WorldWideScience

Sample records for force power spectrum

  1. Supernovae anisotropy power spectrum

    CERN Document Server

    Ghodsi, Hoda; Habibi, Farhang

    2016-01-01

    We contribute another anisotropy study to this field of research using Supernovae Type Ia (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Our simulations are constructed with the characteristics of the upcoming survey of the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipole anisotropy or anisotropy in higher multipole moments that would be detectable by the LSST.

  2. Power spectrum analysis for optical tweezers

    DEFF Research Database (Denmark)

    Berg-Sørensen, K.; Flyvbjerg, H.

    2004-01-01

    the Lorentzian provides. This is achieved using old and new theory for Brownian motion in an incompressible fluid, and new results for a popular photodetection system. The trap and photodetection system are then calibrated simultaneously in a manner that makes optical tweezers a tool of precision for force......The force exerted by an optical trap on a dielectric bead in a fluid is often found by fitting a Lorentzian to the power spectrum of Brownian motion of the bead in the trap. We present explicit functions of the experimental power spectrum that give the values of the parameters fitted, including...... obtain perfect fits and calibrate tweezers with less than 1% error when the trapping force is not too strong. Relatively strong traps have power spectra that cannot be fitted properly with any Lorentzian, we find. This underscores the need for better understanding of the power spectrum than...

  3. True CMB Power Spectrum Estimation

    CERN Document Server

    Paykari, P; Fadili, M J

    2012-01-01

    The cosmic microwave background (CMB) power spectrum is a powerful cosmological probe as it entails almost all the statistical information of the CMB perturbations. Having access to only one sky, the CMB power spectrum measured by our experiments is only a realization of the true underlying angular power spectrum. In this paper we aim to recover the true underlying CMB power spectrum from the one realization that we have without a need to know the cosmological parameters. The sparsity of the CMB power spectrum is first investigated in two dictionaries; Discrete Cosine Transform (DCT) and Wavelet Transform (WT). The CMB power spectrum can be recovered with only a few percentage of the coefficients in both of these dictionaries and hence is very compressible in these dictionaries. We study the performance of these dictionaries in smoothing a set of simulated power spectra. Based on this, we develop a technique that estimates the true underlying CMB power spectrum from data, i.e. without a need to know the cosmo...

  4. Air Force Power Requirements

    Science.gov (United States)

    2006-01-24

    2 Outline • Our Recent Heritage – MEA • Our Plan – HiPAC • HiPAC Technologies • Summary Powering the United States Air Force NASA AI R FO RC E NA VY...Aircraft i l i Munitions / UAV i i / Micro-Mini Platforms i i i l HiPAC Technical Program Areas • High Temperature Power System Components • High

  5. Power spectrum analysis for optical tweezers

    DEFF Research Database (Denmark)

    Berg-Sørensen, K.; Flyvbjerg, H.

    2004-01-01

    The force exerted by an optical trap on a dielectric bead in a fluid is often found by fitting a Lorentzian to the power spectrum of Brownian motion of the bead in the trap. We present explicit functions of the experimental power spectrum that give the values of the parameters fitted, including...... error bars and correlations, for the best such chi(2) fit in a given frequency range. We use these functions to determine the information content of various parts of the power spectrum, and find, at odds with lore, much information at relatively high frequencies. Applying the method to real data, we...... the Lorentzian provides. This is achieved using old and new theory for Brownian motion in an incompressible fluid, and new results for a popular photodetection system. The trap and photodetection system are then calibrated simultaneously in a manner that makes optical tweezers a tool of precision for force...

  6. Primordial power spectrum from Planck

    CERN Document Server

    Hazra, Dhiraj Kumar; Souradeep, Tarun

    2014-01-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near $\\ell\\sim750-850$ represents the most prominent feature in the data. Feature near $\\ell\\sim1800-2000$ is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2$\\sigma$ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the...

  7. Modelling the TSZ power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Suman [Los Alamos National Laboratory; Shaw, Laurie D [YALE; Nagai, Daisuke [YALE

    2010-01-01

    The structure formation in university is a hierarchical process. As universe evolves, tiny density fluctuations that existed in the early universe grows under gravitational instability to form massive large scale structures. The galaxy clusters are the massive viralized objects that forms by accreting smaller clumps of mass until they collapse under their self-gravity. As such galaxy clusters are the youngest objects in the universe which makes their abundance as a function of mass and redshift, very sensitive to dark energy. Galaxy clusters can be detected by measuring the richness in optical waveband, by measuring the X-ray flux, and in the microwave sky using Sunyaev-Zel'dovich (SZ) effect. The Sunyaev-Zel'dovich (SZ) effect has long been recognized as a powerful tool for detecting clusters and probing the physics of the intra-cluster medium. Ongoing and future experiments like Atacama Cosmology Telescope, the South Pole Telescope and Planck survey are currently surveying the microwave sky to develop large catalogs of galaxy clusters that are uniformly selected by the SZ flux. However one major systematic uncertainties that cluster abundance is prone to is the connection between the cluster mass and the SZ flux. As shown by several simulation studies, the scatter and bias in the SZ flux-mass relation can be a potential source of systematic error to using clusters as a cosmology probe. In this study they take a semi-analytic approach for modeling the intra-cluster medium in order to predict the tSZ power spectrum. The advantage of this approach is, being analytic, one can vary the parameters describing gas physics and cosmology simultaneously. The model can be calibrated against X-ray observations of massive, low-z clusters, and using the SZ power spectrum which is sourced by high-z lower mass galaxy groups. This approach allows us to include the uncertainty in gas physics, as dictated by the current observational uncertainties, while measuring the

  8. Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, M. M.

    2017-01-01

    Wind power fluctuations for an individual turbine and plant have been widely reported to follow the Kolmogorov spectrum of atmospheric turbulence; both vary with a fluctuation time scale τ as τ2 /3. Yet, this scaling has not been explained through turbulence theory. Using turbines as probes of turbulence, we show the τ2 /3 scaling results from a large scale influence of atmospheric turbulence. Owing to this long-range influence spanning 100s of kilometers, when power from geographically distributed wind plants is summed into aggregate power at the grid, fluctuations average (geographic smoothing) and their scaling steepens from τ2 /3→τ4 /3, beyond which further smoothing is not possible. Our analysis demonstrates grids have already reached this τ4 /3 spectral limit to geographic smoothing.

  9. Powering Future Naval Forces

    Science.gov (United States)

    2010-11-01

    Ground Renewable Expeditionary Energy System Bulk Heterojunction Solar Cell 9  Long endurance fuel cell power (26hr flight Nov 2009)  Low noise...Near Mid Long EMRG Solid State Lights for Submarines Power Node Switching Center Perovskite - based Pyroelectrics 3 Power & Energy Technologies...Fuel Power Generation Energy Storage Distribution& Control Power Loads Fuels Chemistry Alternative Fuels Gas Turbine Generators Fuel Cells Aircraft

  10. Power Spectrum Estimation. I. Basics

    Science.gov (United States)

    Hamilton, A. J. S.

    This chapter and its companion form an extended version of notes provided to participants in the Valencia September 2004 summer school on Data Analysis in Cosmology. The lectures offer a pedagogical introduction to the problem of estimating the power spectrum from galaxy surveys. The intention is to focus on concepts rather than on technical detail, but enough mathematics is provided to point the student in the right direction. This first lecture presents background material. It collects some essential definitions, discusses traditional methods for measuring power, notably the Feldman-Kaiser-Peacock [2] method, and introduces Bayesian analysis, Fisher matrices, and maximum likelihood. For pedagogy and brevity, several derivations are set as exercises for the reader. At the summer school, multiple choice questions, included herein, were used to convey some didactic ideas, and provoked a little lively debate.

  11. Power Spectrum Estimation I. Basics

    CERN Document Server

    Hamilton, A J S

    2005-01-01

    This paper and its companion form an extended version of notes provided to participants in the Valencia September 2004 summer school on Data Analysis in Cosmology. The papers offer a pedagogical introduction to the problem of estimating the power spectrum from galaxy surveys. The intention is to focus on concepts rather than on technical detail, but enough mathematics is provided to point the student in the right direction. This first paper presents background material. It collects some essential definitions, discusses traditional methods for measuring power, notably the Feldman-Kaiser-Peacock (1994) method, and introduces Bayesian analysis, Fisher matrices, and maximum likelihood. For pedagogy and brevity, several derivations are set as exercises for the reader. At the summer school, multiple choice questions, included herein, were used to convey some didactic ideas, and provoked a little lively debate.

  12. Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers

    DEFF Research Database (Denmark)

    Nørlykke, Simon F.; Flyvbjerg, Henrik

    2010-01-01

    Optical tweezers and atomic force microscope (AFM) cantilevers are often calibrated by fitting their experimental power spectra of Brownian motion. We demonstrate here that if this is done with typical weighted least-squares methods, the result is a bias of relative size between -2/n and + 1/n....... The fitted value for the characteristic frequency is not affected by this bias. For the AFM then, force measurements are not affected provided an independent length-scale calibration is available. For optical tweezers there is no such luck, since the spring constant is found as the ratio...... of the characteristic frequency and the diffusion coefficient. We give analytical results for the weight-dependent bias for the wide class of systems whose dynamics is described by a linear (integro)differential equation with additive noise, white or colored. Examples are optical tweezers with hydrodynamic self...

  13. Precision Prediction of the Log Power Spectrum

    CERN Document Server

    Repp, Andrew

    2016-01-01

    At translinear scales, the log power spectrum captures significantly more cosmological information than the standard power spectrum. At high wavenumbers $k$, the cosmological information in the standard power spectrum $P(k)$ fails to increase in proportion to $k$ due to correlations between large- and small-scale modes. As a result, $P(k)$ suffers from an information plateau on these translinear scales, so that analysis with the standard power spectrum cannot access the information contained in these small-scale modes. The log power spectrum $P_A(k)$, on the other hand, captures the majority of this otherwise lost information. Until now there has been no means of predicting the amplitude of the log power spectrum apart from cataloging the results of simulations. We here present a cosmology-independent prescription for the log power spectrum, and we find this prescription to display accuracy comparable to that of Smith et al. (2003), over a range of redshifts and smoothing scales, and for wavenumbers up to $1....

  14. The power spectrum of IRAS galaxies

    CERN Document Server

    Tadros, H; Tadros, Helen; Efstathiou, George

    1995-01-01

    We estimate the three-dimensional power spectrum of IRAS galaxies from the QDOT and 1.2Jy redshift surveys. We use identical estimators for both surveys and show how the results depend on the weights assigned to the galaxies. The power spectrum for the QDOT survey is steeper and has a higher amplitude at wavenumbers k \\sim 0.05\\; h {\\rm Mpc}^{-1} (where h is Hubble's constant in units of 100 \\kmsmpc) than the power spectrum derived from the 1.2Jy sample. However, the QDOT power spectrum is sensitive to a small number of galaxies in the Hercules supercluster, in agreement with a recent analysis of galaxy counts in cells in these surveys. We argue that the QDOT results are an upward fluctuation. We combine the two surveys to derive our best estimate of the power spectrum of IRAS galaxies. This is shallower and has a lower amplitude on scales \\simlt 0.1 h {\\rm Mpc}^{-1} than the power spectrum derived by Feldman \\et (1994) from the QDOT survey alone. The power spectrum of the combined surveys is well described b...

  15. Tensor power spectrum and disformal transformations

    CERN Document Server

    Fumagalli, Jacopo; Postma, Marieke

    2016-01-01

    In a general effective theory description of inflation a disformal transformation can be used to set the tensor sound speed to one. After the transformation, the tensor power spectrum then automatically only depends on the Hubble parameter. We show that this disformal transformation, however, is nothing else than a change of units. It is a very useful tool for simplifying and interpreting computations, but it cannot change any physics. While the apparent parametrical dependence of the tensor power spectrum does change under a disformal transformation, the physics described is frame invariant. We further illustrate the frame invariance of the tensor power spectrum by writing it exclusively in terms of separately invariant quantities.

  16. Subsampling for graph power spectrum estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2016-10-06

    In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.

  17. The Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  18. Spectra: Time series power spectrum calculator

    Science.gov (United States)

    Gallardo, Tabaré

    2017-01-01

    Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.

  19. Primordial power spectrum features and consequences

    CERN Document Server

    Goswami, Gaurav

    2014-01-01

    The present Cosmic Microwave Background (CMB) temperature and polarization anisotropy data is consistent with not only a power law scalar primordial power spectrum (PPS) with a small running but also with the scalar PPS having very sharp features. This has motivated inflationary models with such sharp features. Recently, even the possibility of having nulls in the power spectrum (at certain scales) has been considered. The existence of these nulls has been shown in linear perturbation theory. What shall be the effect of higher order corrections on such nulls? Inspired by this question, we attempt to calculate quantum radiative corrections to the Fourier transform of the two-point function in a toy field theory and address the issue of how these corrections to the power spectrum behave in models in which the tree-level power spectrum has a sharp dip (but not a null). In particular, we consider the possibility of the relative enhancement of radiative corrections in a model in which the tree-level spectrum goes ...

  20. Enhancing the Cosmic Shear Power Spectrum

    CERN Document Server

    Simpson, Fergus; Heymans, Catherine; Jimenez, Raul; Verde, Licia

    2015-01-01

    Applying a transformation to a non-Gaussian field can enhance the information content of the resulting power spectrum, by reducing the correlations between Fourier modes. In the context of weak gravitational lensing, it has been shown that this gain in information content is significantly compromised by the presence of shape noise. We apply clipping to mock convergence fields, a technique which is known to be robust in the presence of noise and has been successfully applied to galaxy number density fields. When analysed in isolation the resulting convergence power spectrum returns degraded constraints on cosmological parameters. However substantial gains can be achieved by performing a combined analysis of the power spectra derived from both the original and transformed fields. Even in the presence of realistic levels of shape noise, we demonstrate that this approach is capable of reducing the area of likelihood contours within the $\\Omega_m - \\sigma_8$ plane by more than a factor of three.

  1. CHIPS: The Cosmological HI Power Spectrum Estimator

    CERN Document Server

    Trott, Cathryn M; Procopio, Pietro; Wayth, Randall B; Mitchell, Daniel A; McKinley, Benjamin; Tingay, Steven J; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; de Oliveira-Costa, A; Dillon, Joshua S; Ewall-Wice, A; Feng, L; Greenhill, L J; Hazelton, B J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Jacobs, Daniel C; Kaplan, D L; Kim, HS; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; Morales, M F; Morgan, E; Neben, A R; Thyagarajan, Nithyanandan; Oberoi, D; Offringa, A R; Ord, S M; Paul, S; Pober, J C; Prabu, T; Riding, J; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Webster, R L; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2016-01-01

    Detection of the cosmological neutral hydrogen signal from the Epoch of Reionization, and estimation of its basic physical parameters, is the principal scientific aim of many current low-frequency radio telescopes. Here we describe the Cosmological HI Power Spectrum Estimator (CHIPS), an algorithm developed and implemented with data from the Murchison Widefield Array (MWA), to compute the two-dimensional and spherically-averaged power spectrum of brightness temperature fluctuations. The principal motivations for CHIPS are the application of realistic instrumental and foreground models to form the optimal estimator, thereby maximising the likelihood of unbiased signal estimation, and allowing a full covariant understanding of the outputs. CHIPS employs an inverse-covariance weighting of the data through the maximum likelihood estimator, thereby allowing use of the full parameter space for signal estimation ("foreground suppression"). We describe the motivation for the algorithm, implementation, application to ...

  2. Power Spectrum of Generalized Fractional Gaussian Noise

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Recently, we introduced a type of autocorrelation function (ACF to describe a long-range dependent (LRD process indexed with two parameters, which takes standard fractional Gaussian noise (fGn for short as a special case. For simplicity, we call it the generalized fGn (GfGn. This short paper gives the power spectrum density function (PSD of GfGn.

  3. BP-Neural-Network-Based Tool Wear Monitoring by Using Wavelet Decomposition of the Power Spectrum

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian-ming; XI Chang-qing; LI Yan; XIAO Ji-ming

    2004-01-01

    In a drilling process, the power spectrum of the drilling force is related to the tool wear and is widely applied in the monitoring of tool wear. But the feature extraction and identification of the power spectrum have always been an unresolved difficult problem. This paper solves it through decomposition of the power spectrum in multilayers using wavelet transform and extraction of the low frequency decomposition coefficient us the envelope information of the power spectrum. Intelligent identification of the tool wear status is achieved in the drilling process through fusing the wavelet decomposition coefficient of the power spectrum by using a BP ( Back Propagation) neural network. The experimental results show that the features of the power spectrum can be extracted efficiently through this method, and the trained neural networks show high identification precision and the ability of extension.

  4. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    Indian Academy of Sciences (India)

    G. B. Long; J. W. Ou; Y. G. Zheng

    2016-06-01

    In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.

  5. Power Spectrum Estimation from Peculiar Velocity Catalogues

    CERN Document Server

    Macaulay, Edward; Ferreira, Pedro G; Jaffe, Andrew H; Agarwal, Shankar; Hudson, Michael J; Watkins, Richard

    2011-01-01

    The peculiar velocities of galaxies are an inherently valuable cosmological probe, providing an unbiased estimate of the distribution of matter on scales much larger than the depth of the survey. Much research interest has been motivated by the high dipole moment of our local peculiar velocity field, which suggests a large scale excess in the matter power spectrum, and can appear to be in some tension with the LCDM model. We use a composite catalogue of 4,537 peculiar velocity measurements with a characteristic depth of 33 h-1 Mpc to estimate the matter power spectrum. We compare the constraints with this method, directly studying the full peculiar velocity catalogue, to results from Macaulay et al. (2011), studying minimum variance moments of the velocity field, as calculated by Watkins, Feldman & Hudson (2009) and Feldman, Watkins & Hudson (2010). We find good agreement with the LCDM model on scales of k > 0.01 h Mpc-1. We find an excess of power on scales of k < 0.01 h Mpc-1, although with a 1 s...

  6. Toward optimal cluster power spectrum analysis

    CERN Document Server

    Smith, Robert E

    2014-01-01

    The power spectrum of galaxy clusters is an important probe of the cosmological model. In this paper we determine the optimal weighting scheme for maximizing the signal-to-noise ratio for such measurements. We find a closed form analytic expression for the optimal weights. Our expression takes into account: cluster mass, finite survey volume effects, survey masking, and a flux limit. The implementation of this weighting scheme requires knowledge of the measured cluster masses, and analytic models for the bias and space-density of clusters as a function of mass and redshift. Recent studies have suggested that the optimal method for reconstruction of the matter density field from a set of clusters is mass-weighting (Seljak et al 2009, Hamaus et al 2010, Cai et al 2011). We compare our optimal weighting scheme with this approach and also with the original power spectrum scheme of Feldman et al (1994). We show that our optimal weighting scheme outperforms these approaches for both volume- and flux-limited cluster...

  7. Power spectrum analysis for defect screening in integrated circuit devices

    Science.gov (United States)

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  8. Power Spectrum Estimation of Randomly Sampled Signals

    DEFF Research Database (Denmark)

    Velte, Clara M.; Buchhave, Preben; K. George, William

    2014-01-01

    The random, but velocity dependent, sampling of the LDA presents non-trivial signal processing challengesdue to the high velocity bias and the arbitrariness of particle path through the measuring volume, among other factors.To obtain the desired non-biased statistics, it has previously been shown...... analytically as well as empirically thatresidence time weighting is the suitable choice. Unfortunately, due to technical problems related to the processors providing erroneous measurements of the residence times, this previously widely accepted theory has been questioned and instead a wide spectrum...... of alternative methods attempting to produce correct power spectra have been invented andtested. The objective of the current study is to create a simple computer generated signal for baseline testing of residence time weighting and some of the most commonly proposed algorithms (or algorithms which most...

  9. Wind speed power spectrum analysis for Bushland, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, E.D. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.

  10. BB mode angular power spectrum of CMB from massive gravity

    CERN Document Server

    Malsawmtluangi, N

    2016-01-01

    The primordial massive gravitational waves are placed in the squeezed vacuum state and corresponding $BB$-mode correlation angular power spectrum of the cosmic microwave background is obtained for various slow roll inflation models. The angular power spectrum is compared with the limit of BICEP2/Keck and Planck joint analysis data and the hybrid inflation model is found favorable.

  11. Large Scale Magnetic Fields: Density Power Spectrum in Redshift Space

    Indian Academy of Sciences (India)

    Rajesh Gopal; Shiv K. Sethi

    2003-09-01

    We compute the density redshift-space power spectrum in the presence of tangled magnetic fields and compare it with existing observations. Our analysis shows that if these magnetic fields originated in the early universe then it is possible to construct models for which the shape of the power spectrum agrees with the large scale slope of the observed power spectrum. However requiring compatibility with observed CMBR anisotropies, the normalization of the power spectrum is too low for magnetic fields to have significant impact on the large scale structure at present. Magnetic fields of a more recent origin generically give density power spectrum ∝ 4 which doesn’t agree with the shape of the observed power spectrum at any scale. Magnetic fields generate curl modes of the velocity field which increase both the quadrupole and hexadecapole of the redshift space power spectrum. For curl modes, the hexadecapole dominates over quadrupole. So the presence of curl modes could be indicated by an anomalously large hexadecapole, which has not yet been computed from observation. It appears difficult to construct models in which tangled magnetic fields could have played a major role in shaping the large scale structure in the present epoch. However if they did, one of the best ways to infer their presence would be from the redshift space effects in the density power spectrum.

  12. Noncommutative Geometry and the Primordial Dipolar Imaginary Power Spectrum

    CERN Document Server

    Jain, P

    2014-01-01

    We argue that an anisotropic dipolar imaginary primordial power spectrum is possible within the framework of noncommutative space-times. We show that such a spectrum provides a good description of the observed dipole modulation in CMBR data. We extract the corresponding power spectrum from data. The dipole modulation is related to the observed hemispherical anisotropy in CMBR data, which might represent the first signature of quantum gravity.

  13. Halo Concentration and the Dark Matter Power Spectrum

    CERN Document Server

    Huffenberger, Kevin M; Huffenberger, Kevin M.; Seljak, Uros

    2003-01-01

    We explore the connection between halo concentration and the dark matter power spectrum using the halo model. We fit halo model parameters to non-linear power spectra over a large range of cosmological models. We find that the non-linear evolution of the power spectrum generically prefers the concentration at non-linear mass scale to decrease with the effective slope of the linear power spectrum, in agreement with the direct analysis of the halo structure in different cosmological models. Using these analyses, we compute the predictions for non-linear power spectrum beyond the current resolution of N-body simulations. We find that the halo model predictions are generically below the analytical non-linear models, suggesting that the latter may overestimate the amount of power on small scales.

  14. The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology

    Science.gov (United States)

    Jacobs, Daniel C.; Hazelton, B. J.; Trott, C. M.; Dillon, Joshua S.; Pindor, B.; Sullivan, I. S.; Pober, J. C.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Thyagarajan, N.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-07-01

    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.

  15. The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology

    CERN Document Server

    Jacobs, Daniel C; Trott, C M; Dillon, Joshua S; Pindor, B; Sullivan, I S; Pober, J C; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Emrich, D; Ewall-Wice, A; Feng, L; Gaensler, B M; Goeke, R; Greenhill, L J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kim, H S; Kratzenberg, E; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Neben, A R; Thyagarajan, N; Oberoi, D; Offringa, A R; Ord, S M; Paul, S; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Tegmark, M; Tingay, S J; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2016-01-01

    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple, independent, data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregr...

  16. Spectrum management considerations of adaptive power control in satellite networks

    Science.gov (United States)

    Sawitz, P.; Sullivan, T.

    1983-01-01

    Adaptive power control concepts for the compensation of rain attenuation are considered for uplinks and downlinks. The performance of example power-controlled and fixed-EIRP uplinks is compared in terms of C/Ns and C/Is. Provisional conclusions are drawn with regard to the efficacy of uplink and downlink power control orbit/spectrum utilization efficiency.

  17. Power spectrum with auxiliary fields in de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Mohsenzadeh, M. [Islamic Azad University, Department of Physics, Qom Branch, Qom (Iran, Islamic Republic of); Tanhayi, M.R. [Islamic Azad University, Department of Physics, Central Tehran Branch, Tehran (Iran, Islamic Republic of); Yusofi, E. [Islamic Azad University, Department of Physics, Science and Research Ayatollah Amoli Branch, Amol, Mazandaran (Iran, Islamic Republic of)

    2014-06-15

    We use the auxiliary fields and (excited-) de Sitter solutions to study the standard power spectrum of primordial fluctuations of a scalar field in the early universe. The auxiliary fields are the negative norm solutions of the field equation and as is shown, with a fixed boundary condition, utilizing these states results in a finite power spectrum without any infinity. The power spectrum is determined by the de Sitter solutions up to some corrections and the space-time symmetry is not broken in this point of view. The modulation to the power spectrum is of order ((H)/(Λ)){sup 2}, where H is the Hubble parameter and Λ is the energy scale, e.g., the Planck scale. (orig.)

  18. A New Exactly Solvable Inflation Model and its Power Spectrum

    Institute of Scientific and Technical Information of China (English)

    李新洲; 刘道军; 郝建纲

    2003-01-01

    We present a new exactly solvable inflation model in which inflation can stop automatically, and in the approximately de Sitter limit, we give its power spectrum which can be tested in the future observations of cosmic microwave background anisotropy.

  19. Noncommutative geometry and the primordial dipolar imaginary power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Pankaj; Rath, Pranati K. [Indian Institue of Technology Kanpur, Department of Physics, Kanpur (India)

    2015-03-01

    We argue that noncommutative space-times lead to an anisotropic dipolar imaginary primordial power spectrum. We define a new product rule, which allows us to consistently extract the power spectrum in such space-times. The precise nature of the power spectrum depends on the model of noncommutative geometry. We assume a simple dipolar model which has a power dependence on the wave number, k, with a spectral index, α. We show that such a spectrum provides a good description of the observed dipole modulation in the cosmic microwave background radiation (CMBR) data with α ∼ 0. We extract the parameters of this model from the data. The dipole modulation is related to the observed hemispherical anisotropy in the CMBR data, which might represent the first signature of quantum gravity. (orig.)

  20. Noncommutative geometry and the primordial dipolar imaginary power spectrum

    Science.gov (United States)

    Jain, Pankaj; Rath, Pranati K.

    2015-03-01

    We argue that noncommutative space-times lead to an anisotropic dipolar imaginary primordial power spectrum. We define a new product rule, which allows us to consistently extract the power spectrum in such space-times. The precise nature of the power spectrum depends on the model of noncommutative geometry. We assume a simple dipolar model which has a power dependence on the wave number, , with a spectral index, . We show that such a spectrum provides a good description of the observed dipole modulation in the cosmic microwave background radiation (CMBR) data with . We extract the parameters of this model from the data. The dipole modulation is related to the observed hemispherical anisotropy in the CMBR data, which might represent the first signature of quantum gravity.

  1. MEASURING THE JET POWER OF FLAT-SPECTRUM RADIO QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Shabala, S. S.; Santoso, J. S. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001 (Australia); Godfrey, L. E. H. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia)

    2012-09-10

    We use frequency-dependent position shifts of flat-spectrum radio cores to estimate the kinetic power of active galactic nucleus (AGN) jets. We find a correlation between the derived jet powers and AGN narrow-line luminosity, consistent with the well-known relation for radio galaxies and steep spectrum quasars. This technique can be applied to intrinsically weak jets even at high redshift.

  2. Thermal Powered Reciprocating-Force Motor

    Science.gov (United States)

    Tatum, III, Paul F. (Inventor); McDow Elliott, Amelia (Inventor)

    2015-01-01

    A thermal-powered reciprocating-force motor includes a shutter switchable between a first position that passes solar energy and a second position that blocks solar energy. A shape memory alloy (SMA) actuator is coupled to the shutter to control switching thereof between the shutter's first and second position. The actuator is positioned with respect to the shutter such that (1) solar energy impinges on the SMA when the shutter is in its first position so that the SMA experiences contraction in length until the shutter is switched to its second position, and (2) solar energy is impeded from impingement on the SMA when the shutter is in its second position so that the SMA experiences extension in length. Elastic members coupled to the actuator apply a force to the SMA that aids in its extension in length until the shutter is switched to its first position.

  3. High Performance Power Spectrum Analysis Using a FPGA Based Reconfigurable Computing Platform

    CERN Document Server

    Abhyankar, Yogindra; Agarwal, Yogesh; Subrahmanya, C R; Prasad, Peeyush; 10.1109/RECONF.2006.307786

    2011-01-01

    Power-spectrum analysis is an important tool providing critical information about a signal. The range of applications includes communication-systems to DNA-sequencing. If there is interference present on a transmitted signal, it could be due to a natural cause or superimposed forcefully. In the latter case, its early detection and analysis becomes important. In such situations having a small observation window, a quick look at power-spectrum can reveal a great deal of information, including frequency and source of interference. In this paper, we present our design of a FPGA based reconfigurable platform for high performance power-spectrum analysis. This allows for the real-time data-acquisition and processing of samples of the incoming signal in a small time frame. The processing consists of computation of power, its average and peak, over a set of input values. This platform sustains simultaneous data streams on each of the four input channels.

  4. 1/f noise in music and speech. [Power spectrum studies

    Energy Technology Data Exchange (ETDEWEB)

    Voss, R.F.; Clarke, J.

    1975-11-27

    The power spectrum, S(f), of many fluctuating physical variables, V(t), is approximately ''1/f-like.'' Loudness fluctuations in music and speech and pitch (melody) fluctuations in music were found to exhibit 1/f power spectra. This observation has implications for stochastic music composition. 3 figures. (RWR)

  5. Cutting force and its frequency spectrum characteristics in high speed milling of titanium alloy with a polycrystalline diamond tool

    Institute of Scientific and Technical Information of China (English)

    Peng LIU; Jiu-hua XU; Yu-can FU

    2011-01-01

    In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V(TA15)by use of polycrystalline diamond(PCD)tools. The characteristics of high speed machining(HSM)dynamic milling forces were investigated. The effects of the parameters of the process, I.e., cutting speed, feed per tooth, and depth of axial cut, on cutting forces were studied. The cutting force signals under different cutting speed conditions and different cutting tool wear stages were analyzed by frequency spectrum analysis. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The results indicate that a characteristic frequency in cutting force power spectrum does in fact exist. The amplitudes increase with the increase of cutting speed and tool wear level, which could be applied to the monitoring of the cutting process.

  6. Statistics of the Sunyaev-Zel'dovich Effect power spectrum

    CERN Document Server

    Peel, Michael W; Kay, Scott T

    2009-01-01

    Using large numbers of simulations of the microwave sky, incorporating the Cosmic Microwave Background (CMB) and the Sunyaev-Zel'dovich (SZ) effect due to clusters, we investigate the statistics of the power spectrum at microwave frequencies between spherical multipoles of 1000 and 10000. From these virtual sky maps, we find that the spectrum of the SZ effect has a larger standard deviation by a factor of 3 than would be expected from purely Gaussian realizations, and has a distribution that is significantly skewed towards higher values, especially when small map sizes are used. The standard deviation is also increased by around 10 percent compared to the trispectrum calculation due to the clustering of galaxy clusters. We also consider the effects of including residual point sources and uncertainties in the gas physics. This has implications for the excess power measured in the CMB power spectrum by the Cosmic Background Imager and BIMA experiments. Our results indicate that the observed excess could be expl...

  7. Power Spectrum Estimation of Randomly Sampled Signals

    DEFF Research Database (Denmark)

    Velte, C. M.; Buchhave, P.; K. George, W.

    The random, but velocity dependent, sampling of the LDA presents non-trivial signal processing challenges due to the high velocity bias and the arbitrariness of particle path through the measuring volume, among other factors. To obtain the desired non-biased statistics, it has previously been shown...... is that if the algorithms are not able to produce correct statistics from this simple signal, then they will certainly not be able to function well for a more complex measured LDA signal. This is, of course, true also for other methods that are based on the tested algorithms. The extremes are tested by increasing, e....... Residence time weighting provides non-biased estimates regardless of setting. The free-running processor was also tested and compared to residence time weighting using actual LDA measurements in a turbulent round jet. Power spectra from measurements on the jet centerline and the outer part of the jet...

  8. The Effect of Curvaton Decay on the Primordial Power Spectrum

    CERN Document Server

    Firouzjahi, Hassan; Malik, Karim; Zarei, Moslem

    2012-01-01

    We study the effect of curvaton decay on the primordial power spectrum. Using analytical approximations and also numerical calculations, we find that the power spectrum is enhanced during the radiation dominated era after the curvaton decay. The amplitude of the Bardeen potential is controlled by the fraction of the energy density in the curvaton at the time of curvaton decay. We show that the enhancement in the amplitude of the primordial curvature perturbation is, however, not large enough to lead to primordial black hole overproduction on scales which re-enter the horizon after the time of curvaton decay.

  9. The influence of the type of contraction on the masseter muscle EMG power spectrum.

    Science.gov (United States)

    Nadeau, S; Bilodeau, M; Delisle, A; Chmielewski, W; Arsenault, A B; Gravel, D

    1993-01-01

    Different behaviours of the EMG power spectrum across increasing force levels have been reported for the masseter muscle. A factor that could explain these different behaviours may be the type of contraction used, as was recently shown for certain upper limb muscles(5). The purpose of this study was to compare, between two types of isometric contractions, the behaviour of EMG power spectrum statistics (median frequency (MF) and mean power frequency (MPF)) obtained across increasing force levels. Ten women exerted, while biting in the intercuspal position, three 5 s ramp contractions that increased linearly from 0 to 100% of the maximal voluntary contraction (MVC). They also completed three step contractions (constant EMG amplitude) at each of the following levels: 20, 40, 60 and 80% MVC. EMG signals from the masseter muscle were recorded with miniature surface electrodes. The RMS, as well as the MPF and MF of the power spectrum were calculated at 20, 40, 60 and 80% MVC for each type of contraction. As expected, the RMS values showed similar increases with increasing levels of effort for both types of contractions. Different behaviours for both MPF (contraction(∗)force interaction, ANOVA, P0.05) across increasing levels of effort were found between the two types of contraction. The use of step contractions gave rise to a decrease of both MPF and MF with increasing force, while the use of ramp contractions gave rise to an increase in both statistics up to at least 40% MVC followed by a decrease at higher force levels. These findings suggest that the type of contraction used does influence the behaviour of the spectral statistics across increasing force levels and that this could explain the differences obtained in previous studies for the masseter muscle. Copyright © 1993. Published by Elsevier Ltd.

  10. The X-ray variability of NGC 6814 - Power spectrum

    Science.gov (United States)

    Done, C.; Madejski, G. M.; Mushotzky, R. F.; Turner, T. J.; Koyama, K.; Kunieda, H.

    1992-01-01

    The existence of the periodic component seen in NGC 6814 with Exosat at 12,000 +/- 100 s is confirmed by a power spectrum and folded light curve analysis of unevenly sampled Ginga data. A comparison of the power spectra produced from simulated light curves with that observed enables the intrinsic shape of the power spectrum of the source to be determined despite the distortions introduced by the window function. The best estimate for the period is 12,132 +/- 3 s, where the error is that derived from simulations. An upper limit to the rate of change of period of about 10 exp -9 is inferred if the light curves are truly phase-coherent, but as this is not required by the data, the conservative upper limit is not greater than 5 x 10 exp -7. The large amount of power in the periodic component and its stability both suggest occultation of the source as its origin.

  11. Massive Neutrinos and the Non-linear Matter Power Spectrum

    CERN Document Server

    Bird, Simeon; Haehnelt, Martin G

    2011-01-01

    We perform an extensive suite of N-body simulations of the matter power spectrum, incorporating massive neutrinos in the range M = 0.15-0.6 eV, probing the non-linear regime at scales k < 10 hMpc-1 at z < 3. We extend the widely used HALOFIT approximation (Smith et al. 2003) to account for the effect of massive neutrinos on the power spectrum. In the strongly non-linear regime HALOFIT systematically over-predicts the suppression due to the free-streaming of the neutrinos. The maximal discrepancy occurs at k \\sim 1hMpc-1, and is at the level of 10% of the total suppression. Most published constraints on neutrino masses based on HALOFIT are not affected, as they rely on data probing the matter power spectrum in the linear or mildly non-linear regime. However, predictions for future galaxy, Lyman-alpha forest and weak lensing surveys extending to more non-linear scales will benefit from the improved approximation to the non-linear matter power spectrum we provide. Our approximation reproduces the induced n...

  12. Matter density perturbation and power spectrum in running vacuum model

    CERN Document Server

    Geng, Chao-Qiang

    2016-01-01

    We investigate the matter density perturbation $\\delta_m$ and power spectrum $P(k)$ in the running vacuum model (RVM) with the cosmological constant being a function of the Hubble parameter, given by $\\Lambda = \\Lambda_0 + 6 \\sigma H H_0+ 3\

  13. Unbiased pseudo-Cl power spectrum estimation with mode projection

    CERN Document Server

    Elsner, Franz; Peiris, Hiranya V

    2016-01-01

    With the steadily improving sensitivity afforded by current and future galaxy surveys, a robust extraction of two-point correlation function measurements may become increasingly hampered by the presence of astrophysical foregrounds or observational systematics. The concept of mode projection has been introduced as a means to remove contaminants for which it is possible to construct a spatial map reflecting the expected signal contribution. Owing to its computational efficiency compared to minimum-variance methods, the sub-optimal pseudo-Cl (PCL) power spectrum estimator is a popular tool for the analysis of high-resolution data sets. Here, we integrate mode projection into the framework of PCL power spectrum estimation. In contrast to results obtained with optimal estimators, we show that the uncorrected projection of template maps leads to biased power spectra. Based on analytical calculations, we find exact closed-form expressions for the expectation value of the bias and demonstrate that they can be recast...

  14. Constraining the primordial power spectrum from SNIa lensing dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dayan, Ido [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kalaydzhyan, Tigran [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics and Astronomy

    2013-09-15

    The (absence of detecting) lensing dispersion of Supernovae type Ia (SNIa) can be used as a novel and extremely efficient probe of cosmology. In this preliminary example we analyze its consequences for the primordial power spectrum. The main setback is the knowledge of the power spectrum in the non-linear regime, 1 Mpc{sup -1}power spectrum. The probe extends our handle on the spectrum to a total of 12-15 inflation e-folds. These constraints are so strong that they are already ruling out a large portion of the parameter space allowed by PLANCK for running {alpha}{identical_to}dn{sub s}/d ln k and running of running {beta}{identical_to}d{sup 2}n{sub s}/d ln k{sup 2}. The bounds follow a linear relation to a very good accuracy. A conservative bound disfavours any enhancement above the line {beta}(k{sub 0})=0.032-0.41{alpha}(k{sub 0}) and a realistic estimate disfavours any enhancement above the line {beta}(k{sub 0})=0.019-0.45{alpha}(k{sub 0}).

  15. Cosmic microwave background power spectrum estimation with the destriping technique

    Science.gov (United States)

    Poutanen, T.; Maino, D.; Kurki-Suonio, H.; Keihänen, E.; Hivon, E.

    2004-09-01

    Extraction of the cosmic microwave background (CMB) angular power spectrum is a challenging task for current and future CMB experiments due to the large data sets involved. Here we describe an implementation of Monte Carlo apodized spherical transform estimator (MASTER) described in Hivon et al., which exploits the destriping technique as a map-making method. In this method a noise estimate based on destriped noise-only Monte Carlo (MC) simulations is subtracted from the pseudo-angular power spectrum. As a working case we use realistic simulations of the Planck low-frequency instrument (LFI). We found that the effect of destriping on a pure sky signal is minimal and requires no correction. Instead we found an effect related to the distribution of detector pointings, which affects the high-l part of the power spectrum. We correct for this by subtracting a `signal bias' estimated by MC simulations. We also give analytical estimates for this signal bias. Our method is fast and accurate enough (the estimator is unbiased and errors are close to theoretical expectations for maximal accuracy) to estimate the CMB angular power spectra for current and future CMB space missions. This study is related to Planck LFI activities.

  16. On Removing Interloper Contamination from Intensity Mapping Power Spectrum Measurements

    CERN Document Server

    Lidz, Adam

    2016-01-01

    Line intensity mapping experiments seek to trace large scale structure by measuring the spatial fluctuations in the combined emission, in some convenient spectral line, from individually unresolved galaxies. An important systematic concern for these surveys is line confusion from foreground or background galaxies emitting in other lines that happen to lie at the same observed frequency as the "target" emission line of interest. We develop an approach to separate this "interloper" emission at the power spectrum level. If one adopts the redshift of the target emission line in mapping from observed frequency and angle on the sky to co-moving units, the interloper emission is mapped to the wrong co-moving coordinates. Since the mapping is different in the line of sight and transverse directions, the interloper contribution to the power spectrum becomes anisotropic, especially if the interloper and target emission are at widely separated redshifts. This distortion is analogous to the Alcock-Paczynski test, but her...

  17. Unbiased contaminant removal for 3D galaxy power spectrum measurements

    CERN Document Server

    Kalus, Benedict; Bacon, David; Samushia, Lado

    2016-01-01

    We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (i) removing the contaminant signal, (ii) estimating the uncontaminated cosmological power spectrum, (iii) debiasing the resulting estimates. For (i), we show that removing the best-fit contaminant (template subtraction), and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (ii), performing a Quadratic Maximum Likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large $(N_{\\rm mode}^2)$ matrices, which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (ii) as proposed by Feldman, Kaiser & Peacock (1994, FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require an...

  18. Multiple Cosmic Collisions and the Microwave Background Power Spectrum

    CERN Document Server

    Kozaczuk, Jonathan

    2012-01-01

    Collisions between cosmic bubbles of different vacua are a generic feature of false vacuum eternal inflation scenarios. While previous studies have focused on the consequences of a single collision event in an observer's past, we begin here an investigation of the more general scenario allowing for many "mild" collisions intersecting our past light cone (and one another). We discuss the general features of multiple collision scenarios and consider their impact on the cosmic microwave background (CMB) temperature power spectrum, treating the collisions perturbatively. In a large class of models, one can approximate a multiple collision scenario as a superposition of individual collision events governed by nearly isotropic and scale-invariant distributions, most appearing to take up less than half of the sky. In this case, the shape of the expected CMB temperature spectrum maintains statistical isotropy and typically features a dramatic increase in power in the low multipoles relative to that of the best-fit $\\...

  19. Probing the inflaton: Small-scale power spectrum constraints from measurements of the CMB energy spectrum

    CERN Document Server

    Chluba, Jens; Ben-Dayan, Ido

    2012-01-01

    In the early Universe, energy stored in small-scale density perturbations is quickly dissipated by Silk-damping, a process that inevitably generates mu- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k < 10^4 Mpc^{-1}. Here we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of mu and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magn...

  20. A new method of measuring the peculiar velocity power spectrum

    CERN Document Server

    Zhang, P; Juszkiewicz, R; Feldman, H A; Zhang, Pengjie; Stebbins, Albert; Juszkiewicz, Roman; Feldman, Hume

    2004-01-01

    We show that by directly correlating the cluster kinetic Sunyaev Zeldovich (KSZ) flux, the cluster peculiar velocity power spectrum can be measured to $\\sim 10%$ accuracy by future large sky coverage KSZ surveys. This method is almost free of systemics entangled in the usual velocity inversion method. The direct correlation brings extra information of density and velocity clustering. We utilize these information to construct two indicators of the Hubble constant and comoving angular distance and propose a novel method to constrain cosmology.

  1. The Effect of Massive Neutrinos on Matter Power Spectrum

    CERN Document Server

    Agarwal, Shankar

    2010-01-01

    We investigate the impact of massive neutrinos on the distribution of matter in the semi-nonlinear regime (0.1power spectrum, resulting from the free-streaming of massive neutrinos out of high-density regions. Our simulations show a power suppression of 3.5%-90% at k~0.6 h Mpc^{-1} for total neutrino mass, \\Sigma m_{\

  2. Commitment of Force: Employing Force as an Instrument of Power

    Science.gov (United States)

    2012-03-20

    25–46. 19 Ibid. 20 Edwin J. Arnold, ―The Use of Military Power in Pursuit of National Interests,‖ Parameters (Spring 1994): 8. 21 Robert Gilpin ...The Misguided Liberal Hawks,‖ New York Times, October 8, 2007; Ivo Daalder and Robert Kagan, ―The Next Intervention,‖ Washington Post, August 6, 2007

  3. Cosmological parameter estimation with free-form primordial power spectrum

    CERN Document Server

    Hazra, Dhiraj Kumar; Souradeep, Tarun

    2013-01-01

    Constraints on the main cosmological parameters using CMB or large scale structure data are usually based on power-law assumption of the primordial power spectrum (PPS). However, in the absence of a preferred model for the early universe, this raises a concern that current cosmological parameter estimates are strongly prejudiced by the assumed power-law form of PPS. In this paper, for the first time, we perform cosmological parameter estimation allowing the free form of the primordial spectrum. This is in fact the most general approach to estimate cosmological parameters without assuming any particular form for the primordial spectrum. We use direct reconstruction of the PPS for any point in the cosmological parameter space using recently modified Richardson-Lucy algorithm however other alternative reconstruction methods could be used for this purpose as well. We use WMAP 9 year data in our analysis considering CMB lensing effect and we report, for the first time, that the flat spatial universe with no cosmol...

  4. Cosmic microwave background power spectrum estimation with the destriping technique

    CERN Document Server

    Poutanen, T; Kurki-Suonio, H; Keihanen, E; Hivon, E

    2004-01-01

    Extraction of the CMB (Cosmic Microwave Background) angular power spectrum is a challenging task for current and future CMB experiments due to the large data sets involved. Here we describe an implementation of MASTER (Monte carlo Apodised Spherical Transform EstimatoR) which exploits the destriping technique as a map-making method. In this method a noise estimate based on destriped noise-only MC (Monte Carlo) simulations is subtracted from the pseudo angular power spectrum. As a working case we use realistic simulations of the PLANCK LFI (Low Frequency Instrument). We found that the effect of destriping on a pure sky signal is minimal and requires no correction. Instead we found an effect related to the distribution of detector pointings, which affects the high multipole part of the power spectrum. We correct for this by subtracting a ``signal bias'' estimated by MC simulations. We also give analytical estimates for this signal bias. Our method is fast and accurate enough (the estimator is un-biased and erro...

  5. Cosmological constraints from thermal Sunyaev Zeldovich power spectrum revisited

    CERN Document Server

    Horowitz, Benjamin

    2016-01-01

    Thermal Sunyaev-Zeldovich (tSZ) power spectrum is one of the most sensitive methods to constrain cosmological parameters, scaling as the amplitude $\\sigma_8^8$. It is determined by the integral over the halo mass function multiplied by the total pressure content of clusters, and further convolved by the cluster gas pressure profile. It has been shown that various feedback effects can change significantly the pressure profile, strongly affecting the tSZ power spectrum at high $l$. Energetics arguments and SZ-halo mass scaling relations suggest feedback is unlikely to significantly change the total pressure content, making low $l$ tSZ power spectrum more robust against feedback effects. Furthermore, the separation between the cosmic infrared background (CIB) and tSZ is more reliable at low $l$. Low $l$ modes are however probing very small volumes, giving rise to very large non-gaussian sampling variance errors. By computing the trispectrum contribution we identify $90

  6. The Small-Scale Power Spectrum of Cold Dark Matter

    CERN Document Server

    Loeb, A; Loeb, Abraham; Zaldarriaga, Matias

    2005-01-01

    One of the best motivated hypotheses in cosmology states that most of the matter in the universe is in the form of weakly-interacting massive particles that decoupled early in the history of the universe and cooled adiabatically to an extremely low temperature. Nevertheless, the finite temperature and horizon scales at which these particles decoupled imprint generic signatures on their small scales density fluctuations. We show that the previously recognized cut-off in the fluctuation power-spectrum due to free-streaming of particles at the thermal speed of decoupling, is supplemented by acoustic oscillations owing to the initial coupling between the cold dark matter (CDM) and the radiation field. The power-spectrum oscillations appear on the scale of the horizon at thermal decoupling which corresponds to a mass scale of \\~10^{-4}*(T_d/10MeV)^{-3} solar masses for a CDM decoupling temperature T_d. The suppression of the power-spectrum on smaller scales by the acoustic oscillations is physically independent fr...

  7. Unbiased pseudo-Cℓ power spectrum estimation with mode projection

    Science.gov (United States)

    Elsner, Franz; Leistedt, Boris; Peiris, Hiranya V.

    2017-02-01

    With the steadily improving sensitivity afforded by current and future galaxy surveys, a robust extraction of two-point correlation function measurements may become increasingly hampered by the presence of astrophysical foregrounds or observational systematics. The concept of mode projection has been introduced as a means to remove contaminants for which it is possible to construct a spatial map, reflecting the expected signal contribution. Owing to its computational efficiency compared to minimum-variance methods, the sub-optimal pseudo-Cℓ (PCL) power spectrum estimator is a popular tool for the analysis of high-resolution data sets. Here, we integrate mode projection into the framework of PCL power spectrum estimation. In contrast to results obtained with optimal estimators, we show that the uncorrected projection of template maps leads to biased power spectra. Based on analytical calculations, we find exact closed-form expressions for the expectation value of the bias and demonstrate that they can be recast in a form which allows a numerically efficient evaluation, preserving the favourable O( ℓ_{max} ^3 ) time complexity of PCL estimator algorithms. Using simulated data sets, we assess the scaling of the bias with various analysis parameters and demonstrate that it can be reliably removed. We conclude that in combination with mode projection, PCL estimators allow for a fast and robust computation of power spectra in the presence of systematic effects - properties in high demand for the analysis of ongoing and future large-scale structure surveys.

  8. The 44Ti-powered spectrum of SN 1987A

    CERN Document Server

    Jerkstrand, Anders; Kozma, Cecilia

    2011-01-01

    SN 1987A provides a unique opportunity to study the evolution of a supernova from explosion into very late phases. Due to the rich chemical structure, the multitude of physical process involved, and extensive radiative transfer effects, detailed modeling is needed to interpret the emission from this and other supernovae. In this paper, we analyze the late-time (~8 years) HST spectrum of the SN 1987A ejecta, where 44Ti is the dominant power source. Based on an explosion model for a 19 Msun progenitor, we compute a model spectrum by calculating the degradation of positrons and gamma-rays from the radioactive decays, solving the equations governing temperature, ionization balance and NLTE level populations, and treating the radiative transfer with a Monte Carlo technique. We obtain a UV/optical/NIR model spectrum which is found to reproduce most of the lines in the observed spectrum to good accuracy. We find non-local radiative transfer in atomic lines to be an important process also at this late stage of the su...

  9. EEG Power Spectrum Analysis in Children with ADHD

    Science.gov (United States)

    Kamida, Akira; Shimabayashi, Kenta; Oguri, Masayoshi; Takamori, Toshihiro; Ueda, Naoyuki; Koyanagi, Yuki; Sannomiya, Naoko; Nagira, Haruki; Ikunishi, Saeko; Hattori, Yuiko; Sato, Kengo; Fukuda, Chisako; Hirooka, Yasuaki; Maegaki, Yoshihiro

    2016-01-01

    Background Attention deficit disorder/hyperactivity disorder (ADHD) is a pathological condition that is not fully understood. In this study, we investigated electroencephalographic (EEG) power differences between children with ADHD and healthy control children. Methods EEGs were recorded as part of routine medical care received by 80 children with ADHD aged 4–15 years at the Department of Pediatric Neurology in Tottori University Hospital. Additionally, we recorded in 59 control children aged 4–15 years after obtaining informed consent. Specifically, awake EEG signals were recorded from each child using the international 10–20 system, and we used ten 3-s epochs on the EEG power spectrum to calculate the powers of individual EEG frequency bands. Results The powers of different EEG bands were significantly higher in the frontal brain region of those in the ADHD group compared with the control group. In addition, the power of the beta band in the ADHD group was significantly higher in all brain regions, except for the occipital region, compared with control children. With regard to developmental changes, the power of the alpha band in the occipital region showed an age-dependent decrease in both groups, with slightly lower power in the ADHD group. Additionally, the intergroup difference decreased in children aged 11 years or older. As with the alpha band in the occipital region, the beta band in the frontal region showed an age-dependent decrease in both groups. Unlike the alpha band, the power of the beta band was higher in the ADHD group than in the control group for children of all ages. Conclusion The observed intergroup differences in EEG power may provide insight into the brain function of children with ADHD. PMID:27493489

  10. Power Allocation for Balancing Spectrum Efficiency and Power Consumption in Cognitive Relay Networks

    Directory of Open Access Journals (Sweden)

    Lun Tang

    2011-10-01

    Full Text Available In order to guarantee the QoS requirement of secondary users and not to affect the outage probability of primary user in cognitive relay networks, we propose two optimal power allocation models: (1 maximizing the transmission rate of secondary users; (2 minimizing the total power consumption. Theory analysis shows that two optimal power allocation models conflict between spectrum efficiency and power consumption. Furthermore, an optimal power allocation model which joints the transmission rate and the total power consumption in cognitive relay networks is proposed. By using the Lagrangian method, the optimization algorithm for this model is designed. The proposed algorithm can achieve the trade-off between the transmission rate and the total power consumption by varying the weight. Simulation results show that the proposed algorithm can effectively adjust the transmission rate and the total power consumption of secondary users.

  11. Effect of humidity on the sur-face adhesion force of inor-ganic crystals by the force spectrum method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effect of relative humidity on the surface adhesion force of several inorganic crystals of mica, CaF2 and KCl was studied by atomic force microscopy (AFM). The results showed that the magnitude of surface adhesion force is mainly dependent on the surface free energy of the adsorbed liquid film, but almost independent of the thickness of the film. Furthermore, the deliquescence on the crystal surface was investigated, which demonstrated the capability of the force spectrum method to monitor changes in ionic concentrations of adsorbed liquid film in real-time.

  12. Power Spectrum Analysis of Three-Dimensional Redshift Surveys

    CERN Document Server

    Feldman, H A; Peacock, J A; Feldman, Hume A.; Kaiser, Nick; Peacock, John A.

    1994-01-01

    We develop a general method for power spectrum analysis of three dimensional redshift surveys. We present rigorous analytical estimates for the statistical uncertainty in the power and we are able to derive a rigorous optimal weighting scheme under the reasonable (and largely empirically verified) assumption that the long wavelength Fourier components are Gaussian distributed. We apply the formalism to the updated 1-in-6 QDOT IRAS redshift survey, and compare our results to data from other probes: APM angular correlations; the CfA and the Berkeley 1.2Jy IRAS redshift surveys. Our results bear out and further quantify the impression from e.g.\\ counts-in-cells analysis that there is extra power on large scales as compared to the standard CDM model with $\\Omega h\\simeq 0.5$. We apply likelihood analysis using the CDM spectrum with $\\Omega h$ as a free parameter as a phenomenological family of models; we find the best fitting parameters in redshift space and transform the results to real space. Finally, we calcul...

