to the plasma with plasma gas and cooling gas flow rates of 15 and 20 L min(-1), respectively. Using this torch, it is possible to realize lower plasma gas consumption for Ar- and He-ICP and a high-power drive for He-ICP. It has been found that the air-cooling gas stabilizes the shape of the plasma due to the pressure difference between the cooling gas and the plasma gas.

  4. Physiological Responses to Microclimate Cooling Used By the Air Soldier Dressed at MOPP 4 in an Extreme Desert Condition: Effects of Six Configurations

    Science.gov (United States)

    2012-12-01

    USARIEM TECHNICAL REPORT PHYSIOLOGICAL RESPONSES TO MICROCLIMATE COOLING USED BY THE AIR SOLDIER DRESSED AT MOPP 4 IN AN...2012 2. REPORT TYPE 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physiological Responses to Microclimate Cooling Used By the Air Soldier 5b. GRANT... Microclimate Cooling System MCG HI – Air Warrior Microclimate Cooling Garment Used in High Cooling Configuration MCG LO - Air Warrior Microclimate

  5. Forced-circulation cooling system for the Argonne superconducting heavy-ion linac

    International Nuclear Information System (INIS)

    Nixon, J.M.; Bollinger, L.M.

    1980-01-01

    The Argonne superconducting heavy-ion linac is a prototype heavy-ion accelerator used to increase the energy of an ion beam from a tandem electrostatic accelerator. The accelerating elements are split-ring-type resonators with hollow niobium drift tubes mounted in cylindrical housings. The housings are made of explosively bonded niobium clad copper. The resonators, along with superconducting solenoid focusing magnets are positioned axially in cryostats on support structures which also serve as helium supply and return manifolds. The resonators and magnets are cooled by a continuous forced-flow circulation of liquid helium directly from a refrigerator. The colling system consists of the refrigerator, a 1000-liter dewar with built-in heat exchanger coil, a 46-m 3 helium gas storage tank, three distribution boxes with valves, heat exchangers, and transfer line ports, connected by a 20-m-long, liquid-nitrogen-shielded, coaxial distribution line. Design and operation of the cooling system are described

  6. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tianhuan [LBL, Berkeley; Li, D. [LBL, Berkeley; Virostek, S. [LBL, Berkeley; Palmer, R. [Brookhaven; Stratakis, Diktys [Brookhaven; Bowring, D. [Fermilab

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  7. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    Energy Technology Data Exchange (ETDEWEB)

    Luo, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratakis, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Virostek, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bowring, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  8. Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing

    Directory of Open Access Journals (Sweden)

    H. Renssen

    2006-01-01

    Full Text Available The coupled global atmosphere-ocean-vegetation model ECBilt-CLIO-VECODE is used to perform transient simulations of the last 9000 years, forced by variations in orbital parameters, atmospheric greenhouse gas concentrations and total solar irradiance (TSI. The objective is to study the impact of decadal-to-centennial scale TSI variations on Holocene climate variability. The simulations show that negative TSI anomalies increase the probability of temporary relocations of the site with deepwater formation in the Nordic Seas, causing an expansion of sea ice that produces additional cooling. The consequence is a characteristic climatic anomaly pattern with cooling over most of the North Atlantic region that is consistent with proxy evidence for Holocene cold phases. Our results thus suggest that the ocean is able to play an important role in amplifying centennial-scale climate variability.

  9. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    Science.gov (United States)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  10. Frequency stabilization of internal-mirror He-Ne lasers by air cooling.

    Science.gov (United States)

    Qian, Jin; Liu, Zhongyou; Shi, Chunying; Liu, Xiuying; Wang, Jianbo; Yin, Cong; Cai, Shan

    2012-09-01

    Instead of the traditional heating method, the cavity length of an internal-mirror He-Ne laser is controlled by air cooling which is implemented by a mini cooling fan. The responsive property of the cooling fan and the thermal expansion of the internal-mirror laser tube are investigated. According to these investigations, a controlling system is designed to drive the cooling fan controlling the cavity length of the laser. Then the frequency is stabilized by comparing the light intensities of two operating longitudinal modes. The results of beating with an iodine stabilized He-Ne laser show that a relative uncertainty (Δf/f-) of 4.3×10(-9) in 5 months, a frequency fluctuation of <1.4 MHz, and an Allan deviation of 6×10(-11) (τ=10,000 s) in 20 h are obtained.

  11. Anti-seismic air condition's cooling capability increase of the second control area

    International Nuclear Information System (INIS)

    Pan Qiang

    2008-01-01

    Secondary area (SCA) air-conditioning system is an important ventilation system in plant. It should achieve the indoor temperature controllable. To resolve the problem of cooling capacity insufficiency, on the basis of ventilation and refrigeration theory, the thesis analyzes the design modification plan. (author)

  12. Air pollution radiative forcing from specific emissions sectors at 2030

    Science.gov (United States)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  13. Huffing air conditioner fluid: a cool way to die?

    Science.gov (United States)

    Phatak, Darshan R; Walterscheid, Jeffrey

    2012-03-01

    "Huffing," the form of substance abuse involving inhalants, is growing in popularity because of the ease and availability of chemical inhalants in many household products. The purpose in huffing is to achieve euphoria when the chemicals in question interact with the central nervous system in combination with oxygen displacement. The abuser is lulled into a false sense of safety despite the well-documented potential for lethal cardiac arrhythmia and the effects of chronic inhalant abuse, including multisystem organ failure, and brain damage. Huffing air conditioner fluid is a growing problem given the accessibility to outdoor units and their fluid components, such as difluorochloromethane(chlorodifluoromethane, Freon), and we have classified multiple cases of accidental death due to the toxicity of difluorochloromethane. Given the ubiquity of these devices and the vast lack of gating or security devices, they make an inviting target for inhalant abusers. Acute huffing fatalities have distinct findings that are present at the scene, given the position of the decedent and proximity to the air conditioner unit. The purpose of the autopsy in these cases is to exclude other potential causes of death and to procure specimens for toxicological analysis.

  14. Predator Force Structure Changes at Indian Springs Air Force Auxiliary Field, Nevada Environmental Assessment

    Science.gov (United States)

    2003-07-01

    inventory of Cold War era structures at ISAFAF was conducted in 1994 ( Mariah and Associates 1994); no Cold War era significant structures were identified...1996-0001. June. Mariah and Associates, Inc. 1994. Systematic Study of Air Combat Command Cold War Material Culture. MAI Project 735-15...November. Moulton, Carey L. 1990. Air Force Procedure for Predicting Aircraft Noise Around Airbases: Noise Exposure Model (NOISEMAP) User’s Manual

  15. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    Science.gov (United States)

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm.

  16. Preferred Air Velocity and Local Cooling Effect of desk fans in warm environments

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2013-01-01

    Common experiences, standards, and laboratory studies show that increased air velocity helps to offset warm sensation due to high environmental temperatures. In warm climate regions the opening of windows and the use of desk or ceiling fans are the most common systems to generate increased airflows...... to compensate for higher environmental temperatures at the expense of no or relatively low energy consumption. When using desk fans, local air movement is generated around the occupant and a certain cooling effect is perceived. The impact of the local air movement generated by different air flow patterns....../kg. By a thermal manikin the effect of direct air movement generated by a personal desk fan at 26 °C, 28 °C, or 30 °C room temperatures and the achievable thermal comfort was also analyzed. Results show that it is possible to offset warm sensation within a range of indoor conditions using increased air velocity...

  17. Forced-air warming discontinued: periprosthetic joint infection rates drop

    Directory of Open Access Journals (Sweden)

    Scott D. Augustine

    2017-06-01

    Full Text Available Several studies have shown that the waste heat from forced-air warming (FAW escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002. The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs.

  18. The Search for a Permanent Home: Explaining the Organizational Instability of Air Force Rescue

    Science.gov (United States)

    2015-06-01

    owned the first USAF dedicated rescue force, which was called the Air Rescue Service (ARS) from 1946 to 1966. In 1966 MATS 3 Recovery, an umbrella...standalone rescue force came into existence. Established in March 1946, this force was called the United States’ Air Rescue Service and fell under Air...154. 20 Koskinas, Black Hats and White Hats, 155. 26 the mission area from the Twenty-third Air Force and reactivating the Air Rescue Service on

  19. Experimental characterization of mass, work and heat flows in an air cooled, single cylinder engine

    International Nuclear Information System (INIS)

    Perez-Blanco, H.

    2004-01-01

    Small air cooled engines, although large in numbers, receive scant attention in the literature. Experimental data for a four stroke, air cooled, single cylinder engine are presented in this report. Air to fuel ratios, indicated and output power, exhaust composition and heat loss are determined to result in suitable thermal and mechanical efficiencies. The data obtained are discussed with the perspective obtained from other literature references. Exhaust composition figures appear reasonable, but the measurement of the transient exhaust flows is still a concern. Based on the measurements, a graph illustrating the different energy transformations in the engine is produced. Undergraduate students in the curriculum routinely use the engine and the present work allows one to conclude that the measurement approach produces reasonable results. These results could be used by engine modelers and others interested in this wide field of technology

  20. Air Force B-21 Long Range Strike Bomber

    Science.gov (United States)

    2016-04-14

    go.usa.gov/cswxQ. 3 The other top priorities, as enunciated by Air Force officials on many occasions, are the F-35A Lightning II fighter and the KC-46A...concept of large aircraft carrying long-range weaponry has resurfaced as DOD’s proposed “Arsenal Plane .” See, inter alia, James Drew, “USAF flaunts...arsenal plane ’ concept at Air Warfare Symposium,” FlightGlobal.com, February 26, 2016, https://www.flightglobal.com/news/articles/usaf-flaunts-arsenal

  1. Controlling the Distribution of Cold Water in Air Cooling Systems of Underground Mines

    Science.gov (United States)

    Szlązak, Nikodem; Obracaj, Dariusz; Swolkień, Justyna; Piergies, Kazimierz

    2016-12-01

    In Polish underground mines in which excavations are subjected to high heat load, central and group cooling systems based on indirect cooling units are implemented. Chilled water, referred to as cold water and produced in chillers, is distributed through a pipeline network to air coolers located in mining and development districts. The coolers are often moved to other locations and the pipeline network undergoes constant modification. In such a system, parameters of cold water in different branches of the pipeline network need to be controlled. The article presents the principles for controlling the cooling capacity of air coolers installed in an underground mine. Also, the authors propose automatic control of water flow rate in underground pipeline network and in particular coolers, depending on the temporary cooling load in the system. The principles of such a system, controlling cold water distribution, and the functions of its individual components are described. Finally, an example of an automatic control of water flow rate in a central cooling system currently implemented in a mine is presented.

  2. Global Change: The Air Force's Successful Transformation to the Expeditionary Aerospace Force

    National Research Council Canada - National Science Library

    Konicki, Kennth

    2001-01-01

    .... It discusses the defense environment that. pressed for change, the EAF visioning process, the role played by senior Air Force leaders, the influence of organizational culture, and the way EAF was permanently embedded in the service. By focusing on the success factors, the study offers the EAF transformation as a potential template to manage future organizational change.

  3. Air-conditioning and antibiotics: Demand management insights from problematic health and household cooling practices

    International Nuclear Information System (INIS)

    Nicholls, Larissa; Strengers, Yolande

    2014-01-01

    Air-conditioners and antibiotics are two technologies that have both been traditionally framed around individual health and comfort needs, despite aspects of their use contributing to social health problems. The imprudent use of antibiotics is threatening the capacity of the healthcare system internationally. Similarly, in Australia the increasing reliance on air-conditioning to maintain thermal comfort is contributing to rising peak demand and electricity prices, and is placing an inequitable health and financial burden on vulnerable heat-stressed households. This paper analyses policy responses to these problems through the lens of social practice theory. In the health sector, campaigns are attempting to emphasise the social health implications of antibiotic use. In considering this approach in relation to the problem of air-conditioned cooling and how to change the ways in which people keep cool during peak times, our analysis draws on interviews with 80 Australian households. We find that the problem of peak electricity demand may be reduced through attention to the social health implications of air-conditioned cooling on very hot days. We conclude that social practice theory offers a fruitful analytical route for identifying new avenues for research and informing policy responses to emerging health and environmental problems. - Highlights: • Over-use of antibiotics and air-conditioning has social health implications. • Focusing on financial incentives limits the potential of demand management programs. • Explaining peak demand to households shifts the meanings of cooling practices. • Emphasising the social health implications of antibiotics and air-conditioning may resurrect alternative practices. • Analysing policy with social practice theory offers insights into policy approaches

  4. Eielson Air Force Base Operable Unit 2 baseline risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, R.E.; Jarvis, T.T.; Jarvis, M.R.; Whelan, G.

    1994-10-01

    Operable Unit 2 at Eielson Air Force Base (AFB) near Fairbanks, is one of several operable units characterized by petroleum, oil, and lubricant contamination, and by the presence of organic products floating at the water table, as a result of Air Force operations since the 1940s. The base is approximately 19,270 acres in size, and comprises the areas for military operations and a residential neighborhood for military dependents. Within Operable Unit 2, there are seven source areas. These source areas were grouped together primarily because of the contaminants released and hence are not necessarily in geographical proximity. Source area ST10 includes a surface water body (Hardfill Lake) next to a fuel spill area. The primary constituents of concern for human health include benzene, toluene, ethylbenzene, and xylenes (BTEX). Monitored data showed these volatile constituents to be present in groundwater wells. The data also showed an elevated level of trace metals in groundwater.

  5. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    Energy Technology Data Exchange (ETDEWEB)

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  6. Devils in the Dialogue: The Air Force and Congress

    Science.gov (United States)

    2011-06-01

    people, and its locations makes it difficult to stay on message. The Army realized this over the past few years and is working on strengthening...unit to ―allow for scheduled and unscheduled depot level maintenance, modifications , inspections and repairs, and certain other mitigating...process, and the people. An established relationship allows an inside knowledge of Congress. Problems facing DOD and the Air Force in this vane

  7. Geothermal-resource verification for Air Force bases

    Energy Technology Data Exchange (ETDEWEB)

    Grant, P.R. Jr.

    1981-06-01

    This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

  8. Combat Squadrons of the Air Force, World War II,

    Science.gov (United States)

    1982-01-01

    sea-rescue unit Galapagos Islands, 4 May 1942; David, in demonstrations of effectiveness of ae- Panama, ia Mar 1943; Talara, Peru , c. 1 rial...Kualoa Point, 1942. Presidental Unit Citation, [1942]. TH, 5 Jun 1942; Mokuleia, TH, 8 Jul Air Force Outstanding Unit Awards: 6 1942; Plaines des Gaiacs...Tunisia, 2 Jul uador, and Talora, Peru , Dec 1942--9 1943; Ponte Olivo, Sicily, 6 Sep 1943; Mar 1943); La Joya, Panama, c. 4 Mar Brindisi, Italy, 12 Feb

  9. An Excellent Pilot Model for the Korean Air Force.

    Science.gov (United States)

    1988-12-01

    Q3 Controlled Uncontrolled. Lax Factor Q4 Tense. Excitableous Phlegmatic. Composed Source: Fleischman, Haward L. et al.. "The Relationship of Five...Scales Excluded Personality Scales Included 0.359 0.425 0.150 0.270 0.286 0.3S1 Source: Fleischman. Haward L. et al., "The Relationship of...Dorsey Press, Chicago, Illinois. 1983. 2. Correll. John T., Air Force Magazine technology and the Troops, December 1986. 3. North, Robert A. and

  10. The Future of Additive Manufacturing in Air Force Acquisition

    Science.gov (United States)

    2017-03-22

    manufacturing is a disruptive technology that has inspired grandiose sci-fi visions and promises of revolutionizing everything from medicine to food ...an industrial base that lacks broad competition for complex systems, and rapid technological development. The critical narrative of Air Force...faster, cheaper” seems to get louder every year. It is tempting then to seek a game-changing technology to bring about the acquisition revolution to

  11. The Air Force Role in Low-Intensity Conflict

    Science.gov (United States)

    1986-10-01

    December 1981), and aftermath of Guelta Zemmour (January 1982 to present) . Static Defense (November 1975 to June 1979) The Morocco-Polisario conflict...denied them the ability to operate freely in the desert . The air force undertook extremely successful operations at Akka, Guelta Zemmour, Hausa, Messeid...intense level of activity in conflicts around the Guelta Zemmour area . The Polisario attacked Guelta Zemmour in strength and drove out the Moroccan

  12. An Air Force Strategic Vision for 2020-2030

    Science.gov (United States)

    2011-01-01

    will require that the Air Force continually adapt to improving systems and changing tactics, techniques , and procedures. This will become...DCGS. Serious thought must be given to doctrine, tactics, techniques , and procedures as the DCGS’ role in any future fight is reconsidered. Currently...Justin Rood , “Medical Catastrophe,” Government Executive, 1 November 2005, http://www.govexec.com/features/1105 -01/1105-01s1.htm. For example

  13. Air Force Officer Specialty Structure. Reviewing the Fundamentals

    Science.gov (United States)

    2009-01-01

    helps shape the system of work by providing labels and categories that are used to bundle tasks and duties into skill sets, occupations, posi- tions, and...2006, p. 6). These Air Force specialties (AFSs) are further combined into broader and more general functional categories, labeled career fields...Aerospace Medicine Specialist 48G General Medical Officer ( GMO ) 48R Residency Trained Flight Surgeon 48V Pilot-Physician Professional Law 51J

  14. Air Force Commander’s Guide to Diversity and Inclusion

    Science.gov (United States)

    2015-01-01

    and foreign nationals with whom we interact as part of a globally engaged Air Force. 3 Gay and Lesbian Service Members In June 2015, Secretary of...Defense Ashton Carter announced that gay and lesbian service members will be afforded the same protection under the military’s equal opportunity policy...Perceptions of the Diversity/Capability Relationship , CAN Research Memorandum D0015452.A2, November 2007. Kraus, Amanda, and Martha Farnsworth Riche

  15. The United States Air Force in Southeast Asia: Civic Action

    Science.gov (United States)

    1998-01-01

    stock of 2,000 Tilapia fish fingerlings to the community at no cost to the base or the hamlet residents. The fish, essentially a scavenger, lived and...An Air Force civic action team from the base finally hit upon a solution when they substituted a manual pump, operated by a man on a stationary...not required to do manual labor on projects, but they often voluntarily joined in the work with contributions of money, gifts, and services. They

  16. The Icarus Illusion: Technology, Doctrine and the Soviet Air Force.

    Science.gov (United States)

    1986-09-01

    Kipp, Jacob W., eds. Soviet Aviation and Air Power. Boulder: Westview Press, 1977. Hollowav. David. The Soviet Union and the Arms Race. New Haven: Yale...L. Fighter Combat: Tactics, and Maneuvering. Annapolis: Naval Institute Press, 1985. Scott, Harriet Fast and Scott, William F. The Armed Forces of the...USSR. Boulder: Praeger, 1979. Scott, Harriet Fast and Scott, William F., eds. The Soviet Art of War: Doctrine, Strategy and Tactics. Boulder

  17. Canadian Air Force Leadership and Command: Implications for the Human Dimension of Expeditionary Air Force Operations

    Science.gov (United States)

    2006-11-01

    de la DRDC Toronto CR 2006-297 x Force aérienne « des lacunes profondes en matière de leadership ». La mise sur pied du Centre de guerre...et du commandement au sein de la Force aérienne. Les causes profondes de nombreux problèmes actuels en matière de leadership et de commandement au...unclassified, designated and classified computer networks and associated peripherals at the Wing. Other functions may include web management and minor

  18. Turbine Inlet Air Cooling for Industrial and Aero-derivative Gas Turbine in Malaysia Climate

    Science.gov (United States)

    Nordin, A.; Salim, D. A.; Othoman, M. A.; Kamal, S. N. Omar; Tam, Danny; Yusof, M. KY

    2017-12-01

    The performance of a gas turbine is dependent on the ambient temperature. A higher temperature results in a reduction of the gas turbine’s power output and an increase in heat rate. The warm and humid climate in Malaysia with its high ambient air temperature has an adverse effect on the performance of gas turbine generators. In this paper, the expected effect of turbine inlet air cooling technology on the annual performance of an aero-derivative gas turbine (GE LM6000PD) is compared against that of an industrial gas turbine (GEFr6B.03) using GT Pro software. This study investigated the annual net energy output and the annual net electrical efficiency of a plant with and without turbine inlet air cooling technology. The results show that the aero-derivative gas turbine responds more favorably to turbine inlet air cooling technology, thereby yielding higher annual net energy output and higher net electrical efficiency when compared to the industrial gas turbine.

