Simplistic Coulomb Forces in Molecular Dynamics
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt; Schrøder, Thomas; Dyre, J. C.
2012-01-01
salt model the SF approximation overall reproduces the structural and dynamical properties as accurately as does the Wolf method. It is shown that the optimal Wolf damping parameter depends on the property in focus and that neither the potential energy nor the radial distribution function are useful...
3-dimensional forces and molecular dynamics of live cells
Hur, Sung Sik; Li, Yi-Shuan; Park, Joon Seok; Hu, Ying-Li; Chien, Shu
2010-08-01
The forces exerted by an adherent cell on a substrate were studied previously only in the two-dimensions (2D) tangential to the substrate surface. We used a novel technique to measure the three-dimensional (3D) stresses exerted by live bovine aortic endothelial cells (BAECs) on polyacrylamide deformable substrate, with particular emphasis on the 3D forces of focal adhesions. On 3D images acquired by confocal microscopy, displacements were determined with imageprocessing programs, and stresses in tangential (XY) and normal (Z) directions were computed by finite element method (FEM). BAECs generated stress in normal direction (Tz) with an order of magnitude comparable to that in tangential direction (Txy). Tz is upward at the cell edge and downward under the nucleus, changing continuously with a sign reversal between cell edge and nucleus edge. With the use of green fluorescent protein (GFP) labeled paxillin, the dynamics of this intracellular molecule were studied concurrently with the measurement of 3D forces. In the dynamic region, including the new lamellapodium forming region in the front and the retracting region in the rear, the tangential forces (Fxy) are correlated with the size of the focal adhesions (FAs) much more strongly than those in the stable region under the nucleus. In the dynamic region, normal force (Fz) was upward and positively correlated with FA size, while Fz in the stable region was downward and negatively correlated with FA size. These findings show the influence of the size of FAs on the 3D forces they exert on the substrate. This technique can be applied to study any adherent type of live cells to assess their biomechanical dynamics in conjunction with biochemical and functional activities, thus elucidating cellular functions in health and disease.
The Distributed Diagonal Force Decomposition Method for Parallelizing Molecular Dynamics Simulations
Boršnik, Urban; Miller, Benjamin T.; Brooks, Bernard R.; Janežič, Dušanka
2011-01-01
Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007
Analytical expression of mean force in quantum molecular dynamics
International Nuclear Information System (INIS)
Lu Zhongdao
1994-01-01
The nuclear mean field is very important in the intermediate and high energy nuclear reactions. The field is constructed by the interaction of nucleons in the nucleus and acts on each nucleons. the movement of nucleons obeys the Newton equation. It is important to improve the method of solving Newton differential equations and reduce the calculation of potentials. This can be realized by introducing the analytical forces instead of the potential difference. The analytical force expressions have been put into the code INENRKS. The application of the analytical force expression not only save much CPU time but also raise the calculation accuracy. (3 tabs.)
Hydrophobic attraction as revealed by AFM force measurements and molecular dynamics simulation.
Fa, Keqing; Nguyen, Anh V; Miller, Jan D
2005-07-14
Spherical calcium dioleate particles ( approximately 10 mum in diameter) were used as AFM (atomic force microscope) probes to measure interaction forces of the collector colloid with calcite and fluorite surfaces. The attractive AFM force between the calcium dioleate sphere and the fluorite surface is strong and has a longer range than the DLVO (Derjaguin-Landau-Verwey-Overbeek) prediction. The AFM force between the calcium dioleate sphere and the mineral surfaces does not agree with the DLVO prediction. Consideration of non-DLVO forces, including the attractive hydrophobic force and the repulsive hydration force, was necessary to explain the experimental results. The non-DLVO interactions considered were justified by the different interfacial water structures at calcite- and fluorite-water interfaces as revealed by the numerical computation experiments with molecular dynamics simulation.
Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm
Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew
2000-01-01
One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous
Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).
Linear prediction of force time series to accelerate molecular dynamics simulations
Brutovsky, Branislav; Kneller, Gerald R.
2005-07-01
We have recently proposed a molecular dynamics simulation scheme in which the time-consuming evaluation of non-bonding forces is periodically replaced by linear prediction of the latter from previous values [B. Brutovsky, T. Mülders, G.R. Kneller, J. Chem. Phys. 118 (2003) 6179]. For a simple molecular liquid, consisting of linear molecules with an internal vibrational degree of freedom, the method yields a speedup of up to 7 compared to conventional simulations. The hybrid simulation scheme preserves all essential structural and dynamical quantities. We show here that the linear predictor can be considered as an optimal integrator for finite time steps whose coefficients approach those of a discrete Taylor series if the simulation step tends to zero. The short time dynamics and the structure of the liquid are preserved for much longer periods if linear prediction is used instead of Taylor expansion to predict the non-bonding forces.
Molecular dynamics simulation study of friction force and torque on a rough spherical particle.
Kohale, Swapnil C; Khare, Rajesh
2010-06-21
Recent developments in techniques of micro- and nanofluidics have led to an increased interest in nanoscale hydrodynamics in confined geometries. In our previous study [S. C. Kohale and R. Khare, J. Chem. Phys. 129, 164706 (2008)], we analyzed the friction force experienced by a smooth spherical particle that is translating in a fluid confined between parallel plates. The magnitude of three effects--velocity slip at particle surface, the presence of confining surfaces, and the cooperative hydrodynamic interactions between periodic images of the moving particle--that determine the friction force was quantified in that work using molecular dynamics simulations. In this work, we have studied the motion of a rough spherical particle in a confined geometry. Specifically, the friction force experienced by a translating particle and the torque experienced by a rotating particle are studied using molecular dynamics simulations. Our results demonstrate that the surface roughness of the particle significantly reduces the slip at the particle surface, thus leading to higher values of the friction force and hence a better agreement with the continuum predictions. The particle size dependence of the friction force and the torque values is shown to be consistent with the expectations from the continuum theory. As was observed for the smooth sphere, the cooperative hydrodynamic interactions between the images of the sphere have a significant effect on the value of the friction force experienced by the translating sphere. On the other hand, the torque experienced by a spherical particle that is rotating at the channel center is insensitive to this effect.
Directory of Open Access Journals (Sweden)
Christopher Peschel
2017-09-01
Full Text Available We investigated the effect of fluorinated molecules on dipalmitoylphosphatidylcholine (DPPC bilayers by force-field molecular dynamics simulations. In the first step, we developed all-atom force-field parameters for additive molecules in membranes to enable an accurate description of those systems. On the basis of this force field, we performed extensive simulations of various bilayer systems containing different additives. The additive molecules were chosen to be of different size and shape, and they included small molecules such as perfluorinated alcohols, but also more complex molecules. From these simulations, we investigated the structural and dynamic effects of the additives on the membrane properties, as well as the behavior of the additive molecules themselves. Our results are in good agreement with other theoretical and experimental studies, and they contribute to a microscopic understanding of interactions, which might be used to specifically tune membrane properties by additives in the future.
Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.
Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele
2015-10-01
It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.
A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics
Energy Technology Data Exchange (ETDEWEB)
Morante, S., E-mail: morante@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Rossi, G.C., E-mail: rossig@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome (Italy)
2017-02-15
We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.
A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics
Morante, S.; Rossi, G. C.
2017-02-01
We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg-Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann-Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.
Droplet spreading driven by van der Waals force: a molecular dynamics study
Wu, Congmin
2010-07-07
The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t) ∼ √t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid. © 2010 IOP Publishing Ltd.
Droplet spreading driven by van der Waals force: a molecular dynamics study
International Nuclear Information System (INIS)
Wu Congmin; Qian Tiezheng; Sheng Ping
2010-01-01
The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t)∼√t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid.
Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Li, Guohui
2017-12-31
In all of the classical force fields, electrostatic interaction is simply treated and explicit electronic polarizability is neglected. The condensed-phase polarization, relative to the gas-phase charge distributions, is commonly accounted for in an average way by increasing the atomic charges, which remain fixed throughout simulations. Based on the lipid polarizable force field DMPC and following the same framework as Atomic Multipole Optimized Energetics for BiomoleculAr (AMOEBA) simulation, the present effort expands the force field to new anionic lipid models, in which the new lipids contain DMPG and POPS. The parameters are compatible with the AMOEBA force field, which includes water, ions, proteins, etc. The charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments, which are derived from the ab initio gas phase calculations. Many-body polarization including the inter- and intramolecular polarization is modeled in a consistent manner with distributed atomic polarizabilities. Molecular dynamics simulations of the two aqueous DMPG and POPS membrane bilayer systems, consisting of 72 lipids with water molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, electrostatic potential difference between the center of the bilayer and water are all calculated, and compared with limited experimental data.
ATK-ForceField: a new generation molecular dynamics software package
Schneider, Julian; Hamaekers, Jan; Chill, Samuel T.; Smidstrup, Søren; Bulin, Johannes; Thesen, Ralph; Blom, Anders; Stokbro, Kurt
2017-12-01
ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.
Chen, Chen; Arntsen, Christopher; Voth, Gregory A.
2017-10-01
Incorporation of quantum mechanical electronic structure data is necessary to properly capture the physics of many chemical processes. Proton hopping in water, which involves rearrangement of chemical and hydrogen bonds, is one such example of an inherently quantum mechanical process. Standard ab initio molecular dynamics (AIMD) methods, however, do not yet accurately predict the structure of water and are therefore less than optimal for developing force fields. We have instead utilized a recently developed method which minimally biases AIMD simulations to match limited experimental data to develop novel multiscale reactive molecular dynamics (MS-RMD) force fields by using relative entropy minimization. In this paper, we present two new MS-RMD models using such a parameterization: one which employs water with harmonic internal vibrations and another which uses anharmonic water. We show that the newly developed MS-RMD models very closely reproduce the solvation structure of the hydrated excess proton in the target AIMD data. We also find that the use of anharmonic water increases proton hopping, thereby increasing the proton diffusion constant.
Molecular dynamics study of the potential of mean force of SDS aggregates
Kawada, Shinji; Fujimoto, Kazushi; Yoshii, Noriyuki; Okazaki, Susumu
2017-08-01
In our previous study, all-atomistic molecular dynamics (MD) calculations have been carried out for the aggregation of ionic sodium dodecyl sulfate in water [S. Kawada et al., Chem. Phys. Lett. 646, 36 (2016)]. Aggregates of 20-30 dodecyl sulfate ions were formed within a short MD run for 10 ns. However, further aggregation did not occur despite a long MD calculation for more than 100 ns. This suggests that strong electrostatic repulsive interactions between the aggregates prevent the fusion of the aggregates. In the present study, mean force and potential of mean force acting between two aggregates with aggregation number N = 30 were evaluated as a function of their separation by MD calculations. The repulsive force becomes strong with decreasing distance between the two aggregates before they merge into one. An origin of the repulsive force is an electric double layer formed by the sulfate group and counter sodium ions. Strength of the repulsive force is in good agreement with the theoretical value given by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Once the aggregates establish contact, the force between them turns to be a large attractive force that can be explained by the interfacial tension. In order to form a single micelle from the two aggregates, it is necessary for them to climb over a free energy barrier of 23 kJ/mol. Once, the barrier is overcome, the micelle is stabilized by ˜200 kJ/mol. The time constant of aggregation evaluated from the calculated free energy barrier was about 28 μs at the concentration in our previous study.
Lee, M.W.; Meuwly, M.
2013-01-01
The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.
International Nuclear Information System (INIS)
Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai
2017-01-01
Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)
Li, DaLei; Lou, Yu-Qing; Esimbek, Jarken
2018-01-01
We study self-similar hydrodynamics of spherical symmetry using a general polytropic (GP) equation of state and derive the GP dynamic Lane-Emden equation (LEE) with a radial inertial force. In reference to Lou & Cao, we solve the GP dynamic LEE for both polytropic index γ = 1 + 1/n and the isothermal case n → +∞; our formalism is more general than the conventional polytropic model with n = 3 or γ = 4/3 of Goldreich & Weber. For proper boundary conditions, we obtain an exact constant solution for arbitrary n and analytic variable solutions for n = 0 and n = 1, respectively. Series expansion solutions are derived near the origin with the explicit recursion formulae for the series coefficients for both the GP and isothermal cases. By extensive numerical explorations, we find that there is no zero density at a finite radius for n ≥ 5. For 0 ≤ n 0 for monotonically decreasing density from the origin and vanishing at a finite radius for c being less than a critical value Ccr. As astrophysical applications, we invoke our solutions of the GP dynamic LEE with central finite boundary conditions to fit the molecular cloud core Barnard 68 in contrast to the static isothermal Bonnor-Ebert sphere by Alves et al. Our GP dynamic model fits appear to be sensibly consistent with several more observations and diagnostics for density, temperature and gas pressure profiles.
Molecular dynamics simulations of AP/HMX composite with a modified force field.
Zhu, Wei; Wang, Xijun; Xiao, Jijun; Zhu, Weihua; Sun, Huai; Xiao, Heming
2009-08-15
An all-atom force field for ammonium perchlorate (AP) is developed with the framework of pcff force field. The structural parameters of AP obtained with the modified force field are in good agreement with experimental values. Molecular dynamics (MD) simulations have been performed to investigate AP/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) composite at different temperatures. The binding energies, thermal expansion coefficient, and the trigger bond lengths of HMX in the AP/HMX composite have been obtained. The binding energies of the system increase slightly with temperature increasing, peak at 245K, and then gradually decrease. The volume thermal expansion coefficient of the AP/HMX composite has been derived from the volume variation with temperature. As the temperature rises, the maximal lengths of the trigger bond N-NO(2) of HMX increase gradually. The simulated results indicate that the maximal length of trigger bond can be used as a criterion for judging the sensitivity of energetic composite.
International Nuclear Information System (INIS)
Fankhanel, J.; Daum, B.; Kempe, A.; Rolfes, R.; Silbernagl, D.; Khorasani, M.Gh.Z.; Sturm, H.; Sturm, H.
2016-01-01
Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM) experiments and Molecular Dynamic Finite Element Method (MDFEM) simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work. The studies are substantiated with accompanying X-ray diffraction and Raman experiments.
Molecular dynamics simulations of short-range force systems on 1024-node hypercubes
International Nuclear Information System (INIS)
Plimpton, S.J.
1990-01-01
In this paper, two parallel algorithms for classical molecular dynamics are presented. The first assigns each processor to a subset of particles; the second assigns each to a fixed region of 3d space. The algorithms are implemented on 1024-node hypercubes for problems characterized by short-range forces, diffusion (so that each particle's neighbors change in time), and problem size ranging from 250 to 10000 particles. Timings for the algorithms on the 1024-node NCUBE/ten and the newer NCUBE 2 hypercubes are given. The latter is found to be competitive with a CRAY-XMP, running an optimized serial algorithm. For smaller problems the NCUBE 2 and CRAY-XMP are roughly the same; for larger ones the NCUBE 2 is up to twice as fast. Parallel efficiencies of the algorithms and communication parameters for the two hypercubes are also examined
Bergstra, J.A.; Bethke, I.
2002-01-01
Molecular dynamics is a model for the structure and meaning of object based programming systems. In molecular dynamics the memory state of a system is modeled as a fluid consisting of a collection of molecules. Each molecule is a collection of atoms with bindings between them. A computation is
Ramos, Sergio Luis L M; Ogino, Michihiko; Oguni, Masaharu
2015-01-28
We investigated the thermal properties of liquid methylcyclohexane and racemic sec-butylcyclohexane, as representatives of a molecular system with only dispersion-force intermolecular interactions, confined in the pores (thickness/diameter d = 12, 6, 1.1 nm) of silica gels by adiabatic calorimetry. The results imply a heterogeneous picture for molecular aggregate under confinement consisting of an interfacial region and an inner pore one. In the vicinity of a glass-transition temperature T(g,bulk) of bulk liquid, two distinguishable relaxation phenomena were observed for the confined systems and their origins were attributed to the devitrification, namely glass transition, processes of (1) a layer of interfacial molecules adjacent to the pore walls and (2) the molecules located in the middle of the pore. A third glass-transition phenomenon was observed at lower temperatures and ascribed to a secondary relaxation process. The glass transition of the interfacial-layer molecules was found to proceed at temperatures rather above T(g,bulk), whereas that of the molecules located in the inner pore region occurred at temperatures below T(g,bulk). We discuss the reason why the molecules located in different places in the pores reveal the respectively different dynamical properties.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Hong Min [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kondaraju, Sasidhar [Department of Mechanical Science, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 751013 (India); Lee, Jung Shin [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Suh, Youngho; Lee, Joonho H. [Samsung Electronics, Mechatronics R& D Center, Hwaseong-si, Gyeonggi-do 445-330 (Korea, Republic of); Lee, Joon Sang, E-mail: joonlee@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)
2017-07-01
Highlights: • Contact line forces, including friction and spreading forces are directly calculated. • Overall trends of variations in contact line forces during droplet spreading process show characteristics of contact line forces. • Detail relations of contact line forces and atomic kinetics in the contact line provide a clear evidence of the possible energy dissipation mechanism in droplet spreading process. - Abstract: Recent studies have revealed that contact line forces play an important role in the droplet spreading process. Despite their significance, the physics related to them has been studied only indirectly and the effect of contact line forces is still being disputed. We performed a molecular dynamics simulation and mimicked the droplet spreading process at the nanoscale. Based on the results of the simulation, the contact line forces were directly calculated. We found that the forces acting on the bulk and the contact line region showed different trends. Distinct positive and negative forces, contact line spreading, and friction forces were observed near the contact line. We also observed a strong dependency of the atomic kinetics in the contact line region on the variations in the contact line forces. The atoms of the liquid in the contact line region lost their kinetic energy due to the contact line friction force and became partially immobile on the solid surface. The results of the current study will be useful for understanding the role of the contact line forces on the kinetic energy dissipation in the contact line region.
Knight, Chris; Maupin, C Mark; Izvekov, Sergei; Voth, Gregory A
2010-10-12
In this report, a general methodology is presented for the parametrization of a reactive force field using data from a condensed phase ab initio molecular dynamics (AIMD) simulation. This algorithm allows for the creation of an empirical reactive force field that accurately reproduces the underlying ab initio reactive surface while providing the ability to achieve long-time statistical sampling for large systems not possible with AIMD alone. In this work, a model for the hydrated excess proton is constructed where the hydronium cation and proton hopping portions of the model are statistically force-matched to the results of Car-Parrinello Molecular Dynamics (CPMD) simulations. The flexible nature of the algorithm also allows for the use of the more accurate classical simple point-charge flexible water (SPC/Fw) model to describe the water-water interactions while utilizing the ab initio data to create an overall multistate molecular dynamics (MS-MD) reactive model of the hydrated excess proton in water. The resulting empirical model for the system qualitatively reproduces thermodynamic and dynamic properties calculated from the ab initio simulation while being in good agreement with experimental results and previously developed multistate empirical valence bond (MS-EVB) models. The present methodology, therefore, bridges the AIMD technique with the MS-MD modeling of reactive events, while incorporating key strengths of both.
Molecular scale energy dissipation in oligothiophene monolayers measured by dynamic force microscopy
Energy Technology Data Exchange (ETDEWEB)
Martinez, Nicolas F; Gomez, Carlos J; Garcia, Ricardo [CSIC-Instituto de Microelectronica de Madrid (IMM), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Kaminski, Wojciech [Institute of Experimental Physics, University of Wroclaw, plac Maksa Borna 9, PL-50-204 Wroclaw (Poland); Albonetti, Cristiano; Biscarini, Fabio [CNR-Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P Gobetti 101, I-40129 Bologna (Italy); Perez, Ruben, E-mail: ruben.perez@uam.e, E-mail: rgarcia@imm.cnm.csic.e [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)
2009-10-28
We perform a combined experimental and theoretical approach to establish the atomistic origin of energy dissipation occurring while imaging a molecular surface with an amplitude modulation atomic force microscope. We show that the energy transferred by a single nano-asperity to a sexithiophene monolayer is about 0.15 eV/cycle. The configuration space sampled by the tip depends on whether it approaches or withdraws from the surface. The asymmetry arises because of the presence of energy barriers among different deformations of the molecular geometry. This is the source of the material contrast provided by the phase-shift images.
B. Arab; A. Shokuhfar
2013-01-01
In this paper, the molecular dynamics method was used to calculate the physical and mechanical properties of the cross-linked epoxy polymer composed of diglycidyl ether of bisphenol-A (DGEBA) as resin and diethylenetriamine (DETA) as curing agent. Calculation of the properties was performed using the constant-strain (static) approach. A series of independent simulations were carried out based on four widely used force fields; COMPASS, PCFF, UFF and Dreiding. Proper comparisons between the res...
von Rudorff, Guido Falk; Jakobsen, Rasmus; Rosso, Kevin M; Blumberger, Jochen
2017-05-09
Density functional theory-based molecular dynamics calculations of condensed phase systems often benefit from the use of hybrid functionals. However, their use is computationally very demanding and severely limits the system size and time scale that can be simulated. Several methods have been introduced to accelerate hybrid functional molecular dynamics including Schwarz screening and the auxiliary density matrix method (ADMM). Here we present a simple screening scheme that can be applied in addition to these methods. It works by examining Hartree-Fock exchange (HFX) integrals and subsequently excluding those that contribute very little to any nuclear force component. The resultant force error is corrected by a history-dependent extrapolation scheme. We find that for systems where the calculation of HFX forces is a major bottleneck, a large fraction of the integrals can be neglected without introducing significant errors in the nuclear forces. For instance, for a 2 × 2 × 2 unit cell of CoO, 92% of the HFX integrals that have passed Schwarz screening within the ADMM approach can be neglected leading to a performance gain of a factor of 3 at a negligible error in nuclear forces (≤5 × 10 -4 H bohr -1 ). We also show that total energy conservation and solvation structures are not adversely affected by the screening method.
Energy Technology Data Exchange (ETDEWEB)
De Hatten, Xavier [University of Bordeaux; Cournia, Zoe [Yale University; Smith, Jeremy C [ORNL; Metzler-Nolte, Nils [University of Bochum, Germany
2007-08-01
The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1{prime}-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C2-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1{micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline{prime}-1-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.
Energy Technology Data Exchange (ETDEWEB)
de Hatten, Xavier; Cournia, Zoe; Huc, Ivan; Smith, Jeremy C.; Metzler-Nolte, Nils
2007-10-05
The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1'-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C{sub 2}-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1 {micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline-1'-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 {micro}s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.
Taatjes, Douglas J; Quinn, Anthony S; Rand, Jacob H; Jena, Bhanu P
2013-10-01
The atomic force microscope (AFM), invented in 1986, and a member of the scanning probe family of microscopes, offers the unprecedented ability to image biological samples unfixed and in a hydrated environment at high resolution. This opens the possibility to investigate biological mechanisms temporally in a heretofore unattainable resolution. We have used AFM to investigate: (1) fundamental issues in cell biology (secretion) and, (2) the pathological basis of a human thrombotic disease, the antiphospholipid syndrome (APS). These studies have incorporated the imaging of live cells at nanometer resolution, leading to discovery of the "porosome," the universal secretory portal in cells, and a molecular understanding of membrane fusion from imaging the interaction and assembly of proteins between opposing lipid membranes. Similarly, the development of an in vitro simulacrum for investigating the molecular interactions between proteins and lipids has helped define an etiological explanation for APS. The prime importance of AFM in the success of these investigations will be presented in this manuscript, as well as a discussion of the limitations of this technique for the study of biomedical samples. Copyright © 2013 Wiley Periodicals, Inc.
Polymer friction Molecular Dynamics
DEFF Research Database (Denmark)
Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.
We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....
Energy Technology Data Exchange (ETDEWEB)
Sedghi, Mohammad, E-mail: msedghi@uwyo.edu; Piri, Mohammad; Goual, Lamia [Department of Chemical and Petroleum Engineering, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming 82071 (United States)
2014-11-21
The depletion of conventional hydrocarbon reservoirs has prompted the oil and gas industry to search for unconventional resources such as shale gas/oil reservoirs. In shale rocks, considerable amounts of hydrocarbon reside in nanoscale pore spaces. As a result, understanding the multiphase flow of wetting and non-wetting phases in nanopores is important to improve oil and gas recovery from these formations. This study was designed to investigate the threshold capillary pressure of oil and water displacements in a capillary dominated regime inside nanoscale pores using nonequilibrium molecular dynamics (NEMD) simulations. The pores have the same cross-sectional area and volume but different cross-sectional shapes. Oil and water particles were represented with a coarse grained model and the NEMD simulations were conducted by assigning external pressure on an impermeable piston. Threshold capillary pressures were determined for the drainage process (water replaced by oil) in different pores. The molecular dynamics results are in close agreements with calculations using the Mayer-Stowe-Princen (MS-P) method which has been developed on the premise of energy balance in thermodynamic equilibrium. After the drainage simulations, a change in wall particles’ wettability from water-wet to oil-wet was implemented based on the final configuration of oil and water inside the pore. Waterflooding simulations were then carried out at the threshold capillary pressure. The results show that the oil layer formed between water in the corner and in the center of the pore is not stable and collapses as the simulation continues. This is in line with the predictions from the MS-P method.
Trinh, Thuat T; Vlugt, Thijs J H; Kjelstrup, Signe
2014-10-07
We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO2) using nonequilibrium molecular dynamics in the temperature range 300-1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO2 force fields (MSM, EPM2, and TraPPE) and two flexible models (based on EPM2) were investigated. All rigid force fields accurately predict the equation of state for carbon dioxide for the given range of variables. They can also reproduce the thermal conductivity of CO2 at room temperature and predict a decrease of the thermal conductivity with increasing temperature. At high temperatures, the rigid models underestimate the thermal conductivity.
Directory of Open Access Journals (Sweden)
Joseph L Baker
2013-04-01
Full Text Available Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P's structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon
Baker, Joseph L; Biais, Nicolas; Tama, Florence
2013-04-01
Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P) from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD) simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P's structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon stretching.