  13. Improved Measurements of the CMB Power Spectrum with ACBAR

    CERN Document Server

    Kuo, C L; Bock, J J; Bond, J R; Contaldi, C R; Daub, M D; Goldstein, J H; Holzapfel, W L; Lange, A E; Lueker, M; Newcomb, M; Peterson, J B; Reichardt, C; Ruhl, J; Runyan, M C; Staniszweski, Z

    2006-01-01

    We report improved measurements of temperature anisotropies in the cosmic microwave background (CMB) radiation made with the Arcminute Cosmology Bolometer Array Receiver (ACBAR). In this paper, we use a new analysis technique and include 30% more data from the 2001 and 2002 observing seasons than the first release to derive a new set of band-power measurements with significantly smaller uncertainties. The planet-based calibration used previously has been replaced by comparing the flux of RCW38 as measured by ACBAR and BOOMERANG to transfer the WMAP-based BOOMERANG calibration to ACBAR. The resulting power spectrum is consistent with the theoretical predictions for a spatially flat, dark energy dominated LCDM cosmology including the effects of gravitational lensing. Despite the exponential damping on small angular scales, the primary CMB fluctuations are detected with a signal-to-noise ratio of greater than 4 up to multipoles of l=2000. This increase in the precision of the fine-scale CMB power spectrum leads ...

  14. The 3D power spectrum of galaxies from the SDSS

    CERN Document Server

    Tegmark, M; Strauss, M; Hoyle, F; Schlegel, D J; Scoccimarro, R; Vogeley, M S; Weinberg, D H; Zehavi, I; Berlind, Andreas A; Budavari, T; Connolly, A; Eisenstein, D J; Finkbeiner, D; Frieman, J A; Gunn, J E; Hamilton, A J S; Hui, L; Jain, B; Johnston, D; Kent, S; Lin, H; Nakajima, R; Ostriker, J P; Nichol, R C; Pope, A; Scranton, R; Seljak, U; Sheth, R K; Stebbins, A; Szalay, A S; Szapudi, I; Verde, L; Xu, Y; Annis, J; Bahcall, Neta A; Brinkmann, J; Burles, S; Castander, F J; Csabai, I; Loveday, J; Doi, M; Fukugita, M; Gott, J R; Hennessy, G S; Hogg, D W; Ivezic, M E Z; Knapp, G R; Lamb, D Q; Lee Byung Cheol; Lupton, R H; McKay, T A; Kunszt, Peter Z; Munn, J A; O'Connell, L; Peoples, John; Pier, J R; Richmond, M; Rockosi, C M; Schneider, D P; Stoughton, C; Tucker, D L; Vanden Berk, Daniel E; Yanni, B; York, D G

    2004-01-01

    We measure the large-scale real-space power spectrum P(k) using a sample of 205,443 galaxies from the Sloan Digital Sky Survey, covering 2417 square degrees with mean redshift z~0.1. We employ a matrix-based method using pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 22 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.02 h/Mpc < k < 0.3h/Mpc. We pay particular attention to modeling, quantifying and correcting for potential systematic errors, nonlinear redshift distortions and the artificial red-tilt caused by luminosity-dependent bias. Our final result is a measurement of the real-space matter power spectrum P(k) up to an unknown overall multiplicative bias factor. Our calculations suggest that this bias factor is independent of scale to better than a few percent for k<0.1h/Mpc, thereby making our results useful for precision measurements of cosmological pa...

  15. Constraints on massive neutrinos from the CFHTLS angular power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jun-Qing [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy); Granett, Benjamin R.; Guzzo, Luigi [INAF — Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Brera (Italy); Viel, Matteo [INAF — Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste (Italy); Bird, Simeon [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Haehnelt, Martin G. [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, CB3 0HA, Cambridge (United Kingdom); Coupon, Jean [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); McCracken, Henry Joy; Mellier, Yannick, E-mail: xia@sissa.it, E-mail: ben.granett@brera.inaf.it, E-mail: viel@oats.inaf.it, E-mail: spb@ias.edu, E-mail: luigi.guzzo@brera.inaf.it, E-mail: haehnelt@ast.cam.ac.uk, E-mail: coupon@asiaa.sinica.edu.tw, E-mail: hjmcc@iap.fr, E-mail: mellier@iap.fr [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Universitè Pierre et Marie Curie, 98 bis Boulevard Arago, 75014 Paris (France)

    2012-06-01

    We use the galaxy angular power spectrum at z ∼ 0.5–1.2 from the Canada-France-Hawaii-Telescope Legacy Survey Wide fields (CFHTLS-Wide) to constrain separately the total neutrino mass Σm{sub ν} and the effective number of neutrino species N{sub eff}. This survey has recently benefited from an accurate calibration of the redshift distribution, allowing new measurements of the (non-linear) matter power spectrum in a unique range of scales and redshifts sensitive to neutrino free streaming. Our analysis makes use of a recent model for the effect of neutrinos on the weakly non-linear matter power spectrum derived from accurate N-body simulations. We show that CFHTLS, combined with WMAP7 and a prior on the Hubble constant provides an upper limit of Σm{sub ν} < 0.29 eV and N{sub eff} = 4.17{sup +1.62}{sub −1.26} (2 σ confidence levels). If we omit smaller scales which may be affected by non-linearities, these constraints become Σm{sub ν} < 0.41 eV and N{sub eff} = 3.98{sup +2.02}{sub −1.20} (2 σ confidence levels). Finally we show that the addition of other large scale structures probes can further improve these constraints, demonstrating that high redshift large volumes surveys such as CFHTLS are complementary to other cosmological probes of the neutrino mass.

  16. Power counting for nuclear forces in chiral effective field theory

    CERN Document Server

    Long, Bingwei

    2016-01-01

    The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.

  17. Power counting for nuclear forces in chiral effective field theory

    Science.gov (United States)

    Long, Bingwei

    2016-02-01

    The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.

  18. Primordial power spectrum of tensor perturbations in Finsler spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin [Chongqing University, Department of Physics, Chongqing (China); Chinese Academy of Sciences, State Key Laboratory Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Wang, Sai [Chinese Academy of Sciences, State Key Laboratory Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2016-02-15

    We first investigate the gravitational wave in the flat Finsler spacetime. In the Finslerian universe, we derive the perturbed gravitational field equation with tensor perturbations. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. Then we obtain the modified primordial power spectrum of the tensor perturbations. The parity violation feature requires that the anisotropic effect contributes to the TT, TE, EE, BB angular correlation coefficients with l{sup '} = l + 1 and TB, EB with l{sup '} = l. The numerical results show that the anisotropic contributions to the angular correlation coefficients depend on m, and TE and ET angular correlation coefficients are different. (orig.)

  19. Primordial power spectrum of tensor perturbations in Finsler spacetime

    CERN Document Server

    Li, Xin

    2015-01-01

    We first investigate the gravitational wave in the flat Finsler spacetime. In the Finslerian universe, we derive the perturbed gravitational field equation with tensor perturbations. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. Then we obtain the modified primordial power spectrum of tensor perturbations. The parity violation feature requires that the anisotropic effect contributes to $TT,TE,EE,BB$ angular correlation coefficients with $l'=l+1$ and $TB,EB$ with $l'=l$. The numerical results show that the anisotropic contributions to angular correlation coefficients depend on $m$, and $TE$ and $ET$ angular correlation coefficients are different.

  20. Behavior of the x-ray spectrum of multiply charged ions during forced plasma expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.G.; Marchenko, V.S.

    1982-07-01

    The behavior of the x-ray emission spectrum of a dense plasma during forced expansion is studied. The optical transparency of the plasma varies during the expansion. The plasma emission spectrum integrated over the expansion time is calculated from the analytic solutions of the equations. The intensity of the line emission is calculated in the average-ion approximation.

  1. Power spectrum for the Bose-Einstein condensate dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Velten, Hermano, E-mail: velten@physik.uni-bielefeld.de [Departamento de Fisica, UFES, Vitoria, 29075-910 Espirito Santo (Brazil); Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, 33501 Bielefeld (Germany); Wamba, Etienne [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)

    2012-03-13

    We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo-Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15 MeVpower at large scales.

  2. Reconstructing the primordial power spectrum from the CMB

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, Christopher; Bucher, Martin, E-mail: cgauthie@apc.univ-paris7.fr, E-mail: bucher@apc.univ-paris7.fr [Laboratoire APC, Université Paris Diderot, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2012-10-01

    We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.

  3. Reconstructing the primordial power spectrum from the CMB

    CERN Document Server

    Gauthier, Christopher

    2012-01-01

    We propose a straightforward and model independent methodology for characterizing the sensitivity of CMB and other experiments to wiggles, irregularities, and features in the primordial power spectrum. Assuming that the primordial cosmological perturbations are adiabatic, we present a function space generalization of the usual Fisher matrix formalism, applied to a CMB experiment resembling Planck with and without ancillary data. This work is closely related to other work on recovering the inflationary potential and exploring specific models of non-minimal, or perhaps baroque, primordial power spectra. The approach adopted here, however, most directly expresses what the data is really telling us. We explore in detail the structure of the available information and quantify exactly what features can be reconstructed and at what statistical significance.

  4. Power spectrum for the Bose-Einstein condensate dark matter

    CERN Document Server

    Velten, Hermano

    2011-01-01

    We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo- Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15meV < m < 700meV leading to a small, but perceptible, excess of power at large scales.

  5. On the power spectrum of solar surface flows

    CERN Document Server

    Rieutord, M; Rincon, F; Malherbe, J -M; Meunier, N; Berger, T; Frank, Z

    2009-01-01

    The aim of this work is to give new observational constraints on solar surface flows by determining the horizontal scale dependence of the velocity and intensity fields, as represented by their power spectra, and to offer some theoretical guidelines to interpret these spectra. We use long time series of images taken by SOT/Hinode and reconstruct both horizontal (by granule tracking) and vertical (by Doppler effect) velocity fields in a field of view 75x75Mm^2. At small sub-granulation scales, the kinetic energy spectral density associated with vertical motions exhibits a k^{-13/3}-like spectrum, while the intensity fluctuation spectrum follows a k^{-17/3}-like spectrum. We discuss the physical origin of these scalings and argue that they provide a direct observational signature of buoyancy-driven turbulent dynamics in a strongly thermally diffusive regime. In the mesogranulation range and up to a scale of 25Mm, we find that the vertical velocity field amplitude decreases like L^{-3/2} with the horizontal scal...

  6. Cosmic Emulation: Fast Predictions for the Galaxy Power Spectrum

    CERN Document Server

    Kwan, Juliana; Habib, Salman; Padmanabhan, Nikhil; Finkel, Hal; Frontiere, Nick; Pope, Adrian

    2013-01-01

    The halo occupation distribution (HOD) approach has proven to be an effective method for modeling galaxy clustering and bias. In this approach, galaxies of a given type are probabilistically assigned to individual halos in N-body simulations. In this paper, we present a fast emulator for predicting the fully nonlinear galaxy power spectrum over a range of freely specifiable HOD modeling parameters. The emulator is constructed using results from 100 HOD models run on a large LCDM N-body simulation, with Gaussian Process interpolation applied to a PCA-based representation of the galaxy power spectrum. The total error is currently ~3% (~2% in the simulation and ~1% in the emulation process) from z=1 to z=0, over the considered parameter range. We use the emulator to investigate parametric dependencies in the HOD model, as well as the behavior of galaxy bias as a function of HOD parameters. The emulator is publicly available at http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html.

  7. Testing for new physics: neutrinos and the primordial power spectrum

    Science.gov (United States)

    Canac, Nicolas; Aslanyan, Grigor; Abazajian, Kevork N.; Easther, Richard; Price, Layne C.

    2016-09-01

    We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of H0 and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in log k. Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-precision local measurements of H0. Conversely combining Planck with matter power spectrum and BAO measurements yields a much weaker constraint. Given that this result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H0 measurements is likely an indication of unmodeled systematic bias that mimics PPS features, rather than new physics in the PPS or neutrino sector.

  8. First Results from COPSS: The CO Power Spectrum Survey

    CERN Document Server

    Keating, Garrett K; Marrone, Daniel P; DeBoer, David R; Heiles, Carl; Chang, Tzu-Ching; Carlstrom, John E; Greer, Christopher H; Hawkins, David; Lamb, James W; Leitch, Erik; Miller, Amber D; Muchovej, Stephen; Woody, David P

    2015-01-01

    We present constraints on the abundance of carbon-monoxide in the early Universe from the CO Power Spectrum Survey (COPSS). We utilize a data set collected between 2005 and 2008 using the Sunyaev-Zel'dovich Array (SZA), which were previously used to measure arcminute-scale fluctuations of the CMB. This data set features observations of 44 fields, covering an effective area of 1.7 square degrees, over a frequency range of 27 to 35 GHz. Using the technique of intensity mapping, we are able to probe the CO(1-0) transition, with sensitivity to spatial modes between $k=0.5{-}2\\ h\\,\\textrm{Mpc}^{-1}$ over a range in redshift of $z=2.3{-}3.3$, spanning a comoving volume of $3.6\\times10^{6}\\ h^{-3}\\,\\textrm{Mpc}^{3}$. We demonstrate our ability to mitigate foregrounds, and present estimates of the impact of continuum sources on our measurement. We constrain the CO power spectrum to $P_{\\textrm{CO}}<2.6\\times10^{4}\\ \\mu\\textrm{K}^{2} (h^{-1}\\,\\textrm{Mpc})^{3}$, or $\\Delta^{2}_{\\textrm{CO}}(k\\! = \\! 1 \\ h\\,\\textrm{...

  9. Power Spectrum and Non-Gaussianities in Anisotropic Inflation

    CERN Document Server

    Dey, Anindya; Paban, Sonia

    2014-01-01

    We study the planar regime of curvature perturbations for single field inflationary models in an axially symmetric Bianchi I background. In a theory with standard scalar field action, the power spectrum for such modes has a pole as the planarity parameter goes to zero. We show that constraints from back reaction lead to a strong lower bound on the planarity parameter for high-momentum planar modes and use this bound to calculate the signal-to-noise ratio of the anisotropic power spectrum in the CMB, which in turn places an upper bound on the Hubble scale during inflation allowed in our model. We find that non-Gaussianities for these planar modes are enhanced for the flattened triangle and the squeezed triangle configurations, but show that the estimated values of the f_NL parameters remain well below the experimental bounds from the CMB for generic planar modes (other, more promising signatures are also discussed). For a standard action, f_NL from the squeezed configuration turns out to be larger compared to ...

  10. Just enough inflation: power spectrum modifications at large scales

    CERN Document Server

    Cicoli, Michele; Dutta, Bhaskar; Pedro, Francisco G; Westphal, Alexander

    2014-01-01

    We show that models of `just enough' inflation, where the slow-roll evolution lasted only $50-60$ e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic and model-independent analysis of any possible non-slow-roll background evolution prior to the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low-$\\ell$, and so seem disfavoured by recent observational hints for a lack of CMB power at $\\ell\\lesssim 40$. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  11. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential

    CERN Document Server

    Huang, Qing-Guo

    2016-01-01

    The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(\\phi)~\\phi^n. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.

  12. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    CERN Document Server

    Mead, Alexander; Lombriser, Lucas; Peacock, John; Steele, Olivia; Winther, Hans

    2016-01-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead (2015b). We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo model method can predict the non-linear matter power spectrum measured from simulations of parameterised $w(a)$ dark energy models at the few per cent level for $k0.5\\,h\\mathrm{Mpc}^{-1}$. An updated version of our publicly available HMcode can be found at https://github.com/alexander-mead/HMcode

  13. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    Science.gov (United States)

    Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.

    2016-06-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.

  14. Power, muscular work, and external forces in cycling.

    Science.gov (United States)

    de Groot, G; Welbergen, E; Clijsen, L; Clarijs, J; Cabri, J; Antonis, J

    1994-01-01

    Cycling performance is affected by the interaction of a number of variables, including environment, mechanical, and human factors. Engineers have focused on the development of more efficient bicycles. Kinesiologists have examined cycling performance from a human perspective. This paper summarizes only certain aspects of human ergonomics of cycling, especially those which are important for the recent current research in our departments. Power is a key to performance of physical work. During locomotion an imaginary flow of energy takes place from the metabolism to the environment, with some efficiency. The 'useful' mechanical muscle power output might be used to perform movements and to do work against the environment. The external power is defined as the sum of joint powers, each calculated as the product of the joint (net) moment and angular velocity. This definition of external power is closely related to the mean external power as applied to exercise physiology: the sum of joint powers reflects all mechanical power which in principle can be used to fulfil a certain task. In this paper, the flow of energy for cycling is traced quantitatively as far as possible. Studies on the total lower limb can give insight into the contribution of individual muscles to external power. The muscle velocity (positive or negative) is obtained from the positions and orientations of body segments and a bar linkage model of the lower limb. The muscle activity can be measured by electromyography. In this way, positive and negative work regions in individual muscles are identified. Synergy between active agonistic/antagonistic muscle groups occurs in order to deliver external power. Maximum power is influenced by body position, geometry of the bicycle and pedalling rate. This has to be interpreted in terms of the length-tension and force-velocity-power relationships of the involved muscles. Flat road and uphill cycling at different saddle-tube angles is simulated on an ergometer. The

  15. Increased Photovoltaic Power Output via Diffractive Spectrum Separation

    Science.gov (United States)

    Kim, Ganghun; Dominguez-Caballero, Jose A.; Lee, Howard; Friedman, Daniel J.; Menon, Rajesh

    2013-03-01

    In this Letter, we report the preliminary demonstration of a new paradigm for photovoltaic power generation that utilizes a broadband diffractive-optical element (BDOE) to efficiently separate sunlight into laterally spaced spectral bands. These bands are then absorbed by single-junction photovoltaic cells, whose band gaps correspond to the incident spectral bands. We designed such BDOEs by utilizing a modified version of the direct-binary-search algorithm. Gray scale lithography was used to fabricate these multilevel optics. They were experimentally characterized with an overall optical efficiency of 70% over a wavelength range of 350-1100 nm, which was in excellent agreement with simulation predictions. Finally, two prototype devices were assembled: one with a pair of copper indium gallium selenide based photovoltaic devices, and another with GaAs and c-Si photovoltaic devices. These devices demonstrated an increase in output peak electrical power of ˜42% and ˜22%, respectively, under white-light illumination. Because of the optical versatility and manufacturability of the proposed BDOEs, the reported spectrum-splitting approach provides a new approach toward low-cost solar power.

  16. Increased photovoltaic power output via diffractive spectrum separation.

    Science.gov (United States)

    Kim, Ganghun; Dominguez-Caballero, Jose A; Lee, Howard; Friedman, Daniel J; Menon, Rajesh

    2013-03-22

    In this Letter, we report the preliminary demonstration of a new paradigm for photovoltaic power generation that utilizes a broadband diffractive-optical element (BDOE) to efficiently separate sunlight into laterally spaced spectral bands. These bands are then absorbed by single-junction photovoltaic cells, whose band gaps correspond to the incident spectral bands. We designed such BDOEs by utilizing a modified version of the direct-binary-search algorithm. Gray scale lithography was used to fabricate these multilevel optics. They were experimentally characterized with an overall optical efficiency of 70% over a wavelength range of 350-1100 nm, which was in excellent agreement with simulation predictions. Finally, two prototype devices were assembled: one with a pair of copper indium gallium selenide based photovoltaic devices, and another with GaAs and c-Si photovoltaic devices. These devices demonstrated an increase in output peak electrical power of ∼ 42% and ∼ 22%, respectively, under white-light illumination. Because of the optical versatility and manufacturability of the proposed BDOEs, the reported spectrum-splitting approach provides a new approach toward low-cost solar power.

  17. Super-Survey Tidal Effect on Redshift-space Power Spectrum

    CERN Document Server

    Akitsu, Kazuyuki; Li, Yin

    2016-01-01

    Long-wavelength matter inhomogeneities contain cleaner information on the nature of primordial perturbations as well as the physics of the early universe. The large-scale coherent overdensity and tidal force, not directly observable for a finite-volume galaxy survey, are both related to the Hessian matrix of large-scale gravitational potential and therefore of equal importance. We show that the coherent tidal force causes a homogeneous anisotropic distortion of the observed distribution of galaxies in all three directions, perpendicular and parallel to the line-of-sight direction. This effect mimics the redshift-space distortion signal of galaxy peculiar velocities, as well as a distortion by the Alcock-Paczynski effect. We quantify its impact on the redshift-space power spectrum to the leading order, and discuss its importance for the ongoing and upcoming galaxy surveys.

  18. Measuring the VIPERS galaxy power spectrum at z∼1

    Science.gov (United States)

    Rota, Stefano; Bel, Julien; Granett, Ben; Guzzo, Luigi

    2016-10-01

    The VIMOS Public Extragalactic Redshift Survey [VIPERS, Guzzo et al. 2014] is using the VIMOS spectrograph at the ESO VLT to measure redshifts for ~ 100,000 galaxies with IAB < 22.5 and 0.5 < z < 1.2, over an area of 24 deg2 (split over the W1 and W4 fields of CFHTLS). VIPERS currently provides, at such redshifts, the best compromise between volume, number of galaxies and dense spatial sampling. We present here the first estimate of the power spectrum of the galaxy distribution, P(k), at redshifts z ~ 0.75 and z ~ 1, obtained from the ~ 55,000 redshifts of the PDR-1 data release. We discuss first constraints on cosmological quantities, as the matter density and the baryonic fraction, obtained for the first time at an epoch when the Universe was about half its current age.

  19. Towards optimal estimation of the galaxy power spectrum

    CERN Document Server

    Smith, Robert E

    2015-01-01

    The galaxy power spectrum encodes a wealth of information about cosmology and the matter fluctuations. Its unbiased and optimal estimation is therefore of great importance. In this paper we generalise the framework of Feldman et al. (1994) to take into account the fact that galaxies are not simply a Poisson sampling of the underlying dark matter distribution. Besides finite survey-volume effects and flux-limits, our optimal estimation scheme incorporates several of the key tenets of galaxy formation: galaxies form and reside exclusively in dark matter haloes; a given dark matter halo may host several galaxies of various luminosities; galaxies inherit part of their large-scale bias from their host halo. Under these broad assumptions, we prove that the optimal weights "do not" explicitly depend on galaxy luminosity, other than through defining the maximum survey volume and effective galaxy density at a given position. Instead, they depend on the bias associated with the host halo; the first and second factorial...

  20. Contribution of domain wall networks to the CMB power spectrum

    CERN Document Server

    Lazanu, A; Shellard, E P S

    2015-01-01

    We use three domain wall simulations from the radiation era to the late time dark energy domination era based on the PRS algorithm to calculate the energy-momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  1. Power Spectrum Density of Long-Term MAXI Data

    Science.gov (United States)

    Sugimoto, Juri; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro

    Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves. We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies. For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.

  2. Contribution of domain wall networks to the CMB power spectrum

    Directory of Open Access Journals (Sweden)

    A. Lazanu

    2015-07-01

    Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  3. Contribution of domain wall networks to the CMB power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Lazanu, A., E-mail: A.Lazanu@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-07-30

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  4. Power Spectrum Density of long-term MAXI data

    CERN Document Server

    Sugimoto, Juri; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro

    2013-01-01

    Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves.We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies.For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.

  5. Detection of forced oscillations in power systems with multichannel methods

    Energy Technology Data Exchange (ETDEWEB)

    Follum, James D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-09-30

    The increasing availability of high fidelity, geographically dispersed measurements in power systems improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such behavior that is garnering increased attention is the presence of forced oscillations. Power system engineers are interested in forced oscillations because they are often symptomatic of the malfunction or misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root cause may be serious. In this report, multi-channel forced oscillation detection methods are developed. These methods leverage previously developed detection approaches based on the periodogram and spectral-coherence. Making use of geographically distributed channels of data is shown to improved detection performance and shorten the delay before an oscillation can be detected in the online environment. Results from simulated and measured power system data are presented.

  6. Within- and between-session reliability of power, force, and rate of force development during the power clean.

    Science.gov (United States)

    Comfort, Paul

    2013-05-01

    Although there has been extensive research regarding the power clean, its application to sports performance, and use as a measure of assessing changes in performance, no research has determined the reliability assessing the kinetics of the power clean across testing session. The aim of this study was to determine the within- and between-session reliability of kinetic variables during the power clean. Twelve professional rugby league players (age 24.5 ± 2.1 years; height 182.86 ± 6.97 cm; body mass 92.85 ± 5.67 kg; 1 repetition maximum [1RM] power clean 102.50 ± 10.35 kg) performed 3 sets of 3 repetitions of power cleans at 70% of their 1RM, while standing on a force plate, to determine within-session reliability and repeated on 3 separate occasions to determine reliability between sessions. Intraclass correlation coefficients revealed a high reliability within- (r ≥ 0.969) and between-sessions (r ≥ 0.988). Repeated-measures analysis of variance showed no significant difference (p > 0.05) in peak vertical ground reaction force, rate of force development, and peak power between sessions, with small standard error of the measurements and smallest detectable differences for each kinetic variable (3.13 and 8.68 N; 84.39 and 233.93 N·s; 24.54 and 68.01 W, respectively). Therefore, to identify a meaningful change in performance, the strength and conditioning coach should look for a change in peak force ≥8.68 N, rate of force development ≥24.54 N·s, and a change in peak power ≥68.01 W to signify an adaptive response to training, which is greater than the variance between sessions, in trained athletes proficient at performing the power clean.

  7. Einasto profiles and the dark matter power spectrum

    Science.gov (United States)

    Ludlow, Aaron D.; Angulo, Raúl E.

    2017-02-01

    We study the mass accretion histories (MAHs) and density profiles of dark matter haloes using N-body simulations of self-similar gravitational clustering from scale-free power spectra, P(k) ∝ kn. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, α, of an Einasto profile. In agreement with previous findings, our results suggest that, despite vast differences in their MAHs, the density profiles of virialized haloes are remarkably alike. Nonetheless, clear departures from self-similarity are evident: For a given spectral index, α increases slightly but systematically with `peak height', ν ≡ δsc/σ(M, z), regardless of mass or redshift. More importantly, however, the `α-ν' relation depends on n: The steeper the initial power spectrum, the more gradual the curvature of both the mean MAHs and mean density profiles. These results are consistent with previous findings connecting the shapes of halo mass profiles and MAHs, and imply that dark matter haloes are not structurally self-similar but, through the merger history, retain a memory of the linear density field from which they form.

  8. Roundoff noise analysis for digital signal power processors using Welch's power spectrum estimation

    Science.gov (United States)

    Chi, Chong-Yung; Long, David; Li, Fuk-Kwok

    1987-01-01

    The noise due to finite-word-length effects is analyzed for digital-signal power processors using Welch's power-spectrum estimation technique to measure the power of Gaussian random signals over a frequency band of interest. The input of the digital signal processor contains a finite-length time interval in which the true Gaussian signal is contaminated by Gaussian noise. The roundoff noise-to-signal ratio in the measurement of the signal power is derived, and computer simulations which validate the analytical results are presented. These results can be used in tradeoff studies of hardware design, such as the number of bits required at each processing stage. The results presented in this paper are currently being used in the design of a digital Doppler processor (Chi et al., 1986) for a radar scatterometer.

  9. Intramuscular and surface EMG power spectrum from dynamic and static contractions.

    Science.gov (United States)

    Christensen, H; Søgaard, K; Jensen, B R; Finsen, L; Sjøgaard, G

    1995-03-01

    During sustained static contractions an increase in the root mean square (rms) amplitude and a decrease in mean power frequency (MPF), or median power frequency (MF) of the electromyographic (EMG) signal are indicators for the development of muscle fatigue. However, when studying dynamic contractions the interpretation of these variables has been questioned. Therefore, the purpose was to compare the EMG variables recorded from a non-fatigued muscle during a slow low level dynamic contraction to those during a static contraction of similar force level. Surface and intramuscular EMG registrations were obtained from the brachial biceps muscle during: (a) a static isotonic contraction, (b) a dynamic contraction and (c) a static anisotonic contraction. During contractions (a) and (b) the recruitment pattern was analysed using the precision decomposition method. No differences in rms, MPF or MF between the dynamic and static contractions or between the concentric and eccentric phase of the dynamic contraction were found. Furthermore 60% of the identified motor units were active both in the concentric and the eccentric phase. This indicates that motor control during a slow dynamic contraction at low force level does not influence the power spectrum. We suggest that in occupational studies a possible muscle fatigue development with time can be estimated using EMG recordings from the work tasks.

  10. A neutrino model fit to the CMB power spectrum

    Science.gov (United States)

    Shanks, T.; Johnson, R. W. F.; Schewtschenko, J. A.; Whitbourn, J. R.

    2014-12-01

    The standard cosmological model, Λ cold dark matter (ΛCDM), provides an excellent fit to cosmic microwave background (CMB) data. However, the model has well-known problems. For example, the cosmological constant, Λ, is fine-tuned to 1 part in 10100 and the CDM particle is not yet detected in the laboratory. Shanks previously investigated a model which assumed neither exotic particles nor a cosmological constant but instead postulated a low Hubble constant (H0) to allow a baryon density compatible with inflation and zero spatial curvature. However, recent Planck results make it more difficult to reconcile such a model with CMB power spectra. Here, we relax the previous assumptions to assess the effects of assuming three active neutrinos of mass ≈5 eV. If we assume a low H0 ≈ 45 km s-1 Mpc-1 then, compared to the previous purely baryonic model, we find a significantly improved fit to the first three peaks of the Planck power spectrum. Nevertheless, the goodness of fit is still significantly worse than for ΛCDM and would require appeal to unknown systematic effects for the fit ever to be considered acceptable. A further serious problem is that the amplitude of fluctuations is low (σ8 ≈ 0.2), making it difficult to form galaxies by the present day. This might then require seeds, perhaps from a primordial magnetic field, to be invoked for galaxy formation. These and other problems demonstrate the difficulties faced by models other than ΛCDM in fitting ever more precise cosmological data.

  11. Noise power spectrum measurements under nonuniform gains and their compensations

    Science.gov (United States)

    Kim, Dong Sik; Kim, Eun; Shin, Choul Woo

    2016-03-01

    The fixed pattern noise, which is due to the nonuniform amplifier gains and scintillator sensitivities, should be alleviated in radiography imaging and should have less influence on measuring the noise power spectrum (NPS) of the radiography detector. In order to reduce the influence, background trend removing methods, which are based on low-pass filtering, polynomial fitting, and subtracting the average image of the uniform exposure images, are traditionally employed in the literature. In terms of removing the fixed pattern noise, the subtraction method shows a good performance. However, the number of images to be averaged is practically finite and thus the noise contained in the average image contaminates the image difference and inflates the NPS curve. In this paper, an image formation model considering the nonuniform gain is constructed and two measuring methods, which are based on the subtraction and gain correction, respectively, are considered. In order to accurately measure a normalized NPS (NNPS) in the measuring methods, the number of images to be averaged is considered for NNPS compensations. For several flat-panel radiography detectors, the NNPS measurements are conducted and compared with conventional approaches, which have no compensation stages. Through experiments it is shown that the compensation can provide accurate NNPS measurements less influenced by the fixed pattern noise.

  12. Perturbative approach to covariance matrix of the matter power spectrum

    CERN Document Server

    Mohammed, Irshad; Vlah, Zvonimir

    2016-01-01

    We evaluate the covariance matrix of the matter power spectrum using perturbation theory up to dominant terms at 1-loop order and compare it to numerical simulations. We decompose the covariance matrix into the disconnected (Gaussian) part, trispectrum from the modes outside the survey (beat coupling or super-sample variance), and trispectrum from the modes inside the survey, and show how the different components contribute to the overall covariance matrix. We find the agreement with the simulations is at a 10\\% level up to $k \\sim 1 h {\\rm Mpc^{-1}}$. We show that all the connected components are dominated by the large-scale modes ($k<0.1 h {\\rm Mpc^{-1}}$), regardless of the value of the wavevectors $k,\\, k'$ of the covariance matrix, suggesting that one must be careful in applying the jackknife or bootstrap methods to the covariance matrix. We perform an eigenmode decomposition of the connected part of the covariance matrix, showing that at higher $k$ it is dominated by a single eigenmode. The full cova...

  13. Testing for New Physics: Neutrinos and the Primordial Power Spectrum

    CERN Document Server

    Canac, Nicolas; Abazajian, Kevork N; Easther, Richard; Price, Layne C

    2016-01-01

    We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of $\\mathrm{H}_0$ and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in $\\log k$. Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-pr...

  14. Perturbative approach to covariance matrix of the matter power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Irshad [Fermilab; Seljak, Uros [UC, Berkeley, Astron. Dept.; Vlah, Zvonimir [Stanford U., ITP

    2016-06-30

    We evaluate the covariance matrix of the matter power spectrum using perturbation theory up to dominant terms at 1-loop order and compare it to numerical simulations. We decompose the covariance matrix into the disconnected (Gaussian) part, trispectrum from the modes outside the survey (beat coupling or super-sample variance), and trispectrum from the modes inside the survey, and show how the different components contribute to the overall covariance matrix. We find the agreement with the simulations is at a 10\\% level up to $k \\sim 1 h {\\rm Mpc^{-1}}$. We show that all the connected components are dominated by the large-scale modes ($k<0.1 h {\\rm Mpc^{-1}}$), regardless of the value of the wavevectors $k,\\, k'$ of the covariance matrix, suggesting that one must be careful in applying the jackknife or bootstrap methods to the covariance matrix. We perform an eigenmode decomposition of the connected part of the covariance matrix, showing that at higher $k$ it is dominated by a single eigenmode. The full covariance matrix can be approximated as the disconnected part only, with the connected part being treated as an external nuisance parameter with a known scale dependence, and a known prior on its variance for a given survey volume. Finally, we provide a prescription for how to evaluate the covariance matrix from small box simulations without the need to simulate large volumes.

  15. Large-scale power-spectrum from peculiar velocities

    CERN Document Server

    Kolatt, T S; Kolatt, Tsafrir; Dekel, Avishai

    1995-01-01

    The power spectrum (PS) of {\\it mass} density fluctuations, in the range 0.05 \\leq k \\leq 0.2 \\ihmpc, is derived from the Mark III catalog of peculiar velocities of galaxies, independent of ``biasing". It is computed from the density field as recovered by POTENT with Gaussian smoothing of 12\\hmpc, within a sphere of radius \\sim 60 \\hmpc about the Local Group. The density is weighted inversely by the errors. The PS is corrected for the effects of smoothing, random errors, and sparse sampling within a finite volume, using mock catalogs that mimic in detail the Mark III catalog and the dynamics of our cosmological neighborhood. The mock catalogs are also used for error analysis. The value of the mass PS at k = 0.1 \\ihmpc is (4.6 \\pm 1.4) \\times 10^3 \\Omega^{-1.2} \\3hmpc, and the local logarithmic slope is -1.45 \\pm 0.5. This translates to \\sigma_8 \\Omega^{0.6} \\simeq 0.7-0.8, depending on where the PS peak is. Direct comparisons of the mass PS with the galaxy PS derived from different redshift and angular survey...

  16. Matter density perturbation and power spectrum in running vacuum model

    Science.gov (United States)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2016-10-01

    We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model (RVM) with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behavior as that in the ΛCDM model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > ( matter and dark energy. It is clear that the observational data rule out the cases with ν < 0 and ν + σ < 0, while the allowed window for the model parameters is extremely narrow with ν , |σ | ≲ {O}(10^{-7}).

  17. Matter density perturbation and power spectrum in running vacuum model

    Science.gov (United States)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2017-01-01

    We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model, with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub-interaction and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behaviour as that in the Λ cold dark model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > (extremely narrow with ν , |σ | ≲ O(10^{-7}).

  18. High Resolution Observations of the CMB Power Spectrum with ACBAR

    CERN Document Server

    Kuo, C L; Bock, J J; Cantalupo, C M; Daub, M D; Goldstein, J; Holzapfel, W L; Lange, A E; Lueker, M; Newcomb, M; Peterson, J B; Ruhl, J; Runyan, M C; Torbet, E

    2004-01-01

    We report the first measurements of anisotropy in the cosmic microwave background (CMB) radiation with the Arcminute Cosmology Bolometer Array Receiver (ACBAR). The instrument was installed on the 2.1m Viper telescope at the South Pole in January 2001; the data presented here are the product of observations up to and including July 2002. The two deep fields presented here, have had offsets removed by subtracting lead and trail observations and cover approximately 24 deg^2 of sky selected for low dust contrast. These results represent the highest signal to noise observations of CMB anisotropy to date; in the deepest 150GHz band map, we reached an RMS of 8.0\\mu K per 5' beam. The 3 degree extent of the maps, and small beamsize of the experiment allow the measurement of the CMB anisotropy power spectrum over the range \\ell = 150-3000 with resolution of \\Delta \\ell=150. The contributions of galactic dust and radio sources to the observed anisotropy are negligible and are removed in the analysis. The resulting pow...

  19. Modulation of EMG power spectrum frequency during motor imagery.

    Science.gov (United States)

    Lebon, F; Rouffet, D; Collet, C; Guillot, A

    2008-04-25

    To provide evidence that motor imagery (MI) is accompanied by improvement of intramuscular conduction velocity (CV), we investigated surface electromyographic (EMG) activity of 3 muscles during the elbow flexion/extension. Thirty right-handed participants were asked to lift or to imagine lifting a weighted dumbbell under 3 types of muscular contractions, i.e. concentric, isometric and eccentric, taken as independent variables. The EMG activity of the agonist (long and short heads of biceps brachii) and the antagonist (long portion of triceps brachii) muscles was recorded and processed to determine the median frequency (MF) of EMG power spectrum as dependant variable. The MF was significantly higher during the MI sessions than during the resting condition while the participants remained strictly motionless. Moreover, the MF during imagined concentric contraction was significantly higher than during the eccentric. Thus, the MF variation was correlated to the type of contraction the muscle produced. During MI, the EMG patterns corresponding to each type of muscle contraction remained comparable to those observed during actual movement. In conclusion, specific motor programming is hypothesized to be performed as a function of muscle contraction type during MI.

  20. Perturbative approach to covariance matrix of the matter power spectrum

    Science.gov (United States)

    Mohammed, Irshad; Seljak, Uroš; Vlah, Zvonimir

    2017-04-01

    We evaluate the covariance matrix of the matter power spectrum using perturbation theory up to dominant terms at 1-loop order and compare it to numerical simulations. We decompose the covariance matrix into the disconnected (Gaussian) part, trispectrum from the modes outside the survey (supersample variance) and trispectrum from the modes inside the survey, and show how the different components contribute to the overall covariance matrix. We find the agreement with the simulations is at a 10 per cent level up to k ˜ 1 h Mpc-1. We show that all the connected components are dominated by the large-scale modes (k covariance matrix, suggesting that one must be careful in applying the jackknife or bootstrap methods to the covariance matrix. We perform an eigenmode decomposition of the connected part of the covariance matrix, showing that at higher k, it is dominated by a single eigenmode. The full covariance matrix can be approximated as the disconnected part only, with the connected part being treated as an external nuisance parameter with a known scale dependence, and a known prior on its variance for a given survey volume. Finally, we provide a prescription for how to evaluate the covariance matrix from small box simulations without the need to simulate large volumes.

  1. Estimating the power spectrum covariance matrix with fewer mock samples

    CERN Document Server

    Pearson, David W

    2015-01-01

    The covariance matrices of power-spectrum (P(k)) measurements from galaxy surveys are difficult to compute theoretically. The current best practice is to estimate covariance matrices by computing a sample covariance of a large number of mock catalogues. The next generation of galaxy surveys will require thousands of large volume mocks to determine the covariance matrices to desired accuracy. The errors in the inverse covariance matrix are larger and scale with the number of P(k) bins, making the problem even more acute. We develop a method of estimating covariance matrices using a theoretically justified, few-parameter model, calibrated with mock catalogues. Using a set of 600 BOSS DR11 mock catalogues, we show that a seven parameter model is sufficient to fit the covariance matrix of BOSS DR11 P(k) measurements. The covariance computed with this method is better than the sample covariance at any number of mocks and only ~100 mocks are required for it to fully converge and the inverse covariance matrix conver...

  2. Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure

    CERN Document Server

    Ravenni, Andrea; Cuesta, Antonio J

    2016-01-01

    We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: {\\it Planck} observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflat...

  3. Force-field parameterization of the galactic cosmic ray spectrum: Validation for Forbush decreases

    Science.gov (United States)

    Usoskin, I. G.; Kovaltsov, G. A.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Pizzolotto, C.; Ricci, M.; Ricciarini, S. B.; Rossetto, L.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    2015-06-01

    A useful parametrization of the energy spectrum of galactic cosmic rays (GCR) near Earth is offered by the so-called force-field model which describes the shape of the entire spectrum with a single parameter, the modulation potential. While the usefulness of the force-field approximation has been confirmed for regular periods of solar modulation, it was not tested explicitly for disturbed periods, when GCR are locally modulated by strong interplanetary transients. Here we use direct measurements of protons and α -particles performed by the PAMELA space-borne instrument during December 2006, including a major Forbush decrease, in order to directly test the validity of the force-field parameterization. We conclude that (1) The force-field parametrization works very well in describing the energy spectra of protons and α -particles directly measured by PAMELA outside the Earths atmosphere; (2) The energy spectrum of GCR can be well parameterized by the force-field model also during a strong Forbush decrease; (3) The estimate of the GCR modulation parameter, obtained using data from the world-wide neutron monitor network, is in good agreement with the spectra directly measured by PAMELA during the studied interval. This result is obtained on the basis of a single event analysis, more events need to be analyzed.

  4. The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum

    Science.gov (United States)

    Hlozek, Renee; Dunkley, Joanna; Addison, Graeme; Appel, John William; Bond, J. Richard; Carvalho, C. Sofia; Das, Sudeep; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; hide

    2011-01-01

    We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k approx. = 0.2 Mp/c. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from CMB measurements (which probe the power spectrum in thc linear regime) with existing probes of galaxy clustering, cluster abundances and weak lensing constraints on the primordial power. This highlights the range of scales probed by current measurement.s of the matter power spectrum.

  5. Influence of motor unit firing statistics on the median frequency of the EMG power spectrum

    NARCIS (Netherlands)

    van Boxtel, Anton; Schomaker, L R

    1984-01-01

    Changes in the EMG power spectrum during static fatiguing contractions are often attributed to changes in muscle fibre action potential conduction velocity. Mathematical models of the EMG power spectrum, which have been empirically confirmed, predict that under certain conditions a distinct maximum

  6. General Forced Oscillations in a Real Power Grid Integrated with Large Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Ping Ju

    2016-07-01

    Full Text Available According to the monitoring of the wide area measurement system, inter-area oscillations happen more and more frequently in a real power grid of China, which are close to the forced oscillation. Applying the conventional forced oscillation theory, the mechanism of these oscillations cannot be explained well, because the oscillations vary with random amplitude and a narrow frequency band. To explain the mechanism of such oscillations, the general forced oscillation (GFO mechanism is taken into consideration. The GFO is the power system oscillation excited by the random excitations, such as power fluctuations from renewable power generation. Firstly, properties of the oscillations observed in the real power grid are analyzed. Using the GFO mechanism, the observed oscillations seem to be the GFO caused by some random excitation. Then the variation of the wind power measured in this power gird is found to be the random excitation which may cause the GFO phenomenon. Finally, simulations are carried out and the power spectral density of the simulated oscillation is compared to that of the observed oscillation, and they are similar with each other. The observed oscillation is thus explained well using the GFO mechanism and the GFO phenomenon has now been observed for the first time in real power grids.

  7. Factors influencing power hand tool fastening accuracy and reaction forces.

    Science.gov (United States)

    Radwin, Robert G; Chourasia, Amrish O; Howery, Robert S; Fronczak, Frank J; Yen, Thomas Y; Subedi, Yashpal; Sesto, Mary E

    2014-06-01

    A laboratory study investigated the relationship between power hand tool and task-related factors affecting threaded fastener torque accuracy and associated handle reaction force. We previously developed a biodynamic model to predict handle reaction forces. We hypothesized that torque accuracy was related to the same factors that affect operator capacity to react against impulsive tool forces, as predicted by the model. The independent variables included tool (pistol grip on a vertical surface, right angle on a horizontal surface), fastener torque rate (hard, soft), horizontal distance (30 cm and 60 cm), and vertical distance (80 cm, 110 cm, and 140 cm). Ten participants (five male and five female) fastened 12 similar bolts for each experimental condition. Average torque error (audited - target torque) was affected by fastener torque rate and operator position. Torque error decreased 33% for soft torque rates, whereas handle forces greatly increased (170%). Torque error also decreased for the far horizontal distance 7% to 14%, when vertical distance was in the middle or high, but handle force decreased slightly 3% to 5%. The evidence suggests that although both tool and task factors affect fastening accuracy, they each influence handle reaction forces differently. We conclude that these differences are attributed to different parameters each factor influences affecting the dynamics of threaded faster tool operation. Fastener torque rate affects the tool dynamics, whereas posture affects the spring-mass-damping biodynamic properties of the human operator. The prediction of handle reaction force using an operator biodynamic model may be useful for codifying complex and unobvious relationships between tool and task factors for minimizing torque error while controlling handle force.

  8. Position-dependent power spectrum: a new observable in the large-scale structure

    CERN Document Server

    Chiang, Chi-Ting

    2015-01-01

    We present a new observable, position-dependent power spectrum, to measure the large-scale structure bispectrum in the squeezed configuration, where one wavenumber is much smaller than the other two. The squeezed-limit bispectrum measures how the small-scale power spectrum is modulated by a long-wavelength overdensity, which is due to gravitational evolution and possibly inflationary physics. We divide a survey into small subvolumes, compute the local power spectrum and the mean overdensity in each subvolume, and measure the correlation between them. The correlation measures the integral of the bispectrum, which is dominated by squeezed configurations if the scale of the local power spectrum is much smaller than the subvolume size. We use the separate universe approach to model how the small-scale power spectrum is affected by a long-wavelength overdensity gravitationally. This models the nonlinearity of the bispectrum better than the perturbation theory approach. Not only the new observable is easy to interp...

  9. Model Independent Foreground Power Spectrum Estimation using WMAP 5-year Data

    CERN Document Server

    Ghosh, Tuhin; Jain, Pankaj; Souradeep, Tarun

    2009-01-01

    In this paper, we propose & implement on WMAP 5-year data, a model independent approach of foreground power spectrum estimation for multifrequency observations of CMB experiments. Recently a model independent approach of CMB power spectrum estimation was proposed by Saha et al. 2006. This methodology demonstrates that CMB power spectrum can be reliably estimated solely from WMAP data without assuming any template models for the foreground components. In the current paper, we extend this work to estimate the galactic foreground power spectrum using the WMAP 5 year maps following a self contained analysis. We apply the model independent method in harmonic basis to estimate the foreground power spectrum and frequency dependence of combined foregrounds. We also study the behaviour of synchrotron spectral index variation over different regions of the sky. We compare our results with those obtained from MEM foreground maps which are formed in pixel space. We find that relative to our model independent estimates...

  10. The angular power spectrum of radio emission at 2.3 GHz

    CERN Document Server

    Giardino, G; Fosalba, P; Górski, K M; Jonas, J L; O'Mullane, W; Tauber, J A

    2001-01-01

    We have analysed the Rhodes/HartRAO survey at 2326 MHz and derived the global angular power spectrum of Galactic continuum emission. In order to measure the angular power spectrum of the diffuse component, point sources were removed from the map by median filtering. A least-square fit to the angular power spectrum of the entire survey with a power law spectrum C_l proportional to l^{-alpha}, gives alpha = 2.43 +/- 0.01 for l = 2-100. The angular power spectrum of radio emission appears to steepen at high Galactic latitudes and for observed regions with |b| > 20 deg, the fitted spectral index is alpha = 2.92 +/- 0.07. We have extrapolated this result to 30 GHz (the lowest frequency channel of Planck) and estimate that no significant contribution to the sky temperature fluctuation is likely to come from synchrotron at degree-angular scales

  11. Power spectrum scale invariance identifies prefrontal dysregulation in paranoid schizophrenia.

    Science.gov (United States)

    Radulescu, Anca R; Rubin, Denis; Strey, Helmut H; Mujica-Parodi, Lilianne R

    2012-07-01

    Theory and experimental evidence suggest that complex living systems function close to the boundary of chaos, with erroneous organization to an improper dynamical range (too stiff or chaotic) underlying system-wide dysregulation and disease. We hypothesized that erroneous organization might therefore also characterize paranoid schizophrenia, via optimization abnormalities in the prefrontal-limbic circuit regulating emotion. To test this, we acquired fMRI scans from 35 subjects (N = 9 patients with paranoid schizophrenia and N = 26 healthy controls), while they viewed affect-valent stimuli. To quantify dynamic regulation, we analyzed the power spectrum scale invariance (PSSI) of fMRI time-courses and computed the geometry of time-delay (Poincaré) maps, a measure of variability. Patients and controls showed distinct PSSI in two clusters (k(1) : Z = 4.3215, P = 0.00002 and k(2) : Z = 3.9441, P = 0.00008), localized to the orbitofrontal/medial prefrontal cortex (Brodmann Area 10), represented by β close to white noise in patients (β ≈ 0) and in the pink noise range in controls (β ≈ -1). Interpreting the meaning of PSSI differences, the Poincaré maps indicated less variability in patients than controls (Z = -1.9437, P = 0.05 for k(1) ; Z = -2.5099, P = 0.01 for k(2) ). That the dynamics identified Brodmann Area 10 is consistent with previous schizophrenia research, which implicates this area in deficits of working memory, executive functioning, emotional regulation and underlying biological abnormalities in synaptic (glutamatergic) transmission. Our results additionally cohere with a large body of work finding pink noise to be the normal range of central function at the synaptic, cellular, and small network levels, and suggest that patients show less supple responsivity of this region.

  12. Daniell method for power spectral density estimation in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2016-03-15

    An alternative method for power spectral density (PSD) estimation—the Daniell method—is revisited and compared to the most prevalent method used in the field of atomic force microscopy for quantifying cantilever thermal motion—the Bartlett method. Both methods are shown to underestimate the Q factor of a simple harmonic oscillator (SHO) by a predictable, and therefore correctable, amount in the absence of spurious deterministic noise sources. However, the Bartlett method is much more prone to spectral leakage which can obscure the thermal spectrum in the presence of deterministic noise. By the significant reduction in spectral leakage, the Daniell method leads to a more accurate representation of the true PSD and enables clear identification and rejection of deterministic noise peaks. This benefit is especially valuable for the development of automated PSD fitting algorithms for robust and accurate estimation of SHO parameters from a thermal spectrum.

  13. Minimally Parametric Power Spectrum Reconstruction from the Lyman-alpha Forest

    CERN Document Server

    Bird, Simeon; Viel, Matteo; Verde, Licia

    2010-01-01

    Current results from the Lyman alpha forest assume that the primordial power spectrum of density perturbations follows a simple power law form. We present the first analysis of Lyman alpha data to study the effect of relaxing this strong assumption on primordial and astrophysical constraints. We perform a large suite of numerical simulations, using them to calibrate a minimally parametric framework for describing the power spectrum. Combined with cross-validation, a statistical technique which prevents over-fitting of the data, this framework allows us to reconstruct the power spectrum shape without strong prior assumptions. We find no evidence for deviation from scale-invariance; our analysis also shows that current Lyman alpha data do not have sufficient statistical power to robustly probe the shape of the power spectrum at these scales. In contrast, the ongoing Baryon Oscillation Sky Survey (BOSS) will be able to do so with high precision. Furthermore, this near-future data will be able to break degeneraci...

  14. First results from the Very Small Array -- III. The CMB power spectrum

    OpenAIRE

    2002-01-01

    We present the power spectrum of the fluctuations in the cosmic microwave background detected by the Very Small Array (VSA) in its first season of observations in its compact configuration. We find clear detections of first and second acoustic peaks at l~200 and l~550, plus detection of power on scales up to l=800. The VSA power spectrum is in very good agreement with the results of the Boomerang, Dasi and Maxima telescopes despite the differing potential systematic errors.

  15. The visibility based Tapered Gridded Estimator (TGE) for the redshifted 21-cm power spectrum

    CERN Document Server

    Choudhuri, Samir; Chatterjee, Suman; Ali, Sk Saiyad; Roy, Nirupam; Ghosh, Abhik

    2016-01-01

    We present the improved visibility based Tapered Gridded Estimator (TGE) for the power spectrum of the diffuse sky signal. The visibilities are gridded to reduce the computation, and tapered through a convolution to suppress the contribution from the outer regions of the telescope's field of view. The TGE also internally estimates the noise bias, and subtracts this out to give an unbiased estimate of the power spectrum. An earlier version of the 2D TGE for the angular power spectrum $C_{\\ell}$ is improved and then extended to obtain the 3D TGE for the power spectrum $P({\\bf k})$ of the 21-cm brightness temperature fluctuations. Analytic formulas are also presented for predicting the variance of the binned power spectrum. The estimator and its variance predictions are validated using simulations of $150 \\, {\\rm MHz}$ GMRT observations. We find that the estimator accurately recovers the input model for the 1D Spherical Power Spectrum $P(k)$ and the 2D Cylindrical Power Spectrum $P(k_\\perp,k_\\parallel)$, and the...

  16. Primordial black holes do not (yet) constrain the primordial power spectrum

    CERN Document Server

    Akrami, Yashar; Sandstad, Marit

    2016-01-01

    Primordial black holes (PBHs) are thought to have formed from extremely overdense regions that reentered the horizon after the end of inflation if there was sufficient power in primordial perturbations on specific scales. The existence (and abundance) of PBHs is therefore governed by the inflationary power spectrum. So far no primordial black holes have been observed, and instead, increasingly stringent bounds on their existence at different scales have been set. Up until recently this has been exploited in attempts to constrain parts of the inflationary power spectrum that are unconstrained by the cosmic microwave background and other cosmological observations. In this letter we point out that this simple translation of the PBH constraints into constraints on the primordial power spectrum is inaccurate as it fails to take into account realistic aspects of the PBH formation and evolution process. We show this by displaying a concrete example of a power spectrum that is seemingly in conflict with the constrain...