  19. Improved condenser design and condenser-fan operation for air-cooled chillers

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2006-01-01

    Air-cooled chillers traditionally operate under head pressure control via staging constant-speed condenser fans. This causes a significant drop in their coefficient of performance (COP) at part load or low outdoor temperatures. This paper describes how the COP of these chillers can be improved by a new condenser design, using evaporative pre-coolers and variable-speed fans. A thermodynamic model for an air-cooled screw-chiller was developed, within which the condenser component considers empirical equations showing the effectiveness of an evaporative pre-cooler in lowering the outdoor temperature in the heat-rejection process. The condenser component also contains an algorithm to determine the number and speed of the condenser fans staged at any given set point of condensing temperature. It is found that the chiller's COP can be maximized by adjusting the set point based on any given chiller load and wet-bulb temperature of the outdoor air. A 5.6-113.4% increase in chiller COP can be achieved from the new condenser design and condenser fan operation. This provides important insights into how to develop more energy-efficient air-cooled chillers

  20. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  1. Keeping Cool: Use of Air Conditioning by Australians with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Michael P. Summers

    2012-01-01

    Full Text Available Despite the known difficulties many people with MS have with high ambient temperatures, there are no reported studies of air conditioning use and MS. This study systematically examined air conditioner use by Australians with MS. A short survey was sent to all participants in the Australian MS Longitudinal Study cohort with a response rate of 76% (n=2,385. Questions included hours of air-conditioner use, areas cooled, type and age of equipment, and the personal effects of overheating. Air conditioners were used by 81.9% of respondents, with an additional 9.6% who could not afford an air conditioner. Regional and seasonal variation in air conditioning use was reported, with a national annual mean of 1,557 hours running time. 90.7% reported negative effects from overheating including increased fatigue, an increase in other MS symptoms, reduced household and social activities, and reduced work capacity. Households that include people with MS spend between 4 and 12 times more on keeping cool than average Australian households.

  2. Factor Structure of the Air Force Officer Qualifying Test: Analysis and Comparison

    National Research Council Canada - National Science Library

    Carreta, Thomas

    1998-01-01

    The Air Force Officer Qualifying Test (AFOQT) is used to qualify men and women for commissions in the Air Force, classify them for pilot and navigator jobs, and award Reserve Officer Training Corps (ROTC) scholarships...

  3. Air Force Journal of Logsitics. Volume 31, Number 3, Fall 2007

    National Research Council Canada - National Science Library

    2007-01-01

    ... with an assessment of the measures to determine the effectiveness of Air Force SCM transformation. The assessment provides several recommendations to improve the current suite of metrics used to manage the Air Force supply chain...

  4. 360-Degree Feedback: Key to Translating Air Force Core Values into Behavioral Change

    National Research Council Canada - National Science Library

    Hancock, Thomas

    1999-01-01

    Integrity, service, and excellence. These are only three words, but as core values they serve as ideals that inspire Air Force people to make our institution what it is the best and most respected Air Force in the world...

  5. Refractometry and Extinguishment/Burnback Testing of Pacific Air Forces AFFF

    National Research Council Canada - National Science Library

    Kalberer, Jennifer L; Barrett, Kimberly D

    2006-01-01

    At the request of Pacific Air Forces (PACAF), the Air Force Research Laboratory (AFRL) performed refractometry and extinguishment/burnback tests on samples of Ansulite and 3M aqueous film forming foam...

  6. U.S. Air Force Environmental Assessment, Steam Decentralization Project, Tinker Air Force Base, Oklahoma

    Science.gov (United States)

    2011-08-01

    intelligent 20 transportation techniques, and travel reduction programs. 21 Eleven air quality monitoring stations are located within Oklahoma...antillarum Least Tern E E Tyto alba Barn Owl SS2 Vireo atricapillus Black-Capped Vireo E Mammals Marmota monax Woodchuck SS2 Reptiles Phrynosoma...airfield), and 800 unimproved acres. 15 A total of 244 vertebrate species occur on the base, consisting of 26 reptiles , 11 amphibians, 16 24 mammals

  7. High Flight: History of the U.S. Air Force Academy

    Science.gov (United States)

    2009-09-01

    Leadership, United States Air Force Academy, 1988. 493. Beekley, Matthew D., et al. "Incidence, Prevalence, and Risk of Eating Disorder Behaviors in...CO: Department of Behavioral Sciences and Leadership, United States Air Force Academy, 1984. 127-30. " Bulimia Rampant among Air Force Academy... Bulimia among Female Cadets at the United States Air Force Academy." Proceedings, Psychology in the Department of Defense, Eleventh Symposium, 13-15

  8. EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT

    Directory of Open Access Journals (Sweden)

    Hendro Tjahjono

    2015-10-01

    Full Text Available ABSTRACT EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT. AP1000 reactor is a nuclear power plant generation III+ 1000 MWe which apply passive cooling concept to anticipate accidents triggered by the extinction of the entire supply of electrical power or Station Black Out (SBO. In the AP1000 reactor, decay heat disposal mechanism conducted passively through the PRHR-IRWST and subsequently forwarded to the reactor containment. Containment externally cooled through natural convection in the air gap and through evaporation cooling water poured on the outer surface of the containment wall. The mechanism of evaporation of water into the air outside is strongly influenced by the conditions of humidity and air temperature. The purpose of this study was to determine the extent of the influence of the air condition on cooling capabilities of the AP1000 containment. The method used is to perform simulations using Matlab-based analytical calculation model capable of estimating the power of heat transfered. The simulation results showed a decrease in power up to  5% for relative humidity rose from 10% to 95%, while the variation of air temperature of 10 °C to 40°C, the power will decrease up to 15%. It can be concluded that the effect of air temperature increase is much more significant in lowering the containment cooling ability compared with the increase of humidity. Keywords: containment cooling, AP1000, air condition, SBO   ABSTRAK PENGARUH KONDISI UDARA TERHADAP KINERJA PENDINGINAN SUNGKUP AP-1000 DALAM KECELAKAAN STATION BLACK OUT. Reaktor AP-1000 merupakan PLTN generasi III+ berdaya 1000 MWe yang menerapkan konsep pendinginan pasif untuk mengantisipasi terjadinya kecelakaan yang dipicu oleh padamnya seluruh suplai daya listrik atau dikenal dengan Station Black Out (SBO. Pada reaktor AP-1000, mekanisme pembuangan kalor peluruhan dilakukan secara pasif melalui PRHR yang diteruskan ke IRWST dan

  9. Natural air convection for cooling of particle accelerator electromagnets: case studies at CERN

    CERN Document Server

    Moreira, Mariana

    Cooling by natural convection is investigated on two air-cooled corrector magnets at CERN. The heat transfer coefficient (HTC) for each magnet is estimated analytically using established empirical correlations for certain geometries. The HTC is also estimated numerically with three-dimensional steady-state finite element simulations. Air convection around the respective coils as well as heat conduction inside the coils are modelled. Different formulas for the HTC are tested in the post-processing of the simulation results. The HTC for each magnet is then determined experimentally by measuring surface temperatures on the coils through time at constant currents. A method to extract the HTC from these temperature curves is developed, in which the curves are fitted to a function that is derived from a thermodynamical analysis of the heating process. Some plausible ranges for the HTC for each magnet for different currents are obtained. The results of the different estimation methods are compared with the experimen...

  10. GLOBAL INTEGRATED ISR: A BETTER ORGANIZATIONAL CONSTRUCT FOR AIR FORCE LD/HD ISR

    Science.gov (United States)

    2017-04-06

    the official policy or position of the U.S. Government , the Department of Defense, or Air University. In accordance with Air Force Instruction 51-303... Government . iii BIOGRAPHY Lieutenant Colonel Nicholas Nobriga entered the Air Force in 1998 after graduating from the United States Air Force... agility and flexibility in order to counter trans-regional threats seamlessly. This is especially true for the Air Force’s fleet of U-2, RQ-4, RC-135, and

  11. Analyzing the United States Air Force Organizational Structure - A Case for Reorganization

    Science.gov (United States)

    2011-05-16

    for the Employment of the Air Service, authored by the Air Service, discussed primary 10 Charles A. Ravenstein , The Organization and Lineage of the...Missions: A History, 88. 37 Ravenstein , The Organization and Lineage of the United States Air Force, 7. 11...AFA, History of the United States Air Force, 1907-1957, 85). 39 Trest, Air Force Roles and Missions: A History, 106. 40 Ravenstein , The Organization

  12. The Faith of the Force: The Strategic Implications of Religion in the United States Air Force

    Science.gov (United States)

    2012-06-01

    believed in God believed in a personal God , while the remainder believed in some sort of impersonal force or general deity.22 If one accepts that belief...The Role of Religion in the Air Force ……….……………1 Chapter 1 One Nation Under God ……………….………………….…….….6 Chapter 2 What America Believes...Table 2. Self-Identified Religious Affiliations of the US Populace .....28 Table 3. Beliefs About God .………………………..…………….........…..29 Table 4. Major

  13. Compact modeling of a telecom back-up unit powered by air-cooled proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Gao, Xin; Kær, Søren Knudsen

    2018-01-01

    Applications of proton exchange membrane fuel cells (PEMFC’s) are expanding in portable, automotive and stationary markets. One promising application is the back-up power for telecommunication applications in remote areas where usually air-cooled PMEFC’s are used. An air-cooled PEMFC system is much...... simpler and cheaper while the stack performance is substantially lower. The thermal management of an air-cooled PEMFC stack is critical. A large amount of heat is side-produced with power and has to be effectively removed by excessive air fed to the stack cathode. This work explores the challenge via...... compact modeling of an air-cooled PEMFC powered telecom back-up system. The presented computational fluid dynamics (CFD) model is three-dimensional (3D), and is based on the commercial CFD package Fluent (ANSYS Inc.). The fuel cell stack is simulated as an anisotropic porous medium and the spatial...

  14. United States Air Force Civil Engineering Additive Manufacturing Applications: Tools and Jigs

    Science.gov (United States)

    2016-03-24

    UNITED STATES AIR FORCE CIVIL ENGINEERING ADDITIVE MANUFACTURING APPLICATIONS: TOOLS AND JIGS ...the United States. AFIT-ENV-16-M-182 UNITED STATES AIR FORCE CIVIL ENGINEERING ADDITIVE MANUFACTURING APPLICATIONS: TOOLS AND JIGS THESIS...DISTRIBUTION UNLIMITED. AFIT-ENV-16-M-182 UNITED STATES AIR FORCE CIVIL ENGINEERING ADDITIVE MANUFACTURING APPLICATIONS: TOOLS AND JIGS

  15. A basic condition-based maintenance strategy for air-cooled turbine generators

    International Nuclear Information System (INIS)

    Laird, T.; Griffith, G.; Hoof, M.

    2005-01-01

    This paper discusses the methods of using condition-based maintenance (CBM) for turbine generators. Even though it is focused on the maintenance strategy for air-cooled generators, all types of power producers can realize benefits from a better maintenance strategy at lower costs. A reliable assessment of the actual unit condition requires detailed knowledge of the unit design, operational weaknesses, cost of maintenance and operational capabilities. (author)

  16. Design guide for category VI reactors: air-cooled graphite reactors

    Energy Technology Data Exchange (ETDEWEB)

    Brynda, W J; Karol, R; Powell, R W

    1979-02-01

    The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned air-cooled graphite reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC).

  17. Organometallic Polymer Coatings for Geothermal-Fluid-Sprayed Air-Cooled Condensers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, K.; Sugama, T.; Jung, D.

    2002-08-01

    Researchers are developing polymer-based coating systems to reduce scaling and corrosion of air-cooled condensers that use a geothermal fluid spray for heat transfer augmentation. These coating systems act as barriers to corrosion to protect aluminum fins and steel tubing; they are formulated to resist the strong attachment of scale. Field tests have been done to determine the corrosion and scaling issues related to brine spraying and a promising organometallic polymer has been evaluated in salt spray tests.

  18. Boost Converter Fed High Performance BLDC Drive for Solar PV Array Powered Air Cooling System

    Directory of Open Access Journals (Sweden)

    Shobha Rani Depuru

    2017-01-01

    Full Text Available This paper proposes the utilization of a DC-DC boost converter as a mediator between a Solar Photovoltaic (SPV array and the Voltage Source Inverters (VSI in an SPV array powered air cooling system to attain maximum efficiency. The boost converter, over the various common DC-DC converters, offers many advantages in SPV based applications. Further, two Brushless DC (BLDC motors are employed in the proposed air cooling system: one to run the centrifugal water pump and the other to run a fan-blower. Employing a BLDC motor is found to be the best option because of its top efficiency, supreme reliability and better performance over a wide range of speeds. The air cooling system is developed and simulated using the MATLAB/Simulink environment considering the steady state variation in the solar irradiance. Further, the efficiency of BLDC drive system is compared with a conventional Permanent Magnet DC (PMDC motor drive system and from the simulated results it is found that the proposed system performs better.

  19. Eielson Air Force Base OU-1 baseline risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, M.T.; Jarvis, T.T.; Van Houten, N.C.; Lewis, R.E.

    1993-09-01

    This Baseline Risk Assessment report is the second volume in a set of three volumes for operable Unit 1 (OU-1). The companion documents contain the Remedial Investigation and the Feasibility Study. Operable Unit 1 (OU-1) is one of several groups of hazardous waste sites located at Eielson Air Force Base (AFB) near Fairbanks, Alaska. The operable units at Eielson are typically characterized by petroleum, oil, lubricant/solvent contamination, and by the presence of organics floating at the water table. In 1989 and 1990, firms under contract to the Air Force conducted field studies to gather information about the extent of chemical contamination in soil, groundwater, and soil air pore space (soil gas) at the site. This report documents the results of a baseline risk assessment, which uses the 1989 and 1991 site characterization database to quantify the potential human health risk associated with past Base industrial activities in the vicinity of OU-1. Background data collected in 1992 were also used in the preparation of this report.

  20. Eielson Air Force Base OU-1 baseline risk assessment

    International Nuclear Information System (INIS)

    Jarvis, M.T.; Jarvis, T.T.; Van Houten, N.C.; Lewis, R.E.

    1993-09-01

    This Baseline Risk Assessment report is the second volume in a set of three volumes for operable Unit 1 (OU-1). The companion documents contain the Remedial Investigation and the Feasibility Study. Operable Unit 1 (OU-1) is one of several groups of hazardous waste sites located at Eielson Air Force Base (AFB) near Fairbanks, Alaska. The operable units at Eielson are typically characterized by petroleum, oil, lubricant/solvent contamination, and by the presence of organics floating at the water table. In 1989 and 1990, firms under contract to the Air Force conducted field studies to gather information about the extent of chemical contamination in soil, groundwater, and soil air pore space (soil gas) at the site. This report documents the results of a baseline risk assessment, which uses the 1989 and 1991 site characterization database to quantify the potential human health risk associated with past Base industrial activities in the vicinity of OU-1. Background data collected in 1992 were also used in the preparation of this report

  1. A passive decay-heat removal system for an ABWR based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2017-01-15

    Highlights: • A passive decay heat removal system for an ABWR is discussed using combined system of the reactor and an air cooler. • Effect of number of pass of the finned heat transfer tubes on heat removal is investigated. • The decay heat can be removed by air coolers with natural convection. • Two types of air cooler are evaluated, i.e., steam condensing and water cooling types. • Measures how to improve the heat removal rate and to make compact air cooler are discussed. - Abstract: This paper describes the capability of an air cooling system (ACS) operated under natural convection conditions to remove decay heat from the core of an Advanced Boiling Water Reactor (ABWR). The motivation of the present research is the Fukushima Severe Accident (SA). The plant suffered damages due to the tsunami and entered a state of Station Blackout (SBO) during which seawater cooling was not available. To prevent this kind of situation, we proposed a passive decay heat removal system (DHRS) in the previous study. The plant behavior during the SBO was calculated using the system code NETFLOW++ assuming an ABWR with the ACS. However, decay heat removal under an air natural convection was difficult. In the present study, a countermeasure to increase heat removal rate is proposed and plant transients with the ACS are calculated under natural convection conditions. The key issue is decreasing pressure drop over the tube banks in order to increase air flow rate. The results of the calculations indicate that the decay heat can be removed by the air natural convection after safety relief valves are actuated many times during a day. Duct height and heat transfer tube arrangement of the AC are discussed in order to design a compact and efficient AC for the natural convection mode. As a result, a 4-pass heat transfer tubes with 2-row staggered arrangement is the candidate of the AC for the DHRS under the air natural convection conditions. The heat removal rate is re-evaluated as

  2. The History of the Air Force Nurse Corps from 1984 to 1998 - A Research Paper

    Science.gov (United States)

    1999-04-01

    AU/AWC/156/1999-04 AIR WAR COLLEGE AIR UNIVERSITY THE HISTORY OF THE AIR FORCE NURSE COPRS FROM 1984 TO 1998 A RESEARCH PAPER By Kerrie G. Lindberg...Air Force Base, Alabama April 1999 ii Disclaimer The views expressed in this academic research paper are those of the author and do not reflect the

  3. Combat Search and Rescue Air Force Doctrine Document 2-1.6.

    Science.gov (United States)

    1998-09-30

    ments. By 1946, the Army Air Force had consolidated search and rescue operations and training under the Air Rescue Service (ARS). Credited with...Military Airlift Coinm-y l aiI. mand (MAC). In 1989, Head-~ ........... iiL ------ W~ h 4 ~ ifin ~ f iquarters Air Rescue Service ...... ......... ... . ..... ..... was...Aerospace Rescue and Recovery Service ARS Air Rescue Service ASETF Air and Space Expeditionary Task Force AID air tasking order AWACS Airborne Warning and

  4. Talent Retention of the Air Force Officer Corps A Leader’s Role

    Science.gov (United States)

    2016-02-16

    and an Aerial Port duty officer. He is currently a student at the Air War College , Maxwell Air Force Base, Alabama. iv Abstract Air...AIR WAR COLLEGE AIR UNIVERSITY TALENT RETENTION OF THE AIR FORCE OFFICER CORPS A LEADER’S ROLE by Andrew H. Pate, Lieutenant...skills. Take for example child prodigy Wolfgang Mozart who learned to play the piano at age four, began composing music at five, and wrote his

  5. Cooling, freezing and heating with the air cycle: air as the ultimate green refrigerant

    NARCIS (Netherlands)

    Verschoor, M.J.E.

    2000-01-01

    Due to the recent concern about the damage that CFCs cause to the environment (ozone layer, global warming) and the absence of commonly acceptable alternative refrigerants, the search for alternative refrigeration concepts is going on. Air as refrigerant in the Joule-Brayton cycle (air cycle) is one

  6. Brazilian Air Force aircraft structural integrity program: An overview

    Directory of Open Access Journals (Sweden)

    Alberto W. S. Mello Junior

    2009-01-01

    Full Text Available This paper presents an overview of the activities developed by the Structural Integrity Group at the Institute of Aeronautics and Space - IAE, Brazil, as well as the status of ongoing work related to the life extension program for aircraft operated by the Brazilian Air Force BAF. The first BAF-operated airplane to undergo a DTA-based life extension was the F-5 fighter, in the mid 1990s. From 1998 to 2001, BAF worked on a life extension project for the BAF AT- 26 Xavante trainer. All analysis and tests were performed at IAE. The fatigue critical locations (FCLs were presumed based upon structural design and maintenance data and also from exchange of technical information with other users of the airplane around the world. Following that work, BAF started in 2002 the extension of the operational life of the BAF T-25 “Universal”. The T-25 is the basic training airplane used by AFA - The Brazilian Air Force Academy. This airplane was also designed under the “safe-life” concept. As the T-25 fleet approached its service life limit, the Brazilian Air Force was questioning whether it could be kept in flight safely. The answer came through an extensive Damage Tolerance Analysis (DTA program, briefly described in this paper. The current work on aircraft structural integrity is being performed for the BAF F-5 E/F that underwent an avionics and weapons system upgrade. Along with the increase in weight, new configurations and mission profiles were established. Again, a DTA program was proposed to be carried out in order to establish the reliability of the upgraded F-5 fleet. As a result of all the work described, the BAF has not reported any accident due to structural failure on aircraft submitted to Damage Tolerance Analysis.