Drolle, E; Bennett, W F D; Hammond, K; Lyman, E; Karttunen, M; Leonenko, Z
2017-01-04
The molecular arrangement of lipids and proteins within biomembranes and monolayers gives rise to complex film morphologies as well as regions of distinct electrical surface potential, topographical and electrostatic nanoscale domains. To probe these nanodomains in soft matter is a challenging task both experimentally and theoretically. This work addresses the effects of cholesterol, lipid composition, lipid charge, and lipid phase on the monolayer structure and the electrical surface potential distribution. Atomic force microscopy (AFM) was used to resolve topographical nanodomains and Kelvin probe force microscopy (KPFM) to resolve electrical surface potential of these nanodomains in lipid monolayers. Model monolayers composed of dipalmitoylphosphatidylcholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-[phospho-rac-(3-lysyl(1-glycerol))] (DOPG), and cholesterol were studied. It is shown that cholesterol changes nanoscale domain formation, affecting both topography and electrical surface potential. The molecular basis for differences in electrical surface potential was addressed with atomistic molecular dynamics (MD). MD simulations are compared the experimental results, with 100 s of mV difference in electrostatic potential between liquid-disordered bilayer (L d , less cholesterol and lower chain order) and a liquid-ordered bilayer (L o , more cholesterol and higher chain order). Importantly, the difference in electrostatic properties between L o and L d phases suggests a new mechanism by which membrane composition couples to membrane function.
Neogi, Anupam; Mitra, Nilanjan
2015-06-01
Atomistic molecular dynamics in conjunction with multi-scale shock technique is utilized to investigate shock wave response of bulk amorphous polyvinyl chloride. Dependence of chain length on physical and mechanical behaviour of polymeric material at ambient condition of temperature and pressure are well known but unknown for extreme conditions. Non-reactive force fields PCFF, COMPASS and PCFF+ were used to determine applicability of the force field for the study of the material subjected to shock loads. Several samples of PVC with various chain lengths were subjected to a range of shock compression from 1.5-10.0 km/s. Even though dependence of chain length was observed for lower shock strengths but was not for intense shock loads. The principle Hugoniot points, calculated by applying hydrostatic Rankine-Hugoniot equations and as well as multi-scale shock technique, were compared against LASL experimental shock data, demonstrating superior performance of PCFF+ force-field over PCFF and COMPASS. Shock induced melting characteristic and vibrational spectroscopic study were conducted and compared with experimental data to observe differences in response with relation to different force fields, chain length of the material for different shock intensities.
Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy.
Klocke, Michael; Wolf, Dietrich E
2016-01-01
A molecular dynamics model is presented, which adds harmonic potentials to the atomic interactions to mimic the elastic properties of an AFM cantilever. It gives new insight into the correlation between the experimentally monitored frequency shift and cantilever damping due to the interaction between tip atoms and scanned surface. Applying the model to ionic crystals with rock salt structure two damping mechanisms are investigated, which occur separately or simultaneously depending on the tip position. These mechanisms are adhesion hysteresis on the one hand and lateral excitations of the cantilever on the other. We find that the short range Lennard-Jones part of the atomic interaction alone is sufficient for changing the predominant mechanism. When the long range ionic interaction is switched off, the two damping mechanisms occur with a completely different pattern, which is explained by the energy landscape for the apex atom of the tip. In this case the adhesion hysteresis is always associated with a distinct lateral displacement of the tip. It is shown how this may lead to a systematic shift between the periodic patterns obtained from the frequency and from the damping signal, respectively.
DEFF Research Database (Denmark)
Soza, P.; Hansen, Flemming Yssing; Taub, H.
2011-01-01
Molecular-dynamics simulations are used to investigate lateral friction in contact-mode atomic force microscopy of tetracosane (n-C24H50) films. We find larger friction coefficients on the surface of monolayer and bilayer films in which the long axis of the molecules is parallel to the interface...... of this motion does not appear to be in itself a major channel of energy dissipation. As previously reported in the literature, the layer density and thereby the strength of the attractive film-tip interaction is also an important factor in energy dissipation....
Baucom, Jason; Transue, Thomas; Fuentes-Cabrera, Miguel; Krahn, Joseph; Darden, Thomas; Sagui, Celeste
2004-03-01
Molecular dynamics simulations of the DNA duplex d(CCAACGTTGG)2 were used to study the relationship between DNA sequence and structure. Three different force fields were used: a traditional description based on atomic point charges, a polarizable force field and an ``extra-point" force field (with additional charges on extra-nuclear sites). It is found that in crystal environment all the force fields reproduce fairly well the sequence-dependent features of the experimental structure. The polarizable force fields, however, outperforms the other two, pointing out to the need of the inclusion of polarization for accurate descriptions of DNA.
Gu, Yongfeng; VanCourt, Tom; Herbordt, Martin C.
2008-01-01
FPGA-based acceleration of molecular dynamics simulations (MD) has been the subject of several recent studies. The short-range force computation, which dominates the execution time, is the primary focus. Here we combine: a high level of FPGA-specific design including cell lists, systematically determined interpolation and precision, handling of exclusion, and support for MD simulations of up to 256K particles. The target system consists of a standard PC with a 2004-era COTS FPGA board. There are several innovations: new microarchitectures for several major components, including the cell list processor and the off-chip memory controller; and a novel arithmetic mode. Extensive experimentation was required to optimize precision, interpolation order, interpolation mode, table sizes, and simulation quality. We obtain a substantial speed-up over a highly tuned production MD code. PMID:19412319
Gu, Yongfeng; Vancourt, Tom; Herbordt, Martin C
2008-05-01
FPGA-based acceleration of molecular dynamics simulations (MD) has been the subject of several recent studies. The short-range force computation, which dominates the execution time, is the primary focus. Here we combine: a high level of FPGA-specific design including cell lists, systematically determined interpolation and precision, handling of exclusion, and support for MD simulations of up to 256K particles. The target system consists of a standard PC with a 2004-era COTS FPGA board. There are several innovations: new microarchitectures for several major components, including the cell list processor and the off-chip memory controller; and a novel arithmetic mode. Extensive experimentation was required to optimize precision, interpolation order, interpolation mode, table sizes, and simulation quality. We obtain a substantial speed-up over a highly tuned production MD code.
Energy Technology Data Exchange (ETDEWEB)
Gao, Weimin; Niu, Haitao; Lin, Tong; Wang, Xungai; Kong, Lingxue [Institute for Frontier Materials, Deakin University, Waurn Ponds VIC 3216 (Australia)
2014-01-28
The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform external electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties.
Handbook of Molecular Force Spectroscopy
Noy, Aleksandr
2008-01-01
"...Noy's Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advisedto study this handbook in detail before venturing into the exciting and challenging world of molecular force spectroscopy." Matthew F. Paige, University of Saskatchewan, Journal of the American Chemical Society Modern materials science and biophysics are increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. Molecular force spectroscopy was developed in the past decade as the result of several unprecedented advances in the capabilities of modern scientific instrumentation, and defines a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these...
Molecular Dynamics Simulations of a Linear Nanomotor Driven by Thermophoretic Forces
DEFF Research Database (Denmark)
Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.
,7,8,9 Nanomotors are an attractive goal for nanotechnology.9-13 Such nano-scale structures capable of converting thermal energy into work will be needed in many types of nanodevices, including nanoconveyors14, memory devices15 and nano-encapsulated material delivery systems16,17. Moreover to design and manufacture....../nm, a directed motion of the capsule in the direction opposite to the imposed thermal gradient as shown in Fig. 2. FIG. 2: Center of mass position (COM) as a function of time for three different thermal gradients: blue (*), 3.16K/nm; green (×), 1.58K/nm, and red (+), 1.18K/nm. To confirm that the motion...... the inner CNT for different constrained velocities and different imposed thermal gradients (Fig. 3). FIG. 3: External force acting on the constrained inner CNT as a function of the center of mass (COM) velocity for different thermal gradients: red (+), 0.0K/nm; green (×), 1.0K/nm; blue (*), 2.0K...
Zhang, Yuxin; Huang, Xiaoqin; Han, Keli; Zheng, Fang; Zhan, Chang-Guo
2016-11-25
The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profile of the CocE)-(+)-cocaine binding process in comparison with that of the corresponding CocE-(-)-cocaine binding process. According to the MD simulations, the equilibrium CocE-(+)-cocaine binding mode is similar to the CocE-(-)-cocaine binding mode. However, based on the simulated free energy profiles, a significant free energy barrier (∼5 kcal/mol) exists in the CocE-(+)-cocaine binding process whereas no obvious free energy barrier exists in the CocE-(-)-cocaine binding process, although the free energy barrier of ∼5 kcal/mol is not high enough to really slow down the CocE-(+)-cocaine binding process. In addition, the obtained free energy profiles also demonstrate that (+)-cocaine and (-)-cocaine have very close binding free energies with CocE, with a negligible difference (∼0.2 kcal/mol), which is qualitatively consistent with the nearly same experimental K M values of the CocE enzyme for (+)-cocaine and (-)-cocaine. The consistency between the computational results and available experimental data suggests that the mechanistic insights obtained from this study are reasonable. Copyright Â© 2016 Elsevier Ireland Ltd. All rights reserved.
International Nuclear Information System (INIS)
Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof
2015-01-01
A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities
The nonequilibrium molecular dynamics
International Nuclear Information System (INIS)
Hoover, W.G.
1992-03-01
MOLECULAR DYNAMICS has been generalized in order to simulate a variety of NONEQUILIBRIUM systems. This generalization has been achieved by adopting microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress. Some of the problems already treated include rapid plastic deformation, intense heat conduction, strong shockwaves simulation, and far-from-equilibrium phase transformations. Continuing advances in technique and in the modeling of interatomic forces, coupled with qualitative improvements in computer hardware, are enabling such simulations to approximate real-world microscale and nanoscale experiments
Nonequilibrium molecular dynamics
Wm.G.Hoover; C.G.Hoover
2005-01-01
Nonequilibrium Molecular Dynamics is a powerful simulation tool. Like its equilibrium cousin, nonequilibrium molecular dynamics is based on time-reversible equations of motion. But unlike conventional mechanics, nonequilibrium molecular dynamics provides a consistent microscopic basis for the irreversible macroscopic Second Law of Thermodynamics. We recall here how fast computers led to the development of nonequilibrium molecular dynamics from the statistical mechanics of the 1950s. Computer-...
Interactive molecular dynamics
Schroeder, Daniel V.
2015-03-01
Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.
Trinh, T.T.; Vlugt, T.J.H.; Kjelstrup, S.H.
2014-01-01
We report a systematic investigation of the thermal conductivity of various three-site models of carbon dioxide (CO2) using nonequilibrium molecular dynamics in the temperature range 300–1000 K and for pressures up to 200 MPa. A direct comparison with experimental data is made. Three popular CO2
Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics
International Nuclear Information System (INIS)
Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.
1992-09-01
Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
Baker, Joseph; Biais, Nicolas; Tama, Florence
2011-10-01
Type IV pili (T4P) are long, filamentous structures that emanate from the cellular surface of many infectious bacteria. They are built from a 158 amino acid long subunit called pilin. T4P can grow to many micrometers in length, and can withstand large tension forces. During the infection process, pili attach themselves to host cells, and therefore naturally find themselves under tension. We investigated the response of a T4 pilus to a pulling force using the method of steered molecular dynamics (SMD) simulation. Our simulations expose to the external environment an amino acid sequence initially hidden in the native filament, in agreement with experimental data. Therefore, our simulations might be probing the initial stage of the transition to a force-induced conformation of the T4 pilus. Additional exposed amino acid sequences that might be useful targets for drugs designed to mitigate bacterial infection were also predicted.
Force Dynamics of Verb Complementation
Directory of Open Access Journals (Sweden)
Jacek Woźny
2015-12-01
Full Text Available Force Dynamics of Verb Complementation The concepts of motion and force are both extensively discussed in cognitive linguistics literature. But they are discussed separately. The first usually in the context of ‘motion situations’ (Talmy, Slobin, Zlatev, the other as part of the Force Dynamics framework, which was developed by Talmy. The aim of this paper is twofold: first, to argue that the concepts of force and motion should not be isolated but considered as two inseparable parts of force-motion events. The second goal is to prove that the modified Force Dynamics (force-motion framework can be used for precise characterization of the verb complementation patterns. To this end, a random sample of 50 sentences containing the verb ‘went’ is analyzed, demonstrating the differences between the categories of intensive and intransitive complementation with respect to the linguistically coded parameters of force and motion.
Energy Technology Data Exchange (ETDEWEB)
MacDermaid, Christopher M., E-mail: chris.macdermaid@temple.edu; Klein, Michael L.; Fiorin, Giacomo, E-mail: giacomo.fiorin@temple.edu [Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122-1801 (United States); Kashyap, Hemant K. [Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); DeVane, Russell H. [Modeling and Simulation, Corporate Research and Development, The Procter and Gamble Company, West Chester, Ohio 45069 (United States); Shinoda, Wataru [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Klauda, Jeffery B. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)
2015-12-28
The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.
Nonequilibrium molecular dynamics
Directory of Open Access Journals (Sweden)
Wm.G.Hoover
2005-01-01
Full Text Available Nonequilibrium Molecular Dynamics is a powerful simulation tool. Like its equilibrium cousin, nonequilibrium molecular dynamics is based on time-reversible equations of motion. But unlike conventional mechanics, nonequilibrium molecular dynamics provides a consistent microscopic basis for the irreversible macroscopic Second Law of Thermodynamics. We recall here how fast computers led to the development of nonequilibrium molecular dynamics from the statistical mechanics of the 1950s. Computer-based theories facilitated revolutionary breakthroughs in understanding during the 1970s and 1980s. The new idea key to the nonequilibrium development was the replacement of the external thermodynamic environment by internal control variables. The new variables can control temperature, or pressure, or energy, or stress, or heat flux. These thermostat, barostat, ergostat, ... variables can control and maintain nonequilibrium states. We illustrate the methods with a simple example well-suited to student exploration, a thermostatted harmonic oscillator exposed to a temperature gradient.
Nonequilibrium molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Hoover, W.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA))
1990-11-01
The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.
DEFF Research Database (Denmark)
Róg, Tomasz; Orłowski, Adam; Llorente, Alicia
2016-01-01
In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present......, and cholesterol, while the extracellular leaflet is composed of SM, PC and cholesterol discussed in Van Meer et al. (2008) [2]. The provided data include lipids' topologies, equilibrated structures of asymmetric bilayers, all force field parameters, and input files with parameters describing simulation conditions...
Energy Technology Data Exchange (ETDEWEB)
Rahnamoun, A. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 234 Research East, University Park, Pennsylvania 16802 (United States); Duin, A. C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 240 Research East, University Park, Pennsylvania 16802 (United States)
2016-03-07
We study the dynamics of the collisions between amorphous silica structures and amorphous and crystal ice clusters with impact velocities of 1 km/s, 4 km/s, and 7 km/s using the ReaxFF reactive molecular dynamics simulation method. The initial ice clusters consist of 150 water molecules for the amorphous ice cluster and 128 water molecules for the crystal ice cluster. The ice clusters are collided on the surface of amorphous fully oxidized and suboxide silica. These simulations show that at 1 km/s impact velocities, all the ice clusters accumulate on the surface and at 4 km/s and 7 km/s impact velocities, some of the ice cluster molecules bounce back from the surface. At 4 km/s and 7 km/s impact velocities, few of the water molecules dissociations are observed. The effect of the second ice cluster impacts on the surfaces which are fully covered with ice, on the mass loss/accumulation is studied. These studies show that at 1 km/s impacts, the entire ice cluster accumulates on the surface at both first and second ice impacts. At higher impact velocities, some ice molecules which after the first ice impacts have been attached to the surface will separate from the surface after the second ice impacts at 7 km/s impact velocity. For the 4 km/s ice cluster impact, ice accumulation is observed for the crystal ice cluster impacts and ice separation is observed for the amorphous ice impacts. Observing the temperatures of the ice clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting ice clusters increase to about 2000 K, with individual molecules occasionally reaching temperatures of over 8000 K and thus it will be prudent to consider the concept of electron excitation at
Aviat, Félix; Lagardère, Louis; Piquemal, Jean-Philip
2017-10-01
In a recent paper [F. Aviat et al., J. Chem. Theory Comput. 13, 180-190 (2017)], we proposed the Truncated Conjugate Gradient (TCG) approach to compute the polarization energy and forces in polarizable molecular simulations. The method consists in truncating the conjugate gradient algorithm at a fixed predetermined order leading to a fixed computational cost and can thus be considered "non-iterative." This gives the possibility to derive analytical forces avoiding the usual energy conservation (i.e., drifts) issues occurring with iterative approaches. A key point concerns the evaluation of the analytical gradients, which is more complex than that with a usual solver. In this paper, after reviewing the present state of the art of polarization solvers, we detail a viable strategy for the efficient implementation of the TCG calculation. The complete cost of the approach is then measured as it is tested using a multi-time step scheme and compared to timings using usual iterative approaches. We show that the TCG methods are more efficient than traditional techniques, making it a method of choice for future long molecular dynamics simulations using polarizable force fields where energy conservation matters. We detail the various steps required for the implementation of the complete method by software developers.
Force Dynamics During T Cell Activation
Garcia, David A.; Upadhyaya, Arpita
T cell activation is an essential step in the adaptive immune response. The binding of the T cell receptor (TCR) with antigen triggers signaling cascades and cell spreading. Physical forces exerted on the TCR by the cytoskeleton have been shown to induce signaling events. While cellular forces are known to depend on the mechanical properties of the cytoskeleton, the biophysical mechanisms underlying force induced activation of TCR-antigen interactions unknown. Here, we use traction force microscopy to measure the force dynamics of activated Jurkat T cells. The movements of beads embedded in an elastic gel serve as a non-invasive reporter of cytoskeletal and molecular motor dynamics. We examined the statistical structure of the force profiles throughout the cell during signaling activation. We found two spatially distinct active regimes of force generation characterized by different time scales. Typically, the interior of the cells was found to be more active than the periphery. Inhibition of myosin motor activity altered the correlation time of the bead displacements indicating additional sources of stochastic force generation. Our results indicate a complex interaction between myosin activity and actin polymerization dynamics in producing cellular forces in immune cells.
Chiral forces and molecular dissymmetry
International Nuclear Information System (INIS)
Mohan, R.
1992-01-01
Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected
Das, Arya; Ali, Sk. Musharaf
2018-02-01
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by
Substructured multibody molecular dynamics.
Energy Technology Data Exchange (ETDEWEB)
Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.
2006-11-01
We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.
Burnham, Christian J.; Futera, Zdenek; English, Niall J.
2018-03-01
The force-matching method has been applied to parameterise an empirical potential model for water-water and water-hydrogen intermolecular interactions for use in clathrate-hydrate simulations containing hydrogen guest molecules. The underlying reference simulations constituted ab initio molecular dynamics (AIMD) of clathrate hydrates with various occupations of hydrogen-molecule guests. It is shown that the resultant model is able to reproduce AIMD-derived free-energy curves for the movement of a tagged hydrogen molecule between the water cages that make up the clathrate, thus giving us confidence in the model. Furthermore, with the aid of an umbrella-sampling algorithm, we calculate barrier heights for the force-matched model, yielding the free-energy barrier for a tagged molecule to move between cages. The barrier heights are reasonably large, being on the order of 30 kJ/mol, and are consistent with our previous studies with empirical models [C. J. Burnham and N. J. English, J. Phys. Chem. C 120, 16561 (2016) and C. J. Burnham et al., Phys. Chem. Chem. Phys. 19, 717 (2017)]. Our results are in opposition to the literature, which claims that this system may have very low barrier heights. We also compare results to that using the more ad hoc empirical model of Alavi et al. [J. Chem. Phys. 123, 024507 (2005)] and find that this model does very well when judged against the force-matched and ab initio simulation data.
A sampling of molecular dynamics
Sindhikara, Daniel Jon
The sheer vastness of the number of computations required to simulate a biological molecule puts incredible pressure on algorithms to be efficient while maintaining sufficient accuracy. This dissertation summarizes various projects whose purposes address the large span of types of problems in molecular dynamics simulations of biological systems including: increasing efficiency, measuring convergence, avoiding pitfalls, and an application and analysis of a biological system. Chapters 3 and 4 deal with an enhanced sampling algorithm called "replica exchange molecular dynamics" which is designed to speed-up molecular dynamics simulations. The optimization of a key parameter of these simulations is analyzed. In these successive projects, it was found conclusively that maximizing "exchange attempt frequency" is the most efficient way to run a replica exchange molecular dynamics simulation. Chapter 5 describes an enhanced metric for convergence in parallel simulations called the normalized ergodic measure. The metric is applied to several properties for several replica exchange simulations. Advantages of this metric over other methods are described. Chapter 6 describes the implementation and optimization of an enhanced sampling algorithm similar to replica exchange molecular dynamics called multicanonical algorithm replica exchange molecular dynamics. The algorithm was implemented into a biomolecular simulation suite called AMBER. Additionally several parameters were analyzed and optimized. In Chapter 7, a pitfall in molecular dynamics is observed in biological systems that is caused by negligent use of a simulation's "thermostat". It was found that if the same pseudorandom number seed were used for multiple systems, they eventually synchronize. In this project, synchronization was observed in biological molecules. Various negative effects including corruption of data are pointed out. Chapter 8 describes molecular dynamics simulation of NikR, a homotetrameric nickel
Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.
2018-05-01
Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.
The effect of the Magnus force on skyrmion relaxation dynamics
Brown, Barton L.; Täuber, Uwe C.; Pleimling, Michel
2018-01-01
We perform systematic Langevin molecular dynamics simulations of interacting skyrmions in thin films. The interplay between Magnus force, repulsive skyrmion-skyrmion interaction and thermal noise yields different regimes during non-equilibrium relaxation. In the noise-dominated regime the Magnus force enhances the disordering effects of the thermal noise. In the Magnus-force-dominated regime, the Magnus force cooperates with the skyrmion-skyrmion interaction to yield a dynamic regime with slo...
International Nuclear Information System (INIS)
Cortini, Ruggero; Cheng, Xiaolin
2017-01-01
Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning's theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order of 1k B T. Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.
Ferreira, Moacir F; Franca, Eduardo F; Leite, Fábio L
2017-03-01
The quantification of herbicides in the environment, like glyphosate, is extremely important to prevent contamination. Nanobiosensors stands out in the quantization process, because of the high selectivity, sensitivity and short response time of the method. In order to emulate the detection of glyphosate using a specific nanobiossensor through an Atomic Force Microscope (AFM), this work carried out Steered Molecular Dynamics simulations (SMD) in which the herbicide was unbinded from the active site of the enzyme 5- enolpyruvylshikimate 3 phosphate synthase (EPSPS) along three different directions.After the simulations, Potential of Mean Force calculations were carried, from a cumulant expansion of Jarzynski's equation to obtain the profile of free energy of interaction between the herbicide and the active site of the enzyme in the presence of shikimate-3 substrate phosphate (S3P). The set of values for external work, had a Gaussian distribution. The PMF values ranged according to the directions of the unbindong pahway of each simulation, displaying energy values of 10.7, 14.7 and 19.5KJmol -1 . The results provide a theoretical support in order to assist the construction of a specific nanobiossensor to quantify the glyphosate herbicide. Copyright © 2016 Elsevier Inc. All rights reserved.
Raju, Muralikrishna
The interaction of dense fluids (water, polar organic solvents, room temperature ionic liquids, etc.) with solid substrates controls many chemical processes encountered in nature and industry. The key features of fluid-solid interfaces (FSIs) are the high mobility and often reactivity of the fluid phase, and the structural control provided by the solid phase. In this dissertation we apply molecular modeling methods to study FSIs in the following systems: 1. Dissociation of water on titania surfaces. We studied the adsorption and dissociation of water at 300 K on the following TiO2 surfaces: anatase (101), (100), (112), (001) and rutile (110) at various water coverages, using a recently developed ReaxFF reactive force field. The molecular and dissociative adsorption configurations predicted by ReaxFF for various water coverages agree with previous theoretical studies and experiment. 2. Mechanisms of Oriented Attachment in TiO2 nanocrystals. Oriented attachment (OA) of nanocrystals is now widely recognized as a key process in the solution-phase growth of hierarchical nanostructures. However, the microscopic origins of OA remain unclear. Using the same ReaxFF Ti/O/H reactive force field employed in the previous study, we perform molecular dynamics simulations to study the aggregation of various titanium dioxide (anatase) nanocrystals in vacuum and humid environments. 3. Li interactions in carbon based materials. Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length/time-scales and Li-ion concentrations. In this study we describe development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon based materials using atomistic simulations. We develop force-field parameters for Li-C systems using van
Molecular dynamics simulations.
Lindahl, Erik
2015-01-01
Molecular dynamics has evolved from a niche method mainly applicable to model systems into a cornerstone in molecular biology. It provides us with a powerful toolbox that enables us to follow and understand structure and dynamics with extreme detail-literally on scales where individual atoms can be tracked. However, with great power comes great responsibility: Simulations will not magically provide valid results, but it requires a skilled researcher. This chapter introduces you to this, and makes you aware of some potential pitfalls. We focus on the two basic and most used methods; optimizing a structure with energy minimization and simulating motion with molecular dynamics. The statistical mechanics theory is covered briefly as well as limitations, for instance the lack of quantum effects and short timescales. As a practical example, we show each step of a simulation of a small protein, including examples of hardware and software, how to obtain a starting structure, immersing it in water, and choosing good simulation parameters. You will learn how to analyze simulations in terms of structure, fluctuations, geometrical features, and how to create ray-traced movies for presentations. With modern GPU acceleration, a desktop can perform μs-scale simulations of small proteins in a day-only 15 years ago this took months on the largest supercomputer in the world. As a final exercise, we show you how to set up, perform, and interpret such a folding simulation.
King, Matthew D; Korter, Timothy M
2012-06-28
Dispersion forces are critical for defining the crystal structures and vibrational potentials of molecular crystals. It is, therefore, important to include corrections for these forces in periodic density functional theory (DFT) calculations of lattice vibrational frequencies. In this study, DFT was augmented with a correction term for London-type dispersion forces in the simulations of the structures and terahertz (THz) vibrational spectra of the dispersion-bound solids naphthalene and durene. The parameters of the correction term were modified to best reproduce the experimental crystal structures and THz spectra. It was found that the accurate reproduction of the lattice dimensions by adjusting the magnitude of the applied dispersion forces resulted in the highest-quality fit of the calculated vibrational modes with the observed THz absorptions. The method presented for the modification of the dispersion corrections provides a practical approach to accurately simulating the THz spectra of molecular crystals, accounting for inherent systematic errors imposed by computational and experimental factors.