  17. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    Science.gov (United States)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest

  18. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    Science.gov (United States)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  19. Relativistic Corrections to the Thermal Sunyaev-Zel'dovich Power Spectrum

    Institute of Scientific and Technical Information of China (English)

    Hai-Ning Li

    2003-01-01

    We present a quantitative estimate of the relativistic corrections to the thermal SZ power spectrum produced by the energetic electrons in massive clusters. The corrections are well within 10% for current experiments with working frequencies below v < 100 GHz, but become non-negligible at high frequencies v >350 GHz. Moreover, the corrections appear to be slightly smaller at higher e or smaller angular scales. We conclude that there is no need to include the relativistic corrections in the theoretical study of the SZ power spectrum especially at low frequencies unless the SZ power spectrum is used for precision cosmology.

  20. PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido, E-mail: jchluba@cita.utoronto.ca [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, Ontario M5S 3H8 (Canada)

    2012-10-20

    In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates {mu}- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k {approx}< 10{sup 4} Mpc{sup -1}. Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of {mu} and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.

  1. Wind tunnel study of the power output spectrum in a micro wind farm

    Science.gov (United States)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2016-09-01

    Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies.

  2. Observability of secondary Doppler peaks in the CMBR power spectrum by experiments with small fields

    CERN Document Server

    Hobson, M P; Magueijo, Joao

    1996-01-01

    We investigate the effects of finite sky coverage on the spectral resolution \\Delta\\ell in the estimation of the CMBR angular power spectrum C^{\\ell}. A method is developed for obtaining quasi-independent estimates of the power spectrum, and the cosmic/sample variance of these estimates is calculated. The effect of instrumental noise is also considered for prototype interferometer and single-dish experiments. By proposing a statistic for the detection of secondary (Doppler) peaks in the CMBR power spectrum, we then compute the significance level at which such peaks may be detected for a large range of model CMBR experiments. In particular, we investigate experimental design features required to distinguish between competing cosmological theories, such as cosmic strings and inflation, by establishing whether or not secondary peaks are present in the CMBR power spectrum.

  3. Measuring the power spectrum of dark matter substructure using strong gravitational lensing

    CERN Document Server

    Hezaveh, Yashar; Holder, Gilbert; Kisner, Theodore; Kuhlen, Michael

    2014-01-01

    In recent years, it has become possible to detect individual dark matter subhalos near strong gravitational lenses. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, and test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations with current facilities (in particular ALMA) can measure this power spectrum, placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.

  4. Sandia-Power Surety Task Force Hawaii foam analysis.

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Annie

    2010-11-01

    The Office of Secretary of Defense (OSD) Power Surety Task Force was officially created in early 2008, after nearly two years of work in demand reduction and renewable energy technologies to support the Warfighter in Theater. The OSD Power Surety Task Force is tasked with identifying efficient energy solutions that support mission requirements. Spray foam insulation demonstrations were recently expanded beyond field structures to include military housing at Ft. Belvoir. Initial results to using the foam in both applications are favorable. This project will address the remaining key questions: (1) Can this technology help to reduce utility costs for the Installation Commander? (2) Is the foam cost effective? (3) What application differences in housing affect those key metrics? The critical need for energy solutions in Hawaii and the existing relationships among Sandia, the Department of Defense (DOD), the Department of Energy (DOE), and Forest City, make this location a logical choice for a foam demonstration. This project includes application and analysis of foam to a residential duplex at the Waikulu military community on Oahu, Hawaii, as well as reference to spray foam applied to a PACOM facility and additional foamed units on Maui, conducted during this project phase. This report concludes the analysis and describes the utilization of foam insulation at military housing in Hawaii and the subsequent data gathering and analysis.

  5. Estimating magnetic field power spectrum using CRRES magnetometer data

    Science.gov (United States)

    Ali, A.; Elkington, S. R.

    2013-05-01

    Radial diffusion is one of the acceleration mechanisms responsible for populating and depleting the Van Allen radiation belts with high energy charged particles. We use the magnetometer data from the Combined Release and Radiation Effects Satellite (CRRES) to estimate the power spectral density in the compressional component of the geomagnetic field in the frequency range of 0.8mHz-16.3mHz. We see a clear dependence of power spectral density on radial distance L, measure of geomagnetic disturbance Kp, and magnetic local time. Comparing total integrated power, the noon sector contains more power with no significant difference between other sectors during periods of low activity. During high activity the dusk sector has significantly more power than dawn sector with the difference sometimes being an order of magnitude higher with power increasing slightly as we move radially outward to higher L-shells. We then recompute the power spectral density without local time dependence and compute the electromagnetic part of the radial diffusion coefficient. The electromagnetic diffusion coefficients are then compared with the electrostatic coefficients computed by Brautigam et al. (2005). The dependence of the diffusion coefficients is then studied on parameters of L, Kp, and the first invariant. For a fixed first invariant the diffusion coefficient can be up to two orders of magnitude higher as we move from the inner magnetosphere (L=3.5) to the outer magnetosphere (L=6.5). During high activity, radial diffusion is also significantly faster than at quiet times.

  6. Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum

    Science.gov (United States)

    Heyn, Irene; Block, Karoline; Mülmenstädt, Johannes; Gryspeerdt, Edward; Kühne, Philipp; Salzmann, Marc; Quaas, Johannes

    2017-01-01

    In its fifth assessment report (AR5), the Intergovernmental Panel on Climate Change provides a best estimate of the effective radiative forcing (ERF) due to anthropogenic aerosol at -0.9 W m-2. This value is considerably weaker than the estimate of -1.2 W m-2 in AR4. A part of the difference can be explained by an offset of +0.2 W m-2 which AR5 added to all published estimates that only considered the solar spectrum, in order to account for adjustments in the terrestrial spectrum. We find that, in the CMIP5 multimodel median, the ERF in the terrestrial spectrum is small, unless microphysical effects on ice- and mixed-phase clouds are parameterized. In the latter case it is large but accompanied by a very strong ERF in the solar spectrum. The total adjustments can be separated into microphysical adjustments (aerosol "effects") and thermodynamic adjustments. Using a kernel technique, we quantify the latter and find that the rapid thermodynamic adjustments of water vapor and temperature profiles are small. Observation-based constraints on these model results are urgently needed.

  7. Contribution of strong discontinuities to the power spectrum of the solar wind.

    Science.gov (United States)

    Borovsky, Joseph E

    2010-09-10

    Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  8. Spectrum sensing and resource allocation for multicarrier cognitive radio systems under interference and power constraints

    Science.gov (United States)

    Dikmese, Sener; Srinivasan, Sudharsan; Shaat, Musbah; Bader, Faouzi; Renfors, Markku

    2014-12-01

    Multicarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario.

  9. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations Angular Power Spectrum

    CERN Document Server

    Hinshaw, G; Verde, L; Hill, R S; Meyer, S S; Barnes, C; Bennett, C L; Halpern, M; Jarosik, N C; Kogut, A J; Komatsu, E; Limon, M; Page, L; Tucker, G S; Weiland, J; Wollack, E; Wright, E L

    2003-01-01

    We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking ~700 known bright sources from the maps, we estimate residual sources contribute ~3500 uK^2 at 41 GHz, and ~130 uK^2 at 94 GHz, to the power spectrum l*(l+1)*C_l/(2*pi) at l=1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive mea...

  10. Interpreting the power spectrum of Dansgaard-Oeschger events via stochastic dynamical systems

    Science.gov (United States)

    Mitsui, Takahito; Lenoir, Guillaume; Crucifix, Michel

    2017-04-01

    Dansgaard-Oeschger (DO) events are abrupt climate shifts, which are particularly pronounced in the North Atlantic region during glacial periods [Dansgaard et al. 1993]. The signals are most clearly found in δ 18O or log [Ca2+] records of Greenland ice cores. The power spectrum S(f) of DO events has attracted attention over two decades with debates on the apparent 1.5-kyr periodicity [Grootes & Stuiver 1997; Schultz et al. 2002; Ditlevsen et al. 2007] and scaling property over several time scales [Schmitt, Lovejoy, & Schertzer 1995; Rypdal & Rypdal 2016]. The scaling property is written most simply as S(f)˜ f-β , β ≈ 1.4. However, physical as well as underlying dynamics of the periodicity and the scaling property are still not clear. Pioneering works for modelling the spectrum of DO events are done by Cessi (1994) and Ditlevsen (1999), but their model-data comparisons of the spectra are rather qualitative. Here, we show that simple stochastic dynamical systems can generate power spectra statistically consistent with the observed spectra over a wide range of frequency from orbital to the Nyquist frequency (=1/40 yr-1). We characterize the scaling property of the spectrum by defining a local scaling exponentβ _loc. For the NGRIP log [Ca2+] record, the local scaling exponent β _loc increases from ˜ 1 to ˜ 2 as the frequency increases from ˜ 1/5000 yr-1 to ˜ 1/500 yr-1, and β _loc decreases toward zero as the frequency increases from ˜ 1/500 yr-1 to the Nyquist frequency. For the δ 18O record, the local scaling exponent β _loc increases from ˜ 1 to ˜ 1.5 as the frequency increases from ˜ 1/5000 yr^{-1 to ˜ 1/1000 yr-1, and β _loc decreases toward zero as the frequency increases from ˜ 1/1000 yr-1 to the Nyquist frequency. This systematic breaking of a single scaling is reproduced by the simple stochastic models. Especially, the models suggest that the flattening of the spectra starting from multi-centennial scale and ending at the Nyquist frequency

  11. The Spectrum of the Thermal Correction to the Casimir Force between Metallic Films

    CERN Document Server

    Torgerson, J R

    2003-01-01

    The frequency spectrum of the finite temperature correction to the Casimir force is determined by use of the Lifshitz formalism for metallic plates of finite conductivity. We show that the correction for the $TE$ electromagnetic modes is dominated by low frequencies, where low is defined by the transverse dimensions of the plates. Through a heuristic argument, we apply our result to the much more complicated case where one "plate" has a spherical surface. Our result brings the thermal correction into agreement with experimental results that were previously obtained. We also address issues relating to the behavior of electromagnetic fields at the surfaces and within metallic conductors.

  12. The force, power, and energy of the 100 meter sprint

    Science.gov (United States)

    Helene, O.; Yamashita, M. T.

    2010-03-01

    At the 2008 Summer Olympics in Beijing, Usain Bolt broke the world record for the 100 m sprint. Just one year later, at the 2009 World Championships in Athletics in Berlin he broke it again. A few months after Beijing, Eriksen et al. [Am. J. Phys. 77, 224-228 (2009)] studied Bolt's performance and predicted that Bolt could have run about one-tenth of a second faster, which was confirmed in Berlin. In this paper we extend the analysis of Eriksen et al. to model Bolt's velocity time dependence for the Beijing 2008 and Berlin 2009 records. We deduce the maximum force, the maximum power, and the total mechanical energy produced by Bolt in both races. Surprisingly, we conclude that all of these values were smaller in 2009 than in 2008.

  13. The force, power and energy of the 100-meter sprint

    CERN Document Server

    Helene, O

    2009-01-01

    At the 2008 Summer Olympics in Beijing, Jamaican athlete Usain Bolt broke the world record for the 100 m sprint. Just one year later, at the 2009 World Championships in Athletics in Berlin he broke it again. A few months after Beijing, Eriksen et al. studied Usain Bolt's performance and predicted that the record could be about one-tenth of second faster, which was confirmed in Berlin. In this paper we extend the analysis of Ref. [1] to model Bolt's velocity profile for the Beijing 2008 and Berlin 2009 records. From the results we obtained, we were able to deduce the maximum force, the maximum power and the total mechanical energy produced by the athlete in both races. Surprisingly, we concluded that all of these values were smaller in 2009 than in 2008.

  14. Deterministic reaction models with power-law forces

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Avraham, Daniel; Gromenko, Oleksandr [Physics Department, Clarkson University, Potsdam, NY 13699-5820 (United States); Politi, Paolo [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)], E-mail: benavraham@clarkson.edu, E-mail: gromenko@clarkson.edu, E-mail: paolo.politi@isc.cnr.it

    2009-12-11

    We study a one-dimensional particles system, in the overdamped limit, where nearest particles attract with a force inversely proportional to a power {alpha} of their distance and coalesce upon encounter. The detailed shape of the distribution function for the gap between neighbouring particles serves to discriminate between different laws of attraction. We develop an exact Fokker-Planck approach for the infinite hierarchy of distribution functions for multiple adjacent gaps and solve it exactly, at the mean-field level, where correlations are ignored. The crucial role of correlations and their effect on the gap distribution function is explored both numerically and analytically. Finally, we analyse a random input of particles, which results in a stationary state where the effect of correlations is largely diminished.

  15. Probing the Inflaton: Small-scale Power Spectrum Constraints from Measurements of the Cosmic Microwave Background Energy Spectrum

    Science.gov (United States)

    Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido

    2012-10-01

    In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates μ- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k FIRAS and forecasted for PIXIE. We show that measurements of μ and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.

  16. Response spectrum method for extreme wave loading with higher order components of drag force

    Science.gov (United States)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Mohammad Ali, Dastan Diznab; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-01-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  17. The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory

    2008-01-01

    The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.

  18. Minimally Parametric Constraints on the Primordial Power Spectrum from Lyman-alpha

    CERN Document Server

    Bird, Simeon

    2010-01-01

    Current analyses of the Lyman-alpha forest assume that the primordial power spectrum of density perturbations obeys a simple power law, a strong theoretical assumption which should be tested. Employing a large suite of numerical simulations which drop this assumption, we reconstruct the shape of the primordial power spectrum using Lyman-alpha data from the Sloan Digital Sky Survey (SDSS). Our method combines a minimally parametric framework with cross-validation, a technique used to avoid over-fitting the data. Future work will involve predictions for the upcoming Baryon Oscillation Sky Survey (BOSS), which will provide new Lyman-alpha data with vastly decreased statistical errors.

  19. Power Spectrum Analysis and Missing Level Statistics of Microwave Graphs with Violated Time Reversal Invariance

    Science.gov (United States)

    Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Ławniczak, Michał; Dietz, Barbara; Sirko, Leszek

    2016-09-01

    We present experimental studies of the power spectrum and other fluctuation properties in the spectra of microwave networks simulating chaotic quantum graphs with violated time reversal invariance. On the basis of our data sets, we demonstrate that the power spectrum in combination with other long-range and also short-range spectral fluctuations provides a powerful tool for the identification of the symmetries and the determination of the fraction of missing levels. Such a procedure is indispensable for the evaluation of the fluctuation properties in the spectra of real physical systems like, e.g., nuclei or molecules, where one has to deal with the problem of missing levels.

  20. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  1. Effect of a powered drive on pushing and pulling forces when transporting bariatric hospital beds.

    Science.gov (United States)

    Wiggermann, Neal

    2017-01-01

    Powered drives designed to assist with moving hospital beds are commercially available but no studies have evaluated whether they reduce the push and pull forces likely contributing to injury in caregivers. This study measured hand forces of 10 caregivers maneuvering a manual and powered bariatric bed through simulated hospital environments (hallway, elevator, and ramp). Peak push and pull forces exceeded previously established psychophysical limits for all activities with the manual bed. For the powered bed, peak forces were significantly (p forces between 38% (maneuvering into elevator) and 94% (descending ramp). Powered drive also reduced stopping distance by 55%. When maneuvering, the integral of hand force was 34% lower with powered drive, but average forces during straight-line pushing did not differ between beds. Powered drive may reduce the risk of injury or the number of caregivers needed for transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Detection of a high frequency break in the X-ray power spectrum of Ark 564

    CERN Document Server

    Papadakis, I E; Negoro, H; Gliozzi, M

    2001-01-01

    We present a power spectrum analysis of the long ASCA observation of Ark 564 in June/July 2001. The observed power spectrum covers a frequency range of ~ 3.5 decades. We detect a high frequency break at ~ 0.002 Hz. The power spectrum has an rms of ~30% and a slope of ~ -1 and ~ -2 below and above the break frequency. When combined with the results from a long RXTE observation (Pounds et al. 2001), the observed power spectra of Ark 564 and Cyg X-1 (in the low/hard state) are almost identical, showing a similar shape and rms amplitude. However, the ratio of the high frequency breaks is very small (~ 10e{3-4}), implying that these characteristic frequencies are not indicative of the black hole mass. This result supports the idea of a small black hole mass/high accretion rate in Ark 564.

  3. The CMB power spectrum out to l=1400 measured by the VSA

    CERN Document Server

    Grainge, K; Cleary, K; Davies, R D; Davis, R J; Dickinson, C; Genova-Santos, R; Gutíerrez, C M; Hafez, Y A; Hobson, M P; Jones, M E; Kneissl, R; Lancaster, K; Lasenby, A; Leahy, J P; Maisinger, K; Pooley, G G; Rebolo, R; Rubiño-Martín, J A; Molina, P S; Odman, C; Rusholme, B A; Saunders, R D E; Savage, R; Scott, P F; Slosar, A; Taylor, A C; Titterington, D; Waldram, E M; Watson, R A; Wilkinson, A; Grainge, Keith; Carreira, Pedro; Cleary, Kieran; Davies, Rod D.; Davis, Richard J.; Dickinson, Clive; Genova-Santos, Ricardo; Gutierrez, Carlos M.; Hafez, Yaser A.; Hobson, Michael P.; Jones, Michael E.; Kneissl, Rudiger; Lancaster, Katy; Lasenby, Anthony; Maisinger, Klaus; Pooley, Guy G.; Rebolo, Rafael; Rubino-Martin, Jose Alberto; Molina, Pedro Sosa; Odman, Carolina; Rusholme, Ben; Saunders, Richard D.E.; Savage, Richard; Scott, Paul F.; Slosar, Anze; Taylor, Angela C.; Titterington, David; Waldram, Elizabeth; Watson, Robert A.; Wilkinson, Althea

    2003-01-01

    We have observed the cosmic microwave background (CMB) in three regions of sky using the Very Small Array (VSA) in an extended configuration with antennas of beamwidth 2 degrees at 34 GHz. Combined with data from previous VSA observations using a more compact array with larger beamwidth, we measure the power spectrum of the primordial CMB anisotropies between angular multipoles l = 160 - 1400. Such measurements at high l are vital for breaking degeneracies in parameter estimation from the CMB power spectrum and other cosmological data. The power spectrum clearly resolves the first three acoustic peaks, shows the expected fall off in power at high l and starts to constrain the position and height of a fourth peak.

  4. Force-free black hole jet power from impedance matching

    CERN Document Server

    Penna, Robert F

    2015-01-01

    The standard model of spin-powered black hole jets is the Blandford-Znajek (BZ) model. Unfortunately, the BZ jet power depends on an arbitrary function, $\\Omega_F(\\theta)$, which controls the angular distribution of field line velocities at the horizon. In practice, this function is fixed by finding exact solutions of force-free electrodynamics (FFE) and reading off $\\Omega_F(\\theta)$. We prove that all stationary, axisymmetric solutions of FFE with roughly uniform distributions of field lines at the horizon and at infinity have $\\Omega_F/\\Omega_H\\approx 0.5$, where $\\Omega_H$ is the angular velocity of the horizon. We derive a formula for $\\Omega_F(\\theta)$ that depends only on the angular distribution of field lines at the horizon and at infinity (the full FFE solution is not needed). We give a physical interpretation of our results using the black hole membrane paradigm and a recent extension which treats future null infinity as a resistive membrane. We show that $\\Omega_F/\\Omega_H$ is controlled by impeda...

  5. Delay Spectrum with Phase-Tracking Arrays: Extracting the HI power spectrum from the Epoch of Reionization

    CERN Document Server

    Paul, Sourabh; Morales, Miguel F; Dwarkanath, K S; Shankar, N Udaya; Subrahmanyan, Ravi; Barry, N; Beardsley, A P; Bowman, Judd D; Briggs, F; Carroll, P; de Oliveira-Costa, A; Dillon, Joshua S; Ewall-Wice, A; Feng, L; Greenhill, L J; Gaensler, B M; Hazelton, B J; Hewitt, J N; Hurley-Walker, N; Jacobs, D J; Kim, Han-Seek; Kittiwisit, P; Lenc, E; Line, J; Loeb, A; McKinley, B; Mitchell, D A; Neben, A R; Offringa, A R; Pindor, B; Pober, J C; Procopio, P; Riding, J; Sullivan, I S; Tegmark, M; Thyagarajan, Nithyanandan; Tingay, S J; Trott, C M; Wayth, R B; Webster, R L; Wyithe, J S B; Cappallo, Roger; Johnston-Hollitt, M; Kaplan, D L; Lonsdale, C J; McWhirter, S R; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Srivani, K S; Williams, A; Williams, C L

    2016-01-01

    The Detection of redshifted 21 cm emission from the epoch of reionization (EoR) is a challenging task owing to strong foregrounds that dominate the signal. In this paper, we propose a general method, based on the delay spectrum approach, to extract HI power spectra that is applicable to tracking observations using an imaging radio interferometer (Delay Spectrum with Imaging Arrays (DSIA)). Our method is based on modelling the HI signal taking into account the impact of wide field effects such as the $w$-term which are then used as appropriate weights in cross-correlating the measured visibilities. Our method is applicable to any radio interferometer that tracks a phase center and could be utilized for arrays such as MWA, LOFAR, GMRT, PAPER and HERA. In the literature the delay spectrum approach has been implemented for near-redundant baselines using drift scan observations. In this paper we explore the scheme for non-redundant tracking arrays, and this is the first application of delay spectrum methodology to...

  6. Adaptive discrete rate and power transmission for spectrum sharing systems

    KAUST Repository

    Abdallah, Mohamed M.

    2012-04-01

    In this paper we develop a framework for optimizing the performance of the secondary link in terms of the average spectral efficiency assuming quantized channel state information (CSI) of the secondary and the secondary-to-primary interference channels available at the secondary transmitter. We consider the problem under the constraints of maximum average interference power levels at the primary receiver. We develop a sub-optimal computationally efficient iterative algorithm for finding the optimal CSI quantizers as well as the discrete power and rate employed at the cognitive transmitter for each quantized CSI level so as to maximize the average spectral efficiency. We show via analysis and simulations that the proposed algorithm converges for Rayleigh fading channels. Our numerical results give the number of bits required to sufficiently represent the CSI to achieve almost the maximum average spectral efficiency attained using full knowledge of the CSI. © 2012 IEEE.

  7. Contamination of the Epoch of Reionization power spectrum in the presence of foregrounds

    OpenAIRE

    Sims, Peter H.; Lentati, Lindley; Alexander, Paul; Carilli, Chris L.

    2016-01-01

    We construct foreground simulations comprising spatially correlated extragalactic and diffuse Galactic emission components and calculate the `intrinsic' (instrument-free) two-dimensional spatial power spectrum and the cylindrically and spherically averaged three-dimensional k-space power spectra of the Epoch of Reionization (EoR) and our foreground simulations using a Bayesian power spectral estimation framework. This leads us to identify a model dependent region of optimal signal estimation ...

  8. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    Science.gov (United States)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  9. Predictions for the 21cm-galaxy cross-power spectrum observable with LOFAR and Subaru

    CERN Document Server

    Vrbanec, Dijana; Jelić, Vibor; Jensen, Hannes; Zaroubi, Saleem; Fernandez, Elizabeth R; Ghosh, Abhik; Iliev, Ilian T; Kakiichi, Koki; Koopmans, Léon V E; Mellema, Garrelt

    2016-01-01

    The 21cm-galaxy cross-power spectrum is expected to be one of the promising probes of the Epoch of Reionization (EoR), as it could offer information about the progress of reionization and the typical scale of ionized regions at different redshifts. With upcoming observations of 21cm emission from the EoR with the Low Frequency Array (LOFAR), and of high redshift Lyalpha emitters (LAEs) with Subaru's Hyper Suprime Cam (HSC), we investigate the observability of such cross-power spectrum with these two instruments, which are both planning to observe the ELAIS-N1 field at z=6.6. In this paper we use N-body + radiative transfer (both for continuum and Lyalpha photons) simulations at redshift 6.68, 7.06 and 7.3 to compute the 3D theoretical 21cm-galaxy cross-power spectrum, as well as to predict the 2D 21cm-galaxy cross-power spectrum expected to be observed by LOFAR and HSC. Once noise and projection effects are accounted for, our predictions of the 21cm-galaxy cross-power spectrum show clear anti-correlation on s...

  10. Simulations of Baryon Acoustic Oscillations II: Covariance matrix of the matter power spectrum

    CERN Document Server

    Takahashi, Ryuichi; Takada, Masahiro; Matsubara, Takahiko; Sugiyama, Naoshi; Kayo, Issha; Nishizawa, Atsushi J; Nishimichi, Takahiro; Saito, Shun; Taruya, Atsushi

    2009-01-01

    We use 5000 cosmological N-body simulations of 1(Gpc/h)^3 box for the concordance LCDM model in order to study the sampling variances of nonlinear matter power spectrum. We show that the non-Gaussian errors can be important even on large length scales relevant for baryon acoustic oscillations (BAO). Our findings are (1) the non-Gaussian errors degrade the cumulative signal-to-noise ratios (S/N) for the power spectrum amplitude by up to a factor of 2 and 4 for redshifts z=1 and 0, respectively. (2) There is little information on the power spectrum amplitudes in the quasi-nonlinear regime, confirming the previous results. (3) The distribution of power spectrum estimators at BAO scales, among the realizations, is well approximated by a Gaussian distribution with variance that is given by the diagonal covariance component. (4) For the redshift-space power spectrum, the degradation in S/N by non-Gaussian errors is mitigated due to nonlinear redshift distortions. (5) For an actual galaxy survey, the additional shot...

  11. Einasto Profiles and the Dark Matter Power Spectrum

    CERN Document Server

    Ludlow, Aaron D

    2016-01-01

    We study the mass accretion histories (MAHs) and density profiles of dark matter halos using N-body simulations of self-similar gravitational clustering from scale-free power spectra, $P(k)\\propto k^n$. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, $\\alpha$, of an Einasto profile. In agreement with previous findings our results suggest that, despite vast differences in their MAHs, the density profiles of virialized halos are remarkably alike. Nonetheless, clear departures from self-similarity are evident: for a given spectral index, $\\alpha$ increases slightly but systematically with "peak height", $\

  12. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp [Graduate School of Information Science and Technology, Hokkaido University, Kita-ku N14 W9, Sapporo 060-0814 (Japan)

    2015-10-26

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained in force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.

  13. The spectrum of large powers of the Laplacian in bounded domains

    Energy Technology Data Exchange (ETDEWEB)

    Katzav, E; Adda-Bedia, M [Laboratoire de Physique Statistique de l' Ecole Normale Superieure, CNRS UMR 8550, 24 rue Lhomond, 75231 Paris Cedex 05 (France)

    2008-01-18

    We present exact results for the spectrum of the Nth power of the Laplacian in a bounded domain. We begin with the one-dimensional case and show that the whole spectrum can be obtained in the limit of large N. We also show that it is a useful numerical approach valid for any N. Finally, we discuss implications of this work and present its possible extensions for non-integer N and for 3D Laplacian problems. (fast track communication)

  14. Violation of statistical isotropy and homogeneity in the 21-cm power spectrum

    CERN Document Server

    Shiraishi, Maresuke; Kamionkowski, Marc; Raccanelli, Alvise

    2016-01-01

    Most inflationary models predict primordial perturbations to be statistically isotropic and homogeneous. Cosmic-Microwave-Background (CMB) observations, however, indicate a possible departure from statistical isotropy in the form of a dipolar power modulation at large angular scales. Alternative models of inflation, beyond the simplest single-field slow-roll models, can generate a small power asymmetry, consistent with these observations. Observations of clustering of quasars show, however, agreement with statistical isotropy at much smaller angular scales. Here we propose to use off-diagonal components of the angular power spectrum of the 21-cm fluctuations during the dark ages to test this power asymmetry. We forecast results for the planned SKA radio array, a future radio array, and the cosmic-variance-limited case as a theoretical proof of principle. Our results show that the 21-cm-line power spectrum will enable access to information at very small scales and at different redshift slices, thus improving u...

  15. Mass Power Spectrum in a Universe Dominated by the Chaplygin Gas

    CERN Document Server

    Fabris, J C

    2002-01-01

    The mass power spectrum for a Universe dominated by the Chaplygin gas is evaluated numerically from scales of the order of the Hubble horizon to 100 Mpc. The results are compared with a pure baryonic Universe and a cosmological constant model. In all three cases, the spectrum increases with k, the wavenumber of the perturbations. The slope of the spectrum is higher for the baryonic model and smaller for the cosmological constant model, the Chaplygin gas interpolating these two models. The results are analyzed in terms of the sound velocity of the Chaplygin gas and the moment the Universe begins to accelerate.

  16. Planck scale effects and the suppression of power on the large scales in the primordial spectrum

    CERN Document Server

    Shankaranarayanan, S

    2005-01-01

    The enormous red-shifting of the modes during the inflationary epoch suggests that physics at the very high energy scales may modify the primordial perturbation spectrum. Therefore, the measurements of the anisotropies in the Cosmic Microwave Background (CMB) could provide us with clues to understanding physics beyond the Planck scale. In this proceeding, we study the Planck scale effects on the primordial spectrum in the power-law inflation using a model which preserves local Lorentz invariance. While our model reproduces the standard spectrum on small scales, it naturally predicts a suppression of power on the large scales -- a feature that seems to be necessary to explain deficit of power in the lower multipoles of the CMB.

  17. Constraining High Redshift X-ray Sources with Next Generation 21 cm Power Spectrum Measurements

    CERN Document Server

    Ewall-Wice, Aaron; Mesinger, Andrei; Dillon, Joshua S; Liu, Adrian; Pober, Jonathan

    2015-01-01

    We use the Fisher matrix formalism and semi-numerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high redshift intergalactic medium. Incorporating observations between $z=5$ and $z=25$, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing $\\lesssim 10\\%$ constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated "wedge" or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of ...

  18. Contamination of the Epoch of Reionization power spectrum in the presence of foregrounds

    Science.gov (United States)

    Sims, Peter H.; Lentati, Lindley; Alexander, Paul; Carilli, Chris L.

    2016-11-01

    We construct foreground simulations comprising spatially correlated extragalactic and diffuse Galactic emission components and calculate the `intrinsic' (instrument-free) two-dimensional spatial power spectrum and the cylindrically and spherically averaged three-dimensional k-space power spectra of the Epoch of Reionization (EoR) and our foreground simulations using a Bayesian power spectral estimation framework. This leads us to identify a model-dependent region of optimal signal estimation for our foreground and EoR models, within which the spatial power in the EoR signal relative to the foregrounds is maximized. We identify a target field-dependent region, in k-space, of intrinsic foreground power spectral contamination at low k⊥ and k∥ and a transition to a relatively foreground-free intrinsic EoR window in the complement to this region. The contaminated region of k-space demonstrates that simultaneous estimation of the EoR and foregrounds is important for obtaining statistically robust estimates of the EoR power spectrum; biased results will be obtained from methodologies that ignore their covariance. Using simulated observations with frequency-dependent uv-coverage and primary beam, with the former derived for the Hydrogen Epoch of Reionization Array in 37-antenna and 331-antenna configuration, we recover instrumental power spectra consistent with their intrinsic counterparts. We discuss the implications of these results for optimal strategies for unbiased estimation of the EoR power spectrum.

  19. Power spectrum nulls due to non-standard inflationary evolution

    CERN Document Server

    Goswami, Gaurav

    2010-01-01

    The simplest models of inflation based on slow roll produce nearly scale invariant primordial power spectra (PPS). But there are also numerous models that predict radically broken scale invariant PPS. In particular, markedly cuspy dips in the PPS correspond to nulls where the perturbation amplitude, hence PPS, goes through a zero at a specific wavenumber. Near this wavenumber, the true quantum nature of the generation mechanism of the primordial fluctuations may be revealed. Naively these features may appear to arise from fine tuned initial conditions. However, we show that this behavior arises under fairly generic set of conditions involving super-Hubble scale evolution of perturbation modes during inflation. We illustrate this with the well-studied examples of punctuated inflation and the Starobinsky-break model.

  20. Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-01-15

    Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical

  1. Primordial non-Gaussianity from the 21 cm power spectrum during the epoch of reionization.

    Science.gov (United States)

    Joudaki, Shahab; Doré, Olivier; Ferramacho, Luis; Kaplinghat, Manoj; Santos, Mario G

    2011-09-23

    Primordial non-Gaussianity is a crucial test of inflationary cosmology. We consider the impact of non-Gaussianity on the ionization power spectrum from 21 cm emission at the epoch of reionization. We focus on the power spectrum on large scales at redshifts of 7 to 8 and explore the expected constraint on the local non-Gaussianity parameter f(NL) for current and next-generation 21 cm experiments. We show that experiments such as SKA and MWA could measure f(NL) values of order 10. This can be improved by an order of magnitude with a fast-Fourier transform telescope like Omniscope.

  2. Primordial Non-Gaussianity from the 21 cm Power Spectrum during the Epoch of Reionization

    OpenAIRE

    Joudaki, Shahab; Dore, Olivier; Ferramacho, Luis; Kaplinghat, Manoj; Santos, Mario G.

    2011-01-01

    Primordial non-Gaussianity is a crucial test of inflationary cosmology. We consider the impact of non-Gaussianity on the ionization power spectrum from 21 cm emission during the epoch of reionization. We focus on the power spectrum on large scales at redshifts of 7 to 8 and explore the expected constraint on the local non-Gaussianity parameter f_NL for current and next-generation 21 cm experiments. We show that experiments such as SKA and MWA could measure f_NL values of order 10. This can be...

  3. A new method of measuring the cluster peculiar velocity power spectrum

    CERN Document Server

    Zhang, Pengjie; Juszkiewicz, Roman; Stebbins, Albert

    2008-01-01

    We propose to use spatial correlations of the kinetic Sunyaev-Zeldovich (KSZ) flux as an estimator of the peculiar velocity power spectrum. In contrast with conventional techniques, our new method does not require measurements of the thermal SZ signal or the X-ray temperature. Moreover, this method has the special advantage that the expected systematic errors are always sub-dominant to statistical errors on all scales and redshifts of interest. We show that future large sky coverage KSZ surveys may allow a peculiar velocity power spectrum estimates of an accuracy reaching ~10%.

  4. Model independent signatures of new physics in the inflationary power spectrum.

    Science.gov (United States)

    Jackson, Mark G; Schalm, Koenraad

    2012-03-16

    We compute the universal generic corrections to the inflationary power spectrum due to unknown high-energy physics. We arrive at this result via a careful integrating out of massive fields in the "in-in" formalism yielding a consistent and predictive low-energy effective description in time-dependent backgrounds. We find that the power spectrum is universally modified at order H/M, where H is the scale of inflation. This is qualitatively different from the universal corrections in time-independent backgrounds, and it suggests that such effects may be present in upcoming cosmological observations.

  5. Modelling the autocovariance of the power spectrum of a solar-type oscillator

    DEFF Research Database (Denmark)

    Campante , T.L.; Karoff, Christoffer

    2010-01-01

    originates from a radial or a dipolar oscillation mode. In order to overcome this problem, we present a procedure for modelling and fitting the autocovariance of the power spectrum which can be used to obtain global seismic parameters of solar-type stars, doing so in an automated fashion without the need...... to make subjective choices. From the set of retrievable global seismic parameters we emphasize the mean small frequency separation and, depending on the intrinsic characteristics of the power spectrum, the mean rotational frequency splitting. Since this procedure is automated, it can serve as a useful...

  6. The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sudeep [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Nolta, Michael R.; Bond, J Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 Canada (Canada); Addison, Graeme E.; Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada (Canada); Battistelli, Elia S. [Department of Physics, University of Rome ' ' La Sapienza' ' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Crichton, Devin; Gralla, Megan [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Devlin, Mark J.; Dicker, Simon [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Dünner, Rolando [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Fowler, Joseph W. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO, 80305 (United States); Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Hilton, Matt, E-mail: sudeepphys@gmail.com [Centre for Astronomy and Particle Theory, School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); and others

    2014-04-01

    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.

  7. Cosmological parameters from weak lensing power spectrum and bispectrum tomography: including the non-Gaussian errors

    CERN Document Server

    Kayo, Issha

    2013-01-01

    We re-examine a genuine power of weak lensing bispectrum tomography for constraining cosmological parameters, when combined with the power spectrum tomography, based on the Fisher information matrix formalism. To account for the full information at two- and three-point levels, we include all the power spectrum and bispectrum information built from all-available combinations of tomographic redshift bins, multipole bins and different triangle configurations over a range of angular scales (up to lmax=2000 as our fiducial choice). For the parameter forecast, we use the halo model approach in Kayo, Takada & Jain (2013) to model the non-Gaussian error covariances as well as the cross-covariance between the power spectrum and the bispectrum, including the halo sample variance or the nonlinear version of beat-coupling. We find that adding the bispectrum information leads to about 60% improvement in the dark energy figure-of-merit compared to the lensing power spectrum tomography alone, for three redshift-bin tomo...

  8. The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data

    Science.gov (United States)

    Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battisetti, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon; hide

    2014-01-01

    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ?CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6s detection significance.

  9. Comparisons of peak ground reaction force and rate of force development during variations of the power clean.

    Science.gov (United States)

    Comfort, Paul; Allen, Mark; Graham-Smith, Phillip

    2011-05-01

    The aim of this investigation was to determine the differences in vertical ground reaction forces and rate of force development (RFD) during variations of the power clean. Elite rugby league players (n = 11; age 21 ± 1.63 years; height 181.56 ± 2.61 cm; body mass 93.65 ± 6.84 kg) performed 1 set of 3 repetitions of the power clean, hang-power clean, midthigh power clean, or midthigh clean pull, using 60% of 1-repetition maximum power clean, in a randomized order, while standing on a force platform. Differences in peak vertical ground reaction forces (F(z)) and instantaneous RFD between lifts were analyzed via 1-way analysis of variance and Bonferroni post hoc analysis. Statistical analysis revealed a significantly (p < 0.001) greater peak F(z) during the midthigh power clean (2,801.7 ± 195.4 N) and the midthigh clean pull (2,880.2 ± 236.2 N) compared to both the power clean (2,306.24 ± 240.47 N) and the hang-power clean (2,442.9 ± 293.2 N). The midthigh power clean (14,655.8 ± 4,535.1 N·s⁻¹) and the midthigh clean pull (15,320.6 ± 3,533.3 N·s⁻¹) also demonstrated significantly (p < 0.001) greater instantaneous RFD when compared to both the power clean (8,839.7 ± 2,940.4 N·s⁻¹) and the hang-power clean (9,768.9 ± 4,012.4 N·s⁻¹). From the findings of this study, when training to maximize peak F(z) and RFD the midthigh power clean and midthigh clean pull appear to be the most advantageous variations of the power clean to perform.

  10. High power diode laser array development using completely indium free packaging technology with narrow spectrum

    Science.gov (United States)

    Hou, Dong; Wang, Jingwei; Gao, Lijun; Liang, Xuejie; Li, Xiaoning; Liu, Xingsheng

    2016-03-01

    The high power diode lasers have been widely used in many fields. In this work, a sophisticated high power and high performance horizontal array of diode laser stacks have been developed and fabricated with high duty cycle using hard solder bonding technology. CTE-matched submount and Gold Tin (AuSn) hard solder are used for bonding the diode laser bar to achieve the performances of anti-thermal fatigue, higher reliability and longer lifetime. This array consists of 30 bars with the expected optical output peak power of 6000W. By means of numerical simulation and analytical results, the diode laser bars are aligned on suitable positions along the water cooled cooler in order to achieve the uniform wavelength with narrow spectrum and accurate central wavelength. The performance of the horizontal array, such as output power, spectrum, thermal resistance, life time, etc., is characterized and analyzed.

  11. Power Control for Maximum Throughput in Spectrum Underlay Cognitive Radio Networks

    CERN Document Server

    Tadrous, John; Nafie, Mohammed; El-Keyi, Amr

    2010-01-01

    We investigate power allocation for users in a spectrum underlay cognitive network. Our objective is to find a power control scheme that allocates transmit power for both primary and secondary users so that the overall network throughput is maximized while maintaining the quality of service (QoS) of the primary users greater than a certain minimum limit. Since an optimum solution to our problem is computationally intractable, as the optimization problem is non-convex, we propose an iterative algorithm based on sequential geometric programming, that is proved to converge to at least a local optimum solution. We use the proposed algorithm to show how a spectrum underlay network would achieve higher throughput with secondary users operation than with primary users operating alone. Also, we show via simulations that the loss in primary throughput due to the admission of the secondary users is accompanied by a reduction in the total primary transmit power.

  12. What can be learned from the lensed cosmic microwave background B-mode polarization power spectrum?

    CERN Document Server

    Smith, S; Rocha, G; Smith, Sarah; Challinor, Anthony; Rocha, Graca

    2006-01-01

    The effect of weak gravitational lensing on the cosmic microwave background (CMB) temperature anisotropies and polarization will provide access to cosmological information that cannot be obtained from the primary anisotropies alone. We compare the information content of the lensed B-mode polarization power spectrum, properly accounting for the non-Gaussian correlations between the power on different scales, with that of the unlensed CMB fields and the lensing potential. The latter represent the products of an (idealised) optimal analysis that exploits the lens-induced non-Gaussianity to reconstruct the fields. Compressing the non-Gaussian lensed CMB into power spectra is wasteful and leaves a tight degeneracy between the equation of state of dark energy and neutrino mass that is much stronger than in the more optimal analysis. Despite this, a power spectrum analysis will be a useful first step in analysing future B-mode polarization data. For this reason, we also consider how to extract accurate parameter con...

  13. Ruling out the power-law form of the scalar primordial spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Dhiraj Kumar; Shafieloo, Arman [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Smoot, George F. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Starobinsky, Alexei A., E-mail: dhiraj@apctp.org, E-mail: arman@apctp.org, E-mail: gfsmoot@lbl.gov, E-mail: alstar@landau.ac.ru [Landau Institute for Theoretical Physics RAS, Moscow, 119334 (Russian Federation)

    2014-06-01

    Combining Planck CMB temperature [1] and BICEP2 B-mode polarization data [2,3] we show qualitatively that, assuming inflationary consistency relation, the power-law form of the scalar primordial spectrum is ruled out at more than 3σ CL. This is an important finding, since the power-law form of the scalar primordial spectrum is one of the main assumptions of concordance model of cosmology and also a direct prediction of many inflationary scenarios. We show that a break or step in the form of the primordial scalar perturbation spectrum, similar to what we studied recently analyzing Planck data [4], can address both Planck and BICEP2 results simultaneously. Our findings also indicate that the data may require more flexibilities than what running of scalar spectral index can provide. Finally we show that an inflaton potential, originally appeared in [5], can generate both the step and the break model of scalar primordial spectrum in two different limits. The discussed potential is found to be favored by Planck data but marginally disfavored by BICEP2 results as it produces slightly lower amplitude of tensor primordial spectrum. Hence, if the tensor-to-scalar ratio (r) quoted by BICEP2 persists, it is of importance that we generate inflationary models with large r and at the same time provide suppression in scalar primordial spectrum at large scales.

  14. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    Science.gov (United States)

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  15. Spectra processing at tooth enamel dosimetry: Analytical description of EPR spectrum at different microwave power

    Energy Technology Data Exchange (ETDEWEB)

    Tieliewuhan, E. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Ivannikov, A. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan) and Medical Radiological Research Center of RAMS, Korolyov str., 4, Obninsk 249036 (Russian Federation)]. E-mail: ivann@mail.ru; Zhumadilov, K. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Nalapko, M. [Medical Radiological Research Center of RAMS, Korolyov str., 4, Obninsk 249036 (Russian Federation); Tikunov, D. [Medical Radiological Research Center of RAMS, Korolyov str., 4, Obninsk 249036 (Russian Federation); Skvortsov, V. [Medical Radiological Research Center of RAMS, Korolyov str., 4, Obninsk 249036 (Russian Federation); Stepanenko, V. [Medical Radiological Research Center of RAMS, Korolyov str., 4, Obninsk 249036 (Russian Federation); Toyoda, S. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai, Okayama 700-0005 (Japan); Tanaka, K. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Endo, S. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Hoshi, M. [Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan)

    2006-04-15

    Variation of the electron paramagnetic resonance (EPR) spectrum of the human tooth enamel recorded at different microwave power is investigated. The analytical models describing the native and the radiation-induced signals in the enamel are proposed, which fit the experimental spectra in wide range of microwave power. These models are designed to use for processing the spectra of irradiated enamel at determination of the absorbed dose from the intensity of the radiation-induced signal.

  16. The \\HI column density power spectrum of six nearby spiral galaxies

    CERN Document Server

    Dutta, Prasun

    2013-01-01

    We propose a method to determine the power spectrum of \\HI column density fluctuations using radio-interferometric observations of 21-cm emission from the ISM of galaxies. We have used this to estimate the power spectra of six nearly face on nearby spiral galaxies. Earlier work has shown that these power spectra are well fitted by power laws with slopes around -1.6 across length-scales $\\sim 1 \\, {\\rm kpc}$ to $\\sim 10 \\, {\\rm kpc}$, the amplitude however was undetermined. In the present work we have determined the amplitude of the \\HI column density power spectrum. We find that the \\HI column density $N_{\\rm HI}$ expressed in units of $10^{20} \\, {\\rm cm}^{-2}$ has mean square fluctuations in the range $\\sim 0.03$ to $\\sim 20$. The amplitude of the power spectrum is found to be tightly correlated with the \\HI mass fraction of the galaxies. The physical process responsible for these scale-invariant fluctuations is, however, at present not known.

  17. THE EFFECTS OF POLARIZED FOREGROUNDS ON 21 cm EPOCH OF REIONIZATION POWER SPECTRUM MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David F.; Aguirre, James E. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Parsons, Aaron R.; Pober, Jonathan C. [Astronomy Department, University of California, Berkeley, Berkeley, CA (United States); Jacobs, Daniel C., E-mail: damo@sas.upenn.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA (United States)

    2013-06-01

    Experiments aimed at detecting highly-redshifted 21 cm emission from the epoch of reionization (EoR) are plagued by the contamination of foreground emission. A potentially important source of contaminating foregrounds may be Faraday-rotated, polarized emission, which leaks into the estimate of the intrinsically unpolarized EoR signal. While these foregrounds' intrinsic polarization may not be problematic, the spectral structure introduced by the Faraday rotation could be. To better understand and characterize these effects, we present a simulation of the polarized sky between 120 and 180 MHz. We compute a single visibility, and estimate the three-dimensional power spectrum from that visibility using the delay spectrum approach presented in Parsons et al. Using the Donald C. Backer Precision Array to Probe the Epoch of Reionization as an example instrument, we show the expected leakage into the unpolarized power spectrum to be several orders of magnitude above the expected 21 cm EoR signal.

  18. Solar Power Constellations Implications for the United States Air Force

    Science.gov (United States)

    2000-04-01

    Ralph Nansen, who worked on the first government sponsored solar power satellite studies, and is the author of Sun Power : The Global Solution for the...Ad Astra (Jan/Feb 1998). 36. 7 Nansen, Ralph. Sun Power : The Global Solution for the Coming Energy Crisis. (Canada: Ocean Press, 1995) 206. 8...Lasers that Beam Power to Earth.” Aerospace America (July 1999): 50. 18 Nansen, Ralph. Sun Power : The Global Solution for the Coming Energy Crisis

  19. An ideal mass assignment scheme for measuring the Power Spectrum with FFTs

    CERN Document Server

    Cui, Weiguang; Yang, Xiaohu; Wang, Yu; Feng, Longlong; Springel, Volker

    2008-01-01

    In measuring the power spectrum of the distribution of large numbers of dark matter particles in simulations, or galaxies in observations, one has to use Fast Fourier Transforms (FFT) for calculational efficiency. However, because of the required mass assignment onto grid points in this method, the measured power spectrum $\\la |\\delta^f(k)|^2\\ra$ obtained with an FFT is not the true power spectrum $P(k)$ but instead one that is convolved with a window function $|W(\\vec k)|^2$ in Fourier space. In a recent paper, Jing (2005) proposed an elegant algorithm to deconvolve the sampling effects of the window function and to extract the true power spectrum, and tests using N-body simulations show that this algorithm works very well for the three most commonly used mass assignment functions, i.e., the Nearest Grid Point (NGP), the Cloud In Cell (CIC) and the Triangular Shaped Cloud (TSC) methods. In this paper, rather than trying to deconvolve the sampling effects of the window function, we propose to select a particu...

  20. An Assessment of the Information Content of the Power Spectrum and Bispectrum

    CERN Document Server

    Chan, Kwan Chuen

    2016-01-01

    We study the covariance matrix of the power spectrum and bispectrum for dark matter and halos. Using a large suite of simulations from the DEUS-PUR project, we find that the non-Gaussian contributions to the covariance of the power spectrum and bispectrum are significant for both dark matter and halos already at the mildly nonlinear scales. We compute the leading disconnected non-Gaussian correction to the matter bispectrum covariance, and find that the predictions improve the agreement in the mildly nonlinear regime. The shot noise contributions to the covariance of the halo power spectrum and bispectrum are computed. When the ensemble averaged number density is used, the Poisson model covariances are in decent agreement with the measurements. When the number density is estimated and subtracted from each realization, the covariances are significantly reduced and get close to the Gaussian ones. The signal-to-noise ratio, S/N of the halo power spectrum levels off in the mildly nonlinear regime, $k \\sim 0.1 - 0...

  1. Measuring the power spectrum of dark matter substructure using strong gravitational lensing

    Science.gov (United States)

    Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert; Kisner, Theodore; Kuhlen, Michael; Perreault Levasseur, Laurence

    2016-11-01

    In recent years, it has become possible to detect individual dark matter subhalos near images of strongly lensed extended background galaxies. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, and test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations (~10 hours on a single target) with current facilities can measure this power spectrum at the 3σ level, with no apparent degeneracy with unknown clumpiness in the background source structure or fluctuations from detector noise. Upcoming ALMA measurements of strong lenses are capable of placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.

  2. Determination of the Linear Mass Power Spectrum From the Mass Function of Galaxy Clusters

    CERN Document Server

    Sánchez, A G; Lambas, D G

    2002-01-01

    We develop a new method to determine the linear mass power spectrum using the mass function of galaxy clusters. We obtain the rms mass fluctuation sigma (M) using the expression for the mass function in the Press & Schechter (1974), Sheth, Mo & Tormen (2001) and Jenkins et al. (2001) formalisms. We apply different techniques to recover the adimensional power spectrum Delta ^{2}(k) from sigma (M) namely the k_{eff} approximation, the singular value decomposition and the linear regularization method. The application of these techniques to the tCDM and LCDM GIF simulations shows a high efficiency in recovering the theoretical power spectrum over a wide range of scales. We compare our results with those derived from the power spectrum of the spatial distribution of the same sample of clusters in the simulations obtained by application of the classical Feldman, Kaiser & Peacock (1994), FKP, method. We find that the mass function based method presented here can provide a very accurate estimate of the li...

  3. Distance Dependent Model for the Delay Power Spectrum of In-room Radio Channels

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri;

    2013-01-01

    A model based on experimental observations of the delay power spectrum in closed rooms is proposed. The model includes the distance between the transmitter and the receiver as a parameter which makes it suitable for range based radio localization. The experimental observations motivate the propos...

  4. Slow-roll inflation and BB-mode angular power spectrum of CMB

    Energy Technology Data Exchange (ETDEWEB)

    Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)

    2016-05-15

    The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)

  5. The matter power spectrum from the Ly alpha forest : an optical depth estimate

    NARCIS (Netherlands)

    Zaroubi, S; Nusser, A; Haehnelt, M; Kim, TS; Viel, M.

    2006-01-01

    We measure the matter power spectrum from 31 Ly alpha spectra spanning the redshift range of 1.6-3.6. The optical depth, tau, for Ly alpha absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by us

  6. Prediction of speech intelligibility based on a correlation metric in the envelope power spectrum domain

    DEFF Research Database (Denmark)

    Relano-Iborra, Helia; May, Tobias; Zaar, Johannes

    -based Envelope Power Spectrum Model (mr-sEPSM) [2], combined with the correlation back-end of the Short-Time Objective Intelligibility measure (STOI) [3]. The sEPSMcorr can accurately predict NH data for a broad range of listening conditions, e.g., additive noise, phase jitter and ideal binary mask processing....

  7. Planck 2013 results. XXI. All-sky Compton parameter power spectrum and high-order statistics

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Genova-Santos, R.T.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. These maps show an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales ($\\ell 500$) the clustered Cosmic Infrared Background (CIB) and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We measure the tSZ power spectrum in angular scales, $0.17^{\\circ} \\lesssim \\theta \\lesssim 3.0^{\\circ}$, that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with additional clear evidence of signal from unresolved clusters and, potentially, diffuse warm baryons. We use the tSZ power spectrum to ...

  8. Joint likelihood function of cluster number counts and weak lensing power spectrum

    CERN Document Server

    Takada, Masahiro

    2013-01-01

    A coherent over- or under-density contrast across a finite survey volume causes an upward- or downward- fluctuation in the number of halos. This fluctuation in halo number adds a significant co-variant scatter in the observed amplitudes of weak lensing power spectrum at nonlinear, small scales. Because of this covariance, the amount of information that can be extracted from a measurement of the weak lensing power spectrum is significantly smaller than naive estimates. In this paper, we show that by measuring both the number counts of clusters and the power spectrum in the same survey region, we can mitigate this loss of information and significantly enhance the scientific return from the upcoming surveys. First, using the halo model approach, we derive the joint likelihood function of the halo number counts and the weak lensing power spectrum, taking into account the super-sample co-variance effect on the two observables. We show that the analytical model matches the distributions measured from 1000 realizati...

  9. Large-Scale Power Spectrum and Cosmological Parameters from SFI Peculiar Velocities

    CERN Document Server

    Freudling, W; Da Costa, L N; Dekel, A; Eldar, A; Giovanelli, R; Haynes, M P; Salzer, J J; Wegner, G; Zaroubi, S; Freudling, Wolfram; Zehavi, Idit; Costa, Luiz N. da; Dekel, Avishai; Eldar, Amiram; Giovanelli, Riccardo; Haynes, Martha P.; Salzer, John J.; Wegner, Gary; Zaroubi, Saleem

    1999-01-01

    We estimate the power spectrum of mass density fluctuations from peculiar velocities of galaxies by applying an improved maximum-likelihood technique to the new all-sky SFI catalog. Parametric models are used for the power spectrum and the errors, and the free parameters are determined by assuming Gaussian velocity fields and errors and maximizing the probability of the data given the model. It has been applied to generalized CDM models with and without COBE normalization. The method has been carefully tested using artificial SFI catalogs. The most likely distance errors are found to be similar to the original error estimates in the SFI data. The general result that is not very sensitive to the prior model used is a relatively high amplitude of the power spectrum. For example, at k=0.1 h/Mpc we find P(k)Ømega^{1.2}=(4.4+/-1.7)X10^3 (Mpc/h)^3. An integral over the power spectrum yields cosmological parameters are obtained for families of CDM models. For example, for COBE-normalized \\Lambda CDM models (scalar ...