  7. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  8. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  9. Challenges and opportunities in Air Forces tactical communications

    Science.gov (United States)

    Brick, D. B.; Ellersick, F. W.

    1981-02-01

    During the 1980s, many improvements will be made in the ability of the U.S. Air Force to communicate in a battlefield environment via programs like JTIDS, SEEK TALK, TRI-TAC, and the Ground Mobile Forces satellite communications terminals. Even after these programs have been implemented, however, some important problem areas, or challenges, will remain, especially in our ability to resist determined electronic-warfare and physical attacks. This paper first describes the challenges that will remain after the implementation of the currently planned programs. Some important technology opportunities are then identified that hold promise for meeting some of the challenges in the 1990s. In addition, some system approaches are suggested for exploiting these technology opportunities, and for improving our use of older technologies. These system approaches emphasize adaptive network techniques, network management/control, packet switching, and joint-service common-user systems.

  10. The Air Force and the Great Engine War,

    Science.gov (United States)

    1987-01-01

    2. Ibid., p. 12. 3. Maj. William C. Morrison, "How d fe is the F-100 Engine?," Aerospace Safety, August 1979, p. 9. Endnotes 159 4. Joel Lang, "The...Armed Services Committee hearings, 12 April 1983, p. 906. 57. Joel Lang, "The Great Engine War," Hartford Courant (Northeast Magazine), 27 March 1983, p...34Roth Praises Air Force for Jet Engine Contracts," Defense Daily, 24 February 1984, p. 307. 67. Richard Witkin , "Decision Big Setback for Pratt" New

  11. The United States Air Force in Korea 1950-1953

    Science.gov (United States)

    1983-01-01

    Goodale, Mr. Wayne G. Peterson, Mrs. Alice Harvey, MSgt. James D. Kinder, and SSgt. Carl C. Combs prepared the wartime histories of the Twentieth Air Force...every- one forgot that for the United States one in FEAF had realized that the Cold World War I1 had begun at Hickam War might, at any moment, break...Decem- groundward. The other MIG’s got ber. the 4th Wing forgot about its plans away, but Colonel Hinton, commander to save fuel in the combat area. of

  12. Why social network analysis is important to Air Force applications

    Science.gov (United States)

    Havig, Paul R.; McIntire, John P.; Geiselman, Eric; Mohd-Zaid, Fairul

    2012-06-01

    Social network analysis is a powerful tool used to help analysts discover relationships amongst groups of people as well as individuals. It is the mathematics behind such social networks as Facebook and MySpace. These networks alone cause a huge amount of data to be generated and the issue is only compounded once one adds in other electronic media such as e-mails and twitter. In this paper we outline the basics of social network analysis and how it may be used in current and future Air Force applications.

  13. NASA Air Force Cost Model (NAFCOM): Capabilities and Results

    Science.gov (United States)

    McAfee, Julie; Culver, George; Naderi, Mahmoud

    2011-01-01

    NAFCOM is a parametric estimating tool for space hardware. Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs. It is based on historical NASA and Air Force space projects. It is intended to be used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels and estimates development and production costs. NAFCOM is applicable to various types of missions (crewed spacecraft, uncrewed spacecraft, and launch vehicles). There are two versions of the model: a government version that is restricted and a contractor releasable version.

  14. Open absorption system for cooling and air conditioning using membrane contactors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R.; Dorer, V. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2008-07-01

    Air conditioning systems based upon the open absorption principle, essentially an absorption device operating at atmospheric pressure, have been proposed and investigated at many instances in the past eighty years. Their potential for improving energy efficiency is clearly recognized in the earliest research reports. By the mid 1950ies, solar thermal energy was being applied to drive open absorption-based air conditioning systems. For several reasons, however, the open absorption technology was not mature enough to take place in the mainstream. In the past two decades, vigorous efforts have been undertaken to reverse this situation, but success continued to elude, despite the fact that the main problems, such as corrosion, aerosols in the supply air, etc., have been identified. This report details the work and the main results from the MemProDEC Project. In this project innovative solutions were proposed, and successfully investigated, for the corrosion problem and the improvement of efficiency of the absorption process, in particular a new method to cool a very compact absorber. The practically uniform flow distribution for all three streams in the absorber (air, water and desiccant) warrants the contact of the air to be dehumidified with the desiccant over the whole surface of exchange (across a porous membrane). This, together with the cooling with water in counter flow to the air, are the key factors for the excellent effectiveness of the absorber. As the results show, the dehydration effectiveness of the prototype absorber is up to 150 % higher than that previously obtained by others. The solutions developed for compactness and modularity represent an important step in the way to flexible manufacturing, i.e. using a single element size to assemble autonomous air handling units of various nominal capacities. And although the manufacturing methods of the individual elements require improvement, namely by avoiding adhesive bonding, the choice of materials and the

  15. Environmental Assessment - Construct a Ground-to-Air Transmitter and Receiver (GATR) Facility at Grand Forks Air Force Base

    National Research Council Canada - National Science Library

    2006-01-01

    ...) facility on Grand Forks Air Force Base (AFB), North Dakota. The Communication Squadron is preparing to install new GATR communication antennas and systems, for tactical aircraft control and commercial air traffic control...

  16. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    Science.gov (United States)

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.

  17. Enhancement of gas turbine power output using earth to air heat exchanger (EAHE) cooling system

    International Nuclear Information System (INIS)

    Barakat, S.; Ramzy, Ahmed; Hamed, A.M.; El Emam, S.H.

    2016-01-01

    Highlights: • Earth to air heat exchanger as an inlet air cooling system on gas turbine is investigated. • Gas turbine output power, efficiency and specific fuel consumption are assessed. • Output power production as well as the thermal efficiency by 9% and 4.8%, respectively. • The annual revenue increases by 1.655 ∗ 10 6 $ with payback period of 1.2 year. - Abstract: The application of earth to air heat exchanger (EAHE) as an inlet air cooling system on gas turbine performance has been investigated. Transient, one-dimensional model was developed for predicting the thermal performance of EAHE. Gas turbine output power, efficiency and specific fuel consumption are assessed with application of EAHE. MATLAB program is developed for solving the discrete numerical equations. Damietta power plant is selected as case study. The output power and thermal efficiency of gas turbine increases by 9% and 4.8%; respectively. In addition the annual revenue will increase by 1.655 ∗ 10 6 $ with payback period of 1.2 year.

  18. Improving Geothermal Heat Pump Air Conditioning Efficiency with Wintertime Cooling using Seasonal Thermal Energy Storage (STES). Application Manual

    Science.gov (United States)

    2016-11-01

    APPLICATION MANUAL Improving Geothermal Heat Pump Air Conditioning Efficiency with Wintertime Cooling using Seasonal Thermal Energy Storage...manual is to describe the use of the Seasonal Thermal Energy Storage (STES) technology, particularly through the employment of wintertime cooling...application projects to increase energy efficiency and occupant comfort. Seasonal Thermal Energy Storage (STES) technology, energy efficiency, geothermal heat

  19. Thermal profile analysis of Doubly-Fed induction generator based wind power converter with air and liquid cooling methods

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2013-01-01

    Today, wind power generation system keeps on moving from onshore to offshore and also upscaling in size. As the lifetime of the wind power converter is prolonged to 20–25 years, this paper will investigate and compare different cooling methods for power modules — the air cooling and the liquid co...

  20. Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines.

    Science.gov (United States)

    Weigand, B; Semmler, K; von Wolfersdorf, J

    2001-05-01

    The present review paper, although far from being complete, aims to give an overview about the present state of the art in the field of heat transfer technology for internal cooling of gas turbine blades. After showing some typical modern cooled blades, the different methods to enhance heat transfer in the internal passages of air-cooled blades are discussed. The complicated flows occurring in bends are described in detail, because of their increasing importance for modern cooling designs. A short review about testing of cooling design elements is given, showing the interaction of the different cooling features as well. The special focus of the present review has been put on the cooling of blades for heavy-duty gas turbines, which show several differences compared to aero-engine blades.

  1. Earth, Wind, and Fire: Elemental Properties of Army and Air Force Cooperation in Close Air Support, 1945-1991

    Science.gov (United States)

    2014-06-01

    response to Soviet attacks on United States allies along its periphery. The Air Force would deliver 196 atomic bombs on 20 urban centers in the Soviet...most-dangerous scenario, the Air Force set out on a path discarding the lessons, regenerated from WWII, of close air support in Korea. The Air...domestic and international affairs played out irrespective of the fighting. The focus of this chapter is on the interwar years between the Paris Peace

  2. Constructal design of finned tubes used in air-cooled heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Shokouhmand, Hossein; Mahjoub, Shoeib [University of Tehran, Tehran (Iran, Islamic Republic of); Salimpour, Mohammad Reza [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2014-06-15

    The present study documents the constructal design and optimization of finned tubes used in air-cooled heat exchangers. The considered tubes are equipped with annular fins. The aim is to minimize the overall thermal resistance by morphing the geometry. The geometrical and thermo-physical parameters considered are the number of fins, ratio of fin height to tube diameter, Stanton number, ratio of fin conductivity to air conductivity, ratio of in-tube fluid conductivity to air conductivity and dimensionless pressure drop. Two constraints are applied in the optimization process: fixed overall volume of heat exchanger and fixed volume fraction of fin material. It is found that there exist optimal values for the number and the height of fins. Moreover, the optimal heat transfer has an extremum in a special volume fraction of fin material.

  3. Constructal design of finned tubes used in air-cooled heat exchangers

    International Nuclear Information System (INIS)

    Shokouhmand, Hossein; Mahjoub, Shoeib; Salimpour, Mohammad Reza

    2014-01-01

    The present study documents the constructal design and optimization of finned tubes used in air-cooled heat exchangers. The considered tubes are equipped with annular fins. The aim is to minimize the overall thermal resistance by morphing the geometry. The geometrical and thermo-physical parameters considered are the number of fins, ratio of fin height to tube diameter, Stanton number, ratio of fin conductivity to air conductivity, ratio of in-tube fluid conductivity to air conductivity and dimensionless pressure drop. Two constraints are applied in the optimization process: fixed overall volume of heat exchanger and fixed volume fraction of fin material. It is found that there exist optimal values for the number and the height of fins. Moreover, the optimal heat transfer has an extremum in a special volume fraction of fin material.

  4. Development of a small air-cooled ``midnight sun'' thermophotovoltaic electric generator

    Science.gov (United States)

    Fraas, Lewis M.; Xiang, Huang Han; Hui, She; Ferguson, Luke; Samaras, John; Ballantyne, Russ; Seal, Michael; West, Ed

    1996-02-01

    A natural gas fired thermophotovoltaic generator using infrared-sensitive GaSb cells and a silicon carbide emitter is described. The emitter is designed to operate at 1400 °C. Twelve GaSb receivers surround the emitter. Each receiver contains a string of series connected cells. Special infrared filters are bonded to each cell. These filters transmit short wavelength useful IR to the cells while reflecting longer wavelength IR back to the emitter. Combustion air is supplied to the burner through a counterflow heat exchanger where the air is preheated by the exhaust from the burner. The unit is air cooled and designed to produce approximately 100 Watts of electric power.

  5. Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-10-01

    Full Text Available In electric vehicles, the battery pack is one of the most important components that strongly influence the system performance. The battery thermal management system (BTMS is critical to remove the heat generated by the battery pack, which guarantees the appropriate working temperature for the battery pack. Air cooling is one of the most commonly-used solutions among various battery thermal management technologies. In this paper, the cooling performance of the parallel air-cooled BTMS is improved through choosing appropriate system parameters. The flow field and the temperature field of the system are calculated using the computational fluid dynamics method. Typical numerical cases are introduced to study the influences of the operation parameters and the structure parameters on the performance of the BTMS. The operation parameters include the discharge rate of the battery pack, the inlet air temperature and the inlet airflow rate. The structure parameters include the cell spacing and the angles of the divergence plenum and the convergence plenum. The results show that the temperature rise and the temperature difference of the batter pack are not affected by the inlet air flow temperature and are increased as the discharge rate increases. Increasing the inlet airflow rate can reduce the maximum temperature, but meanwhile significantly increase the power consumption for driving the airflow. Adopting smaller cell spacing can reduce the temperature and the temperature difference of the battery pack, but it consumes much more power. Designing the angles of the divergence plenum and the convergence plenum is an effective way to improve the performance of the BTMS without occupying more system volume. An optimization strategy is used to obtain the optimal values of the plenum angles. For the numerical cases with fixed power consumption, the maximum temperature and the maximum temperature difference at the end of the five-current discharge process for

  6. A novel energy-saving method for air-cooled chiller plant by parallel connection

    International Nuclear Information System (INIS)

    Zhang Xiaosong; Xu Guoying; Chan, K.T.; Yi Xia

    2006-01-01

    A novel method was put forward for improving the energy efficiency of air-cooled water chiller plant operating on part load conditions. The conventional multiple-chiller plant was proposed to be integrated into one refrigeration cycle, by connecting those separate compressors, condensers and evaporators in parallel, respectively. The integrated multiple-chiller plant uses the electronic expansion valve to control refrigerant flow, achieving variable condensing temperature control. A prototype composed of four reciprocating compressors (including one variable-speed compressor), with total nominal cooling capacity of 120 kW was simulated and experimented. Both the simulative and experimental results indicated that applying this novel energy-saving method, the air-cooled chiller plant could get a significant performance improvement on various part load ratio (PLR) conditions, due to the apparent decrease of condensing temperature and some increase of evaporating temperature. Under the same outdoor temperature of 35 o C, when the PLR decreased from 100% to 50%, the COP increased by about 16.2% in simulation and 9.5% in experiment. Also, the practical refrigeration output ratio of the system was 55% on the condition of 50% PLR

  7. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    Science.gov (United States)

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-08-09

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.

  8. Part load efficiency of packaged air-cooled water chillers with inverter driven scroll compressors

    International Nuclear Information System (INIS)

    Cecchinato, Luca

    2010-01-01

    In this paper different packaged air-cooled systems, operating on scroll compressors, are experimentally analysed from the point of view of the relation between energy efficiency and actual capacity. Single compressor, double compressors and double compressors with uneven volumetric capacity units are tested. Experimental tests demonstrated that cooling capacity control by means of variation of rotational speed is an suitable solution for improving the part load efficiency of these systems. Step capacity units obtained by splitting the system volumetric capacity between two compressors are also effective solutions. Nevertheless they appear to be more efficient than single inverter driven chillers only for part load conditions lower than 60%. In the analysed cooling capacity range (25-50 kW), tandem compressors chillers with one inverter driven compressor appear the most efficient solution combining rotational speed with step capacity control. Seasonal energy efficiency ratios were obtained with prEN 14825 calculation method confirming reduced energy consumption associated to continuous and step cooling capacity control.

  9. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  10. Caffeine consumption among active duty United States Air Force personnel.

    Science.gov (United States)

    Knapik, Joseph J; Austin, Krista G; McGraw, Susan M; Leahy, Guy D; Lieberman, Harris R

    2017-07-01

    Data from the National Health and Nutrition Examination Survey (NHANES) indicated that 89% of Americans regularly consumed caffeinated products, but these data did not include military personnel. This cross-sectional study examined caffeine consumption prevalence, amount of daily consumption, and factors associated with caffeine intake in active duty United States (US) Air Force personnel. Service members (N = 1787) stationed in the US and overseas completed a detailed questionnaire describing their intake of caffeine-containing products in addition to their demographic, lifestyle, and military characteristics. Overall, 84% reported consuming caffeinated products ≥1 time/week with caffeine consumers ingesting a mean ± standard error of 212 ± 9 mg/day (224 ± 11 mg/day for men, 180 ± 12 mg/day for women). The most commonly consumed caffeinated products (% users) were sodas (56%), coffee (45%), teas (36%), and energy drinks (27%). Multivariate logistic regression modeling indicated that characteristics independently associated with caffeine consumption (≥1 time/week) included older age, ethnicity other than black, tobacco use, less aerobic training, and less sleep; energy drink use was associated with male gender, younger age, tobacco use, and less sleep. Compared to NHANES data, the prevalence of caffeine consumption in Air Force personnel was similar but daily consumption (mg/day) was higher. Published by Elsevier Ltd.

  11. A Study of the Air Force Physical Fitness and Health Program

    Science.gov (United States)

    1989-09-01

    overall health then fitness can bf, considered a form of preventative medicine as pointed out by Doctors Leavell and Clark . They found that there are...89S-47 - :’ . - ’. y DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio -9 12 20 045...MANPOWER ........ . . 4 . B )ES RRENT PROGRAM MA I NTA IN F] TNESS IE{ O’ ’HOUT THE Y ’AR . .......................... . 4. 19 UNIT COMMANDER’S SUPPORT

  12. A Historical Analysis of Basic Air Force Doctrine Education within the United States States Air Force Air Command and Staff College, 1947-1987.

    Science.gov (United States)

    1987-09-01

    doctrine, especially joint doctrine. Because of this we make mistakes. I believe that the Air Force needs to develop a formal doctrinallo education...jresenteo arguments for all three points of view, but ne was particularly critical of tne educacional system within tae United States military. He said tnat

  13. Multi-objective optimization of cooling air distributions of grate cooler with different clinker particles diameters and air chambers by genetic algorithm

    International Nuclear Information System (INIS)

    Shao, Wei; Cui, Zheng; Cheng, Lin

    2017-01-01

    Highlights: • A multi-objective optimization model of air distributions of grate cooler by genetic algorithm is proposed. • Optimal air distributions of different conditions are obtained and validated by measurements. • The most economic average diameters of clinker particles is 0.02 m. • The most economic amount of air chambers is 9. - Abstract: The paper proposes a multi-objective optimization model of cooling air distributions of grate cooler in cement plant based on convective heat transfer principle and entropy generation minimization analysis. The heat transfer and flow models of clinker cooling process are brought out at first. Then the modified entropy generation numbers caused by heat transfer and viscous dissipation are considered as objective functions respectively which are optimized by genetic algorithm simultaneously. The design variables are superficial velocities of air chambers and thicknesses of clinker layer on different grate plates. The model is verified by a set of Pareto optimal solutions and scattered distributions of design variables. Sensitive analysis of average diameters of clinker particles and amount of air chambers are carried out based on the optimization model. The optimal cooling air distributions are compared by heat recovered, energy consumption of cooling fans and heat efficiency of grate cooler. And all of them are selected from the Pareto optimal solutions based on energy consumption of cooling fans minimization. The results show that the most effective and economic average diameter of clinker particles is 0.02 m and the amount of air chambers is 9.

  14. Feasibility analysis of gas turbine inlet air cooling by means of liquid nitrogen evaporation for IGCC power augmentation

    International Nuclear Information System (INIS)

    Morini, Mirko; Pinelli, Michele; Spina, Pier Ruggero; Vaccari, Anna; Venturini, Mauro

    2015-01-01

    Integrated Gasification Combined Cycles (IGCC) are energy systems mainly composed of a gasifier and a combined cycle power plant. Since the gasification process usually requires oxygen as the oxidant, an Air Separation Unit (ASU) is also part of the plant. In this paper, a system for power augmentation in IGCC is evaluated. The system is based on gas turbine inlet air cooling by means of liquid nitrogen spray. In fact, nitrogen is a product of the ASU, but is not always exploited. In the proposed plant, the nitrogen is first liquefied to be used for inlet air cooling or stored for later use. This system is not characterized by the limits of water evaporative cooling systems (the lower temperature is limited by air saturation) and refrigeration cooling (the effectiveness is limited by the pressure drop in the heat exchanger). A thermodynamic model of the system is built by using a commercial code for energy conversion system simulation. A sensitivity analysis on the main parameters is presented. Finally the model is used to study the capabilities of the system by imposing the real temperature profiles of different sites for a whole year and by comparing to traditional inlet air cooling strategies. - Highlights: • Gas turbine inlet air cooling by means of liquid nitrogen spray. • Humidity condensation may form a fog which provides further power augmentation. • High peak and off peak electric energy price ratios make the system profitable

  15. Numerical study of the thermo-flow performances of novel finned tubes for air-cooled condensers in power plant

    Science.gov (United States)

    Guo, Yonghong; Du, Xiaoze; Yang, Lijun

    2018-02-01

    Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.