International Nuclear Information System (INIS)
Cai, Yindi; Chen, Yuan-Liu; Shimizu, Yuki; Ito, So; Gao, Wei; Zhang, Liangchi
2016-01-01
Highlights: • Subnanometric contact between a diamond tool and a copper workpiece surface is investigated by MD simulation. • A multi-relaxation time technique is proposed to eliminate the influence of the atom vibrations. • The accuracy of the elastic-plastic transition contact depth estimation is improved by observing the residual defects. • The simulation results are beneficial for optimization of the next-generation microcutting instruments. - Abstract: This paper investigates the contact characteristics between a copper workpiece and a diamond tool in a force sensor-integrated fast tool servo (FS-FTS) for single point diamond microcutting and in-process measurement of ultra-precision surface forms of the workpiece. Molecular dynamics (MD) simulations are carried out to identify the subnanometric elastic-plastic transition contact depth, at which the plastic deformation in the workpiece is initiated. This critical depth can be used to optimize the FS-FTS as well as the cutting/measurement process. It is clarified that the vibrations of the copper atoms in the MD model have a great influence on the subnanometric MD simulation results. A multi-relaxation time method is then proposed to reduce the influence of the atom vibrations based on the fact that the dominant vibration component has a certain period determined by the size of the MD model. It is also identified that for a subnanometric contact depth, the position of the tool tip for the contact force to be zero during the retracting operation of the tool does not correspond to the final depth of the permanent contact impression on the workpiece surface. The accuracy for identification of the transition contact depth is then improved by observing the residual defects on the workpiece surface after the tool retracting.
Mehrjouei, Esmat; Akbarzadeh, Hamed; Shamkhali, Amir Nasser; Abbaspour, Mohsen; Salemi, Sirous; Abdi, Pooya
2017-07-03
In this work, liberation of cisplatin molecules from interior of a nanotube due to entrance of an Ag-nanowire inside it was simulated by classical molecular dynamics method. The aim of this simulation was investigation on the effects of diameter, chirality, and composition of the nanotube, as well as the influence of temperature on this process. For this purpose, single walled carbon, boron nitride, and silicon carbide nanotube were considered. In order for a more concise comparison of the results, a new parameter namely efficiency of drug release, was introduced. The results demonstrated that the efficiency of drug release is sensitive to its adsorption on outer surface of the nanotube. Moreover, this efficiency is also sensitive to the nanotube composition and its diameter. For the effect of nanotube composition, the results indicated that silicon carbide nanotube has the least efficiency for drug release, due to its strong drug-nanotube. Also, the most important acting forces on drug delivery are van der Waals interactions. Finally, the kinetic of drug release is fast and is not related to the structural parameters of the nanotube and temperature, significantly.
International Nuclear Information System (INIS)
Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.
2016-01-01
Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study. Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2 /H 2 O binary mixtures are computationally studied here for the first time and their critical parameters are reported.
Theory for nonlinear dynamic force spectroscopy.
Björnham, Oscar; Andersson, Magnus
2017-04-01
Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information on the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear manner. For example, bacterial adhesion pili and polymers with worm-like chain properties are structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work, we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory, we modeled a bio-complex expressed on a stiff, an elastic, and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found that the nonlinear DFS (NLDFS) theory correctly predicted the numerical results. We also present a protocol suggesting an experimental approach and analysis method of the data to estimate the bond length and the thermal off-rate.
Effect of the Magnus force on skyrmion relaxation dynamics
Brown, Barton L.; Täuber, Uwe C.; Pleimling, Michel
2018-01-01
We perform systematic Langevin molecular dynamics simulations of interacting skyrmions in thin films. The interplay between the Magnus force, the repulsive skyrmion-skyrmion interaction, and the thermal noise yields different regimes during nonequilibrium relaxation. In the noise-dominated regime, the Magnus force enhances the disordering effects of the thermal noise. In the Magnus-force-dominated regime, the Magnus force cooperates with the skyrmion-skyrmion interaction to yield a dynamic regime with slow decaying correlations. These two regimes are characterized by different values of the aging exponent. In general, the Magnus force accelerates the approach to the steady state.
Multiple grid methods for classical molecular dynamics.
Skeel, Robert D; Tezcan, Ismail; Hardy, David J
2002-04-30
Presented in the context of classical molecular mechanics and dynamics are multilevel summation methods for the fast calculation of energies/forces for pairwise interactions, which are based on the hierarchical interpolation of interaction potentials on multiple grids. The concepts and details underlying multigrid interpolation are described. For integration of molecular dynamics the use of different time steps for different interactions allows longer time steps for many of the interactions, and this can be combined with multiple grids in space. Comparison is made to the fast multipole method, and evidence is presented suggesting that for molecular simulations multigrid methods may be superior to the fast multipole method and other tree methods.
Molecular dynamics for irradiation driven chemistry
DEFF Research Database (Denmark)
Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.
2016-01-01
that describe the classical MD of complex molecular systems under irradiation. The proposed irradiation driven molecular dynamics (IDMD) methodology is designed for the molecular level description of the irradiation driven chemistry. The IDMD approach is implemented into the MBN Explorer software package......A new molecular dynamics (MD) approach for computer simulations of irradiation driven chemical transformations of complex molecular systems is suggested. The approach is based on the fact that irradiation induced quantum transformations can often be treated as random, fast and local processes...... capable to operate with a large library of classical potentials, many-body force fields and their combinations. IDMD opens a broad range of possibilities for modelling of irradiation driven modifications and chemistry of complex molecular systems ranging from radiotherapy cancer treatments to the modern...
An ab initio molecular dynamics study
Indian Academy of Sciences (India)
Abstract. The hydration structure and translocation of an excess proton in hydrogen bonded water clusters of two different sizes are investigated by means of finite tempera- ture quantum simulations. The simulations are performed by employing the method of. Car–Parrinello molecular dynamics where the forces on the ...
Molecular dynamics modeling of structural battery components
Verners, O.; Van Duin, A.C.T.; Wagemaker, M.; Simone, A.
2015-01-01
A crosslinked polymer based solid electrolyte prototype material –poly(propylene glycol) diacrylate– is studied using the reactive molecular dynamics force field ReaxFF. The focus of the study is the evaluation of the effects of equilibration and added plasticizer (ethylene carbonate) or anion
Molecular force sensors to measure stress in cells
International Nuclear Information System (INIS)
Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F
2017-01-01
Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages. (topical review)
Molecular force sensors to measure stress in cells
Prabhune, Meenakshi; Rehfeldt, Florian; Schmidt, Christoph F.
2017-06-01
Molecularly generated forces are essential for most activities of biological cells, but also for the maintenance of steady state or homeostasis. To quantitatively understand cellular dynamics in migration, division, or mechanically guided differentiation, it will be important to exactly measure stress fields within the cell and the extracellular matrix. Traction force microscopy and related techniques have been established to determine the stress transmitted from adherent cells to their substrates. However, different approaches are needed to directly assess the stress generated inside the cell. This has recently led to the development of novel molecular force sensors. In this topical review, we briefly mention methods used to measure cell-external forces, and then summarize and explain different designs for the measurement of cell-internal forces with their respective advantages and disadvantages.
Accelerating molecular dynamics simulations by linear prediction of time series
Brutovsky, B.; Mülders, T.; Kneller, G. R.
2003-04-01
We present a molecular dynamics simulation scheme which allows to speed up molecular dynamics simulations by linear prediction of force time series. The explicit calculation of nonbonding forces is periodically replaced by linear prediction from past values. Applying our method to liquid oxygen consisting of flexible molecules we obtained real speedups between 5.4 and 6.5, compared to conventional molecular dynamics simulations. Here only the bond-stretching forces were calculated at each time step. We demonstrate that essential dynamical quantities, such as the mean-square displacement and the velocity autocorrelation function, are preserved.
Molecular potentials and relaxation dynamics
International Nuclear Information System (INIS)
Karo, A.M.
1981-01-01
The use of empirical pseudopotentials, in evaluating interatomic potentials, provides an inexpensive and convenient method for obtaining highly accurate potential curves and permits the modeling of core-valence correlation, and the inclusion of relativistic effects when these are significant. Recent calculations of the X 1 Σ + and a 3 Σ + states of LiH, NaH, KH, RbH, and CsH and the X 2 Σ + states of their anions are discussed. Pseudopotentials, including core polarization terms, have been used to replace the core electrons, and this has been coupled with the development of compact, higly-optimized basis sets for the corresponding one- and two-electron atoms. Comparisons of the neutral potential curves with experiment and other ab initio calculations show good agreement (within 1000 cm -1 over most of the potential curves) with the difference curves being considerably more accurate. In the method of computer molecular dynamics, the force acting on each particle is the resultant of all interactions with other atoms in the neighborhood and is obtained as the derivative of an effective many-body potential. Exploiting the pseudopotential approach, in obtaining the appropriate potentials may be very fruitful in the future. In the molecular dynamics example considered here, the conventional sum-of-pairwise-interatomic-potentials (SPP) approximation is used with the potentials derived either from experimental spectroscopic data or from Hartree-Fock calculations. The problem is the collisional de-excitation of vibrationally excited molecular hydrogen at an Fe surface. The calculations have been carried out for an initial vibrotational state v = 8, J = 1 and a translational temperature corresponding to a gas temperature of 500 0 K. Different angles of approach and different initial random impact points on the surface have been selected. For any given collision with the wall, the molecule may pick up or lose vibrotatonal and translational energy
Scalable Molecular Dynamics for Large Biomolecular Systems
Directory of Open Access Journals (Sweden)
Robert K. Brunner
2000-01-01
Full Text Available We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.
Walton, Emily B; Lee, Sunyoung; Van Vliet, Krystyn J
2008-04-01
Forced unbinding of complementary macromolecules such as ligand-receptor complexes can reveal energetic and kinetic details governing physiological processes ranging from cellular adhesion to drug metabolism. Although molecular-level experiments have enabled sampling of individual ligand-receptor complex dissociation events, disparities in measured unbinding force F(R) among these methods lead to marked variation in inferred binding energetics and kinetics at equilibrium. These discrepancies are documented for even the ubiquitous ligand-receptor pair, biotin-streptavidin. We investigated these disparities and examined atomic-level unbinding trajectories via steered molecular dynamics simulations, as well as via molecular force spectroscopy experiments on biotin-streptavidin. In addition to the well-known loading rate dependence of F(R) predicted by Bell's model, we find that experimentally accessible parameters such as the effective stiffness of the force transducer k can significantly perturb the energy landscape and the apparent unbinding force of the complex for sufficiently stiff force transducers. Additionally, at least 20% variation in unbinding force can be attributed to minute differences in initial atomic positions among energetically and structurally comparable complexes. For force transducers typical of molecular force spectroscopy experiments and atomistic simulations, this energy barrier perturbation results in extrapolated energetic and kinetic parameters of the complex that depend strongly on k. We present a model that explicitly includes the effect of k on apparent unbinding force of the ligand-receptor complex, and demonstrate that this correction enables prediction of unbinding distances and dissociation rates that are decoupled from the stiffness of actual or simulated molecular linkers.
Forces on nuclei moving on autoionizing molecular potential energy surfaces.
Moiseyev, Nimrod
2017-01-14
Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.
Liwo, Adam; Ołdziej, Stanisław; Czaplewski, Cezary; Kleinerman, Dana S; Blood, Philip; Scheraga, Harold A
2010-03-09
We report the implementation of our united-residue UNRES force field for simulations of protein structure and dynamics with massively parallel architectures. In addition to coarse-grained parallelism already implemented in our previous work, in which each conformation was treated by a different task, we introduce a fine-grained level in which energy and gradient evaluation are split between several tasks. The Message Passing Interface (MPI) libraries have been utilized to construct the parallel code. The parallel performance of the code has been tested on a professional Beowulf cluster (Xeon Quad Core), a Cray XT3 supercomputer, and two IBM BlueGene/P supercomputers with canonical and replica-exchange molecular dynamics. With IBM BlueGene/P, about 50 % efficiency and 120-fold speed-up of the fine-grained part was achieved for a single trajectory of a 767-residue protein with use of 256 processors/trajectory. Because of averaging over the fast degrees of freedom, UNRES provides an effective 1000-fold speed-up compared to the experimental time scale and, therefore, enables us to effectively carry out millisecond-scale simulations of proteins with 500 and more amino-acid residues in days of wall-clock time.
Róg, Tomasz; Orłowski, Adam; Llorente, Alicia; Skotland, Tore; Sylvänne, Tuulia; Kauhanen, Dimple; Ekroos, Kim; Sandvig, Kirsten; Vattulainen, Ilpo
2016-06-01
In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present in these models are: cholesterol (CHOL), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidyl-ethanolamine (SOPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (SOPS), N-palmitoyl-D-erythro-sphingosyl-phosphatidylcholine (SM16), and N-lignoceroyl-D-erythro-sphingosyl-phosphatidylcholine (SM24). The bilayers׳ compositions are based on lipidomic studies of PC-3 prostate cancer cells and exosomes discussed in Llorente et al. (2013) [1], showing an increase in the section of long-tail lipid species (SOPS, SOPE, and SM24) in the exosomes. Former knowledge about lipid asymmetry in cell membranes was accounted for in the models, meaning that the model of the inner leaflet is composed of a mixture of PC, PS, PE, and cholesterol, while the extracellular leaflet is composed of SM, PC and cholesterol discussed in Van Meer et al. (2008) [2]. The provided data include lipids׳ topologies, equilibrated structures of asymmetric bilayers, all force field parameters, and input files with parameters describing simulation conditions (md.mdp). The data is associated with the research article "Interdigitation of Long-Chain Sphingomyelin Induces Coupling of Membrane Leaflets in a Cholesterol Dependent Manner" (Róg et al., 2016) [3].
Physical adsorption and molecular dynamics
International Nuclear Information System (INIS)
Cohan, N.V.
1981-01-01
Some aspects of noble gases adsorption (except He) on graphite substracts are reviewed. Experimental results from this adsorption are analyzed and compared with molecular dynamics calculations. (L.C.) [pt
Control of Mechanotransduction by Molecular Clutch Dynamics.
Elosegui-Artola, Alberto; Trepat, Xavier; Roca-Cusachs, Pere
2018-02-26
The linkage of cells to their microenvironment is mediated by a series of bonds that dynamically engage and disengage, in what has been conceptualized as the molecular clutch model. Whereas this model has long been employed to describe actin cytoskeleton and cell migration dynamics, it has recently been proposed to also explain mechanotransduction (i.e., the process by which cells convert mechanical signals from their environment into biochemical signals). Here we review the current understanding on how cell dynamics and mechanotransduction are driven by molecular clutch dynamics and its master regulator, the force loading rate. Throughout this Review, we place a specific emphasis on the quantitative prediction of cell response enabled by combined experimental and theoretical approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Machine learning of accurate energy-conserving molecular force fields
Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert
2017-01-01
Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076
Machine learning of accurate energy-conserving molecular force fields.
Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E; Poltavsky, Igor; Schütt, Kristof T; Müller, Klaus-Robert
2017-05-01
Using conservation of energy-a fundamental property of closed classical and quantum mechanical systems-we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol -1 for energies and 1 kcal mol -1 Å̊ -1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.
Chirality in molecular collision dynamics
Lombardi, Andrea; Palazzetti, Federico
2018-02-01
Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.
Transposable elements as a molecular evolutionary force
Fedoroff, N. V.
1999-01-01
This essay addresses the paradoxes of the complex and highly redundant genomes. The central theses developed are that: (1) the distinctive feature of complex genomes is the existence of epigenetic mechanisms that permit extremely high levels of both tandem and dispersed redundancy; (2) the special contribution of transposable elements is to modularize the genome; and (3) the labilizing forces of recombination and transposition are just barely contained, giving a dynamic genetic system of ever increasing complexity that verges on the chaotic.
Multiscale Reactive Molecular Dynamics
2012-08-15
as a linear combination of several possible bond- ing topologies ( diabatic states) that are coupled to one an- other through the off-diagonal elements...adapts and dynamically identifies bonding topolo- gies to include as the simulation progresses. These bonding topologies form a basis of diabatic ...the original geometric factor. The diabatic correction term, VCORR , used here was labeled in previous MS-EVB models as a repulsive interaction, VREP
State-Dependent Molecular Dynamics
Directory of Open Access Journals (Sweden)
Ciann-Dong Yang
2014-10-01
Full Text Available This paper proposes a new mixed quantum mechanics (QM—molecular mechanics (MM approach, where MM is replaced by quantum Hamilton mechanics (QHM, which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.
State-dependent molecular dynamics.
Yang, Ciann-Dong; Weng, Hung-Jen
2014-10-09
This paper proposes a new mixed quantum mechanics (QM)-molecular mechanics (MM) approach, where MM is replaced by quantum Hamilton mechanics (QHM), which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.
Coulomb interactions via local dynamics: a molecular-dynamics algorithm
International Nuclear Information System (INIS)
Pasichnyk, Igor; Duenweg, Burkhard
2004-01-01
We derive and describe in detail a recently proposed method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. We focus on the molecular dynamics version of the method and show that it is intimately related to the Car-Parrinello approach, while being equivalent to solving Maxwell's equations with a freely adjustable speed of light. Unphysical self-energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green function. The method can be straightforwardly parallelized using standard domain decomposition. Some preliminary benchmark results are presented
Approximate photochemical dynamics of azobenzene with reactive force fields
Li, Yan; Hartke, Bernd
2013-12-01
We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).
Molecular dynamics studies of superionic conductors
International Nuclear Information System (INIS)
Rahman, A.; Vashishta, P.
1983-01-01
Structural and dynamical properties of superionic conductors AgI and CuI are studied using molecular dynamics (MD) techniques. The model of these superionic conductors is based on the use of effective pair potentials. To determine the constants in these potentials, cohesive energy and bulk modulus are used as input: in addition one uses notions of ionic size based on the known crystal structure. Salient features of the MD technique are outlined. Methods of treating long range Coulomb forces are discussed in detail. This includes the manner of doing Ewald sum for MD cells of arbitrary shape. Features that can be incorporated to expedite the MD calculations are also discussed. A novel MD technique which allows for a dynamically controlled variation of the shape and size of the MD cell is described briefly. The development of this novel technique has made it possible to study structural phase transitions in superionic conductors. 68 references, 17 figures, 2 tables
Thomas-Fermi molecular dynamics
International Nuclear Information System (INIS)
Clerouin, J.; Pollock, E.L.; Zerah, G.
1992-01-01
A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)], the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker [Phys. Rev. A 38, 2205 (1988)]. As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated
Wu, Jingheng; Shen, Lin; Yang, Weitao
2017-10-01
Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.
Wu, Jingheng; Shen, Lin; Yang, Weitao
2017-10-28
Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.
Nonequilibrium molecular dynamics: The first 25 years
International Nuclear Information System (INIS)
Hoover, W.G.
1992-08-01
Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments
How hydrophobic drying forces impact the kinetics of molecular recognition.
Mondal, Jagannath; Morrone, Joseph A; Berne, B J
2013-08-13
A model of protein-ligand binding kinetics, in which slow solvent dynamics results from hydrophobic drying transitions, is investigated. Molecular dynamics simulations show that solvent in the receptor pocket can fluctuate between wet and dry states with lifetimes in each state that are long enough for the extraction of a separable potential of mean force and wet-to-dry transitions. We present a diffusive surface hopping model that is represented by a 2D Markovian master equation. One dimension is the standard reaction coordinate, the ligand-pocket separation, and the other is the solvent state in the region between ligand and binding pocket which specifies whether it is wet or dry. In our model, the ligand diffuses on a dynamic free-energy surface which undergoes kinetic transitions between the wet and dry states. The model yields good agreement with results from explicit solvent molecular dynamics simulation and an improved description of the kinetics of hydrophobic assembly. Furthermore, it is consistent with a "non-Markovian Brownian theory" for the ligand-pocket separation coordinate alone.
Classical molecular dynamics simulation of nuclear fuels
International Nuclear Information System (INIS)
Devanathan, R.; Krack, M.; Bertolus, M.
2015-01-01
Molecular dynamics simulation using forces calculated from empirical potentials, commonly called classical molecular dynamics, is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermomechanical properties. This enables one to obtain insights into fundamental mechanisms governing the behaviour of nuclear fuel, as well as parameters that can be used as inputs for mesoscale models. The interaction potentials used for the force calculations are generated by fitting properties of interest to experimental data and electronic structure calculations (see Chapter 12). We present here the different types of potentials currently available for UO 2 and illustrations of applications to the description of the behaviour of this material under irradiation. The results obtained from the present generation of potentials for UO 2 are qualitatively similar, but quantitatively different. There is a need to refine these existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, develop models that are equipped to handle deviations from stoichiometry, and validate the models and assumptions used. (authors)
Stevensson, Baltzar; Yu, Yang; Edén, Mattias
2018-03-28
We present a comprehensive molecular dynamics (MD) simulation study of composition-structure trends in a set of 25 glasses of widely spanning compositions from the following four systems of increasing complexity: Na 2 O-B 2 O 3 , Na 2 O-B 2 O 3 -SiO 2 , Na 2 O-CaO-SiO 2 -P 2 O 5 , and Na 2 O-CaO-B 2 O 3 -SiO 2 -P 2 O 5 . The simulations involved new B-O and P-O potential parameters developed within the polarizable shell-model framework, thereby combining the beneficial features of an overall high accuracy and excellent transferability among different glass systems and compositions: this was confirmed by the good accordance with experimental data on the relative BO 3 /BO 4 populations in borate and boro(phospho)silicate networks, as well as with the orthophosphate fractions in bioactive (boro)phosphosilicate glasses, which is believed to strongly influence their bone-bonding properties. The bearing of the simulated melt-cooling rate on the borate/phosphate speciations is discussed. Each local {BO 3 , BO 4 , SiO 4 , PO 4 } coordination environment remained independent of the precise set of co-existing network formers, while all trends observed in bond-lengths/angles mainly reflected the glass-network polymerization, i.e., the relative amounts of bridging oxygen (BO) and non-bridging oxygen (NBO) species. The structural roles of the Na + /Ca 2+ cations were also probed, targeting their local coordination environments and their relative preferences to associate with the various borate, silicate, and phosphate moieties. We evaluate and discuss the common classification of alkali/alkaline-earth metal ions as charge-compensators of either BO 4 tetrahedra or NBO anions in borosilicate glasses, also encompassing the less explored NBO-rich regime: the Na + /Ca 2+ cations mainly associate with BO/NBO species of SiO 4 /BO 3 groups, with significant relative Na-BO 4 contacts only observed in B-rich glass networks devoid of NBO species, whereas NBO-rich glass networks also
Rheology via nonequilibrium molecular dynamics
International Nuclear Information System (INIS)
Hoover, W.G.
1982-10-01
The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference
Forced synchronization of autonomous dynamical Boolean networks
International Nuclear Information System (INIS)
Rivera-Durón, R. R.; Campos-Cantón, E.; Campos-Cantón, I.; Gauthier, Daniel J.
2015-01-01
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics
Forced synchronization of autonomous dynamical Boolean networks
Energy Technology Data Exchange (ETDEWEB)
Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)
2015-08-15
We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.
Molecular dynamics study of silver
International Nuclear Information System (INIS)
Akhter, J.I.; Yaldram, K.; Ahmad, W.; Khan, M.K.; Rehman, T.S.
1995-03-01
We present results of molecular dynamics study using the embedded atom potential to examine the equilibrium bulk properties of Ag. We calculate the total energy and the lattice parameters as a function of temperature. From these we determine the specific heat and linear coefficient of thermal expansion. The comparison with experimental results of these two quantities is found to be excellent. We have also calculated the mean square displacement of the atoms in the three directions. As expected because of symmetry the displacements in the three directions are comparable and increase with increasing temperature. (author) 5 figs
Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.
Cawkwell, M J; Niklasson, Anders M N
2012-10-07
Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.
DEFF Research Database (Denmark)
Li, Xiaozhou; Neumann, Marcus A.; van de Streek, Jacco
2017-01-01
cocaine is used as an example. The results reveal that, even though the TMFF outperforms the COMPASS force field for representing the energies and conformations of predicted structures, it does not give significant improvement in the accuracy of NMR calculations. Further studies should direct more...
A concurrent multiscale micromorphic molecular dynamics
International Nuclear Information System (INIS)
Li, Shaofan; Tong, Qi
2015-01-01
In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation
Debye Entropic Force and Modified Newtonian Dynamics
International Nuclear Information System (INIS)
Li Xin; Chang Zhe
2011-01-01
Verlinde has suggested that the gravity has an entropic origin, and a gravitational system could be regarded as a thermodynamical system. It is well-known that the equipartition law of energy is invalid at very low temperature. Therefore, entropic force should be modified while the temperature of the holographic screen is very low. It is shown that the modified entropic force is proportional to the square of the acceleration, while the temperature of the holographic screen is much lower than the Debye temperature T D . The modified entropic force returns to the Newton's law of gravitation while the temperature of the holographic screen is much higher than the Debye temperature. The modified entropic force is connected with modified Newtonian dynamics (MOND). The constant a 0 involved in MOND is linear in the Debye frequency ω D , which can be regarded as the largest frequency of the bits in screen. We find that there do have a strong connection between MOND and cosmology in the framework of Verlinde's entropic force, if the holographic screen is taken to be bound of the Universe. The Debye frequency is linear in the Hubble constant H 0 . (geophysics, astronomy, and astrophysics)
Accelerated molecular dynamics simulations of protein folding.
Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew
2015-07-30
Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies. © 2015 Wiley Periodicals, Inc.
Theoretical Concepts in Molecular Photodissociation Dynamics
DEFF Research Database (Denmark)
Henriksen, Niels Engholm
1995-01-01
This chapter contains sections titled: Introduction Quantum Dynamics of Molecular Photofragmentation The Total Reaction Probability Final Product Distributions Time-Independent Approach, Stationary Scattering States Gaussian Wave Packet Dynamics Wigner Phase Space Representation The Diatomic...
International Nuclear Information System (INIS)
Goepfert, A.
1994-01-01
This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat
Stretching siloxanes: An ab initio molecular dynamics study
Lupton, E. M.; Nonnenberg, C.; Frank, I.; Achenbach, F.; Weis, J.; Bräuchle, C.