  10. H-ATLAS: THE COSMIC ABUNDANCE OF DUST FROM THE FAR-INFRARED BACKGROUND POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, Cameron; Cooray, Asantha; Smidt, Joseph; De Bernardis, Francesco; Mitchell-Wynne, K. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Amblard, A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Auld, R.; Eales, S.; Pascale, E. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA (United Kingdom); Baes, M.; Michalowski, M. J. [Sterrenkundig Observatorium, Universiteit Gent, KrijgslAAn 281 S9, B-9000 Gent (Belgium); Clements, D. L.; Dariush, A.; Hopwood, R. [Physics Department, Imperial College London, South Kensington campus, London, SW7 2AZ (United Kingdom); De Zotti, G. [INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Maddox, S. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Hoyos, C. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Ibar, E. [UK Astronomy Technology Centre, The Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Jarvis, M. [Astrophysics, Department of Physics, Keble Road, Oxford, OX1 3RH (United Kingdom); and others

    2013-05-01

    We present a measurement of the angular power spectrum of the cosmic far-infrared background (CFIRB) anisotropies in one of the extragalactic fields of the Herschel Astrophysical Terahertz Large Area Survey at 250, 350, and 500 {mu}m bands. Consistent with recent measurements of the CFIRB power spectrum in Herschel-SPIRE maps, we confirm the existence of a clear one-halo term of galaxy clustering on arcminute angular scales with large-scale two-halo term of clustering at 30 arcmin to angular scales of a few degrees. The power spectrum at the largest angular scales, especially at 250 {mu}m, is contaminated by the Galactic cirrus. The angular power spectrum is modeled using a conditional luminosity function approach to describe the spatial distribution of unresolved galaxies that make up the bulk of the CFIRB. Integrating over the dusty galaxy population responsible for the background anisotropies, we find that the cosmic abundance of dust, relative to the critical density, to be between {Omega}{sub dust} = 10{sup -6} and 8 Multiplication-Sign 10{sup -6} in the redshift range z {approx} 0-3. This dust abundance is consistent with estimates of the dust content in the universe using quasar reddening and magnification measurements in the Sloan Digital Sky Survey.

  11. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    NARCIS (Netherlands)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-01-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). 3 h of observations were conducted over two nights with significantly diff

  12. Evolution of the CMB Power Spectrum Across WMAP Data Releases: A Nonparametric Analysis

    CERN Document Server

    Aghamousa, Amir; Souradeep, Tarun

    2011-01-01

    We present a comparative analysis of the WMAP 1-, 3-, 5-, and 7-year data releases for the CMB angular power spectrum, with respect to the following three key questions: (a) How well is the angular power spectrum determined by the data alone? (b) How well is the Lambda-CDM model supported by a model-independent, data-driven analysis? (c) What are the realistic uncertainties on peak/dip locations and heights? Our analysis is based on a nonparametric function estimation methodology [1,2]. Our results show that the height of the power spectrum is well determined by data alone for multipole index l approximately less than 600 (1-year), 800 (3-year), and 900 (5- and 7-year data realizations). We also show that parametric fits based on the Lambda-CDM model are remarkably close to our nonparametric fit in l-regions where the data are sufficiently precise. A contrasting example is provided by an H-Lambda-CDM model: As the data become precise with successive data realizations, the H-Lambda-CDM angular power spectrum g...

  13. Edge Contact Forces and Quasi-Balanced Power

    OpenAIRE

    dell'Isola, Francesco; Seppecher, Pierre

    1997-01-01

    International audience; We consider continuous media in which contact edge forces are present. Introducing the notion of quasi-balanced contact force distribution, we are able to prove the conjectures by Noll and Virga [1] concerning the representation of contact edge forces. We generalize the Hamel–Noll theorem on the Cauchy postulate. Then we adapt the celebrated tetrahedron construction of Cauchy in order to obtain a representation theorem for stress states. In fact, we show that two stres...

  14. Investigation of Power-Law Damping/Dissipative Forces

    CERN Document Server

    Mickens, Ronald E

    2014-01-01

    The properties of a one space-dimension, one particle dynamical system under the influence of a purely dissipative force are investigated. Assuming this force depends only on the velocity, it is demonstrated, in contrast to the case of linear damping, that there exist dissipative forces for which the particle \\textquotedblleft stops" in a finite time. It is also shown, by an explicit example, that other dissipative forces exist such that they produce dynamics in which the particle achieves zero velocity only after an infinite distance has been traveled. Possible applications of these results to more complex situations are discussed.

  15. Theoretical study of enhancing the piezoelectric nanogenerator's output power by optimizing the external force's shape

    Science.gov (United States)

    Xu, Qi; Qin, Yong

    2017-07-01

    The average power is one of the key parameters of piezoelectric nanogenerators (PENGs). In this paper, we demonstrate that the PENG's output can be gigantically improved by choosing driving force with an appropriate shape. When the load resistance is 100 MΩ and the driven forces have a magnitude of 19.6 nN, frequency of 10 Hz, the average power of PENG driven by square shaped force is six orders of magnitude higher than that driven by triangular shaped and sinusoidal shaped forces. These results are of importance for optimizing the average power of the PENGs in practical applications.

  16. Evaluating Acupuncture Point and Nonacupuncture Point Stimulation with EEG: A High-Frequency Power Spectrum Analysis

    Science.gov (United States)

    Choi, Kwang-Ho; Cho, Seong Jin; Kang, Suk-Yun; Ahn, Seong Hun

    2016-01-01

    To identify physical and sensory responses to acupuncture point stimulation (APS), nonacupuncture point stimulation (NAPS) and no stimulation (NS), changes in the high-frequency power spectrum before and after stimulation were evaluated with electroencephalography (EEG). A total of 37 healthy subjects received APS at the LI4 point, NAPS, or NS with their eyes closed. Background brain waves were measured before, during, and after stimulation using 8 channels. Changes in the power spectra of gamma waves and high beta waves before, during, and after stimulation were comparatively analyzed. After NAPS, absolute high beta power (AHBP), relative high beta power (RHBP), absolute gamma power (AGP), and relative gamma power (RGP) tended to increase in all channels. But no consistent notable changes were found for APS and NS. NAPS is believed to cause temporary reactions to stress, tension, and sensory responses of the human body, while APS responds stably compared to stimulation of other parts of the body.

  17. Evaluating Acupuncture Point and Nonacupuncture Point Stimulation with EEG: A High-Frequency Power Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Choi

    2016-01-01

    Full Text Available To identify physical and sensory responses to acupuncture point stimulation (APS, nonacupuncture point stimulation (NAPS and no stimulation (NS, changes in the high-frequency power spectrum before and after stimulation were evaluated with electroencephalography (EEG. A total of 37 healthy subjects received APS at the LI4 point, NAPS, or NS with their eyes closed. Background brain waves were measured before, during, and after stimulation using 8 channels. Changes in the power spectra of gamma waves and high beta waves before, during, and after stimulation were comparatively analyzed. After NAPS, absolute high beta power (AHBP, relative high beta power (RHBP, absolute gamma power (AGP, and relative gamma power (RGP tended to increase in all channels. But no consistent notable changes were found for APS and NS. NAPS is believed to cause temporary reactions to stress, tension, and sensory responses of the human body, while APS responds stably compared to stimulation of other parts of the body.

  18. Evaluating Acupuncture Point and Nonacupuncture Point Stimulation with EEG: A High-Frequency Power Spectrum Analysis.

    Science.gov (United States)

    Choi, Kwang-Ho; Kwon, O Sang; Cho, Seong Jin; Lee, Sanghun; Kang, Suk-Yun; Ahn, Seong Hun; Ryu, Yeonhee

    2016-01-01

    To identify physical and sensory responses to acupuncture point stimulation (APS), nonacupuncture point stimulation (NAPS) and no stimulation (NS), changes in the high-frequency power spectrum before and after stimulation were evaluated with electroencephalography (EEG). A total of 37 healthy subjects received APS at the LI4 point, NAPS, or NS with their eyes closed. Background brain waves were measured before, during, and after stimulation using 8 channels. Changes in the power spectra of gamma waves and high beta waves before, during, and after stimulation were comparatively analyzed. After NAPS, absolute high beta power (AHBP), relative high beta power (RHBP), absolute gamma power (AGP), and relative gamma power (RGP) tended to increase in all channels. But no consistent notable changes were found for APS and NS. NAPS is believed to cause temporary reactions to stress, tension, and sensory responses of the human body, while APS responds stably compared to stimulation of other parts of the body.

  19. Predictions for the 21 cm-galaxy cross-power spectrum observable with LOFAR and Subaru

    Science.gov (United States)

    Vrbanec, Dijana; Ciardi, Benedetta; Jelić, Vibor; Jensen, Hannes; Zaroubi, Saleem; Fernandez, Elizabeth R.; Ghosh, Abhik; Iliev, Ilian T.; Kakiichi, Koki; Koopmans, Léon V. E.; Mellema, Garrelt

    2016-03-01

    The 21 cm-galaxy cross-power spectrum is expected to be one of the promising probes of the Epoch of Reionization (EoR), as it could offer information about the progress of reionization and the typical scale of ionized regions at different redshifts. With upcoming observations of 21 cm emission from the EoR with the Low Frequency Array (LOFAR), and of high-redshift Ly α emitters with Subaru's Hyper Suprime-Cam (HSC), we investigate the observability of such cross-power spectrum with these two instruments, which are both planning to observe the ELAIS-N1 field at z = 6.6. In this paper, we use N-body + radiative transfer (both for continuum and Ly α photons) simulations at redshift 6.68, 7.06 and 7.3 to compute the 3D theoretical 21 cm-galaxy cross-power spectrum and cross-correlation function, as well as to predict the 2D 21 cm-galaxy cross-power spectrum and cross-correlation function expected to be observed by LOFAR and HSC. Once noise and projection effects are accounted for, our predictions of the 21 cm-galaxy cross-power spectrum show clear anti-correlation on scales larger than ˜60 h-1 Mpc (corresponding to k ˜ 0.1 h Mpc-1), with levels of significance p = 0.003 at z = 6.6 and p = 0.08 at z = 7.3. On smaller scales, instead, the signal is completely contaminated. On the other hand, our 21 cm-galaxy cross-correlation function is strongly contaminated by noise on all scales, since the noise is no longer being separated by its k modes.

  20. Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe;

    2012-01-01

    The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....

  1. The Non-Linear Power Spectrum of the Lyman Alpha Forest

    CERN Document Server

    Arinyo-i-Prats, Andreu; Viel, Matteo; Cen, Renyue

    2015-01-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at $z\\sim 2.3$, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyman Alpha transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyman Alpha forest and provide a better physical interpretation of ...

  2. Baryon oscillations in galaxy and matter power-spectrum covariance matrices

    CERN Document Server

    Neyrinck, Mark C

    2007-01-01

    We investigate large-amplitude baryon acoustic oscillations (BAO's) in off-diagonal entries of cosmological power-spectrum covariance matrices. These covariance-matrix BAO's describe the increased attenuation of power-spectrum BAO's caused by upward fluctuations in large-scale power. We derive an analytic approximation to covariance-matrix entries in the BAO regime, and check the analytical predictions using N-body simulations. These BAO's look much stronger than the BAO's in the power spectrum, but seem detectable only at about a one-sigma level in gigaparsec-scale galaxy surveys. In estimating cosmological parameters using matter or galaxy power spectra, including the covariance-matrix BAO's can have a several-percent effect on error-bar widths for some parameters directly related to the BAO's, such as the baryon fraction. Also, we find that including the numerous galaxies in small haloes in a survey can reduce error bars in these cosmological parameters more than the simple reduction in shot noise might su...

  3. Power spectrum of the cosmic infrared background at 60 and 100 microns with IRAS

    CERN Document Server

    Miville-Deschênes, M A; Puget, J L

    2002-01-01

    Based on a power spectrum analysis of the IRAS ISSA maps, we present the first detection of the Cosmic far-Infrared Background (CIB) fluctuations at 60 and 100 microns. The power spectrum of 12 low cirrus emission regions is characterized by a power excess at spatial frequencies higher than k~0.02 arcmin^{-1}. Most of this excess is due to noise and to nearby point sources with a flux stronger than 1 Jy. But we show that when these contributions are carefully removed, there is still a power excess that is the signature of the CIB fluctuations. The power spectrum of the CIB at 60 and 100 microns is compatible with a Poissonian distribution, at spatial frequencies between 0.025 and 0.2 arcmin^{-1}. The fluctuation level is ~1.6x10^3 Jy^2/sr and ~5.8x10^3 Jy^2/sr at 60 and 100 microns respectively. The levels of the fluctuations are used in a larger framework, with other observationnal data, to constrain the evolution of IR galaxies (Lagache et al. 2002). The detections reported here, coupled with the level of t...

  4. Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory

    CERN Document Server

    Taruya, Atsushi; Saito, Shun

    2010-01-01

    We present an improved prescription for matter power spectrum in redshift space taking a proper account of both the non-linear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the non-linear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism. We...

  5. The effects of galaxy formation on the matter power spectrum: A challenge for precision cosmology

    CERN Document Server

    van Daalen, Marcel P; Booth, C M; Vecchia, Claudio Dalla

    2011-01-01

    Upcoming weak lensing surveys, such as LSST, EUCLID, and WFIRST, aim to measure the matter power spectrum with unprecedented accuracy. In order to fully exploit these observations, models are needed that, given a set of cosmological parameters, can predict the non-linear matter power spectrum at the level of 1% or better for scales corresponding to comoving wave numbers 0.170 h/Mpc. Therefore, baryons, and particularly AGN feedback, cannot be ignored in theoretical power spectra for k>0.3 h/Mpc. It will thus be necessary to improve our understanding of feedback processes in galaxy formation, or at least to constrain them through auxiliary observations, before we can fulfil the goals of upcoming weak lensing surveys.

  6. Anomalous parity asymmetry of WMAP power spectrum data at low multpoles: is it cosmological or systematics?

    CERN Document Server

    Kim, Jaiseung

    2010-01-01

    We have investigated the odd-parity preference of the WMAP 7 year power spectrum. Our investigation shows parity asymmetry of the WMAP data (2<= l <=22) is anomalous at 4-in-1000 level. We also find it likely that low quadrupole power is part of this parity asymmetry rather than an isolated anomaly. We have investigated non-cosmological causes for the odd-parity preference, but have not found a definite non-cosmological origin. WMAP7 data possesses most anomalous odd-parity preference, while they have more accurate calibration and less foreground contamination than earlier data. Besides that, the anomaly is associated with the WMAP power spectrum data, in which most efforts have been exerted to minimize systematics. Therefore, we find it unlikely that calibration or foregrounds are the source of the anomaly. We have also considered primordial origin for the parity asymmetry. However, we find primordial origin requires violation of translational invariance on large scales.

  7. Early Structure Formation from Primordial Density Fluctuations with a Blue, Tilted Power Spectrum

    Science.gov (United States)

    Hirano, Shingo; Zhu, Nick; Yoshida, Naoki; Spergel, David; Yorke, Harold W.

    2015-11-01

    While observations of large-scale structure and the cosmic microwave background (CMB) provide strong constraints on the amplitude of the primordial power spectrum (PPS) on scales larger than 10 Mpc, the amplitude of the power spectrum on sub-galactic length scales is much more poorly constrained. We study early structure formation in a cosmological model with a blue-tilted PPS. We assume that the standard scale-invariant PPS is modified at small length scales as P(k)∼ {k}{m{{s}}} with ms > 1. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with ms > 1, star-forming gas clouds are formed at z > 100 when the formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while retaining a high temperature. The protostars formed in such “hot” clouds grow very rapidly through accretion to become extremely massive stars that may leave massive black holes with a few hundred solar masses at z > 100. The shape of the PPS critically affects the properties and the formation epoch of the first generation of stars. Future experiments on CMB polarization and spectrum distortion may provide important information on the nature of the first stars and their formation epoch, and hence on the shape of the small-scale power spectrum.

  8. The ICM power spectrum: probing the gas physics of galaxy clusters

    Science.gov (United States)

    Gaspari, M.; Churazov, E.; Zhuravleva, I.; Lau, E.; Nagai, D.

    2014-07-01

    Exploring the power spectrum of fluctuations in the intracluster medium can deeply improve our knowledge of galaxy cluster physics, in analogy to what the cosmology field has experienced with CMB studies during the last decade. The normalization of the ICM spectrum (related to density, entropy, or pressure fluctuations) is linearly linked to the level of large-scale motions, which excite gravity and sound waves. The slope of the spectrum reflects instead the competition between the turbulence cascade and diffusive processes, which act to damp fluctuations and smooth the X-ray surface brightness images. Using high-resolution 3D plasma simulations in realistic galaxy clusters, we probe the behavior of the ICM power spectrum under different physics, such as turbulence and thermal conduction. We test our spectral modeling on deep X-ray observations of Coma cluster, retrieving mild subsonic turbulence and strongly suppressed conduction. Being able to probe the (astro)physics of the diffuse medium or, for instance, to easily retrieve the gas motions from the thermodynamic fluctuations, is a powerful tool with profound implications for the evolution of baryons in the universe, which can be exploited by the current (XMM-Newton, Chandra) and future (e.g. Astro-H, Athena+) generation of X-ray telescopes.

  9. Isocurvature and curvaton perturbations with red power spectrum and large hemispherical asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, John, E-mail: j.mcdonald@lancaster.ac.uk [Lancaster-Manchester-Sheffield Consortium for Fundamental Physics, Cosmology and Astroparticle Physics Group, Dept. of Physics, University of Lancaster, Lancaster LA1 4YB (United Kingdom)

    2013-07-01

    We calculate the power spectrum and hemispherical asymmetry of isocurvature and curvaton perturbations due to a complex field Φ which is evolving along the tachyonic part of its potential. Using a semi-classical evolution of initially sub-horizon quantum fluctuations, we compute the power spectrum, mean field and hemispherical asymmetry as a function of the number of e-foldings of tachyonic growth ΔN and the tachyonic mass term cH{sup 2}. We find that a large hemispherical asymmetry due to the modulation of |Φ| can easily be generated via the spatial modulation of |Φ| across the horizon, with Δ|Φ|/|Φ| > 0.5 when the observed Universe exits the horizon within 10-40 e-foldings of the beginning of tachyonic evolution and c is in the range 0.1-1. The spectral index of the isocurvature and curvaton perturbations is generally negative, corresponding to a red power spectrum. Dark matter isocurvature perturbations due to an axion-like curvaton with a large hemispherical asymmetry may be able to explain the hemispherical asymmetry observed by WMAP and Planck. In this case, the red spectrum can additionally suppress the hemispherical asymmetry at small scales, which should make it easier to satisfy scale-dependence requirements on the asymmetry from quasar number counts.

  10. Probing the Scale Invariance of the Inflationary Power Spectrum in Expanding Dipolar Condensates

    CERN Document Server

    Chä, Seok-Yeong

    2016-01-01

    We consider an analogue de Sitter cosmos in an expanding quasi-two-dimensional Bose-Einstein condensate, with dominant dipole-dipole interactions between the atoms or molecules in the ultracold gas. It is demonstrated that a hallmark signature of inflationary cosmology, the scale invariance of the power spectrum of inflaton field correlations, experiences strong modifications when at the initial stage of expansion the excitation spectrum displays a roton minimum. Dipolar quantum gases thus furnish a viable laboratory tool to experimentally investigate, with well-defined and controllable initial conditions, whether primordial oscillation spectra deviating from Lorentz invariance at trans-Planckian momenta violate standard predictions of inflationary cosmology.

  11. JPL 2-to-the-20th-power channel 300 MHz bandwidth digital spectrum analyzer

    Science.gov (United States)

    Morris, G. A., Jr.; Wilck, H. C.

    1978-01-01

    A million (two to the 20th power) channel, 300 MHz bandwidth, digital spectrum analyzer was considered. The design, fabrication, and maintenance philosophy of the modular, pipelined, fast fourier transform (FFT) hardware are described. The spectrum analyzer will be used to examine the region from 1.4 GHz to 26 GHz for radio frequency interference which may be harmful to present and future tracking missions of the Deep Space Network. The design has application to the search for extraterrestrial intelligence signals and radio science phenomena.

  12. Renormalization and power counting of chiral nuclear forces

    Energy Technology Data Exchange (ETDEWEB)

    Long, Bingwei [JLAB

    2013-08-01

    I discuss the progress we have made on modifying Weinberg's prescription for chiral nuclear forces, using renormalization group invariance as the guideline. Some of the published results are presented.

  13. Sound power spectrum and wave drag of a propeller in flight

    Science.gov (United States)

    Hanson, D. B.

    1989-01-01

    Theory is presented for the sound power and sound power spectrum of a single rotation propeller in forward flight. Calculations are based on the linear wave equation with sources distributed over helicoidal surfaces to represent effects of blade thickness and steady loading. Sound power is distributed continuously over frequecy, as would be expected from Doppler effects, rather than in discrete harmonics. The theory is applied to study effects of sweep and Mach number in propfans. An acoustic efficiency is defined as the ratio of radiated sound power to shaft input power. This value is the linear estimate of the effect of wave drag due to the supersonic blade section speeds. It is shown that the acoustic efficiency is somewhat less than 1 percent for a well designed propfan.

  14. The DWT Power Spectrum of the two-degree Field Galaxy Redshift Survey

    CERN Document Server

    Cai, Y C; Zhao, Y H; Feng, L L; Fang, L Z; Cai, Yan-Chuan; Pan, Jun; Zhao, Yong-Heng; Feng, Long-Long; Fang, Li-Zhi

    2006-01-01

    The power spectrum of the two-degree Field Galaxy Redshift Survey (2dFGRS) sample is estimated with the discrete wavelet transform (DWT) method. The DWT power spectra within $0.04 power spectrum can effectively distinguish $\\Lambda$CDM models of $\\sigma_8=0.84$ and $\\sigma_8=0.74$. We adopt maximum likelihood method to perform three-parameter fitting with bias parameter $b$, pairwise velocity dispersion $\\sigma_{pv}$ and redshift distortion parameter $\\beta=\\Omega_m^{0.6}/b$ to the measured DWT power spectrum. Fitting results denotes that in a $\\sigma_8=0.84$ universe the best fitted $\\Omega_m$ given by the three samples are consistent in the range $0.28 \\sim 0.36$, and the best fitted $\\sigma_{pv}$ are $398^{+35}_{-27}$, $475^{+37}_{-29}$ and $550 \\pm 20$km/s for the three samples, respectively. However in the model of $...

  15. Time-variant power spectrum analysis for the detection of transient episodes in HRV signal.

    Science.gov (United States)

    Bianchi, A M; Mainardi, L; Petrucci, E; Signorini, M G; Mainardi, M; Cerutti, S

    1993-02-01

    A time-variant algorithm of autoregressive (AR) identification is introduced and applied to the heart rate variability (HRV) signal. The power spectrum is calculated from the AR coefficients derived from each single RR interval considered. Time-variant AR coefficients are determined through adaptive parametric identification with a forgetting factor which obtains weighed values on a running temporal window of 50 preceding measurements. Power spectrum density (PSD) is hence obtained at each cardiac cycle, making it possible to follow the dynamics of the spectral parameters on a beat-by-beat basis. These parameters are mainly the LF (low frequency) and the HF (high frequency) powers, and their ratio LF/HF. These together account for the balanced sympatho-vagal control mechanism affecting the heart rate. This method is applied to subjects suffering from transient ischemic attacks. The time variant spectral parameters suggest an early activation of LF component in the HRV power spectrum. It precedes by approximately 1.5-2 min the tachycardia and the ST displacement, generally indicative of the onset of an ischemic episode. The results suggest an arousal of sympathetic system before the acute attack.

  16. The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data

    CERN Document Server

    Das, Sudeep; Nolta, Michael R; Addison, Graeme E; Battistelli, Elia S; Bond, J Richard; Calabrese, Erminia; Devlin, Devin Crichton Mark J; Dicker, Simon; Dunkley, Joanna; Dünner, Rolando; Fowler, Joseph W; Gralla, Megan; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jonathan L; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Wollack, Ed

    2013-01-01

    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the Lambda CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing conver...

  17. Sunyaev-Zel'dovich power spectrum with decaying cold dark matter

    CERN Document Server

    Takahashi, K; Ichiki, K; Takahashi, Keitaro; Oguri, Masamune; Ichiki, Kiyotomo

    2003-01-01

    Recent studies of structures of galaxies and clusters imply that dark matter might be unstable and decay with lifetime $\\Gamma^{-1}$ about the age of universe. We study the effects of the decay of cold dark matter on the Sunyaev-Zel'dovich (SZ) power spectrum. We analytically calculate the SZ power spectrum taking finite lifetime of cold dark matter into account. We find the finite lifetime of dark matter decreases the power at large scale ($l 4000$). This is in marked contrast with the dependence of other cosmological parameters such as the amplitude of mass fluctuations $\\sigma_{8}$ and the cosmological constant $\\Omega_{\\lambda}$ (under the assumption of a flat universe) which mainly change the normalization of the angular power spectrum. This difference allows one to determine the lifetime and other cosmological parameters rather separately. We also investigate sensitivity of a future SZ survey to the cosmological parameters including the life time, assuming a fiducial model $\\Gamma^{-1} = 10 h^{-1} {\\rm...

  18. Observational estimates of the initial power spectrum at small scale from Lyman-$\\alpha$ absorbers

    CERN Document Server

    Demianski, M

    2003-01-01

    We present a new method of measuring the power spectrum of initial perturbations to an unprecedently small scale of $\\sim$ 10$h^{-1}$ kpc. We apply this method to a sample of 4500 Ly-$\\alpha$ absorbers and recover the cold dark matter (CDM) like power spectrum at scales $\\geq 300h^{-1}$kpc with a precision of $\\sim$ 10%. However at scales $\\sim 10 - 300 h^{-1}$kpc the measured and CDM--like spectra are noticeable different. This result suggests a complex inflation with generation of excess power at small scales. The magnitude and reliability of these deviations depend also upon the possible incompleteness of our sample and poorly understood process of formation of weak absorbers. Confirmation of the CDM--like shape of the initial power spectrum or detection of its distortions at small scales are equally important for widely discussed problems of physics of the early Universe, galaxy formation, and reheating of the Universe. Our method links the observed mass function of absorbers with the correlation function...

  19. Power spectrum extraction for redshifted 21-cm epoch of reionization experiments: the LOFAR case

    CERN Document Server

    Harker, Geraint; Bernardi, Gianni; Brentjens, Michiel A; de Bruyn, A G; Ciardi, Benedetta; Jelic, Vibor; Koopmans, Leon V E; Labropoulos, Panagiotis; Mellema, Garrelt; Offringa, Andre; Pandey, V N; Pawlik, Andreas H; Schaye, Joop; Thomas, Rajat M; Yatawatta, Sarod

    2010-01-01

    One of the aims of the Low Frequency Array (LOFAR) Epoch of Reionization (EoR) project is to measure the power spectrum of variations in the intensity of redshifted 21-cm radiation from the EoR. The sensitivity with which this power spectrum can be estimated depends on the level of thermal noise and sample variance, and also on the systematic errors arising from the extraction process, in particular from the subtraction of foreground contamination. We model the extraction process using realistic simulations of the cosmological signal, the foregrounds and noise, and so estimate the sensitivity of the LOFAR EoR experiment to the redshifted 21-cm power spectrum. Detection of emission from the EoR should be possible within 360 hours of observation with a single station beam. Integrating for longer, and synthesizing multiple station beams within the primary (tile) beam, then enables us to extract progressively more accurate estimates of the power at a greater range of scales and redshifts. We discuss different obs...

  20. First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating

    CERN Document Server

    Ewall-Wice, A; Hewitt, J N; Loeb, A; Mesinger, A; Neben, A R; Offringa, A R; Tegmark, M; Barry, N; Beardsley, A P; Bernardi, G; Bowman, Judd D; Briggs, F; Cappallo, R J; Carroll, P; Corey, B E; de Oliveira-Costa, A; Emrich, D; Feng, L; Gaensler, B M; Goeke, R; Greenhill, L J; Hazelton, B J; Hurley-Walker, N; Johnston-Hollit, M; Jacobs, Daniel C; Kaplan, D L; Kasper, J C; Kim, HS; Kratzenberg, E; Lenc, E; Line, J; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Thyagarajan, Nithyanandan; Oberoi, D; Ord, S M; Paul, S; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Sullivan, I S; Tingay, S J; Trott, C M; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2016-01-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most se...

  1. Multi-redshift limits on the 21cm power spectrum from PAPER

    CERN Document Server

    Pober, Daniel C Jacobs Jonathan C; Aguirre, James E; Ali, Zaki; Bowman, Judd; Bradley, Richard F; Carilli, Chris L; DeBoer, David R; Dexter, Matthew R; Gugliucci, Nicole E; Klima, Pat; Liu, Adrian; MacMahon, Dave H E; Manley, Jason R; Moore, David F; Stefan, Irina I; Walbrugh, William P

    2014-01-01

    The epoch of reionization power spectrum is expected to evolve strongly with redshift, and it is this variation with cosmic history that will allow us to begin to place constraints on the physics of reionization. The primary obstacle to the measurement of the EoR power spectrum is bright foreground emission. We present an analysis of observations from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) telescope which place new limits on the HI power spectrum over the redshift range of $7.5Power spectra at different points across the redshift range r...

  2. Pacific Air Forces Power Projection: Sustaining Peace, Prosperity, and Freedom

    Science.gov (United States)

    2015-02-01

    ancient Greek historian, recorded the comments of a leadership delegation from a strong power relating to its relatively less powerful neighbor. The...strong do what they can and the weak suffer what they must.ŗ Unfortunately, this ancient insight still holds true. Potential adversaries threaten the

  3. Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes.

    Science.gov (United States)

    Bell, David R; Sanfilippo, Jennifer L; Binkley, Neil; Heiderscheit, Bryan C

    2014-04-01

    The purpose of this investigation was to (a) examine how asymmetry in lower extremity lean mass influenced force and power asymmetry during jumping, (b) determine how power and force asymmetry affected jump height, and (c) report normative values in collegiate athletes. Force and power were assessed from each limb using bilateral force plates during a countermovement jump in 167 division 1 athletes (mass = 85.7 ± 20.3 kg, age = 20.0 ± 1.2 years; 103 men and 64 women). Lean mass of the pelvis, thigh, and shank was assessed using dual-energy x-ray absorptiometry. Percent asymmetry was calculated for lean mass at each region (pelvis, thigh, and shank) as well as force and power. Forward stepwise regressions were performed to determine the influence of lean mass asymmetry on force and power asymmetry. Thigh and shank lean mass asymmetry explained 20% of the variance in force asymmetry (R = 0.20, p lean mass asymmetry of the pelvis, thigh, and shank explained 25% of the variance in power asymmetry (R = 0.25, p 0.05) and greater than 10% asymmetry in power tended to decrease the performance (effect size >1.0). Ninety-five percent of this population (2.5th to 97.5th percentile) displayed force asymmetry between -11.8 and 16.8% and a power asymmetry between -9.9 and 11.5%. A small percentage (lean mass asymmetry in the lower extremity is at least partially responsible for asymmetries in force and power. However, a large percentage remains unexplained by lean mass asymmetry.

  4. Nonlinear modification of the laser noise power spectrum induced by a frequency-shifted optical feedback

    CERN Document Server

    Lacot, Eric; Girardeau, Vadim; Hugon, Olivier; Jacquin, Olivier

    2016-01-01

    In this article, we study the non-linear coupling between the stationary (i.e. the beating modulation signal) and transient (i.e. the laser quantum noise) dynamics of a laser subjected to frequency shifted optical feedback. We show how the noise power spectrum and more specifically the relaxation oscillation frequency of the laser are modified under different optical feedback condition. Specifically we study the influence of (i) the amount of light returning to the laser cavity and (ii) the initial detuning between the frequency shift and intrinsic relaxation frequency. The present work shows how the relaxation frequency is related to the strength of the beating signal and the shape of the noise power spectrum gives an image of the Transfer Modulation Function (i.e. of the amplification gain) of the nonlinear-laser dynamics.The theoretical predictions, confirmed by numerical resolutions, are in good agreements with the experimental data.

  5. CMBR Weak Lensing and HI 21-cm Cross-correlation Angular Power Spectrum

    CERN Document Server

    Sarkar, Tapomoy Guha

    2009-01-01

    Weak gravitational lensing of the CMBR manifests as a secondary anisotropy in the temperature maps. The effect, quantified through the shear and convergence fields imprint the underlying large scale structure (LSS), geometry and evolution history of the Universe. It is hence perceived to be an important observational probe of cosmology. De-lensing the CMBR temperature maps is also crucial for detecting the gravitational wave generated B-modes. Future observations of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI) distribution hold the potential of probing the LSS over a large redshift range. We have investigated the correlation between post-reionization HI signal and weak lensing convergence field. Assuming that the HI follows the dark matter distribution, the cross-correlation angular power spectrum at a multipole \\ell is found to be proportional to the cold dark matter power spectrum evaluated at \\ell/r, where r denotes the comoving distance to the redshift where the HI is located. Th...

  6. Kinetic Field Theory: Effects of momentum correlations on the cosmic density-fluctuation power spectrum

    CERN Document Server

    Bartelmann, Matthias; Kozlikin, Elena; Lilow, Robert; Dombrowski, Johannes; Mildenberger, Julius

    2016-01-01

    In earlier work, we have developed a Kinetic Field Theory (KFT) for cosmological structure formation and showed that the non-linear density-fluctuation power spectrum known from numerical simulations can be reproduced quite well even if particle interactions are taken into account to first order only. Besides approximating gravitational interactions, we had to truncate the initial correlation hierarchy of particle momenta at the second order. Here, we substantially simplify KFT. We show that its central object, the free generating functional, can be factorized, taking the full hierarchy of momentum correlations into account. The factors appearing in the generating functional have a universal form and can thus be tabulated for fast access in perturbation schemes. Our results show that the complete hierarchy of initial momentum correlations is responsible for a characteristic deformation in the density-fluctuation power spectrum, caused by mode transport independent of the particle interaction. At the present e...

  7. Energy spectrum of the electrons accelerated by reconnection electric field: exponential or power-law?

    CERN Document Server

    Liu, W J; Ding, M D; Fang, C

    2008-01-01

    The direct current (DC) electric field near the reconnection region has been proposed as an effective mechanism to accelerate protons and electrons in solar flares. A power-law energy spectrum was generally claimed in the simulations of electron acceleration by the reconnection electric field. However, in most of the literature, the electric and magnetic fields were chosen independently. In this paper, we perform test particle simulations of electron acceleration in reconnecting magnetic field, where both the electric and magnetic fields are adopted from numerical simulations of the MHD equations. It is found that the accelerated electrons present a truncated power-law energy spectrum with an exponential tail at high energies, which is analogous to the case of diffusive shock acceleration. The influences of the reconnection parameters on the spectral feature are also investigated, such as the longitudinal and transverse components of the magnetic field and the size of the current sheet. It is suggested that t...

  8. Peaks and Troughs in Helioseismology The Power Spectrum of Solar Oscillations

    CERN Document Server

    Rosenthal, C S

    1998-01-01

    I present a matched-wave asymptotic analysis of the driving of solar oscillations by a general localised source. The analysis provides a simple mathematical description of the asymmetric peaks in the power spectrum in terms of the relative locations of eigenmodes and troughs in the spectral response. It is suggested that the difference in measured phase function between the modes and the troughs in the spectrum will provide a key diagnostic of the source of the oscillations. I also suggest a form for the asymmetric line profiles to be used in the fitting of solar power spectra. Finally I present a comparison between the numerical and asymptotic descriptions of the oscillations. The numerical results bear out the qualitative features suggested by the asymptotic analysis but suggest that numerical calculations of the locations of the troughs will be necessary for a quantitative comparison with the observations.

  9. Imprint of inhomogeneous and anisotropic primordial power spectrum on CMB polarization

    Science.gov (United States)

    Kothari, Rahul; Ghosh, Shamik; Rath, Pranati K.; Kashyap, Gopal; Jain, Pankaj

    2016-08-01

    We consider an inhomogeneous model and independently an anisotropic model of primordial power spectrum in order to describe the observed hemispherical anisotropy in cosmic microwave background radiation (CMBR). This anisotropy can be parametrized in terms of the dipole modulation model of the temperature field. Both the models lead to correlations between spherical harmonic coefficients corresponding to multipoles, l and l ± 1. We obtain the model parameters by making a fit to TT correlations in CMBR data. Using these parameters we predict the signature of our models for correlations among different multipoles for the case of the TE and EE modes. These predictions can be used to test whether the observed hemispherical anisotropy can be correctly described in terms of a primordial power spectrum. Furthermore these may also allow us to distinguish between an inhomogeneous and an anisotropic model.

  10. The Nonlinear cosmological matter power spectrum with massive neutrinos. 1. The Halo model

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, Kevork; /Los Alamos; Switzer, Eric R.; /Princeton U.; Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Heitmann, Katrin; Habib, Salman; /Los

    2004-11-01

    Measurements of the linear power spectrum of galaxies have placed tight constraints on neutrino masses. We extend the framework of the halo model of cosmological nonlinear matter clustering to include the effect of massive neutrino infall into cold dark matter (CDM) halos. The magnitude of the effect of neutrino clustering for three degenerate mass neutrinos with m{sub v{sub 1}} = 0.9 eV is of order {approx}1%, within the potential sensitivity of upcoming weak lensing surveys. In order to use these measurements to further constrain--or eventually detect--neutrino masses, accurate theoretical predictions of the nonlinear power spectrum in the presence of massive neutrinos will be needed, likely only possible through high-resolution multiple particle (neutrino, CDM and baryon) simulations.

  11. The CMB temperature power spectrum from an improved analysis of the Archeops data

    CERN Document Server

    Tristram, M; Macias-Perez, J F; Ade, P; Amblard, A; Ansari, R; Aubourg, E; Benoît, A; Bernard, J P; Blanchard, A; Bock, J J; Bouchet, F R; Bourrachot, A; Camus, P; Cardoso, J F; Couchot, F; De Bernardis, P; Delabrouille, J; Désert, F X; Douspis, M; Dumoulin, L; Filliatre, P; Fosalba, P; Giard, M; Giraud-Héraud, Yannick; Gispert, R; Guglielmi, L; Hamilton, J C; Hanany, S; Henrot-Versillé, S; Kaplan, J; Lagache, G; Lange, A E; Madet, K; Maffei, B; Masi, S; Mayet, F; Nati, F; Perdereau, O; Plaszczynski, S; Piat, M; Ponthieu, N; Prunet, S; Renault, C; Rosset, C; Santos, D; Vibert, D; Yvon, D; Filliatre, Ph.

    2004-01-01

    We present improved results on the measurement of the angular power spectrum of the Cosmic Microwave Background (CMB) temperature anisotropies using the data from the last Archeops flight. This refined analysis is obtained by using the 6 most sensitive photometric pixels in the CMB bands centered at 143 and 217 GHz and 20% of the sky, mostly clear of foregrounds. Using two different cross-correlation methods, we obtain very similar results for the angular power spectrum. Consistency checks are performed to test the robustness of these results paying particular attention to the foreground contamination level which remains well below the statistical uncertainties. The multipole range from l=10 to l=700 is covered with 25 bins, confirming strong evidence for a plateau at large angular scales (the Sachs-Wolfe plateau) followed by two acoustic peaks centered around l=220 and l=550 respectively. These data provide an independent confirmation, obtained at different frequencies, of the WMAP first year results.

  12. arXiv Neutrino masses and cosmology with Lyman-alpha forest power spectrum

    CERN Document Server

    Palanque-Delabrouille, Nathalie; Baur, Julien; Magneville, Christophe; Rossi, Graziano; Lesgourgues, Julien; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Viel, Matteo; Weinberg, David

    2015-01-01

    We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the $\\Lambda$CDM model, using the one-dimensional Ly$\\alpha$-forest power spectrum measured by Palanque-Delabrouille et al. (2013) from SDSS-III/BOSS, complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by Palanque-Delabrouille et al. (2015) by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Ly$\\alpha$ data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index ...

  13. Generating non-Gaussian maps with a given power spectrum and bispectrum

    CERN Document Server

    Contaldi, C R; Contaldi, Carlo R.; Magueijo, Joao

    2001-01-01

    We propose two methods for generating non-Gaussian maps with fixed power spectrum and bispectrum. The first makes use of a recently proposed rigorous, non-perturbative, Bayesian framework for generating non-Gaussian distributions. The second uses a simple superposition of Gaussian distributions. The former is best suited for generating mildly non-Gaussian maps, and we discuss in detail the limitations of this method. The latter is better suited for the opposite situation, i.e. generating strongly non-Gaussian maps. The ensembles produced are isotropic and the power spectrum can be jointly fixed; however we cannot set to zero all other higher order cumulants (an unavoidable mathematical obstruction). We briefly quantify the leakage into higher order moments present in our method. We finally present an implementation of our code within the HEALPIX package

  14. Bayesian joint estimation of non-Gaussianity and the power spectrum

    CERN Document Server

    Rocha, G; Hobson, M P; Lasenby, A; Rocha, Graca; Magueijo, Joao; Hobson, Mike; Lasenby, Anthony

    2001-01-01

    We propose a rigorous, non-perturbative, Bayesian framework which enables one jointly to test Gaussianity and estimate the power spectrum of CMB anisotropies. It makes use of the Hilbert space of an harmonic oscillator to set up an exact likelihood function, dependent on the power spectrum and on a set of parameters $\\alpha_i$, which are zero for Gaussian processes. The latter can be expressed as series of cumulants; indeed they perturbatively reduce to cumulants. However they have the advantage that their variation is essentially unconstrained. Any truncation(i.e.: finite set of $\\alpha_i$) therefore still produces a proper distribution - something which cannot be said of the only other such tool on offer, the Edgeworth expansion. We apply our method to Very Small Array (VSA) simulations based on signal Gaussianity, showing that our algorithm is indeed not biased.

  15. Neutrino mass limits: Robust information from the power spectrum of galaxy surveys

    Science.gov (United States)

    Cuesta, Antonio J.; Niro, Viviana; Verde, Licia

    2016-09-01

    We present cosmological upper limits on the sum of active neutrino masses using large-scale power spectrum data from the WiggleZ Dark Energy Survey and from the Sloan Digital Sky Survey - Data Release 7 (SDSS-DR7) sample of Luminous Red Galaxies (LRG). Combining measurements on the Cosmic Microwave Background temperature and polarisation anisotropies by the Planck satellite together with WiggleZ power spectrum results in a neutrino mass bound of 0.37 eV at 95% C.L., while replacing WiggleZ by the SDSS-DR7 LRG power spectrum, the 95% C.L. bound on the sum of neutrino masses is 0.38 eV. Adding Baryon Acoustic Oscillation (BAO) distance scale measurements, the neutrino mass upper limits greatly improve, since BAO data break degeneracies in parameter space. Within a ΛCDM model, we find an upper limit of 0.13 eV (0.14 eV) at 95% C.L., when using SDSS-DR7 LRG (WiggleZ) together with BAO and Planck. The addition of BAO data makes the neutrino mass upper limit robust, showing only a weak dependence on the power spectrum used. We also quantify the dependence of neutrino mass limit reported here on the CMB lensing information. The tighter upper limit (0.13 eV) obtained with SDSS-DR7 LRG is very close to that recently obtained using Lyman-alpha clustering data, yet uses a completely different probe and redshift range, further supporting the robustness of the constraint. This constraint puts under some pressure the inverted mass hierarchy and favours the normal hierarchy.

  16. Analysing MUAP of EMG Signal with Power Density Spectrum in Matlab

    Directory of Open Access Journals (Sweden)

    Akash Kumar Bhoi

    2013-07-01

    Full Text Available The lack of a proper description of the EMG signal is probably the greatest single factor which has hampered the development of electromyography into a precise discipline. Our proposed methodology described the relationship between the EMG signal and the properties of a contracting muscle by analysing its power density spectrum. We have also discussed the basic concepts on Motor Unit Action potential and analyzed the spectral density of a healthy person EMG signal. The Power spectral Density is calculated with Welch's PSD estimate method by taking Hamming {&} Kaiser Window. This model can be useful for the study of gate analysis and control scheme of the peripheral nervous system

  17. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100

    Science.gov (United States)

    Yèche, Christophe; Palanque-Delabrouille, Nathalie; Baur, Julien; du Mas des Bourboux, Hélion

    2017-06-01

    We present constraints on masses of active and sterile neutrinos in the context of the ΛCDMν and ΛWDM models, respectively. We use the one-dimensional Lyα-forest power spectrum from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) measured by Palanque-Delabrouille et al. [1], and from the VLT/XSHOOTER legacy survey (XQ-100). In this paper, we present our own measurement of the publicly released XQ-100 quasar spectra, focusing in particular on an improved determination of the spectrograph resolution that allows us to push to smaller scales than the public release and reach k-modes of 0.070 s km-1. We compare the obtained 1D Lyα flux power spectrum to the one measured by Irsic et al. [2] to k-modes of 0.057 s km-1. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from Planck 2015 Cosmic Microwave Background (CMB) data. Combining BOSS and XQ-100 Lyα power spectra, we constrain the sum of neutrino masses to ∑ mν sources of systematic uncertainties. With the addition of CMB data, this bound is tightened to ∑ mν right-handed neutrinos. Combining the 1D Lyα-forest power spectrum measured by BOSS and XQ-100, we improve the two bounds to mX gtrsim 4.17 : keV and ms gtrsim 25.0 : keV (95% C.L.), slightly more constraining than what was achieved in Baur et al. 2015 [3] with BOSS data alone. The 3 σ bound shows a more significant improvement, increasing from mX gtrsim 2.74 : keV for BOSS alone to mX gtrsim 3.10 : keV for the combined BOSS+XQ-100 data set. Finally, we include in our analysis the first two redshift bins (z = 4.2 and z = 4.6) of the power spectrum measured by Viel et al. 2013 [4] with the high-resolution HIRES/MIKE spectrographs. The addition of HIRES/MIKE power spectrum allows us to further improve the two limits to mX gtrsim 4.65 : keV and ms gtrsim 28.8 : keV (95% C.L.).

  18. Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum

    Science.gov (United States)

    Mead, A. J.

    2016-09-01

    I examine differences in non-linear structure formation between cosmological models that share a z = 0 linear power spectrum in both shape and amplitude, but that differ via their growth history. N-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power spectrum predictions for dark energy models for k ≤ 5 hMpc-1 by using the halo model as a correction to accurate ΛCDM simulations. In the appendix I provide some fitting functions for the linear-collapse threshold (δc) and virialized overdensity (Δv) that are valid for a wide range of dark energy models. I also make my spherical-collapse code available at https://github.com/alexander-mead/collapse.

  19. The thermal Sunyaev Zel'dovich effect power spectrum in light of Planck

    CERN Document Server

    McCarthy, Ian G; Schaye, Joop; Holder, Gilbert P

    2013-01-01

    (Abridged) The amplitude of the thermal Sunyaev Zel'dovich effect (tSZ) power spectrum is extremely sensitive to the abundance of galaxy clusters and therefore to fundamental cosmological parameters that control their growth, such as sigma_8 and Omega_m. Here we explore the sensitivity of the tSZ power spectrum to important non-gravitational ('sub-grid') physics by employing the cosmo-OWLS suite of large-volume cosmological hydrodynamical simulations, run in both the Planck and WMAP7 best-fit cosmologies. On intermediate and small angular scales (ell > ~1000, or theta < ~10 arcmin), accessible with the South Pole Telescope and the Atacama Cosmology Telescope, the predicted tSZ power spectrum is highly model dependent, with AGN feedback having a particularly large effect. However, at large scales, observable with the Planck telescope, the effects of sub-grid physics are minor. Comparing the simulations with observations, we find a significant amplitude offset on all measured angular scales (including large ...

  20. The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum

    CERN Document Server

    Sherwin, Blake D; Sehgal, Neelima; Madhavacheril, Mathew; Addison, Graeme E; Aiola, Simone; Allison, Rupert; Battaglia, Nicholas; Beall, James A; Becker, Daniel T; Bond, J Richard; Calabrese, Erminia; Datta, Rahul; Devlin, Mark J; Dunner, Rolando; Dunkley, Joanna; Fox, Anna E; Gallardo, Patricio; Halpern, Mark; Hasselfield, Matthew; Henderson, Shawn; Hill, J Colin; Hilton, Gene C; Hubmayr, Johannes; Hughes, John P; Hincks, Adam D; Hlozek, Renee; Huffenberger, Kevin M; Koopman, Brian; Kosowsky, Arthur; Louis, Thibaut; Maurin, Loic; McMahon, Jeff; Moodley, Kavilan; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D; Page, Lyman A; Sievers, Jonathan; Spergel, David N; Staggs, Suzanne T; Thornton, Robert J; Van Lanen, Jeff; Vavagiakis, Eve; Wollack, Edward J

    2016-01-01

    We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck LCDM model over a range of multipoles L=80-2100, with an amplitude of lensing A_lens = 1.06 +/- 0.15 (stat.) +/- 0.06 (sys.) relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma_8 Omega_m^0.25 = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma_8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more prec...

  1. Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS

    CERN Document Server

    Liu, Jia; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M; May, Morgan

    2014-01-01

    Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg^2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Omega_m, sigma_8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of <= 5%, and compute the likelihood in the three-dimensional parameter space (Omega_m, sigma_8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales...

  2. Electromyographic power spectrum of jaw muscles during clenching in unilateral temporomandibular joint osteoarthritis patients.

    Science.gov (United States)

    Park, I H; McCall, W D; Chung, J W

    2012-09-01

    The relationship between temporomandibular joints (TMJ) osteoarthritis and masticatory muscle disorders is poorly understood. The data are sparse, the results are conflicting, and electromyographic (EMG) power spectrum analysis has not been used. The aims of this study were to compare the differences in EMG power spectrum during, and pressure pain thresholds (PPTs) before and after, sustained clenching in patients with unilateral TMJ osteoarthritis and healthy control subjects. Nineteen patients with unilateral TMJ osteoarthritis without masticatory muscle pain and 20 control subjects were evaluated. We measured EMG amplitudes at maximum voluntary contraction, median frequency from the EMG power spectrum during sustained clenching at 70% and PPTs before and after the clenching in both temporalis and masseter muscles. There were no significant differences in PPT decrease between muscles or between groups during sustained clenching. There were no significant differences in maximum voluntary contraction EMG activity ratios of affected to unaffected sides between groups, or of masseter to temporalis muscles between affected and unaffected side of patients with TMJ osteoarthritis. Median frequencies decreased from the beginning to the end of the sustained clench, and the interaction between group and clench was significant: the median frequency decrease was larger in the osteoarthritis group. Our results suggested that masticatory muscles of patients with unilateral TMJ osteoarthritis are more easily fatigued during sustained clenching than normal subjects. © 2012 Blackwell Publishing Ltd.

  3. Neutrino mass limits: robust information from the power spectrum of galaxy surveys

    CERN Document Server

    Cuesta, Antonio J; Verde, Licia

    2015-01-01

    We present cosmological upper limits on the sum of active neutrino masses using large-scale power spectrum data from the WiggleZ Dark Energy Survey and from the Sloan Digital Sky Survey - Data Release 7 (SDSS-DR7) sample of Luminous Red Galaxies (LRG). Combining measurements on the Cosmic Microwave Background temperature and polarisation anisotropies by the Planck satellite together with WiggleZ power spectrum results in a neutrino mass bound of 0.43 eV at 95% C.L., while replacing WiggleZ by the SDSS-DR7 LRG power spectrum, the 95% C.L. bound on the sum of neutrino masses improves to 0.17 eV. Adding Baryon Acoustic Oscillation (BAO) distance scale measurements, the neutrino mass upper limits greatly improve, since BAO data break degeneracies in parameter space. Within a $\\Lambda$CDM model, we find an upper limit of 0.11 eV (0.15 eV) at 95% C.L., when using SDSS-DR7 LRG (WiggleZ) together with BAO and Planck. The addition of BAO data makes the neutrino mass upper limit robust, showing only a weak dependence o...

  4. An effective field theory during inflation II: stochastic dynamics and power spectrum suppression

    CERN Document Server

    Boyanovsky, D

    2015-01-01

    We obtain the non-equilibrium effective action of an inflaton like scalar field --the system-- by tracing over sub Hubble degrees of freedom of ``environmental'' light scalar fields. The effective action is stochastic leading to effective Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and stochastic noise correlators that obey a de Sitter space-time analog of a fluctuation dissipation relation. We solve the Langevin equation implementing a dynamical renormalization group resummation of the leading secular terms and obtain the corrections to the power spectrum of super Hubble fluctuations of the inflaton field, $\\mathcal{P}(k;\\eta) = \\mathcal{P}_0(k)\\,e^{-\\gamma(k;\\eta)}$ where $\\mathcal{P}_0(k)$ is the nearly scale invariant power spectrum in absence of coupling. $\\gamma(k;\\eta)>0$ describes the suppression of the power spectrum, it features Sudakov-type double logarithms and entails violations of scale invariance. We also obtain the effective action...

  5. Detecting the 21cm Forest in the 21 cm Power Spectrum

    CERN Document Server

    Ewall-Wice, Aaron; Mesinger, Andrei; Hewitt, Jacqueline

    2013-01-01

    Measurements of the 21 cm brightness temperature at high redshift are expected to yield tremendous insight into the nature of the first stars and black holes. A first generation of experiments is already underway, seeking a first detection. The brightness temperature fluctuations to be measured, also contain absorption features in the spectra of high redshift radio sources, the 21 cm forest. We describe a new technique for constraining the radio loud population of active galactic nuclei at high redshift by measuring the imprint of the 21 cm forest on the 21 cm power spectrum. We analytically relate the 21 cm forest power spectrum to the optical depth power spectrum and the radio loud luminosity function. Using semi-numeric simulations of the intergalactic medium and a semi-empirical source population, we show that the 21 cm forest dominates a distinctive region of k-space, $k \\gtrsim 0.5 \\Mpci$, allowing for the simultaneous determination of the intergalactic medium's thermal properties and the radio loud pop...