  16. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States); Bohac, Dave [NorthernSTAR, St. Paul, MN (United States); McAlpine, Jack [NorthernSTAR, St. Paul, MN (United States); Hewett, Martha [NorthernSTAR, St. Paul, MN (United States)

    2017-06-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called "combi" systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.

  17. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, Dave [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; McAlpine, Jake [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Hewett, Martha [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-06-23

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called 'combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.

  18. Effects of Micro-fin Structure on Spray Cooling Heat Transfer in Forced Convection and Nucleate Boiling Region

    International Nuclear Information System (INIS)

    Kim, Yeung Chan

    2010-01-01

    In the present study, spray cooling heat transfer was experimentally investigated for the case in which water is sprayed onto the surfaces of micro-fins in forced convection and nucleate boiling regions. The experimental results show that an increase in the droplet flow rate improves heat transfer due to forced convection and nucleate boiling in the both case of smooth surface and surfaces of micro-fins. However, the effect of subcooling for fixed droplet flow rate is very weak. Micro-fins surfaces enhance the spray cooling heat transfer significantly. In the dilute spray region, the micro-fin structure has a significant effect on the spray cooling heat transfer. However, this effect is weak in the dense spray region. A previously determined correlation between the Nusselt number and Reynolds number shows good agreement with the present experimental data for a smooth surface

  19. Effect of cooling rate and forced convection on as-cast structure of 2205 duplex stainless steel

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    2015-01-01

    Full Text Available To forecast the as-cast structure and ferrite-austenite phase ratio of 2205 duplex stainless steel (DSS, the effects of cooling rate and forced convection were observed in a high-vacuum resistance furnace in which the forced convection was created by the rotation of the crucible. The as-cast structure of all 2205 DSS samples is full equiaxed grains, and the microstructure consists of a great amount of desirable intra-granular austenite inside the continuous ferrite grain matrix, besides Widmanstatten austenite and grain boundary austenite. The ferrite grain size decreases gradually with the increase in the cooling rates (20 to 60 ìC·min-1 or the forced convection, while the ferrite grains of the samples solidified with a strong convection are barely changed when the cooling rate is below 50 ìC·min-1. Moreover, a small grain size is beneficial for the austenite formation but the influence is not very obvious under the cooling rates in the range of 5 to 50 ìC·min-1. Compared with grain size, the cooling rate has a greater influence on the final ferrite content. A model based on the experimental results is established to predict the ferrite content, which could be approximated by ヤ(%=20.5·exp(c/80.0+0.34d+34.1, where c is the cooling rate in ìC·min-1 and d is the grain size in mm. By using this model, the dependence of the final ferrite content on cooling rate and grain size is well described.

  20. Studi Eksperimen Pengaruh Dimensi Pipa Kapiler Pada Sistem Air Conditioning Dengan Pre-Cooling

    Directory of Open Access Journals (Sweden)

    Awan Satya Darmawan

    2017-01-01

    Full Text Available Penggunaan air conditioner semakin banyak digunakan pada kehidupan sehari-hari diiringi dengan harga jual energi yang semakin mahal. Pada studi eksperimen kali ini mencoba mengoptimalisasi dan menigkatkan efisiensi energi pada sistem air conditioner dengan cara menambahkan satu buah evaporator dan satu buah pre-cooling, dimana pre-cooling dimanfaatkan untuk memanaskan air yang nantinya akan digunakan untuk keperluan rumah tangga. Pada sistem pengkondisian udara yang telah dimodifikasi tersebut maka dilakukan studi eksperimen dengan variasi panjang pipa kapiler, diameter pipa kapiler d=0,054 in, dengan panjang kapiler 1 = 35 cm, kapiler 2 = 65 cm, kapiler 3 = 95 cm. Hasil yang didapat dari studi eksperimen kali ini adalah semakin bertambahnya panjang pipa kapiler, kapasitas pendinginan evaporator, kerja kompresor dan COP dari sistem juga akan semakin kecil dan juga mengakibatkan temperatur masuk evaporator akan semakin kecil, yang akan mengakibatkan efek pendinginan akan semakin besar. Pada variasi pipa kapiler terpendek 35 cm menghasilkan data kapasitas pendinginan total sebesar 2,25 kW, kerja kompresor 0,433 kW, temperatur masuk evaporator 7,26°C, COP sebesar 5,21 dan HRR sebesar 1,16. Sedangkan pada variasi pipa kapiler terpanjang 95 cm kapasitas pendinginan total sebesar 0,72 kW, kerja kompresor 0,332 kW, temperatur masuk evaporator 1,64°C, COP sebesar 4,35 dan HRR sebesar 1,26.

  1. Cooling an array of multiple heat sources by a row of slot air jets

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Nada, S.A.; Rady, M.A.; Faris, A. [Mechanical Engineering Department, Benha High Institute of Technology, Benha 13512 (Egypt)

    2006-07-15

    An experimental study of cooling an array of multiple heat sources simulating electronic equipment by a single row of slot air jets positioned above a critical row (row having maximum heat dissipation rate) of the array was conducted. The other low power rows of the array were cooled by the spent air flow from the air jets. The experimental work was carried out in two phases. In the first phase, each block of the array was heated at a time and the other blocks of the array were kept unheated. The Nusselt number of each heated block and the thermal wake effect on downstream blocks were investigated and correlated for different values of jet Reynolds number, position of the block with respect to the jet impingement point and the separation distance between the orifice plate and the impingement surface. A superposition technique was implemented to demonstrate the practical importance of the present correlations in predicting the operating temperature of any block in an array with multiple heated blocks. In the second phase, the experiments were carried out with heating all the blocks at the same time. This phase was carried out to verify the superposition technique used to predict the operating temperature of the blocks of the array in the case of the multiple heating. (author)

  2. Transfair. An air method of floor heating and cooling; Transfair. Procede de chauffage et de rafraichissement par le sol a air

    Energy Technology Data Exchange (ETDEWEB)

    Desvouas, C. [Tarnsfair TTR, 77 - Perthes en Gatinais (France)

    1997-12-31

    This paper presents the `Transfair` method which consists in the use of air instead of water in heating and cooling systems. This presentation comprises 4 parts. Part 1 is a general presentation of the activities of the French TTR company which has developed the Transfair method and its realizations in industrial space heating and in chemical industry (refrigeration units for sulfuric acid). Part 2 is a comparative evaluation of equivalent water and air systems in order to emphasize the advantages of air cooling systems (simplicity and reliability). Part 3 is a presentation of a software for the optimization of the dimensioning of components and investment costs of industrial air space heating systems. Part 4 is a presentation of the feasibility study of a floor cooled by air circulation and with a self-balancing of circuits confirmed by flow rate measurements. (J.S.)

  3. Numerical simulation of probability of air migration from a pressurizer during reflux cooling

    International Nuclear Information System (INIS)

    Utanohara, Yoichi; Murase, Michio

    2009-01-01

    An accurate evaluation of the behaviors of non-condensable gases accumulated in the steam generator (SG) U-tubes is important to predict the performance of the reflux cooling, since the migration behaviors of such gases existing in the pressurizer to the SG U-tubes is not clarified yet. In this research, the steam and the air behaviors in the pressurizer was therefore analyzed numerically during reflux cooling using FLUENT 6.3.26 in order to investigate the possibility of air migration to the hot leg. In the present analysis, the pressurizer of ROSA-IV/LSTF experiment was employed as a calculation domain, since the experimental data of the loss of residual heat removal event during the mid-loop operation are available. Two stages were assumed; (1) Phase 1: latent heat accumulates in the wall of the pressurizer and is eventually released to the outside, (2) Phase 2: the wall heats up to the saturation temperature of the steam, and only heat loss to the outside occurs. The prediction indicates that in Phase 1 the air does not migrate into the surge line in neither laminar nor turbulent flow conditions, while in Phase 2 the air migrates into the hot leg only in the laminar flow condition. Judging from the previous experiment of axisymmetric free jet, the flow pattern in the pressurizer seems to be turbulent. In addition, a comparison of the analytical results of the fluid temperatures near the wall of pressurizer with ROSA-IV/LSTF experiment results suggests that the turbulent flow calculation results are more realistic. It has been therefore concluded that the turbulent calculation is more reasonable and the possibility of air migration into the hot leg is low. (author)

  4. Army and Air Force Unmanned Air Reconnaissance: Warrior and Hydra Navigating a Maze of Strategic Hedges

    Science.gov (United States)

    2009-06-01

    asset growth , the Army outpaced the Air Force in UAS hours at the height of the insurgency from 2005 through 2007.13F14 For the MQ-1C variant...Thus, while an optimal solution serves as this analysts’ unicorn , ultimately the crucible of war and deterrence will pass judgment on the efficacy of...head and subsequently cauterized each neck stump to prevent re- growth . The RSO system evinces the same hydratic ability to “re-grow” and

  5. Help From Above: Air Force Close Air Support of the Army. 1946-1973

    Science.gov (United States)

    2003-01-01

    2d ed. London: Putnam , 1970. Greenfield, Kent Robert. American Strategy in World War II: A Reconsideration. Westport, Conn.: Greenwood Press, 1963... Putnam , 1969. ———. British Aviation, The Ominous Skies, 1935–1939. London: Her Majesty’s Stationery Office, 1980. Pershing, John J. My Experiences in the...Operations. Washington, D.C.: Office of the Chief of Army History, 1954. Richards, Denis, and Hilary St.George Saunders. The Royal Air Force, 1939–45

  6. Cool and dry weather enhances the effects of air pollution on emergency IHD hospital admissions.

    Science.gov (United States)

    Qiu, Hong; Yu, Ignatius Tak-Sun; Wang, Xiaorong; Tian, Linwei; Tse, Lap Ah; Wong, Tze Wai

    2013-09-20

    Associations between ambient pollution and cardiovascular morbidity including ischemic heart disease (IHD) have been confirmed. Weather factors such as temperature, season and relative humidity (RH) may modify the effects of pollution. We conducted this study to examine the effects of air pollution on emergency IHD hospital admissions varied across seasons and RH levels, and to explore the possible joint modification of weather factors on pollution effects. Daily time series of air pollution concentrations, mean temperature and RH were collected from IHD hospital admissions from 1998 to 2007 in Hong Kong. We used generalized additive Poisson models with interaction term to estimate the pollution effects varied across seasons and RH levels, after adjusting for time trends, weather conditions, and influenza outbreaks. An increase in the detrimental effects of air pollution in cool season and on low humidity days was observed. In the cool and dry season, a 10 μg/m(3) increment of lag03 exposure was associated with an increase of emergency IHD admissions by 1.82% (95% CI: 1.24-2.40%), 3.89% (95% CI: 3.08-4.70%), and 2.19% (95% CI: 1.33-3.06%) for particles with an aerodynamic diameter less than 10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3), respectively. The effects of pollutants decreased greatly and lost statistical significance in the warm and humid season. We found season and RH jointly modified the associations between ambient pollution and IHD admissions, resulting in increased IHD admissions in the cool and dry season and reduced admissions in the warm and humid season. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Wind tunnel experimental study on effect of inland nuclear power plant cooling tower on air flow and dispersion of pollutant

    International Nuclear Information System (INIS)

    Qiao Qingdang; Yao Rentai; Guo Zhanjie; Wang Ruiying; Fan Dan; Guo Dongping; Hou Xiaofei; Wen Yunchao

    2011-01-01

    A wind tunnel experiment for the effect of the cooling tower at Taohuajiang nuclear power plant on air flow and dispersion of pollutant was introduced in paper. Measurements of air mean flow and turbulence structure in different directions of cooling tower and other buildings were made by using an X-array hot wire probe. The effects of the cooling tower and its drift on dispersion of pollutant from the stack were investigated through tracer experiments. The results show that the effect of cooling tower on flow and dispersion obviously depends on the relative position of stack to cooling towers, especially significant for the cooling tower parallel to stack along wind direction. The variation law of normalized maximum velocity deficit and perturbations in longitudinal turbulent intensity in cooling tower wake was highly in accordance with the result of isolated mountain measured by Arya and Gadiyaram. Dispersion of pollutant in near field is significantly enhanced and plume trajectory is changed due to the cooling towers and its drift. Meanwhile, the effect of cooling tower on dispersion of pollutant depends on the height of release. (authors)

  8. 78 FR 43184 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-07-19

    ..., Director, Operational Planning, Policy and Strategy, Deputy Chief of Staff, Operations, Plans and... Staff, and Major General James McLaughlin, Commander, 24th Air Force and Commander, Air Forces Cyber...; (e) maintains a peacetime rotation force to support operational tempo goals of 1:2 for regular...

  9. Towards a Framework for Understanding Innovation Implementation in the Air Force

    National Research Council Canada - National Science Library

    Byrd, Howard

    2003-01-01

    .... The success of the implementing such transformational innovations such as digital technical orders is critical to the Air Force's ability to support the overall DoD force transformation efforts. Despite the critical need for successful innovation implementation few studies are found exploring factors that facilitate innovation within DoD, or the Air Force.

  10. 76 FR 75453 - Restricted Areas and Danger Zones at Eglin Air Force Base, FL

    Science.gov (United States)

    2011-12-02

    ... and Danger Zones at Eglin Air Force Base, FL AGENCY: U.S. Army Corps of Engineers, Department of... within the Eglin Air Force Base (AFB) facilities and along the Eglin AFB facility shoreline in Florida... have the permission of the Commander, 96 Air Base Wing, Eglin AFB or his/her authorized representative...

  11. A robust stochastic approach for design optimization of air cooled heat exchangers

    International Nuclear Information System (INIS)

    Doodman, A.R.; Fesanghary, M.; Hosseini, R.

    2009-01-01

    This study investigates the use of global sensitivity analysis (GSA) and harmony search (HS) algorithm for design optimization of air cooled heat exchangers (ACHEs) from the economic viewpoint. In order to reduce the size of the optimization problem, GSA is performed to examine the effect of the design parameters and to identify the non-influential parameters. Then HS is applied to optimize influential parameters. To demonstrate the ability of the HS algorithm a case study is considered and for validation purpose, genetic algorithm (GA) is also applied to this case study. Results reveal that the HS algorithm converges to optimum solution with higher accuracy in comparison with GA

  12. Final Nellis Air Force Base Capital Improvements Program Environmental Assessment

    Science.gov (United States)

    2013-08-01

    as “degraded” primarily due to problems with hydraulic overloading in several areas of the system and with 10 small pumping stations (Air Force 2011b...increases in truck (e.g., dump trucks , fill transports) traffic within and near the construction corridor would produce localized noise for brief periods...mile lb lb lb lb lb lb lb Dump   Truck  (12 CY Capacity) 9 230 27 1.66E‐03 8.58E‐03 3.92E‐02 1.82E‐05 1.69E‐03 1.64E‐03 3 0.41 2.14 9.81 0.00 0.42 0.41

  13. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  14. A flight investigation of oscillating air forces: Equipment and technique

    Science.gov (United States)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  15. Cancer in US Air Force veterans of the Vietnam War.

    Science.gov (United States)

    Akhtar, Fatema Z; Garabrant, David H; Ketchum, Norma S; Michalek, Joel E

    2004-02-01

    Cancer incidence and mortality were summarized in Air Force veterans of the Vietnam War. The index subjects were Operation Ranch Hand veterans who sprayed 2,3,7,8 tetrachlorodibenzo-p-dioxin (dioxin)-contaminated herbicides in Vietnam. Comparisons served in Southeast Asia during the same period but did not spray herbicides. We assessed cancer incidence and mortality using national rates and contrasted cancer risk in each of three Ranch Hand dioxin exposure categories relative to comparisons. The incidence of melanoma and prostate cancer was increased among white Ranch Hand veterans relative to national rates. Among veterans who spent at most 2 years in Southeast Asia, the risk of cancer at any site, of prostate cancer and of melanoma was increased in the highest dioxin exposure category. These results appear consistent with an association between cancer and dioxin exposure.

  16. The Physical Connection and Magnetic Coupling of the MICE Cooling Channel Magnets and the Magnet Forces for Various MICE Operating Modes

    International Nuclear Information System (INIS)

    Yang, Stephanie Q.; Baynham, D.E.; Fabricatore, Pasquale; Farinon, Stefania; Green, Michael A.; Ivanyushenkov, Yury; Lau, Wing W.; Maldavi, S.M.; Virostek, Steve P.; Witte, Holger

    2006-01-01

    A key issue in the construction of the MICE cooling channel is the magnetic forces between various elements in the cooling channel and the detector magnets. This report describes how the MICE cooling channel magnets are hooked to together so that the longitudinal magnetic forces within the cooling channel can be effectively connected to the base of the experiment. This report presents a magnetic force and stress analysis for the MICE cooling channel magnets, even when longitudinal magnetic forces as large as 700 kN (70 tons) are applied to the vacuum vessel of various magnets within the MICE channel. This report also shows that the detector magnets can be effectively separated from the central MICE cooling channel magnets without damage to either type of magnet component

  17. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    Science.gov (United States)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  18. Experimental performance and parametric analysis of heat pipe heat exchanger for air conditioning application integrated with evaporative cooling

    Science.gov (United States)

    Jadhav, Tushar S.; Lele, Mandar M.

    2017-11-01

    The experimental performance of different heat pipe heat exchanger (HPHX) configurations using distilled water as the working fluid is reported in the present study. The three HPHX configurations in the present investigation include HPHX with single wick structure (HPHX 1), HPHX with composite wick structure (HPHX 2) and hybrid HPHX (HPHX 3) which is the combination of HPHX 1 and HPHX 2. The parameters considered for the parametric analysis of HPHX in all the three configurations are outdoor air dry bulb temperature entering the evaporator section of HPHX (OADBT), return air dry bulb temperature entering the condenser section of HPHX (RADBT), outdoor air velocity (Ve) and return air velocity (Vc). The OADBT is varied between 40 and 24 °C and the outdoor & return air velocities between 0.6 and 2.4 m/s. The parametric analysis of HPHX without evaporative cooling is studied for RADBT = 24 °C whereas RADBT is maintained at 20 °C for the parametric analysis of HPHX integrated with evaporative cooling. In comparison with HPHX without evaporative cooling, the performance of HPHX with evaporative cooling is enhanced by 17% for single wick structure (HPHX 1), 47% for composite wick structure (HPHX 2) and 59% for hybrid HPHX (HPHX 3) for OADBT = 40 °C and at Ve = Vc of 0.6 m/s. The results of the experimental analysis highlights the benefits of HPHX integrated with evaporative cooling for achieving significant energy savings in air conditioning application.

  19. Thermal-hydraulic performance of an A type air cooled condenser

    International Nuclear Information System (INIS)

    Kumar, Ankur; Joshi, Jyeshtharaj B.; Nayak, Arun K.; Vijayan, Pallippattu K.