2005-10-01
We present an ab initio molecular dynamics study of siloxane elastomers placed under tensile stress for comparison with single molecule AFM experiments. Of particular interest is stress-induced chemical bond breaking in the high force regime, where a description of the molecular electronic structure is essential to determine the rupture mechanism. We predict an ionic mechanism for the bond breaking process with a rupture force of 4.4 nN for an isolated siloxane decamer pulled at a rate of 27.3 m/s and indicate lower values at experimental polymer lengths and pulling rates.
Irreversible energy flow in forced Vlasov dynamics
Plunk, Gabriel G.
2014-10-01
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.
Radosinski, Lukasz; Labus, Karolina
2017-10-05
Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.
Molecular dynamics simulations and novel drug discovery.
Liu, Xuewei; Shi, Danfeng; Zhou, Shuangyan; Liu, Hongli; Liu, Huanxiang; Yao, Xiaojun
2018-01-01
Molecular dynamics (MD) simulations can provide not only plentiful dynamical structural information on biomacromolecules but also a wealth of energetic information about protein and ligand interactions. Such information is very important to understanding the structure-function relationship of the target and the essence of protein-ligand interactions and to guiding the drug discovery and design process. Thus, MD simulations have been applied widely and successfully in each step of modern drug discovery. Areas covered: In this review, the authors review the applications of MD simulations in novel drug discovery, including the pathogenic mechanisms of amyloidosis diseases, virtual screening and the interaction mechanisms between drugs and targets. Expert opinion: MD simulations have been used widely in investigating the pathogenic mechanisms of diseases caused by protein misfolding, in virtual screening, and in investigating drug resistance mechanisms caused by mutations of the target. These issues are very difficult to solve by experimental methods alone. Thus, in the future, MD simulations will have wider application with the further improvement of computational capacity and the development of better sampling methods and more accurate force fields together with more efficient analysis methods.
Multipolar Force Fields and Their Effects on Solvent Dynamics around Simple Solutes
DEFF Research Database (Denmark)
Jakobsen, Sofie; Bereau, Tristan; Meuwly, Markus
2015-01-01
The performance of multipole (MTP) and point charge (PC) force fields in classical molecular dynamics (MD) simulations of condensed-phase systems for both equilibrium and dynamical quantities is compared. MTP electrostatics provides an improved description of the anisotropic electrostatic potential...
Artificial surface-mounted molecular rotors: Molecular dynamics simulations
Czech Academy of Sciences Publication Activity Database
Vacek, Jaroslav; Michl, Josef
2007-01-01
Roč. 17, č. 5 (2007), s. 730-739 ISSN 1616-301X R&D Projects: GA AV ČR IAA400550616; GA MŠk ME 857 Institutional research plan: CEZ:AV0Z40550506 Keywords : molecular dynamics * molecular machines * nanomaterials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.496, year: 2007
Thermally driven molecular linear motors - A molecular dynamics study
DEFF Research Database (Denmark)
Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard Lawrence
2009-01-01
We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube. The simulations indicate that the motion of the capsule can be controlled...
First principles molecular dynamics without self-consistent field optimization
International Nuclear Information System (INIS)
Souvatzis, Petros; Niklasson, Anders M. N.
2014-01-01
We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations
Measurement of dynamic and static radiation force on a sphere.
Chen, Shigao; Silva, Glauber T; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa
2005-05-01
Dynamic radiation force from ultrasound has found increasing applications in elasticity imaging methods such as vibro-acoustography. Radiation force that has both static and dynamic components can be produced by interfering two ultrasound beams of slightly different frequencies. This paper presents a method to measure both static and dynamic components of the radiation force on a sphere suspended by thin threads in water. Due to ultrasound radiation force, the sphere deflects to an equilibrant position and vibrates around it. The static radiation force is estimated from the deflection of the sphere. The dynamic radiation force is estimated from the calculated radiation impedance of the sphere and its vibration speed measured by a laser vibrometer. Experimental results on spheres of different size, vibrated at various frequencies, confirm the theoretical prediction that the dynamic and static radiation force on a sphere have approximately equal magnitudes [G. T. Silva, Phys. Rev. E 71, 056617 (2005)].
Dynamic Commitment: Wargaming Projected Forces Against the QDR Defense Strategy
National Research Council Canada - National Science Library
Carter, Clarence
1997-01-01
.... The Dynamic Commitment Wargame Series informed participants regarding the expected future demand on forces, such that Services were better able to articulate the effect of the examined force options...
Visualizing Energy on Target: Molecular Dynamics Simulations
2017-12-01
ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target
Molecular dynamics of a proguanil derivative
African Journals Online (AJOL)
pc
ABSTRACT. Proguanil is a prophylactic antimalarial drug t stopping the malaria parasites from reprod molecular dynamics of a derivative of Progua benzene ring of the molecule of Proguanil derivative. The molecular geometries of chemical calculations at the Restricted Hatre. 31G(d,p) and 6-31++G. Also, Density Func.
Molecular ions, Rydberg spectroscopy and dynamics
International Nuclear Information System (INIS)
Jungen, Ch.
2015-01-01
Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering
Molecular ions, Rydberg spectroscopy and dynamics
Energy Technology Data Exchange (ETDEWEB)
Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)
2015-01-22
Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.
Programming an interpreter using molecular dynamics
Bergstra, J.A.; Middelburg, C.A.
2007-01-01
PGA (ProGram Algebra) is an algebra of programs which concerns programs in their simplest form: sequences of instructions. Molecular dynamics is a simple model of computation developed in the setting of \\PGA, which bears on the use of dynamic data structures in programming. We consider the
A Database of Force-Field Parameters, Dynamics, and Properties of Antimicrobial Compounds
Directory of Open Access Journals (Sweden)
Giuliano Malloci
2015-08-01
Full Text Available We present an on-line database of all-atom force-field parameters and molecular properties of compounds with antimicrobial activity (mostly antibiotics and some beta-lactamase inhibitors. For each compound, we provide the General Amber Force Field parameters for the major species at physiological pH, together with an analysis of properties of interest as extracted from µs-long molecular dynamics simulations in explicit water solution. The properties include number and population of structural clusters, molecular flexibility, hydrophobic and hydrophilic molecular surfaces, the statistics of intraand inter-molecular H-bonds, as well as structural and dynamical properties of solvent molecules within first and second solvation shells. In addition, the database contains several key molecular parameters, such as energy of the frontier molecular orbitals, vibrational properties, rotational constants, atomic partial charges and electric dipole moment, computed by Density Functional Theory. The present database (to our knowledge the first extensive one including dynamical properties is part of a wider project aiming to build-up a database containing structural, physico-chemical and dynamical properties of medicinal compounds using different force-field parameters with increasing level of complexity and reliability. The database is freely accessible at http://www.dsf.unica.it/translocation/db/.
Molecular Tension Probes for Imaging Forces at the Cell Surface.
Liu, Yang; Galior, Kornelia; Ma, Victor Pui-Yan; Salaita, Khalid
2017-12-19
Mechanical forces are essential for a variety of biological processes ranging from transcription and translation to cell adhesion, migration, and differentiation. Through the activation of mechanosensitive signaling pathways, cells sense and respond to physical stimuli from the surrounding environment, a process widely known as mechanotransduction. At the cell membrane, many signaling receptors, such as integrins, cadherins and T- or B-cell receptors, bind to their ligands on the surface of adjacent cells or the extracellular matrix (ECM) to mediate mechanotransduction. Upon ligation, these receptor-ligand bonds transmit piconewton (pN) mechanical forces that are generated, in part, by the cytoskeleton. Importantly, these forces expose cryptic sites within mechanosensitive proteins and modulate the binding kinetics (on/off rate) of receptor-ligand complexes to further fine-tune mechanotransduction and the corresponding cell behavior. Over the past three decades, two categories of methods have been developed to measure cell receptor forces. The first class is traction force microscopy (TFM) and micropost array detectors (mPADs). In these methods, cells are cultured on elastic polymers or microstructures that deform under mechanical forces. The second category of techniques is single molecule force spectroscopy (SMFS) including atomic force microscopy (AFM), optical or magnetic tweezers, and biomembrane force probe (BFP). In SMFS, the experimenter applies external forces to probe the mechanics of individual cells or single receptor-ligand complexes, serially, one bond at a time. Although these techniques are powerful, the limited throughput of SMFS and the nN force sensitivity of TFM have hindered further elucidation of the molecular mechanisms of mechanotransduction. In this Account, we introduce the recent advent of molecular tension fluorescence microscopy (MTFM) as an emerging tool for molecular imaging of receptor mechanics in living cells. MTFM probes are
Energy Technology Data Exchange (ETDEWEB)
Bjorgaard, J. A., E-mail: jbjorgaard@lanl.gov [Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Velizhanin, K. A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Tretiak, S., E-mail: serg@lanl.gov [Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2016-04-21
The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.
Las Palmeras Molecular Dynamics: A flexible and modular molecular dynamics code
Davis, Sergio; Loyola, Claudia; González, Felipe; Peralta, Joaquín
2010-12-01
Las Palmeras Molecular Dynamics (LPMD) is a highly modular and extensible molecular dynamics (MD) code using interatomic potential functions. LPMD is able to perform equilibrium MD simulations of bulk crystalline solids, amorphous solids and liquids, as well as non-equilibrium MD (NEMD) simulations such as shock wave propagation, projectile impacts, cluster collisions, shearing, deformation under load, heat conduction, heterogeneous melting, among others, which involve unusual MD features like non-moving atoms and walls, unstoppable atoms with constant-velocity, and external forces like electric fields. LPMD is written in C++ as a compromise between efficiency and clarity of design, and its architecture is based on separate components or plug-ins, implemented as modules which are loaded on demand at runtime. The advantage of this architecture is the ability to completely link together the desired components involved in the simulation in different ways at runtime, using a user-friendly control file language which describes the simulation work-flow. As an added bonus, the plug-in API (Application Programming Interface) makes it possible to use the LPMD components to analyze data coming from other simulation packages, convert between input file formats, apply different transformations to saved MD atomic trajectories, and visualize dynamical processes either in real-time or as a post-processing step. Individual components, such as a new potential function, a new integrator, a new file format, new properties to calculate, new real-time visualizers, and even a new algorithm for handling neighbor lists can be easily coded, compiled and tested within LPMD by virtue of its object-oriented API, without the need to modify the rest of the code. LPMD includes already several pair potential functions such as Lennard-Jones, Morse, Buckingham, MCY and the harmonic potential, as well as embedded-atom model (EAM) functions such as the Sutton-Chen and Gupta potentials. Integrators to
MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields
Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.
2011-01-01
We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689
Dynamics and Thermodynamics of Molecular Machines
DEFF Research Database (Denmark)
Golubeva, Natalia
2014-01-01
mechanics. The first part focuses on noninteracting molecular machines described by a paradigmatic continuum model with the aim of comparing and contrasting such a description to the one offered by the widely used discrete models. Many molecular motors, for example, kinesin involved in cellular cargo......Molecular machines, or molecular motors, are small biophysical devices that perform a variety of essential metabolic processes such as DNA replication, protein synthesis and intracellular transport. Typically, these machines operate by converting chemical energy into motion and mechanical work. Due...... to their microscopic size, molecular motors are governed by principles fundamentally different from those describing the operation of man-made motors such as car engines. In this dissertation the dynamic and thermodynamic properties of molecular machines are studied using the tools of nonequilibrium statistical...
Multiscale molecular dynamics using the matched interface and boundary method
International Nuclear Information System (INIS)
Geng Weihua; Wei, G.W.
2011-01-01
The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems.
Energy Technology Data Exchange (ETDEWEB)
Wen, Jialin; Ma, Tianbao [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Zhang, Weiwei; Psofogiannakis, George; Duin, Adri C.T. van [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Chen, Lei; Qian, Linmao [Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031 (China); Hu, Yuanzhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)
2016-12-30
Highlights: • New ReaxFF reactive force field was applied to simulate the tribochemical wear process at Si/SiO{sub 2} interface. • Wear of silicon atoms is due to the breaking of Si–O–Si bonds and Si–Si–O–Si bond chains on the Si substrate. • Interfacial bridge bonds play an important role during the tribochemical wear process. • Higher pressures applied to the silica phase can cause more Si atoms to be removed by forming more interfacial bridge bonds. • Water plays an opposing role in the wear process because of its both chemical and mechanical effects. - Abstract: In this work, the atomic mechanism of tribochemical wear of silicon at the Si/SiO{sub 2} interface in aqueous environment was investigated using ReaxFF molecular dynamics (MD) simulations. Two types of Si atom removal pathways were detected in the wear process. The first is caused by the destruction of stretched Si–O–Si bonds on the Si substrate surface and is assisted by the attachment of H atoms on the bridging oxygen atoms of the bonds. The other is caused by the rupture of Si–Si bonds in the stretched Si–Si–O–Si bond chains at the interface. Both pathways effectively remove Si atoms from the silicon surface via interfacial Si–O–Si bridge bonds. Our simulations also demonstrate that higher pressures applied to the silica phase can cause more Si atoms to be removed due to the formation of increased numbers of interfacial Si–O–Si bridge bonds. Besides, water plays a dual role in the wear mechanism, by oxidizing the Si substrate surface as well as by preventing the close contact of the surfaces. This work shows that the removal of Si atoms from the substrate is a result of both chemical reaction and mechanical effects and contributes to the understanding of tribochemical wear behavior in the microelectromechanical systems (MEMS) and Si chemical mechanical polishing (CMP) process.
Force Factor Modulation in Electro Dynamic Loudspeakers
DEFF Research Database (Denmark)
Risbo, Lars; Agerkvist, Finn T.; Tinggaard, Carsten
2016-01-01
that includes the frequency dependency and applies to coils with non-inductive (lossy) blocked impedance. The paper also demonstrates that Cunningham’s force can be explained physically as a modulation of the force factor which again is directly linked to modulation of the flux of the coil. A verification based...... on both experiments and simulations is presented along discussions of the impact of force factor modulation for various motor topologies. Finally, it is shown that the popular L2R2 coil impedance model does not correctly predict the force unless the new analysis is applied....
Advances in molecular vibrations and collision dynamics molecular clusters
Bacic, Zatko
1998-01-01
This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...
Theory and application of quantum molecular dynamics
Zeng Hui Zhang, John
1999-01-01
This book provides a detailed presentation of modern quantum theories for treating the reaction dynamics of small molecular systems. Its main focus is on the recent development of successful quantum dynamics theories and computational methods for studying the molecular reactive scattering process, with specific applications given in detail for a number of benchmark chemical reaction systems in the gas phase and the gas surface. In contrast to traditional books on collision in physics focusing on abstract theory for nonreactive scattering, this book deals with both the development and the appli
First-principles molecular dynamics for metals
International Nuclear Information System (INIS)
Fernando, G.W.; Qian, G.; Weinert, M.; Davenport, J.W.
1989-01-01
A Car-Parrinello-type first-principles molecular-dynamics approach capable of treating the partial occupancy of electronic states that occurs at the Fermi level in a metal is presented. The algorithms used to study metals are both simple and computationally efficient. We also discuss the connection between ordinary electronic-structure calculations and molecular-dynamics simulations as well as the role of Brillouin-zone sampling. This extension should be useful not only for metallic solids but also for solids that become metals in their liquid and/or amorphous phases
Static and dynamical Meissner force fields
Weinberger, B. R.; Lynds, L.; Hull, J. R.; Mulcahy, T. M.
1991-01-01
The coupling between copper-based high temperature superconductors (HTS) and magnets is represented by a force field. Zero-field cooled experiments were performed with several forms of superconductors: 1) cold-pressed sintered cylindrical disks; 2) small particles fixed in epoxy polymers; and 3) small particles suspended in hydrocarbon waxes. Using magnets with axial field symmetries, direct spatial force measurements in the range of 0.1 to 10(exp 4) dynes were performed with an analytical balance and force constants were obtained from mechanical vibrational resonances. Force constants increase dramatically with decreasing spatial displacement. The force field displays a strong temperature dependence between 20 and 90 K and decreases exponentially with increasing distance of separation. Distinct slope changes suggest the presence of B-field and temperature-activated processes that define the forces. Hysteresis measurements indicated that the magnitude of force scales roughly with the volume fraction of HTS in composite structures. Thus, the net force resulting from the field interaction appears to arise from regions as small or smaller than the grain size and does not depend on contiguous electron transport over large areas. Results of these experiments are discussed.
Ultrafast molecular dynamics illuminated with synchrotron radiation
International Nuclear Information System (INIS)
Bozek, John D.; Miron, Catalin
2015-01-01
Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.
Nonadiabatic electron wavepacket dynamics behind molecular autoionization
Matsuoka, Takahide; Takatsuka, Kazuo
2018-01-01
A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.
Washizu, Hitoshi; Ohmori, Toshihide; Suzuki, Atsushi
2017-06-01
All-atom molecular dynamics simulations of an elastohydrodynamic lubrication oil film are performed to study the effect of pressure. Fluid molecules of n-hexane are confined between two solid plates under a constant normal force of 0.1-8.0 GPa. Traction simulations are performed by applying relative sliding motion to the solid plates. A transition in the traction behavior is observed around 0.5-2.0 GPa, which corresponds to the viscoelastic region to the plastic-elastic region, which are experimentally observed. This phase transition is related to the suppression of the fluctuation in molecular motion.
DEFF Research Database (Denmark)
Maragakis, Paul; Lindorff-Larsen, Kresten; Eastwood, Michael P
2008-01-01
. Molecular dynamics (MD) simulation provides a complementary approach to the study of protein dynamics on similar time scales. Comparisons between NMR spectroscopy and MD simulations can be used to interpret experimental results and to improve the quality of simulation-related force fields and integration...
Quantum spin dynamics in molecular magnets
International Nuclear Information System (INIS)
Leuenberger, M.N.; Meier, F.; Loss, D.
2003-01-01
The detailed theoretical understanding of quantum spin dynamics in various molecular magnets is an important step on the roadway to technological applications of these systems. Quantum effects in both ferromagnetic and antiferromagnetic molecular clusters are, by now, theoretically well understood. Ferromagnetic molecular clusters allow one to study the interplay of incoherent quantum tunneling and thermally activated transitions between states with different spin orientation. The Berry phase oscillations found in Fe 8 are signatures of the quantum mechanical interference of different tunneling paths. Antiferromagnetic molecular clusters are promising candidates for the observation of coherent quantum tunneling on the mesoscopic scale. Although challenging, application of molecular magnetic clusters for data storage and quantum data processing are within experimental reach already with present day technology. Refs. 77 (author)
Dynamics and Thermodynamics of Molecular Machines
DEFF Research Database (Denmark)
Golubeva, Natalia
2014-01-01
Molecular machines, or molecular motors, are small biophysical devices that perform a variety of essential metabolic processes such as DNA replication, protein synthesis and intracellular transport. Typically, these machines operate by converting chemical energy into motion and mechanical work. Due...... to their microscopic size, molecular motors are governed by principles fundamentally different from those describing the operation of man-made motors such as car engines. In this dissertation the dynamic and thermodynamic properties of molecular machines are studied using the tools of nonequilibrium statistical...... transport, move on crowded tracks where they can encounter other motors, a phenomenon referred to as molecular motor traffic. In the second part, traffic models of kinesin motors under an external mechanical load are considered, and the efficiency at maximum power (EMP) is calculated as a convenient measure...
Molecular dynamics simulations of solutions at constant chemical potential
Perego, C.; Salvalaglio, M.; Parrinello, M.
2015-04-01
Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.
Sugar transport across lactose permease probed by steered molecular dynamics
DEFF Research Database (Denmark)
Jensen, Morten Østergaard; Yin, Ying; Tajkhorshid, Emad
2007-01-01
Escherichia coli lactose permease (LacY) transports sugar across the inner membrane of the bacterium using the proton motive force to accumulate sugar in the cytosol. We have probed lactose conduction across LacY using steered molecular dynamics, permitting us to follow molecular and energetic...... details of lactose interaction with the lumen of LacY during its permeation. Lactose induces a widening of the narrowest parts of the channel during permeation, the widening being largest within the periplasmic half-channel. During permeation, the water-filled lumen of LacY only partially hydrates lactose......, forcing it to interact with channel lining residues. Lactose forms a multitude of direct sugar-channel hydrogen bonds, predominantly with residues of the flexible N-domain, which is known to contribute a major part of LacY's affinity for lactose. In the periplasmic half-channel lactose predominantly...
Vibrational frequencies in Car-Parrinello molecular dynamics.
Ong, Sheau Wei; Tok, Eng Soon; Kang, Hway Chuan
2010-12-07
Car-Parrinello molecular dynamics (CPMD) are widely used to investigate the dynamical properties of molecular systems. An important issue in such applications is the dependence of dynamical quantities such as molecular vibrational frequencies upon the fictitious orbital mass μ. Although it is known that the correct Born-Oppenheimer dynamics are recovered at zero μ, it is not clear how these dynamical quantities are to be rigorously extracted from CPMD calculations. Our work addresses this issue for vibrational frequencies. We show that when the system is sufficiently close to the ground state the calculated ionic vibrational frequencies are ω(M) = ω(0M)[1 -C(μ/M)] for small μ/M, where ω(0M) is the Born-Oppenheimer ionic frequency, M the ionic mass, and C a constant that depends upon the ion-orbital coupling force constants. Our analysis also provides a quantitative understanding of the orbital oscillation amplitudes, leading to a relationship between the adiabaticity of a system and the ion-orbital coupling constants. In particular, we show that there is a significant systematic dependence of calculated vibrational frequencies upon how close the CPMD trajectory is to the Born-Oppenheimer surface. We verify our analytical results with numerical simulations for N(2), Sn(2), and H/Si(100)-(2×1).
Force Factor Modulation in Electro Dynamic Loudspeakers
DEFF Research Database (Denmark)
Risbo, Lars; Agerkvist, Finn T.; Tinggaard, Carsten
2016-01-01
The relationship between the non-linear phenomenon of ’reluctance force’ and the position dependency of the voice coil inductance was established in 1949 by Cunningham, who called it ’magnetic attraction force’. This paper revisits Cunningham’s analysis and expands it into a generalised form that...... on both experiments and simulations is presented along discussions of the impact of force factor modulation for various motor topologies. Finally, it is shown that the popular L2R2 coil impedance model does not correctly predict the force unless the new analysis is applied....... that includes the frequency dependency and applies to coils with non-inductive (lossy) blocked impedance. The paper also demonstrates that Cunningham’s force can be explained physically as a modulation of the force factor which again is directly linked to modulation of the flux of the coil. A verification based...
First principles molecular dynamics of molten NaCl
Galamba, N.; Costa Cabral, B. J.
2007-03-01
First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.
Molecular dynamics simulations on the melting of gold nanoparticles
Qiao, Zhiwei; Feng, Haijun; Zhou, Jian
2014-01-01
Molecular dynamics is employed to study the melting of bulk gold and gold nanoparticles. PCFF, Sutton-Chen and COMPASS force fields are adopted to study the melting point of bulk gold and we find out that the Sutton-Chen force field is the most accurate model in predicting the melting point of bulk gold. Consequently, the Sutton-Chen force field is applied to study the melting points of spherical gold nanoparticles with different diameters. Variations of diffusion coefficient, potential energy and translational order parameter with temperature are analyzed. The simulated melting points of gold nanoparticles are between 615∼1115 K, which are much lower than that of bulk gold (1336 K). As the diameter of gold nanoparticle drops, the melting point also descends. The melting mechanism is also analyzed for gold nanoparticles.
Molecular dynamics simulations and quantum chemical calculations ...
African Journals Online (AJOL)
Molecular dynamic simulation results indicate that the imidazoline derivative molecules uses the imidazoline ring to effectively adsorb on the surface of iron, with the alkyl hydrophobic tail forming an n shape (canopy like covering) at geometry optimization and at 353 K. The n shape canopy like covering to a large extent may ...
Molecular dynamics simulation of a phospholipid membrane
Egberts, Egbert; Marrink, Siewert-Jan; Berendsen, Herman J.C.
We present the results of molecular dynamics (MD) simulations of a phospholipid membrane in water, including full atomic detail. The goal of the simulations was twofold: first we wanted to set up a simulation system which is able to reproduce experimental results and can serve as a model membrane in
Molecular dynamics simulations of RNA motifs
Czech Academy of Sciences Publication Activity Database
Csaszar, K.; Špačková, Naďa; Šponer, Jiří; Leontis, N. B.
2002-01-01
Roč. 223, - (2002), s. 154 ISSN 0065-7727. [Annual Meeting of the American Chemistry Society /223./. 07.04.2002-11.04.2002, Orlando ] Institutional research plan: CEZ:AV0Z5004920 Keywords : molecular dynamics * RNA * hydration Subject RIV: BO - Biophysics
Molecular dynamics simulation of impact test
Energy Technology Data Exchange (ETDEWEB)
Akahoshi, Y. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Schmauder, S.; Ludwig, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt
1998-11-01
This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)
Molecular dynamics simulation on the interaction mechanism ...
Indian Academy of Sciences (India)
Investigation on the microscopic interaction between polymer inhibitors and calcium phosphate contributes to the understanding of their scale inhibition mechanism. The results obtained may provide a theoretical guidance to developing new scale inhibitors. In this study, molecular dynamics simulations have been ...
Nanotribology investigations with classical molecular dynamics
Solhjoo, Soheil
2017-01-01
This thesis presents a number of nanotribological problems investigated by means of classical molecular dynamics (MD) simulations, within the context of the applicability of continuum mechanics contact theories at the atomic scale. Along these lines, three different themes can be recognized herein:
Ab Initio molecular dynamics with excited electrons
Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.
1994-01-01
A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.
Molecular dynamics simulation of impact test
International Nuclear Information System (INIS)
Akahoshi, Y.; Schmauder, S.; Ludwig, M.
1998-01-01
This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)
Reaction dynamics in polyatomic molecular systems
Energy Technology Data Exchange (ETDEWEB)
Miller, W.H. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.
Molecular dynamics simulations of weak detonations.