  6. Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum

    CERN Document Server

    Mead, Alexander

    2016-01-01

    I examine differences in non-linear structure formation between cosmological models that share a $z=0$ linear power spectrum in both shape and amplitude, but that differ via their growth history. $N$-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power spectrum predict...

  7. Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum

    Science.gov (United States)

    Mead, A. J.

    2017-01-01

    I examine differences in non-linear structure formation between cosmological models that share a z = 0 linear power spectrum in both shape and amplitude, but that differ via their growth history. N-body simulations of these models display an approximately identical large-scale-structure skeleton, but reveal deeply non-linear differences in the demographics and properties of haloes. I investigate to what extent the spherical-collapse model can help in understanding these differences, in both real and redshift space. I discuss how this is difficult to do if one attempts to identify haloes directly, because in that case one is subject to the vagaries of halo-finding algorithms. However, I demonstrate that the halo model of structure formation provides an accurate non-linear response in the power spectrum, but only if results from spherical collapse that include formation hysteresis are properly incorporated. I comment on how this fact can be used to provide per cent level accurate matter power-spectrum predictions for dark energy models for k ≤ 5 h Mpc-1 by using the halo model as a correction to accurate ΛCDM simulations. In the Appendix, I provide some fitting functions for the linear-collapse threshold (δc) and virialized overdensity (Δv) that are valid for a wide range of dark energy models. I also make my spherical-collapse code available at https://github.com/alexander-mead/collapse.

  8. Power spectrum sensitivity of raster-scanned CMB experiments in the presence of 1/f noise

    Science.gov (United States)

    Crawford, Tom

    2007-09-01

    We investigate the effects of 1/f noise on the ability of a particular class of cosmic microwave background experiments to measure the angular power spectrum of temperature anisotropy. We concentrate on experiments that operate primarily in raster-scan mode and develop formalism that allows us to calculate analytically the effect of 1/f noise on power-spectrum sensitivity for this class of experiments and determine the benefits of raster-scanning at different angles relative to the sky field versus scanning at only a single angle (cross-linking versus not cross-linking). We find that the sensitivity of such experiments in the presence of 1/f noise is not significantly degraded at moderate spatial scales (ℓ˜100) for reasonable values of scan speed and 1/f knee. We further find that the difference between cross-linked and non-cross-linked experiments is small in all cases and that the non-cross-linked experiments are preferred from a raw sensitivity standpoint in the noise-dominated regime—i.e., in experiments in which the instrument noise is greater than the sample variance of the target power spectrum at the scales of interest. This analysis does not take into account systematic effects.

  9. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements

    Science.gov (United States)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan

    2016-05-01

    We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.

  10. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.

    Science.gov (United States)

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B

    2016-06-01

    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running.

  11. Achievable rate of spectrum sharing cognitive radio systems over fading channels at low-power regime

    KAUST Repository

    Sboui, Lokman

    2014-11-01

    We study the achievable rate of cognitive radio (CR) spectrum sharing systems at the low-power regime for general fading channels and then for Nakagami fading. We formally define the low-power regime and present the corresponding closed-form expressions of the achievable rate lower bound under various types of interference and/or power constraints, depending on the available channel state information of the cross link (CL) between the secondary-user transmitter and the primary-user receiver. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link (SL) ergodic achievable rate. We also study more realistic scenarios when there is either 1-bit quantized channel feedback from the CL alone or 2-bit feedback from both the CL and the SL and propose simple power control schemes and show that these schemes achieve the previously achieved rate at the low-power regime. Interestingly, we show that the low-power regime analysis provides a specific insight into the maximum achievable rate behavior of CR that has not been reported by previous studies.

  12. Incoherence of the Thrust Force and the Attractive Force of a Single-sided Linear Induction Motor Driven by a Power Source with Multi-Frequency Components

    Science.gov (United States)

    Morizane, Toshimitsu; Iwaki, Kaoru; Kimura, Noriyuki; Taniguchi, Katsunori

    We propose a maglev transportation system that has only the Single-sided Linear Induction Motor (SLIM) without the levitation magnet and a novel control method of the attractive force and thrust force of the SLIM by the power source that has different frequency components. In the proposed system, the total force is the sum of the forces generated by the different frequency components. We verified the incoherent characteristics of the attractive force and thrust force by experiment.

  13. Significance of relative velocity in drag force or drag power estimation for a tethered float

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sastry, J.S.

    There is difference in opinion regarding the use of relative velocity instead of particle velocity alone in the estimation of drag force or power. In the present study, a tethered spherical float which undergoes oscillatory motion in regular waves...

  14. New approach for precise computation of Lyman-α forest power spectrum with hydrodynamical simulations

    Science.gov (United States)

    Borde, Arnaud; Palanque-Delabrouille, Nathalie; Rossi, Graziano; Viel, Matteo; Bolton, James S.; Yèche, Christophe; LeGoff, Jean-Marc; Rich, Jim

    2014-07-01

    Current experiments are providing measurements of the flux power spectrum from the Lyman-α forests observed in quasar spectra with unprecedented accuracy. Their interpretation in terms of cosmological constraints requires specific simulations of at least equivalent precision. In this paper, we present a suite of cosmological N-body simulations with cold dark matter and baryons, specifically aiming at modeling the low-density regions of the inter-galactic medium as probed by the Lyman-α forests at high redshift. The simulations were run using the GADGET-3 code and were designed to match the requirements imposed by the quality of the current SDSS-III/BOSS or forthcoming SDSS-IV/eBOSS data. They are made using either 2 × 7683 simeq 1 billion or 2 × 1923 simeq 14 million particles, spanning volumes ranging from (25 Mpc h-1)3 for high-resolution simulations to (100 Mpc h-1)3 for large-volume ones. Using a splicing technique, the resolution is further enhanced to reach the equivalent of simulations with 2 × 30723 simeq 58 billion particles in a (100 Mpc h-1)3 box size, i.e. a mean mass per gas particle of 1.2 × 105Msolar h-1. We show that the resulting power spectrum is accurate at the 2% level over the full range from a few Mpc to several tens of Mpc. We explore the effect on the one-dimensional transmitted-flux power spectrum of four cosmological parameters (ns, σ8, Ωm and H0) and two astrophysical parameters (T0 and γ) that are related to the heating rate of the intergalactic medium. By varying the input parameters around a central model chosen to be in agreement with the latest Planck results, we built a grid of simulations that allows the study of the impact on the flux power spectrum of these six relevant parameters. We improve upon previous studies by not only measuring the effect of each parameter individually, but also probing the impact of the simultaneous variation of each pair of parameters. We thus provide a full second-order expansion, including

  15. U.S. - Canada Power System Outage Task Force : final report on the implementation of task force recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Burpee, D.; Dabaghi, H.; Jackson, L.; Kwamena, F.; Richter, J.; Rusnov, T. [Natural Resources Canada, Ottawa, ON (Canada); Friedman, K.; Mansueti, L.; Meyer, D. [United States Dept. of Energy, Washington, DC (United States)

    2006-09-15

    The joint U.S. - Canada Power System Outage Task Force was created to investigate the cause of the largest power outage in North American history, with reference to when it began, when it was complete, how much electric load was affected, and why it was not contained. The August 2003 outage, which affected 50 million people, revealed the vulnerability of the North American electric system and raised questions regarding its management and operation. This report outlined all of the actions taken to prevent or minimize future blackouts and improve the security of the North American electric power grid. Recommendations were presented to minimize the potential for future outages. The Task Force examined the electric system, nuclear facilities and security. Potential remedial measures include mandatory reliability standards, development of an effective compliance system, and rationalization of the current system of reliability organizations. Since the blackout, mandatory reliability standards have been implemented in jurisdictions across Canada and in the United States. The North American Electric Reliability Council (NERC) played an important role in the Task Force's investigation of the outage. It approved a series of actions intended to improve the reliability of the North American bulk power system. The Final Blackout Report identified the causes of the blackout and included 46 recommendations on actions needed by government and industry, many of which include several elements. The recommendations were accepted and endorsed by the Task Force to improve grid reliability. This report presented each of the 46 recommendations as well as the actions taken in response to each recommendation. Recommendations 1 through 14 discussed institutional issues relates to reliability. Recommendations 15 to 31 covered supporting and strengthening NERC actions of February 10, 2004. Recommendations 32 through 44 covered the physical and cyber security of North American bulk power

  16. Airpower Lessons for an Air Force Cyber Power Targeting Theory

    Science.gov (United States)

    2016-09-01

    subsequent wars. Shaping Strategic Bombing Doctrine The perceived psychological impact upon residents of aerially bombed cities was at the foundation of...the day, the ambition was not unfounded. In 1849, during an Italian revolt against the Austrian Hapsburgs, Austrian imperial forces bombed Venice...thinking is seen by evaluating the tautology of the instructors at ACTS. After evaluating US cities , they concluded that destroying transportation, steel

  17. Analysis of Disturbance Source Inducing by The Variable Speed Wind Turbine System Forced Power Oscillations

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2015-01-01

    The main focus of forced low frequency oscillations is to analyze the disturbance source and the origin of forced oscillations. In this paper, the origin of low-frequency periodical oscillations induced by wind turbines’ mechanical power is investigated and the mechanism is studied of fluctuating...

  18. Combined analysis of galaxy cluster number count, thermal Sunyaev-Zel'dovich power spectrum, and bispectrum

    Science.gov (United States)

    Hurier, G.; Lacasa, F.

    2017-08-01

    The thermal Sunyaev-Zel'dovich (tSZ) effect is a powerful probe of the evolution of structures in the universe, and is thus highly sensitive to cosmological parameters σ8 and Ωm, though its power is hampered by the current uncertainties on the cluster mass calibration. In this analysis we revisit constraints on these cosmological parameters as well as the hydrostatic mass bias, by performing (i) a robust estimation of the tSZ power-spectrum, (ii) a complete modeling and analysis of the tSZ bispectrum, and (iii) a combined analysis of galaxy clusters number count, tSZ power spectrum, and tSZ bispectrum. From this analysis, we derive as final constraints σ8 = 0.79 ± 0.02, Ωm = 0.29 ± 0.02, and (1-b) = 0.71 ± 0.07. These results favor a high value for the hydrostatic mass bias compared to numerical simulations and weak-lensing based estimations. They are furthermore consistent with both previous tSZ analyses, CMB derived cosmological parameters, and ancillary estimations of the hydrostatic mass bias.

  19. The 2-loop matter power spectrum and the IR-safe integrand

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo, E-mail: jjmc@stanford.edu, E-mail: sfore@stanford.edu, E-mail: drgreen@stanford.edu, E-mail: senatore@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States)

    2014-07-01

    Large scale structure surveys are likely the next leading probe of cosmological information. It is therefore crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbation theory for the weakly non-linear regime, where dark matter correlation functions are computed in an expansion of the wavenumber k over the wavenumber associated to the non-linear scale k{sub NL}. To push the predictions to higher wavenumbers, it is necessary to compute the 2-loop matter power spectrum. For equal-time correlators, exactly as with standard perturturbation theory, there are IR divergences present in each diagram that cancel completely in the final result. We develop a method by which all 2-loop diagrams are computed as one integral, with an integrand that is manifestly free of any IR divergences. This allows us to compute the 2-loop power spectra in a reliable way that is much less numerically challenging than standard techniques. We apply our method to scaling universes where the linear power spectrum is a single power law of k, and where IR divergences can particularly easily interfere with accurate evaluation of loop corrections if not handled carefully. We show that our results are independent of IR cutoff and, after renormalization, of the UV cutoff, and comment how the method presented here naturally generalizes to higher loops.

  20. Output power spectrum of a single-mode laser driven by coloured pump and quantum noises with coloured correlation

    Institute of Scientific and Technical Information of China (English)

    Han Li-Bo; Cao Li; Wu Da-Jin

    2004-01-01

    By using the linear approximation method, the output power spectrum is calculated for a single-mode laser driven by coloured pump and quantum noises with coloured correlation. We have observed that the configuration of the output power spectrum is complicated: that is, it can be of single peak, two peaks or three peaks. The configurations of the power spectrum can be transformed from one into another by changing the cross-correlation time, the cross-correlation coefficient between the two noises, and pump noise intensity.

  1. Is there a quantum gravity effect on the cosmic microwave background power spectrum?

    CERN Document Server

    Bini, Donato

    2015-01-01

    An assessment is made of recent attempts to evaluate how quantum gravity may affect the anisotropy spectrum of the cosmic microwave background. A perturbative scheme for the solution of the Wheeler-DeWitt equation has been found to allow for enhancement of power at large scales, whereas the alternative predicts a suppression of power at large scales. Both effects are corrections which, although conceptually interesting, turn out to be too small to be detected. Another scheme relies upon a Born-Oppenheimer analysis: by using a perturbative approach to the nonlinear ordinary differential equation obeyed by the two-point function for scalar fluctuations, a new family of power spectra have been obtained and studied by the authors.

  2. Strong Lensing Probabilities in a Cosmological Model with a Running Primordial Power Spectrum

    CERN Document Server

    Zhang, T J; Yang, Z L; He, X T; Zhang, Tong-Jie; Chen, Da-Ming; Yang, Zhi-Liang; He, Xiang-Tao

    2004-01-01

    The combination of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data with other finer scale cosmic microwave background (CMB) experiments (CBI and ACBAR) and two structure formation measurements (2dFGRS and Lyman $\\alpha$ forest) suggest a $\\Lambda$CDM cosmological model with a running spectral power index of primordial density fluctuations. Motivated by this new result on the index of primordial power spectrum, we present the first study on the predicted lensing probabilities of image separation in a spatially flat $\\Lambda$CDM model with a running spectral index (RSI-$\\Lambda$CDM model). It is shown that the RSI-$\\Lambda$CDM model suppress the predicted lensing probabilities on small splitting angles of less than about 4$^{''}$ compared with that of standard power-law $\\Lambda$CDM (PL-$\\Lambda$CDM) model.

  3. Low-Power Direct-Sequence Spread-Spectrum Modem Architecture for Distributed Wireless Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Chien, C; Elgorriaga, I; McConaghy, C

    2001-07-03

    Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mW for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.

  4. Simultaneous wireless information and power transfer for spectrum sharing in cognitive radio communication systems

    KAUST Repository

    Benkhelifa, Fatma

    2016-07-26

    In this paper, we consider the simultaneous wireless information and power transfer for the spectrum sharing (SS) in cognitive radio (CR) systems with a multi-antenna energy harvesting (EH) primary receiver (PR). The PR uses the antenna switching (AS) technique that assigns a subset of the PR\\'s antennas to harvest the energy from the radio frequency (RF) signals sent by the secondary transmitter (ST), and assigns the rest of the PR\\'s antennas to decode the information data. In this context, the primary network allows the secondary network to use the spectrum as long as the interference induced by the secondary transmitter (ST)\\'s signals is beneficial for the energy harvesting process at the PR side. The objective of this work is to show that the spectrum sharing is beneficial for both the SR and PR sides and leads to a win-win situation. To illustrate the incentive of the spectrum sharing cognitive system, we evaluate the mutual outage probability (MOP) introduced in [1] which declares an outage event if the PR or the secondary receiver (SR) is in an outage. Through the simulation results, we show that the performance of our system in terms of the MOP is always better than the performance of the system in the absence of ST and improves as the ST-PR interference increases. © 2016 IEEE.

  5. Spectrum resolving power of hearing: measurements, baselines, and influence of maskers

    Directory of Open Access Journals (Sweden)

    Alexander Ya. Supin

    2011-06-01

    Full Text Available Contemporary methods of measurement of frequency tuning in the auditory system are reviewed. Most of them are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate. Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is  a convenient measure of the spectrum resolving power (SRP. To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers.

  6. Perturbation theory, effective field theory, and oscillations in the power spectrum

    Science.gov (United States)

    Vlah, Zvonimir; Seljak, Uroš; Yat Chu, Man; Feng, Yu

    2016-03-01

    We explore the relationship between the nonlinear matter power spectrum and the various Lagrangian and Standard Perturbation Theories (LPT and SPT). We first look at it in the context of one dimensional (1-d) dynamics, where 1LPT is exact at the perturbative level and one can exactly resum the SPT series into the 1LPT power spectrum. Shell crossings lead to non-perturbative effects, and the PT ignorance can be quantified in terms of their ratio, which is also the transfer function squared in the absence of stochasticity. At the order of PT we work, this parametrization is equivalent to the results of effective field theory (EFT), and can thus be expanded in terms of the same parameters. We find that its radius of convergence is larger than the SPT loop expansion. The same EFT parametrization applies to all SPT loop terms and if stochasticity can be ignored, to all N-point correlators. In 3-d, the LPT structure is considerably more complicated, and we find that LPT models with parametrization motivated by the EFT exhibit running with k and that SPT is generally a better choice. Since these transfer function expansions contain free parameters that change with cosmological model their usefulness for broadband power is unclear. For this reason we test the predictions of these models on baryonic acoustic oscillations (BAO) and other primordial oscillations, including string monodromy models, for which we ran a series of simulations with and without oscillations. Most models are successful in predicting oscillations beyond their corresponding PT versions, confirming the basic validity of the model. We show that if primordial oscillations are localized to a scale q, the wiggles in power spectrum are approximately suppressed as exp[-k2Σ2(q)/2], where Σ(q) is rms displacement of particles separated by q, which saturates on large scales, and decreases as q is reduced. No oscillatory features survive past k ~ 0.5h/Mpc at z = 0.

  7. Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets

    DEFF Research Database (Denmark)

    Hunt, Paul; Sarkar, Subir

    2014-01-01

    Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large-scale struc......Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large......-scale structure. Hence it ought to be extracted from such data in a model-independent manner, however this is difficult because relevant cosmological observables are given by a convolution of the primordial perturbations with some smoothing kernel which depends on both the assumed world model and the matter...... content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation' can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant...

  8. Application of beam deconvolution technique to power spectrum estimation for CMB measurements

    CERN Document Server

    Keihänen, Elina; Kurki-Suonio, Hannu; Reinecke, Martin

    2016-01-01

    We present two novel methods for the estimation of the angular power spectrum of cosmic microwave background (CMB) anisotropies. We assume an absolute CMB experiment with arbitrary asymmetric beams and arbitrary sky coverage. The methods differ from earlier ones in that the power spectrum is estimated directly from time-ordered data, without first compressing the data into a sky map, and they take into account the effect of asymmetric beams. In particular, they correct the beam-induced leakage from temperature to polarization. The methods are applicable to a case where part of the sky has been masked out to remove foreground contamination, leaving a pure CMB signal, but incomplete sky coverage. The first method (DQML) is derived as the optimal quadratic estimator, which simultaneously yields an unbiased spectrum estimate, and minimizes its variance. We successfully apply it to multipoles up to $\\ell$=200. The second method is derived as an weak-signal approximation from the first one. It yields an unbiased es...

  9. So You Think the Crab is Described by a Power-Law Spectrum

    Science.gov (United States)

    Weisskopf, Martin C.

    2008-01-01

    X-ray observations of the Crab Nebula and its pulsar have played a prominent role in the history of X-ray astronomy. Discoveries range from the detection of the X-ray Nebula and pulsar and the measurement of the Nebula-averaged X-ray polarization, to the observation of complex X-ray morphology, including jets emanating from the pulsar and the ring defining the shocked pulsar wind. The synchrotron origin of much of the radiation has been deduced by detailed studies across the electromagnetic spectrum, yet has fooled many X-ray astronomers into believing that the integrated spectrum from this system ought to be a power law. In many cases, this assumption has led observers to adjust the experiment response function(s) to guarantee such a result. We shall discuss why one should not observe a power-law spectrum, and present simulations using the latest available response matrices showing what should have been observed for a number of representative cases including the ROSAT IPC, XMM-Newton, and RXTE. We then discuss the implications, if any, for current calibrations.

  10. Modelling the Autocovariance of the Power Spectrum of a Solar-Type Oscillator

    CERN Document Server

    Campante, T L; Chaplin, W J; Elsworth, Y P; Handberg, R; Hekker, S

    2010-01-01

    Asteroseismology is able to conduct studies on the interiors of solar-type stars from the analysis of stellar acoustic spectra. However, such an analysis process often has to rely upon subjective choices made throughout. A recurring problem is to determine whether a signal in the acoustic spectrum originates from a radial or a dipolar oscillation mode. In order to overcome this problem, we present a procedure for modelling and fitting the autocovariance of the power spectrum which can be used to obtain global seismic parameters of solar-type stars, doing so in an automated fashion without the need to make subjective choices. From the set of retrievable global seismic parameters we emphasize the mean small frequency separation and, depending on the intrinsic characteristics of the power spectrum, the mean rotational frequency splitting. Since this procedure is automated, it can serve as a useful tool in the analysis of the more than one thousand solar-type stars expected to be observed as part of the Kepler As...

  11. Increased Force Variability Is Associated with Altered Modulation of the Motorneuron Pool Activity in Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Wang, Zheng; Kwon, Minhyuk; Mohanty, Suman; Schmitt, Lauren M; White, Stormi P; Christou, Evangelos A; Mosconi, Matthew W

    2017-03-25

    Force control deficits have been repeatedly documented in autism spectrum disorder (ASD). They are associated with worse social and daily living skill impairments in patients suggesting that developing a more mechanistic understanding of the central and peripheral processes that cause them may help guide the development of treatments that improve multiple outcomes in ASD. The neuromuscular mechanisms underlying force control deficits are not yet understood. Seventeen individuals with ASD and 14 matched healthy controls completed an isometric index finger abduction test at 60% of their maximum voluntary contraction (MVC) during recording of the first dorsal interosseous (FDI) muscle to determine the neuromuscular processes associated with sustained force variability. Central modulation of the motorneuron pool activation of the FDI muscle was evaluated at delta (0-4 Hz), alpha (4-10 Hz), beta (10-35 Hz) and gamma (35-60 Hz) frequency bands. ASD patients showed greater force variability than controls when attempting to maintain a constant force. Relative to controls, patients also showed increased central modulation of the motorneuron pool at beta and gamma bands. For controls, reduced force variability was associated with reduced delta frequency modulation of the motorneuron pool activity of the FDI muscle and increased modulation at beta and gamma bands. In contrast, delta, beta, and gamma frequency oscillations were not associated with force variability in ASD. These findings suggest that alterations of central mechanisms that control motorneuron pool firing may underlie the common and often impairing symptoms of ASD.

  12. Characteristics of the Velocity Power Spectrum as a Function of Taylor Reynolds Number

    Science.gov (United States)

    Puga, Alejandro J.

    An understanding of the wide range of scales present in a turbulent flow as well as the turbulence kinetic energy associated with those scales can provide significant insight into the modeling of such flows. Since turbulence is a stochastic process, statistical quantities such as mean, root mean square, correlations and spectra are used to identify and understand the evolution of turbulent flows. Time-resolved velocity measurements presented herein are obtained using hot-wire anemometry in nearly homogeneous, isotropic and moderately high Taylor Reynolds number, Rlambda , flow downstream of an active grid. Velocity power spectra presented herein are show that the slope, n, of the inertial subrange, where the inertial subrange is defined as the wavenumber range where the power spectrum scales as kappa--n, varies with R lambda as n = 1.69 -- 5.86 Rlambda--0.645. This variation in the slope of the inertial subrange is consistent with measurements presented by Mydlarski and Warhaft (1996) in an active grid flow and Saddoughi and Veeravalli (1994) in a turbulent boundary layer. The effectiveness of velocity power spectrum normalizations proposed by Kolmogorov (1963), Von Karman and Howarth (1938), and George (1992) are compared qualitatively and quantitatively. The effectiveness of these normalizations suggests how the turbulent scales make specific portions of the velocity spectrum self-similar. It is found that the relation between the large and small scales is also shown by the normalized dissipation rate, which is defined as the dissipation rate normalized by the ratio of the turbulence kinetic energy to the time scale of the large scale structure is shown to be a constant with respect to R lambda for Rlambda ≥ 450. A modified model of the one-dimensional velocity power spectrum is proposed that is based on a model proposed by Pope (2000), which has been demonstrated to model power spectra at high value of Rlambda where the slope of the inertial subrange is very

  13. The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations

    CERN Document Server

    Zorkot, Mira; Bonthuis, Douwe Jan

    2015-01-01

    We calculate the power spectrum of electric-field-driven ion transport through cylindrical nanometer-scale pores using both linearized mean-field theory and Langevin dynamics simulations. With the atom-sized cutoff radius as the only fitting parameter, the linearized mean-field theory accurately captures the dependence of the simulated power spectral density on the pore radius and the applied electric field. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ${\\omega}$, which is confirmed by the Langevin dynamics simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the $1/{\\omega}^{\\alpha}$ dependence found experimentally at low frequency. Based on simulations with and without ion-ion interactions, we attribute the low-frequency power law dependence to ion-ion correlations. Finally, we show that the surface charge density has no effect on the frequency dependen...

  14. Distributed joint power and access control algorithm for secondary spectrum sharing

    Science.gov (United States)

    Li, Hongyan; Chen, Enqing; Fu, Hongliang

    2010-08-01

    Based on interference temperature model, the problem of efficient secondary spectrum sharing is formulated as a power optimization problem with some constraints at physical layer. These constraints and optimization objective limit a feasible power vector set which leads to the need of access control besides power control. In this paper, we consider the decentralized cognitive radio network scenario where short-term data service is required, and the problem of distributed joint power and access control is studied to maximize the total secondary system throughput, subject to Quality of Service (QoS) constraints from individual secondary users and interference temperature limit (ITL) from primary system. Firstly, a pricing-based game model was used to solve distributed power allocation optimization problem in both high and low signal to interference noise ratio (SINR) scenarios. Secondly, when not all the secondary links can be supported with their QoS requirement and ITL, a distributed joint power and access control algorithm was introduced to find the allowable links which results in maximum network throughput with all the constraints satisfied, and the convergence performance is tested by simulations.

  15. Power Spectrum Analysis of Polarized Emission from the Canadian Galactic Plane Survey

    CERN Document Server

    Stutz, R A; Kothes, R; Landecker, T

    2014-01-01

    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization dataset at 1.4 GHz covering an area of 1060 deg$^2$. The data analyzed are a combination of data from the 100-m Effelsberg Telescope, the 26-m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from $\\ell \\approx 60$ to $\\ell \\approx 10^4$ and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to ...

  16. The Scale-invariant Power Spectrum of Primordial Curvature Perturbation in CSTB Cosmos

    CERN Document Server

    Li, Changhong

    2014-01-01

    We investigate the spectrum of cosmological perturbations in a bounce cosmos modeled by a scalar field coupled to the string tachyon field (CSTB cosmos). By explicit computation of its primordial spectral index we show the power spectrum of curvature perturbations, generated during the tachyon matter dominated contraction phase, to be nearly scale invariant. We propose a unified space of parameters for a systematic study of inflationary/bouncing cosmologies. We find that CSTB cosmos is dual--in Wands's sense--to the slow-roll inflation model as can be easily seen from this unified parameter space. Guaranteed by the dynamical attractor behavior of CSTB Cosmos, this scale invariance is free of the fine-tuning problem, in contrast to the slow-roll inflation model.

  17. Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets

    DEFF Research Database (Denmark)

    Hunt, Paul; Sarkar, Subir

    2014-01-01

    Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large......-scale structure. Hence it ought to be extracted from such data in a model-independent manner, however this is difficult because relevant cosmological observables are given by a convolution of the primordial perturbations with some smoothing kernel which depends on both the assumed world model and the matter...... content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation' can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant...

  18. The specific contributions of force and velocity to muscle power in older adults

    Science.gov (United States)

    This study investigates relative contributions of force and velocity on muscular power and function in middle-aged (MH), older healthy (OH), and older mobility-limited (OML) adults. Seventy-nine men and women underwent tests including leg muscle power at 180deg/sec (SPisok), isometric maximal torq...

  19. PkANN - II. A non-linear matter power spectrum interpolator developed using artificial neural networks

    CERN Document Server

    Agarwal, Shankar; Feldman, Hume A; Lahav, Ofer; Thomas, Shaun A

    2013-01-01

    In this paper we introduce PkANN, a freely available software package for interpolating the non-linear matter power spectrum, constructed using Artificial Neural Networks (ANNs). Previously, using Halofit to calculate matter power spectrum, we demonstrated that ANNs can make extremely quick and accurate predictions of the power spectrum. Now, using a suite of 6380 N-body simulations spanning 580 cosmologies, we train ANNs to predict the power spectrum over the cosmological parameter space spanning $3\\sigma$ confidence level (CL) around the concordance cosmology. When presented with a set of cosmological parameters ($\\Omega_{\\rm m} h^2, \\Omega_{\\rm b} h^2, n_s, w, \\sigma_8, \\sum m_\

  20. Periodic power spectrum with applications in detection of latent periodicities in DNA sequences.

    Science.gov (United States)

    Yin, Changchuan; Wang, Jiasong

    2016-11-01

    Periodic elements play important roles in genomic structures and functions, yet some complex periodic elements in genomes are difficult to detect by conventional methods such as digital signal processing and statistical analysis. We propose a periodic power spectrum (PPS) method for analyzing periodicities of DNA sequences. The PPS method employs periodic nucleotide distributions of DNA sequences and directly calculates power spectra at specific periodicities. The magnitude of a PPS reflects the strength of a signal on periodic positions. In comparison with Fourier transform, the PPS method avoids spectral leakage, and reduces background noise that appears high in Fourier power spectrum. Thus, the PPS method can effectively capture hidden periodicities in DNA sequences. Using a sliding window approach, the PPS method can precisely locate periodic regions in DNA sequences. We apply the PPS method for detection of hidden periodicities in different genome elements, including exons, microsatellite DNA sequences, and whole genomes. The results show that the PPS method can minimize the impact of spectral leakage and thus capture true hidden periodicities in genomes. In addition, performance tests indicate that the PPS method is more effective and efficient than a fast Fourier transform. The computational complexity of the PPS algorithm is [Formula: see text]. Therefore, the PPS method may have a broad range of applications in genomic analysis. The MATLAB programs for implementing the PPS method are available from MATLAB Central ( http://www.mathworks.com/matlabcentral/fileexchange/55298 ).

  1. What is the optimal way to measure the galaxy power spectrum?

    CERN Document Server

    Smith, Robert E

    2015-01-01

    Measurements of the galaxy power spectrum contain a wealth of information about the Universe. Its optimal extraction is vital if we are to truly understand the micro-physical nature of dark matter and dark energy. In Smith & Marian (2015) we generalized the power spectrum methodology of Feldman et al. (1994) to take into account the key tenets of galaxy formation: galaxies form and reside exclusively in dark matter haloes; a given dark matter halo may host galaxies of various luminosities; galaxies inherit the large-scale bias associated with their host halo. In this paradigm we derived the optimal weighting and reconstruction scheme for maximizing the signal-to-noise on a given band power estimate. For a future all-sky flux-limited galaxy redshift survey of depth b_J ~22, we now demonstrate that the optimal weighting scheme does indeed provide improved S/N at the level of ~20% when compared to Feldman et al. (1994) and ~60% relative to Percival et al. (2003), for scales of order k~0.5 Mpc/h. Using a Fish...

  2. Cosmological Density and Power Spectrum from Peculiar Velocities Nonlinear Corrections and PCA

    CERN Document Server

    Silberman, L; Eldar, A; Zehavi, I

    2001-01-01

    we allow for nonlinear effects in the likelihood analysis of galaxy peculiar velocities, and obtain ~35%-lower values for the cosmological density parameter and for the amplitude of mass-density fluctuations. The power spectrum in the linear regime is assumed to be a flat LCDM model (h=0.65, n=1, COBE) with only Om_m as a free parameter. Since the likelihood is driven by the nonlinear regime, we "break" the power spectrum at k_b=0.2 h/Mpc and fit a power law at k>k_b. This allows for independent matching of the nonlinear behavior and an unbiased fit in the linear regime. The analysis assumes Gaussian fluctuations and errors, and a linear relation between velocity and density. Tests using mock catalogs that properly simulate nonlinear effects demonstrate that this procedure results in a reduced bias and a better fit. We find for the Mark3 and SFI data Om_m=0.32+-0.06 and 0.37+-0.09 respectively, with sigma_8*Om_m^0.6 =0.49+-0.06 and 0.63+-0.08, in agreement with constraints from other data. The quoted 90% erro...

  3. Analytic model for the matter power spectrum, its covariance matrix, and baryonic effects

    CERN Document Server

    Mohammed, Irshad

    2014-01-01

    We develop a model for the matter power spectrum as the sum of quasi-linear Zeldovich approximation and even powers of $k$, i.e., $A_0 - A_2k^2 + A_4k^4 - ...$, compensated at low $k$. The model can predict the true power spectrum to a few percent accuracy up to $k \\sim 0.7\\ h \\rm{Mpc}^{-1}$, over a wide range of redshifts and models, including massive neutrino models. We write a simple form of the covariance matrix as a sum of Gaussian part and $A_0$ variance and we find that it reproduces well the simulations. We investigate the super-sample variance effect and show it induces a relation between the Zeldovich term and $A_0$ that differs from the amplitude change, allowing it to be modeled as an additional parameter that can be determined from the data. The $A_n$ coefficients contain information about cosmology, in particular the amplitude of fluctuations $\\sigma_8$. We explore their information content, showing that $A_0$ contains the bulk of amplitude information, scaling as $\\sigma_8^{3.9}$, which allows ...

  4. Measuring laser power as a force: a new paradigm to accurately monitor optical power during laser-based machining operations

    Science.gov (United States)

    Williams, Paul; Simonds, Brian; Sowards, Jeffrey; Hadler, Joshua

    2016-03-01

    In laser manufacturing operations, accurate measurement of laser power is important for product quality, operational repeatability, and process validation. Accurate real-time measurement of high-power lasers, however, is difficult. Typical thermal power meters must absorb all the laser power in order to measure it. This constrains power meters to be large, slow and exclusive (that is, the laser cannot be used for its intended purpose during the measurement). To address these limitations, we have developed a different paradigm in laser power measurement where the power is not measured according to its thermal equivalent but rather by measuring the laser beam's momentum (radiation pressure). Very simply, light reflecting from a mirror imparts a small force perpendicular to the mirror which is proportional to the optical power. By mounting a high-reflectivity mirror on a high-sensitivity force transducer (scale), we are able to measure laser power in the range of tens of watts up to ~ 100 kW. The critical parameters for such a device are mirror reflectivity, angle of incidence, and scale sensitivity and accuracy. We will describe our experimental characterization of a radiation-pressure-based optical power meter. We have tested it for modulated and CW laser powers up to 92 kW in the laboratory and up to 20 kW in an experimental laser welding booth. We will describe present accuracy, temporal response, sources of measurement uncertainty, and hurdles which must be overcome to have an accurate power meter capable of routine operation as a turning mirror within a laser delivery head.

  5. Maximal Force Characteristics of the Ca2+-Powered Actuator of Vorticella convallaria

    OpenAIRE

    Ryu, Sangjin; Lang, Matthew J.; Matsudaira, Paul

    2012-01-01

    The millisecond stalk contraction of the sessile ciliate Vorticella convallaria is powered by energy from Ca2+ binding to generate contractile forces of ∼10 nN. Its contractile organelle, the spasmoneme, generates higher contractile force under increased stall resistances. By applying viscous drag force to contracting V. convallaria in a microfluidic channel, we observed that the mechanical force and work of the spasmoneme depended on the stalk length, i.e., the maximum tension (150–350 nN) a...

  6. DOUBLE POWER LAWS IN THE EVENT-INTEGRATED SOLAR ENERGETIC PARTICLE SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu [Physics and Space Sciences Department, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2016-04-10

    A double power law or a power law with exponential rollover at a few to tens of MeV nucleon{sup −1} of the event-integrated differential spectra has been reported in many solar energetic particle (SEP) events. The rollover energies per nucleon of different elements correlate with a particle's charge-to-mass ratio (Q/A). The probable causes are suggested as residing in shock finite lifetimes, shock finite sizes, shock geometry, and an adiabatic cooling effect. In this work, we conduct a numerical simulation to investigate a particle's transport process in the inner heliosphere. We solve the focused transport equation using a time-backward Markov stochastic approach. The convection, magnetic focusing, adiabatic cooling effect, and pitch-angle scattering are included. The effects that the interplanetary turbulence imposes on the shape of the resulting SEP spectra are examined. By assuming a pure power-law differential spectrum at the Sun, a perfect double-power-law feature with a break energy ranging from 10 to 120 MeV nucleon{sup −1} is obtained at 1 au. We found that the double power law of the differential energy spectrum is a robust result of SEP interplanetary propagation. It works for many assumptions of interplanetary turbulence spectra that give various forms of momentum dependence of a particle's mean free path. The different spectral shapes in low-energy and high-energy ends are not just a transition from the convection-dominated propagation to diffusion-dominated propagation.

  7. Reducing Fatigue Loading Due to Pressure Shift in Discrete Fluid Power Force Systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    Discrete Fluid Power Force Systems is one of the topologies gaining focus in the pursuit of lowering energy losses in fluid power transmission systems. The cylinder based Fluid Power Force System considered in this article is constructed with a multi-chamber cylinder, a number of constant pressure...... power force system. The current paper investigates the correlation between pressure oscillations in the cylinder chambers and valve flow in the manifold. Furthermore, the correlation between the pressure shifting time and the pressure overshoot is investigated. The study therefore focus on how to shape...... the valve flow in the manifold to reduce the added fatigue loads. A simple transmission line model is developed for the analysis. Two inputs are given in the Laplace domain and the time domain solution of the cylinder pressure to the given inputs are derived through inverse Laplace transformation. Based...

  8. PkANN I: Non-Linear Matter Power Spectrum Estimation through Artificial Neural Networks

    CERN Document Server

    Agarwal, Shankar; Feldman, Hume A; Lahav, Ofer; Thomas, Shaun A

    2012-01-01

    We investigate a new approach to confront small-scale non-linearities in the power spectrum of matter fluctuations. This ever-present and pernicious uncertainty is often the Achilles' heel in cosmological studies and must be reduced if we are to see the advent of precision cosmology in the late-time Universe. We show that an optimally trained Artificial Neural Network (ANN), when presented with a set of cosmological parameters ($\\Omega_{\\rm m} h^2, \\Omega_{\\rm b} h^2, n_s, w_0, \\sigma_8, \\sum m_\

  9. Blind Carrier Frequency Offset Estimation via Power Spectrum Analysis in MIMO OFDM Systems

    Institute of Scientific and Technical Information of China (English)

    WU Lu; ZHANG Xianda

    2009-01-01

    As a generalization of orthogonal frequency-division multiplexing (OFDM) systems,multi-input multi-output (MIMO) OFDM systems are very sensitive to carrier frequency offset (CFO).This paper proposes a blind CFO estimation method based on power spectrum analysis,which has high bandwidth efficiency and is much less complex.This method can be used to estimate the residual CFO,which is less than half of the subcarrier spacing.The method uses a cosine cost function to get a closed-form CFO estimate.Simulation results illustrate that the method is effective for MIMO OFDM systems.

  10. Predicting speech intelligibility in adverse conditions: evaluation of the speech-based envelope power spectrum model

    DEFF Research Database (Denmark)

    2011-01-01

    The speech-based envelope power spectrum model (sEPSM) [Jørgensen and Dau (2011). J. Acoust. Soc. Am., 130 (3), 1475–1487] estimates the envelope signal-to-noise ratio (SNRenv) of distorted speech and accurately describes the speech recognition thresholds (SRT) for normal-hearing listeners...... conditions by comparing predictions to measured data from [Kjems et al. (2009). J. Acoust. Soc. Am. 126 (3), 1415-1426] where speech is mixed with four different interferers, including speech-shaped noise, bottle noise, car noise, and cafe noise. The model accounts well for the differences in intelligibility...

  11. Contamination of the Epoch of Reionization power spectrum in the presence of foregrounds

    CERN Document Server

    Sims, Peter H; Alexander, Paul; Carilli, Chris L

    2016-01-01

    We construct foreground simulations comprising spatially correlated extragalactic and diffuse Galactic emission components and calculate the `intrinsic' (instrument-free) two-dimensional spatial power spectrum and the cylindrically and spherically averaged three-dimensional k-space power spectra of the Epoch of Reionization (EoR) and our foreground simulations using a Bayesian power spectral estimation framework. This leads us to identify a model dependent region of optimal signal estimation for our foreground and EoR models, within which the spatial power in the EoR signal relative to foregrounds is maximised. We identify a target field dependent region, in k-space, of intrinsic foreground power spectral contamination at low k_perp and k_parallel and a transition to a relatively foreground-free intrinsic EoR window in the complement to this region. The contaminated region of k-space demonstrates that simultaneous estimation of the EoR and foregrounds is important for obtaining statistically robust estimates ...

  12. Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Adrienne L Tierney

    Full Text Available Current research suggests that autism spectrum disorder (ASD is characterized by asynchronous neural oscillations. However, it is unclear whether changes in neural oscillations represent an index of the disorder or are shared more broadly among both affected and unaffected family members. Additionally, it remains unclear how early these differences emerge in development and whether they remain constant or change over time. In this study we examined developmental trajectories in spectral power in infants at high- or low-risk for ASD. Spectral power was extracted from resting EEG recorded over frontal regions of the scalp when infants were 6, 9, 12, 18 and 24 months of age. We used multilevel modeling to assess change over time between risk groups in the delta, theta, low alpha, high alpha, beta, and gamma frequency bands. The results indicated that across all bands, spectral power was lower in high-risk infants as compared to low-risk infants at 6-months of age. Furthermore high-risk infants showed different trajectories of change in spectral power in the subsequent developmental window indicating that not only are the patterns of change different, but that group differences are dynamic within the first two years of life. These findings remained the same after removing data from a subset of participants who displayed ASD related behaviors at 24 or 36 months. These differences in the nature of the trajectories of EEG power represent important endophenotypes of ASD.

  13. The Capabilities That Medium-Armored Forces Bring to the Full Spectrum of Operations

    Science.gov (United States)

    2009-01-01

    fi repower required to extricate soldiers trapped in Mogadishu during a raid to capture a clan warlord. During Operation Just Cause in Panama (1989... repower , and a rapid-reaction capability that foot soldiers or truck-borne infantry do not possess. Medium-Armored Forces Have Performed Well over...ferring their greater deployability compared with heavy forces and their greater mobility and fi repower compared with light forces. In Panama, air

  14. A simulation calibrated limit on the HI power spectrum from the GMRT Epoch of Reionization experiment

    CERN Document Server

    Paciga, Gregory; Bandura, Kevin; Chang, Tzu-Ching; Gupta, Yashwant; Hirata, Christopher; Odegova, Julia; Pen, Ue-Li; Peterson, Jeffrey B; Roy, Jayanta; Shaw, Richard; Sigurdson, Kris; Voytek, Tabitha

    2013-01-01

    The GMRT Epoch of Reionization (EoR) experiment is an ongoing effort to measure the power spectrum from neutral hydrogen at high redshift. We have previously reported an upper limit of (70 mK)^2 at wavenumbers of k=0.65 h/Mpc using a basic piecewise-linear foreground subtraction. In this paper we explore the use of a singular value decomposition to remove foregrounds with fewer assumptions about the foreground structure. Using this method we also quantify, for the first time, the signal loss due to the foreground filter and present new power spectra adjusted for this loss, providing a revised measurement of a 2-sigma upper limit at (248 mK)^2 for k=0.50 h/Mpc. While this revised limit is larger than previously reported, we believe it to be more robust and still represents the best current constraints on reionization at z=8.6.

  15. Prospects for ACT: simulations, power spectrum, and non-Gaussian analysis

    CERN Document Server

    Huffenberger, Kevin M; Huffenberger, Kevin M.; Seljak, Uros

    2004-01-01

    A new generation of instruments will reveal the microwave sky at high resolution. We focus on one of these, the Atacama Cosmology Telescope, which probes scales 1000power spectra of these components in a multifrequency analysis. We present results for various cases, differing in assumed knowledge of the contaminating point sources. We find that both radio and infrared point sources are important, but can be effectively eliminated from the power spectrum given three (or more) channels and a good understanding of their frequency dependence. However, improper treatment of the scatter in the point source frequency dependence relation may introduce a large systematic bias. Even if all thermal SZ and point source effects are eliminated, the kinetic SZ...

  16. CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps

    CERN Document Server

    van Engelen, A; Sehgal, N; Holder, G P; Zahn, O; Nagai, D

    2013-01-01

    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to ACT and SPT. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on sigma_8 and an uncertainty on the total neutrino mass of approximately 50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 15...

  17. SECOND SEASON QUIET OBSERVATIONS: MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRUM AT 95 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, D.; Dumoulin, R. N.; Newburgh, L. B.; Zwart, J. T. L. [Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A. [Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Chinone, Y. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Cleary, K.; Reeves, R. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd M/C 249-17, Pasadena, CA 91125 (United States); Monsalve, R.; Bustos, R. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Naess, S. K.; Eriksen, H. K. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Wehus, I. K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Bronfman, L. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Church, S. E. [Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Varian Physics Building, 382 Via Pueblo Mall, Stanford, CA 94305 (United States); Dickinson, C. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Gaier, T., E-mail: ibuder@uchicago.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Collaboration: QUIET Collaboration; and others

    2012-12-01

    The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95 GHz. The 43 GHz results have been published in a previous paper, and here we report the measurement of CMB polarization power spectra using the 95 GHz data. This data set comprises 5337 hr of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 {mu}K{radical}s. Four low-foreground fields were observed, covering a total of {approx}1000 deg{sup 2} with an effective angular resolution of 12.'8, allowing for constraints on primordial gravitational waves and high signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-C {sub l} (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-null power spectrum. The results derived by the two pipelines are in good agreement. We characterize the EE, EB, and BB power spectra between l = 25 and 975 and find that the EE spectrum is consistent with {Lambda}CDM, while the BB power spectrum is consistent with zero. Based on these measurements, we constrain the tensor-to-scalar ratio to r = 1.1{sup +0.9} {sub -0.8} (r < 2.8 at 95% C.L.) as derived by the ML pipeline, and r = 1.2{sup +0.9} {sub -0.8} (r < 2.7 at 95% C.L.) as derived by the PCL pipeline. In one of the fields, we find a correlation with the dust component of the Planck Sky Model, though the corresponding excess power is small compared to statistical errors. Finally, we derive limits on all known systematic errors, and demonstrate that these correspond to a tensor-to-scalar ratio smaller than r = 0.01, the lowest level yet reported in the literature.

  18. Selection of noise power ratio spectrum models for electronic measurement of the Boltzmann constant

    CERN Document Server

    Coakley, Kevin J

    2016-01-01

    In the electronic measurement of the Boltzmann constant based on Johnson noise thermometry, the ratio of the power spectral densities of thermal noise across a resistor and pseudo-random noise synthetically generated by a quantum-accurate voltage-noise source varies with frequency due to mismatch between transmission lines. We model this ratio spectrum as an even polynomial function of frequency. For any given frequency range, defined by the maximum frequency $f_{max}$, we select the optimal polynomial ratio spectrum model with a cross-validation method and estimate the conditional uncertainty of the constant term in the ratio spectrum model in a way that accounts for both random and systematic effects associated with imperfect knowledge of the model with a resampling method. We select $f_{max}$ by minimizing this conditional uncertainty. Since many values of $f_{max}$ yield conditional uncertainties close to the observed minimum value on a frequency grid, we quantify an additional component of uncertainty as...

  19. Power spectrum analysis of polarized emission from the Canadian galactic plane survey

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, R. A.; Rosolowsky, E. W. [University of British Columbia Okanagan, 3333 University Way, Kelowna BC, V1V 1V7 (Canada); Kothes, R.; Landecker, T. L. [National Research Council Canada, Dominion Radio Astrophysical Observatory, Box 248, Penticton, BC, V2A 6J9 (Canada)

    2014-05-20

    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg{sup 2}. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from ℓ ≈ 60 to ℓ ≈ 10{sup 4} and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.

  20. Load, Force and Power-Velocity Relationships in the Prone Pull-Up Exercise.

    Science.gov (United States)

    Muñoz-López, Mario; Marchante, David; Cano-Ruiz, Miguel A; Chicharro, José López; Balsalobre-Fernández, Carlos

    2017-03-02

    To analyze the load, force and power-velocity relationships, as well as to determine the load that optimizes power output on the pull-up exercise. Eighty-two resistance trained males (Age = 26.8 ± 5.0 yrs.; Pull-up 1RM - normalized per kg of body mass- = 1.5 ± 0.34) performed two repetitions with 4 incremental loads (ranging 70-100%1-RM) in the pull-up exercise while mean propulsive velocity (MPV), force (MPF) and power (MPP) were measured using a linear transducer. Relationships between variables were studied using first and second order least-squares regression, and subjects were divided into three groups depending on their 1-RM for comparison purposes. Almost perfect individual load-velocity (R(2) = 0.975 ± 0.02), force-velocity (R(2) = 0.954 ± 0.04) and power-velocity (R(2) = 0.966 ± 0.04) relationships, which allowed to determine the velocity at each %1-RM as well as the maximal theoretical force (F0), velocity (V0) and power (Pmax) for each subject were observed. Statistically significant differences between groups were observed for F0 (p0.05). Also, high correlations between F0 and 1-RM (r = 0.811) and V0 and Pmax (r = 0.865) were observed. Finally, we observed that the load that maximized MPP was 71.0 ± 6.6 %1-RM. The very high load-velocity, force-velocity and power-velocity relationships allows to estimate 1-RM by measuring movement velocity, as well as to determine maximal force, velocity and power capabilities. This information could be of great interest for strength and conditioning coaches who wish to monitor pull-up performance.

  1. A Hybrid Short-Term Power Load Forecasting Model Based on the Singular Spectrum Analysis and Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Hongze Li

    2014-01-01

    Full Text Available Short-term power load forecasting is one of the most important issues in the economic and reliable operation of electricity power system. Taking the characteristics of randomness, tendency, and periodicity of short-term power load into account, a new method (SSA-AR model which combines the univariate singular spectrum analysis and autoregressive model is proposed. Firstly, the singular spectrum analysis (SSA is employed to decompose and reconstruct the original power load series. Secondly, the autoregressive (AR model is used to forecast based on the reconstructed power load series. The employed data is the hourly power load series of the Mid-Atlantic region in PJM electricity market. Empirical analysis result shows that, compared with the single autoregressive model (AR, SSA-based linear recurrent method (SSA-LRF, and BPNN (backpropagation neural network model, the proposed SSA-AR method has a better performance in terms of short-term power load forecasting.

  2. Power spectrum of nuclear spectra with missing levels and mixed symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Molina, R.A. [Max-Planck-Institut fuer Physik Komplexer Systeme, Noethnitzer Str. 38, D-01187 Dresden (Germany) and Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain)]. E-mail: molina@iem.cfmac.csic.es; Retamosa, J. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Munoz, L. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Relano, A. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain); Faleiro, E. [Departamento de Fisica Aplicada, Universidad Politecnica de Madrid, E-28012 (Spain)

    2007-01-04

    Sequences of energy levels in nuclei are often plagued with missing levels whose number and position are unknown. It is also quite usual that all the quantum numbers of certain levels cannot be experimentally determined, and thus levels of different symmetries are mixed in the same sequence. The analysis of these imperfect spectra (from the point of view of spectral statistics) is unavoidable if one wants to extract some statistical information. The power spectrum of the {delta}{sub q} statistic has emerged in recent years as an important tool for the study of quantum chaos and spectral statistics. We derive analytical expressions for the observed power spectrum in terms of the fraction of observed levels and the number of mixed sequences. These expressions are tested with large shell model spectra simulating realistic experimental situations. A good estimation of the number of mixed symmetries and the fraction of missing levels is obtained by means of a least-squares fit in a wide set of different situations.

  3. Galaxy power spectrum in redshift space: combining perturbation theory with the halo model

    CERN Document Server

    Okumura, Teppei; Seljak, Uros; Vlah, Zvonimir; Desjacques, Vincent

    2015-01-01

    Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution and large virial velocities inside halos, a phenomenon known as the Finger-of-God effect. We present a model for the galaxy power spectrum of in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to 1- and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and ...

  4. The CMBR ISW and HI 21-cm Cross-correlation Angular Power Spectrum

    CERN Document Server

    Sarkar, Tapomoy Guha; Bharadwaj, Somnath

    2008-01-01

    The late-time growth of large scale structures (LSS) is imprinted in the CMBR anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived to be a very important observational probe of dark energy. Future observations of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI) distribution hold the potential of probing the LSS over a large redshift range. We have investigated the possibility of detecting the ISW through cross-correlations between the CMBR anisotropies and redshifted 21-cm observations. Assuming that the HI traces the dark matter, we find that the ISW-HI cross-correlation angular power spectrum at an angular multipole l is proportional to the dark matter power spectrum evaluated at the comoving wave number l/r, where r is the comoving distance to the redshift from which the HI signal originated. The amplitude of the cross-correlation signal depends on parameters related to the HI distribution and the growth of cosmological perturbations. However the cross-correla...

  5. Early structure formation from primordial density fluctuations with a blue-tilted power spectrum

    CERN Document Server

    Hirano, Shingo; Yoshida, Naoki; Spergel, David; Yorke, Harold W

    2015-01-01

    While observations of large-scale structure and the cosmic microwave background (CMB) provide strong constraints on the amplitude of the primordial power spectrum (PPS) on scales larger than 10 Mpc, the amplitude of the power spectrum on sub-galactic length scales is much more poorly constrained. We study early structure formation in a cosmological model with a blue-tilted PPS. We assume that the standard scale-invariant PPS is modified at small length scales as $P(k) \\sim k^{m_{\\rm s}}$ with $m_{\\rm s} > 1$. We run a series of cosmological hydrodynamic simulations to examine the dependence of the formation epoch and the characteristic mass of primordial stars on the tilt of the PPS. In models with $m_{\\rm s} > 1$, star-forming gas clouds are formed at $z > 100$, when formation of hydrogen molecules is inefficient because the intense CMB radiation destroys chemical intermediates. Without efficient coolant, the gas clouds gravitationally contract while keeping a high temperature. The protostars formed in such ...