    2014-01-01

    The effects of fin spacing, Re number and transverse tube pitch on a four-row A type air cooled air condenser in staggered arrangements are investigated by 3-D numerical simulations. The steady state is assumed for the numerical simulations, and the standard k-epsilon model is used to perform the simulations. The frontal velocity has been varied from 1 to 12 m/s. The range of Reynolds number is from 3000-40000. The numerical results are validated with the standard correlations. The boundary layer developments and horseshoe vortices between the fins are found to be substantially dependent on the fin spacing and Reynolds number. The heat transfer and pressure drop results are presented for varying fin spacing and Reynolds number. The heat transfer per unit pressure drop is also presented. (author)

  20. Golden Legacy, Boundless Future: Essays on the United States Air Force and the Rise of Aerospace Power

    Science.gov (United States)

    2000-01-01

    Charles A. Ravenstein , The Organization and Lineage of the United States Air Force (D.C.: Office of Air Force History, 1986), 17. 13. James L... Ravenstein , Air Force Combat Wings: Lineage and Honors, 1947-1977 (Washington, D.C: Office of Air Force History, 1984), pp. 47-48, 88-89. 14. Monograph, "H 0

  1. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  2. Optimization of fog inlet air cooling system for combined cycle power plants using genetic algorithm

    International Nuclear Information System (INIS)

    Ehyaei, Mehdi A.; Tahani, Mojtaba; Ahmadi, Pouria; Esfandiari, Mohammad

    2015-01-01

    In this research paper, a comprehensive thermodynamic modeling of a combined cycle power plant is first conducted and the effects of gas turbine inlet fogging system on the first and second law efficiencies and net power outputs of combined cycle power plants are investigated. The combined cycle power plant (CCPP) considered for this study consist of a double pressure heat recovery steam generator (HRSG) to utilize the energy of exhaust leaving the gas turbine and produce superheated steam to generate electricity in the Rankine cycle. In order to enhance understanding of this research and come up with optimum performance assessment of the plant, a complete optimization is using a genetic algorithm conducted. In order to achieve this goal, a new objective function is defined for the system optimization including social cost of air pollution for the power generation systems. The objective function is based on the first law efficiency, energy cost and the external social cost of air pollution for an operational system. It is concluded that using inlet air cooling system for the CCPP system and its optimization results in an increase in the average output power, first and second law efficiencies by 17.24%, 3.6% and 3.5%, respectively, for three warm months of year. - Highlights: • To model the combined cycle power plant equipped with fog inlet air cooling method. • To conduct both exergy and economic analyses for better understanding. • To conduct a complete optimization using a genetic algorithm to determine the optimal design parameters of the system

  3. Investigation of the loss of forced cooling test by using the high temperature engineering test reactor (HTTR) (Contract research)

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Takamatsu, Kuniyoshi; Inaba, Yoshitomo; Goto, Minoru; Tochio, Daisuke

    2007-09-01

    The three gas circulators trip test and the vessel cooling system stop test as the safety demonstration test by using the High Temperature engineering Test Reactor (HTTR) are under planning to demonstrate inherent safety features of High Temperature Gas-cooled Reactor. All three gas circulators to circulate the helium gas as the coolant are stopped to simulate the loss of forced cooling in the three gas circulators trip test. The stop of the vessel cooling system located outside the reactor pressure vessel to remove the residual heat of the reactor core follows the stop of all three gas circulators in the vessel cooling system stop test. The analysis of the reactor transient for such tests and abnormal events postulated during the test was performed. From the result of analysis, it was confirmed that the three gas circulators trip test and the vessel cooling system stop test can be performed within the region of the normal operation in the HTTR and the safety of the reactor facility is ensured even if the abnormal events would occur. (author)

  4. Solar-Enhanced Air-Cooled Heat Exchangers for Geothermal Power Plants

    Directory of Open Access Journals (Sweden)

    Kamel Hooman

    2017-10-01

    Full Text Available This paper focuses on the optimization of a Solar-Enhanced Natural-Draft Dry-Cooling Tower (SENDDCT, originally designed by the Queensland Geothermal Energy Centre of Excellence (QGECE, as the air-cooled condenser of a geothermal power plant. The conventional method of heat transfer augmentation through fin-assisted area extension is compared with a metal foam-wrapped tube bundle. Both lead to heat-transfer enhancement, albeit at the expense of a higher pressure drop when compared to the bare tube bundle as our reference case. An optimal design is obtained through the use of a simplified analytical model and existing correlations by maximizing the heat transfer rate with a minimum pressure drop goal as the constraint. Sensitivity analysis was conducted to investigate the effect of sunroof diameter, as well as tube bundle layouts and tube spacing, on the overall performance of the system. Aiming to minimize the flow and thermal resistances for a SENDDCT, an optimum design is presented for an existing tower to be equipped with solar panels to afterheat the air leaving the heat exchanger bundles, which are arranged vertically around the tower skirt. Finally, correlations are proposed to predict the total pressure drop and heat transfer of the extended surfaces considered here.

  5. Quality Time: Temporal Constraints to Continual Process Development in the Air Force

    Science.gov (United States)

    2017-06-01

    QUALITY TIME: TEMPORAL CONSTRAINTS TO CONTINUAL PROCESS DEVELOPMENT IN THE AIR FORCE BY MAJOR PAUL A. La TOUR A THESIS PRESENTED TO...a deductive system-dynamics methodology to analyze the application of quality management policies to an Air Force system. The work provides an...alternate explanation to the existing body of literature on the failure of Total Quality Management (TQM) and Quality Air Force (QAF) programs. The

  6. Implementation of Organizational Change in the Air Force: a Case Study

    Science.gov (United States)

    1989-09-01

    ve) Lfl DTIC &’ELECTE IMPLEMENTATION OF ORGANIZATIONAL CHANGE IN THE AIR FORCE: A CASE STUDY THESIS Ronald D. Taylor First Lieutenant, USAF AFIT/GLM...022 AFIT/GLM/LSR/89S-66 IMPLEMENTATION OF ORGANIZATIONAL CHANGE IN THE AIR FORCE: A CASE STUDY THESIS Ronald D. Taylor First Lieutenant, USAF AFIT/GLM...Department of Defense. AFIT/GLM/LSR/89S-66 IMPLEMENTATION OF ORGANIZATIONAL CHANGE IN THE AIR FORCE: A CASE STUDY THESIS Presented to the Faculty of the

  7. Financial Audit: Financial Reporting and Internal Controls at the Air Force Systems Command

    Science.gov (United States)

    1991-01-01

    United States General Accounting Office GAO Report 1,o, the Commander, Air Force -A0 Systems Command Janar 191FINANCI-AL AUDTFI Financial Reporting ...20332 Dear General Yates: This report presents the results of our review of the Air Force Systems Command’s financial management operations. It addresses...internal control and financial reporting improvements needed within the Air Force Systems Command. The report resulted from our examination of the

  8. Retrospectively Estimating Prevalence of Peanut Allergy Genetic Markers in an Air Force Population

    Science.gov (United States)

    2018-01-25

    AFRL-SA-WP-SR-2018-0002 Retrospectively Estimating Prevalence of Peanut Allergy Genetic Markers in an Air Force Population ...an Air Force Population 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Katherine Kohnen, Summer Hughes... population of children were over- or under-represented in a U.S. Air Force population . Our results showed that for a single polymorphism, there was a

  9. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  10. 78 FR 59343 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-09-26

    ... peacetime rotation force to support operational tempo goals of 1:2 for regular members of the Air Forces and...'s staff will assign time to oral commenters at the meeting, for no more than 5 minutes each. While...

  11. 78 FR 53133 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-08-28

    ... peacetime rotation force to support operational tempo goals of 1:2 for regular members of the Air Forces and... their oral statement in writing and submit with their registration. The Commission's staff will assign...

  12. 78 FR 36751 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-06-19

    ... components of the Air Force could be recruited; (e) maintains a peacetime rotation force to support... their registration. The Commission's staff will assign time to oral commenters at the meeting, for no...

  13. 78 FR 61342 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-10-03

    ... peacetime rotation force to support operational tempo goals of 1:2 for regular members of the Air Forces and... in writing and submit with their registration. The Commission's staff will assign time to oral...

  14. 78 FR 46928 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-08-02

    ... Air Force could be recruited; (e) maintains a peacetime rotation force to support operational tempo... registration. The Commission's staff will assign time to oral commenters at the meeting, for no more than 5...

  15. 78 FR 33394 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-06-04

    ... peacetime rotation force to support operational tempo goals of 1:2 for regular members of the Air Forces and... statement in writing and submit with their registration. The Commission's staff will assign time to oral...

  16. Air Force Strategy: Sovereign Options for Securing Global Stability and Prosperity

    National Research Council Canada - National Science Library

    2008-01-01

    The mission of the United States Air Force is to deliver sovereign options for the defense of the United States of America and its global interests to fly, fight, and win in Air, Space, and Cyberspace...

  17. DEFENSE INVENTORY: Improved Management Framework Needed to Guide Air Force Best Practice Initiatives

    National Research Council Canada - National Science Library

    1999-01-01

    In this report, we discuss our evaluation of the Air Force's best practices implementation schedule for the acquisition and distribution of secondary inventory items, which the Secretary of the Air...

  18. Sierra Hotel: Flying Air Force Fighters in the Decade After Vietnam

    National Research Council Canada - National Science Library

    Anderegg, C. R

    2001-01-01

    ....), visited the commander of the U.S. Air Forces in Europe. Colonel Anderegg had known Gen. John Jumper since they had served together as jet forward air controllers in Southeast Asia nearly thirty years earlier...

  19. Numerical study by large-eddy simulation on effects and mechanism of air-cooling enhancing technologies

    International Nuclear Information System (INIS)

    Tamura, Akinori; Kawamura, Toshinori; Ishida, Naoyuki; Kitou, Kazuaki

    2014-01-01

    Learning from the lessons of the Fukushima Daiichi nuclear incident in which a long-term station black-out occurred, we have been developing an air-cooling system for boiling water reactors that can operate without electricity for a virtually indefinite time. Improvement in the heat transfer performance of air-cooling is key to the development of the air-cooling system. We developed air-cooling enhancing technologies for the air-cooling system by using heat transfer fins, turbulence-enhancing ribs and a micro-fabrication surface. In our previous study, the performance of these air-cooling enhancing technologies was evaluated by heat transfer tests using a single pipe of the air-cooling heat exchanger. To achieve further improvement of the heat transfer performance, it is important to understand the mechanism of the air-cooling enhancing technologies. In this study, we used the numerical analysis which is based on the filtered incompressible Navier-Stokes equation and the filtered energy equation with the large-eddy simulation in order to investigate the effects and the mechanism of the developed air-cooling enhancing technologies. We found that the analysis results agreed well with the experimental results and the empirical formula results. The heat transfer enhancement mechanism of the heat transfer fin is due to an increase in the heat transfer area. Due to a decrease in the flow velocity at the base of the fins, the increase in the Nusselt number was approximately 15% smaller than the estimated value from the area increase. In the heat transfer enhancement by the turbulence-enhancing ribs, the unsteady behavior of the large-scale vortex generated by the flow separation plays an important role. The enhancement ratio of the Nusselt number by the micro-fabrication surface can be explained by the apparent thermal conductivity. The Nusselt number was increased 4-8% by the micro-fabrication surface. The effect of the micro-fabrication surface is increased by applying

  20. Air Force Transformation -- Will It Produce a Revolution in Military Affairs?

    Science.gov (United States)

    2003-01-01

    Architecture,” Armed Forces Journal, September 2002, 55. 32 by services, Global Strike Task Force ( GSTF ) in the Air Force, Expeditionary Strike Groups (ESGs...under the Navy/Marine Corps team, and Striker Brigades within the Army, the Global Strike Task Force is furthest along. GSTF incorporates many of

  1. Competency-Based Assignment & Promotion to Meet Air Force Senior Leader Requirements

    National Research Council Canada - National Science Library

    Steele, Jr., Robert G; Fletcher, Kelly E; Nadoiski, William F; Buckman, Emily A; Oliver, Jr., Stephen W

    2006-01-01

    .... The third component, competencies, are occupational skill sets and enduring leadership competencies Air Force leaders develop as they progress along the tactical, operational and strategic levels...

  2. Capturing the Policy that Air Force Raters Use When Writing Performance Appraisals on Junior Officers

    National Research Council Canada - National Science Library

    Stephens, Owen

    2001-01-01

    This study examined the relationship between four dimensions of performance leadership, task performance, interpersonal facilitation, and job dedication and overall performance by junior officers in the Air Force...

  3. 77 FR 3750 - U.S. Air Force Academy Board of Visitors Notice of Meeting

    Science.gov (United States)

    2012-01-25

    ... on Diversity Recruiting); Center for Character and Leadership Development Military Construction...; the Superintendent and Command Chief Update; Diversity in the Athletic Department; the Air Force...

  4. The Predictive Factors of the Promotion of Physical Activity by Air Force Squadron Commanders

    National Research Council Canada - National Science Library

    Whelan, Dana

    2001-01-01

    This research examined the relationship between beliefs about physical activity, physical activity levels, age and the promotional practices for physical activity employed by Air Force squadron commanders...

  5. A Model for Determining Modular Heat Recovery Incinerator Feasibility on Air Force Installations.

    Science.gov (United States)

    1992-09-01

    recognize that there are limits in the level of control that an Air Force installation can yield to the public (73:86). e Polluion •Issues. It is...AD-A261 336 11 lHINN 1 AFIT/GEE/ENV/92S-2 DTIC ELECTE MAR2 1993 C A MODEL FOR DETERMINING MODULAR HEAT RECOVERY INCINERATOR FEASIBILITY ON AIR FORCE...INCINERATOR FEASIBILITY ON AIR FORCE INSTALLATIONS THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology

  6. Predictability, Work-Family Conflict, and Intent to Stay: An Air Force Case Study

    National Research Council Canada - National Science Library

    Obruba, Patrick

    2001-01-01

    A survey was completed by 362 active duty Air Force members in December 2000 regarding their perceptions of schedule predictability, work-family conflict, job satisfaction, organizational commitment...

  7. 77 FR 51526 - U.S. Air Force Scientific Advisory Board; Notice of Meeting

    Science.gov (United States)

    2012-08-24

    ... and DoD cyberspace for assuring cyberspace advantage; Air Force Global Strike Command overview highlighting high priority capability gaps and technology solution partnerships; and intelligence, surveillance...

  8. Air Force Journal of Logistics. Volume 29, Number 1, Spring 2005

    National Research Council Canada - National Science Library

    2005-01-01

    .... Using the commercial best practice of commodity councils, Air Force contracting has the opportunity to transition to a construct of strategic leverage quickly while minimizing the negative impact...

  9. Air Force Operational Medicine: Using the Estimating Supplies Program to Develop Materiel Solutions for the Operational Clinical Requirements for the U.S. Air Force Otolaryngology Team (FFENT)

    National Research Council Canada - National Science Library

    Hopkins, Curt; Nix, Ralph; Konoske, Paula; Pang, Gerry; Hill, Martin; Negus, Tracy; Onofrio, Kathleen

    2007-01-01

    ...) conduct a proof of concept study to assess the validity and feasibility of using NHRC's medical modeling tool for the development and management of Air force medical Allowance Standards as a baseline...

  10. Feasibility Study of a Novel High-Flow Cold Air Cooling Protocol of the Porcine Brain Using MRI Temperature Mapping.

    Science.gov (United States)

    Sedlacik, Jan; Kjørstad, Åsmund; Nagy, Zsuzsanna; Buhk, Jan-Hendrik; Behem, Christoph R; Trepte, Constantin J; Fiehler, Jens; Temme, Fabian

    2018-03-01

    Early, prehospital cooling seeks to reduce and control the body temperature as early as possible to protect the brain and improve patient outcome in cardiac arrest, stroke, and traumatic brain injury. In this study, we investigate the feasibility of localized cooling of the porcine brain by using a novel high-flow cold air protocol, which utilizes the close proximity between the nasal cavity and the brain. Five adult pigs were anesthetized and temperature change was mapped before, during, and after cooling by using the proton resonance frequency method on a 3 T Siemens Magnetom Skyra system. Cooling was performed by inserting a tube blowing high-flow (250 L/min) cold air (-10°C) through the nasal cavity for 5-20 minutes. The brain temperature change was measured by using an MRI phase mapping technique utilizing the temperature-dependent proton resonance frequency change. MRI maps showed significant temperature reduction of the porcine brain. On average, a mean whole-brain cooling effect of -0.33°C ± 0.30°C was found after 5 minutes of cooling. The anterior part of the brain was directly exposed to the cold and showed a significantly larger temperature drop (-0.83°C ± 0.51°C) than the posterior part (-0.03°C ± 0.21°C). However, a large variability of the temperature drop was observed between the animals. This variability may be caused by not well-controlled factors confounding the MRI temperature mapping, for example, subject movement, or cooling effectiveness, for example, core temperature or nasal patency. The results indicate that the proposed high-flow cold air protocol allows for localized cooling of the frontal porcine brain, which may be clinically relevant for traumatic injuries of the frontal brain where systemic cooling is unfavorable.

  11. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    Science.gov (United States)

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  12. Investigating the influence of photocatalytic cool wall adoption on meteorology and air quality in the Los Angeles basin

    Science.gov (United States)

    Zhang, J.; Tang, X.; Levinson, R.; Destaillats, H.; Mohegh, A.; Li, Y.; Tao, W.; Liu, J.; Ban-Weiss, G. A.

    2017-12-01

    Solar reflective "cool materials" can be used to lower urban temperatures, useful for mitigating the urban heat island effect and adapting to the local impacts of climate change. While numerous past studies have investigated the climate impacts of cool surfaces, few studies have investigated their effects on air pollution. Meteorological changes from increases in surface albedo can lead to temperature and transport induced modifications in air pollutant concentrations. In an effort to maintain high albedos in polluted environments, cool surfaces can also be made using photocatalytic "self-cleaning" materials. These photocatalytic materials can also remove NOx from ambient air, with possible consequences on ambient gas and particle phase pollutant concentrations. In this research, we investigate the impact of widespread deployment of cool walls on urban meteorology and air pollutant concentrations in the Los Angeles basin. Both photocatalytic and standard (not photocatalytic) high albedo wall materials are investigated. Simulations using a coupled meteorology-chemistry model (WRF-Chem) show that cool walls could effectively decrease urban temperatures in the Los Angeles basin. Preliminary results indicate that meteorology-induced changes from adopting standard cool walls could lead to ozone concentration reductions of up to 0.5 ppb. NOx removal induced by photocatalytic materials was modeled by modifying the WRF-Chem dry deposition scheme, with deposition rates informed by laboratory measurements of various commercially available materials. Simulation results indicate that increased deposition of NOx by photocatalytic materials could increase ozone concentrations, analogous to the ozone "weekend effect" in which reduced weekend NOx emissions can lead to increases in ozone. The impacts of cool walls on particulate matter concentrations are also discussed. Changes in particulate matter concentrations are found to be driven by albedo-induced changes in air pollutant

  13. The influence of cooling techniques on cutting forces and surface roughness during cryogenic machining of titanium alloys

    Directory of Open Access Journals (Sweden)

    Wstawska Iwona

    2016-12-01

    Full Text Available Titanium alloys are one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance. On the other hand, they also present problems wherein titanium alloys are extremely difficult materials to machine. In addition, the cost associated with titanium machining is also high due to lower cutting velocities and shorter tool life. The main objective of this work is a comparison of different cooling techniques during cryogenic machining of titanium alloys. The analysis revealed that applied cooling technique has a significant influence on cutting force and surface roughness (Ra parameter values. Furthermore, in all cases observed a positive influence of cryogenic machining on selected aspects after turning and milling of titanium alloys. This work can be also the starting point to the further research, related to the analysis of cutting forces and surface roughness during cryogenic machining of titanium alloys.

  14. Survey and assessment of radioactive waste management facilities in the United States. Section 2.5. Air-cooled vault storage facilities

    International Nuclear Information System (INIS)

    1986-01-01

    There are two basic types of air-cooled vaults for the storage of spent nuclear fuel or vitrified HLRW. The two types, differentiated by the method of air cooling used, are the open-vault concept and the closed-vault concept. The following aspects of these air-cooled vault storage facility concepts are discussed: description and operation of facilities; strucutral design considerations and analysis; nuclear design considerations and analyses; vault environmental design considerations; unique design features; and accident analysis

  15. A system for the discharge of gas bubbles from the coolant flow of a nuclear reactor cooled by forced circulation

    International Nuclear Information System (INIS)

    Markfort, D.; Kaiser, A.; Dohmen, A.

    1975-01-01

    In a reactor cooled by forced circulation the gas bubbles carried along with the coolant flow are separated before entering the reactor core or forced away into the external zones. For this purpose the coolant is radially guided into a plenum below the core and deflected to a tangential direction by means of flow guide elements. The flow runs spirally downwards. On the bubbles, during their dwell time in this channel, the buoyant force and a force towards the axis of symmetry of the tank are exerted. The major part of the coolant is directed into a radial direction by means of a guiding apparatus in the lower section of the channel and guided through a chimney in the plenum to the center of the reactor core. This inner chimney is enclosed by an outer chimney for the core edge zones through which coolant with a small share of bubbles is taken away. (RW) [de

  16. CFD-simulation of radiator for air cooling of microprocessors in a limitided space

    Directory of Open Access Journals (Sweden)

    Trofimov V. E.