Am-Shallem, Morag; Zeiri, Yehuda; Zybin, Sergey V; Kosloff, Ronnie
2011-12-01
Detonation of a three-dimensional reactive nonisotropic molecular crystal is modeled using molecular dynamics simulations. The detonation process is initiated by an impulse, followed by the creation of a stable fast reactive shock wave. The terminal shock velocity is independent of the initiation conditions. Further analysis shows supersonic propagation decoupled from the dynamics of the decomposed material left behind the shock front. The dependence of the shock velocity on crystal nonlinear compressibility resembles solitary behavior. These properties categorize the phenomena as a weak detonation. The dependence of the detonation wave on microscopic potential parameters was investigated. An increase in detonation velocity with the reaction exothermicity reaching a saturation value is observed. In all other respects the model crystal exhibits typical properties of a molecular crystal.
Molecular dynamics modeling and characterization of graphene/polymer nanocomposites
Rahman, Rezwanur
The current work focuses on the characterization of graphene based nanocomposites using molecular dynamic simulation and multiscale modeling approaches. Both graphene-epoxy and graphene-cellulose nanocomposites were considered in this study. A hierarchical multiscale modeling approach has been proposed using peridynamics and molecular dynamics simulation. Firstly, the mechanical properties of crosslinked graphene/epoxy (G-Ep) nanocomposites were investigated by molecular mechanics (MM) and molecular dynamics (MD) simulations. The influence of graphene's weight concentration, aspect ratio and dispersion on stress-strain response and elastic properties were studied. The results show significant improvement in Young's modulus and shear modulus for the G-Ep system in comparison to the neat epoxy resin. It appears that the RDF, molecular energy and aspect ratios are influenced by both graphene concentrations and aspect ratios. The graphene concentrations in the range of 1-3% are seen to improve Young's modulus and shorter graphenes are observed to be more effective than larger ones. In addition, the dispersed graphene system is more promising in enhancing in-plane elastic modulus than the agglomerated graphene system. The cohesive and pullout forces versus displacements data were plotted under normal and shear modes in order to characterize interfacial properties. The cohesive force is significantly improved by attaching the graphene with a chemical bond at the graphene-epoxy interface. In the second part of the work, cellulose was considered to study the mechanical properties of graphene-cellulose bionanocomposite. Similar to graphene-epoxy systems, the effect of graphene dispersion and agglomeration were studied in the stress-strain plots of graphene-cellulose system. A pcff forcefield was used to define intermolecular and intramolecular interactions. The effect of graphene's aspect ratio and weight concentration on the structural property of each unitcell was
A stochastic phase-field model determined from molecular dynamics
von Schwerin, Erik
2010-03-17
The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.
Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy
Directory of Open Access Journals (Sweden)
Mi Li
2017-01-01
Full Text Available The advent of atomic force microscopy (AFM has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface was summarized. The challenges and future directions were also discussed.
Dynamical quenching of tunneling in molecular magnets
International Nuclear Information System (INIS)
José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.
2015-01-01
It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation
High velocity properties of the dynamic frictional force between ductile metals
International Nuclear Information System (INIS)
Hammerberg, James Edward; Hollan, Brad L.; Germann, Timothy C.; Ravelo, Ramon J.
2010-01-01
The high velocity properties of the tangential frictional force between ductile metal interfaces seen in large-scale NonEquilibrium Molecular Dynamics (NEMD) simulations are characterized by interesting scaling behavior. In many cases a power law decrease in the frictional force with increasing velocity is observed at high velocities. We discuss the velocity dependence of the high velocity branch of the tangential force in terms of structural transformation and ultimate transition, at the highest velocities, to confined fluid behavior characterized by a critical strain rate. The particular case of an Al/Al interface is discussed.
Orthonormal Wavelet Bases for Quantum Molecular Dynamics
International Nuclear Information System (INIS)
Tymczak, C.; Wang, X.
1997-01-01
We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society
Traction force dynamics predict gap formation in activated endothelium
International Nuclear Information System (INIS)
Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van; Hordijk, Peter L.
2016-01-01
In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.
Traction force dynamics predict gap formation in activated endothelium
Energy Technology Data Exchange (ETDEWEB)
Valent, Erik T.; Nieuw Amerongen, Geerten P. van; Hinsbergh, Victor W.M. van; Hordijk, Peter L., E-mail: p.hordijk@vumc.nl
2016-09-10
In many pathological conditions the endothelium becomes activated and dysfunctional, resulting in hyperpermeability and plasma leakage. No specific therapies are available yet to control endothelial barrier function, which is regulated by inter-endothelial junctions and the generation of acto-myosin-based contractile forces in the context of cell-cell and cell-matrix interactions. However, the spatiotemporal distribution and stimulus-induced reorganization of these integral forces remain largely unknown. Traction force microscopy of human endothelial monolayers was used to visualize contractile forces in resting cells and during thrombin-induced hyperpermeability. Simultaneously, information about endothelial monolayer integrity, adherens junctions and cytoskeletal proteins (F-actin) were captured. This revealed a heterogeneous distribution of traction forces, with nuclear areas showing lower and cell-cell junctions higher traction forces than the whole-monolayer average. Moreover, junctional forces were asymmetrically distributed among neighboring cells. Force vector orientation analysis showed a good correlation with the alignment of F-actin and revealed contractile forces in newly formed filopodia and lamellipodia-like protrusions within the monolayer. Finally, unstable areas, showing high force fluctuations within the monolayer were prone to form inter-endothelial gaps upon stimulation with thrombin. To conclude, contractile traction forces are heterogeneously distributed within endothelial monolayers and force instability, rather than force magnitude, predicts the stimulus-induced formation of intercellular gaps. - Highlights: • Endothelial monolayers exert dynamic- and heterogeneous traction forces. • High traction forces correlate with junctional areas and the F-actin cytoskeleton. • Newly formed inter-endothelial gaps are characterized by opposing traction forces. • Force stability is a key feature controlling endothelial permeability.
Kenward, M; Slater, G W
2006-06-01
We present a study of the dynamics of single polymers colliding with molecular obstacles using Molecular-dynamics simulations. In concert with these simulations we present a generalized polymer-obstacle collision model which is applicable to a number of collision scenarios. The work focusses on three specific problems: i) a polymer driven by an external force colliding with a fixed microscopic post; ii) a polymer driven by a (plug-like) fluid flow colliding with a fixed microscopic post; and iii) a polymer driven by an external force colliding with a free polymer. In all three cases, we present a study of the length-dependent dynamics of the polymers involved. The simulation results are compared with calculations based on our generalized collision model. The generalized model yields analytical results in the first two instances (cases i) and ii)), while in the polymer-polymer collision example (case iii)) we obtain a series solution for the system dynamics. For the case of a polymer-polymer collision we find that a distinct V-shaped state exists as seen in experimental systems, though normally associated with collisions with multiple polymers. We suggest that this V-shaped state occurs due to an effective hydrodynamic counter flow generated by a net translational motion of the two-chain system.
Bifunctional atomic force microscopy probes for molecular screening applications
Energy Technology Data Exchange (ETDEWEB)
Wilde, Lisa M.; Allen, Stephanie; Davies, Martyn C.; Tendler, Saul J.B.; Williams, Philip M.; Roberts, Clive J
2003-03-05
Force mapping with the atomic force microscope (AFM) allows the simultaneous acquisition of topography and probe-sample interaction data. For example, AFM probes functionalised with an antigen can be employed to map the spatial distribution of recognition events on a substrate functionalised with its specific antibody. However, to date this method has been limited to the detection of single receptor-ligand species. Were the detection of multiple receptor-ligand interactions possible, force mapping would offer great scope as a sensitive tool for bioassay and screening applications. We have developed an immobilisation strategy, which allows two different molecular species (in this case human serum albumin and the {beta} subunit of human chorionic gonadotropin) to be present simultaneously on an AFM probe. Single point force spectroscopy results have revealed the ability of such probes to discriminate between their corresponding recognition points (anti-HSA and anti-{beta}hCG IgG antibodies). As a control, force measurements were re-recorded in the presence of the known antigen (free in solution) for each antibody species and a marked decrease in the frequency of specific interaction is observed. As an additional control interactions between anti-{beta}hCG IgG and the multifunctional probe are taken in the presence of free {beta}hCG ('true' antigen) and free HSA ('false' antigen). It is shown that measurements recorded in the presence of a non-related protein species results in no change in either the force observed or the frequency of specific interactions, further confirmation that the specificity of force observed is due to the separation of antibody-antigen complex.
Dynamics of force and muscle stimulation in human vertical jumping
Bobbert, M.F.; van Zandwijk, J.P.
1999-01-01
PURPOSE: The purpose of this study was to gain insight into the importance of stimulation dynamics for force development in human vertical jumping. METHODS: Maximum height squat jumps were performed by 21 male subjects. As a measure of signal dynamics, rise time (RT) was used, i.e., the time taken
Excited-state molecular photoionization dynamics
International Nuclear Information System (INIS)
Pratt, S.T.
1995-01-01
This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)
Effects of nonlinear forces on dynamic mode atomic force microscopy and spectroscopy.
Das, Soma; Sreeram, P A; Raychaudhuri, A K
2007-06-01
In this paper, we describe the effects of nonlinear tip-sample forces on dynamic mode atomic force microscopy and spectroscopy. The jumps and hysteresis observed in the vibration amplitude (A) versus tip-sample distance (h) curves have been traced to bistability in the resonance curve. A numerical analysis of the basic dynamic equation was used to explain the hysteresis in the experimental curve. It has been found that the location of the hysteresis in the A-h curve depends on the frequency of the forced oscillation relative to the natural frequency of the cantilever.
Molecular Dynamics: from basic techniques to applications (A Molecular Dynamics Primer)
Hernández, E. R.
2008-11-01
It is now 50 years since the first papers describing the use of Molecular Dynamics (MD) were published by Alder and Wainright, and since then, together with Monte Carlo (MC) techniques, MD has become an essential tool in the theoretical study of materials properties at finite temperatures. In its early days, MD was used in combination with simple yet general models, such as hard spheres or Lennard-Jones models of liquids, systems which, though simple, were nevertheless not amenable to an analytical statistical mechanical treatment. Nowadays, however, MD is most frequently used in combination with rather sophisticated models, ranging all the way between empirical force fields to first-principles methods, with the aim of describing as accurately as possible any given material. From a computational aid in statistical mechanics and many-body physics, MD has evolved to become a widely used tool in physical chemistry, condensed matter physics, biology, geology and materials science. The aim of this course is to describe the basic algorithms of MD, and to provide attendees with the necessary theoretical background in order to enable them to use MD simulations in their research work. Also, examples of the use of MD in different scientific disciplines will be provided, with the aim of illustrating the the many possibilities and the wide spread use of MD simulation techniques in scientific research today.
Towards the molecular bases of polymerase dynamics
International Nuclear Information System (INIS)
Chela Flores, J.
1991-03-01
One aspect of the strong relationship that is known to exist between the processes of DNA replication and transcription is manifest in the coupling of the rates of movement of the replication fork (r f ) and RNA polymerase (r t ). We address two issues concerning the largely unexplored area of polymerase dynamics: (i) The validity of an approximate kinematic formula linking r f and r t suggested by experiments in which transcription is initiated in some prokaryotes with the antibiotic streptolydigin, and (ii) What are the molecular bases of the kinematic formula? An analysis of the available data suggests possible molecular bases for polymerase dynamics. In particular, we are led to a hypothesis: In active chromatin r t may depend on the length (λ t ) of the transcript of the primary messenger RNA (pre-mRNA). This new effect is subject to experimental verification. We discuss possible experiments that may be performed in order to test this prediction. (author). Refs, 6 tabs
MD1405: Demonstration of forced dynamic aperture measurements at injection
Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department
2017-01-01
Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.
Molecular quantum dynamics. From theory to applications
International Nuclear Information System (INIS)
Gatti, Fabien
2014-01-01
An educational and accessible introduction to the field of molecular quantum dynamics. Illustrates the importance of the topic for broad areas of science: from astrophysics and the physics of the atmosphere, over elementary processes in chemistry, to biological processes. Presents chosen examples of striking applications, highlighting success stories, summarized by the internationally renowned experts. Including a foreword by Lorenz Cederbaum (University Heidelberg, Germany). This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book ''Molecular Quantum Dynamics'' offers them an accessible introduction. Although the
Molecular Dynamics and Electron Density Studies of Siderophores and Peptides.
Fidelis, Krzysztof Andrzej
1990-08-01
The dissertation comprises three separate studies of siderophores and peptides. In the first of these studies the relative potential energies for a series of diastereomers of a siderophore neocoprogen I are evaluated with molecular mechanics force field methods. Charges on the hydroxamate moiety are determined with a synthetic model siderophore compound using valence population refinements, and alternatively, with the theoretical ab initio/ESP calculations. The single diastereomer found in the crystal structure is among four characterized by the low potential energy, while prevalence of Delta vs. Lambda configuration about the iron is found to be a property of the entire series. In the second study the crystal structure of a ferrichrome siderophore ferrirhodin is reported. The crystal structure conformation of the molecular backbone as well as the iron coordination geometry compare well with other ferrichrome structures. The differences between the acyl groups of ferrirubin and ferrirhodin are explored using the methods of molecular mechanics. The third study a 300 ps, 300 K, in vacuo molecular dynamics simulation of didemnin A and B yields distinct molecular conformers, which are different from the one found in the crystal structure or modeled in solution, using the Nuclear Overhauser Effect data. Evaluations of the relative potential energy are performed with short 10 ps simulations in solution. Didemnins are natural depsipeptides isolated from a Caribbean tunicate and characterized by particularly potent antiproliferative and immunomodulatory activity. Conformationally rigid and flexible regions of the molecule are described. A short review of the molecular mechanics methodology is given in the introduction.
Molecular dynamics simulations of nanobubbles and nanodrops
Maheshwari, Shantanu
2018-01-01
Understanding of bubbles and drops at the nanoscale is of primary importance to many technological applications. Although lot of theoretical understanding has been developed in the last few decades for larger size bubbles and drops, fundamental understanding of nanobubbles and nanodrops in some aspects is still inadequate. In this thesis we revealed and explained a few phenomena related to the stability and growth/dissolution of nanobubbles and nanodrops with the help from molecular dynamics ...
Molecular dynamics simulation of a chemical reaction
International Nuclear Information System (INIS)
Gorecki, J.; Gryko, J.
1988-06-01
Molecular dynamics is used to study the chemical reaction A+A→B+B. It is shown that the reaction rate constant follows the Arrhenius law both for Lennard-Jones and hard sphere interaction potentials between substrate particles. A. For the denser systems the reaction rate is proportional to the value of the radial distribution function at the contact point of two hard spheres. 10 refs, 4 figs
Visualizing Energy on Target: Molecular Dynamics Simulations
2017-12-01
from the increased number of intermolecular interactions at the higher mass densities . This may also be why the size of the hot spot increases with...of energy deposition by a shocked diatomic gas into a stationary target is studied as a function of multiple variables including gas density , impact...into the vibrational channels of the gas is a function of the density . 15. SUBJECT TERMS molecular dynamics, energy deposition, rovibrational
Molecular Dynamics with Helical Periodic Boundary Conditions
Czech Academy of Sciences Publication Activity Database
Kessler, Jiří; Bouř, Petr
2014-01-01
Roč. 35, č. 21 (2014), s. 1552-1559 ISSN 0192-8651 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:GA AV ČR(CZ) M200551205; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : periodic boundary conditions * helical symmetry * molecular dynamics * protein structure * amyloid fibrils Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.589, year: 2014
Nonequilibrium molecular dynamics theory, algorithms and applications
Todd, Billy D
2017-01-01
Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...
Molecular dynamics simulation of ion mobility in gases
Lai, Rui; Dodds, Eric D.; Li, Hui
2018-02-01
A force field molecular dynamics method is developed to directly simulate ion drift in buffer gases driven by an electric field. The ion mobility and collision cross sections (CCSs) with relevance to ion mobility spectrometry can be obtained from the simulated drift velocity in high-density buffer gases (pressure ˜50 bars) and high electric fields (˜107 V/m). Compared to trajectory methods, the advantage of the molecular dynamics method is that it can simultaneously sample the internal dynamic motions of the ion and the ion-gas collisions. For ions with less than 100 atoms, the simulated collision cross section values can be converged to within ±1%-2% by running a 100 ns simulation for 5-19 h using one computer core. By using a set of element-based Lennard-Jones parameters that are not tuned for different atomic types in different molecules, the simulated collision cross sections for 15 small molecular ions (number of atoms ranging from 17 to 85, mass ranging from 74.1 to 609.4 g/mol) are consistent with experimental values: the mean unsigned error is 2.6 Å2 for He buffer gas and 4.4 Å2 for N2 buffer gas. The sensitivity of the simulated CCS values to random diffusion, drift velocity, electric field strength, temperature, and buffer gas density is examined.
Modeling of Dynamic Fluid Forces in Fast Switching Valves
DEFF Research Database (Denmark)
Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen
2015-01-01
history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... force, but these models are computationally expensive and are not suitable for evaluating large numbers of different operation conditions or even design optimization. In the present paper, an effort is done to describe these fluid forces and their origin. An example of the total opposing fluid force...... the opposing fluid force well and gives accurate predictions under certain conditions. The proposed model is suitable for valve designers who need a computationally inexpensive fluid force model suitable for optimization routines or efficient dynamic models....
Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force
Xu, Tiantian
2015-06-01
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.
Software for Correcting the Dynamic Error of Force Transducers
Directory of Open Access Journals (Sweden)
Naoki Miyashita
2014-07-01
Full Text Available Software which corrects the dynamic error of force transducers in impact force measurements using their own output signal has been developed. The software corrects the output waveform of the transducers using the output waveform itself, estimates its uncertainty and displays the results. In the experiment, the dynamic error of three transducers of the same model are evaluated using the Levitation Mass Method (LMM, in which the impact forces applied to the transducers are accurately determined as the inertial force of the moving part of the aerostatic linear bearing. The parameters for correcting the dynamic error are determined from the results of one set of impact measurements of one transducer. Then, the validity of the obtained parameters is evaluated using the results of the other sets of measurements of all the three transducers. The uncertainties in the uncorrected force and those in the corrected force are also estimated. If manufacturers determine the correction parameters for each model using the proposed method, and provide the software with the parameters corresponding to each model, then users can obtain the waveform corrected against dynamic error and its uncertainty. The present status and the future prospects of the developed software are discussed in this paper.
NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE
Xu, Tiantian
2015-06-01
Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.
Static and dynamic properties of grafted ring polymer: Molecular dynamics simulation
He, Su-Zhen; Holger, Merlitz; Su, Chan-Fei; Wu, Chen-Xu
2013-01-01
The static and dynamic properties of a system of end-grafted flexible ring polymer chains grafted to a flat substrate and exposed to a good solvent are studied by using a molecular dynamics method. The monomers are described by a coarse-grained bead-spring model. Varying the grafting density ρ and the degree of polymerization or chain length N, we obtain the density profiles of monomers, study the structural properties of the chain (radius of gyration, bond orientational parameters, etc.), and also present the dynamic characteristics such as chain energy and bond force. Compared with a linear polymer brush, the ring polymer brush exhibits different static and dynamic properties for moderate or short chain length, while it behaves like linear polymer brush in the regime of long chain length.
Dynamic force spectroscopy of DNA hairpins: I. Force kinetics and free energy landscapes
International Nuclear Information System (INIS)
Mossa, A; Manosas, M; Forns, N; Huguet, J M; Ritort, F
2009-01-01
We investigate the thermodynamics and kinetics of DNA hairpins that fold/unfold under the action of applied mechanical force. We introduce the concept of the molecular free energy landscape and derive simplified expressions for the force dependent Kramers–Bell rates. To test the theory we have designed a specific DNA hairpin sequence that shows two-state cooperative folding under mechanical tension and carried out pulling experiments using optical tweezers. We show how we can determine the parameters that characterize the molecular free energy landscape of such sequences from rupture force kinetic studies. Finally we combine such kinetic studies with experimental investigations of the Crooks fluctuation relation to derive the free energy of formation of the hairpin at zero force
Seasonally forced disease dynamics explored as switching between attractors
Keeling, Matt J.; Rohani, Pejman; Grenfell, Bryan T.
2001-01-01
Biological phenomena offer a rich diversity of problems that can be understood using mathematical techniques. Three key features common to many biological systems are temporal forcing, stochasticity and nonlinearity. Here, using simple disease models compared to data, we examine how these three factors interact to produce a range of complicated dynamics. The study of disease dynamics has been amongst the most theoretically developed areas of mathematical biology; simple models have been highly successful in explaining the dynamics of a wide variety of diseases. Models of childhood diseases incorporate seasonal variation in contact rates due to the increased mixing during school terms compared to school holidays. This ‘binary’ nature of the seasonal forcing results in dynamics that can be explained as switching between two nonlinear spiral sinks. Finally, we consider the stability of the attractors to understand the interaction between the deterministic dynamics and demographic and environmental stochasticity. Throughout attention is focused on the behaviour of measles, whooping cough and rubella.
Dynamic allostery in the methionine repressor revealed by force distribution analysis.
Directory of Open Access Journals (Sweden)
Wolfram Stacklies
2009-11-01
Full Text Available Many fundamental cellular processes such as gene expression are tightly regulated by protein allostery. Allosteric signal propagation from the regulatory to the active site requires long-range communication, the molecular mechanism of which remains a matter of debate. A classical example for long-range allostery is the activation of the methionine repressor MetJ, a transcription factor. Binding of its co-repressor SAM increases its affinity for DNA several-fold, but has no visible conformational effect on its DNA binding interface. Our molecular dynamics simulations indicate correlated domain motions within MetJ, and quenching of these dynamics upon SAM binding entropically favors DNA binding. From monitoring conformational fluctuations alone, it is not obvious how the presence of SAM is communicated through the largely rigid core of MetJ and how SAM thereby is able to regulate MetJ dynamics. We here directly monitored the propagation of internal forces through the MetJ structure, instead of relying on conformational changes as conventionally done. Our force distribution analysis successfully revealed the molecular network for strain propagation, which connects collective domain motions through the protein core. Parts of the network are directly affected by SAM binding, giving rise to the observed quenching of fluctuations. Our results are in good agreement with experimental data. The force distribution analysis suggests itself as a valuable tool to gain insight into the molecular function of a whole class of allosteric proteins.
The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering
Zaccai, Giuseppe; Natali, Francesca; Peters, Judith; Řihová, Martina; Zimmerman, Ella; Ollivier, J.; Combet, J.; Maurel, Marie-Christine; Bashan, Anat; Yonath, Ada
2016-11-01
Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.
Molecular Dynamics Simulations of Clathrate Hydrates on Specialised Hardware Platforms
Directory of Open Access Journals (Sweden)
Christian R. Trott
2012-09-01
Full Text Available Classical equilibrium molecular dynamics (MD simulations have been performed to investigate the computational performance of the Simple Point Charge (SPC and TIP4P water models applied to simulation of methane hydrates, and also of liquid water, on a variety of specialised hardware platforms, in addition to estimation of various equilibrium properties of clathrate hydrates. The FPGA-based accelerator MD-GRAPE 3 was used to accelerate substantially the computation of non-bonded forces, while GPU-based platforms were also used in conjunction with CUDA-enabled versions of the LAMMPS MD software packages to reduce computational time dramatically. The dependence of molecular system size and scaling with number of processors was also investigated. Considering performance relative to power consumption, it is seen that GPU-based computing is quite attractive.
Hydrogen Bond Dynamics in Aqueous Solutions: Ab initio Molecular ...
Indian Academy of Sciences (India)
Rate equation for the decay of CHB(t) · Definition of Hydrogen Bonds · Results of Molecular Dynamics · Dynamics of anion-water and water-water hydrogen bonds · Structural relaxation of anion-water & water-water H-bonds · Ab initio Molecular Dynamics : · Slide 14 · Dynamics of hydrogen bonds : CPMD results · Slide 16.
Avoided critical behavior in dynamically forced wetting.
Snoeijer, Jacco H; Delon, Giles; Fermigier, Marc; Andreotti, Bruno
2006-05-05
A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. In this Letter we study the dynamical wetting transition at which a liquid film gets deposited by withdrawing a vertical plate out of a liquid reservoir. It has recently been predicted that this wetting transition is critical with diverging time scales and coincides with the disappearance of stationary menisci. We demonstrate experimentally and theoretically that the transition is due to the formation of a solitary wave, well below the critical point. As a consequence, relaxation times remain finite at threshold. The structure of the liquid deposited on the plate involves a capillary ridge that does not trivially match the Landau-Levich film.
Molecular dynamics algorithms for quantum Monte Carlo methods
Miura, Shinichi
2009-11-01
In the present Letter, novel molecular dynamics methods compatible with corresponding quantum Monte Carlo methods are developed. One is a variational molecular dynamics method that is a molecular dynamics analog of quantum variational Monte Carlo method. The other is a variational path integral molecular dynamics method, which is based on the path integral molecular dynamics method for finite temperature systems by Tuckerman et al. [M. Tuckerman, B.J. Berne, G.J. Martyna, M.L. Klein, J. Chem. Phys. 99 (1993) 2796]. These methods are applied to model systems including the liquid helium-4, demonstrated to work satisfactorily for the tested ground state calculations.
[The Northeast: fertility and recent dynamics of the labor force].
De Oliveira, L A
1985-01-01
Data from the 1970 and 1980 censuses of Brazil are analyzed to examine the economic growth of the Notheast, changes in the region's population dynamics, and changes in fertility. Consideration is given to the segmentation of the urban labor market, the income of the economically active population, children in the labor force, female education versus fertility, and family income versus female participation in the work force.
Energy Technology Data Exchange (ETDEWEB)
Clark, Michael A. [Harvard; Joo, Balint [JLAB; Kennedy, Anthony D. [Edinburgh; Silva, Paolo J. [Coimbra
2011-10-01
We show how the integrators used for the molecular dynamics step of the Hybrid Monte Carlo algorithm can be further improved. These integrators not only approximately conserve some Hamiltonian H but conserve exactly a nearby shadow Hamiltonian H~. This property allows for a new tuning method of the molecular dynamics integrator and also allows for a new class of integrators (force-gradient integrators) which is expected to reduce significantly the computational cost of future large-scale gauge field ensemble generation.
Molecular dynamic results on transport properties
Energy Technology Data Exchange (ETDEWEB)
Alder, B.J.; Alley, W.E.