  6. Perturbation theory, effective field theory, and oscillations in the power spectrum

    CERN Document Server

    Vlah, Zvonimir; Chu, Man Yat; Feng, Yu

    2015-01-01

    We explore the relationship between the nonlinear matter power spectrum and the various Lagrangian and Standard Perturbation Theories (LPT and SPT). We first look at it in the context of one dimensional (1-d) dynamics, where 1LPT is exact at the perturbative level and one can exactly resum the SPT series into the 1LPT power spectrum. Shell crossings lead to non-perturbative effects, and the PT ignorance can be quantified in terms of their ratio, which is also the transfer function squared in the absence of stochasticity. At the order of PT we work, this parametrization is equivalent to the results of effective field theory (EFT), and can thus be expanded in terms of the same parameters. We find that its radius of convergence is larger than the SPT loop expansion. The same EFT parametrization applies to all SPT loop terms and, if stochasticity can be ignored, to all N-point correlators. In 3-d, the LPT structure is considerably more complicated, and we find that LPT models with parametrization motivated by the...

  7. Gas Density Fluctuations in the Perseus Cluster: Clumping Factor and Velocity Power Spectrum

    CERN Document Server

    Zhuravleva, I; Arevalo, P; Schekochihin, A A; Allen, S W; Fabian, A C; Forman, W R; Sanders, J S; Simionescu, A; Sunyaev, R; Vikhlinin, A; Werner, N

    2015-01-01

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analyzed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 8 to 12 per cent on scales of ~10-30 kpc within radii of 30-160 kpc from the cluster center and from 9 to 7 per cent on scales of ~20-30 kpc in an outer, 60-220 kpc annulus. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90-140 km/s on ~20-30 kpc scales and 70-100 km/s on smaller scales ~7-10 kpc. The velocity power spectrum is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the power spectrum of the density fluctuations is low...

  8. Statistical characteristics of the observed Ly-α forest and the shape of initial power spectrum

    Science.gov (United States)

    Demiański, M.; Doroshkevich, A. G.; Turchaninov, V.

    2003-04-01

    Properties of approximately 4500 observed Ly α absorbers are investigated using the model of formation and evolution of dark matter (DM) structure elements based on the modified Zel'dovich theory. This model is generally consistent with simulations of absorber formation, describes the large-scale structure (LSS) observed in the galaxy distribution at small redshifts reasonably well and emphasizes the generic similarity of the LSS and absorbers. The simple physical model of absorbers asserts that they are composed of DM and gaseous matter. It allows us to estimate the column density and overdensity of DM and gaseous components and the entropy of the gas trapped within the DM potential wells. The parameters of the DM component are found to be consistent with theoretical expectations for the Gaussian initial perturbations with the warm dark matter-like power spectrum. The basic physical factors responsible for the evolution of the absorbers are discussed. The analysis of redshift distribution of absorbers confirms the self-consistency of the adopted physical model, Gaussianity of the initial perturbations and allows one to estimate the shape of the initial power spectrum at small scales that, in turn, restricts the mass of the dominant fraction of DM particles to MDM>= 1.5-5 keV. Our results indicate a possible redshift variations of intensity of the ultraviolet background by approximately a factor of 2-3 at redshifts z~ 2-3.

  9. A new probe of the small-scale primordial power spectrum: astrometric microlensing by ultracompact minihalos

    CERN Document Server

    Li, Fangda; Law, Nicholas M

    2012-01-01

    The dark matter enclosed in a density perturbation with a large initial amplitude (delta-rho/rho > 1e-3) collapses shortly after recombination and forms an ultracompact minihalo (UCMH). Their high central densities make UCMHs especially suitable for detection via astrometric microlensing: as the UCMH moves, it changes the apparent position of background stars. A UCMH with a mass larger than a few solar masses can produce a distinctive astrometric microlensing signal that is detectable by the space astrometry mission Gaia. If Gaia does not detect gravitational lensing by any UCMHs, then it establishes an upper limit on their abundance and constrains the amplitude of the primordial power spectrum for k~3500 Mpc^{-1}. These constraints complement the upper bound on the amplitude of the primordial power spectrum derived from limits on gamma-ray emission from UCMHs because the astrometric microlensing signal produced by an UCMH is maximized if the dark-matter annihilation rate is too low to affect the UCMH's densi...

  10. The Effect of Fiber Collisions on the Galaxy Power Spectrum Multipole

    CERN Document Server

    Hahn, ChangHoon; Blanton, Michael R; Tinker, Jeremy L; Rodriguez-Torres, Sergio

    2016-01-01

    Fiber-fed multi-object spectroscopic surveys, with their ability to collect an unprecedented number of redshifts, currently dominate large-scale structure studies. However, physical constraints limit these surveys from successfully collecting redshifts from galaxies too close to each other on the focal plane. This ultimately leads to significant systematic effects on galaxy clustering measurements. Using simulated mock catalogs, we demonstrate that fiber collisions have a significant impact on the power spectrum, $P(k)$, monopole and quadrupole that exceeds sample variance at scales smaller than $k\\sim0.1~h/Mpc$. We present two methods to account for fiber collisions in the power spectrum. The first, statistically reconstructs the clustering of fiber collided galaxy pairs by modeling the distribution of the line-of-sight displacements between them. It also properly accounts for fiber collisions in the shot-noise correction term of the $P(k)$ estimator. Using this method, we recover the true $P(k)$ monopole of...

  11. First Season MWA EoR Power spectrum Results at Redshift 7

    Science.gov (United States)

    Beardsley, A. P.; Hazelton, B. J.; Sullivan, I. S.; Carroll, P.; Barry, N.; Rahimi, M.; Pindor, B.; Trott, C. M.; Line, J.; Jacobs, Daniel C.; Morales, M. F.; Pober, J. C.; Bernardi, G.; Bowman, Judd D.; Busch, M. P.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; de Oliveira-Costa, A.; Dillon, Joshua S.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, H. S.; Kratzenberg, E.; Lenc, E.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Thyagarajan, Nithyanandan; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-12-01

    The Murchison Widefield Array (MWA) has collected hundreds of hours of Epoch of Reionization (EoR) data and now faces the challenge of overcoming foreground and systematic contamination to reduce the data to a cosmological measurement. We introduce several novel analysis techniques, such as cable reflection calibration, hyper-resolution gridding kernels, diffuse foreground model subtraction, and quality control methods. Each change to the analysis pipeline is tested against a two-dimensional power spectrum figure of merit to demonstrate improvement. We incorporate the new techniques into a deep integration of 32 hours of MWA data. This data set is used to place a systematic-limited upper limit on the cosmological power spectrum of {{{Δ }}}2≤slant 2.7× {10}4 mK2 at k = 0.27 h Mpc-1 and z = 7.1, consistent with other published limits, and a modest improvement (factor of 1.4) over previous MWA results. From this deep analysis, we have identified a list of improvements to be made to our EoR data analysis strategies. These improvements will be implemented in the future and detailed in upcoming publications.

  12. A Fast Method For Bounding The CMB Power Spectrum Likelihood Function

    CERN Document Server

    Borrill, J

    1998-01-01

    As the Cosmic Microwave Background (CMB) radiation is observed to higher and higher angular resolution the size of the resulting datasets becomes a serious constraint on their analysis. In particular current algorithms to determine the location of, and curvature at, the peak of the power spectrum likelihood function from a general $N_{p}$-pixel CMB sky map scale as $O(N_{p}^{3})$. Moreover the current best algorithm --- the quadratic estimator --- is a Newton-Raphson iterative scheme and so requires a `sufficiently good' starting point to guarantee convergence to the true maximum. Here we present an algorithm to calculate bounds on the likelihood function at any point in parameter space using Gaussian quadrature and show that, judiciously applied, it scales as only $O(N_{p}^{7/3})$. Although it provides no direct curvature information we show how this approach is well-suited both to estimating cosmological parameters directly and to providing a coarse map of the power spectrum likelihood function from which t...

  13. First Season MWA EoR Power Spectrum Results at Redshift 7

    CERN Document Server

    Beardsley, A P; Sullivan, I S; Carroll, P; Barry, N; Rahimi, M; Pindor, B; Trott, C M; Line, J; Jacobs, Daniel C; Morales, M F; Pober, J C; Bernardi, G; Bowman, Judd D; Busch, M P; Briggs, F; Cappallo, R J; Corey, B E; de Oliveira-Costa, A; Dillon, Joshua S; Emrich, D; Ewall-Wice, A; Feng, L; Gaensler, B M; Goeke, R; Greenhill, L J; Hewitt, J N; Hurley-Walker, N; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kim, H S; Kratzenberg, E; Lenc, E; Loeb, A; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morgan, E; Neben, A R; Thyagarajan, Nithyanandan; Oberoi, D; Offringa, A R; Ord, S M; Paul, S; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Sethi, Shiv K; Srivani, K S; Subrahmanyan, R; Tegmark, M; Tingay, S J; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wu, C; Wyithe, J S B

    2016-01-01

    The Murchison Widefield Array (MWA) has collected hundreds of hours of Epoch of Reionization (EoR) data and now faces the challenge of overcoming foreground and systematic contamination to reduce the data to a cosmological measurement. We introduce several novel analysis techniques such as cable reflection calibration, hyper-resolution gridding kernels, diffuse foreground model subtraction, and quality control methods. Each change to the analysis pipeline is tested against a two dimensional power spectrum figure of merit to demonstrate improvement. We incorporate the new techniques into a deep integration of 32 hours of MWA data. This data set is used to place a systematic-limited upper limit on the cosmological power spectrum of $\\Delta^2 \\leq 2.7 \\times 10^4$ mK$^2$ at $k=0.27$ h~Mpc$^{-1}$ and $z=7.1$, consistent with other published limits, and a modest improvement (factor of 1.4) over previous MWA results. From this deep analysis we have identified a list of improvements to be made to our EoR data analys...

  14. A Fast Method for Power Spectrum and Foreground Analysis for 21 cm Cosmology

    CERN Document Server

    Dillon, Joshua S; Tegmark, Max

    2012-01-01

    We develop and demonstrate an acceleration of the Liu & Tegmark quadratic estimator formalism for inverse variance foreground subtraction and power spectrum estimation in 21 cm tomography from O(N^3) to O(N log N), where N is the number of voxels of data. This technique makes feasible the megavoxel scale analysis necessary for current and upcoming radio interferometers by making only moderately restrictive assumptions about foreground models and survey geometry. We exploit iterative and Monte Carlo techniques and the symmetries of the foreground covariance matrices to quickly estimate the 21 cm brightness temperature power spectrum, P(k_parallel, k_perpendicular), the Fisher information matrix, the error bars, the window functions, and the bias. We also extend the Liu & Tegmark foreground model to include bright point sources with known positions in a way that scales as O[(N log N)(N point sources)] < O(N^5/3). As a first application of our method, we forecast error bars and window functions for th...

  15. A Spherical Harmonic Approach to Redshift Distortion Implications for $\\Omega$ and the Power Spectrum

    CERN Document Server

    Fisher, K B

    1993-01-01

    We examine the nature of galaxy clustering in redshift space using a method based on an expansion of the galaxian density field in Spherical Harmonics and linear theory. We derive a compact and self-consistent expression for the distortion when applied to flux limited redshift surveys. The amplitude of the distortion is controlled by the combination of the density and bias parameters, $\\beta\\equiv\\Omega_\\circ^{0.6}/b$ as well as the shape of the real space power spectrum, $P(k)$ (characterized by a shape parameter $\\Gamma$), and its normalization, $\\sigma_8$; we exploit this fact to derive a maximum likelihood estimator for $\\beta$, $\\Gamma$, and $\\sigma_8$. We check our formalism using $N$-body simulations and demonstrate it provides an unbiased estimate of $\\beta$ when the amplitude and shape of the galaxy power spectrum is known. Application of the technique to the 1.2 Jy \\iras\\ redshift survey yields $\\beta =0.94\\pm 0.17$ and $\\Gamma=0.17\\pm0.05$ (1-$\\sigma$) when $\\sigma_8$ is held fixed at its best valu...

  16. Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field

    Science.gov (United States)

    Voorhies, C.

    1998-01-01

    The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.

  17. Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal.

    Science.gov (United States)

    Wen, Haiguang; Liu, Zhongming

    2016-01-01

    Neurophysiological field-potential signals consist of both arrhythmic and rhythmic patterns indicative of the fractal and oscillatory dynamics arising from likely distinct mechanisms. Here, we present a new method, namely the irregular-resampling auto-spectral analysis (IRASA), to separate fractal and oscillatory components in the power spectrum of neurophysiological signal according to their distinct temporal and spectral characteristics. In this method, we irregularly resampled the neural signal by a set of non-integer factors, and statistically summarized the auto-power spectra of the resampled signals to separate the fractal component from the oscillatory component in the frequency domain. We tested this method on simulated data and demonstrated that IRASA could robustly separate the fractal component from the oscillatory component. In addition, applications of IRASA to macaque electrocorticography and human magnetoencephalography data revealed a greater power-law exponent of fractal dynamics during sleep compared to wakefulness. The temporal fluctuation in the broadband power of the fractal component revealed characteristic dynamics within and across the eyes-closed, eyes-open and sleep states. These results demonstrate the efficacy and potential applications of this method in analyzing electrophysiological signatures of large-scale neural circuit activity. We expect that the proposed method or its future variations would potentially allow for more specific characterization of the differential contributions of oscillatory and fractal dynamics to distributed neural processes underlying various brain functions.

  18. INFLUENCE OF THE ORTHOGONALLY POLARIZED BACK REFLECTIONS ON THE POWER AND RADIATION SPECTRUM OF SUPERLUMINESCENT DIODES

    Directory of Open Access Journals (Sweden)

    A. B. Mukhtubayev

    2015-01-01

    Full Text Available We have investigated the back reflections influence on the spectrum for optical radiation source of superluminescent diode type and have provided optimal operating conditions of the radiation source. The feature of the research method is the usage of a fiber polarization controller and an optical mirror coated on the end of an optical fiber. The studies were conducted with two sources of optical radiation: ThorLabs superluminescent diode series S5FC1005SXL and LED module ELED-1550-1-E-9-SM1-FA-CW. It was revealed that at the value of back reflections equal to -13 dB relative to the output power source, a negative impact on power and spectral characteristics of the source with an optical power of 2.3 µW is beginning to appear. It was also confirmed that at the increase of the radiation power by increasing the source pumping current, back reflection influence is exhibiting at a lower level of back reflections. The results obtained need to be considered when designing fiber optic sensors in order to eliminate the effect of back reflections on the sources of optical radiation having been studied in this paper.

  19. Evidence for Power Law in the Spectrum of the Coronal Ly-alpha Line

    Science.gov (United States)

    Telloni, Daniele; Antonucci, Ester; Bruno, Roberto; D'Amicis, Raffaella

    Long time series of the intensity of the hydrogen Lyα line revealed the existence of f-2 power spectra in the corona at low and mid latitudes and very close to the Sun, at 1.7 solar radii. These observations are performed with the UltraViolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SoHO). A preliminary analysis indicates that this scaling extends for more than a decade and terminates at higher frequencies with a flat spectrum indicating the presence of white-noise fluctuations. The frequency corresponding to the knee which separates these two different spectral regimes moves to lower and lower values for observations performed at higher and higher heliographic latitudes. Low-frequency power spectra with a f-2 dependence may be due rapid changes (jumps) in the time series. If these coherent structures are removed from the time series, hydrogen coronal intensity power spectra seem to show a power law following the f-1 scaling which would suggest that 1/f interplanetary noise originates in corona.

  20. The analysis of three-dimensional ground reaction forces during gait in children with autism spectrum disorders.

    Science.gov (United States)

    Hasan, C Z C; Jailani, Rozita; Md Tahir, N; Ilias, Suryani

    2017-03-08

    Minimal information is known about the three-dimensional (3D) ground reaction forces (GRF) on the gait patterns of individuals with autism spectrum disorders (ASD). The purpose of this study was to investigate whether the 3D GRF components differ significantly between children with ASD and the peer controls. 15 children with ASD and 25 typically developing (TD) children had participated in the study. Two force plates were used to measure the 3D GRF data during walking. Time-series parameterization techniques were employed to extract 17 discrete features from the 3D GRF waveforms. By using independent t-test and Mann-Whitney U test, significant differences (p<0.05) between the ASD and TD groups were found for four GRF features. Children with ASD demonstrated higher maximum braking force, lower relative time to maximum braking force, and lower relative time to zero force during mid-stance. Children with ASD were also found to have reduced the second peak of vertical GRF in the terminal stance. These major findings suggest that children with ASD experience significant difficulties in supporting their body weight and endure gait instability during the stance phase. The findings of this research are useful to both clinicians and parents who wish to provide these children with appropriate treatments and rehabilitation programs.

  1. The Power Card Strategy: Strength-Based Intervention to Increase Direction Following of Children with Autism Spectrum Disorder

    Science.gov (United States)

    Campbell, Abbi; Tincani, Matt

    2011-01-01

    The Power Card strategy is a strength-based intervention to promote social skills of children with autism spectrum disorders (ASD) by capitalizing on their special interests. Although preliminary studies have shown that the Power Card strategy is a promising approach to teach social skills, additional research is needed. The purpose of this study…

  2. THE POWER SPECTRUM OF THE MILKY WAY: VELOCITY FLUCTUATIONS IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Bird, Jonathan C. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Pérez, Ana E. García; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States); Zasowski, Gail, E-mail: bovy@ias.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-02-20

    We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc){sup 2} bins. The solar motion V{sub ☉} {sub –} {sub c} with respect to the circular velocity V{sub c} is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V{sub ☉} {sub –} {sub c} = 24 ± 1 (ran.) ± 2 (syst. [V{sub c} ]) ± 5 (syst.[large-scale]) km s{sup –1}, where the systematic uncertainty is due to (1) a conservative 20 km s{sup –1} uncertainty in V{sub c} and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc{sup –1} ≤ k ≤ 40 kpc{sup –1}. Most of the power is contained in a broad peak between 0.2 kpc{sup –1} < k < 0.9 kpc{sup –1}. We investigate the expected power spectrum for various non-axisymmetric perturbations and demonstrate that the central bar with commonly used parameters but of relatively high mass can explain the bulk of velocity fluctuations in the plane of the Galactic disk near the Sun. Streaming motions ≈10 km s{sup –1} on ≳ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.

  3. Cosmological and astrophysical parameters from the SDSS flux power spectrum and hydrodynamical simulations of the Lyman-alpha forest

    CERN Document Server

    Viel, M; Viel, Matteo; Haehnelt, Martin G.

    2006-01-01

    (abridged) The flux power spectrum of the Lyman-alpha forest in quasar (QSO) absorption spectra is sensitive to a wide range of cosmological and astrophysical parameters and instrumental effects. Modelling the flux power spectrum in this large parameter space to an accuracy comparable to the statistical uncertainty of large samples of QSO spectra is very challenging. We use here a coarse grid of hydrodynamical simulations run with GADGET-2 to obtain a ``best guess'' model around which we calculate a finer grid of flux power spectra using a Taylor expansion of the flux power spectrum to first order. We find that the SDSS flux power spectrum alone is able to constrain a wide range of parameters including the amplitude of the matter power spectrum sigma_8, the matter density Omega_m, the spectral index of primordial density fluctuations n, the effective optical depth tau_eff and its evolution. The thermal history of the Intergalactic Medium (IGM) is, however, poorly constrained and the SDSS data favour either an...

  4. Changing the balance of power – Worldwide air force`s capability turbulences

    Directory of Open Access Journals (Sweden)

    Pavel NEČAS

    2012-03-01

    Full Text Available In past Century, the air power had undergone a significant journey. In its humble beginnings during WWI an airplane proved itself a perspective and highly capable new weapon. WWII demonstrated the importance of air superiority for waging a global warfare. The Cold War mastered technologies enabling air power to be not only a weapon a mass destruction but also a surgical tool. On one hand, an aircraft has become a state of art technology, yet on the other hand a cost for its development, procurement, and servicing grew into an astronomic levels. Therefore, since mid 1970s there have been trends to shift airpower from quantity into quality, which has gained a new moment with the end of the Cold War. Starting with the first Gulf War, in past two decades demonstrated a growing importance of a multirole fighter aircraft that is able to carry out a full specter of missions for minimal costs. When analyzing five most potent airpowers of the 21st century, we can witness that this is the trend is on and it will surely continue in future.

  5. Radiation force on absorbing targets and power measurements of a high intensity focused ultrasound (HIFU) source

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the analytic expressions for the radiated field of a circular concave piston given by Hasegawa et al.,an integral for calculation of the radiation force on a plane absorbing target in a spherically focused field is derived.A general relation between acoustic power P and normal radiation force Fn is obtained under the condition of kr 1.Numerical computation is carried out by using the symbolic computation program for practically focused sources and absorbing circular targets.The results show that,for a given source,there is a range of target positions where the radiation force is independent of the target’s position under the assumption that the contribution of the acoustic field behind the target to the radiation force can be neglected.The experiments are carried out and confirm that there is a range of target positions where the measured radiation force is basically independent of the target’s position even at high acoustic power (up to 700 W).It is believed that when the radiation force method is used to measure the acoustic power radiated from a focused source,the size of the target must be selected in such a way that no observable sound can be found in the region behind the target.

  6. The acute effects of dynamic and ballistic stretching on vertical jump height, force, and power.

    Science.gov (United States)

    Jaggers, Jason R; Swank, Ann M; Frost, Karen L; Lee, Chong D

    2008-11-01

    Stretching before performance is a common practice among athletes in hopes of increasing performance and reducing the risk of injury. However, cumulative results indicate a negative impact of static stretching and proprioceptive neuromuscular facilitation (PNF) on performance; thus, there is a need for evaluating other stretching strategies for effective warm-up. The purpose of this study was to compare the differences between two sets of ballistic stretching and two sets of a dynamic stretching routine on vertical jump performance. Twenty healthy male and female college students between the ages of 22 and 34 (24.8 +/- 3 years) volunteered to participate in this study. All subjects completed three individual testing sessions on three nonconsecutive days. On each day, the subjects completed one of three treatments (no stretch, ballistic stretch, and dynamic stretch). Intraclass reliability was determined using the data obtained from each subject. A paired samples t-test revealed no significant difference in jump height, force, or power when comparing no stretch with ballistic stretch. A significant difference was found on jump power when comparing no stretch with dynamic stretch, but no significant difference was found for jump height or force. Statistics showed a very high reliability when measuring jump height, force, and power using the Kistler Quattro Jump force plate. It seems that neither dynamic stretching nor ballistic stretching will result in an increase in vertical jump height or force. However, dynamic stretching elicited gains in jump power poststretch.

  7. Quadrupole--octopole alignment of CMB related to primordial power spectrum with dipolar modulation in anisotropic spacetime

    CERN Document Server

    Chang, Zhe; Wang, Sai

    2013-01-01

    The WMAP and Planck observations show that the quadrupole and octopole orientations of the CMB might align with each other. We reveal that the quadrupole--octopole alignment is a natural implication of the primordial power spectrum in an anisotropic spacetime. The primordial power spectrum is presented with a dipolar modulation. We obtain the privileged plane by employing the "power tensor" technique. At this plane, there is the maximum correlation between quadrupole and octopole. The probability for the alignment is much larger than what in the isotropic universe. We find that this model would lead to deviations from the statistical isotropy only for low--\\(\\ell\\) multipoles.

  8. Efficient Computation of Power, Force, and Torque in BEM Scattering Calculations

    CERN Document Server

    Reid, M T Homer

    2013-01-01

    We present concise, computationally efficient formulas for several quantities of interest -- including absorbed and scattered power, optical force (radiation pressure), and torque -- in scattering calculations performed using the boundary-element method (BEM) [also known as the method of moments (MOM)]. Our formulas compute the quantities of interest \\textit{directly} from the BEM surface currents with no need ever to compute the scattered electromagnetic fields. We derive our new formulas and demonstrate their effectiveness by computing power, force, and torque in a number of example geometries. Free, open-source software implementations of our formulas are available for download online.

  9. Effect of ultrasonic power and bonding force on the bonding strength of copper ball bonds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Copper wire, serving as a cost-saving alternative to gold wire, has been used in many high-end thermosonic ball bonding applications. In this paper, the bond shear force, bond shear strength, and the ball bond diameter are adopted to evaluate the bonding quality. It is concluded that the efficient ultrasonic power is needed to soften the ball to form the copper bonds with high bonding strength. However, excessive ultrasonic power would serve as a fatigue loading to weaken the bonding. Excessive or less bonding force would cause cratering in the silicon.

  10. Maximal force characteristics of the Ca(2+)-powered actuator of Vorticella convallaria.

    Science.gov (United States)

    Ryu, Sangjin; Lang, Matthew J; Matsudaira, Paul

    2012-09-05

    The millisecond stalk contraction of the sessile ciliate Vorticella convallaria is powered by energy from Ca(2+) binding to generate contractile forces of ∼10 nN. Its contractile organelle, the spasmoneme, generates higher contractile force under increased stall resistances. By applying viscous drag force to contracting V. convallaria in a microfluidic channel, we observed that the mechanical force and work of the spasmoneme depended on the stalk length, i.e., the maximum tension (150-350 nN) and work linearly depended on the stalk length (∼2.5 nN and ∼30 fJ per 1 μm of the stalk). This stalk-length dependency suggests that motor units of the spasmoneme may be organized in such a way that the mechanical force and work of each unit cumulate in series along the spasmoneme.

  11. The Use and Management of the Electromagnetic Spectrum, Part I. President's Task Force on Communications Policy. Staff Paper Seven, Part I.

    Science.gov (United States)

    Rostow, Eugene V.

    A staff paper to the President's Task Force on Communications Policy analyses the use of the electromagnetic spectrum for communications and suggests improvements. The evolution of spectrum use and its present federal management are described together with the problem of achieving efficient use in the areas of electromagnetic congestion. Criticism…

  12. The Rotational Spectrum and Anharmonic Force Field of Chlorine Dioxide, OClO

    Science.gov (United States)

    Muller, Holger S. P.; Sorensen, G.; Birk, Manfred; Friedl, Randy R.

    1997-01-01

    The ground state rotational and quartic centrifugal distortion constants, their vibrational changes, and the sextic centrifugal distortion constants were used in a calculation of the quartic force field together with data from infrared studies.

  13. Sum-rate analysis of spectrum sharing spatial multiplexing MIMO systems with zero-forcing and multiuser diversity

    KAUST Repository

    Yang, Liang

    2013-06-01

    This paper considers a multiuser spectrum sharing (SS) multiple-input multiple-output (MIMO) system with zero-forcing (ZF) operating in a Rayleigh fading environment. We provide an asymptotic sum-rate analysis to investigate the effects of different parameters on the multiuser diversity gain. For a ZF SS spatial multiplexing system with scheduling, the asymptotic sum-rate scales like Nt log2(Q(Nt Np√K - 1)/N t), where Np denotes the number of antennas of primary receiver, Q is the interference temperature, and K represents the number of secondary transmitters. © 2013 IEEE.

  14. Sinusoidal Parameter Estimation Using Quadratic Interpolation around Power-Scaled Magnitude Spectrum Peaks

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-10-01

    Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.

  15. Delay analysis of a point-to-multipoint spectrum sharing network with CSI based power allocation

    KAUST Repository

    Khan, Fahd Ahmed

    2012-10-01

    In this paper, we analyse the delay performance of a point-to-multipoint cognitive radio network which is sharing the spectrum with a point-to-multipoint primary network. The channel is assumed to be independent but not identically distributed and has Nakagami-m fading. A constraint on the peak transmit power of the secondary user transmitter (SU-Tx) is also considered in addition to the peak interference power constraint. Based on the constraints, a power allocation scheme which requires knowledge of the instantaneous channel state information (CSI) of the interference links is derived. The SU-Tx is assumed to be equipped with a buffer and is modelled using the M/G/1 queueing model. Closed form expressions for the probability distribution function (PDF) and cumulative distribution function (CDF) of the packet transmission time is derived. Using the PDF, the expressions for the moments of transmission time are obtained. In addition, using the moments, the expressions for the performance measures such as the total average waiting time of packets and the average number of packets waiting in the buffer of the SU-Tx are also obtained. Numerical simulations corroborate the theoretical results. © 2012 IEEE.

  16. Effects of horseback riding exercise on the relative alpha power spectrum in the elderly.

    Science.gov (United States)

    Cho, Sung-Hyoun

    The present study aimed to identify the effects of horseback riding and mechanical horseback riding exercise on the relative α-power spectrum in the elderly. A total of 31 healthy elderly were randomly divided into horseback riding (n=15) and mechanical horseback riding exercise groups (n=16). The horseback riding exercise program was conducted for 25min twice a week for 12 weeks. Two-way repeated analysis of variance was used to identify the changes in measured variables before the exercise program, and after 6 and 12 weeks of the program. The horseback riding exercise group showed an increase in relative fast alpha power in the background electroencephalogram, and the mechanical horseback riding exercise group showed an increase in relative slow alpha power. Both horseback riding and mechanical horseback riding exercises activated the EEG in all domains, thus increasing concentration and restfulness. The results suggested that horseback riding and mechanical horseback riding exercise may have a positive effect on psychological stability in the elderly. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Lyman-alpha Forest Power Spectrum from the Sloan Digital Sky Survey

    CERN Document Server

    McDonald, P; Burles, S; Schlegel, D J; Weinberg, D H; Shih, D; Schaye, J; Schneider, D P; Brinkmann, J; Brunner, R J; Fukugita, M; Donald, Patrick Mc; Seljak, Uros; Burles, Scott; Schlegel, David J.; Weinberg, David H.; Shih, David; Schaye, Joop; Schneider, Donald P.; Brunner, Robert J.; Fukugita, Masataka

    2004-01-01

    We measure the power spectrum, P_F(k,z), of the transmitted flux in the Ly-alpha forest using 3035 high redshift quasar spectra from the Sloan Digital Sky Survey. This sample is almost two orders of magnitude larger than any previously available data set, yielding statistical errors of ~0.6% and ~0.005 on, respectively, the overall amplitude and logarithmic slope of P_F(k,z). This unprecedented statistical power requires a correspondingly careful analysis of the data and of possible systematic contaminations in it. For this purpose we reanalyze the raw spectra to make use of information not preserved by the standard pipeline. We investigate the details of the noise in the data, resolution of the spectrograph, sky subtraction, quasar continuum, and metal absorption. We find that background sources such as metals contribute significantly to the total power and have to be subtracted properly. We also find clear evidence for SiIII correlations with the Ly-alpha forest and suggest a simple model to account for thi...

  18. Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance; 1, method

    CERN Document Server

    Fang, L Z; Fang, Li-Zhi; Feng, Long-Long

    2000-01-01

    We present a method of measuring galaxy power spectrum based on the multiresolution analysis of the discrete wavelet transformation (DWT). Since the DWT representation has strong capability of suppressing the off-diagonal components of the covariance for selfsimilar clustering, the DWT covariance for popular models of the cold dark matter cosmogony generally is diagonal, or $j$(scale)-diagonal in the scale range, in which the second scale-scale correlations are weak. In this range, the DWT covariance gives a lossless estimation of the power spectrum, which is equal to the corresponding Fourier power spectrum banded with a logarithmical scaling. In the scale range, in which the scale-scale correlation is significant, the accuracy of a power spectrum detection depends on the scale-scale or band-band correlations. This is, for a precision measurements of the power spectrum, a measurement of the scale-scale or band-band correlations is needed. We show that the DWT covariance can be employed to measuring both the ...

  19. Power spectrum density and experimental modal analysis of wide belt sander applied in domestic wood industry

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng; ZHU Dianxiang

    2007-01-01

    This paper took the upper-lower wide belt sander B229 with four-feet wide belts,manufactured in China,as the study target.By means of framework dynamic design,we study its vibration characteristics by commencing from the place having horizontal defects and used experimental modal analysis (EMA) and power spectrum density (PSD) to observe the sanding parts and the whole machine,respectively.In the modal test,we mainly adopted the cross spots testing method to get the frequency response function of the fixed spots to every excitation vibration spot,then applied the SISO frequency response function and the frequency response function fitting method to identify and complete parameter recognition,respectively.The typical frequency response function chart of the whole machine and its sanding parts,as well as its second-order mode charts of contacting roller,were obtained.Through PSD analysis,we can get the amplitude-frequency spectrum and drive frequency.

  20. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    Science.gov (United States)

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  1. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    CERN Document Server

    Dichiara, S; Amati, L; Frontera, F; Margutti, R

    2016-01-01

    The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. We studied the individual power density spectra (PDS) of 123 long gamma-ray bursts with measured redshift, rest-frame peak energy Ep,i of the time-averaged nuFnu spectrum, and well-constrained PDS slope alpha detected with Swift, Fermi and past s...

  2. First X-ray observations of Low-Power Compact Steep Spectrum Sources

    CERN Document Server

    Kunert-Bajraszewska, M; Siemiginowska, A; Guainazzi, M

    2013-01-01

    We report first X-ray Chandra observations of a sample of seven low luminosity compact (LLC) sources. They belong to a class of young compact steep spectrum (CSS) radio sources. Four of them have been detected, the other three have upper limit estimations for X-ray flux, one CSS galaxy is associated with an X-ray cluster. We have used the new observations together with the observational data for known strong CSS and gigahertz-peaked spectrum (GPS) objects and large scale FRIs and FRIIs to study the relation between morphology, X-ray properties and excitation modes in radio-loud AGNs. We found that: (1) The low power objects fit well to the already established X-ray - radio luminosity correlation for AGNs and occupy the space among, weaker in the X-rays, FRI objects. (2) The high excitation galaxies (HEG) and low excitation galaxies (LEG) occupy distinct locus in the radio/X-ray luminosity plane, notwithstanding their evolutionary stage. This is in agreement with the postulated different origin of the X-ray em...

  3. Intercomparison of methods for image quality characterization. II. Noise power spectrum.

    Science.gov (United States)

    Dobbins, James T; Samei, Ehsan; Ranger, Nicole T; Chen, Ying

    2006-05-01

    Second in a two-part series comparing measurement techniques for the assessment of basic image quality metrics in digital radiography, in this paper we focus on the measurement of the image noise power spectrum (NPS). Three methods were considered: (1) a method published by Dobbins et al. [Med. Phys. 22, 1581-1593 (1995)], (2) a method published by Samei et al. [Med. Phys. 30, 608-622 (2003)], and (3) a new method sanctioned by the International Electrotechnical Commission (IEC 62220-1, 2003), developed as part of an international standard for the measurement of detective quantum efficiency. In addition to an overall comparison of the estimated NPS between the three techniques, the following factors were also evaluated for their effect on the measured NPS: horizontal versus vertical directional dependence, the use of beam-limiting apertures, beam spectrum, and computational methods of NPS analysis, including the region-of-interest (ROI) size and the method of ROI normalization. Of these factors, none was found to demonstrate a substantial impact on the amplitude of the NPS estimates ( 0.15 mm(-1).

  4. Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets

    CERN Document Server

    Hunt, Paul

    2014-01-01

    Detailed knowledge of the primordial power spectrum (PPS) of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the parameters of the assumed cosmological model from CMB and LSS data. Hence it ought to be extracted from such data in a model-independent manner, however this is difficult because relevant cosmological observables are given in general by a convolution of the PPS with some smoothing kernel. The deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation' can robustly reconstruct the PPS from multiple cosmological data sets, a significant advantage being that both its uncertainty and resolution are precisely quantified. Using Monte Carlo simulations we investigate the performance of several regularisation parameter selection methods and find that generalised cross-validation and Mallow's C_p method give optimal r...

  5. Crossover in the power spectrum of a driven diffusive lattice-gas model

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Jensen, Henrik Jeldtoft; Mouritsen, Ole G.

    1991-01-01

    A driven diffusive lattice-gas model with stochastic dynamics is used to study, via a Monte Carlo simulation, the fluctuations in the particle density and the lifetime of the particles in the system. The scaling properties of the power spectrum S(f) and the lifetime distribution function D......(t) exhibit a crossover from (1/f3)- to (1/f2)-noise behavior, with β≃1.5, when the drive is sufficiently strong to induce a characteristic time scale. We argue that the scaling behavior with β≃1.5 is governed by the stochastic nature of the dynamics whereas deterministic dynamics leads to β≃1....

  6. Frequency Spectrum Based Low-Area Low-Power Parallel FIR Filter Design

    Directory of Open Access Journals (Sweden)

    Jin-Gyun Chung

    2002-09-01

    Full Text Available Parallel (or block FIR digital filters can be used either for high-speed or low-power (with reduced supply voltage applications. Traditional parallel filter implementations cause linear increase in the hardware cost with respect to the block size. Recently, an efficient parallel FIR filter implementation technique requiring a less-than linear increase in the hardware cost was proposed. This paper makes two contributions. First, the filter spectrum characteristics are exploited to select the best fast filter structures. Second, a novel block filter quantization algorithm is introduced. Using filter benchmarks, it is shown that the use of the appropriate fast FIR filter structures and the proposed quantization scheme can result in reduction in the number of binary adders up to 20%.

  7. Power spectrum oscillations from Planck-suppressed operators in monodromy inflation

    CERN Document Server

    Price, Layne C

    2015-01-01

    We consider a phenomenological model of monodromy inflation where the inflaton is the phase of a complex scalar field $\\Phi$. Planck-suppressed operators of $\\mathcal O(f^5/M_\\mathrm{pl})$ modify the geometry of the vev $\\left \\langle \\Phi \\right \\rangle$ at first order in the decay constant $f$, which adds a first-order periodic term to the definition of the canonically normalized inflaton $\\phi$. This correction to the inflaton induces a fixed number of extra oscillatory terms in the monodromy potential $V \\sim \\theta^p$. We derive the same result in a toy scenario where the vacuum $\\left \\langle \\Phi \\right \\rangle$ is an ellipse with an arbitrarily large eccentricity. These extra oscillations change the form of the power spectrum as a function of scale $k$ and provide a possible mechanism for differentiating EFT-motivated monodromy inflation from models where the angular shift symmetry is a gauge symmetry.

  8. Statistical characteristics of observed Ly-$\\alpha$ forest and the shape of initial power spectrum

    CERN Document Server

    Demianski, M

    2002-01-01

    Properties of $\\sim$ 5000 observed Ly-$\\alpha$ absorbers are investigated using the model of formation and evolution of DM structure elements based on the Zel'dovich theory. This model is generally consistent with simulations of absorbers formation, accurately describes the Large Scale Structure observed in the galaxy distribution at small redshifts and emphasizes the generic similarity of the LSS and absorbers. The simple physical model of absorbers asserts that they are composed of DM and gaseous matter and it allows us to estimate the column density and overdensity of DM and gaseous components and the entropy of the gas trapped within the DM potential wells. The parameters of DM component are found to be consistent with theoretical expectations for the Gaussian initial perturbations with the WDM--like power spectrum. We demonstrate the influence of the main physical factors responsible for the absorbers evolution. The analysis of redshift distribution of absorbers confirms the self consistence of the assum...

  9. Rolling Element Bearing Fault Diagnosis Using Laplace-Wavelet Envelope Power Spectrum

    Directory of Open Access Journals (Sweden)

    D. K. Harrison

    2007-01-01

    Full Text Available The bearing characteristic frequencies (BCF contain very little energy, and are usually overwhelmed by noise and higher levels of macro-structural vibrations. They are difficult to find in their frequency spectra when using the common technique of fast fourier transforms (FFT. Therefore, Envelope Detection (ED has always been used with FFT to identify faults occurring at the BCF. However, the computation of the ED is suffering to strictly define the resonance frequency band. In this paper, an alternative approach based on the Laplace-wavelet enveloped power spectrum is proposed. The Laplace-Wavelet shape parameters are optimized based on Kurtosis maximization criteria. The results for simulated as well as real bearing vibration signal show the effectiveness of the proposed method to extract the bearing fault characteristic frequencies from the resonant frequency band.

  10. The power spectrum and bispectrum of SDSS DR11 BOSS galaxies II: cosmological interpretation

    CERN Document Server

    Gil-Marín, Héctor; Noreña, Jorge; Cuesta, Antonio J; Samushia, Lado; Percival, Will J; Wagner, Christian; Manera, Marc; Schneider, Donald P

    2014-01-01

    We examine the cosmological implications of the measurements of the linear growth rate of cosmological structure obtained in a companion paper from the power spectrum and bispectrum monopoles of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data, Release 11, CMASS galaxies. This measurement was of $f^{0.43}\\sigma_8$, where $\\sigma_8$ is the amplitude of dark matter density fluctuations, and $f$ is the linear growth rate, at the effective redshift of the survey, $z_{\\rm eff}=0.57$. In conjunction with Cosmic Microwave Background (CMB) data, interesting constraints can be placed on models with non-standard neutrino properties and models where gravity deviates from general relativity on cosmological scales. In particular, the sum of the masses of the three species of the neutrinos is constrained to $m_\

  11. Power Allocation and Spectrum Sharing in Multi-User, Multi-Channel Systems with Strategic Users

    CERN Document Server

    Kakhbod, Ali

    2010-01-01

    We consider the decentralized power allocation and spectrum sharing problem in multi-user, multi-channel systems with strategic users. We present a mechanism/game form that has the following desirable features. (1) It is individually rational. (2) It is budget balanced at every Nash equilibrium of the game induced by the game form as well as off equilibrium. (3) The allocation corresponding to every Nash equilibrium (NE) of the game induced by the mechanism is a Lindahl allocation, that is a weakly Pareto optimal allocation. Our proposed game form/mechanism achieves all the above desirable properties without any assumption about, concavity, differentiability, monotonicity, or quasi-linearity of the users' utility functions.

  12. Fourier Power Spectrum Analysis of Exons for the Period-3 Behavior

    Institute of Scientific and Technical Information of China (English)

    Yuan Xin TIAN; Chao CHEN; Xiao Yong ZOU; Jian Ding QIU; Pei Xiang CAI; Jin Yuan MO

    2005-01-01

    The period-3 behaviors of 105 exons from 20 genes in human were studied by Fourier power spectrum. The results indicated that not all exons show the period-3 behavior. The exons were adjusted in order to make them accord with the order of the protein translated, and we found that the period-3 character is relation to the length of exons and the bases distribution in the three codon position. Furthermore, as long as the exons with period-3 behavior accord with the order of protein translated, they would exhibit the synonymous codons usage preference, and the codons with g/c at the third position are used in higher frequency. The results are significant to the gene prediction and the research on the introns.

  13. Reheating Effects in the Matter Power Spectrum and Implications for Substructure

    CERN Document Server

    Erickcek, Adrienne L

    2011-01-01

    The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We investigate the evolution of cosmological perturbations through the transition from an early matter era to radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may be the primary cut-off in the matter power spectrum. Conversely, for dark matter produced non-thermally from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that as much as 50% of all dark matter is in microhalos with M > 0.1 Earth masses at z=100, ...

  14. Statistical characteristics of observed Ly-$\\alpha$ forest and the shape of linear power spectrum

    CERN Document Server

    Demianski, M

    2005-01-01

    Properties of $\\sim$ 6 000 Ly-$\\alpha$ absorbers observed in 19 high resolution spectra of QSOs are investigated using the model of formation and evolution of DM structure elements based on the Zel'dovich theory. This model asserts that absorbers are formed in the course of both linear and nonlinear adiabatic or shock compression of dark matter (DM) and gaseous matter. It allows us to link the column density and overdensity of DM and gaseous components with the observed column density of neutral hydrogen, redshifts and Doppler parameters of absorbers and demonstrates that at high redshifts we observe a self similar period of structure evolution with the Gaussian initial perturbations. We show that the colder absorbers are associated with rapidly expanded regions of a galactic scale which represent large amplitude negative density perturbations. We extend and improve the method of measuring the power spectrum of initial perturbations proposed in Demia\\'nski & Doroshkevich (2003b). Our method links the obse...

  15. Rapid modelling of the redshift-space power spectrum multipoles for a masked density field

    Science.gov (United States)

    Wilson, M. J.; Peacock, J. A.; Taylor, A. N.; de la Torre, S.

    2017-01-01

    In this work, we reformulate the forward modelling of the redshift-space power spectrum multipole moments for a masked density field, as encountered in galaxy redshift surveys. Exploiting the symmetries of the redshift-space correlation function, we provide a masked-field generalization of the Hankel transform relation between the multipole moments in real and Fourier space. Using this result, we detail how a likelihood analysis requiring computation for a broad range of desired P(k) models may be executed 103-104 times faster than with other common approaches, together with significant gains in spectral resolution. We present a concrete application to the complex angular geometry of the VIMOS Public Extragalactic Redshift Survey PDR-1 release and discuss the validity of this technique for finite-angle surveys.

  16. Constraining cosmology and ionization history with combined 21 cm power spectrum and global signal measurements

    CERN Document Server

    Liu, Adrian

    2015-01-01

    Improvements in current instruments and the advent of next-generation instruments will soon push observational 21 cm cosmology into a new era, with high significance measurements of both the power spectrum and the mean ("global") signal of the 21 cm brightness temperature. In this paper we use the recently commenced Hydrogen Epoch of Reionization Array as a worked example to provide forecasts on astrophysical and cosmological parameter constraints. In doing so we improve upon previous forecasts in a number of ways. First, we provide updated forecasts using the latest best-fit cosmological parameters from the Planck satellite, exploring the impact of different Planck datasets on 21 cm experiments. We also show that despite the exquisite constraints that other probes have placed on cosmological parameters, the remaining uncertainties are still large enough to have a non-negligible impact on upcoming 21 cm data analyses. While this complicates high-precision constraints on reionization models, it provides an ave...

  17. Nearly scale-invariant power spectrum and quantum cosmological perturbations in the gravity's rainbow scenario

    CERN Document Server

    Chang, Zhe

    2014-01-01

    We propose the gravity's rainbow scenario as a possible alternative of the inflation paradigm to account for the flatness and horizon problems. We focus on studying the cosmological scalar perturbations which are seeded by the quantum fluctuations in the very early universe. The scalar power spectrum is expected to be nearly scale-invariant. We estimate the rainbow index $\\lambda$ and energy scale $M$ in the gravity's rainbow scenario by analyzing the Planck temperature and WMAP polarization datasets. The constraints on them are given by $\\lambda=2.933\\pm0.012$ and $\\ln (10^5M/M_p)= -0.401^{+0.457}_{-0.451}$ at the $68\\%$ confidence level.

  18. Visibility based angular power spectrum estimation in low frequency radio interferometric observations

    CERN Document Server

    Choudhuri, Samir; Ghosh, Abhik; Ali, SK Saiyad

    2014-01-01

    We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried therein. The discussion here is restricted to the Galactic synchrotron radiation, the most dominant foreground component after point source removal. Our theoretical analysis is validated using simulations at 150 MHz, mainly for GMRT and also briefly for LOFAR. The Bare Estimator uses pairwise correlations of the measured visibilities, while the Tapered Gridded Estimator uses the visibilities after gridding in the uv plane. The former is very precise, but computationally expensive for large data. The latter has a lower precision, but takes less computation time which is proportional to the data volume. The latter also allows tapering of the sky response leading to sidelobe suppression, an useful ingredient for foreground removal. Both estimators avoid the positive bias ...

  19. Force-velocity, force-power relationships of bilateral and unilateral leg multi-joint movements in young and elderly women.

    Science.gov (United States)

    Yamauchi, Junichiro; Mishima, Chizuko; Nakayama, Satoshi; Ishii, Naokata

    2009-09-18

    The present study investigated force-velocity and force-power relationships of bilateral and unilateral knee-hip extension movement in young and elderly women. Twelve healthy young (age, 19-31 yr) and 12 healthy elderly (age, 60-82 yr) women performed bilateral and unilateral knee-hip extension movements on the dynamometer against loads controlled by the servo system. Under the isotonic force condition, force-velocity relationships were measured. The maximum isometric force (F(max)), unloaded velocity (V(max)) and power output (P(max)) of the movements were calculated from extrapolating force-velocity and force-power relationships. F(max) and P(max) of bilateral and unilateral knee-hip extension movements were 20-30% lower in elderly than in young women. On the other hand, there were no significant differences in V(max) between young and elderly women and between bilateral and unilateral movements. Bilateral deficit was larger as the generation of force was larger in both young and elderly women. Also, bilateral deficit of F(max) and P(max) were not different between young and elderly women. The results were that lower maximum power output of bilateral and unilateral leg multi-joint movements in elderly women did not depend on the intrinsic shortening velocity of muscle action, but largely on reduction in force generating capacity. This suggests the importance of preventing a loss of force generating capacity of muscles during leg multi-joint movements in elderly women.

  20. In vivo muscle force and muscle power during near-maximal frog jumps.

    Science.gov (United States)

    Moo, Eng Kuan; Peterson, Daniel R; Leonard, Timothy R; Kaya, Motoshi; Herzog, Walter

    2017-01-01

    Frogs' outstanding jumping ability has been associated with a high power output from the leg extensor muscles. Two main theories have emerged to explain the high power output of the frog leg extensor muscles, either (i) the contractile conditions of all leg extensor muscles are optimized in terms of muscle length and speed of shortening, or (ii) maximal power is achieved through a dynamic catch mechanism that uncouples fibre shortening from the corresponding muscle-tendon unit shortening. As in vivo instantaneous power generation in frog hind limb muscles during jumping has never been measured directly, it is hard to distinguish between the two theories. In this study, we determined the instantaneous variable power output of the plantaris longus (PL) of Lithobates pipiens (also known as Rana pipiens), by directly measuring the in vivo force, length change, and speed of muscle and fibre shortening in near maximal jumps. Fifteen near maximal jumps (> 50cm in horizontal distance) were analyzed. High instantaneous peak power in PL (536 ± 47 W/kg) was achieved by optimizing the contractile conditions in terms of the force-length but not the force-velocity relationship, and by a dynamic catch mechanism that decouples fascicle shortening from muscle-tendon unit shortening. We also found that the extra-muscular free tendon likely amplifies the peak power output of the PL by modulating fascicle shortening length and shortening velocity for optimum power output, but not by releasing stored energy through recoiling as the tendon only started recoiling after peak PL power had been achieved.

  1. In vivo muscle force and muscle power during near-maximal frog jumps

    Science.gov (United States)

    Leonard, Timothy R.; Kaya, Motoshi; Herzog, Walter

    2017-01-01

    Frogs’ outstanding jumping ability has been associated with a high power output from the leg extensor muscles. Two main theories have emerged to explain the high power output of the frog leg extensor muscles, either (i) the contractile conditions of all leg extensor muscles are optimized in terms of muscle length and speed of shortening, or (ii) maximal power is achieved through a dynamic catch mechanism that uncouples fibre shortening from the corresponding muscle-tendon unit shortening. As in vivo instantaneous power generation in frog hind limb muscles during jumping has never been measured directly, it is hard to distinguish between the two theories. In this study, we determined the instantaneous variable power output of the plantaris longus (PL) of Lithobates pipiens (also known as Rana pipiens), by directly measuring the in vivo force, length change, and speed of muscle and fibre shortening in near maximal jumps. Fifteen near maximal jumps (> 50cm in horizontal distance) were analyzed. High instantaneous peak power in PL (536 ± 47 W/kg) was achieved by optimizing the contractile conditions in terms of the force-length but not the force-velocity relationship, and by a dynamic catch mechanism that decouples fascicle shortening from muscle-tendon unit shortening. We also found that the extra-muscular free tendon likely amplifies the peak power output of the PL by modulating fascicle shortening length and shortening velocity for optimum power output, but not by releasing stored energy through recoiling as the tendon only started recoiling after peak PL power had been achieved. PMID:28282405

  2. Statistical connection of peak counts to power spectrum and moments in weak-lensing field

    Science.gov (United States)

    Shirasaki, Masato

    2017-02-01

    The number density of local maxima of weak-lensing field, referred to as weak-lensing peak counts, can be used as a cosmological probe. However, its relevant cosmological information is still unclear. We study the relationship between the peak counts and other statistics in weak-lensing field by using 1000 ray-tracing simulations. We construct a local transformation of lensing field K to a new Gaussian field y, named local-Gaussianized transformation. We calibrate the transformation with numerical simulations so that the one-point distribution and the power spectrum of K can be reproduced from a single Gaussian field y and monotonic relation between y and K. Therefore, the correct information of two-point clustering and any order of moments in weak-lensing field should be preserved under local-Gaussianized transformation. We then examine if local-Gaussianized transformation can predict weak-lensing peak counts in simulations. The local-Gaussianized transformation is insufficient to explain weak-lensing peak counts in the absence of shape noise. The prediction by local-Gaussianized transformation underestimates the simulated peak counts with a level of ˜20-30 per cent over a wide range of peak heights. Local-Gaussianized transformation can predict the weak-lensing peak counts with an ˜10 per cent accuracy in the presence of shape noise. Our analyses suggest that the cosmological information beyond power spectrum and its moments would be necessary to predict the weak-lensing peak counts with a percent-level accuracy, which is an expected statistical uncertainty in upcoming wide-field galaxy surveys.

  3. What Supports an Aeroplane? Force, Momentum, Energy and Power in Flight

    Science.gov (United States)

    Robertson, David

    2014-01-01

    Some apparently confusing aspects of Newton's laws as applied to an aircraft in normal horizontal flight are neatly resolved by a careful analysis of force, momentum, energy and power. A number of related phenomena are explained at the same time, including the lift and induced drag coefficients, used empirically in the aviation industry.

  4. Unsteady aerodynamic forces and power requirements of a bumblebee in forward flight

    Institute of Scientific and Technical Information of China (English)

    Jianghao Wu; Mao Sun

    2005-01-01

    Aerodynamic forces and power requirements in forward flight in a bumblebee (Bombus terrestris) were studied using the method of computational fluid dynamics. Actual wing kinematic data of free flight were used in the study (the speed ranges from 0 m/s to 4.5 m/s; advance ratio ranges from 0-0.66). The bumblebee employs the delayed stall mechanism and the fast pitching-up rotation mechanism to produce vertical force and thrust. The leading-edge vortex does not shed in the translatory phase of the half-strokes and is much more concentrated than that of the fruit fly in a previous study. At hovering and low-speed flight, the vertical force is produced by both the half-strokes and is contributed by wing lift; at medium and high speeds, the vertical force is mainly produced during the downstroke and is contributed by both wing lift and wing drag. At all speeds the thrust is mainly produced in the upstroke and is contributed by wing drag.The power requirement at low to medium speeds is not very different from that of hovering and is relatively large at the highest speed (advance ratio 0.66), i.e. the power curve is Jshaped. Except at the highest flight speed, storing energy elastically can save power up to 20%-30%. At the highest speed,because of the large increase of aerodynamic torque and the slight decrease of inertial torque (due to the smaller stroke amplitude and stroke frequency used), the power requirement is dominated by aerodynamic power and the effect of elastic storage of energy on power requirement is limited.

  5. NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    Science.gov (United States)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively.