    2016-12-01

    Full Text Available One of the final stages of microprocessors development is heat test. This procedure is performed on a special stand, the main element of which is the switching PCB with one or more mounted microprocessor sockets, chipsets, interfaces, jumpers and other components which provide various modes of microprocessor operation. The temperature of microprocessor housing is typically changed using thermoelectric module. The cold surface of the module with controlled temperature is in direct thermal contact with the microprocessor housing designed for cooler installation. On the hot surface of the module a radiator is mounted. The radiator dissipates the cumulative heat flow from both the microprocessor and the module. High density PCB layout, the requirement of free access to the jumpers and interfaces, and the presence of numerous sensors limit the space for radiator mounting and require the use of an extremely compact radiator, especially in air cooling conditions. One of the possible solutions for this problem may reduce the area of the radiator heat-transfer surfaces due to a sharp growth of the heat transfer coefficient without increasing the air flow rate. To ensure a sharp growth of heat transfer coefficient on the heat-transfer surface one should make in the surface one or more dead-end cavities into which the impact air jets would flow. CFD simulation of this type of radiator has been conducted. The heat-aerodynamic characteristics and design recommendations for removing heat from microprocessors in a limited space have been determined.

  17. Climate forcing and air quality change due to regional emissions reductions by economic sector

    Directory of Open Access Journals (Sweden)

    D. Shindell

    2008-12-01

    Full Text Available We examine the air quality (AQ and radiative forcing (RF response to emissions reductions by economic sector for North America and developing Asia in the CAM and GISS composition/climate models. Decreases in annual average surface particulate are relatively robust, with intermodel variations in magnitude typically <30% and very similar spatial structure. Surface ozone responses are small and highly model dependent. The largest net RF results from reductions in emissions from the North America industrial/power and developing Asia domestic fuel burning sectors. Sulfate reductions dominate the first case, for which intermodel variations in the sulfate (or total aerosol optical depth (AOD responses are ~30% and the modeled spatial patterns of the AOD reductions are highly correlated (R=0.9. Decreases in BC dominate the developing Asia domestic fuel burning case, and show substantially greater model-to-model differences. Intermodel variations in tropospheric ozone burden changes are also large, though aerosol changes dominate those cases with substantial net climate forcing. The results indicate that across-the-board emissions reductions in domestic fuel burning in developing Asia and in surface transportation in North America are likely to offer the greatest potential for substantial, simultaneous improvement in local air quality and near-term mitigation of global climate change via short-lived species. Conversely, reductions in industrial/power emissions have the potential to accelerate near-term warming, though they would improve AQ and have a long-term cooling effect on climate. These broad conclusions appear robust to intermodel differences.

  18. Consequences of Inconsistency in Air Force Tobacco Control Policy.

    Science.gov (United States)

    Lando-King, Elizabeth A; Malone, Ruth E; Haddock, Christopher K; Poston, Walker S Carlos; Lando, Harry A; Jahnke, Sara A; Hawk, Nita; Smith, Elizabeth A

    2017-04-01

    Although the United States Air Force (USAF) has been a leader in efforts to reduce tobacco use among service members, tobacco continues to be a problem and initiatives to decrease tobacco use further require buy-in from leadership. We explored line leaderships' perspectives on tobacco. A diverse group of 10 senior commissioned and 10 non-commissioned personnel were interviewed. Respondents reported substantial changes in the culture of tobacco use during their years of service, from near ubiquity to restricted use areas. They also perceived mixed messages coming from the USAF, including simultaneous discouragement of and accommodations for tobacco use, and variability in policies and enforcement. Many respondents indicated that allowing tobacco use creates conflict and undermines military discipline and suggested that a tobacco-free policy would be the best way to eliminate these contradictions. Although there has been substantial movement away from a culture of tobacco in the USAF, current policies and variable enforcement of these policies create unnecessary contradictions. Establishing a tobacco-free service would resolve these issues in addition to improving the health of service members and veterans.

  19. Sitewide feasibility study Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Lanigan, D.C.; Josephson, G.B.; Bagaasen, L.M.

    1995-09-01

    The Sitewide Feasibility Study (FS) is required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the National Contingency Plan (NCP), and the Federal Facility Agreement (FFA) for Eielson Air Force Base (AFB). It is based on findings presented in the Sitewide Remedial Investigation (RI) Report (USAF 1995a), and the Sitewide Baseline Risk Assessment (BLRA) Report (USAF 1995b). Under the FFA, 64 potential source areas were placed in one of six operable units, based on similar contaminant and environmental characteristics, or were included for evaluation under a Source Evaluation Report (SER). The sitewide RI was directed at contamination that was not confined to an operable unit (OU) or SER source area. The objectives of the sitewide RI were to: Provide information about site characteristics to support individual OU RI/FS efforts and the sitewide RI/FS, including site hydrogeology and determination of background soil and groundwater characteristics; identify and characterize contamination that is not confined or attributable to a specific source area through sitewide monitoring of groundwater and surface water; evaluate cumulative risks to human health and the environment from contamination on a sitewide basis; and provide a mechanism for continued cohesive sitewide monitoring.

  20. Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products

    Science.gov (United States)

    Nobis, T. E.

    2017-12-01

    Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.

  1. THE FUTURE OF THE EUROPEAN AIR TRANSPORT COMMAND: AN ANALYSIS OF CAPABILITY ENHANCEMENTS FROM THE ITALIAN AIR FORCE AND AIR MOBILITY COMMAND

    Science.gov (United States)

    2016-02-15

    from 1 July 2009; moreover, in the following years Spain and Luxembourg joined the venture and from January 2016 also Italy is part of the EATC. The...Mazzini is assigned to the Air War College, Air University, Maxwell AFB, AL. He joined the Italian Air Force Academy in 1994. He earned his pilot wings...essay identifies Italy’s decision to join the European Air Transport Command as a pivotal opportunity. The research argues that the European Air

  2. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    Science.gov (United States)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  3. Modelling of an air-cooled two-stage Rankine cycle for electricity production

    International Nuclear Information System (INIS)

    Liu, Bo

    2014-01-01

    This work considers a two stage Rankine cycle architecture slightly different from a standard Rankine cycle for electricity generation. Instead of expanding the steam to extremely low pressure, the vapor leaves the turbine at a higher pressure then having a much smaller specific volume. It is thus possible to greatly reduce the size of the steam turbine. The remaining energy is recovered by a bottoming cycle using a working fluid which has a much higher density than the water steam. Thus, the turbines and heat exchangers are more compact; the turbine exhaust velocity loss is lower. This configuration enables to largely reduce the global size of the steam water turbine and facilitate the use of a dry cooling system. The main advantage of such an air cooled two stage Rankine cycle is the possibility to choose the installation site of a large or medium power plant without the need of a large and constantly available water source; in addition, as compared to water cooled cycles, the risk regarding future operations is reduced (climate conditions may affect water availability or temperature, and imply changes in the water supply regulatory rules). The concept has been investigated by EDF R and D. A 22 MW prototype was developed in the 1970's using ammonia as the working fluid of the bottoming cycle for its high density and high latent heat. However, this fluid is toxic. In order to search more suitable working fluids for the two stage Rankine cycle application and to identify the optimal cycle configuration, we have established a working fluid selection methodology. Some potential candidates have been identified. We have evaluated the performances of the two stage Rankine cycles operating with different working fluids in both design and off design conditions. For the most acceptable working fluids, components of the cycle have been sized. The power plant concept can then be evaluated on a life cycle cost basis. (author)

  4. The Lavelle Affair: An Air Force Case Study in Ethics

    Science.gov (United States)

    2016-06-01

    narrative . However, the Lavelle case would prove resilient to the sands of time , persisting within Air University studies. The author’s...ADVANCED AIR AND SPACE STUDIES FOR COMPLETION OF GRADUATION REQUIREMENTS SCHOOL OF ADVANCED AIR AND SPACE STUDIES AIR UNIVERSITY MAXWELL...to thank the staff and faculty at the School of Advanced Air and Space Studies and my classmates of class XXV. This has been a rewarding year, both

  5. Environmental Assessment for Aerial Application of Pesticide for Gypsy Moth Control, Andrews Air Force Base, Maryland

    Science.gov (United States)

    2008-04-01

    limited quantities by a cooperative effort of the USDA Forest Service and the Animal Plant Health Inspection Service (APHIS). The active...AFB, 2007 18 SECTION 12 - ACRONYMS AND ABBREVIATIONS AFB Air Force Base AFI Air Force Instruction APHIS Animal Plant Health Inspection Service AWS

  6. Catalog of Audiovisual Productions. Volume 3. Air Force and Miscellaneous DoD Productions

    Science.gov (United States)

    1984-06-01

    4 INCH, VIDEO TAPE. FOLLOWED IN THEIR ATTACK ON PEARL HARBOR, PERSONNEL. ASTRONAUT COL. EDWIN E. * BUZZ " SHOING AN ISLAND REBUILT BUT ALSO EVOKING... ALDRIN COMMENTS ON THE OPPORTUNITIES IN THE 20165-DF AIR FORCE NOW 024 VISUALLY THE SCL.RS AND IEMORIALS OF THE AIR FORCE TODAY AND PROBLEMS OF DEALING

  7. Annotated Bibliography of the Air Force Human Resources Laboratory Technical Reports--1976.

    Science.gov (United States)

    Barlow, Esther M., Comp.

    This annotated bibliography presents a listing of technical reports (1976) dealing with personnel and training research conducted by the Air Force Human Resources Laboratory, an institution charged with the planning and execution of United States Air Force exploratory and advanced development programs for selection, motivation, training,…

  8. The South African Air Force, 1920–2012: A Review of its History and ...

    African Journals Online (AJOL)

    Although a South African Aviation Corps existed for a few months in 1915, and although several South Africans saw action in World War I as members of Britain's Royal Flying Corps, the history of the South African Air Force (SAAF) – the world's second oldest air force – strictly speaking only dates back to 1 February 1920.

  9. Environmental Assessment for Proposed Utility Corridors at Edwards Air Force Base, California

    Science.gov (United States)

    2016-07-01

    Air Force Base, California Figure 3-6 Los Angeles County Significant Ecological Areas 76 Environmental Assessment for Proposed Utility... Ecological Areas designated by Los Angeles County (refer to Section 3.7.2);  Potential wildlife movement corridors; and 81 Environmental Assessment...412th Test Wing Civil Engineer Group Environmental Management Division Edwards Air Force Base, California ENVIRONMENTAL ASSESSMENT FOR PROPOSED

  10. U.S. Air Force Banked Pilots. Is the Interest Worth the Deposits?

    Science.gov (United States)

    1993-11-17

    time passing out towels, checking identification cards and supervising workouts at the base weightlifting facility. 3• Similarly, an April 27, 1992...Aerospace World. "Pilot Shortage" Air Force Magazine Sept.31 1992. 20. Lynch, David J. "Angst at Olympic Arena" Air Force Magazine-I AUg. 1992. 22 21

  11. 2017 INFORMS PRIZE. The Nomination of The United States Air Force

    Science.gov (United States)

    2017-02-08

    controls all the Air Force fighter and intelligence aircraft and systems. The analysts assigned to Headquarters ACC/A9 provide analyses and lessons...Architecture Engineering, Multidisciplinary Engineering, Manufacturing Computer Science, Artificial Intelligence Economics Business Computer Science...In the past decade, Air Force remotely piloted aircraft (RPAs) have provided 24-hour intelligence -gathering and rapid-response strike capability

  12. Design of Air-Cooled Beam Dump for Extraction Line of PS Booster

    CERN Document Server

    Perillo-Marcone, A; Venturi, V; Antonakakis, T; Vlachoudis, V; Nowak, E; Mason, G; Battistin, M; Czapski, M; Sgobba, S

    2013-01-01

    A new beam dump has been designed, which withstands the future proton beam extracted from the Proton Syncrotron Booster (PSB) at CERN, consisting of up to 1E14 protons per pulse at 2 GeV after its upgrade in 2018/2019. In order to be able to efficiently release the deposited heat, the new dump will be made out of a single cylindrical block of a copper alloy and cooled by forced ventilation. In order to determine the energy density distribution deposited by the beam in the dump, Monte Carlo simulations were performed using FLUKA, and thermomechanical analyses carried out by importing the energy density into Ansys. In addition, CFD simulations of the airflow were carried out in order to accurately estimate the heat transfer convection coefficient on the surface of the dump. This paper describes the design process and highlights the constraints of integrating a new dump for increased beam power into the existing facility.

  13. Air conditioning cool contribution to global warming?; Airconditioning koele bijdrage aan global warming?

    Energy Technology Data Exchange (ETDEWEB)

    Oudshoff, B.

    2010-06-15

    Similar to the Netherlands, the percentage of buildings with air-conditioning is growing steadily in the United Stated (US). This makes it an interesting area for energy saving. New technological developments offer opportunities to drastically reduce energy use for cooling. The best option is obviously to no longer deploy mechanical cooling but this is not a realistic option for warmer areas. This article addresses new technologies and several newly established companies in California and Colorado that target this market. [Dutch] In de Verenigde Staten (VS) groeit het percentage van gebouwen met airconditioning, net als in Nederland, de laatste jaren gestaag door. Hiermee is het een interessant gebied voor mogelijke energiebesparing. Nieuwe technologische ontwikkelingen bieden kansen om het energiegebruik voor koeling drastisch te verminderen. De beste oplossing is uiteraard geen mechanische koeling meer toe te passen maar voor warmere gebieden is die optie niet reeel. In dit artikel wordt ingegaan op nieuwe technologie en enkele startende bedrijven in Californie en Colorado die zich op deze markt richten.

  14. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik

    2015-01-01

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized

  15. Review on Enhanced Heat Transfer Techniques using Modern Technologies for 4S Air Cooled Engines

    Science.gov (United States)

    Ramasubramanian, S.; Bupesh Raja, V. K.

    2017-05-01

    Engine performance is a biggest challenge and a vital area of concern when it comes to automobiles. Researchers across the globe have been working decades together meticulously improvising the performance of engine in terms of efficiency. The durability of the engine components mainly depends on the thermal stress it undergoes over the period of operation. Air cooling of engine is the simplest and most desirous technique that has been adopted for ages. In this regard fins or extended surfaces are employed for effective cooling of the cylinder while in operation. The conductive and convective heat transfer rate from the cylinder to the fins and in turn from the fins to surrounding ambience determines the effective performance of the engine. In this paper an attempt is made to review and summarize the various researches that were conducted on the Fins in terms of profile geometry, number of fins, size, thickness factor, material used etc., and to bring about a long term solution with the modern technologies like nano coatings and nano materials.

  16. Fiber Orientation Effects in Fused Filament Fabrication of Air-Cooled Heat Exchangers

    Science.gov (United States)

    Mulholland, T.; Goris, S.; Boxleitner, J.; Osswald, T. A.; Rudolph, N.

    2018-01-01

    Fused filament fabrication (FFF) is a type of additive manufacturing based on material extrusion that has long been considered a prototyping technology. However, the right application of material, process, and product can be used for manufacturing of end-use products, such as air-cooled heat exchangers made by adding fillers to the base polymer, enhancing the thermal conductivity. Fiber fillers lead to anisotropic thermal conductivity, which is governed by the process-induced fiber orientation. This article presents an experimental study on the microstructure-property relationship for carbon fiber-filled polyamide used in FFF. The fiber orientation is measured by micro-computed tomography, and the thermal conductivity of manufactured samples is measured. Although the thermal conductivity is raised by more than three times in the fiber orientation direction at a load of only 12 vol.%, the enhancement is low in the other directions, and this anisotropy, along with certain manufacturing restrictions, influences the final part performance.

  17. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  18. Fiber Orientation Effects in Fused Filament Fabrication of Air-Cooled Heat Exchangers

    Science.gov (United States)

    Mulholland, T.; Goris, S.; Boxleitner, J.; Osswald, T. A.; Rudolph, N.

    2018-03-01

    Fused filament fabrication (FFF) is a type of additive manufacturing based on material extrusion that has long been considered a prototyping technology. However, the right application of material, process, and product can be used for manufacturing of end-use products, such as air-cooled heat exchangers made by adding fillers to the base polymer, enhancing the thermal conductivity. Fiber fillers lead to anisotropic thermal conductivity, which is governed by the process-induced fiber orientation. This article presents an experimental study on the microstructure-property relationship for carbon fiber-filled polyamide used in FFF. The fiber orientation is measured by micro-computed tomography, and the thermal conductivity of manufactured samples is measured. Although the thermal conductivity is raised by more than three times in the fiber orientation direction at a load of only 12 vol.%, the enhancement is low in the other directions, and this anisotropy, along with certain manufacturing restrictions, influences the final part performance.

  19. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air

    Science.gov (United States)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier

    2016-11-01

    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  20. Evaporative and sorptive cooling. Possibilities and limitations in air treatment.; Evaporativ och sorptiv kylning. Moejligheter och begraensningar vid luftbehandling

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, T. [Chalmers Univ. of Techn., Goeteborg (Sweden). Dept. of Building Services Engineering

    2001-10-01

    A primary demand for a good indoor climate in a building is that temperature and humidity are maintained at comfortable levels, regardless of the prevailing outdoor climate. Some buildings often have a heat surplus for a great part of the year due to internal activities, even in climates with moderate ambient temperatures. This heat surplus has to be removed in order to fulfil the specified requirements on the indoor climate. The focus in this report is on possibilities and limitations using evaporative and desiccant cooling to satisfy the cooling demands in such buildings. Today the most common technical solution is to use a compressor refrigeration system for air-conditioning. As a result of the greenhouse effect and the ozone depletion debate, the prerequisites for compressor refrigeration systems have been changed. Evaporative cooling is an interesting alternative to conventional compressor refrigeration systems. However, the use of evaporative cooling presupposes all-air systems. The use of such a system will also, to a large extent, be limited by ambient conditions as well as the settled demands on the indoor climate. High outdoor humidity levels have great influence on the supply-air temperature achievable, i.e., cooling loads possible to meet. One way to considerably reduce the influence of these limitations is to use desiccant cooling, i.e., to dehumidify the ambient air before the evaporative stages. In this report, a general methodology to describe possibilities and limitations for evaporative and desiccant cooling, is presented. The major advantage of this methodology is that it may give rise to an increased understanding of these processes and, hence, be a guide to a proper dimensioning.

  1. A Delphi Study Using Value-Focused Thinking for United States Air Force Mission Dependency Index Values

    Science.gov (United States)

    2015-03-26

    Infrastructure Prioritization Balanced Scorecard .................................................... 6 Figure 5. USAF CATCODE Distribution vs. MDI Values ...A DELPHI STUDY USING VALUE -FOCUSED THINKING FOR UNITED STATES AIR FORCE MISSION DEPENDENCY INDEX... VALUES THESIS Matthew J. Nichols, Captain, USAF AFIT-ENV-MS-15-M-192 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF

  2. Radiofrequency radiation: safe working practices in the Royal Australian Air Force

    International Nuclear Information System (INIS)

    Joyner, K.H.; Stone, K.R.

    1988-01-01

    The Royal Australian Air Force (RAAF) has long recognised the value of its work force and the need to preserve their health and wellbeing to achieve operational objectives. The Directorate of Air Force Safety (DAFS) is required by the Chief of the Air Staff to take all measures possible to prevent accidents and incidents in the RAAF, under the provisions of the Defence Instruction, 'Air Force Safety and Occupational Health Policy'. Consequently, the RAAF has exercised a pragmatic approach to radiofrequency radiation (RFR) and has always adopted and implemented strict exposure standards. DAFS receives technical advice on RFR from the Directorate of Telecommunications Engineering (DTELENG) and on occupational health from the Directorate General of Air Force Health Services (DGAFHS)

  3. Data acquisition and analysis of passive solar cooling effects by storage of out door air in the middle of the night; Shin'ya gaiki chikurei ni yoru shizen reibo koka no jissoku to kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, H.; Kasutani, A. [Komazawa Womens Junior College, Tokyo (Japan); Koizumi, H.