1978-06-01
Following a broad discussion of generalized hydrodynamics, three examples are given to illustrate how useful this approach is in extending hydrodynamics to nearly the scale of molecular dimensions and the time between collisions, principally by including viscoelastic effects. The three examples concern the behavior of the velocity autocorrelation function, the decay of fluctuations in a resonating system, and the calculation of the dynamic structure factor obtained from neutron scattering. In the latter case the molecular dynamics results are also compared to the predictions of generalized kinetic theory. Finally it is shown how to implement generalized hydrodynamics both on a microscopic and macroscopic level. Hydrodynamics is unable to account for the long time tails in the velocity autocorrelation functions and the divergent Burnett coefficients observed for the Lorentz gas. Instead, the long time behavior of the Burnett coefficient and the distribution of displacements (the self part of the dynamic structure factor) can be accounted for by a random walk with a waiting time distribution which is chosen to give the correct velocity autocorrelation function. This random walk predicts, in agreement with the observations, that this displacement distribution is Gaussian at long times for the Lorentz gas, while for hard disks it has been found not to be so.
Force identification of dynamic systems using virtual work principle
Xu, Xun; Ou, Jinping
2015-02-01
One of the key inverse problems for estimating dynamic forces acting on a structure is to determine the force expansion and the corresponding solving method. This paper presents a moving least square (MLS) method for fitting dynamic forces, which improves the existing traditional methods. The simulation results show that the force expansion order has a tiny effect on the types of forces, which indicates the MLS method's excellent ability for local approximation and noise immunity as well as good fitting function. Then, the differential equation of motion for the system is transformed into an integral equation by using the virtual work principle, which can eliminate the structural acceleration response without introducing the calculation error. Besides, the transformation derives an expression of velocity by integrating by parts, which diminishes the error propagation of the velocity. Hence, the integral equation of motion for the system has a strong constraint to noise with zero mean value. Finally, this paper puts forward an optimization method to solve the equation. The numerical stability can be enhanced as the matrix inversion calculation is avoided. Illustrative examples involving different types of forces demonstrate that the transformation of the differential equation proposed through virtual work principle can eliminate interference efficiently and is robust for dynamic calculation.
Dynamics of a Parametrically Excited System with Two Forcing Terms
Directory of Open Access Journals (Sweden)
Anastasia Sofroniou
2014-09-01
Full Text Available Motivated by the dynamics of a trimaran, an investigation of the dynamic behaviour of a double forcing parametrically excited system is carried out. Initially, we provide an outline of the stability regions, both numerically and analytically, for the undamped linear, extended version of the Mathieu equation. This paper then examines the anticipated form of response of our proposed nonlinear damped double forcing system, where periodic and quasiperiodic routes to chaos are graphically demonstrated and compared with the case of the single vertically-driven pendulum.
Molecular mechanics force-field development for amino acid zwitterions.
Kirschner, K N; Lewin, A H; Bowen, J P
2003-01-15
Understanding the conformational flexibility of amino acid zwitterions (ZWs) and their associated conformational energies is crucial for predicting their interactions in biological systems. Gas-phase ab initio calculations of ZWs are intractable. Molecular mechanics (MM), on the other hand, is able to handle large systems but lacks the necessary force field parameters to model ZWs. To develop force field parameters that are able to correctly model ZW geometries and energetics we used a novel combinatorial approach: amino acid ZWs were broken down structurally into key functional components, which were parameterized separately. Møller-Plesset second-order perturbation calculations on small carboxylates, on the glycine cation, and on novel hydrogen bonded systems, coupled with available experimental data, were used to generate MM3(2000) ZW parameters (Allinger N. L.; Yuh, Y. H.; Lii, J.-H. J Am Chem Soc 1989, 111, 8551). The MM3 results from this combinatorial approach gave geometries that are in good agreement with neutron diffraction experiments, plus their frequencies and energies appear to be reasonably modeled. Current limitations and future development of MM force fields are discussed briefly. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 24: 111-128, 2003
Molecular Dynamics: New Frontier in Personalized Medicine.
Sneha, P; Doss, C George Priya
2016-01-01
The field of drug discovery has witnessed infinite development over the last decade with the demand for discovery of novel efficient lead compounds. Although the development of novel compounds in this field has seen large failure, a breakthrough in this area might be the establishment of personalized medicine. The trend of personalized medicine has shown stupendous growth being a hot topic after the successful completion of Human Genome Project and 1000 genomes pilot project. Genomic variant such as SNPs play a vital role with respect to inter individual's disease susceptibility and drug response. Hence, identification of such genetic variants has to be performed before administration of a drug. This process requires high-end techniques to understand the complexity of the molecules which might bring an insight to understand the compounds at their molecular level. To sustenance this, field of bioinformatics plays a crucial role in revealing the molecular mechanism of the mutation and thereby designing a drug for an individual in fast and affordable manner. High-end computational methods, such as molecular dynamics (MD) simulation has proved to be a constitutive approach to detecting the minor changes associated with an SNP for better understanding of the structural and functional relationship. The parameters used in molecular dynamic simulation elucidate different properties of a macromolecule, such as protein stability and flexibility. MD along with docking analysis can reveal the synergetic effect of an SNP in protein-ligand interaction and provides a foundation for designing a particular drug molecule for an individual. This compelling application of computational power and the advent of other technologies have paved a promising way toward personalized medicine. In this in-depth review, we tried to highlight the different wings of MD toward personalized medicine. © 2016 Elsevier Inc. All rights reserved.
Analysis of the Time Reversible Born-Oppenheimer Molecular Dynamics
Lin, Lin; Lu, Jianfeng; Shao, Sihong
2013-01-01
We analyze the time reversible Born-Oppenheimer molecular dynamics (TRBOMD) scheme, which preserves the time reversibility of the Born-Oppenheimer molecular dynamics even with non-convergent self-consistent field iteration. In the linear response regime, we derive the stability condition as well as the accuracy of TRBOMD for computing physical properties such as the phonon frequency obtained from the molecular dynamic simulation. We connect and compare TRBOMD with the Car-Parrinello molecular...
Molecular dynamics simulation of ribosome jam
Matsumoto, Shigenori
2011-09-01
We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We estimated the influence of the temperature and concentration of molecules on the hopping probability used in the ASEP model. Our model can also treat environmental effects on the translation process that cannot be explained by such cellular automaton models. © 2010 Elsevier B.V. All rights reserved.
Model based control of dynamic atomic force microscope
International Nuclear Information System (INIS)
Lee, Chibum; Salapaka, Srinivasa M.
2015-01-01
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H ∞ control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments
Model based control of dynamic atomic force microscope.
Lee, Chibum; Salapaka, Srinivasa M
2015-04-01
A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.
Effective particle size from molecular dynamics simulations in fluids
Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.
2018-04-01
We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.
Effective particle size from molecular dynamics simulations in fluids
Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.
2017-12-01
We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.
MDVRY: a polarizable classical molecular dynamics package for biomolecules
Souaille, M.; Loirat, H.; Borgis, D.; Gaigeot, M. P.
2009-02-01
The MDVRY classical molecular dynamics package is presented for the study of biomolecules in the gas and liquid phase. Electrostatic polarization has been implemented in the formalism of point induced dipoles following the model of Thole. Two schemes have been implemented for the calculation of induced dipoles, i.e. resolution of the self-consistent equations and a 'Car-Parrinello' dynamical approach. In this latter, the induced dipoles are calculated at each time step of the dynamics through the dynamics of additional degrees of freedom associated with the dipoles. This method saves computer time and allows to study polarized solvated proteins at a very low CPU cost. The program is written in C-language and runs on LINUX machines. A detailed manual of the code is given. The main features of the package are illustrated taking on examples of proteins in the gas phase or immersed in liquid water. Program summaryProgram title: MDVRY Catalogue identifier: AEBY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 39 156 No. of bytes in distributed program, including test data, etc.: 277 197 Distribution format: tar.bz2 Programming language: C Computer: Linux machines with FFTW Fourier Transform package installed Operating system: Linux machines, SUSE & RedHat distributions Classification: 3, 16.13, 23 External routines: FFTW ( http://www.fftw.org/) Nature of problem: Molecular Dynamics Software package. Solution method: Velocity Verlet algorithm. The implemented force field is composed of intra-molecular interactions and inter-molecular interactions (electrostatics, polarization, van der Waals). Polarization is accounted through induced point dipoles at each atomic site. Supplementary degrees of freedom are
Dynamic Stability of Euler Beams under Axial Unsteady Wind Force
Directory of Open Access Journals (Sweden)
You-Qin Huang
2014-01-01
Full Text Available Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved. The critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposed methods are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural frequency, is located in the instability region, no matter whether the wind load component is large or not.
Dynamics of chemically powered nanodimer motors subject to an external force.
Tao, Yu-Guo; Kapral, Raymond
2009-07-14
The chemically powered self-propelled directed motions of nanodimer motors confined in a rectangular channel and subject to an applied external conservative force are investigated using hybrid molecular dynamics/multiparticle collision dynamics. The influence of factors, such as dimer sizes, chemical reaction type, and the nature of the interaction potentials between dimer monomers and solvent molecules, on the propulsion force and friction constant are examined. The stall force, for which the nanodimer has zero net velocity, and the thermodynamic efficiency of the motor are calculated. Both irreversible and reversible chemical reactions are considered. The simulation results are compared to theoretical predictions which are able to capture the major features of the self-propelled motion.
Machine learning molecular dynamics for the simulation of infrared spectra.
Gastegger, Michael; Behler, Jörg; Marquetand, Philipp
2017-10-01
Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.
Physical properties of Cu nanoparticles: A molecular dynamics study
Energy Technology Data Exchange (ETDEWEB)
Kart, H.H., E-mail: hkart@pau.edu.tr [Department of Physics, Pamukkale University, Kınıklı Campus, 20017 Denizli (Turkey); Yildirim, H.; Ozdemir Kart, S. [Department of Physics, Pamukkale University, Kınıklı Campus, 20017 Denizli (Turkey); Çağin, T. [Department of Materials Science and Engineering, Texas A and M University, College Station, TX 77845-3003 (United States); Department of Chemical Engineering, Texas A and M University, College Station, TX 77845-3122 (United States)
2014-09-15
Thermodynamical, structural and dynamical properties of Cu nanoparticles are investigated by using Molecular Dynamics (MD) simulations at various temperatures. In this work, MD simulations of the Cu-nanoparticles are performed by means of the MPiSiM codes by utilizing from Quantum Sutton-Chen (Q-SC) many-body force potential to define the interactions between the Cu atoms. The diameters of the copper nanoparticles are varied from 2 nm to 10 nm. MD simulations of Cu nanoparticles are carried out at low and high temperatures to study solid and liquid properties of Cu nanoparticles. Simulation results such as melting point, radial distribution function are compared with the available experimental bulk results. Radial distribution function, mean square displacement, diffusion coefficient, Lindemann index and Honeycutt–Andersen index are also calculated for estimating the melting point of the Copper nanoparticles. - Highlights: • Solid and liquid properties of Cu nanoparticles are studied. • Molecular dynamics utilizing the Quantum Sutton Chen potential is used in this work. • Melting temperatures of nanoparticles are strongly depended on nanoparticle sizes. • Heat capacity, radial distribution function and diffusion coefficients are studied. • Structures of nanoparticles are analyzed by Lindemann and Honeycutt–Andersen index.
Physical properties of Cu nanoparticles: A molecular dynamics study
International Nuclear Information System (INIS)
Kart, H.H.; Yildirim, H.; Ozdemir Kart, S.; Çağin, T.
2014-01-01
Thermodynamical, structural and dynamical properties of Cu nanoparticles are investigated by using Molecular Dynamics (MD) simulations at various temperatures. In this work, MD simulations of the Cu-nanoparticles are performed by means of the MPiSiM codes by utilizing from Quantum Sutton-Chen (Q-SC) many-body force potential to define the interactions between the Cu atoms. The diameters of the copper nanoparticles are varied from 2 nm to 10 nm. MD simulations of Cu nanoparticles are carried out at low and high temperatures to study solid and liquid properties of Cu nanoparticles. Simulation results such as melting point, radial distribution function are compared with the available experimental bulk results. Radial distribution function, mean square displacement, diffusion coefficient, Lindemann index and Honeycutt–Andersen index are also calculated for estimating the melting point of the Copper nanoparticles. - Highlights: • Solid and liquid properties of Cu nanoparticles are studied. • Molecular dynamics utilizing the Quantum Sutton Chen potential is used in this work. • Melting temperatures of nanoparticles are strongly depended on nanoparticle sizes. • Heat capacity, radial distribution function and diffusion coefficients are studied. • Structures of nanoparticles are analyzed by Lindemann and Honeycutt–Andersen index
Molecular dynamics in high electric fields
Energy Technology Data Exchange (ETDEWEB)
Apostol, M., E-mail: apoma@theory.nipne.ro; Cune, L.C.
2016-06-15
Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.
Molecular dynamics in high electric fields
International Nuclear Information System (INIS)
Apostol, M.; Cune, L.C.
2016-01-01
Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.
Czech Academy of Sciences Publication Activity Database
Banáš, P.; Hollas, D.; Zgarbová, M.; Jurečka, P.; Orozco, M.; Cheatham III, T.E.; Šponer, Jiří; Otyepka, M.
2010-01-01
Roč. 6, č. 12 (2010), s. 3836-3849 ISSN 1549-9618 R&D Projects: GA MŠk(CZ) LC06030; GA ČR(CZ) GA203/09/1476; GA ČR(CZ) GD203/09/H046; GA AV ČR(CZ) IAA400040802 Grant - others:GA MŠk(CZ) LC512 Program:LC Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : molecular dynamics * force fields * RNA * tetraloops Subject RIV: BO - Biophysics Impact factor: 5.138, year: 2010
Relationships between Isometric Force-Time Characteristics and Dynamic Performance
Directory of Open Access Journals (Sweden)
Thomas Dos’Santos
2017-09-01
Full Text Available The purpose of this study was to explore the relationships between isometric mid-thigh pull (IMTP force-time characteristics (peak force and time-specific force vales (100–250 ms and dynamic performance and compare dynamic performance between stronger and weaker athletes. Forty-three athletes from different sports (rowing, soccer, bicycle motocross, and hockey performed three trials of the squat jump (SJ, countermovement jump (CMJ, and IMTP, and performed a one repetition maximum power clean (PC. Reactive strength index modified (RSImod was also calculated from the CMJ. Statistically significant large correlations between IMTP force-time characteristics and PC (ρ = 0.569–0.674, p < 0.001, and moderate correlations between IMTP force-time characteristics (excluding force at 100 ms and RSImod (ρ = 0.389–0.449, p = 0.013–0.050 were observed. Only force at 250 ms demonstrated a statistically significant moderate correlation with CMJ height (ρ = 0.346, p = 0.016 and no statistically significant associations were observed between IMTP force-time characteristics and SJ height. Stronger athletes (top 10 demonstrated statistically significantly greater CMJ heights, RSImods, and PCs (p ≤ 0.004, g = 1.32–1.89 compared to weaker (bottom 10 athletes, but no differences in SJ height were observed (p = 0.871, g = 0.06. These findings highlight that the ability to apply rapidly high levels of force in short time intervals is integral for PC, CMJ height, and reactive strength.
Chaos : The speed limiting phenomenon in dynamic atomic force microscopy
Keyvani Janbahan, A.; Alijani, F.; Sadeghian, Hamed; Maturova, Klara; Goosen, J.F.L.; van Keulen, A.
2017-01-01
This paper investigates the closed-loop dynamics of the Tapping Mode Atomic Force Microscopy using a new mathematical model based on the averaging method in Cartesian coordinates. Experimental and numerical observations show that the emergence of chaos in conventional tapping mode AFM strictly
Collision avoidance for multiple Lagrangian dynamical systems with gyroscopic forces
Directory of Open Access Journals (Sweden)
Lorenzo Sabattini
2017-01-01
Full Text Available This article introduces a novel methodology for dealing with collision avoidance for groups of mobile robots. In particular, full dynamics are considered, since each robot is modeled as a Lagrangian dynamical system moving in a three-dimensional environment. Gyroscopic forces are utilized for defining the collision avoidance control strategy: This kind of forces leads to avoiding collisions, without interfering with the convergence properties of the multi-robot system’s desired control law. Collision avoidance introduces, in fact, a perturbation on the nominal behavior of the system: We define a method for choosing the direction of the gyroscopic force in an optimal manner, in such a way that perturbation is minimized. Collision avoidance and convergence properties are analytically demonstrated, and simulation results are provided for validation purpose.
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
Yoo, Jejoong; Aksimentiev, Aleksei
2013-12-10
The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.
Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit
Izvekov, Sergei
2017-01-01
We derive alternative Markov approximations for the projected (stochastic) force and memory function in the coarse-grained (CG) generalized Langevin equation, which describes the time evolution of the center-of-mass coordinates of clusters of particles in the microscopic ensemble. This is done with the aid of the Mori-Zwanzig projection operator method based on the recently introduced projection operator [S. Izvekov, J. Chem. Phys. 138, 134106 (2013), 10.1063/1.4795091]. The derivation exploits the "generalized additive fluctuating force" representation to which the projected force reduces in the adopted projection operator formalism. For the projected force, we present a first-order time expansion which correctly extends the static fluctuating force ansatz with the terms necessary to maintain the required orthogonality of the projected dynamics in the Markov limit to the space of CG phase variables. The approximant of the memory function correctly accounts for the momentum dependence in the lowest (second) order and indicates that such a dependence may be important in the CG dynamics approaching the Markov limit. In the case of CG dynamics with a weak dependence of the memory effects on the particle momenta, the expression for the memory function presented in this work is applicable to non-Markov systems. The approximations are formulated in a propagator-free form allowing their efficient evaluation from the microscopic data sampled by standard molecular dynamics simulations. A numerical application is presented for a molecular liquid (nitromethane). With our formalism we do not observe the "plateau-value problem" if the friction tensors for dissipative particle dynamics (DPD) are computed using the Green-Kubo relation. Our formalism provides a consistent bottom-up route for hierarchical parametrization of DPD models from atomistic simulations.
Dynamics of Traction Force Reinforcement in Smooth Muscle Cells
Lin, Yi-Chia; Kramer, Corinne; Chen, Christopher; Reich, Daniel
2010-03-01
Mechanical forces influence cell function in various ways. For instance, the force-induced contraction or relaxation of vascular smooth muscle cells (SMCs) is critical to regulating the properties of blood vessels. Here, we study the dynamics of cellular traction forces in SMCs using micro-scale magnetic nanowires together with flexible PDMS micropost arrays. We use dual magnetic tweezers to apply a sinusoidal magnetic torque on nickel nanowires which are internalized by the SMCs. The spatial and temporal responses of the SMCs cultured on the tips of the microposts are recorded by the deflected posts. We observe a global reinforcement of the cells' traction forces upon applying a localized torque via the nanowires. Interestingly, we also find that the contractile response depends on the frequency of the applied stimulation, with a greater percentage of the SMCs showing enhanced reinforcement at lower frequencies.
Estimation of the shear force in transverse dynamic force microscopy using a sliding mode observer
Directory of Open Access Journals (Sweden)
Thang Nguyen
2015-09-01
Full Text Available In this paper, the problem of estimating the shear force affecting the tip of the cantilever in a Transverse Dynamic Force Microscope (TDFM using a real-time implementable sliding mode observer is addressed. The behaviour of a vertically oriented oscillated cantilever, in close proximity to a specimen surface, facilitates the imaging of the specimen at nano-metre scale. Distance changes between the cantilever tip and the specimen can be inferred from the oscillation amplitudes, but also from the shear force acting at the tip. Thus, the problem of accurately estimating the shear force is of significance when specimen images and mechanical properties need to be obtained at submolecular precision. A low order dynamic model of the cantilever is derived using the method of lines, for the purpose of estimating the shear force. Based on this model, an estimator using sliding mode techniques is presented to reconstruct the unknown shear force, from only tip position measurements and knowledge of the excitation signal applied to the top of the cantilever. Comparisons to methods assuming a quasi-static harmonic balance are made.
Biomembrane modeling: molecular dynamics simulation of phospholipid monolayers
Energy Technology Data Exchange (ETDEWEB)
Thompson, T.R.
1979-01-01
As a first step toward a computer model of a biomembrane-like bilayer, a dynamic, deterministric model of a phospholipid monolayer has been constructed. The model moves phospholipid-like centers of force according to an integrated law of motion in finite difference form. Forces on each phospholipid analogue are derived from the gradient of the local potential, itself the sum of Coulombic and short-range terms. The Coulombic term is approximated by use of a finite-difference form of Poisson's equation, while the short-range term results from finite-radius, pairwise summation of a Lennard-Jones potential. Boundary potentials are treated in such a way that the model is effectively infinite in extent in the plane of the monolayer. The two-dimensional virial theorem is used to find the surface pressure of the monolayer as a function of molecular area. Pressure-versus-area curves for simulated monolayers are compared to those of real monolayers. Dependence of the simulator's behavior on Lennard-Jones parameters and the specific geometry of the molecular analogue is discussed. Implications for the physical theory of phospholipid monolayers and bilayers are developed.
Zhao, Lei; Cheng, Jiangtao
2017-09-07
In this paper, we report molecular kinetic analyses of water spreading on hydrophobic surfaces via molecular dynamics simulation. The hydrophobic surfaces are composed of amorphous polytetrafluoroethylene (PTFE) with a static contact angle of ~112.4° for water. On the basis of the molecular kinetic theory (MKT), the influences of both viscous damping and solid-liquid retarding were analyzed in evaluating contact line friction, which characterizes the frictional force on the contact line. The unit displacement length on PTFE was estimated to be ~0.621 nm and is ~4 times as long as the bond length of C-C backbone. The static friction coefficient was found to be ~[Formula: see text] Pa·s, which is on the same order of magnitude as the dynamic viscosity of water, and increases with the droplet size. A nondimensional number defined by the ratio of the standard deviation of wetting velocity to the characteristic wetting velocity was put forward to signify the strength of the inherent contact line fluctuation and unveil the mechanism of enhanced energy dissipation in nanoscale, whereas such effect would become insignificant in macroscale. Moreover, regarding a liquid droplet on hydrophobic or superhydrophobic surfaces, an approximate solution to the base radius development was derived by an asymptotic expansion approach.
Osmosis : a molecular dynamics computer simulation study
Lion, Thomas
Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..
Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics
Güntürkün, Ulaş
2010-07-01
This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.
Molecular Dynamics of the ZIKA Virus NS3 Helicase
Raubenolt, Bryan; Rick, Steven; The Rick Group Team
The recent outbreaks of the ZIKA virus (ZIKV) and its connection to microcephaly in newborns has raised its awareness as a global threat and many scientific research efforts are currently underway in attempt to create a vaccine. Molecular Dynamics is a powerful method of investigating the physical behavior of protein complexes. ZIKV is comprised of 3 structural and 7 nonstructural proteins. The NS3 helicase protein appears to play a significant role in the replication complex and its inhibition could be a crucial source of antiviral drug design. This research primarily focuses on studying the structural dynamics, over the course of few hundred nanoseconds, of NS3 helicase in the free state, as well as in complex form with human ssRNA, ATP, and an analogue of GTP. RMSD and RMSF plots of each simulation will provide details on the forces involved in the overall stability of the active and inactive states. Furthermore, free energy calculations on a per residue level will reveal the most interactive residues between states and ultimately the primary driving force behind these interactions. Together these analyses will provide highly relevant information on the binding surface chemistry and thus serve as the basis for potential drug design.
Does dynamic stability govern propulsive force generation in human walking?
Browne, Michael G; Franz, Jason R
2017-11-01
Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.
Molecular dynamics simulation of laser shock phenomena
Energy Technology Data Exchange (ETDEWEB)
Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).
2001-10-01
Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)
Molecular Dynamics Simulations for Predicting Surface Wetting
Directory of Open Access Journals (Sweden)
Jing Chen
2014-06-01
Full Text Available The investigation of wetting of a solid surface by a liquid provides important insights; the contact angle of a liquid droplet on a surface provides a quantitative measurement of this interaction and the degree of attraction or repulsion of that liquid type by the solid surface. Molecular dynamics (MD simulations are a useful way to examine the behavior of liquids on solid surfaces on a nanometer scale. Thus, we surveyed the state of this field, beginning with the fundamentals of wetting calculations to an examination of the different MD methodologies used. We highlighted some of the advantages and disadvantages of the simulations, and look to the future of computer modeling to understand wetting and other liquid-solid interaction phenomena.
On the parallelization of molecular dynamics codes
Trabado, G. P.; Plata, O.; Zapata, E. L.
2002-08-01
Molecular dynamics (MD) codes present a high degree of spatial data locality and a significant amount of independent computations. However, most of the parallelization strategies are usually based on the manual transformation of sequential programs either by completely rewriting the code with message passing routines or using specific libraries intended for writing new MD programs. In this paper we propose a new library-based approach (DDLY) which supports parallelization of existing short-range MD sequential codes. The novelty of this approach is that it can directly handle the distribution of common data structures used in MD codes to represent data (arrays, Verlet lists, link cells), using domain decomposition. Thus, the insertion of run-time support for distribution and communication in a MD program does not imply significant changes to its structure. The method is simple, efficient and portable. It may be also used to extend existing parallel programming languages, such as HPF.
Molecular dynamics of ultradian glucocorticoid receptor action.
Conway-Campbell, Becky L; Pooley, John R; Hager, Gordon L; Lightman, Stafford L
2012-01-30
In recent years it has become evident that glucocorticoid receptor (GR) action in the nucleus is highly dynamic, characterized by a rapid exchange at the chromatin template. This stochastic mode of GR action couples perfectly with a deterministic pulsatile availability of endogenous ligand in vivo. The endogenous glucocorticoid hormone (cortisol in man and corticosterone in rodent) is secreted from the adrenal gland with an ultradian rhythm made up of pulses at approximately hourly intervals. These two components - the rapidly fluctuating ligand and the rapidly exchanging receptor - appear to have evolved to establish and maintain a system that is exquisitely responsive to the physiological demands of the organism. In this review, we discuss recent and innovative work that questions the idea of steady state, static hormone receptor responses, and replaces them with new concepts of stochastic mechanisms and oscillatory activity essential for optimal function in molecular and cellular systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Molecular dynamic simulation study of molten cesium
Directory of Open Access Journals (Sweden)
Yeganegi Saeid
2017-01-01
Full Text Available Molecular dynamics simulations were performed to study thermodynamics and structural properties of expanded caesium fluid. Internal pressure, radial distribution functions (RDFs, coordination numbers and diffusion coefficients have been calculated at temperature range 700–1600 K and pressure range 100–800 bar. We used the internal pressure to predict the metal–non-metal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first peak of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various temperatures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature.