  6. Design of Bidirectional Check Valve for Discrete Fluid Power Force System for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems consisting of a multichamber cylinder, a witching manifold and common pressure lines have been proposed as a technology for increasing the efficiency of the power take off system in ocean wave energy converters. However the force shifting of these discrete systems...... enables passive force switching under minimal pressure difference, hence minimal energy loss. The bidirectional check valve is designed with a rated flow in the range of 1000L/min@5bar. The flow direction of the bidirectional check valve is set by the setting the pilot pressure. This paper presents...... a functionality test of a 125 L/min@5bar bidirectional check, leading to the design and modelling of a bidirectional check valve for ocean wave energy. It shows that a feasible bidirectional check valve may be configured by employing a multi-poppet topology for the main stage and utilising a 3/2 switching valve...

  7. Ten Propositions Regarding Space Power: The Dawn of a Space Force

    Science.gov (United States)

    2006-01-01

    The answer is yes. Space Power: What fundamenta strengths best characterize Historical Background the potentia of military space power? What are space...p1yiasenhrwlrfgh’Ie itiphysical strength , or will to fight."’ The United The key for space power to support all levels States is more space dependent than any...aviatwon will beUSFre c a a xdiarj and the equite US Space Force: amount omo , a compared with the other No Longer a Question e wben ect to theof a deci i0

  8. Oblique projection pre-processing and TLS application for diagnosing rotor bar defects by improving power spectrum estimation

    Science.gov (United States)

    Bouleux, Guillaume

    2013-12-01

    Diagnosing defects on rotating machines can be reached by several angles. When dealing with asynchronous motor drive, such physical elements rotate that a natural angle for treating the healthiness of the motor can be obtained by the use of spectral analysis tools. It is now stated that electrical or mechanical defects, which appear periodically as well, can be retrieved by analyzing the amplitude of particular frequencies inside an estimated power spectrum. When dealing with broken rotor bars detection it is essential to accurately localize the frequencies related to the slip inside the power spectrum. The diagnosis is thereafter made by indicators given with respect to their power. For actual low level of load operations, the supply frequency generally masks the frequencies which could be exploited for indicators. Therefore, we propose to cancel, as well as possible, the contribution of this supply frequency to develop the useful and closely components. The resolution should be very thin for the components to be estimated. In consequence, we use a prior-knowledge subspace-based frequency estimator, already developed in the literature, we complete with an Oblique Projection coupled with a Total Least Squares solution for estimating the power of the resulting estimated frequencies. Finally, we show by means of a real application how it contributes to improve the power spectrum estimation when compared to the FFT or periodogram-based analysis and how the aforementioned power spectrum makes the diagnosis indicator of rotor bars efficient.

  9. Contribution of Cross-Correlations to the 21cm Angular Power Spectrum in the Epoch of Reionization

    CERN Document Server

    Zheng, Qian

    2009-01-01

    Measurement of the 21cm hyperfine transition of neutral hydrogen provides a unique probe of the epoch of reionization and the Dark Ages. Three major mechanisms are believed to dominate the radiation process: emission from neutral hydrogen surrounding the ionized bubbles of first galaxies and/or quasars, emission from neutral hydrogen inside minihalos, and absorption of diffuse neutral hydrogen against the cosmic microwave background. In the present work, by simply combining the existing analytic models for the three mechanisms, we investigate the contribution of cross-correlation between these three components to the total 21cm angular power spectrum, in the sense that neutral hydrogen associated with different radiation processes traces the large-scale structures of underlying density perturbations. While the overall 21cm power spectrum remains almost unchanged with the inclusion of the cross-correlations, the cross-correlation may play a key role in the determination of the 21cm power spectrum during the tr...

  10. Constraints on the High-l Power Spectrum of Millimeter-wave Anisotropies from APEX-SZ

    CERN Document Server

    Reichardt, C L; Ade, P A R; Basu, K; Bender, A N; Bertoldi, F; Cho, H -M; Chon, G; Dobbs, M; Ferrusca, D; Halverson, N W; Holzapfel, W L; Horellou, C; Johansson, D; Johnson, B R; Kennedy, J; Kneissl, R; Lanting, T; Lee, A T; Lueker, M; Mehl, J; Menten, K M; Nord, M; Pacaud, F; Richards, P L; Schaaf, R; Schwan, D; Spieler, H; Weiss, A; Westbrook, B

    2009-01-01

    We present measurements of the angular power spectrum of millimeter wave anisotropies with the APEX-SZ instrument. APEX-SZ has mapped 0.8 square degrees of sky at a frequency of 150 GHz with an angular resolution of 1'. These new measurements significantly improve the power constraints at 150 GHz over the range of angular multipoles 3000 < l < 10,000, limiting the total astronomical anisotropy in a flat band power to be less than 105 microK^2 at 95% CL. We expect both submillimeter-bright, dusty galaxies and secondary CMB anisotropies from the Sunyaev-Zel'dovich effect (SZE) to significantly contribute to the observed power. Subtracting the SZE power spectrum expected for sigma_8=0.8 and masking bright sources, the best fit value for the remaining power is C_l = 1.1^{+0.9}_{-0.8} x 10^{-5} micro K^2 (1.7^{+1.4}_{-1.3} Jy^2 sr^{-1}). This agrees well with model predictions for power due to submillimeter-bright, dusty galaxies. Simultaneously fitting for the amplitude of the SZE power spectrum and a Poiss...

  11. Force-Velocity and Power Characteristics of Rat Soleus Muscle Fibers after Hindlimb Suspension

    Science.gov (United States)

    McDonald, K. S.; Blaser, C. A.; Fitts, R. H.

    1994-01-01

    The effects of 1, 2, and 3 wk of Hindlimb Suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HS, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control and after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type 11 fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V(sub 0)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub 0) is unknown. There was a progressive decrease in fiber diameter (14, 30, and 38%) and peak force (38, 56, and 63%) after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub 0) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.

  12. Air Force Fixed-Wing Rescue: A Multifaceted Approach for Full-Spectrum Personnel Recovery

    Science.gov (United States)

    2011-01-01

    wing aircraft do not need a prepared landing zone at all, further reducing this coverage area to a walkable distance. Unlike the previous example of a...Force of Choice The United States Government will make a sustained effort to engage civil society and citi - zens and facilitate increased

  13. Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output.

    Science.gov (United States)

    Jaskólska, A; Goossens, P; Veenstra, B; Jaskólski, A; Skinner, J S

    1999-04-01

    Since body balance and weight-bearing factors present while running on the treadmill might cause additional muscle recruitment and thus could influence the force-velocity relationship and power, the present study was undertaken to find out whether the F-V and F-P relationships measured while running on the treadmill are different from the respective indices measured during cycling. On two separate occasions, 32 male subjects were tested using a series of 5 sec, all-out sprints against different braking forces on the Gymrol Sprint treadmill and on the Monark ergometer. The maximal peak power (PPmax) and maximal mean power (MPmax) were measured. The equation: EP = 0.5 maximal force (Fo) x0.5 maximal velocity (Vo) was used to calculate the estimated values of peak power (EPP) and mean power (EMP). The F-V relationship was linear in both cycle ergometer and treadmill measurements. PPmax, MPmax, EPP, and EMP values on the treadmill were lower than the respective values on the ergometer. EPP on the ergometer and on the treadmill, as well as EMP values on the ergometer, were slightly higher than the corresponding measured values of PPmax and MPmax. The levels of braking force at which PP, MP, PPmax, and MPmax were obtained were lower on the ergometer than on the treadmill. High correlation coefficients were found between PPmax, MPmax, EPP, and EMP measured on the ergometer and on the treadmill (r = 0.86, r = 0.84, r = 0.71, r = 0.78, respectively, P<0.01). In both tests, significant relationships between PPmax, MPmax, EPP, and EMP were observed. It is concluded that independent of the type of ergometry the force-velocity relationship is similar in the measured range of velocities which suggests that the number of muscle groups and joints engaged in movement are more important than body balance and weight-bearing factors present while running on a treadmill.

  14. Effects of Sensory Deficit on Phalanx Force Deviation During Power Grip Post Stroke.

    Science.gov (United States)

    Enders, Leah R; Seo, Na Jin

    2017-01-01

    The effect of sensory deficits on power grip force from individual phalanges was examined. The authors found that stroke survivors with sensory deficits (determined by the Semmes-Weinstein monofilament test) gripped with phalanx force directed more tangential to the object surface, than those without, although both groups had similar motor deficits (Chedoke-McMaster and Fugl-Meyer), grip strength, and skin friction. Altered grip force direction elevates risk of finger slippage against the object thus grip loss/object dropping, hindering activities of daily living. Altered grip force direction was associated with altered muscle activation patterns. In summary, the motor impairment level alone may not describe hand motor control in detail. Information about sensory deficits helps elucidate patients' hand motor control with functional relevance.

  15. Lower limb force, power and performance in skateboarding: an exploratory study

    Directory of Open Access Journals (Sweden)

    Cláudia Tarragô Candotti

    2012-09-01

    Full Text Available The purpose of this study was to identify the relationship between the height reached when performing the Ollie maneuver and the muscle force and power of the lower limbs required by beginner level skateboarders. Ten practitioners of Street category, with at least two years experience and who participate in competitions in Beginner, Amateur II or Amateur I categories were submitted to three tests: (1 maximal voluntary contraction of the knee and hip extensor muscles; (2 vertical jump tests, Counter Movement Jump (CJ and Squat Jump (SJ; and (3 the maximum height achieved during the Ollie maneuver. The results demonstrate that the variance of the Ollie maneuver (p<0.05 is explained by the power estimated with the CJ (76.3%; and the maximal force of the knee extensor muscle (50.6%. These results suggest that the variable power is strongly associated with the performance of the Ollie maneuver.

  16. Comparison of force, power, and striking efficiency for a Kung Fu strike performed by novice and experienced practitioners: preliminary analysis.

    Science.gov (United States)

    Neto, Osmar Pinto; Magini, Marcio; Saba, Marcelo M F; Pacheco, Marcos Tadeu Tavares

    2008-02-01

    This paper presents a comparison of force, power, and efficiency values calculated from Kung Fu Yau-Man palm strikes, when performed by 7 experienced and 6 novice men. They performed 5 palm strikes to a freestanding basketball, recorded by high-speed camera at 1000 Hz. Nonparametric comparisons and correlations showed experienced practitioners presented larger values of mean muscle force, mean impact force, mean muscle power, mean impact power, and mean striking efficiency, as is noted in evidence obtained for other martial arts. Also, an interesting result was that for experienced Kung Fu practitioners, muscle power was linearly correlated with impact power (p = .98) but not for the novice practitioners (p = .46).

  17. The Joint Force Air Component Commander and the Integration of Offensive Cyberspace Effects: Power Projection through Cyberspace

    Science.gov (United States)

    2016-06-14

    86 | Air & Space Power Journal The Joint Force Air Component Commander and the Integration of Offensive Cyberspace Effects Power Projection through...and Space Power Journal requests a courtesy line. Cyberspace can provide great opportunities to assist the joint force air compo-nent commander (JFACC...in theory. Offensive cyberspace operations have the potential to provide these types of power - projecting effects in the battlespace, but how can

  18. Power Spectrum Analysis of Heart Rate Fluctuation: A Quantitative Probe of Beat-To-Beat Cardiovascular Control

    Science.gov (United States)

    Akselrod, Solange; Gordon, David; Ubel, F. Andrew; Shannon, Daniel C.; Barger, A. Clifford; Cohen, Richard J.

    1981-07-01

    Power spectrum analysis of heart rate fluctuations provides a quantitative noninvasive means of assessing the functioning of the short-term cardiovascular control systems. We show that sympathetic and parasympathetic nervous activity make frequency-specific contributions to the heart rate power spectrum, and that renin-angiotensin system activity strongly modulates the amplitude of the spectral peak located at 0.04 hertz. Our data therefore provide evidence that the reninangiotensin system plays a significant role in short-term cardiovascular control on the time scale of seconds to minutes.

  19. CMB lensing power spectrum biases from galaxies and clusters using high-angular resolution temperature maps

    Energy Technology Data Exchange (ETDEWEB)

    Van Engelen, A.; Sehgal, N. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Bhattacharya, S. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Holder, G. P. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Zahn, O. [Berkeley Center for Cosmological Physics, Department of Physics, University of California, and Lawrence Berkeley National Labs, Berkeley, CA 94720 (United States); Nagai, D. [Department of Physics, Department of Astronomy and Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520 (United States)

    2014-05-01

    The lensing power spectrum from cosmic microwave background (CMB) temperature maps will be measured with unprecedented precision with upcoming experiments, including upgrades to the Atacama Cosmology Telescope and the South Pole Telescope. Achieving significant improvements in cosmological parameter constraints, such as percent level errors on σ{sub 8} and an uncertainty on the total neutrino mass of ∼50 meV, requires percent level measurements of the CMB lensing power. This necessitates tight control of systematic biases. We study several types of biases to the temperature-based lensing reconstruction signal from foreground sources such as radio and infrared galaxies and the thermal Sunyaev-Zel'dovich effect from galaxy clusters. These foregrounds bias the CMB lensing signal due to their non-Gaussian nature. Using simulations as well as some analytical models we find that these sources can substantially impact the measured signal if left untreated. However, these biases can be brought to the percent level if one masks galaxies with fluxes at 150 GHz above 1 mJy and galaxy clusters with masses above M {sub vir} = 10{sup 14} M {sub ☉}. To achieve such percent level bias, we find that only modes up to a maximum multipole of l {sub max} ∼ 2500 should be included in the lensing reconstruction. We also discuss ways to minimize additional bias induced by such aggressive foreground masking by, for example, exploring a two-step masking and in-painting algorithm.

  20. Probing reionization with the cross power spectrum of 21 cm and near-infrared radiation backgrounds

    CERN Document Server

    Mao, Xiao-Chun

    2014-01-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from the high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then the intensity of NIR background is estimated by collecting emission from stars in the first-light galaxies. On large scales, we find the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolut...

  1. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Directory of Open Access Journals (Sweden)

    Baudais Jean-Yves

    2007-01-01

    Full Text Available Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR is low.

  2. Angular Power Spectrum and Dilatonic Inflation in Modular-Invariant Supergravity

    CERN Document Server

    Hayashi, M J; Okame, Y; Watanabe, T; Hayashi, Mitsuo J.; Hirai, Shiro; Okame, Yusuke; Watanabe, Tomoki

    2006-01-01

    The angular power spectrum is investigated in the model of supergravity, incorporating the target-space duality and the non-perturbative gaugino condensation in the hidden sector. The inflation and supersymmetry breaking occur at once by the interplay between the dilaton field as inflaton and the condensate gauge-singlet field. The model satisfies the slow-roll condition which solves the \\eta-problem. When the particle rolls down along the minimized trajectory of the potential at a duality invariant fixed point T=1, we can obtain the e-fold value \\sim 57. And then the cosmological parameters obtained from our model well match with the recent WMAP data combined with other experiments. The TT and TE angular power spectra also show that our model is compatible with the data for l > 20. However, the best fit value of \\tau in our model is smaller than that of the \\Lambda CDM model. These results suggest that, among supergravity models of inflation, the modular-invariant supergravity seems to open a hope to constru...

  3. The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters

    CERN Document Server

    Komatsu, E; Komatsu, Eiichiro; Seljak, Uros

    2002-01-01

    The angular power spectrum of the SZ effect, C_l, is a powerful probe of cosmology. It is easier to detect than individual clusters in the field, is insensitive to observational selection effects and does not require a calibration between cluster mass and flux, reducing the systematic errors which dominate the cluster-counting constraints. It receives a dominant contribution from cluster region between 20-40% of the virial radius and is thus insensitive to the poorly known gas physics in the cluster centre, such as cooling or (pre)heating. In this paper we derive a refined analytic prediction for C_l using the universal gas-density and temperature profile and the dark-matter halo mass function. The predicted C_l has no free parameters and fits all of the published hydrodynamic simulation results to better than a factor of two around l=3000. We find that C_l scales as (sigma_8)^7 times (Omega_b h)^2 and is almost independent of all of the other cosmological parameters. This differs from the local cluster abund...

  4. The WiggleZ Dark Energy Survey: the selection function and z=0.6 galaxy power spectrum

    CERN Document Server

    Blake, Chris; Colless, Matthew; Couch, Warrick; Croom, Scott; Davis, Tamara; Drinkwater, Michael J; Forster, Karl; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui; Madore, Barry; Martin, Chris; Pimbblet, Kevin; Poole, Gregory B; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted

    2010-01-01

    We report one of the most accurate measurements of the three-dimensional large-scale galaxy power spectrum achieved to date, using 56,159 redshifts of bright emission-line galaxies at effective redshift z=0.6 from the WiggleZ Dark Energy Survey at the Anglo-Australian Telescope. We describe in detail how we construct the survey selection function allowing for the varying target completeness and redshift completeness. We measure the total power with an accuracy of approximately 5% in wavenumber bands of dk=0.01 h/Mpc. A model power spectrum including non-linear corrections, combined with a linear galaxy bias factor and a simple model for redshift-space distortions, provides a good fit to our data for scales k < 0.4 h/Mpc. The large-scale shape of the power spectrum is consistent with the best-fitting matter and baryon densities determined by observations of the Cosmic Microwave Background radiation. By splitting the power spectrum measurement as a function of tangential and radial wavenumbers we delineate t...

  5. Force

    CERN Document Server

    Graybill, George

    2007-01-01

    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  6. Analysing the Possible Ways for Short-Term Forcing Gas Turbine Engines in Auxiliary Power Unit

    Directory of Open Access Journals (Sweden)

    N. I. Trotskii

    2016-01-01

    Full Text Available Using a gas turbine energy unit as an example, the article discusses possible ways for forcing the short-term gas turbine engines (GTE. The introduction explains the need for forcing the air transport and marine GTE in specific driving conditions and offers the main methods. Then it analyzes the three main short-term forcing methods according to GTE power, namely: precompressor water injection, a short-term rise in temperature after the combustion chamber, and feeding an additional compressed air into combustion chamber from the reserve cylinders.The analysis of the water injection method to force a GTE presents the main provisions and calculation results of the cycle, as a function of engine power on the amount of water injected into compressor inlet. It is shown that with water injection into compressor inlet in an amount of 1% of the total airflow there is a 17% power increase in the compressor. It also lists the main implementation problems of this method and makes a comparison with the results of other studies on the water injection into compressor.Next, the article concerns the GTE short-term forcing method through the pre-turbine short-term increase in the gas temperature. The article presents the calculation results of the cycle as a function of the power and the fuel-flow rate on the gas temperature at the turbine inlet. It is shown that with increasing temperature by 80 degrees the engine power increases by 11.2% and requires 11% more fuel. In the analysis of this method arises an issue of thermal barrier coating on the blade surface. The article discusses the most common types of coatings and their main shortcomings. It lists the main challenges and some ways of their solving when using this method to implement the short-term forcing.The last method under consideration is GTE short-term forcing by feeding the compressed air into the combustion chamber from the additional reserve cylinders. It should be noted that this method is

  7. Fourier power spectrum characteristics of face photographs: attractiveness perception depends on low-level image properties.

    Directory of Open Access Journals (Sweden)

    Claudia Menzel

    Full Text Available We investigated whether low-level processed image properties that are shared by natural scenes and artworks - but not veridical face photographs - affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess - compared to face images - a relatively shallow slope (i.e., increased high spatial frequency power. Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1. We found that Fourier slope - in contrast to the other tested image properties - did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3. Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis.

  8. Fourier power spectrum characteristics of face photographs: attractiveness perception depends on low-level image properties.

    Science.gov (United States)

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Langner, Oliver; Wiese, Holger; Redies, Christoph

    2015-01-01

    We investigated whether low-level processed image properties that are shared by natural scenes and artworks - but not veridical face photographs - affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess - compared to face images - a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope - in contrast to the other tested image properties - did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis.

  9. Improvement of force factor of magnetostrictive vibration power generator for high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Shota, E-mail: happiest3.7@gmail.com; Ueno, Toshiyuki; Yamada, Sotoshi [Kanazawa University, Kakuma-machi, Kanazawa-city, Ishikawa 920-1164 (Japan)

    2015-05-07

    We develop high power magnetostrictive vibration power generator for battery-free wireless electronics. The generator is based on a cantilever of parallel beam structure consisting of coil-wound Galfenol and stainless plates with permanent magnet for bias. Oscillating force exerted on the tip bends the cantilever in vibration yields stress variation of Galfenol plate, which causes flux variation and generates voltage on coil due to the law of induction. This generator has advantages over conventional, such as piezoelectric or moving magnet types, in the point of high efficiency, highly robust, and low electrical impedance. Our concern is the improvement of energy conversion efficiency dependent on the dimension. Especially, force factor, the conversion ratio of the electromotive force (voltage) on the tip velocity in vibration, has an important role in energy conversion process. First, the theoretical value of the force factor is formulated and then the validity was verified by experiments, where we compare four types of prototype with parameters of the dimension using 7.0 × 1.5 × 50 mm beams of Galfenol with 1606-turn wound coil. In addition, the energy conversion efficiency of the prototypes depending on load resistance was measured. The most efficient prototype exhibits the maximum instantaneous power of 0.73 W and energy of 4.7 mJ at a free vibration of frequency of 202 Hz in the case of applied force is 25 N. Further, it was found that energy conversion efficiency depends not only on the force factor but also on the damping (mechanical loss) of the vibration.

  10. Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.

    2009-01-01

    Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of

  11. A computational study of the aerodynamic forces and power requirements of dragonfly Aeschna juncea hovering

    CERN Document Server

    Sun, M; Sun, Mao; Lan, Shi Long

    2004-01-01

    Aerodynamic force generation and mechanical power requirements of a dragonfly (Aeschna juncea) in hovering flight are studied. The method of numerically solving the Navier-Stokes equations in moving overset grids is used. There are two large vertical force peaks in one flapping cycle. One is in the first half of the cycle, which is mainly due to the hindwings in their downstroke; the other is in the second half of the cycle, which is mainly due to the forewings in their downstroke. Hovering with a large stroke plane angle, the dragonfly uses drag as a major source for its weight supporting force (approximately 65% of the total vertical force is contributed by the drag and 35% by the lift of the wings). The vertical force coefficient of a wing is twice as large as the quasi-steady value. The interaction between the fore- and hindwings is not very strong and is detrimental to the vertical force generation. Compared with the case of a single wing in the same motion, the interaction effect reduces the vertical fo...

  12. Energy Cost of Avoiding Pressure Oscillations in a Discrete Fluid Power Force System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2015-01-01

    In secondary valve controlled discrete fluid power force systems the valve opening trajectory greatly influences the pressure dynamics in the actuator chambers. For discrete fluid power systems featuring hoses of significant length pressure oscillations due to fast valve switching is well...... converters. Further the energy losses introduced during the shifting period is investigated and compared for two valve opening algorithms. The investigation of the energy loss is utilised to quantify the importance of a fast valve switching and the energy cost of reducing pressure oscillations. The paper...... will present measurements comparing pressure dynamics for two valve opening algorithms. In addition the paper will give a theoretical investigation of the energy loss during valve shifting and finally measurements of average power output from the power take-off system in various sea states are compared...

  13. [Frequency analysis of the EMG power spectrum of the anterior temporal and masseter muscles in children and adults].

    Science.gov (United States)

    Takarada, T; Alvarado Larrinaga, G; Nishida, F; Nishino, M

    1989-01-01

    For the investigation of the functional change of the masticatory muscles along with growth and development, the frequency analysis of the EMG power spectrum was carried out. The subjects were 6 children (5 males and 1 female) with full deciduous dentition (Hellman's dental age IIA) aged 4.5 +/- 0.2 years and 6 adults (4 males and 2 females) with full permanent dentition aged 27.7 +/- 3.8 years. EMG signals were recorded bilaterally by means of bipolar silver surface electrodes from the anterior temporal and masseter muscles when the subjects were chewing chewing gum or performing maximum clenches in the intercuspal position. A fast Fourier transform (FFT) algorithm was used to obtain the power spectrum of the EMG signal. As the total power value from 62.5 to 1000 Hz was 100 per cent, the mean frequencies at 25, 50, 75 and 90 per cent of the cumulative power were calculated. The results were as follows: 1. The mean frequencies at each ratio of the cumulative power were age-dependent and EMG power spectrum patterns significantly shifted to lower frequencies in the muscles of the adults. 2. No statistically significant differences between the chewing and clenching, the anterior temporal and masseter muscle and the left and right side were observed in each group.

  14. Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy

    Science.gov (United States)

    Collins, Liam; Belianinov, Alex; Somnath, Suhas; Rodriguez, Brian J.; Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen

    2016-03-01

    Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General mode (G-Mode) KPFM works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction—required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C‧) channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.

  15. Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy.

    Science.gov (United States)

    Collins, Liam; Belianinov, Alex; Somnath, Suhas; Rodriguez, Brian J; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen

    2016-03-11

    Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General mode (G-Mode) KPFM works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction-required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C') channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.

  16. The scale invariant power spectrum of the primordial curvature perturbations from the coupled scalar tachyon bounce cosmos

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Cheung, Yeuk-Kwan E., E-mail: chellifegood@gmail.com, E-mail: cheung@nju.edu.cn [Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, 210093 China (China)

    2014-07-01

    We investigate the spectrum of cosmological perturbations in a bounce cosmos modeled by a scalar field coupled to the string tachyon field (CSTB cosmos). By explicit computation of its primordial spectral index we show the power spectrum of curvature perturbations, generated during the tachyon matter dominated contraction phase, to be nearly scale invariant. We propose a unified parameter space for a systematic study of inflationary and bounce cosmologies. The CSTB cosmos is dual-in Wands's sense-to slow-roll inflation as can be visualized with the aid of this parameter space. Guaranteed by the dynamical attractor behavior of the CSTB Cosmos, the scale invariance of its power spectrum is free of the fine-tuning problem, in contrast to the slow-roll inflation model.

  17. Measurement of Redshift Space Power Spectrum for BOSS galaxies and the Growth Rate at redshift 0.57

    CERN Document Server

    Li, Zhigang; Zhang, Pengjie; Cheng, Dalong

    2016-01-01

    We present a measurement of two-dimensional (2D) redshift-space power spectrum for the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 11 CMASS galaxies in the North Galactic Cap (NGC) based on the method developed by Jing & Borner (2001). In this method, we first measure the 2D redshift-space correlation function for the CMASS galaxies, and obtain the 2D power spectrum based on Fourier Transform of the correlation function. The method is tested with an N-body mock galaxy catalog, which demonstrates that the method can yield an accurate and unbiased measurement of the redshift-space power spectrum given the input 2D correlation function is correct. Compared with previous measurements in literature that are usually based on direct Fourier Transform in redshift space, our method has the advantages that the window function and shot-noise are fully corrected. In fact, our 2D power spectrum, by its construction, can accurately reproduce the 2D correlation function, and in the meanwhile can reproduc...

  18. LOFAR insights into the epoch of reionization from the cross-power spectrum of 21 cm emission and galaxies

    NARCIS (Netherlands)

    Wiersma, R. P. C.; Ciardi, B.; Thomas, R. M.; Harker, G. J. A.; Zaroubi, S.; Bernardi, G.; Brentjens, M.; de Bruyn, A. G.; Daiboo, S.; Jelic, V.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez, O.; Offringa, A.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.; Mellema, G.

    2013-01-01

    Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross-power spectrum between galaxies and the 21 cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find tha

  19. Planck 2016 intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters

    CERN Document Server

    Aghanim, N; Ashdown, M; Aumont, J; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Basak, S; Benabed, K; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Burigana, C; Calabrese, E; Cardoso, J -F; Challinor, A; Chiang, H C; Colombo, L P L; Combet, C; Crill, B P; Curto, A; Cuttaia, F; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Di Valentino, E; Dickinson, C; Diego, J M; Doré, O; Ducout, A; Dupac, X; Dusini, S; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fantaye, Y; Finelli, F; Forastieri, F; Frailis, M; Franceschi, E; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Gerbino, M; González-Nuevo, J; Górski, K M; Gruppuso, A; Gudmundsson, J E; Herranz, D; Hivon, E; Huang, Z; Jaffe, A H; Jones, W C; Keihänen, E; Keskitalo, R; Kiiveri, K; Kim, J; Kisner, T S; Knox, L; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Jeune, M Le; Levrier, F; Lewis, A; Lilje, P B; Lilley, M; Lindholm, V; López-Caniego, M; Lubin, P M; Ma, Y -Z; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Matarrese, S; Mauri, N; McEwen, J D; Meinhold, P R; Mennella, A; Migliaccio, M; Millea, M; Miville-Deschênes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Moss, A; Narimani, A; Natoli, P; Oxborrow, C A; Pagano, L; Paoletti, D; Patanchon, G; Patrizii, L; Pettorino, V; Piacentini, F; Polastri, L; Polenta, G; Puget, J -L; Rachen, J P; Racine, B; Reinecke, M; Remazeilles, M; Renzi, A; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Ruiz-Granados, B; Salvati, L; Sandri, M; Savelainen, M; Scott, D; Sirignano, C; Sirri, G; Stanco, L; Suur-Uski, A -S; Tauber, J A; Tavagnacco, D; Tenti, M; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Valiviita, J; Van Tent, F; Vielva, P; Villa, F; Vittorio, N; Wandelt, B D; Wehus, I K; White, M; Zacchei, A; Zonca, A

    2016-01-01

    The six parameters of the standard $\\Lambda$CDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We investigate these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium $\\tau$, the baryon density $\\omega_{\\rm b}$, the matter density $\\omega_{\\rm m}$, the angular size of the sound horizon $\\theta_*$, the spectral index of the primordial power spectrum, $n_{\\rm s}$, and $A_{\\rm s}e^{-2\\tau}$ (where $A_{\\rm s}$ is the amplitude of the primordial power spectrum), we examine the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment $\\ell800$, or splitting at ...

  20. Inferring the IGM thermal history during reionisation with the Lyman-$\\alpha$ forest power spectrum at redshift $z \\simeq 5$

    CERN Document Server

    Nasir, Fahad; Becker, George D

    2016-01-01

    We use cosmological hydrodynamical simulations to assess the feasibility of constraining the thermal history of the intergalactic medium during reionisation with the Ly$\\alpha$ forest at $z \\simeq 5$. Pressure smoothing has a measurable impact on the transmitted flux power spectrum that can be isolated from Doppler broadening at this redshift. We parameterise the effect of pressure smoothing on the power spectrum using the cumulative energy per proton, $u_0$, deposited into a gas parcel at the mean background density, a quantity that is tightly linked with the integrated thermal history and the gas density power spectrum in the simulations. We construct mock observations of the line of sight Ly$\\alpha$ forest power spectrum and use a Markov Chain Monte Carlo approach to recover $u_{0}$ at redshifts $5 \\leq z \\leq 12$. A statistical uncertainty of $\\sim 20$ per cent is expected (at 68 per cent confidence) at $z\\simeq 5$ using high resolution spectra with a total redshift path length of $\\Delta z=4$ and a typic...

  1. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications

    CERN Document Server

    Cole, S; Peacock, J A; Norberg, P; Baugh, C M; Frenk, C S; Baldry, I K; Bland-Hawthorn, J; Bridges, T; Cannon, R; Colless, M; Collins, C; Couch, W; Cross, N J G; Dalton, G B; Eke, V R; De Propris, R; Driver, S P; Efstathiou, G P; Ellis, Richard S; Glazebrook, K; Jackson, C; Jenkins, A; Lahav, O; Lewis, I; Lumsden, S; Maddox, S; Madgwick, D; Peterson, B A; Sutherland, W; Taylor, K

    2005-01-01

    We present a power spectrum analysis of the final 2dF Galaxy Redshift Survey, employing a direct Fourier method. The sample used comprises 221,414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys which are used to demonstrate that the input cosmological model can be correctly recovered. We are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the `baryon oscillations' that are predicted in CDM models. Fitting to a CDM model, assuming a primordial...

  2. A Multi-Channel Method for Detecting Periodic Forced Oscillations in Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Follum, James D.; Tuffner, Francis K.

    2016-11-14

    Forced oscillations in electric power systems are often symptomatic of equipment malfunction or improper operation. Detecting and addressing the cause of the oscillations can improve overall system operation. In this paper, a multi-channel method of detecting forced oscillations and estimating their frequencies is proposed. The method operates by comparing the sum of scaled periodograms from various channels to a threshold. A method of setting the threshold to specify the detector's probability of false alarm while accounting for the correlation between channels is also presented. Results from simulated and measured power system data indicate that the method outperforms its single-channel counterpart and is suitable for real-world applications.

  3. Quantification of hand and forearm muscle forces during a maximal power grip task.

    Science.gov (United States)

    Goislard de Monsabert, Benjamin; Rossi, Jérémy; Berton, Eric; Vigouroux, Laurent

    2012-10-01

    The aim of this study was to estimate muscle and joint forces during a power grip task. Considering the actual lack of quantification of such internal variables, this information would be essential for sports sciences, medicine, and ergonomics. This study also contributed to the advancement of scientific knowledge concerning hand control during power grip. A specially designed apparatus combining both an instrumented handle and a pressure map was used to record the forces at the hand/handle interface during maximal exertions. Data were processed such that the forces exerted on 25 hand anatomical areas were determined. Joint angles of the five fingers and the wrist were also computed from synchronized kinematic measurements. These processed data were used as input of a hand/wrist biomechanical model, which includes 23 degrees of freedom and 42 muscles to estimate muscle and joint forces. Greater forces were applied on the distal phalanges of the long fingers compared with the middle and the proximal ones. Concomitantly, high solicitations were observed for FDP muscles. A large cocontraction level of extensor muscles was also estimated by the model and confirmed previously reported activities and injuries of extensor muscles related to the power grip. Quantifying hand internal loadings also resulted in new insights into the thumb and the wrist biomechanics. Output muscle tension ratios were all in smaller ranges than the ones reported in the literature. Including wrist and finger interactions in this hand model provided new quantification of muscle load sharing, cocontraction level, and biomechanics of the hand. Such information could complete future investigations concerning handle ergonomics or pathomechanisms of hand musculoskeletal disorders.

  4. Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model

    Directory of Open Access Journals (Sweden)

    Varsha H. Rallapalli

    2016-10-01

    Full Text Available Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM has demonstrated that the signal-to-noise ratio (SNRENV from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N is assumed to: (a reduce S + N envelope power by filling in dips within clean speech (S and (b introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.

  5. High Performance Polymer Film Dielectrics for Air Force Wide-Temperature Power Electronics Applications (Preprint)

    Science.gov (United States)

    2009-02-01

    perform, display, or disclose the work. 14. ABSTRACT Air Force currently has a strong need for the development of compact capacitors which are... capacitors typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 ºC to 125 ºC, future power electronic systems would...such as fluorinated polybenzoxazoles (6F-PBO) and fluorenyl polyesters incorporating diamond-like hydrocarbon units (FDAPE). The discussion will be

  6. Force transmissibility and vibration power flow behaviour of inerter-based vibration isolators

    Science.gov (United States)

    Yang, Jian

    2016-09-01

    This paper investigates the dynamics and performance of inerter-based vibration isolators. Force / displacement transmissibility and vibration power flow are obtained to evaluate the isolation performance. Both force and motion excitations are considered. It is demonstrated that the use of inerters can enhance vibration isolation performance by enlarging the frequency band of effective vibration isolation. It is found that adding inerters can introduce anti-resonances in the frequency-response curves and in the curves of the force and displacement transmissibility such that vibration transmission can be suppressed at interested excitation frequencies. It is found that the introduction of inerters enhances inertial coupling and thus have a large influence on the dynamic behaviour at high frequencies. It is shown that force and displacement transmissibility increases with the excitation frequency and tends to an asymptotic value as the excitation frequency increases. In the high-frequency range, it was shown that adding inerters can result in a lower level of input power. These findings provide a better understanding of the effects of introducing inerters to vibration isolation and demonstrate the performance benefits of inerter-based vibration isolators.

  7. A new probe of the magnetic field power spectrum in cosmic web filaments

    Science.gov (United States)

    Hales, Christopher A.; Greiner, Maksim; Ensslin, Torsten A.

    2015-08-01

    Establishing the properties of magnetic fields on scales larger than galaxy clusters is critical for resolving the unknown origin and evolution of galactic and cluster magnetism. More generally, observations of magnetic fields on cosmic scales are needed for assessing the impacts of magnetism on cosmology, particle physics, and structure formation over the full history of the Universe. However, firm observational evidence for magnetic fields in large scale structure remains elusive. In an effort to address this problem, we have developed a novel statistical method to infer the magnetic field power spectrum in cosmic web filaments using observation of the two-point correlation of Faraday rotation measures from a dense grid of extragalactic radio sources. Here we describe our approach, which embeds and extends the pioneering work of Kolatt (1998) within the context of Information Field Theory (a statistical theory for Bayesian inference on spatially distributed signals; Enfllin et al., 2009). We describe prospects for observation, for example with forthcoming data from the ultra-deep JVLA CHILES Con Pol survey and future surveys with the SKA.

  8. Statistical connection of peak counts to power spectrum and moments in weak lensing field

    CERN Document Server

    Shirasaki, Masato

    2016-01-01

    The number density of local maxima of weak lensing field, referred to as weak-lensing peak counts, can be used as a cosmological probe. However, its relevant cosmological information is still unclear. We study the relationship between the peak counts and other statistics in weak lensing field by using 1000 ray-tracing simulations. We construct a local transformation of lensing field $\\cal K$ to a new Gaussian field $y$, named local-Gaussianized transformation. We calibrate the transformation with numerical simulations so that the one-point distribution and the power spectrum of $\\cal K$ can be reproduced from a single Gaussian field $y$ and monotonic relation between $y$ and $\\cal K$. Therefore, the correct information of two-point clustering and any order of moments in weak lensing field should be preserved under local-Gaussianized transformation. We then examine if local-Gaussianized transformation can predict weak-lensing peak counts in simulations. The local-Gaussianized transformation is insufficient to ...

  9. Diesel engine noise source identification based on EEMD, coherent power spectrum analysis and improved AHP

    Science.gov (United States)

    Zhang, Junhong; Wang, Jian; Lin, Jiewei; Bi, Fengrong; Guo, Qian; Chen, Kongwu; Ma, Liang

    2015-09-01

    As the essential foundation of noise reduction, many noise source identification methods have been developed and applied to engineering practice. To identify the noise source in the board-band frequency of different engine parts at various typical speeds, this paper presents an integrated noise source identification method based on the ensemble empirical mode decomposition (EEMD), the coherent power spectrum analysis, and the improved analytic hierarchy process (AHP). The measured noise is decomposed into several IMFs with physical meaning, which ensures the coherence analysis of the IMFs and the vibration signals are meaningful. An improved AHP is developed by introducing an objective weighting function to replace the traditional subjective evaluation, which makes the results no longer dependent on the subject performances and provides a better consistency in the meantime. The proposed noise identification model is applied to identifying a diesel engine surface radiated noise. As a result, the frequency-dependent contributions of different engine parts to different test points at different speeds are obtained, and an overall weight order is obtained as oil pan  >  left body  >  valve chamber cover  >  gear chamber casing  >  right body  >  flywheel housing, which provides an effectual guidance for the noise reduction.

  10. Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies

    CERN Document Server

    Pinol, Lucas; Hand, Nick; Seljak, Uros; White, Martin

    2016-01-01

    The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky and the locations of the fiber positioners in the focal plane of the telescope, with the observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, but with coverage varying between zero and twelve, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum...

  11. A supervised machine learning estimator for the non-linear matter power spectrum - SEMPS

    CERN Document Server

    Mohammed, Irshad

    2015-01-01

    In this article, we argue that models based on machine learning (ML) can be very effective in estimating the non-linear matter power spectrum ($P(k)$). We employ the prediction ability of the supervised ML algorithms to build an estimator for the $P(k)$. The estimator is trained on a set of cosmological models, and redshifts for which the $P(k)$ is known, and it learns to predict $P(k)$ for any other set. We review three ML algorithms -- Random Forest, Gradient Boosting Machines, and K-Nearest Neighbours -- and investigate their prime parameters to optimize the prediction accuracy of the estimator. We also compute an optimal size of the training set, which is realistic enough, and still yields high accuracy. We find that, employing the optimal values of the internal parameters, a set of $50-100$ cosmological models is enough to train the estimator that can predict the $P(k)$ for a wide range of cosmological models, and redshifts. Using this configuration, we build a blackbox -- Supervised Estimator for Matter...

  12. Evidence for Planck-scale resonant particle production during inflation from the CMB power spectrum

    CERN Document Server

    Mathews, Grant J; Ichiki, Kiyotomo; Kajino, Toshitaka

    2016-01-01

    The power spectrum of the cosmic microwave background from both the {\\it Planck} and {\\it WMAP} data exhibits a slight dip for multipoles in the range of $l= 10-30$. We show that such a dip could be the result of the resonant creation of massive particles that couple to the inflaton field. For our best-fit models, the epoch of resonant particle creation reenters the horizon at a wave number of $k_* \\sim 0.0011 \\pm 0.0004 $ ($h$ Mpc$^{-1}$). The amplitude and location of this feature corresponds to the creation of a number of degenerate fermion species of mass $\\sim (8-11) /\\lambda^{3/2} $ $m_{pl}$ during inflation where $\\lambda \\sim (1.0 \\pm 0.5) N^{-2/5}$ is the coupling constant between the inflaton field and the created fermion species, while $N$ is the number of degenerate species. Although the evidence is of marginal statistical significance, this could constitute new observational hints of unexplored physics beyond the Planck scale

  13. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2015-05-20

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s-1 on ~20–30 kpc scales and 70–100 km s-1 on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.

  14. Planck Early Results: The Power Spectrum Of Cosmic Infrared Background Anisotropies

    CERN Document Server

    Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Balbi, A; Banday, A J; Barreiro, R B; Bartlett, J G; Battaner, E; Benabed, K; Benoit, A; Bernard, J -P; Bersanelli, M; Bhatia, R; Blagrave, K; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bucher, M; Burigana, C; Cabella, P; Cardoso, J -F; Catalano, A; Cayon, L; Challinor, A; Chamballu, A; Chiang, L -Y; Chiang, C; Christensen, P R; Clements, D L; Colombi, S; Couchot, F; Coulais, A; Crill, B P; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Gasperis, G; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Desert, F -X; Dole, H; Donzelli, S; Dore, O; Dorl, U; Douspis, M; Dupac, X; Efstathiou, G; Ensslin, T A; Eriksen, H K; Finelli, F; Forni, O; Fosalba, P; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giardino, G; Giraud-Heraud, Y; Gonzalez-Nuevo, J; Gorski, K M; Grain, J; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Harrison, D; Helou, G; Henrot-Versille, S; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hoyland, R J; Huffenberger, K M; Jaffe, A H; Jones, W C; Juvela, M; Keihanen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knox, L; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leach, S; Leonardi, R; Leroy, C; Lilje, P B; Linden-Vornle, M; Lockman, F J; Lopez-Caniego, M; Lubin, P M; Macias-Perez, J F; MacTavish, C J; Maffei, B; Maino, D; Mandolesi, N; Mann, R; Maris, M; Martin, P; Martinez-Gonzalez, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Melchiorri, A; Mendes, L; Mennella, A; Mitra, S; Miville-Deschenes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, A; Naselsky, P; Natoli, P; Netterfield, C B; Norgaard-Nielsen, H U; Novikov, D; Novikov, I; O'Dwyer, I J; Oliver, S; Osborne, S; Pajot, F; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Goncalves, D Pinheiro; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Poutanen, T; Prezeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Rowan-Robinson, M; Rubino-Martin, J A; Rusholme, B; Sandri, M; Santos, D; Savini, G; Scott, D; Seiffert, M D; Shellard, P; Smoot, G F; Starck, J -L; Stivoli, F; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Torre, J -P; Tristram, M; Tuovinen, J; Umana, G; Valenziano, L; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; White, M; Yvon, D; Zacchei, A; Zonca, A

    2011-01-01

    Using Planck maps of six regions of low Galactic dust emission with a total area of about 140 square degrees, we determine the angular power spectra of Cosmic Infrared Background (CIB) anisotropies from multipole l = 200 to l = 2000 at 217, 353, 545 and 857 GHz. We use observations of HI emission as a tracer of thermal dust emission in order to reduce the already low level of Galactic dust emission and use the 143 GHz Planck maps in these fields to clean out cosmic microwave background anisotropies. Both of these cleaning processes are necessary in order to avoid significant contamination of the CIB signal. We measure correlated CIB structure across frequencies. As expected, the correlation decreases with increasing frequency separation as the contribution of high-redshift galaxies to CIB anisotropies increases with wavelengths. We find no significant difference between the frequency spectrum of the CIB anisotropies and the CIB mean, with dI/I=15% from 217 to 857 GHz. In terms of clustering properties, the Pl...

  15. The Coyote Universe Extended: Precision Emulation of the Matter Power Spectrum

    CERN Document Server

    Heitmann, Katrin; Kwan, Juliana; Habib, Salman; Higdon, David

    2013-01-01

    Modern sky surveys are returning precision measurements of cosmological statistics such as weak lensing shear correlations, the distribution of galaxies, and cluster abundance. To fully exploit these observations, theorists must provide predictions that are at least as accurate as the measurements, as well as robust estimates of systematic errors that are inherent to the modeling process. In the nonlinear regime of structure formation, this challenge can only be overcome by developing a large-scale, multi-physics simulation capability covering a range of cosmological models and astrophysical processes. As a first step to achieving this goal, we have recently developed a prediction scheme for the matter power spectrum (a so-called emulator), accurate at the 1% level out to k~1/Mpc and z=1 for wCDM cosmologies based on a set of high-accuracy N-body simulations. It is highly desirable to increase the range in both redshift and wavenumber and to extend the reach in cosmological parameter space. To make progress i...

  16. Optimized Large-Scale CMB Likelihood And Quadratic Maximum Likelihood Power Spectrum Estimation

    CERN Document Server

    Gjerløw, E; Eriksen, H K; Górski, K M; Gruppuso, A; Jewell, J B; Plaszczynski, S; Wehus, I K

    2015-01-01

    We revisit the problem of exact CMB likelihood and power spectrum estimation with the goal of minimizing computational cost through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al.\\ (1997), and here we develop it into a fully working computational framework for large-scale polarization analysis, adopting \\WMAP\\ as a worked example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked \\WMAP\\ sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8\\% at $\\ell\\le32$, and a...

  17. Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for the standardized three-dimensional (3D) multiple-input multiple-output (MIMO) channel. This novel SCF is developed for a uniform linear array of antennas with non-isotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials to obtain a closed-form expression for the SCF for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. Numerical results validate the proposed analytical expression and study the impact of angular spreads on the correlation. The derived SCF will help evaluate the performance of correlated 3D MIMO channels in the future. © 2015 IEEE.

  18. Convolution power spectrum analysis for FMRI data based on prior image signal.

    Science.gov (United States)

    Zhang, Jiang; Chen, Huafu; Fang, Fang; Liao, Wei

    2010-02-01

    Functional MRI (fMRI) data-processing methods based on changes in the time domain involve, among other things, correlation analysis and use of the general linear model with statistical parametric mapping (SPM). Unlike conventional fMRI data analysis methods, which aim to model the blood-oxygen-level-dependent (BOLD) response of voxels as a function of time, the theory of power spectrum (PS) analysis focuses completely on understanding the dynamic energy change of interacting systems. We propose a new convolution PS (CPS) analysis of fMRI data, based on the theory of matched filtering, to detect brain functional activation for fMRI data. First, convolution signals are computed between the measured fMRI signals and the image signal of prior experimental pattern to suppress noise in the fMRI data. Then, the PS density analysis of the convolution signal is specified as the quantitative analysis energy index of BOLD signal change. The data from simulation studies and in vivo fMRI studies, including block-design experiments, reveal that the CPS method enables a more effective detection of some aspects of brain functional activation, as compared with the canonical PS SPM and the support vector machine methods. Our results demonstrate that the CPS method is useful as a complementary analysis in revealing brain functional information regarding the complex nature of fMRI time series.

  19. Power spectrum analysis of ionospheric fluctuations with the Murchison Widefield Array

    CERN Document Server

    Loi, Shyeh Tjing; Murphy, Tara; Cairns, Iver H; Bell, Martin; Hurley-Walker, Natasha; Morgan, John; Lenc, Emil; Offringa, A R; Feng, L; Hancock, P J; Kaplan, D L; Kudryavtseva, N; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Corey, B E; Deshpande, A A; Emrich, D; Gaensler, B M; Goeke, R; Greenhill, L J; Hazelton, B J; Johnston-Hollitt, M; Kasper, J C; Kratzenberg, E; Lonsdale, C J; Lynch, M J; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Ord, S M; Prabu, T; Rogers, A E E; Roshi, A; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L

    2015-01-01

    Low-frequency, wide field-of-view (FoV) radio telescopes such as the Murchison Widefield Array (MWA) enable the ionosphere to be sampled at high spatial completeness. We present the results of the first power spectrum analysis of ionospheric fluctuations in MWA data, where we examined the position offsets of radio sources appearing in two datasets. The refractive shifts in the positions of celestial sources are proportional to spatial gradients in the electron column density transverse to the line of sight. These can be used to probe plasma structures and waves in the ionosphere. The regional (10-100 km) scales probed by the MWA, determined by the size of its FoV and the spatial density of radio sources (typically thousands in a single FoV), complement the global (100-1000 km) scales of GPS studies and local (0.01-1 km) scales of radar scattering measurements. Our data exhibit a range of complex structures and waves. Some fluctuations have the characteristics of travelling ionospheric disturbances (TIDs), whi...

  20. Designing of Low Power CNTFET Based D Flip-Flop Using Forced Stack Technique

    Directory of Open Access Journals (Sweden)

    Vikas Sharma

    2015-04-01

    Full Text Available Low Power devices in small packages is the need of present and future electronic devices. Electronics Industry is making devices which can be planted in human bodies. CMOS Technology won‟t be able to deliver such devices because it shows short channel effects in Nano scale. So, to overcome the problems of CMOS technology we use CNTs (Carbon Nano Tubes. In electronic devices, power is consumed by various elements like flip-flop, latches, clock sources. So in order to reduce power of a system we used to reduce power consumed by flip-flops. In this paper we design an existing flip-flop “Low power clocked pass transistor flip-flop (LCPTFF” on CNTFET using Stanford CNTFET model for reference. We propose a design of CNTFET based Forced Stack Low Power Clocked Pass Transistor Flip-Flop (CN-FS-LCPTFF and observe 12% to 25% power reduction in various conditions like temperature change, CNTFET diameter change, and different voltage supply.

  1. Directions in US Air Force space power energy generation and distribution technology

    Science.gov (United States)

    Reinhardt, Kitt; Keener, Dave; Schuller, Mike

    1997-01-01

    Recent trends in the development of high efficiency, light-weight, reliable and cost-effective space power technologies needed to support the development of near-term, next-generation government and commercial satellites will be discussed. Significant advancements in light-weight and reduced volume electrical power system (EPS) components are required to enable the design of future smallsats with power requirements of less than 1000 W to monster-sats having projected power demands ranging from 10-50 kW for civilian and military communications and space based radar needs. For these missions increased emphasis is placed on reducing total satellite mass to enable use of smaller, less costly, and easier to deploy launch vehicles. In support of these requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Phillips Laboratory Space and Missiles Technology Directorate. Specific technologies presented in this paper include high efficiency multijunction solar cells, low-cost thin-film solar cells, ultra light-weight flexible solar arrays, solar electric thermal converters, and high-voltage (70-130 V) and high-efficiency power management and distribution (PMAD) electronics. The projected impact of EPS subsystem performance on existing, near-term, and next-generation 10-50 kW military satellites will be discussed, along with technical issues and status of EPS component development.

  2. Directions in US Air Force space power technology for global virtual presence

    Science.gov (United States)

    Keener, David; Reinhardt, Kitt; Mayberry, Clay; Radzykewycz, Dan; Donet, Chuck; Marvin, Dean; Hill, Carole

    1998-01-01

    Recent trends in the development of high efficiency, light-weight, compact, reliable and cost-effective space power technologies needed to support the development of next-generation military and commercial satellites will be discussed. Development of new light-weight and reduced volume electrical power system (EPS) technologies are required to enable the design of future ``smallsats'' with power requirements less than 1500W, to ``monstersats'' having projected power levels ranging from 10-50kW for commercial communication and military space based radar type satellites. In support of these projected requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Research Laboratory's Space Vehicles Directorate. The technologies presented in this paper include high efficiency multijunction solar cells, alkali metal thermal electric converters (AMTEC), high-voltage (70-130V)/high-efficiency/high-density power management and distribution (PMAD) electronics, and high energy density electrochemical and mechanical energy storage systems (sodium sulfur, lithium-ion, and flywheels). Development issues and impacts of individual technologies will be discussed in context with global presence satellite mission requirements.

  3. Scaling of the spatial power spectrum of excitations at the onset of solutal convection in a nanofluid far from equilibrium.

    Science.gov (United States)

    Giavazzi, Fabio; Vailati, Alberto

    2009-07-01

    We investigate pattern formation in the very early stages of solutal convective instabilities in a suspension of highly thermophilic nanoparticles heated from above. The processing of shadowgraph images allows us to recover the spatial power spectrum of the excitations at the onset. Remarkably, the power spectra obtained at large solutal Rayleigh numbers 2.56 x 10;{6}< or =Ra_{s}< or =4.53 x 10;{8} scale onto a single curve without adjustable parameters. The critical wave number exhibits power-law scaling with exponent 1/4 as a function of Ra_{s} , in excellent agreement with recent theoretical predictions.

  4. Some problems of the theory of quantum statistical systems with an energy spectrum of the fractional-power type

    Science.gov (United States)

    Alisultanov, Z. Z.; Meilanov, R. P.

    2012-10-01

    We consider the problem of the effective interaction potential in a quantum many-particle system leading to the fractional-power dispersion law. We show that passing to fractional-order derivatives is equivalent to introducing a pair interparticle potential. We consider the case of a degenerate electron gas. Using the van der Waals equation, we study the equation of state for systems with a fractional-power spectrum. We obtain a relation between the van der Waals constant and the phenomenological parameter α, the fractional-derivative order. We obtain a relation between energy, pressure, and volume for such systems: the coefficient of the thermal energy is a simple function of α. We consider Bose—Einstein condensation in a system with a fractional-power spectrum. The critical condensation temperature for 1 ideal system, where α = 2.