    1998-12-05

    Passive cooling by storing coolness of out door air in the middle of the night in rock bed is realized by air type solar system without any additional equipment. The advantage of the passive cooling is confirmed with measuring performance of the passive cooling effect of air type solar system equipped in our Komazawa Womens Junior College last year. (author)

  4. Environmental Assessment for the Construction of a Community Activities Center Malmstron Air Force Base, Montana

    Science.gov (United States)

    2008-12-01

    area prior to Lewis and Clark’s Voyage of Discovery, but in 1805 the expedition’s portage around the Great Falls probably took them across what is now...on Malmstrom AFB. Malmstrom AFB conducted an architectural inventory in 1996 to identify Cold War resources. The inventory also identified a...Force Base Inventoried Wetland Sites. October. Malmstrom Air Force Base (Malmstrom AFB). 2006c. Malmstrom Air Force Base 341 SW OPLAN 32-7041 Storm

  5. Inpatient Psychiatric Admission Rates in a U.S. Air Force Basic Military Training Population

    Science.gov (United States)

    2017-05-20

    Force Basic Military Training Population presented at/published to 2017 American Psychiatric Association Annual Meeting, San Diego, CA, 20-24 May...ADMISSION RATES IN AN U.S. AIR FORCE BASIC MILITARY TRAINING POPULATION 7. FUNDING RECEIVED FOR THIS STUDY? 0 YES 181 NO FUNDING SOURCE: 8. DO YOU NEED...U.S. AIR FORCE BASIC MILITARY TRAINING POPULATION Background: Mental health admission rates for those with no active mental health disorders have

  6. Combat Support Execution Planning and Control. An Assessment of Initial Implementations in Air Force Exercises

    Science.gov (United States)

    2009-01-01

    time-phased force and deployment data USAFE U.S. Air Forces in Europe UTASC USAFE Theater Aerospace Support Center UTC unit type code WPC Warfighter...scenario and supporting simulated environment were developed and run by the Warfighter Preparation Center ( WPC ) facility at Einsedlerhof Air Station near...participate.11 Forces below the operational level were simulated by the WPC . The training audience consisted of the JFACC and staff, AFFOR staff, AOC, and the

  7. Technology Horizons: A Vision for Air Force Science and Technology 2010-30

    Science.gov (United States)

    2011-09-01

    the Harold Keith Johnson Visiting Chair in Military History at the US Army Military History Institute, Army War College. He was a founding curator...and Dr. Theodore von Kármán. Maxwell AFB, AL: Air University Press, 1997. Day, Dwayne A. Lightning Rod: A History of the Air Force Chief...Directorate of Strategic Plan- ning, 2008. Johnson , Stephen. The United States Air Force and the Culture of Inno- vation: 1945–1965. Washington, DC

  8. Waste-to-Energy Plant Environmental Assessment, Dyess Air Force Base, Texas

    Science.gov (United States)

    2011-09-01

    AGE aerospace ground equipment Air Force United States Air Force ATSDR Agency for Toxic Substances and Disease Registry CAA Clean Air Act CAAA...the heart of the WTE plant. The WTE itself would be comprised of several components that are typically used for power generation, including a...tailed hawk, Swainson’s hawk, vesper sparrow, Mourning dove, northern bobwhite, wild turkey, golden-fronted woodpecker, ladder-backed woodpecker

  9. Environmental Assessment: Hurricane Katrina Recovery and Installation Development at Keesler Air Force Base, Mississippi

    Science.gov (United States)

    2006-12-01

    AC Advisory Circular ADSL Average Daily Student Load AETC Air Education and Training Command AFB Air Force Base AFH Air Force Handbook ANSI...and 67 percent as off-base residents based on data obtained from the 2004 EIA. The military personnel figure was obtained by subtracting the ADSL ...contract, and all other non-military employees. 3ADSL provided in 2004 EIA. Assumed 100 percent of ADSL live on base, based on information obtained from

  10. A Case Study On Human Capital Mismanagement In The United States Air Force

    Science.gov (United States)

    2016-05-08

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY A Case Study on Human Capital Mismanagement in the United States Air Force By John P...Force does not effectively manage its human capital to develop and retain a technically literate acquisitions workforce. A detailed look at the...Several solutions are suggested to improve the human capital management and increase the quality and relevancy of the acquisitions community at

  11. A Search for Warriors: The Effects of Technology on the Air Force Ethos

    Science.gov (United States)

    1997-04-01

    of soma cures ten gloomy. — Aldous Huxley Brave New World Change In The Air Global Engagement Following the 1996 Fall CORONA1 the Air Force...all drug the government gave the citizens of Aldous Huxley’s Brave New World to solve their problems (the “gloomys.”) In so doing the government...viii THE CHANGING AIR FORCE: A BRAVE NEW WORLD

  12. Improving the Electrical Parameters of a Photovoltaic Panel by Means of an Induced or Forced Air Stream

    Directory of Open Access Journals (Sweden)

    R. Mazón-Hernández

    2013-01-01

    Full Text Available The main priority in photovoltaic (PV panels is the production of electricity. The transformation of solar energy into electricity depends on the operating temperature in such a way that the performance increases with the decreasing temperatures. In the existing literature, different cooling techniques can be found. The purpose of most of them is to use air or water as thermal energy carriers. This work is focused on the use of air as a working fluid whose movement is either induced by natural convection or forced by means of a fan. The aim of this study is to characterise the electrical behaviour of the solar panels in order to improve the design of photovoltaic installations placed in roof applications ensuring low operating temperatures which will correct and reverse the effects produced on efficiency by high temperature. To do this, a test installation has been constructed at the Universidad Politécnica de Cartagena in Spain. In this paper, the results of the tests carried out on two identical solar panels are included. One of them has been modified and mounted on different channels through which air flows. The different studies conducted show the effects of the air channel cross-section, the air velocity, and the panel temperature on the electrical parameters of the solar panels, such as the voltage, current, power, and performance. The results conclude that the air space between the photovoltaic panels and a steel roof must be high enough to allow the panel to be cooled and consequently to achieve higher efficiency.

  13. Reliable Force Predictions for a Flapping-wing Micro Air Vehicle : A "Vortex-lift" Approach

    NARCIS (Netherlands)

    Thielicke, W.; Kesel, A. B.; Stamhuis, Eize

    2011-01-01

    Vertical and horizontal force of a flapping-wing micro air vehicle (MAV) has been measured in slow-speed forward flight using a force balance. Detailed information on kinematics was used to estimate forces using a blade-element analysis. Input variables for this analysis are lift and drag

  14. Premature Extinction of the Weather Observer: How Much Risk is the Air Force Assuming

    Science.gov (United States)

    2015-12-01

    AU/ACSC/2015 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY PREMATURE EXTINCTION OF THE WEATHER OBSERVER: HOW MUCH RISK IS...potential alternative methods . 8 Cornick, Jon. “A Comparison of Ceiling and Visibility Observations for...relative humidity, lightning, and pressure are not duplicated. The U.S. Air Force currently utilizes two methods of AMOS service and upkeep

  15. A decade of U.S. Air Force bat strikes

    Science.gov (United States)

    Peurach, Suzanne C.; Dove, Carla J.; Stepko, Laura

    2009-01-01

    From 1997 through 2007, 821 bat strikes were reported to the U.S. Air Force (USAF) Safety Center by aircraft personnel or ground crew and sent to the National Museum of Natural History, Smithsonian Institution, for identification. Many samples were identified by macroscopic and or microscopic comparisons with bat specimens housed in the museum and augmented during the last 2 years by DNA analysis. Bat remains from USAF strikes during this period were received at the museum from 40 states in the United States and from 20 countries. We confirmed that 46% of the strikes were caused by bats, but we did not identify them further; we identified 5% only to the family or genus level, and 49% to the species level. Fifty-five of the 101 bat-strike samples submitted for DNA analysis have been identified to the species level. Twenty-five bat species have been recorded striking USAF planes worldwide. The Brazilian free-tailed bat (Tadarida brasiliensis; n = 173) is the species most commonly identified in USAF strike impacts, followed by the red bat (Lasiurus borealis; n = 83). Bat strikes peak during the spring and fall, with >57% occurring from August through October; 82% of the reports that included time of strike were recorded between 2100 and 0900 hours. More than 12% of the bat strikes were reported at >300 m above ground level (AGL). Although $825,000 and >50% of this sum was attributable to 5 bat-strike incidents. Only 5 bats from the 10 most damaging bat strikes were identified to the species level, either because we did not receive remains with the reports or the sample was insufficient for identification.

  16. Research on water hammer forces caused by rapid growth of bubbles at severe accidents of water cooled reactors

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Adachi, Masaki; Aya, Izuo

    2004-01-01

    At severe accidents of Water Cooled Reactors a great deal of gas is expected to be produced in a short time within the water of lower part of nuclear pressure vessel and containment vessel caused by hydrogen production with a metal water reaction and steam explosions with direct contact of melting core and water. Water hammer forces caused by rapid growth of bubbles shall work on the wall of containment vessel and affect its integrity. Coherency of water block movement is not clear, whether simultaneous or in the same direction. Water block behavior and water hammer forces caused by rapid growth of bubbles have been tested using a modified scale model and analyzed to obtain experimental correlated equation to estimate water block's rising distance and velocity from water hammer data. Numerical analysis using RELAP5-3D (Reactor Excursion and Leak Analysis Program) has been conducted to evaluate water hammer forces and makes clear its modifications needed. (T. Tanaka)

  17. Effect of particle shape on capillary forces acting on particles at the air-water interface.

    Science.gov (United States)

    Chatterjee, Nirmalya; Flury, Markus

    2013-06-25

    The capillary forces exerted by moving air-water interfaces can dislodge particles from stationary surfaces. The magnitude of the capillary forces depends on particle shape, orientation, and surface properties, such as contact angle and roughness. The objective was to quantify, both experimentally and theoretically, capillary force variations as an air-water interface moves over the particles. We measured capillary forces as a function of position, i.e., force-position curves, on particles of different shape by using force tensiometry. The particles (5 mm nominal size) were made of polyacrylate and were fabricated using a 3D printer. Experimental measurements were compared with theoretical calculations. We found that force-position curves could be classified into in three categories according to particle shapes: (1) curves for particles with round cross sections, such as spheroidal particles, (2) curves for particles with fixed cross sections, such cylindrical or cubical particles, and (3) curves for particles with tapering cross sections, such as prismatic or tetrahedral particles. Spheroidal particles showed a continuously varying capillary force. Cylindrical or cubical particles showed pronounced pinning of the air-water interface line at edges. The pinning led to an increased capillary force, which was relaxed when the interface snapped off from the edges. Particles with tapering cross section did not show pinning and showed reduced capillary forces as the air-water interface line perimeter and displacement cross section continuously decrease when the air-water interface moved over the particles.

  18. A method for the determination of volatile ammonia in air, using a nitrogen-cooled trap and fluorometric detection

    NARCIS (Netherlands)

    Westra, H.G.; Tigchelaar, R.G.; Berden, J.A.

    2001-01-01

    A quick, cheap, and accurate method for the determination of ammonia in air is described. Ammonia and water vapor are trapped simultaneously in a gas sampling tube cooled in liquid nitrogen. Subsequently ammonia is derivatized with o-phthaldialdehyde and determined using fluorescence detection. The

  19. Experimental study of the heat transfers and passive cooling potential of a ventilated plenum designed for uniform air distribution

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Lessing, Julian

    2016-01-01

    suspended ceiling to uniformly distribute the supply air to the occupied zone. This, in effect, increases the thermal mass of the room because the upper slab of the room no longer is isolated from the occupied zone. In this study, the cooling potential of a diffuse ceiling ventilation system is i...

  20. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    Science.gov (United States)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  1. Study of heat transfer and pressure drop characteristics of air heat exchanger using PCM for free cooling applications

    Directory of Open Access Journals (Sweden)

    Kalaiselvam Sivakumar

    2016-01-01

    Full Text Available Free cooling is the process of storing the cool energy available in the night ambient air and using it during the day. The heat exchanger used in this work is a modular type which is similar to the shell and tube heat exchanger. The shell side is filled with Phase Change Materials (PCM and air flow is through the tubes in the module. The modules of the heat exchanger are arranged one over other with air spacers in between each module. The air space provided in between the module in-creases the retention time of the air for better heat transfer. Transient Computational Fluid Dynamics modeling is carried out for single air passage in a modular heat exchanger. It shows that the PCM phase transition time in the module in which different shape of fins is adopted. The module with rectangular fins has 17.2 % reduction in solidification compared with the plain module. Then steady state numerical analysis is accomplished to the whole module having the fin of high heat transfer, so that pressure drop, flow and thermal characteristics across the module and the air spacers are deter-mined for various air inlet velocities of 0.4 to 1.6 m/s. To validate the computational results, experiments are carried out and the agreement was found to be good.

  2. A Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Crawford, Winifred; Roeder, William

    2008-01-01

    This conference abstract describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violatioas.The tool will include climatologies of the 5-minute mean end peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  3. Probe And Drogue Aerial Refueling Requirements: How Will Air Force Special Operations Command Meet Future Demands?

    Science.gov (United States)

    2002-06-01

    Global Strike Task Force,” ( GSTF ) which will be explained in greater detail shortly. Added to this requirement is the need to increase the...21 Global Strike Task Force Global Strike Task Force ( GSTF ) is the concept, initiated by General John R. Jumper, Air Force Chief of Staff...the way we fight. GSTF is the Chief’s concept to deal with the difficulties presented by regional threats, asymmetric challenges, and wild card

  4. Marshal of the Royal Air Force Sir John Cotesworth Slessor and the Anglo-American Air Power Alliance, 1940-1945

    National Research Council Canada - National Science Library

    Connolly, Corvin

    2001-01-01

    .... He played a remarkable and extensive role in building the Anglo-American air power partnership as an air planner on the Royal Air Force Staff, the British Chiefs of Staff, and the Combined Chiefs of Staff...

  5. Reflecting Warfighter Needs in Air Force Programs: Prototype Analysis

    Science.gov (United States)

    2010-01-01

    JUSTICE EDUCATION ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE INTERNATIONAL AFFAIRS NATIONAL SECURITY POPULATION AND AGING PUBLIC SAFETY SCIENCE AND...States. Air Force— Combat sustainability . 4. United States. Air Force—Operational readiness. 5. Close air support. I. Davis, Paul K., 1943...Decisionmakers are shown options at the scorecard level, where they see multicriteria evaluations rather than evaluations in terms of some net effectiveness. For

  6. The Lightning Bolt and the Quill: Determining the Role of Air Force Public Affairs in Information Warfare

    National Research Council Canada - National Science Library

    Englin, David

    1998-01-01

    As the Air Force's internal and external public voice, Air Force public affairs is uniquely positioned to influence the flow of information to different audiences about a variety of issues and operations...

  7. Conduction and Utilization of Research: The Relationship Between Air Force Nurses' Attitudes, Levels of Education, and Rank

    National Research Council Canada - National Science Library

    Moledor, Heather

    1999-01-01

    .... Air Force nurses had an overall good attitude toward nursing research. Air Force nurses at the Diploma, BSN, and MSN education levels in nursing had the most research experience in the past five years...

  8. United States Air Force Company Grade Officer PME and Leader Development: Establishing a Glide Path for Future Success

    National Research Council Canada - National Science Library

    Owens, Patrick

    2002-01-01

    .... This monograph addresses the role of PME at the company grade level in the development of Air Force officers in light of ongoing Army and Air Force leader development initiatives as well as recent...

  9. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints

    Science.gov (United States)

    Shafer, Jaclyn A.; Wheeler, Mark M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in

  10. Supplemental site inspection for Air Force Plant 59, Johnson City, New York, Volume 1: Investigation report

    Energy Technology Data Exchange (ETDEWEB)

    Nashold, B.; Rosenblatt, D.; Hau, J. [and others

    1995-08-01

    This summary describes a Supplemental Site Inspection (SSI) conducted by Argonne National Laboratory (ANL) at Air Force Plant 59 (AFP 59) in Johnson City, New York. All required data pertaining to this project were entered by ANL into the Air Force-wide Installation Restoration Program Information System (IRPIMS) computer format and submitted to an appropriate authority. The work was sponsored by the United States Air Force as part of its Installation Restoration Program (IRP). Previous studies had revealed the presence of contaminants at the site and identified several potential contaminant sources. Argonne`s study was conducted to answer questions raised by earlier investigations.

  11. Theoretical modelling and experimental study of air thermal conditioning process of a heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Li, Zan; Hu, Wenju

    2017-01-01

    purification aimed at improving indoor air quality and reducing building energy consumption. The heat and moisture transfer in adsorption desiccant rotor was theoretical modelled with one-dimensional partial differential equations. The theoretical model was validated with experimental measurements......Taking the integrated gaseous contaminants and moisture adsorption potential of desiccant material, a new heat pump assisted solid desiccant cooling system (HP-SDC) was proposed based on the combination of desiccant rotor with heat pump. The HP-SDC was designed for dehumidification, cooling and air......, and the results showed the model could be used to predict the heat and moisture transfer in desiccant rotor. The air thermal conditioning process and energy consumption of HP-SDC was then experimental measured under varied outdoor thermal environments. Results showed that compared to conventional ventilation...

  12. 2D study of wind forces around multiple cooling towers using ...

    African Journals Online (AJOL)

    A comprehensive numerical study for the determination of wind pressure coefficients on multiple cooling towers by simulating turbulence using Reynolds Averaged Navier-Stokes Equations (RANS) models of Computational Fluid Dynamics techniques (CFD) such as, Standard k −ε , RNG k −ε , Realizable k −ε and Reynolds ...

  13. Supplemental Environmental Assessment:VTRS Fiber Optic Cable Installation on South Base Vandenberg Air Force Base, California

    Science.gov (United States)

    2007-11-08

    Vandenberg Air Force base, California 2003-08 E-3961 Owen and Lebow 2003, Archaeological Survey for Proposed Wind Farm South Vandenberg Air Force Base...ebow, C.G., and R.L. McKim. 1997. Cultural Resources Condition on Vandenberg Air Force Base Fiscal Year 1997: Zones rks, Inc., Fresno , California , for...Force Base, California . (VAFB- 1990-11) Owen, V.A., and C.G. Lebow. 2003. Archaeological Survey for the Proposed Wind Farm South Vandenberg Air

  14. Air Force Command and Control: The Need for Increased Adaptability

    Science.gov (United States)

    2012-07-01

    Commander, General Michael Moseley, Coalition Forces Land Component Commander, Lieutenant General Da­ 76 vid McKiernan, Coalition Forces Maritime...Command and Control of Space Assets The unique characteristics of systems operating in the ulti­ mate high ground present special considerations for the C2

  15. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  16. Current Air Force Combat Search and Rescue Challenges

    Science.gov (United States)

    2009-02-12

    CREED It is my duty, as a member of the Air Rescue Service , to save life and aid the injured. I will be prepared at all times to perform my assigned...Richard Kight, Commander, Air Rescue Service , 1 Dec 1946 – 8 July 1952 Contents

  17. Air Force Achieves Fuel Efficiency through Industry Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  18. Thermodynamic modelling and performance study of an engine waste heat driven adsorption cooling for automotive air-conditioning

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh

    2015-01-01

    Waste heat from engine can be utilized to drive an adsorption cooling system for air conditioning purposes in the vehicle cabin, which not only improves the fuel economy but also reduces the carbon footprint. It is also important to reduce the size of the adsorption bed to adopt the adsorption technology for air-conditioning applications in passenger cars, buses and trucks or even trains. In this article, we present a two stage indirect exhaust heat recovery system of automotive engine employing an effective lumped parameter model to simulate the dynamic behaviors of an adsorption chiller that ranges from the transient to the cyclic steady states. The thermodynamic framework of adsorption chiller is developed from the rigor of mass and energy balances of each component of the system and experimentally confirmed isotherms and kinetics data of various adsorbent–adsorbate pairs. The performance factors are calculated in terms of COP (Coefficient of Performance) and SCP (Specific Cooling Power) for different operating parameters such as cycle time, exhaust gas temperatures, cooling water temperatures and flow rates. From the simulation results, it is found that the exhaust energy of a six cylinder 3000 cc private car is able to produce nearly 3 kW of cooling power for the car cabin. It is also observed that the driving heat source temperature does not remain constant throughout the cycle time unlike the conventional adsorption chiller, and the hot water temperatures as driving source vary from 65 to 95 °C. CaCl 2 -in-silica gel–water system is found better in terms of COP and SCP as compared with other adsorbents – water systems. - Highlights: • Adsorption cooling for car air conditioning. • Thermodynamic frameworks with adsorption isotherms and kinetics. • Various adsorbents such as silica gel, zeolites (AQSOA-Z01, Z-02), CaCl 2 -in-silica gel are tested. • Cooling power for car cabin employing waste heat recovery.