Fiber lubrication: A molecular dynamics simulation study
Liu, Hongyi
Molecular and mesoscopic level description of friction and lubrication remains a challenge because of difficulties in the phenomenological understanding of to the behaviors of solid-liquid interfaces during sliding. Fortunately, there is the computational simulation approach opens an opportunity to predict and analyze interfacial phenomena, which were studied with molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) simulations. Polypropylene (PP) and cellulose are two of most common polymers in textile fibers. Confined amorphous surface layers of PP and cellulose were built successfully with xenon crystals which were used to compact the polymers. The physical and surface properties of the PP and cellulose surface layers were investigated by MD simulations, including the density, cohesive energy, volumetric thermal expansion, and contact angle with water. The topology method was employed to predict the properties of poly(alkylene glycol) (PAG) diblock copolymers and Pluronic triblock copolymers used as lubricants on surfaces. Density, zero shear viscosity, shear module, cohesive energy and solubility parameter were predicted with each block copolymer. Molecular dynamics simulations were used to study the interaction energy per unit contact area of block copolymer melts with PP and cellulose surfaces. The interaction energy is defined as the ratio of interfacial interaction energy to the contact area. Both poly(proplene oxide) (PPO) and poly(ethylene oxide) (PEO) segments provided a lipophilic character to both PP and cellulose surfaces. The PPO/PEO ratio and the molecular weight were found to impact the interaction energy on both PP and cellulose surfaces. In aqueous solutions, the interaction energy is complicated due to the presence of water and the cross interactions between the multiple molecular components. The polymer-water-surface (PWS) calculation method was proposed to calculate such complex systems. In a contrast with a vacuum condition, the presence
Molecular dynamics simulation and characterization of graphene-cellulose nanocomposites.
Rahman, R; Foster, J T; Haque, A
2013-06-27
The mechanical properties of graphene-cellulose (GC) nanocomposites are investigated using molecular dynamic (MD) simulations in this work. The influences of graphene concentrations, aspect ratios, and agglomeration on elastic constants and interfacial properties are reported. A polymer consistent force field (pcff) was used in the analysis. The GC nanocomposites system underwent NVT (constant number of atoms, volume, and temperature) and NPT (constant number of atoms, pressure, and temperature) ensemble with an applied uniform strain during the MD simulations. The stress-strain responses were evaluated for both randomly dispersed and stacked GC unit cell in order to study the effects of graphene concentrations, aspect ratio, and agglomeration on Young's modulus. The results indicate that Young's modulus of neat cellulose may be enhanced by incorporating graphene in the GC nanocomposites. It is observed that dispersed graphene shows a comparatively higher Young's modulus than the same with agglomerated graphene. The cohesive and pullout forces versus displacement data are reported under normal and shear modes. It is seen that both cohesive and pullout forces are enhanced for GC specimens with higher graphene aspect ratios due to enlarged surface/interfacial area. The MD simulation results show reasonable agreement with available experimental data.
Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert
2008-02-19
Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.
Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase.
Zhang, Ji-Long; Zheng, Qing-Chuan; Li, Zheng-Qiang; Zhang, Hong-Xing
2012-01-01
The research on the binding process of ligand to pyrazinamidase (PncA) is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD) simulation methods were performed to investigate the unbinding process of nicotinamide (NAM) from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF) based on the steered molecular dynamics (SMD) simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.
Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase.
Directory of Open Access Journals (Sweden)
Ji-Long Zhang
Full Text Available The research on the binding process of ligand to pyrazinamidase (PncA is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA's activity. In the present study, molecular dynamics (MD simulation methods were performed to investigate the unbinding process of nicotinamide (NAM from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF based on the steered molecular dynamics (SMD simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM's unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand's binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.
Sex speeds adaptation by altering the dynamics of molecular evolution.
McDonald, Michael J; Rice, Daniel P; Desai, Michael M
2016-03-10
Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.
Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations.
Bulacu, Monica; Goga, Nicolae; Zhao, Wei; Rossi, Giulia; Monticelli, Luca; Periole, Xavier; Tieleman, D Peter; Marrink, Siewert J
2013-08-13
Potentials routinely used in atomistic molecular dynamics simulations are not always suitable for modeling systems at coarse-grained resolution. For example, in the calculation of traditional torsion angle potentials, numerical instability is often encountered in the case of very flexible molecules. To improve the stability and accuracy of coarse-grained molecular dynamics simulations, we propose two approaches. The first makes use of improved forms for the angle potentials: the restricted bending (ReB) potential prevents torsion angles from visiting unstable or unphysical configurations and the combined bending-torsion (CBT) potential smoothly flattens the interactions when such configurations are sampled. In the second approach, dummy-assisted dihedral (DAD), the torsion potential is applied differently: instead of acting directly on the beads, it acts on virtual beads, bound to the real ones. For simple geometrical reasons, the unstable region is excluded from the accessible conformational space. The benefits of the new approaches are demonstrated in simulations of polyethylene glycol (PEG), polystyrene (PS), and polypeptide molecules described by the MARTINI coarse-grained force field. The new potentials are implemented in an in-house version of the Gromacs package, publicly available.
A new parallel molecular dynamics algorithm for organic systems
International Nuclear Information System (INIS)
Plimpton, S.; Hendrickson, B.; Heffelfinger, G.
1993-01-01
A new parallel algorithm for simulating bonded molecular systems such as polymers and proteins by molecular dynamics (MD) is presented. In contrast to methods that extract parallelism by breaking the spatial domain into sub-pieces, the new method does not require regular geometries or uniform particle densities to achieve high parallel efficiency. For very large, regular systems spatial methods are often the best choice, but in practice the new method is faster for systems with tens-of-thousands of atoms simulated on large numbers of processors. It is also several times faster than the techniques commonly used for parallelizing bonded MD that assign a subset of atoms to each processor and require all-to-all communication. Implementation of the algorithm in a CHARMm-like MD model with many body forces and constraint dynamics is discussed and timings on the Intel Delta and Paragon machines are given. Example calculations using the algorithm in simulations of polymers and liquid-crystal molecules will also be briefly discussed
Molecular dynamics simulation of annealed ZnO surfaces
Energy Technology Data Exchange (ETDEWEB)
Min, Tjun Kit; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)
2015-04-24
The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.
Interactions in charged colloidal suspensions: A molecular dynamics simulation study
Padidela, Uday Kumar; Behera, Raghu Nath
2017-07-01
Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.
Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces
DEFF Research Database (Denmark)
Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.
2009-01-01
and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...... of air. Hence, nanobubles have been observed and proposed as the origin of long range ``hydrophobic'' forces19-30 even for hydrophilic silica-water interfaces unusual phenomena related to nanobubbles have been observed.31-33 In this work we study the role of air on the wetting of amorphous silica...
Molecular beam studies of reaction dynamics
Energy Technology Data Exchange (ETDEWEB)
Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.
Fluorescence depolarization as a probe of molecular dynamics within liquid jets
Kenyon, A. J.; McCaffery, A. J.; Quintella, C. M.
Preliminary results are presented from a study of fluorescence depolarization within a thin laminar jet of rhodamine 6 G in ethylene glycol. A large number of polarization measurements taken across the jet have enabled us to build up a detailed polarization map of the liquid flow. Relating the degree of depolarization to molecular alignment caused by the presence of shear forces within the jet, we propose that this method may be used as a sensitive probe of the molecular dynamics of liquid flow.
Long-range force and moment calculations in multiresolution simulations of molecular systems
Poursina, Mohammad; Anderson, Kurt S.
2012-08-01
Multiresolution simulations of molecular systems such as DNAs, RNAs, and proteins are implemented using models with different resolutions ranging from a fully atomistic model to coarse-grained molecules, or even to continuum level system descriptions. For such simulations, pairwise force calculation is a serious bottleneck which can impose a prohibitive amount of computational load on the simulation if not performed wisely. Herein, we approximate the resultant force due to long-range particle-body and body-body interactions applicable to multiresolution simulations. Since the resultant force does not necessarily act through the center of mass of the body, it creates a moment about the mass center. Although this potentially important torque is neglected in many coarse-grained models which only use particle dynamics to formulate the dynamics of the system, it should be calculated and used when coarse-grained simulations are performed in a multibody scheme. Herein, the approximation for this moment due to far-field particle-body and body-body interactions is also provided.
Rahimi, Mohammad; Karimi-Varzaneh, Hossein Ali; Böhm, Michael C; Müller-Plathe, Florian; Pfaller, Sebastian; Possart, Gunnar; Steinmann, Paul
2011-04-21
A scheme is described for performing molecular dynamics simulations on polymers under nonperiodic, stochastic boundary conditions. It has been designed to allow later the embedding of a particle domain treated by molecular dynamics into a continuum environment treated by finite elements. It combines, in the boundary region, harmonically restrained particles to confine the system with dissipative particle dynamics to dissipate energy and to thermostat the simulation. The equilibrium position of the tethered particles, the so-called anchor points, are well suited for transmitting deformations, forces and force derivatives between the particle and continuum domains. In the present work the particle scheme is tested by comparing results for coarse-grained polystyrene melts under nonperiodic and regular periodic boundary conditions. Excellent agreement is found for thermodynamic, structural, and dynamic properties.
Approximation of quantum observables by molecular dynamics simulations
Sandberg, Mattias
2016-01-06
In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.
Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy
Cantrell, John H.; Cantrell, Sean A.
2015-01-01
The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.
Non-Equilibrium Molecular Dynamics Simulation of Poiseuille Flow in a Carbon Nanochannel
Ni, Guo Liang; He, Ming Li; Hua, Yao Zu; Abareshi, Bagher
2017-01-01
International audience; The numerical simulation of a Poiseuille flow in a narrow channel using the molecular dynamics simulation (MDS) is performed. Poiseuille flow of liquid Argon in a carbon nanochannel is simulated by embedding the fluid particles in a uniform force field. Density, velocity and Temperature profiles across the channel are investigated. When particles will be inserted into the flow, it is expected that the dynamics of flow will depend on the thermostat chosen. To obtain a m...
Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D
2017-08-14
Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.
Correlation of Force Production with Apoptosis in Tissue Dynamics
Toyama, Yusuke; Peralta, Xomalin; Venakides, Stephanos; Kiehart, Daniel; Edwards, Glenn
2007-03-01
To understand embryo morphogenesis, it is necessary to know the force distribution in the various tissues. Since cells are largely inaccessible to mechanical probes in vivo, measurements of the net forces exerted by cells are challenging. The combination of experimental and theoretical approaches has proven to improve our understanding of these forces. A steerable UV-laser microbeam was used to probe the forces and the resulting kinematics were monitored with confocal microscopy. Dorsal closure is a developmental stage in Drosophila embryogenesis, where the dynamics are a consequence of four biological processes [1]. During this stage, cells that have outlived their usefulness undergo apoptosis, a biological process also known as programmed cell death for cells. Apoptotic events were decreased with genetic techniques or increased by irradiation with a UV-C lamp. We present experimental evidence for force generation correlating with apoptosis. This research has been supported by the NIH (GM33830 and GM61240). [1] M. S. Hutson, et al. Science, 300, 145 (2003).
Forced versus coupled dynamics in Earth system modelling and prediction
Directory of Open Access Journals (Sweden)
B. Knopf
2005-01-01
Full Text Available We compare coupled nonlinear climate models and their simplified forced counterparts with respect to predictability and phase space topology. Various types of uncertainty plague climate change simulation, which is, in turn, a crucial element of Earth System modelling. Since the currently preferred strategy for simulating the climate system, or the Earth System at large, is the coupling of sub-system modules (representing, e.g. atmosphere, oceans, global vegetation, this paper explicitly addresses the errors and indeterminacies generated by the coupling procedure. The focus is on a comparison of forced dynamics as opposed to fully, i.e. intrinsically, coupled dynamics. The former represents a particular type of simulation, where the time behaviour of one complex systems component is prescribed by data or some other external information source. Such a simplifying technique is often employed in Earth System models in order to save computing resources, in particular when massive model inter-comparisons need to be carried out. Our contribution to the debate is based on the investigation of two representative model examples, namely (i a low-dimensional coupled atmosphere-ocean simulator, and (ii a replica-like simulator embracing corresponding components.Whereas in general the forced version (ii is able to mimic its fully coupled counterpart (i, we show in this paper that for a considerable fraction of parameter- and state-space, the two approaches qualitatively differ. Here we take up a phenomenon concerning the predictability of coupled versus forced models that was reported earlier in this journal: the observation that the time series of the forced version display artificial predictive skill. We present an explanation in terms of nonlinear dynamical theory. In particular we observe an intermittent version of artificial predictive skill, which we call on-off synchronization, and trace it back to the appearance of unstable periodic orbits. We also
Investigating Ebola virus pathogenicity using molecular dynamics.
Pappalardo, Morena; Collu, Francesca; Macpherson, James; Michaelis, Martin; Fraternali, Franca; Wass, Mark N
2017-08-11
Ebolaviruses have been known to cause deadly disease in humans for 40 years and have recently been demonstrated in West Africa to be able to cause large outbreaks. Four Ebolavirus species cause severe disease associated with high mortality in humans. Reston viruses are the only Ebolaviruses that do not cause disease in humans. Conserved amino acid changes in the Reston virus protein VP24 compared to VP24 of other Ebolaviruses have been suggested to alter VP24 binding to host cell karyopherins resulting in impaired inhibition of interferon signalling, which may explain the difference in human pathogenicity. Here we used protein structural analysis and molecular dynamics to further elucidate the interaction between VP24 and KPNA5. As a control experiment, we compared the interaction of wild-type and R137A-mutant (known to affect KPNA5 binding) Ebola virus VP24 with KPNA5. Results confirmed that the R137A mutation weakens direct VP24-KPNA5 binding and enables water molecules to penetrate at the interface. Similarly, Reston virus VP24 displayed a weaker interaction with KPNA5 than Ebola virus VP24, which is likely to reduce the ability of Reston virus VP24 to prevent host cell interferon signalling. Our results provide novel molecular detail on the interaction of Reston virus VP24 and Ebola virus VP24 with human KPNA5. The results indicate a weaker interaction of Reston virus VP24 with KPNA5 than Ebola virus VP24, which is probably associated with a decreased ability to interfere with the host cell interferon response. Hence, our study provides further evidence that VP24 is a key player in determining Ebolavirus pathogenicity.
Combining optimal control theory and molecular dynamics for protein folding.
Arkun, Yaman; Gur, Mert
2012-01-01
A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the Cα atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the Cα atoms. In turn, MD simulation provides an all-atom conformation whose Cα positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the Cα atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization-MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages.
Combining optimal control theory and molecular dynamics for protein folding.
Directory of Open Access Journals (Sweden)
Yaman Arkun
Full Text Available A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD. In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the Cα atoms of a Coarse-Grained (CG protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the Cα atoms. In turn, MD simulation provides an all-atom conformation whose Cα positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the Cα atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization-MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages.
Folding very short peptides using molecular dynamics.
Directory of Open Access Journals (Sweden)
Bosco K Ho
2006-04-01
Full Text Available Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides, the structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained backbone description. In particular, all seven of the beta hairpins in the native structures contain a fragment in the turn that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments.
Spin-diffusions and diffusive molecular dynamics
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
Molecular dynamics simulations using AMB06C, an in-house carbohydrate force field, (NPT ensembles, 1atm) were carried out on a periodic cell that contained a cyclic-DP-240 amylose fragment and TIP3P water molecules. Molecular conformation and movement of the amylose fragment and water molecules at ...
Forced fluid dynamics from blackfolds in general supergravity backgrounds
Energy Technology Data Exchange (ETDEWEB)
Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Gath, Jakob [Centre de Physique Théorique, École Polytechnique,CNRS UMR 7644, Université Paris-Saclay,F-91128 Palaiseau (France); Niarchos, Vasilis [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete,Heraklion, 71303 (Greece); Obers, Niels A.; Pedersen, Andreas Vigand [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)
2016-10-27
We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic p-brane solutions of (super)gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings our analysis reveals additional couplings to the background, including terms that arise from Chern-Simons interactions. We also present a general overview of the blackfold approach and some of the key conceptual issues that arise when applied to arbitrary backgrounds.
Efficient molecular dynamics simulations with many-body potentials on graphics processing units
Fan, Zheyong; Chen, Wei; Vierimaa, Ville; Harju, Ari
2017-09-01
Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within different loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for many-body potentials derived recently (Fan et al., 2015). In our algorithm, the force, virial stress, and heat current for a given atom can be accumulated within a single thread and is free of write conflicts. We discuss the formulations and algorithms and evaluate their performance. A new open-source code, GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potential, the double precision performance of GPUMD using a Tesla K40 card is equivalent to that of the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) molecular dynamics code running with about 100 CPU cores (Intel Xeon CPU X5670 @ 2.93 GHz).
Bubble dynamics in microchannels: inertial and capillary migration forces
Rivero-Rodriguez, Javier; Scheid, Benoit
2018-05-01
This work focuses on the dynamics of a train of unconfined bubbles flowing in microchan- nels. We investigate the transverse position of a train of bubbles, its velocity and the associated pressure drop when flowing in a microchannel depending on the internal forces due to viscosity, inertia and capillarity. Despite the small scales of the system, inertia, referred to as inertial migration force, play a crucial role in determining the transverse equilibrium position of the bubbles. Beside inertia and viscosity, other effects may also affect the transverse migration of bubbles such as the Marangoni surface stresses and the surface deformability. We look at the influence of surfactants in the limit of infinite Marangoni effect which yields rigid bubble interface. The resulting migration force may balance external body forces if present such as buoyancy, Dean or magnetic ones. This balance not only determines the transverse position of the bubbles but, consequently, the surrounding flow structure, which can be determinant for any mass/heat transfer process involved. Finally, we look at the influence of the bubble deformation on the equilibrium position and compare it to the inertial migration force at the centred position, explaining the stable or unstable character of this position accordingly. A systematic study of the influence of the parameters - such as the bubble size, uniform body force, Reynolds and capillary numbers - has been carried out using numerical simulations based on the Finite Element Method, solving the full steady Navier-Stokes equations and its asymptotic counterpart for the limits of small Reynolds and/or capillary numbers.
Emission of water clusters: molecular dynamic simulation
International Nuclear Information System (INIS)
Kutliev, U.O.; Kalandarov, K.S.
2006-01-01
Full text: Secondary ion mass spectrometry (SIMS) is a wonderful technique for providing mass spectrometric information of molecules on surfaces. Theoretical studies of the keV bombardment of organic films on metallic surfaces have contributed to our understanding of the mechanisms governing these processes. Many experiments of keV bombardment, however, are performed both thick and thin organic targets [1]. Molecular systems investigated experimentally by SIMS include adsorbed films on a metal substrate, molecular solids, polymers, or even biological cells. In this account, we focus on thin organic layers on metal substrates as they are used for analytical purposes, are intriguing from a fundamental viewpoint, and are computationally tractable [2]. There are we present molecular dynamics (MD) simulations aimed at obtaining such a microscopic picture and mass spectrum of sputtering particles. Because of the importance of H 2 O in many of the experiments, we have chosen it as our system. Water is also attractive as a system because of the extensive literature available on its physical properties. The interaction potentials available for MD simulations of H 2 O are sufficiently reliable such that a quantitative analysis of the simulation results can be directly related to the parameters of water. From the variety of substrate materials used in different experiments, we have chosen to perform our simulations using Au. This substance is chosen to match preliminary experiments with the selective killing of cells by inserted Au nanoparticles and because of the availability of good interaction potentials for gold. In the simulations, we bombarded by ions Ar the surface Au(III) covered by ice film. The interaction potential employed to describe the H 2 O-H 2 O interaction is the simple-point-charge (SPC) water potential developed by Berendsen et al. [3]. This potential has been used extensively to study the properties of H 2 O as a solid [4, 5]. It has been shown that the
Forces and Refractive Index of Molecularly Confined Cyclohexane
Zäch, Michael; Heuberger, Manfred P.; Spencer, Nicholas D.
2001-03-01
The density profiles and interaction potentials in confined liquids are thought to oscillate with distance. These short-range interactions manifest as distance modulations in surface forces apparatus (SFA) measurements. They are commonly referred to as solvation forces or structural forces. Unfortunately, the SFA exhibits mechanical instabilities, as any other spring apparatus. Thus, the force-versus-distance profile is not entirely accessible experimentally. Novel measurements performed on the extended surface forces apparatus (eSFA) will be presented. We have measured simultaneously the force-versus-distance profile as well as the refractive index of confined cyclohexane at unprecedented range and resolution. The force curves show previously unreported fine structure. Fluid density variations are inferred from the refractive index data. Our results appear to necessitate modifications to the common picture. They can be interpreted in terms of phase separation, density fluctuations and plastic behaviour which is not compatible with any oscillatory potential.
Wang, Junmei; Tingjun, Hou
2011-01-01
Molecular mechanical force field (FF) methods are useful in studying condensed phase properties. They are complementary to experiment and can often go beyond experiment in atomic details. Even a FF is specific for studying structures, dynamics and functions of biomolecules, it is still important for the FF to accurately reproduce the experimental liquid properties of small molecules that represent the chemical moieties of biomolecules. Otherwise, the force field may not describe the structures and energies of macromolecules in aqueous solutions properly. In this work, we have carried out a systematic study to evaluate the General AMBER Force Field (GAFF) in studying densities and heats of vaporization for a large set of organic molecules that covers the most common chemical functional groups. The latest techniques, such as the particle mesh Ewald (PME) for calculating electrostatic energies, and Langevin dynamics for scaling temperatures, have been applied in the molecular dynamics (MD) simulations. For density, the average percent error (APE) of 71 organic compounds is 4.43% when compared to the experimental values. More encouragingly, the APE drops to 3.43% after the exclusion of two outliers and four other compounds for which the experimental densities have been measured with pressures higher than 1.0 atm. For heat of vaporization, several protocols have been investigated and the best one, P4/ntt0, achieves an average unsigned error (AUE) and a root-mean-square error (RMSE) of 0.93 and 1.20 kcal/mol, respectively. How to reduce the prediction errors through proper van der Waals (vdW) parameterization has been discussed. An encouraging finding in vdW parameterization is that both densities and heats of vaporization approach their “ideal” values in a synchronous fashion when vdW parameters are tuned. The following hydration free energy calculation using thermodynamic integration further justifies the vdW refinement. We conclude that simple vdW parameterization
Enhanced molecular dynamics for simulating porous interphase layers in batteries.
Energy Technology Data Exchange (ETDEWEB)
Zimmerman, Jonathan A.; Wong, Bryan Matthew; Jones, Reese E.; Templeton, Jeremy Alan; Lee, Jonathan (Rice University, Houston, TX)
2009-10-01
Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anistropic electric fields in molecular dynamics (MD) simulations. An important technological example is ion transport through solid-electrolyte interphase (SEI) layers that form in many common types of batteries. These layers regulate the rate at which electro-chemical reactions occur, affecting power, safety, and reliability. In this work, we develop a model for incorporating electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. In this application, the electric potential is represented on a FE mesh and is calculated from a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagates to each atom through modified forces. The method is verified using simulations where analytical or theoretical solutions are known. Calculations of salt water solutions in complex domains are performed to understand how ions are attracted to charged surfaces in the presence of electric fields and interfering media.
Multiscale Molecular Dynamics Approach to Energy Transfer in Nanomaterials.
Espinosa-Duran, John M; Sereda, Yuriy V; Abi-Mansour, Andrew; Ortoleva, Peter
2018-02-13
After local transient fluctuations are dissipated, in an energy transfer process, a system evolves to a state where the energy density field varies slowly in time relative to the dynamics of atomic collisions and vibrations. Furthermore, the energy density field remains strongly coupled to the atomic scale processes (collisions and vibrations), and it can serve as the basis of a multiscale theory of energy transfer. Here, a method is introduced to capture the long scale energy density variations as they coevolve with the atomistic state in a way that yields insights into the basic physics and implies an efficient algorithm for energy transfer simulations. The approach is developed based on the N-atom Liouville equation and an interatomic force field and avoids the need for conjectured phenomenological equations for energy transfer and other processes. The theory is demonstrated for sodium chloride and silicon dioxide nanoparticles immersed in a water bath via molecular dynamics simulations of the energy transfer between a nanoparticle and its aqueous host fluid. The energy density field is computed for different sets of symmetric grid densities, and the multiscale theory holds when slowly varying energy densities at the nodes are obtained. Results strongly depend on grid density and nanoparticle constituent material. A nonuniform temperature distribution, larger thermal fluctuations in the nanoparticle than in the bath, and enhancement of fluctuations at the surface, which are expressed due to the atomic nature of the systems, are captured by this method rather than by phenomenological continuum energy transfer models.
Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán
2018-04-05
Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.
DEFF Research Database (Denmark)
Peters, Günther H.j.; Frimurer, T. M.; Andersen, J. N.
2000-01-01
Molecular dynamics simulations of protein tyrosine phosphatase 1B (PTP1B) complexed with the phosphorylated peptide substrate DADEpYL and the free substrate have been conducted to investigate 1) the physical forces involved in substrate-protein interactions, 2) the importance of enzyme...... for catalysis. Analysis of the individual enzyme-substrate interaction energies revealed that mainly electrostatic forces contribute to binding. Indeed, calculation of the electrostatic field of the enzyme reveals that only the field surrounding the binding pocket is positive, while the remaining protein...
Calculation of dynamic hydraulic forces in nuclear plant piping systems
International Nuclear Information System (INIS)
Choi, D.K.