  5. Beyond the standard $\\Lambda$CDM cosmology: the observed structure of DM halos and the shape of the power spectrum

    CERN Document Server

    Demiański, M

    2015-01-01

    To restore the evolutionary history of the Dark Matter (DM) dominated objects -- galaxies and clusters of galaxies. Analyze the observational data to reveal correlations between the virial mass, $M_{vir}$, of halos and main properties of their central cores, namely, the mean DM density, pressure and entropy, and the redshifts of halo formation, $z_f$. These correlations indicate a high degree of self similarity of both the process of halos formation and the internal structure of relaxed halos. We confirm the CDM--like shape of the small scale power spectrum. However our reconstruction of evolutionary history of observed objects differs from expectations of the standard $\\Lambda$CDM cosmology and requires either multicomponent composition of DM or more complex primordial power spectrum of density perturbations with significant excess of power at scales of clusters of galaxies and larger. This approach seems to be quite efficient and suitably supplements the current investigations of galaxies at large redshifts...

  6. Forced convection of power-law fluids flow over a rotating nonisothermal body

    Science.gov (United States)

    Kim, H. W.; Essemyi, A. J.

    1993-10-01

    Presented is an analysis of steady laminar flow of power-law fluids past a rotating body with nonisothermal surfaces. A coordinate transformation combined with the Merk-type series expansion is employed to transform the governing momentum equations into a set of coupled ordinary differential equations. The equations are numerically integrated to obtain the axial and tangential velocity gradients for determining the friction coefficient. For forced convection, a generalized coordinate transformation is used to analyze the temperature field of the power-law flow. Solutions to the transformed energy equations are obtained in the form of universal functions. The heat transfer coefficients in terms of NuRe(sup 1/(n + 1)) are presented for a rotating sphere. The effects of power-law index, rotation sphere, Prandtl number, and the location of step discontinuity in surface temperature on the local Nusselt number are fully investigated and demonstrated.

  7. Probing the Scale Invariance of the Inflationary Power Spectrum in Expanding Quasi-Two-Dimensional Dipolar Condensates

    Science.gov (United States)

    Chä, Seok-Yeong; Fischer, Uwe R.

    2017-03-01

    We consider an analogue de Sitter cosmos in an expanding quasi-two-dimensional Bose-Einstein condensate with dominant dipole-dipole interactions between the atoms or molecules in the ultracold gas. It is demonstrated that a hallmark signature of inflationary cosmology, the scale invariance of the power spectrum of inflaton field correlations, experiences strong modifications when, at the initial stage of expansion, the excitation spectrum displays a roton minimum. Dipolar quantum gases thus furnish a viable laboratory tool to experimentally investigate, with well-defined and controllable initial conditions, whether primordial oscillation spectra deviating from Lorentz invariance at trans-Planckian momenta violate standard predictions of inflationary cosmology.

  8. OCT-based quantification of flow velocity, shear force, and power generated by a biological ciliated surface (Conference Presentation)

    Science.gov (United States)

    Huang, Brendan K.; Khokha, Mustafa K.; Loewenberg, Michael; Choma, Michael A.

    2016-03-01

    In cilia-driven fluid flow physiology, quantification of flow velocity, shearing force, and power dissipation is important in defining abnormal ciliary function. The capacity to generate flow can be robustly described in terms of shearing force. Dissipated power can be related to net ATP consumption by ciliary molecular motors. To date, however, only flow velocity can be routinely quantified in a non-invasive, non-contact manner. Additionally, traditional power-based metrics rely on metabolic consumption that reflects energy consumption not just from cilia but also from all active cellular processes. Here, we demonstrate the estimation of all three of these quantities (flow velocity, shear force, and power dissipation) using only optical coherence tomography (OCT). Specifically, we develop a framework that can extract force and power information from vectorial flow velocity fields obtained using OCT-based methods. We do so by (a) estimating the viscous stress tensor from flow velocity fields to estimate shearing force and (b) using the viscous stress tensor to estimate the power dissipation function to infer total mechanical power. These estimates have the advantage of (a) requiring only a single modality, (b) being non-invasive in nature, and (c) being reflective of only the net power work generated by a ciliated surface. We demonstrate our all-optical approach to the estimation of these parameters in the Xenopus animal model system under normal and increased viscous loading. Our preliminary data support the hypothesis that the Xenopus ciliated surface can increase force output under loading conditions.

  9. Wavelet Transform Analysis of the Power Spectrum of Centre of Pressure Signals to Detect the Critical Point Interval of Postural Control

    Science.gov (United States)

    Singh, Neeraj Kumar; Snoussi, Hichem; Hewson, David; Duchêne, Jacques

    The aim of this study was to develop a method to detecting the critical point interval (CPI) when sensory feedback is used as part of a closed-loop postural control strategy. Postural balance was evaluated using centre of pressure (COP) displacements from a force plate for 17 control and 10 elderly subjects under eyes open, eyes closed, and vibration conditions. A modified local-maximum-modulus wavelet transform analysis using the power spectrum of COP signals was used to calculate CPI. Lower CPI values indicate increased closed-loop postural control with a quicker response to sensory input. Such a strategy requires greater energy expenditure due to the repeated muscular interventions to remain stable. The CPI for elderly occurred significantly quicker than for controls, indicating tighter control of posture. Similar results were observed for eyes closed and vibration conditions. The CPI parameter can be used to detect differences in postural control due to ageing.

  10. Systematic Observation of Time-Dependent Phenomena in the RF Output Spectrum of High Power Gyrotrons

    Directory of Open Access Journals (Sweden)

    Kern Stefan

    2012-09-01

    Full Text Available At IHM/KIT, high power gyrotrons with conventional cavity (e.g. 1 MW CW at 140 GHz for the stellarator Wendelstein 7-X and coaxial cavity (2 MW shortpulse at 170 GHz for ITER for fusion applications are being developed and verified experimentally. Especially with respect to the problem of parasitic RF oscillations in the beam tunnel of some W7-X tubes, investigations of the gyrotron RF output spectrum have proved to be a valuable source of diagnostic information. Signs of transient effects in millisecond pulses, like frequency switching or intermittent low-frequency modulation, have indicated that truly time-dependent measurements with high frequency resolution and dynamic range could give deeper insight into these phenomena. In this paper, an improved measurement system is presented, which employs a fast oscilloscope as receiver. Shorttime Fourier transform (STFT is applied to the time-domain signal, yielding time-variant spectra with frequency resolutions only limited by acquisition length and STFT segmentation choice. Typical reasonable resolutions are in the range of 100 kHz to 10 MHz with a currently memory-limited maximum acquisition length of 4 ms. A key feature of the system consists in the unambiguity of frequency measurement: The system receives through two parallel channels, each using a harmonic mixer (h = 9 – 12 to convert the signal from RF millimeter wave frequencies (full D-Band, 110 – 170 GHz to IF (0 – 3 GHz. For each IF output signal of each individual mixer, injection side and receiving harmonic are initially not known. Using accordingly determined LO frequencies, this information is retrieved from the redundancy of the channels, yielding unambiguously reconstructed RF spectra with a total span of twice the usable receiver IF bandwidth, up to ≈ 6 GHz in our case. Using the system, which is still being improved continuously, various transient effects like cavity mode switching, parasitic oscillation frequency variation

  11. [Novel method of noise power spectrum measurement for computed tomography images with adaptive iterative reconstruction method].

    Science.gov (United States)

    Nishimaru, Eiji; Ichikawa, Katsuhiro; Hara, Takanori; Terakawa, Shoichi; Yokomachi, Kazushi; Fujioka, Chikako; Kiguchi, Masao; Ishifuro, Minoru

    2012-01-01

    Adaptive iterative reconstruction techniques (IRs) can decrease image noise in computed tomography (CT) and are expected to contribute to reduction of the radiation dose. To evaluate the performance of IRs, the conventional two-dimensional (2D) noise power spectrum (NPS) is widely used. However, when an IR provides an NPS value drop at all spatial frequency (which is similar to NPS changes by dose increase), the conventional method cannot evaluate the correct noise property because the conventional method does not correspond to the volume data natures of CT images. The purpose of our study was to develop a new method for NPS measurements that can be adapted to IRs. Our method utilized thick multi-planar reconstruction (MPR) images. The thick images are generally made by averaging CT volume data in a direction perpendicular to a MPR plane (e.g. z-direction for axial MPR plane). By using this averaging technique as a cutter for 3D-NPS, we can obtain adequate 2D-extracted NPS (eNPS) from 3D NPS. We applied this method to IR images generated with adaptive iterative dose reduction 3D (AIDR-3D, Toshiba) to investigate the validity of our method. A water phantom with 24 cm-diameters was scanned at 120 kV and 200 mAs with a 320-row CT (Acquilion One, Toshiba). From the results of study, the adequate thickness of MPR images for eNPS was more than 25.0 mm. Our new NPS measurement method utilizing thick MPR images was accurate and effective for evaluating noise reduction effects of IRs.

  12. The vibrational source strength descriptor using power input from equivalent forces: a simulation study

    DEFF Research Database (Denmark)

    Laugesen, Søren; Ohlrich, Mogens

    1994-01-01

    Simple, yet reliable methods for the approximate determination of the vibratory power supplied by the internal excitation forces of a given vibrational source are of great interest. One such method that relies on the application of a number of “equivalent forces” and measurements of the mean squa...... to somewhat larger estimation errors. The reliability of the estimate is also studied under different conditions with respect to coupling stiffness between source and receiver and relative mobility of the source and receiving structures......Simple, yet reliable methods for the approximate determination of the vibratory power supplied by the internal excitation forces of a given vibrational source are of great interest. One such method that relies on the application of a number of “equivalent forces” and measurements of the mean...... squared velocity on either the source or the receiving structure is studied in this paper by means of computer simulations. The study considers a simple system of two flexural beams coupled via a pair of springs. The investigation shows that a relatively small number of equivalent forces suffice...

  13. A possible link between the power spectrum of interstellar filaments and the origin of the prestellar core mass function

    CERN Document Server

    Roy, A; Arzoumanian, D; Peretto, N; Palmeirim, P; Konyves, V; Schneider, N; Benedettini, M; Di Francesco, J; Elia, D; Hill, T; Ladjelate, B; Louvet, F; Motte, F; Pezzuto, S; Schisano, E; Shimajiri, Y; Spinoglio, L; Ward-Thompson, D; White, G

    2015-01-01

    Two major features of the prestellar CMF are: 1) a broad peak below 1 Msun, presumably corresponding to a mean gravitational fragmentation scale, and 2) a characteristic power-law slope, very similar to the Salpeter slope of the stellar initial mass function (IMF) at the high-mass end. While recent Herschel observations have shown that the peak of the prestellar CMF is close to the thermal Jeans mass in marginally supercritical filaments, the origin of the power-law tail of the CMF/IMF at the high-mass end is less clear. Inutsuka (2001) proposed a theoretical scenario in which the origin of the power-law tail can be understood as resulting from the growth of an initial spectrum of density perturbations seeded along the long axis of filaments by interstellar turbulence. Here, we report the statistical properties of the line-mass fluctuations of filaments in nearby molecular clouds observed with Herschel using a 1-D power spectrum analysis. The observed filament power spectra were fitted by a power-law function...

  14. Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC.

    Science.gov (United States)

    Roman-Liu, Danuta; Konarska, Maria

    2009-10-01

    The aim of the study was to quantify changes in PSDF frequency bands of the EMG signal and EMG parameters such as MF, MPF and zero crossing, with an increase in the level of muscle contractions in the range from 0.5% to 30% RMS(max) and to determine the frequency bands with the lowest dependency on RMS level so that this could be used in investigating muscle fatigue. Sixteen men, aged from 23 to 33 years old (mean 26.1), who participated in the study performed two force exertion tests. Fragments of EMG which corresponded to the levels of muscle contraction of 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30% RMS(max) registered from left and right trapezius pars descendents (TP) and left and right extensor digitorum superficialis (ED) muscles were selected for analysis. The analysis included changes in standard parameters of the EMG signal and changes in PSDF frequency bands, which occurred across muscle contraction levels. To analyze changes in PSDF across the level of muscle contraction, the spectrum was divided into six frequency bandwidths. The analysis of parameters focused on the differences in those parameters between the analyzed muscles, at different levels of muscle contraction. The study revealed that, at muscle contraction levels below 5% RMSmax, contraction level influences standard parameters of the EMG signal and that at such levels of muscle contraction every change in muscle contraction level (recruitment of additional MUs) is reflected in PSDF. The frequency band with the lowest dependency on contraction level was 76-140 Hz for which in both muscles no contraction level effect was detected for contraction levels above 5% RMS(max). The reproducibility of the results was very high, since the observations in of the left and right muscles were almost equal. The other factor, which strongly influences PSDF of the EMG signal, is probably the examined muscle structure (muscle morphology, size, function, subcutaneous layer, cross talk). It seems that low

  15. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks.

    Science.gov (United States)

    Liu, Xin

    2015-10-30

    In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  16. Calibration Requirements for Detecting the 21 cm Epoch of Reionization Power Spectrum and Implications for the SKA

    CERN Document Server

    Barry, N; Sullivan, I; Morales, M F; Pober, J C

    2016-01-01

    21 cm Epoch of Reionization observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power spectrum analysis including all of the major components of a real data processing pipeline: models of astrophysical foregrounds and EoR signal, frequency-dependent instrument effects, sky-based antenna calibration, and the full PS analysis. This study reveals that traditional sky-based per-frequency antenna calibration can only be implemented in EoR measurement analyses if the calibration model is unrealistically accurate. For reasonable levels of catalog completeness, the calibration introduces contamination in otherwise foreground-free power spectrum modes, precluding a PS measurement. We explore the origin of this contamination and potential mitigation techniques. We show that there is a strong joint constraint on the precision of the calibration catalog and the...

  17. Planck 2013 results. XXI. Power spectrum and high-order statistics of the Planck all-sky Compton parameter map

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2014-01-01

    We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. This map shows an obvious galaxy cluster tSZ signal that is well matched...... with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales (l thermal dust emission. At small angular scales (l > 500) the clustered cosmic......-Gaussianity of the Compton parameter map is further characterized by computing its 1D probability distribution function and its bispectrum. The measured tSZ power spectrum and high order statistics are used to place constraints on sigma(8)....

  18. Exact results for power spectrum and susceptibility of a leaky integrate-and-fire neuron with two-state noise

    CERN Document Server

    Droste, Felix

    2016-01-01

    The response properties of excitable systems driven by colored noise are of great interest, but are usually mathematically only accessible via approximations. For this reason, dichotomous noise, a rare example of a colored noise leading often to analytically tractable problems, has been extensively used in the study of stochastic systems. Here, we calculate exact expressions for the power spectrum and the susceptibility of a leaky integrate-and-fire neuron driven by asymmetric dichotomous noise. While our results are in excellent agreement with simulations, they also highlight a limitation of using dichotomous noise as a simple model for more complex fluctuations: Both power spectrum and susceptibility exhibit an undamped periodic structure, the origin of which we discuss in detail.

  19. The Cosmic Microwave Background Radiation Power Spectrum as a Random Bit Generator for Symmetric and Asymmetric-Key Cryptography

    CERN Document Server

    Lee, Jeffrey S

    2016-01-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n x n) random key matrix for a Vernam cipher is established.

  20. What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization

    Energy Technology Data Exchange (ETDEWEB)

    Pober, Jonathan C.; Morales, Miguel F. [Physics Department, University of Washington, Seattle, WA 98105 (United States); Liu, Adrian; McQuinn, Matthew; Parsons, Aaron R. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Dillon, Joshua S.; Hewitt, Jacqueline N.; Tegmark, Max [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Aguirre, James E. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Bowman, Judd D.; Jacobs, Daniel C. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85004 (United States); Bradley, Richard F. [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Carilli, Chris L. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); DeBoer, David R. [Radio Astronomy Laboratory, University of California Berkeley, Berkeley, CA 94720 (United States); Werthimer, Dan J. [Space Sciences Laboratory, University of California Berkeley, Berkeley, CA 94720 (United States)

    2014-02-20

    A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km{sup 2} collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km{sup 2} of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.

  1. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    Science.gov (United States)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  2. VISCOUS FORCES BETWEEN TWO SPHERES COLLIDING THROUGH INTERSTITIAL POWER-LAW FLUID

    Institute of Scientific and Technical Information of China (English)

    Yong; Xu; Hongyan; Li; Wenbin; Huang

    2005-01-01

    Interaction between two spheres with an interstitial fluid is essential in Discrete Element modeling for simulating the behaviors of ‘wet' particulate materials. In this paper the interaction between two spheres with an interstitial Power-law fluid was approximately resolved as normal and tangential interactive models respectively, for which the governing equations were simplified on the basis of Reynolds approximation. These equations were then solved analytically together with the boundary conditions to obtain the pressure distributions for each individual model, and event ually solutions of the viscous squeeze force and the tangential viscous resistance were obtained, which provide a set of solutions for implementing into DEM code or other purposes.

  3. The relation between the earthquake response spectrum, power spectrum and Fourier spectrum%地震反应谱、功率谱以及傅立叶谱关系探讨

    Institute of Scientific and Technical Information of China (English)

    熊辉; 李正良; 晏致涛; 汪之松; 张晓敏

    2011-01-01

    时程分析法作为目前结构地震响应分析中最为精准的方法,其准确性在很大程度上依赖于地震波的选取.然而,目前可用的地震记录较少,此时人工合成地震动不失为一个合理的选择.人工地震波的合成有一个基本的要求:模拟结果能与目标反应谱符合得较好,这就要求对地震动的功率谱、傅立叶谱以及反应谱等有较清楚的认识.本文详细地阐述了地震动模拟中涉及到的反应谱、功率谱和傅立叶谱的概念以及三者之间的关系,并初步讨论了目前地震动模拟中存在的一些缺陷,展望了未来地震动模型的发展方向.%The time history analysis method is recognized as the most accurate method in the structure's seismic response analysis, and its accuracy,to a great extent, determined by the selection of seismic wave.Because of the real seismic record is not enough, so that the numerical simulation of the earthquake acceleration time histories is a substitute.A basic require of the artificial earthquake wave that the numerical simulation result can match with the target response spectrum, and then the earthquake response spectrum, power spectrum and Fourier spectrum should be clearly recognized.Therefore, the relation between the earthquake response spectrum, power spectrum and Fourier spectrum is discussed, and some prospect is proposed in the numerical simulation of seismic wave.

  4. The WiggleZ Dark Energy Survey: the selection function and z = 0.6 galaxy power spectrum

    OpenAIRE

    Blake, Chris; Brough, Sarah; Colless, Matthew; Couch, Warrick; Croom, Scott; Davis, Tamara; Drinkwater, Michael J.; Forster, Karl; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui; Madore, Barry; Martin, Chris; Pimbblet, Kevin

    2010-01-01

    We report one of the most accurate measurements of the three-dimensional large-scale galaxy power spectrum achieved to date, using 56 159 redshifts of bright emission-line galaxies at effective redshift z ≈ 0.6 from the WiggleZ Dark Energy Survey at the Anglo-Australian Telescope. We describe in detail how we construct the survey selection function allowing for the varying target completeness and redshift completeness. We measure the total power with an accuracy of approximately 5 per cent in...

  5. CMB lensing beyond the power spectrum: Cosmological constraints from the one-point probability distribution function and peak counts

    Science.gov (United States)

    Liu, Jia; Hill, J. Colin; Sherwin, Blake D.; Petri, Andrea; Böhm, Vanessa; Haiman, Zoltán

    2016-11-01

    Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and near-future CMB stage III and IV surveys, which will yield reconstructed CMB lensing maps with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use N -body ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing convergence one-point probability distribution function (PDF) and peak counts. We show that these statistics contain significant information not captured by the two-point function and provide specific forecasts for the ongoing stage III Advanced Atacama Cosmology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction estimator, we forecast 9 σ (PDF) and 6 σ (peaks) detections of these statistics with AdvACT. Our simulation pipeline fully accounts for the non-Gaussianity of the lensing reconstruction noise, which is significant and cannot be neglected. Combining the power spectrum, PDF, and peak counts for AdvACT will tighten cosmological constraints in the Ωm-σ8 plane by ≈30 %, compared to using the power spectrum alone.

  6. Spectrum efficiency gains resulting from the implementation of adaptive transmit power control in fixed terrestrial links at 38 GHz

    Science.gov (United States)

    Callaghan, S. A.; Inglis, I.; Hansell, P.

    2009-06-01

    Adaptive transmit power control (ATPC) can be used to improve the spectrum efficiency of terrestrial point-to-point fixed links by limiting the transmit power to that required to maintain a constant bit error rate regardless of the propagation conditions. This results in a reduced transmit power being used during clear-sky conditions, lowering the interference resulting from the ATPC link. This improves the frequency reuse factor associated with a given band and geographic area, providing a spectrum efficiency gain. The project described in this paper found that implementing ATPC in the 38 GHz terrestrial fixed links band gives significant improvements in spectrum efficiency as measured by the increase in the number of links assigned to channel 1 (from ˜50% to ˜70%) and the decrease in the maximum bandwidth used (from ˜300 MHz to ˜180 MHz). However, a model plan exposed to an exceptionally intense frontal rain event showed a number of additional outages caused by ATPC, amounting to approximately 12% of the number of outages caused directly by rain. In comparison, when exposed to an annualized simulated rain database the number of extra outages in this case falls to 2.6%.

  7. AUTOREGRESSIVE MODEL AND POWER SPECTRUM CHARATERISTICS OF CURRENT SIGNAL IN HIGH FREQUENCY GROUP PULSE MICRO ELECTROCHEMICAL MACHINING

    Institute of Scientific and Technical Information of China (English)

    TANG Xinglun; ZHANG Zhijing; ZHOU Zhaoying; YANG Xiaodong

    2006-01-01

    The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.

  8. The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey

    CERN Document Server

    Das, Sudeep; Ade, Peter A R; Aguirre, Paula; Amir, Mandana; Appel, John W; Barrientos, L Felipe; Battistelli, Elia S; Bond, J Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Devlin, Mark J; Dicker, Simon R; Doriese, W Bertrand; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernández-Monteagudo, Carlos; Hilton, Gene C; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, David H; Hughes, John P; Infante, Leopoldo; Irwin, Kent D; Juin, Jean Baptiste; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M; Limon, Michele; Lin, Yen-Ting; Lupton, Robert H; Marsden, Danica; Martocci, Krista; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Partridge, Bruce; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wollack, Ed; Zhao, Yue

    2010-01-01

    We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the {\\Lambda}CDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8{\\sigma} level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.

  9. CAM within a field force of countervailing powers: The case of Portugal.

    Science.gov (United States)

    Almeida, Joana; Gabe, Jonathan

    2016-04-01

    This paper examines the extent to which the position of the medical profession and the state towards complementary and alternative medicine (CAM) practitioners has changed since the late 1990s, taking Portugal as a case study. Using Light's concept of countervailing powers, we consider the alliances, interests, rhetoric and degrees of control between these three actors over time, focussing particularly on the extent to which CAM practitioners have acted as a countervailing force in their relationship with the medical profession and the state. It also brings to the fore the position of supra-state agencies concerning CAM regulation. A critical discourse analysis was conducted on data derived from a systematic search of information dating from the late 1990s up to 2015. Our analysis suggests that CAM has emerged as an active player and a countervailing power in that it has had significant influence on the process of state policy-making. The medical profession, in turn, has moved from rejecting to 'incorporating' CAM, while the state has acted as a 'broker', trying to accommodate the demands and preferences of both actors while simultaneously demonstrating its power and autonomy in shaping health policy. In sum, the history of countermoves of CAM, the medical profession and the state in recasting power relations regarding CAM regulation in Portugal has highlighted the explanatory value of Light's countervailing power theory and the need to move away from a professional dominance and corporatist approach, in which CAM has simply been seen as subjugated to the power of the medical profession and the state.

  10. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Yao eWang

    2016-01-01

    Full Text Available Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism.Key word: Electroencephalography, Neurofeedback, Autism Spectrum Disorder, Gamma activity, EEG bands’ ratios

  11. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications

    Science.gov (United States)

    Cole, Shaun; Percival, Will J.; Peacock, John A.; Norberg, Peder; Baugh, Carlton M.; Frenk, Carlos S.; Baldry, Ivan; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Cross, Nicholas J. G.; Dalton, Gavin; Eke, Vincent R.; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Jenkins, Adrian; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2005-09-01

    We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the `baryon oscillations' that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial ns= 1 spectrum, h= 0.72 and negligible neutrino mass, the preferred parameters are Ωmh= 0.168 +/- 0.016 and a baryon fraction Ωb/Ωm= 0.185 +/- 0.046 (1σ errors). The value of Ωmh is 1σ lower than the 0.20 +/- 0.03 in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard Ωm= 0.3: in combination with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP), we infer Ωm= 0.231 +/- 0.021.

  12. Fundamental Distinctions in Physics underlying Nonsteady Forcings of Wind Turbine Power vs. Drivetrain by Atmospheric Turbulence

    Science.gov (United States)

    Brasseur, James; Lavely, Adam; Nandi, Tarak

    2016-11-01

    Whereas the primary function of a wind turbine (WT) is the generation of electricity, wind farm profitability is decreased both by integrated losses in power and increases in premature failures of drivetrain components resulting from energetic nonsteady aerodynamic forcings of WT rotors by atmospheric and wake turbulence. Here we contrast the physics underlying dominant nonsteady atmospheric turbulence forcings of the bending moments in the WT rotor plane (torque/power) vs. the out-of-plane bending moments (OPBM) that underlie premature drivetrain component failure. Using an advanced actuator line model of the 5 MW NREL and the 1.5 MW GE wind turbine rotors embedded within a high-fidelity spectral LES of a typical daytime convective atmospheric boundary layer, we show that (1) the physics underlying large torque vs. OBPM fluctuations are associated with fundamentally different turbulence eddy characteristics and (2) nonsteady response centers on 4 characteristic time scales associated advection of eddies and load response of blades cutting through internal turbulence eddy structure. Supported by DOE. Computer resources by NSF/XSEDE.

  13. Force and Power Measurements of a Functionally-Graded Chordwise-Flexible Flapping Wing

    Science.gov (United States)

    Mudbhari, Durlav; Erdogan, Malcolm; Moored, Keith

    2016-11-01

    Flyers and swimmers flap their wings and fins to propel themselves efficiently over long distances. A key element to achieve their high performance is the flexibility of their appendages. While numerous studies have shown that homogeneously flexible wings can enhance force production and efficiency, animals actually have wings with varying flexural rigidity along their chord and span. The goal of this study is to understand and characterize the force production and energetics of functionally-graded, chordwise flexible wings. A flapping wing composed of a rigid and a flexible region, that define a chordwise gradient in flexural rigidity, is used to model functionally-graded materials. By varying the ratio of the lengths of the rigid to flexible regions, the flexural rigidity of the flexible region, and the flapping frequency, the thrust production of a functionally-graded wing is directly measured in a wind tunnel. A novel vacuum chamber apparatus is used in conjunction with the wind tunnel measurements to reliably measure the aerodynamic power input and the propulsive efficiency. Limited flow visualization is performed with particle image velocimetry in order to connect the force production and energetics of the partially-flexible wing with its generated flow structures. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  14. Force-velocity relationship and maximal power on a cycle ergometer. Correlation with the height of a vertical jump.

    Science.gov (United States)

    Vandewalle, H; Peres, G; Heller, J; Panel, J; Monod, H

    1987-01-01

    The force-velocity relationship on a Monark ergometer and the vertical jump height have been studied in 152 subjects practicing different athletic activities (sprint and endurance running, cycling on track and/or road, soccer, rugby, tennis and hockey) at an average or an elite level. There was an approximately linear relationship between braking force and peak velocity for velocities between 100 and 200 rev.min-1. The highest indices of force P0, velocity V0 and maximal anaerobic power (Wmax) were observed in the power athletes. There was a significant relationship between vertical jump height and Wmax related to body mass.

  15. Dust and gas power spectrum in M 33 (HERM33ES)

    NARCIS (Netherlands)

    Combes, F.; Boquien, M.; Kramer, C.; Xilouris, E. M.; Bertoldi, F.; Braine, J.; Buchbender, C.; Calzetti, D.; Gratier, P.; Israel, F.; Koribalski, B.; Lord, S.; Quintana-Lacaci, G.; Relano, M.; Roellig, M.; Stacey, G.; Tabatabaei, F. S.; Tilanus, R. P. J.; van der Tak, F.; Verley, S.; van der Werf, Paul P.

    Power spectra of deprojected images of late-type galaxies in gas or dust emission are very useful diagnostics of the dynamics and stability of their interstellar medium. Previous studies have shown that the power spectra can be approximated as two power laws, a shallow one on large scales (larger

  16. A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400

    CERN Document Server

    Miller, A D; Devlin, M J; Dorwart, W B; Herbig, T; Nolta, M R; Page, L A; Puchalla, J; Torbet, E; Tran, H T

    1999-01-01

    We report on a measurement of the angular spectrum of the CMB between $l\\approx 100$ and $l\\approx 400$ made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with $\\delta T_l \\approx 85~\\mu$K at $l\\approx 200$ and a fall at $l>300$, thereby localizing the peak near $l\\approx 200$; and 2) that the anisotropy at $l\\approx 200$ has the spectrum of the CMB.

  17. Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools

    Science.gov (United States)

    Yang, Xiaojun; Lu, Dun; Ma, Chengfang; Zhang, Jun; Zhao, Wanhua

    2017-01-01

    The motor thrust force has lots of harmonic components due to the nonlinearity of drive circuit and motor itself in the linear motor feed drive system. What is more, in the motion process, these thrust force harmonics may vary with the position, velocity, acceleration and load, which affects the displacement fluctuation of the feed drive system. Therefore, in this paper, on the basis of the thrust force spectrum obtained by the Maxwell equation and the electromagnetic energy method, the multi-dimensional variation of each thrust harmonic is analyzed under different motion parameters. Then the model of the servo system is established oriented to the dynamic precision. The influence of the variation of the thrust force spectrum on the displacement fluctuation is discussed. At last the experiments are carried out to verify the theoretical analysis above. It can be found that the thrust harmonics show multi-dimensional spectrum characteristics under different motion parameters and loads, which should be considered to choose the motion parameters and optimize the servo control parameters in the high-speed and high-precision machine tools equipped with the linear motor feed drive system.

  18. Reconstruction of halo power spectrum from redshift-space galaxy distribution: cylinder-grouping method and halo exclusion effect

    CERN Document Server

    Okumura, Teppei; More, Surhud; Masaki, Shogo

    2016-01-01

    The peculiar velocity field measured by redshift-space distortions (RSD) in galaxy surveys provides a unique probe of the growth of large-scale structure. However, systematic effects arise when including satellite galaxies in the clustering analysis. Since satellite galaxies tend to reside in massive halos with a greater halo bias, the inclusion boosts the clustering power. In addition, virial motions of the satellite galaxies cause a significant suppression of the clustering power due to nonlinear RSD effects. We develop a novel method to recover the redshift-space power spectrum of halos from the observed galaxy distribution by minimizing the contamination of satellite galaxies. The cylinder grouping method (CGM) we study effectively excludes satellite galaxies from a galaxy sample. However, we find that this technique produces apparent anisotropies in the reconstructed halo distribution over all the scales which mimic RSD. On small scales, the apparent anisotropic clustering is caused by exclusion of halos...

  19. The DWT power spectrum analysis of the large scale structure in the universe: Method and simulation tests

    Institute of Scientific and Technical Information of China (English)

    YANG; Xiaohu

    2001-01-01

    [1]Vogeley, M. S., Szalay, A. S., Eigenmode analysis of galaxy redsh ift surveys. I. theory and methods, ApJ, 1996, 465: 34-53.[2]Fang, L. Z., Pando, J., Large-scale structures revealed by wavel et decomposition, The 5th Current Topics of Astrofundamental Physics (eds. Sanch ez, N., Zichichi, A.), Singapore: World Scientific, 1997.[3]Pando, J., Fang, L. Z., Detecting the non-Gaussian spectrum of Q SO's Lyalpha absorption line distribution, A&A, 1998, 340: 335-342.[4]Xu, W., Fang, L. Z., Deng, Z. G., Scale invariance of rich cluste r abundance: A possible test for models of structure formation, ApJ, 1998, 508: 472-482.[5]Pando, J., Valls-Gabaud, D., Fang, L. Z., Evidence for scale-sc ale correlations in the cosmic microwave background radiation, PRL, 1998, 81: 45 68-4571.[6]Feng, L. L., Fang, L. Z., Non-Gaussianity and the recovery of th e mass power spectrum from the Lyα forest, ApJ, 2000, 535: 519-529.[7]Feng, L. L., Deng, Z. G., Fang, L. Z., Breaking degeneracy of dar k matter models by the scale-scale correlations of galaxies, ApJ, 2000, 530: 53 -61.[8]Fang, L. Z., Feng, L. L., Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance-I. metho d, ApJ, 2000, 539: 9-22.[9]Tegmark, M., Hamilton, A. J. S., Vogeley, M. S. et al., Measuring the galaxy power spectrum with future redshift surveys, ApJ, 1998, 499: 555-57 6.[10]Bardeen, J. M., Bond, J. R., Kaiser, N. et al., The statistics of peak s of Gauss random fields, ApJ, 1986, 304: 15-61.[11]Peacock, J. A., Dodds, S. J., Linear power spectrum of cosmological ma ss fluctuations, MNRAS, 1994, 267: 1020-1034.[12]White, S. D. M., Efstathiou, G., Frenk, C. S., The amplitude of mass f luctuations in the universe, MNRAS, 1993, 262: 1023-1028.[13]Peacock, J. A., Dodds, S. J., Non-linear evolution of cosmological po wer spectra, MNRAS, 1996, 280: L19-L26.[14]Loveday, J., Peterson, B. A., Efstathiou, G. et al., The

  20. Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xiao-Chun, E-mail: xcmao@bao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.

  1. Probing Reionization with the Cross-power Spectrum of 21 cm and Near-infrared Radiation Backgrounds

    Science.gov (United States)

    Mao, Xiao-Chun

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |\\Delta ^2_{21,NIR}|\\sim 10^{-4} mK nW m-2 sr-1, reached at l ~ 1000 when the mean fraction of ionized hydrogen is \\bar{x}_{i}\\sim 0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10-4 to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the "missing" NIR background.

  2. Statistical characteristics of the observed Lyα forest and the shape of the initial power spectrum

    Science.gov (United States)

    Demiański, M.; Doroshkevich, A. G.; Turchaninov, V. I.

    2006-09-01

    We analyse the basic properties of about 6000 Lyman α absorbers observed in the high-resolution spectra of 19 quasars. We compare their observed characteristics with the predictions of our model of formation and evolution of absorbers and dark matter (DM) pancakes and voids based on the Zel'dovich theory of gravitational instability. This model asserts that absorbers are formed in the course of both linear and non-linear adiabatic and shock compression of DM and gaseous matter. Our model is consistent with simulations of structure formation, describes reasonably well the large-scale structure (LSS) observed in the distribution of galaxies at small redshifts, and emphasizes the generic similarity of the process of formation of LSS and absorbers. Using this model, we are able to link the column density and overdensity of the DM and gaseous components with the observed column density of neutral hydrogen, redshifts and Doppler parameters of absorbers. We show that the colder absorbers are associated with rapidly expanded underdense regions of galactic scale. We extend an existing method of measuring the power spectrum of initial perturbations. The observed separations between absorbers and their DM column density are linked with the correlation function of the initial velocity field. Applying this method to our sample of absorbers, we recover the cold dark matter (CDM) like power spectrum at scales of 10h-1 >= D >= 0.15h-1Mpc with a precision of ~15 per cent. However, at scales of ~3-150h-1kpc, the measured and CDM-like spectra are different. This result suggests a possible complex inflation with generation of excess power at small scales. Both confirmation of the CDM-like shape of the initial power spectrum and detection of its distortions at small scales are equally important for the widely discussed problems of physics of the early Universe, galaxy formation, and reheating of the Universe.

  3. Sensitivity of Cosmic-Ray Proton Spectra to the Low-wavenumber Behavior of the 2D Turbulence Power Spectrum

    Science.gov (United States)

    Engelbrecht, N. E.; Burger, R. A.

    2015-12-01

    In this study, a novel ab initio cosmic ray (CR) modulation code that solves a set of stochastic transport equations equivalent to the Parker transport equation, and that uses output from a turbulence transport code as input for the diffusion tensor, is introduced. This code is benchmarked with a previous approach to ab initio modulation. The sensitivity of computed galactic CR proton spectra at Earth to assumptions made as to the low-wavenumber behavior of the two-dimensional (2D) turbulence power spectrum is investigated using perpendicular mean free path expressions derived from two different scattering theories. Constraints on the low-wavenumber behavior of the 2D power spectrum are inferred from the qualitative comparison of computed CR spectra with spacecraft observations at Earth. Another key difference from previous studies is that observed and inferred CR intensity spectra at 73 AU are used as boundary spectra instead of the usual local interstellar spectrum. Furthermore, the results presented here provide a tentative explanation as to the reason behind the unusually high galactic proton intensity spectra observed in 2009 during the recent unusual solar minimum.

  4. Velocity, force, power, and Ca2+ sensitivity of fast and slow monkey skeletal muscle fibers

    Science.gov (United States)

    Fitts, R. H.; Bodine, S. C.; Romatowski, J. G.; Widrick, J. J.

    1998-01-01

    In this study, we determined the contractile properties of single chemically skinned fibers prepared from the medial gastrocnemius (MG) and soleus (Sol) muscles of adult male rhesus monkeys and assessed the effects of the spaceflight living facility known as the experiment support primate facility (ESOP). Muscle biopsies were obtained 4 wk before and immediately after an 18-day ESOP sit, and fiber type was determined by immunohistochemical techniques. The MG slow type I fiber was significantly smaller than the MG type II, Sol type I, and Sol type II fibers. The ESOP sit caused a significant reduction in the diameter of type I and type I/II (hybrid) fibers of Sol and MG type II and hybrid fibers but no shift in fiber type distribution. Single-fiber peak force (mN and kN/m2) was similar between fiber types and was not significantly different from values previously reported for other species. The ESOP sit significantly reduced the force (mN) of Sol type I and MG type II fibers. This decline was entirely explained by the atrophy of these fiber types because the force per cross-sectional area (kN/m2) was not altered. Peak power of Sol and MG fast type II fiber was 5 and 8.5 times that of slow type I fiber, respectively. The ESOP sit reduced peak power by 25 and 18% in Sol type I and MG type II fibers, respectively, and, for the former fiber type, shifted the force-pCa relationship to the right, increasing the Ca2+ activation threshold and the free Ca2+ concentration, eliciting half-maximal activation. The ESOP sit had no effect on the maximal shortening velocity (Vo) of any fiber type. Vo of the hybrid fibers was only slightly higher than that of slow type I fibers. This result supports the hypothesis that in hybrid fibers the slow myosin heavy chain would be expected to have a disproportionately greater influence on Vo.

  5. Impact of Noise Power Uncertainty on the Performance of Wideband Spectrum Segmentation

    Directory of Open Access Journals (Sweden)

    S. Tascioglu

    2010-12-01

    Full Text Available The objective of this work is to investigate the impact of noise uncertainty on the performance of a wideband spectrum segmentation technique. We define metrics to quantify the degradation due to noise uncertainty and evaluate the performance using simulations. Our simulation results show that the noise uncertainty has detrimental effects especially for low SNR users.

  6. The Power of Positivity: Predictors of Relationship Satisfaction for Parents of Children with Autism Spectrum Disorder

    Science.gov (United States)

    Ekas, Naomi V.; Timmons, Lisa; Pruitt, Megan; Ghilain, Christine; Alessandri, Michael

    2015-01-01

    The current study uses the actor-partner interdependence model to examine the predictors of relationship satisfaction for mothers and fathers of children with autism spectrum disorder. Sixty-seven couples completed measures of optimism, benefit finding, coping strategies, social support, and relationship satisfaction. Results indicated that…

  7. The DWT power spectrum analysis of the large scale structure in the universe: Method and simulation tests

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the discrete wavelet transformation (DWT), we prese nt apixelized method of estimating the power spectra of galaxy samples. With lo cal properties of wavelet both in physical and wavenumber spaces, DWT power spec trum is equal to the corresponding band average of Fourier power spectrum. The D WT estimator is optimized in the sense that the spatial resolution is adaptive a utomatically to the perturbation wavelength to be studied. Under the assumption of ergodicity, the spatial average of local DWT fluctuation modes provides a fai r estimation of the ensemble average. We test DWT spectra of four typical cold da rk matter (CDM) structure formation models with numerical simulations. To consid er the infections of various observation effects to the DWT spectra, we introduc e irregular survey geometries, a given sampling rate, radial selection effects a nd redshift distortion effects into our mock samples. The numerical results show that, owing to its local properties, DWT spectrum is less affected by the sampl ing rate, survey geometry, and statistical ensemble fluctuations. With fast wave let decomposition algorithm, DWT can be used to analyze large survey samples, wh i ch is of direct significance in precise measurement of the cosmological paramete rs from the galaxy redshift surveys of next generation.

  8. The Atacama Cosmology Telescope: A Measurement of the 600< ell <8000 Cosmic Microwave Background Power Spectrum at 148 GHz

    CERN Document Server

    Fowler, J W; Ade, P A R; Aguirre, P; Amiri, M; Appel, J W; Barrientos, L F; Battistelli, E S; Bond, J R; Brown, B; Burger, B; Chervenak, J; Das, S; Devlin, M J; Dicker, S R; Doriese, W B; Dunkley, J; Dünner, R; Essinger-Hileman, T; Fisher, R P; Hajian, A; Halpern, M; Hasselfield, M; Hernández-Monteagudo, C; Hilton, G C; Hilton, M; Hincks, A D; Hlozek, R; Huffenberger, K M; Hughes, D H; Hughes, J P; Infante, L; Irwin, K D; Jimenez, R; Juin, J B; Kaul, M; Klein, J; Kosowsky, A; Lau, J M; Limon, M; Lin, Y -T; Lupton, R H; Marriage, T A; Marsden, D; Martocci, K; Mauskopf, P; Menanteau, F; Moodley, K; Moseley, H; Netterfield, C B; Niemack, M D; Nolta, M R; Page, L A; Parker, L; Partridge, B; Quintana, H; Reid, B; Sehgal, N; Sievers, J; Spergel, D N; Staggs, S T; Swetz, D S; Switzer, E R; Thornton, R; Trac, H; Tucker, C; Verde, L; Warne, R; Wilson, G; Wollack, E; Zhao, Y

    2010-01-01

    We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4' angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 square degrees of the southern sky, in a 4.2-degree-wide strip centered on declination 53 degrees South. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < \\ell < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power sp...

  9. Scale dependence of the CMB power spectrum in small field models of inflation with a high tensor to scalar ratio

    CERN Document Server

    Wolfson, Ira

    2016-01-01

    We study scale dependence of the cosmic microwave background (CMB) power spectrum in a class of small, single-field models of inflation which lead to a high value of the tensor to scalar ratio. The inflaton potentials that we consider are degree 5 polynomials, for which we calculate the power spectrum numerically and extract the cosmological parameters: the scalar index $n_s$, the running of the scalar index $n_{run}$ and the tensor to scalar ratio $r$. We first demonstrate the precision of the numerical analysis by comparing results to a case with an exact analytic solution - power law inflation. We then scan the possible values of potential parameters for which the cosmological parameters are within the allowed range by observations. The 5 parameter class is able to reproduce all the allowed values of the $n_s$ and $n_{run}$ for values of $r$ that are as high as 0.001. We find that for non-vanishing $n_{run}$, the numerically extracted values of $n_s$ and $n_{run}$ deviate significantly from analytic projec...

  10. Exact third-order density perturbation and one-loop power spectrum in general dark energy models

    Directory of Open Access Journals (Sweden)

    Seokcheon Lee

    2014-09-01

    Full Text Available Under the standard perturbation theory (SPT, we obtain the fully consistent third-order density fluctuation and kernels for the general dark energy models without using the Einstein–de Sitter (EdS universe assumption for the first time. We also show that even though the temporal and spatial components of the SPT solutions cannot be separable, one can find the exact solutions to any order in general dark energy models. With these exact solutions, we obtain the less than % error correction of one-loop matter power spectrum compared to that obtained from the EdS assumption for k=0.1 hMpc−1 mode at z=0(1,1.5. Thus, the EdS assumption works very well at this scale. However, if one considers the correction for P13, the error is about 6 (9, 11% for the same mode at z=0(1,1.5. One absorbs P13 into the linear power spectrum in the renormalized perturbation theory (RPT and thus one should use the exact solution instead of the approximation one. The error on the resummed propagator N of RPT is about 14 (8, 6% at z=0(1,1.5 for k=0.4 hMpc−1. For k=1 hMpc−1, the error correction of the total matter power spectrum is about 3.6 (4.6, 4.5% at z=0(1,1.5. Upcoming observation is required to archive the sub-percent accuracy to provide the strong constraint on the dark energy and this consistent solution is prerequisite for the model comparison.

  11. Inferring the IGM thermal history during reionization with the Lyman α forest power spectrum at redshift z ≃ 5

    Science.gov (United States)

    Nasir, Fahad; Bolton, James S.; Becker, George D.

    2016-12-01

    We use cosmological hydrodynamical simulations to assess the feasibility of constraining the thermal history of the intergalactic medium during reionization with the Lyα forest at z ≃ 5. The integrated thermal history has a measurable impact on the transmitted flux power spectrum that can be isolated from Doppler broadening at this redshift. We parametrize this using the cumulative energy per proton, u0, deposited into a gas parcel at the mean background density, a quantity that is tightly linked with the gas density power spectrum in the simulations. We construct mock observations of the line-of-sight Lyα forest power spectrum and use a Markov Chain Monte Carlo approach to recover u0 at redshifts 5 ≲ z ≲ 12. A statistical uncertainty of ˜20 per cent is expected (at 68 per cent confidence) at z ≃ 5 using high-resolution spectra with a total redshift path length of Δz = 4 and a typical signal-to-noise ratio of 15 per pixel. Estimates for the expected systematic uncertainties are comparable, such that existing data should enable a measurement of u0 to within ˜30 per cent. This translates to distinguishing between reionization scenarios with similar instantaneous temperatures at z ≃ 5, but with an energy deposited per proton that differs by 2-3 eV over the redshift interval 5 ≲ z ≲ 12. For an initial temperature of T ˜ 104 K following reionization, this corresponds to the difference between early (zre = 12) and late (zre = 7) reionization in our models.

  12. Cooperative AF Relaying in Spectrum-Sharing Systems: Performance Analysis under Average Interference Power Constraints and Nakagami-m Fading

    KAUST Repository

    Xia, Minghua

    2012-06-01

    Since the electromagnetic spectrum resource becomes more and more scarce, improving spectral efficiency is extremely important for the sustainable development of wireless communication systems and services. Integrating cooperative relaying techniques into spectrum-sharing cognitive radio systems sheds new light on higher spectral efficiency. In this paper, we analyze the end-to-end performance of cooperative amplify-and-forward (AF) relaying in spectrum-sharing systems. In order to achieve the optimal end-to-end performance, the transmit powers of the secondary source and the relays are optimized with respect to average interference power constraints at primary users and Nakagami-$m$ fading parameters of interference channels (for mathematical tractability, the desired channels from secondary source to relay and from relay to secondary destination are assumed to be subject to Rayleigh fading). Also, both partial and opportunistic relay-selection strategies are exploited to further enhance system performance. Based on the exact distribution functions of the end-to-end signal-to-noise ratio (SNR) obtained herein, the outage probability, average symbol error probability, diversity order, and ergodic capacity of the system under study are analytically investigated. Our results show that system performance is dominated by the resource constraints and it improves slowly with increasing average SNR. Furthermore, larger Nakagami-m fading parameter on interference channels deteriorates system performance slightly. On the other hand, when interference power constraints are stringent, opportunistic relay selection can be exploited to improve system performance significantly. All analytical results are corroborated by simulation results and they are shown to be efficient tools for exact evaluation of system performance.

  13. Possibility of precise measurement of the cosmological power spectrum with a dedicated survey of 21 cm emission after reionization.

    Science.gov (United States)

    Loeb, Abraham; Wyithe, J Stuart B

    2008-04-25

    Measurements of the 21 cm line emission by residual cosmic hydrogen after reionization can be used to trace the power spectrum of density perturbations through a significant fraction of the observable volume of the Universe. We show that a dedicated 21 cm observatory could probe a number of independent modes that is 2 orders of magnitude larger than currently available, and enable a cosmic-variance limited detection of the signature of a neutrino mass approximately 0.05 eV. The evolution of the linear growth factor with redshift could also constrain exotic theories of gravity or dark energy to an unprecedented precision.

  14. Power spectrum of large-scale structure cosmological models in the framework of scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Meza, M A, E-mail: marioalberto.rodriguez@inin.gob.m [Instituto Avanzado de Cosmologia, IAC, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F. (Mexico)

    2010-05-01

    We study the large-scale structure formation in the Universe in the frame of scalar-tensor theories as an alternative to general relativity. We review briefly the Newtonian limit of non-minimally coupled scalar-tensor theories and the evolution equations of the N-body system that is appropriate to study large-scale structure formation in the Universe. We compute the power-spectrum of the universe at present epoch and show how the large-scale structure depends on the scalar field contribution.

  15. MaxEnt power spectrum estimation using the Fourier transform for irregularly sampled data

    CERN Document Server

    Johnson, Robert W

    2011-01-01

    The principle of maximum entropy is applied to the spectral analysis of a data signal with general variance matrix and containing gaps in the record. An argument is presented based on statistical physics that the arbitrary prefactor should not be introduced to the entropy term. The role of the entropic regularizer is to prevent one from overestimating structure in the spectrum when faced with imperfect data. We compare the formalism for when the variance of the data is known explicitly to that for when the variance is known only to lie in some finite range. The result of including the entropic regularizer is to suggest a spectrum consistent with the variance of the data which has less structure than that given by the forward transform. An application of the methodology to example data is demonstrated.

  16. On the Feasibility of Low-Power Secondary Access to 960-1215 MHz Aeronautical Spectrum

    CERN Document Server

    Obregon, Evanny; Zander, Jens

    2012-01-01

    In this paper, we analyze the feasibility of short range indoor communication using secondary spectrum access to the 960-1215 MHz band, primarily allocated to the distance measuring equipment (DME) system for aeronautical navigation. We propose a practical secondary sharing scheme based on a combination of geo-location databases and spectrum sensing. Since the DME system performs a safety-of-life function, protection from harmful interference becomes extremely critical. Secondary users estimate the propagation loss and employ an individual interference threshold to control the aggregate interference. We examine the feasibility of large scale secondary access in terms of the transmission probability (of the secondary users) that keeps the probability of harmful interference below a given limit. Delays in the database update and uncertainties in the estimated propagation losses due to fading affect the feasibility of the secondary access. We propose a cumulant-based approximation of the probability distribution...

  17. Instrumented toys for studying power and precision grasp forces in infants.

    Science.gov (United States)

    Serio, S M; Cecchi, F; Boldrini, E; Laschi, C; Sgandurra, G; Cioni, G; Dario, P

    2011-01-01

    Currently the study of infants grasping development is purely clinical, based on functional scales or on the observation of the infant while playing; no quantitative variables are measured or known for diagnosis of eventually disturbed development. The aim of this work is to show the results of a longitudinal study achieved by using a "baby gym" composed by a set of instrumented toys, as a tool to measure and stimulate grasping actions, in infants from 4 to 9 months of life. The study has been carried out with 7 healthy infants and it was observed, during infants development, an increase of precision grasp and a reduction of power grasp with age. Moreover the forces applied for performing both precision and power grasp increase with age. The proposed devices represent a valid tool for continuous and quantitative measuring infants manual function and motor development, without being distressful for the infant and consequently it could be suitable for early intervention training during the first year of life. The same system, in fact, could be used with infants at high risk for developmental motor disorder in order to evaluate any potential difference from control healthy infants.

  18. The influence of van der Waals forces on the waveguide deformation and power limit of nanoscale optomechanical systems

    CERN Document Server

    Xu, Fei; Luo, WEi; Lu, Yan-qing

    2014-01-01

    The ultra-short range force, van der Waals force (VWF), will rise rapidly when one nanoscale waveguide is close to another one, and be stronger than the external transverse gradient force (TGF). We theoretically investigate the giant influence of the VWF on the device performance in a typical optomechanical system consisting of a suspended silicon waveguide and a silica substrate including waveguide deformation stiction and failure mechanism. The device shows unique optically-activated plastic/elastic behaviors and stiction due to the VWF. When the input optical power is above the critical power, the waveguide is sticking to the substrate and the deformation is plastic and unrecoverable, even though the total force is less than the yield strength of the waveguide material. This is important and helpful for the design and applications of optomechanical devices.

  19. A magnetoencephalography analysis of resting state power spectrum of inpatients with major depressive disorder

    Institute of Scientific and Technical Information of China (English)

    汤浩

    2013-01-01

    Objective To explore the discrepancies of magne-toencephalography(MEG) spectral power between female patients with major depressive disorder and nondepressed subjects in resting state. Methods Whole head MEG recordings were obtained in 12 female patients with major

  20. Force- and power-time curve comparison during jumping between strength-matched male and female basketball players.

    Science.gov (United States)

    Rice, Paige E; Goodman, Courtney L; Capps, Christopher R; Triplett, N Travis; Erickson, Travis M; McBride, Jeffrey M

    2017-04-01

    The purpose of this study was to compare force- and power-time curve variables during jumping between Division I strength-matched male and female basketball athletes. Males (n = 8) and females (n = 8) were strength matched by testing a one-repetition maximum (1RM) back squat. 1RM back squat values were normalised to body mass in order to demonstrate that strength differences were a function of body mass alone. Subjects performed three countermovement jumps (CMJ) at maximal effort. Absolute and relative force- and power-time curve variables from the CMJs were analysed between males and females. Average force- and power-time curves were generated for all subjects. Jump height was significantly greater (p ≤ .05) in males than females. Absolute force was higher in males during the concentric phase, but not significantly different (p ≥ .05) when normalised to body mass. Significance was found in absolute concentric impulse between sexes, but not when analysed relative to body mass. Rate of force development, rate of power development, relative peak force, and work were not significantly different between sexes. Males had significantly greater impulse during the eccentric phase as well as peak power (PP) during the concentric phase of the CMJ than did females in both absolute and relative terms. It is concluded that sex differences are not a determining factor in measured force during a CMJ when normalised to body mass between strength-matched subjects. However, eccentric phase impulse and concentric phase PP appear to be influenced by sex differences independent of matching strength levels.