  19. Thermodynamic assessment of power requirements and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman

    International Nuclear Information System (INIS)

    Dawoud, B.; Zurigat, Y.H.; Bortmany, J.

    2005-01-01

    Gas-turbine inlet air cooling has been considered for boosting the power output during hot seasons. In this paper, the power requirements of several inlet air cooling techniques for gas-turbine power plants in two locations; namely, Marmul and Fahud, in Oman have been evaluated using typical meteorological year (TMY) data. The considered techniques are evaporative cooling, fogging cooling, absorption cooling using both LiBr-H 2 O and aqua-ammonia, and vapour-compression cooling systems. For evaporative cooling, an 88% approach to the wet-bulb temperature has been considered, compared with a 98% approach for fogging cooling. A design compressor inlet air temperature of 14 deg C has been assigned to LiBr-water chilling systems. For both aqua-ammonia absorption and vapour-compression refrigerating systems, a design compressor inlet air temperature of 8 deg C has been selected to avoid the formation of ice fragments as the air is drawn into the mouth of the compressor. These technologies have been compared with respect to their effectiveness in power boosting of small-size gas-turbine power plants used in two oil fields at Marmul and Fahud in the Sultanate of Oman. Fogging cooling is accompanied with 11.4% more electrical energy in comparison with evaporative cooling in both locations. The LiBr-H 2 O cooling offers 40% and 55% more energy than fogging cooling at Fahud and Marmul, respectively. Applying aqua-ammonia-water and vapour-compression cooling, a further annual energy production enhancement of 39% and 46% is expected in comparison with LiBr-H 2 O cooling at Fahud and Marmul, respectively

  20. 32 CFR 903.6 - Reassignment of Air Force members to become cadet candidates at the preparatory school.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Reassignment of Air Force members to become cadet candidates at the preparatory school. 903.6 Section 903.6 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE MILITARY TRAINING AND SCHOOLS AIR FORCE ACADEMY PREPARATORY SCHOOL...

  1. Numerical Study on the Design Concept of an Air-Cooled Condensation Heat Exchanger in a Long-term Passive Cooling System

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Park, Hyun Sik; Lee, Hee Joon

    2016-01-01

    SMART is the only licensed SMR in the world since the Nuclear Safety and Security Commission (NSSC) issued officially the Standard Design Approval (SDA) on 4 July 2012. Recently, the pre-project engineering (PPE) was officially launched for the construction of SMART and developing human resources capability. Both KAERI and King Abdullah City for Atomic and Renewable Energy (K.A. CARE) will conduct a three-year preliminary study to review the feasibility of building SMART and to prepare for its commercialization. SMART is equipped with passive cooling systems in order to enhance the safety of the reactor. The PRHRS (Passive Residual Heat Removal System) is the major passive safety system, which is actuated after an accident to remove the residual heat and the sensible heat from the RCS (Reactor Coolant System) through the steam generators (SGs) until the safe shutdown condition is reached. In this study, condensing heat transfer correlations in TSCON were validated using experimental data. It was shown that most of the condensation correlation gave satisfactory predictions of the cooling capacity of an-air cooled condensation heat exchanger

  2. Experiment of IEA-R1 reactor core cooling by air convection after pool water loss accident

    International Nuclear Information System (INIS)

    Torres, Walmir Maximo; Baptista Filho, Benedito Dias

    2000-01-01

    This paper presents a study of a Emergency Core Cooling to be applied to the IEA-R1 reactor. This system must have the characteristics of passive action, with water spraying over the core, and feeding by gravity from elevated reservoirs. In the evaluation, this system must demonstrate that when the reservoirs are emptied, the core cooling must assure to be fulfilled by air natural convection. This work presents the results of temperature distribution in a test section with plates electrically heated simulation the heat generation conditions on the most heated reactor element

  3. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California.

    Science.gov (United States)

    Epstein, Scott A; Lee, Sang-Mi; Katzenstein, Aaron S; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C; Vahmani, Pouya; Fine, Philip M; Ban-Weiss, George

    2017-08-22

    The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM 2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California's Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM 2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  4. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California

    Science.gov (United States)

    Epstein, Scott A.; Lee, Sang-Mi; Katzenstein, Aaron S.; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C.; Vahmani, Pouya; Fine, Philip M.; Ban-Weiss, George

    2017-08-01

    The installation of roofing materials with increased solar reflectance (i.e., “cool roofs”) can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California’s Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  5. Adhesion force imaging in air and liquid by adhesion mode atomic force microscopy

    NARCIS (Netherlands)

    van der Werf, Kees; Putman, C.A.J.; Putman, Constant A.; de Grooth, B.G.; Greve, Jan

    1994-01-01

    A new imaging mode for the atomic force microscope(AFM), yielding images mapping the adhesion force between tip and sample, is introduced. The adhesion mode AFM takes a force curve at each pixel by ramping a piezoactuator, moving the silicon‐nitride tip up and down towards the sample. During the

  6. Effect of Air Cooling and Vacuum Cooling Storage on the β-Carotene Content and Proximate Analysis (Water Content, pH, Total Protein and Content of Sugar) in Carrot

    Science.gov (United States)

    Kusumaningsih, T.; Martini, T.; Rini, K. S.; Okstafiyanti, L.

    2017-04-01

    The study of air cooling and vacuum cooling storage effect on the β-carotene content and proximate analysis in carrot has been studied. The aim of the research to determine the effective storage in carrot to improve the quality and the shelf life. Parameters measured during the 12 weeks of storage process were β-carotene, pH, water, sugar and protein content. Validation analysis for β-carotene method showed a good linearity (r 2 = 0.997) in a range of 0-8 mg/L and (r 2 = 0.999) in a range of 0-1 mg/L. The precision was exemplified by %RSD of 0.88%-7.48%. Mean recovery was 100.66% during accuracy studied. UV analysis revealed the LOD values were 0.009 mg/L and LOQ values were 0.032 mg/L. The decreased content of β-carotene, water, protein, and pH from carrot during vacuum cooling storage were higher than in the air cooling storage period. The sugar content for air cooling storage increased up to eight weeks and decreased at the end of storage while the vacuum cooling storage decreased from the beginning of the storage period. All the data indicates that the air cooling storage was more effective storage techniques for extending the shelf life of carrot compared to the vacuum cooling storage.

  7. A novel trapezoid fin pattern applicable for air-cooled heat sink

    Science.gov (United States)

    Chen, Chien-Hung; Wang, Chi-Chuan

    2015-11-01

    The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.

  8. Enhanced cooling in mono-crystalline ultra-thin silicon by embedded micro-air channels

    Directory of Open Access Journals (Sweden)

    Mohamed T. Ghoneim

    2015-12-01

    Full Text Available In today’s digital world, complementary metal oxide semiconductor (CMOS technology enabled scaling of bulk mono-crystalline silicon (100 based electronics has resulted in their higher performance but with increased dynamic and off-state power consumption. Such trade-off has caused excessive heat generation which eventually drains the charge of battery in portable devices. The traditional solution utilizing off-chip fans and heat sinks used for heat management make the whole system bulky and less mobile. Here we show, an enhanced cooling phenomenon in ultra-thin (>10 μm mono-crystalline (100 silicon (detached from bulk substrate by utilizing deterministic pattern of porous network of vertical “through silicon” micro-air channels that offer remarkable heat and weight management for ultra-mobile electronics, in a cost effective way with 20× reduction in substrate weight and a 12% lower maximum temperature at sustained loads. We also show the effectiveness of this event in functional MOS field effect transistors (MOSFETs with high-κ/metal gate stacks.

  9. Enhanced cooling in mono-crystalline ultra-thin silicon by embedded micro-air channels

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-12-11

    In today’s digital world, complementary metal oxide semiconductor (CMOS) technology enabled scaling of bulk mono-crystalline silicon (100) based electronics has resulted in their higher performance but with increased dynamic and off-state power consumption. Such trade-off has caused excessive heat generation which eventually drains the charge of battery in portable devices. The traditional solution utilizing off-chip fans and heat sinks used for heat management make the whole system bulky and less mobile. Here we show, an enhanced cooling phenomenon in ultra-thin (>10 μm) mono-crystalline (100) silicon (detached from bulk substrate) by utilizing deterministic pattern of porous network of vertical “through silicon” micro-air channels that offer remarkable heat and weight management for ultra-mobile electronics, in a cost effective way with 20× reduction in substrate weight and a 12% lower maximum temperature at sustained loads. We also show the effectiveness of this event in functional MOS field effect transistors (MOSFETs) with high-κ/metal gate stacks.

  10. Effects of fitness, fatness, and age on men's responses to whole body cooling in air.

    Science.gov (United States)

    Budd, G M; Brotherhood, J R; Hendrie, A L; Jeffery, S E

    1991-12-01

    Simple and multiple regression analyses were used to assess the influence of 12 white men's fitness (aerobic capacity 44-58 ml O2.min-1.kg fat-free mass-1), fatness (mean skin-fold thickness 5-20 mm, body fat content 15-36%), and age (26-52 yr) on their thermal, metabolic, cardiovascular, and subjective responses to 2 h of whole body cooling, nude, in air at 10 degrees C. Fitter men had slower heart rates, and fatter men had higher blood pressures. Fitness had no effect (P greater than 0.39) on any measured response to cold. Fatness was associated (P less than 0.01) with reduced heat loss, heat production, and mean skin temperature; unchanged heat debt; and increased tissue insulation. Age had the opposite effects. When the confounding effects of fatness were held constant by multiple regression, older men responded to cold as though they were 1 mm of skinfold thickness leaner for each 3-4 yr of age. We conclude that aging, even between the relatively youthful ages of 26 and 52 yr, is accompanied by a progressive weakening of the vasoconstrictor response to cold.

  11. The Operational Preparedness of United States Air Force Certified Registered Nurse Anesthetists to Provide Trauma Anesthesia

    National Research Council Canada - National Science Library

    Frank, Michael W

    1999-01-01

    .... The purpose of this study was to determine the experience and training in trauma anesthesia of CRNAs in the United States Air Force, as well as their perceived value of this experience and training...

  12. An Evaluation of Wind Turbine Technology at Peterson Air Force Base

    National Research Council Canada - National Science Library

    Combs, Randy C

    2005-01-01

    .... In accordance with Executive Orders, the Air Force must reduce greenhouse emissions and energy consumption, and expand the use of renewable energy sources within its facilities nation-wide by year 2010...

  13. A Study on Improving United States Air Force Space Systems Engineering and Acquisition

    National Research Council Canada - National Science Library

    Stahr, Jeremiah B

    2006-01-01

    ...) and United States Air Force (USAF) policies and practices, many government systems engineers today lack the systems engineering/management skills required to successfully execute national security space programs...

  14. Conflict Resolution: The Relationship Between Air Force Public Affairs and Legal Functions

    National Research Council Canada - National Science Library

    Law, James

    1998-01-01

    .... This research examines the relationship between Air Force public affairs and legal functions to find out what conflict exists, how often it occurs, how it is resolved, what the results are for the...

  15. Joining the Department of Defense Enterprise Resource Planning Team: The Air Force's Role in the Enterprise

    National Research Council Canada - National Science Library

    Mueller, Coreen

    2003-01-01

    Over time, the Air Force (AF) built customized legacy logistics data and information systems, which have evolved into an inflexible network of obsolete systems that are costly to maintain and upgrade, and struggle to share data...

  16. 78 FR 40446 - Meeting of the National Commission on the Structure of the Air Force

    Science.gov (United States)

    2013-07-05

    ... personnel of the reserve components of the Air Force could be recruited; (e) maintains a peacetime rotation.... The Commission's staff will assign time to oral commenters at the meeting, for no more than 5 minutes...

  17. Stakeholder Collaboration in Air Force Acquisition: Adaptive Design Using System Representations

    National Research Council Canada - National Science Library

    Dare, Robert

    2003-01-01

    This research, conducted under the auspices of the Lean Aerospace Initiative, sought to determine how Air Force development programs could achieve high levels of adaptability during the design phase...

  18. Modeling the Value of Micro Solutions in Air Force Financial Management

    National Research Council Canada - National Science Library

    O'Hare, Scott M; Krott, James E

    2005-01-01

    The purpose of this MBA Project was to develop a model that would estimate the value of applying available spreadsheet programming tools to automation opportunities in Air Force Financial Management (FM...

  19. Air Force Journal of Logistics. Volume 27, Number 1, Spring 2003

    National Research Council Canada - National Science Library

    2003-01-01

    .... Financial management and productivity continue to be key elements of depot performance. To better focus their efforts, the Air Force leadership decided to take a more strategic and integrated approach toward improving depot maintenance...

  20. Geophysical Characterization of Fractured Bedrock at Site 8 Former Pease Air Force Base, Newington, New Hampshire

    National Research Council Canada - National Science Library

    Mack, Thomas J; Degnan, James R

    2002-01-01

    ... beneath the former Pease Air Force Base, Newington, N.H. The following logs were used: caliper, fluid temperature and conductivity, natural gamma radiation, electromagnetic conductivity, optical and acoustic televiewer, and heat-pulse flowmeter...

  1. The Operational Preparedness of United States Air Force Certified Registered Nurse Anesthetists to Provide Trauma Anesthesia

    National Research Council Canada - National Science Library

    Frank, Michael W

    1999-01-01

    ...) must expand their role while deployed and be skilled in the management of trauma. Treating traumatically injured patients in Air Force hospitals is limited while working outside of the operational theater...

  2. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  3. Measuring Relationships: A Model for Evaluating U.S. Air Force Public Affairs Programs

    National Research Council Canada - National Science Library

    Della Vedova, Joseph P

    2005-01-01

    The thesis advanced here is that Air Force Public Affairs should be responsible for managing the organization-public relationship and that the effectiveness of that management can be measured in terms...

  4. Intranet-Based Decision Support for the Marine Air Ground Task Force Aviation Combat Element

    National Research Council Canada - National Science Library

    LeMay, Malcolm

    1998-01-01

    ...) of the Marine Air Ground Task Force (MAGTF). Through the use of Intranet-based decision support, internet technology can be leveraged to improve the decision support and information processes of the ACE...

  5. In Support of Military Linguists: Integrating the Internet into U.S. Air Force Language Programs

    National Research Council Canada - National Science Library

    Valentine, Susan

    1999-01-01

    This thesis examines the United States Air Force's (USAF) long range goal of having ten percent of its officers proficient in a foreign language by the year 2005 and argues that current USAF programs are insufficient to reach this goal...

  6. Air Force ALP AEF Initiative Wing-Level Cluster Development and Demonstration

    National Research Council Canada - National Science Library

    Stute, Nicholas

    2001-01-01

    The purpose of this document is to describe the results for the Air Force ALP AEF Initiative Wing-Level Cluster Development and Demonstration task jointly sponsored by the Logistics Readiness Branch...

  7. Using Value-Focused Thinking to Evaluate the Effectiveness of Air Force Utility Privatization

    National Research Council Canada - National Science Library

    Braziel, Carlos

    2004-01-01

    .... The cost to upgrade and repair these systems is currently estimated at over $4 billion. In response, the Air Force began efforts to convey ownership of these utility systems to the private sector through privatization efforts...

  8. Combat Pair: The Evolution of Air Force-Navy Integration in Strike Warfare

    National Research Council Canada - National Science Library

    Lambeth, Benjamin

    2007-01-01

    ... any significant interoperability features. The most influential factor accounting for this gradual trend toward integration was the nation's ten-year experience with Operations Northern and Southern Watch, in which both Air Force land-based...

  9. Initial Remedial Action Plan for Expanded Bioventing System BX Service Station, Patrick Air Force Base, Florida

    National Research Council Canada - National Science Library

    1995-01-01

    This initial remedial action plan presents the scope for an expanded bioventing system for in situ treatment of fuel-contaminated soils at the BX Service Station at Patrick Air Force Base (AFB), Florida...

  10. Virginia Tech Corps of Cadets Homecoming to feature U.S. Air Force flyover

    OpenAIRE

    Cox, Carrie

    2009-01-01

    The 28th Bomb Squadron from Dyess Air Force Base, Texas, will conduct a military flyover with two B-1B Lancer heavy bombers at the beginning of the Virginia Tech versus Marshall football game on Saturday, Sept. 12.

  11. Benefit Analysis Report, United States Air Force Technical Order Management Systems (AFTOMS)

    Science.gov (United States)

    1989-08-01

    This report prepared by the Transportation Systems Center (TSC) concludes an analysis of the Technical Order (TO) costs and benefits, which was originally undertaken as part of the US Air Force Computer-aided Acquisition and Logistics Support (CALS) ...

  12. Characterization of Reduced Toxicity, High Performance Monopropellants at the U.S. Air Force Research Laboratory

    National Research Council Canada - National Science Library

    Hawkins, T

    2001-01-01

    Current U.S. Air Force programs are working to develop reduced toxicity monopropellant formulations to replace spacecraft hydrazine monopropellant and exceed the monopropellant performance objective (greater than 50...

  13. Exploring the Readability of Consent Forms in Human Research in the United States Air Force

    National Research Council Canada - National Science Library

    Kruse, Clemens S

    2005-01-01

    Informed consent documents used in human subject research within the United States Air Force appear increasingly complex and lengthy based on the level of risk, or potential harm to a human research...

  14. Technology Transfer: A Qualitative Analysis of Air Force Office of Research and Technology Applications

    National Research Council Canada - National Science Library

    Trexler, David C

    2006-01-01

    Everyday within United States Air Forces? research laboratories there are hundreds of scientists and engineers whose research and development activities contribute to the advancement of science and technology for mankind...

  15. 76 FR 78906 - U.S. Air Force Scientific Advisory Board Notice of Meeting

    Science.gov (United States)

    2011-12-20

    ... needs with tomorrow's challenges to prepare for full-spectrum operations. In accordance with 5 U.S.C... commanders; extended use of Air Force Space Command space-based sensors; acquisition challenges amid new era...

  16. Project Portfolio Management: An Investigation of One Air Force Product Center

    National Research Council Canada - National Science Library

    Edmunds, Bryan D

    2005-01-01

    .... This research focuses on the portfolio management (project selection and resource allocation) part of the CTRRP. The purpose of this research effort was to investigate the use of portfolio management within the Air Force...

  17. MILITARY BASE CLOSURES: Questions Concerning the Proposed Sale of Housing at Mather Air Force Base

    National Research Council Canada - National Science Library

    1998-01-01

    This report responds to your request that we review the proposed negotiated sale of 1,271 surplus family housing units at Mather Air Force Base, California, to the Sacramento Housing and Redevelopment Agency (SHRA...

  18. Bring Me Men: Intertextual Identity Formation at the US Air Force Academy

    National Research Council Canada - National Science Library

    Schifani, Katherine L

    2008-01-01

    .... It took twenty-one years from when the first class entered in 1955 before the Air Force Academy saw its first women, one walking famously on her first day in front of the "Bring Me Men..." ramp (BMMR...

  19. 75 FR 30689 - Modification of Class C Airspace; Beale Air Force Base, CA

    Science.gov (United States)

    2010-06-02

    ... Base, CA AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies the legal description of the Beale Air Force Base (AFB), CA, Class C airspace area by allowing the...

  20. Job Characteristics in the United States Air Force and Mental Health Service Utilization

    National Research Council Canada - National Science Library

    Baumgarten, Victor

    2004-01-01

    Data from the 2000 Air Force Community Needs Assessment were used to assess the significance and strength of the effects of job characteristics and social supports on mental health service utilization...