1982-01-01
A computer code was developed as one of the tools needed for analysis of piping dynamic loading on nuclear power plant high energy piping systems, including reactor safety and relief value upstream and discharge piping systems. The code calculates the transient hydraulic data and dynamic forces within the one-dimensional system, caused by a pipe rupture or sudden value motion, using a fixed space and varying time grid-method of characteristics. Subcooled, superheated, homogeneous two-phase and transition flow regimes are considered. A non-equilibrium effect is also considered in computing the fluid specific volume and fluid local sonic velocity in the two-phase mixture. Various hydraulic components such as a spring loaded or power operated value, enlarger, orifice, pressurized tank, multiple pipe junction (tee), etc. are considered as boundary conditions. Comparisons of calculated results with available experimental data shows a good agreement. (Author)
Energy Technology Data Exchange (ETDEWEB)
Tringe, J.W., E-mail: tringe2@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Ileri, N. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Levie, H.W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Stroeve, P.; Ustach, V.; Faller, R. [Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Renaud, P. [Swiss Federal Institute of Technology, Lausanne, (EPFL) (Switzerland)
2015-08-18
Highlights: • WGA proteins in nanochannels modeled by Molecular Dynamics and Monte Carlo. • Protein surface coverage characterized by atomic force microscopy. • Models indicate transport characteristics depend strongly on surface coverage. • Results resolve of a four orders of magnitude difference in diffusion coefficient values. - Abstract: We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.
Imaging modes of atomic force microscopy for application in molecular and cell biology.
Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J
2017-04-06
Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.
Energy Technology Data Exchange (ETDEWEB)
Costandy, Joseph; Michalis, Vasileios K.; Economou, Ioannis G., E-mail: i.tsimpanogiannis@qatar.tamu.edu, E-mail: ioannis.economou@qatar.tamu.edu [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Tsimpanogiannis, Ioannis N., E-mail: i.tsimpanogiannis@qatar.tamu.edu, E-mail: ioannis.economou@qatar.tamu.edu [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” 15310 Aghia Paraskevi, Attikis (Greece); Stubos, Athanassios K. [Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” 15310 Aghia Paraskevi, Attikis (Greece)
2016-03-28
We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.
Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions
Czech Academy of Sciences Publication Activity Database
Zobač, Vladimír; Lewis, J.P.; Jelínek, Pavel
2016-01-01
Roč. 27, č. 28 (2016), 1-8, č. článku 285202. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : non-adiabatic molecular dynamics * molecular junctions * molecular switches * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2016
Molecular dynamics using quasielastic neutron scattering
Mitra, S
2003-01-01
Quasielastic neutron scattering (QENS) technique is well suited to study the molecular motions (rotations and translations) in solids or liquids. It offers a unique possibility of analysing spatial dimensions of atomic or molecular processes in their development over time. We describe here some of the systems studied using the QENS spectrometer, designed, developed and commissioned at Dhruva reactor in Trombay. We have studied a variety of systems to investigate the molecular motion, for example, simple molecular solids, molecules adsorbed in confined medium like porous systems or zeolites, monolayer-protected nano-sized metal clusters, water in Portland cement as it cures with time, etc. (author)
Solvation structure and dynamics of Ni{sup 2+}(aq) from a polarizable force field
Energy Technology Data Exchange (ETDEWEB)
Mareš, Jiří, E-mail: jiri.mares@oulu.fi; Vaara, Juha
2014-10-31
Highlights: • We parameterize the Ni{sup 2+} ion within the AMOEBA polarizable forcefield. • Besides vdW parameters, we fit also polarizability, Thole damping and charge. • We use an empirical adjustment to account for the transition into condensed phase. • Very good structural and dynamical properties of Ni{sup 2+}(aq) are demonstrated. - Abstract: An aqueous solution of Ni{sup 2+} has often been used as a prototypic transition-metal system for experimental and theoretical studies in nuclear and electron-spin magnetic resonance (NMR and ESR). Molecular dynamics (MD) simulation of Ni{sup 2+}(aq) has been a part of many of these studies. As a transition metal complex, its MD simulation is particularly difficult using common force fields. In this work, we parameterize the Ni{sup 2+} ion for a simulation of the aqueous solution within the modern polarizable force field AMOEBA. We show that a successful parameterization is possible for this specific case when releasing the physical interpretation of the electrostatic and polarization parameters of the force field. In doing so, particularly the Thole damping parameter and also the ion charge and polarizability were used as fitting parameters. The resulting parameterizations give in a MD simulation good structural and dynamical properties of the [Ni(H{sub 2}O){sub 6}]{sup 2+} complex, along with the expected excellent performance of AMOEBA for the water solvent. The presented parameterization is appropriate for high-accuracy simulations of both structural and dynamic properties of Ni{sup 2+}(aq). This work documents possible approaches of parameterization of a transition metal within the AMOEBA force field.
Directory of Open Access Journals (Sweden)
Vivek Mahajan
2015-01-01
Full Text Available Introduction: The ability to close space efficiently in orthodontic tooth movement is of major clinical importance. Elastomeric chains are extensively used as tooth moving mechanism in orthodontics. The objective of this study was to evaluate the dynamic force delivery and damping behaviour of different brands of elastomeric chains using Dynamic Mechanical Analysis. Materials and Methods: Five types of clear elastomeric chains were taken from the different manufacturers: GAC International (Sunburst TM Power Chain, 3M Unitek (AlastiK TM Power Chain, ROCKY MOUNTAIN ORTHODONTICS (Energy Chain TM , ORMCO Power Chain and LIBRAL (Rabbit Force. Dynamic Mechanical Analysis was performed at room temperature at eight defined frequencies (0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 Hz in immediate succession from lowest to highest. Five variables (Dynamic force, loss Stiffness, Storage Stiffness, Tan Delta and Damping were analyzed using repeated measures analysis of variance and Post-Hoc test was done to evaluate the difference between the means at different frequencies. Results: Post-hoc tests compared all frequencies for each brand showing significant differences were found among the different types of brands. Significance was set at 0.05. Conclusion: GAC brand had higher dynamic, storage and loss stiffness values. GAC brand shows higher damping values at lower frequencies.
Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting
National Research Council Canada - National Science Library
Low, Tammy K
2006-01-01
.... Our research goals consisted of employing olefin metathesis in the synthesis of peptidomimetics, and studying the feasibility of this method in dynamic combinatorial chemistry and molecular imprinting of nerve agents...
Crystal structure and pair potentials: A molecular-dynamics study
Energy Technology Data Exchange (ETDEWEB)
Parrinello, M.; Rahman, A.
1980-10-06
With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.
Computational exploration of single-protein mechanics by steered molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Sotomayor, Marcos [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio (United States)
2015-12-31
Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.
Dynamical analysis of highly excited molecular spectra
Energy Technology Data Exchange (ETDEWEB)
Kellman, M.E. [Univ. of Oregon, Eugene (United States)
1993-12-01
The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.
The structure of molecular liquids. Neutron diffraction and molecular dynamics simulations
International Nuclear Information System (INIS)
Bianchi, L.
2000-05-01
Neutron diffraction (ND) measurements on liquid methanol (CD 3 OD, CD 3 O(H/D), CD 3 OH) under ambient conditions were performed to obtain the distinct (intra- + inter-molecular), G dist (r) and inter-molecular, G inter (r) radial distribution functions (rdfs) for the three samples. The H/D substitution on hydroxyl-hydrogen (Ho) has been used to extract the partial distribution functions, G XHo (r) (X=C, O, and H - a methyl hydrogen) and G XX (r) at both the distinct and inter-molecular levels from the difference techniques of ND. The O-Ho bond length, which has been the subject of controversy in the past, is found purely from the distinct partial distribution function, G XHo (r) to be 0.98 ± 0.01 A. The C-H distance obtained from the distinct G XX (r) partial is 1.08 ± 0.01 A. These distances determined by fitting an intra-molecular model to the total distinct structure functions are 0.961 ± 0.001 A and 1.096 ± 0.001 A, respectively. The inter-molecular G XX (r) function, dominated by contributions from the methyl groups, apart from showing broad oscillations extending up to ∼14 A is featureless, mainly because of cancellation effects from six contributing pairs. The Ho-Ho partial pair distribution function (pdf), g HoHo (r), determined from the second order difference, shows that only one other Ho atom can be found within a mean Ho-Ho separation of 2.36 A. The average position of the O-Ho hydrogen bond determined for the first time purely from experimental inter-molecular G XHo (r) partial distribution function is found to be at 1.75 ± 0.03 A. The experimental structural results at the partial distribution level are compared with those obtained from molecular dynamics (MD) simulations performed in NVE ensemble by using both 3- and 6-site force field models for the first time in this study. The MD simulations with both the models reproduce the ND rdfs rather well. However, discrepancies begin to appear between the simulated and the experimental partial
Dynamic control of function by light-driven molecular motors
van Leeuwen, Thomas; Lubbe, Anouk S.; Stacko, Peter; Wezenberg, Sander J.; Feringa, Ben L.
2017-01-01
The field of dynamic functional molecular systems has progressed enormously over the past few decades. By coupling the mechanical properties of molecular switches and motors to chemical and biological processes, exceptional control of function has been attained. Overcrowded alkene-based light-driven
Molecular Dynamics Investigation of Efficient SO2 Absorption by ...
Indian Academy of Sciences (India)
ANIRBAN MONDAL
TMG][L]) that absorbs an equimolar amount of SO2 through chemisorption.12 Subsequently, a sig- ...... Visual molecular dynamics J. Mol. Graphics 14 33. 83. Fiorin G, Klein M L and Hénin J 2013 Using collective variables to drive molecular ...
Molecular determinants of epidermal growth factor binding: a molecular dynamics study.
Directory of Open Access Journals (Sweden)
Jeffrey M Sanders
Full Text Available The epidermal growth factor receptor (EGFR is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of
Elosegui-Artola, Alberto; Oria, Roger; Chen, Yunfeng; Kosmalska, Anita; Pérez-González, Carlos; Castro, Natalia; Zhu, Cheng; Trepat, Xavier; Roca-Cusachs, Pere
2016-05-01
Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. We demonstrate that force transmission is regulated by a dynamic clutch mechanism, which unveils its fundamental biphasic force/rigidity relationship on talin depletion. Force transduction is triggered by talin unfolding above a stiffness threshold. Below this threshold, integrins unbind and release force before talin can unfold. Above the threshold, talin unfolds and binds to vinculin, leading to adhesion growth and YAP nuclear translocation. Matrix density, myosin contractility, integrin ligation and talin mechanical stability differently and nonlinearly regulate both force transmission and the transduction threshold. In all cases, coupling of talin unfolding dynamics to a theoretical clutch model quantitatively predicts cell response.
Lamonte, Kevin; Gómez Gualdrón, Diego A; Cabrales-Navarro, Fredy A; Scanlon, Lawrence G; Sandi, Giselle; Feld, William; Balbuena, Perla B
2008-12-11
Tetramethyl ammonium lithium phthalocyanine is explored as a potential material for storage of molecular hydrogen. Density functional theory calculations are used to investigate the molecular structure and the dimer conformation. Additional scans performed to determine the interactions of a H2 molecule located at various distances from the molecular sites are used to generate a simple force field including dipole-induced-dipole interactions. This force field is employed in molecular dynamics simulations to calculate adsorption isotherms at various pressures. The regions of strongest adsorption are quantified as functions of temperature, pressure, and separation between molecules in the adsorbent phase, and compared to the regions of strongest binding energy as given by the proposed force field. It is found that the total adsorption could not be predicted only from the spatial distribution of the strongest binding energies; the available volume is the other contributing factor even if the volume includes regions of much lower binding energy. The results suggest that the complex anion is primarily involved in the adsorption process with molecular hydrogen, whereas the cation serves to provide access for hydrogen adsorption in both sides of the anion molecular plane, and spacing between the planes.
Analyzing machupo virus-receptor binding by molecular dynamics simulations
Directory of Open Access Journals (Sweden)
Austin G. Meyer
2014-02-01
Full Text Available In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein–protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host–virus protein–protein interface. We use steered molecular dynamics (SMD to computationally pull the machupo virus (MACV spike glycoprotein (GP1 away from the human transferrin receptor (hTfR1. We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein–protein interactions.
Analyzing machupo virus-receptor binding by molecular dynamics simulations
Sawyer, Sara L.; Ellington, Andrew D.; Wilke, Claus O.
2014-01-01
In many biological applications, we would like to be able to computationally predict mutational effects on affinity in protein–protein interactions. However, many commonly used methods to predict these effects perform poorly in important test cases. In particular, the effects of multiple mutations, non alanine substitutions, and flexible loops are difficult to predict with available tools and protocols. We present here an existing method applied in a novel way to a new test case; we interrogate affinity differences resulting from mutations in a host–virus protein–protein interface. We use steered molecular dynamics (SMD) to computationally pull the machupo virus (MACV) spike glycoprotein (GP1) away from the human transferrin receptor (hTfR1). We then approximate affinity using the maximum applied force of separation and the area under the force-versus-distance curve. We find, even without the rigor and planning required for free energy calculations, that these quantities can provide novel biophysical insight into the GP1/hTfR1 interaction. First, with no prior knowledge of the system we can differentiate among wild type and mutant complexes. Moreover, we show that this simple SMD scheme correlates well with relative free energy differences computed via free energy perturbation. Second, although the static co-crystal structure shows two large hydrogen-bonding networks in the GP1/hTfR1 interface, our simulations indicate that one of them may not be important for tight binding. Third, one viral site known to be critical for infection may mark an important evolutionary suppressor site for infection-resistant hTfR1 mutants. Finally, our approach provides a framework to compare the effects of multiple mutations, individually and jointly, on protein–protein interactions. PMID:24624315
Molecular dynamics simulation of supercritical fluids
Branam, Richard D.
Axisymmetric injectors appear in a multitude of applications ranging from rocket engines to biotechnology. While experimentation is limited to larger injectors, much interest has been shown in the micro- and nano-scales as well. Experimentation at these scales can be cost prohibitive if even possible. Often, the operating regime involves supercritical fluids or complex geometries. Molecular dynamics modeling provides a unique way to explore these flow regimes, calculate hard to measure flow parameters accurately, and determine the value of potential improvements before investing in costly experiments or manufacturing. This research effort modeled sub- and supercritical fluid flow in a cylindrical tube being injected into a quiescent chamber. The ability of four wall models to provide an accurate simulation was compared. The simplest model, the diffuse wall, proved useful in getting results quickly but the results for the higher density cases are questionable, especially with respect to velocity profiles and density distributions. The one zone model, three layers of an fcc solid tethered to the lattice sites with a spring, proved very useful for this research primarily because it did not need as many CPU hours to equilibrate. The two zone wall uses springs as a two body potential and has a second stationary zone to hold the wall in place. The most complicated, the three zone wall, employed a reactionary zone, a stochastic zone and a stationary zone using a Lennard-Jones two body potential. Jet simulations were conducted on argon and nitrogen for liquid tube diameters from 20 to 65 A at both sub and supercritical temperatures (Ar: 130 K and 160 K, N2: 120 K and 130 K). The simulations focused on pressures above the critical pressure (Ar: 6 MPa, N2: 4 MPa). The diffusive wall showed some variation from the analytical velocity profile in the tube while the atomistically modeled walls performed very well. The walls were all able to maintain system temperature to reach
Causal Cognition, Force Dynamics and Early Hunting Technologies
Directory of Open Access Journals (Sweden)
Peter Gärdenfors
2018-02-01
Full Text Available With this contribution we analyze ancient hunting technologies as one way to explore the development of causal cognition in the hominin lineage. Building on earlier work, we separate seven grades of causal thinking. By looking at variations in force dynamics as a central element in causal cognition, we analyze the thinking required for different hunting technologies such as stabbing spears, throwing spears, launching atlatl darts, shooting arrows with a bow, and the use of poisoned arrows. Our interpretation demonstrates that there is an interplay between the extension of human body through technology and expanding our cognitive abilities to reason about causes. It adds content and dimension to the trend of including embodied cognition in evolutionary studies and in the interpretation of the archeological record. Our method could explain variation in technology sets between archaic and modern human groups.
Energy conservation in molecular dynamics simulations of classical systems
DEFF Research Database (Denmark)
Toxværd, Søren; Heilmann, Ole; Dyre, J. C.
2012-01-01
Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...
Molecular dynamics study of two- and three-dimensional classical ...
Indian Academy of Sciences (India)
Abstract. We have carried out a molecular dynamics simulation of two- and three- dimensional double Yukawa fluids near the triple point. We have compared some of the static and dynamic correlation functions with those of Lennard–Jones, when parameters occurring in double Yukawa potential are chosen to fit ...
Interfacial Properties of an Ionic Liquid by Molecular Dynamics
Heggen, B.; Zhao, W.; Leroy, F.; Dammers, A.T.; Müller-Plathe, F.
2010-01-01
We studied the influence of a liquid-vapor interface on dynamic properties like reorientation and diffusion as well as the surface tension of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) by molecular dynamics simulations. In the interfacial region, reorientation of
Towards Molecular Dynamics Simulations of Chiral Room-Temperature Ionic Liquids
Czech Academy of Sciences Publication Activity Database
Lísal, Martin; Chval, Z.; Storch, Jan; Izák, Pavel
2014-01-01
Roč. 189, SI (2014), s. 85-94 ISSN 0167-7322 R&D Projects: GA ČR(CZ) GAP106/12/0569; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : chiral room-temperature ionic liquid * molecular dynamics simulation * non-polarizable fully flexible all-atom force field Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.515, year: 2014
Numerical Simulations for Large Deformation of Geomaterials Using Molecular Dynamics
Directory of Open Access Journals (Sweden)
Ziyang Zhao
2018-01-01
Full Text Available From the microperspective, this paper presents a model based on a new type of noncontinuous theoretical mechanical method, molecular dynamics (MD, to simulate the typical soil granular flow. The Hertzian friction formula and viscous damping force are introduced in the MD governing equations to model the granular flow. To show the validity of the proposed approach, a benchmark problem of 2D viscous material flow is simulated. The calculated final flow runout distance of the viscous material agrees well with the result of constrained interpolated profile (CIP method as reported in the literature. Numerical modeling of the propagation of the collapse of three-dimensional axisymmetric sand columns is performed by the application of MD models. Comparison of the MD computational runout distance and the obtained distance by experiment shows a high degree of similarity. This indicates that the proposed MD model can accurately represent the evolution of the granular flow. The model developed may thus find applications in various problems involving dense granular flow and large deformations, such as landslides and debris flow. It provides a means for predicting fluidization characteristics of soil large deformation flow disasters and for identification and design of appropriate protective measures.
Elastic constants of diamond from molecular dynamics simulations
International Nuclear Information System (INIS)
Gao Guangtu; Van Workum, Kevin; Schall, J David; Harrison, Judith A
2006-01-01
The elastic constants of diamond between 100 and 1100 K have been calculated for the first time using molecular dynamics and the second-generation, reactive empirical bond-order potential (REBO). This version of the REBO potential was used because it was redesigned to be able to model the elastic properties of diamond and graphite at 0 K while maintaining its original capabilities. The independent elastic constants of diamond, C 11 , C 12 , and C 44 , and the bulk modulus were all calculated as a function of temperature, and the results from the three different methods are in excellent agreement. By extrapolating the elastic constant data to 0 K, it is clear that the values obtained here agree with the previously calculated 0 K elastic constants. Because the second-generation REBO potential was fit to obtain better solid-state force constants for diamond and graphite, the agreement with the 0 K elastic constants is not surprising. In addition, the functional form of the second-generation REBO potential is able to qualitatively model the functional dependence of the elastic constants and bulk modulus of diamond at non-zero temperatures. In contrast, reactive potentials based on other functional forms do not reproduce the correct temperature dependence of the elastic constants. The second-generation REBO potential also correctly predicts that diamond has a negative Cauchy pressure in the temperature range examined
New ways to boost molecular dynamics simulations
Krieger, E.; Vriend, G.
2015-01-01
We describe a set of algorithms that allow to simulate dihydrofolate reductase (DHFR, a common benchmark) with the AMBER all-atom force field at 160 nanoseconds/day on a single Intel Core i7 5960X CPU (no graphics processing unit (GPU), 23,786 atoms, particle mesh Ewald (PME), 8.0 A cutoff, correct
Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field
García-Pérez, E.; Serra-Crespo, P.; Hamad, S.; Kapteijn, F.; Gascon, J.
2014-01-01
Simulation of gas adsorption in flexible porous materials is still limited by the slow progress in the development of flexible force fields. Moreover, the high computational cost of such flexible force fields may be a drawback even when they are fully developed. In this work, molecular simulations
Optimal control of molecular motion expressed through quantum fluid dynamics
Dey, Bijoy K.; Rabitz, Herschel; Askar, Attila
2000-04-01
A quantum fluid-dynamic (QFD) control formulation is presented for optimally manipulating atomic and molecular systems. In QFD the control quantum system is expressed in terms of the probability density ρ and the quantum current j. This choice of variables is motivated by the generally expected slowly varying spatial-temporal dependence of the fluid-dynamical variables. The QFD approach is illustrated for manipulation of the ground electronic state dynamics of HCl induced by an external electric field.
Invariant molecular-dynamics approach to structural phase transitions
International Nuclear Information System (INIS)
Wentzcovitch, R.M.
1991-01-01
Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics
Small molecule interactions with lipid bilayers: a molecular dynamics study of chlorhexidine
van Oosten, Brad; Marquardt, Drew; Sternin, Edward; Harroun, Thad
2013-03-01
Chlorhexidine presents an interesting modelling challenge with a hydrophobic hexane connecting two biguanides (arginine analogues) and two aromatic rings. We conducted molecular dynamic simulations using the GROMACS simulation software to reproduce the experimental environment of chlorhexidine in a 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) bilayer to produce atomic-level information. We constructed an all-atom force field of chlorhexidine from the CHARMM36 force field using well established parameters of certain amino acids. Partial charges were treated differently, which were calculated using GAUSSIAN software. We will compare and contrast the results of our model to that of our neutron scattering experiments previously done in our lab.
Takatsuka, Kazuo
2017-02-01
The Longuet-Higgins (Berry) phase arising from nonadiabatic dynamics and the Aharonov-Bohm phase associated with the dynamics of a charged particle in the electromagnetic vector potential are well known to be individually a manifestation of a class of the so-called geometrical phase. We herein discuss another similarity between the force working on a charged particle moving in a magnetic field, the Lorentz force, and a force working on nuclei while passing across a region where they have a strong quantum mechanical kinematic (nonadiabatic) coupling with electrons in a molecule. This kinematic force is indeed akin to the Lorentz force in that its magnitude is proportional to the velocity of the relevant nuclei and works in the direction perpendicular to its translational motion. Therefore this Lorentz-like nonadiabatic force is realized only in space of more or equal to three dimensions, thereby highlighting a truly multi-dimensional effect of nonadiabatic interaction. We investigate its physical significance qualitatively in the context of breaking of molecular spatial symmetry, which is not seen otherwise without this force. This particular symmetry breaking is demonstrated in application to a coplanar collision between a planar molecule and an atom sharing the same plane. We show that the atom is guided by this force to the direction out from the plane, resulting in a configuration that distinguishes one side of the mirror plane from the other. This can serve as a trigger for the dynamics towards molecular chirality.
Molecular dynamics with deterministic and stochastic numerical methods
Leimkuhler, Ben
2015-01-01
This book describes the mathematical underpinnings of algorithms used for molecular dynamics simulation, including both deterministic and stochastic numerical methods. Molecular dynamics is one of the most versatile and powerful methods of modern computational science and engineering and is used widely in chemistry, physics, materials science and biology. Understanding the foundations of numerical methods means knowing how to select the best one for a given problem (from the wide range of techniques on offer) and how to create new, efficient methods to address particular challenges as they arise in complex applications. Aimed at a broad audience, this book presents the basic theory of Hamiltonian mechanics and stochastic differential equations, as well as topics including symplectic numerical methods, the handling of constraints and rigid bodies, the efficient treatment of Langevin dynamics, thermostats to control the molecular ensemble, multiple time-stepping, and the dissipative particle dynamics method...
Dynamics of molecular superrotors in an external magnetic field
Korobenko, Aleksey; Milner, Valery
2015-08-01
We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.
Dynamics of molecular superrotors in an external magnetic field
International Nuclear Information System (INIS)
Korobenko, Aleksey; Milner, Valery
2015-01-01
We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin–rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation. (paper)
Dynamic Force Identification for Beamlike Structures Using an Improved Dynamic Stiffness Method
Directory of Open Access Journals (Sweden)
S.L. Chen
1996-01-01
Full Text Available In this study a procedure of dynamic force identification for beamlike structures is developed based on an improved dynamic stiffness method. In this procedure, the entire structure is first divided into substructures according to the excitation locations and the measured response sites. Each substructure is then represented by an equivalent element. The resulting model only retains the degree of freedom (DOF associated with the excitations and the measured responses and the DOF corresponding to the boundaries of the structures. Because the technique partly bypasses the processes of modal parameter extraction, global matrix inversion, and model reduction, it can eliminate many of the approximations and errors that may be introduced during these processes. The principle of the method is described in detail and its efficiency is demonstrated via numerical simulations of three different structures. The sensitivity of the estimated force to random noise is discussed and the limitation of the technique is pointed out.
VUV studies of molecular photofragmentation dynamics
Energy Technology Data Exchange (ETDEWEB)
White, M.G. [Brookhaven National Laboratory, Upton, NY (United States)
1993-12-01
State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.
Molecular-dynamics analysis of the diffusion of molecular hydrogen in all-silica sodalite
Van den Berg, A.W.C.; Bromley, S.T.; Flikkema, E.; Wojdel, J.; Maschmeyer, T.; Jansen, J.C.
2004-01-01
In order to investigate the technical feasibility of crystalline porous silicates as hydrogen storage materials, the self-diffusion of molecular hydrogen in all-silica sodalite is modeled using large-scale classical molecular-dynamics simulations employing full lattice flexibility. In the
A reactive molecular dynamic simulation of oxidation of a silicon nanocluster
International Nuclear Information System (INIS)
Song Pengxiang; Ding Yulong; Wen Dongsheng
2013-01-01
This study presents an atomic level of molecular dynamic simulation of oxidation of silicon nanoparticle in use of a reactive force field (ReaxFF). The oxidation dynamics is revealed through the energy release, bond evolution and oxygen exchange processes. The oxidation is found to proceed in the manner of evolution of silicon–oxygen bond configuration, accompanied by the oxygen exchange process. The heat of reaction and the activation energy of the bond transformation process are also estimated, which indicates the capability of ReaxFF in the simulation of energetic materials.
Bordat, Patrice; Cazade, Pierre-André; Baraille, Isabelle; Brown, Ross
2010-03-01
Molecular dynamics simulations are performed on the pure silica zeolite silicalite (MFI framework code), maintaining via a new force field both framework flexibility and realistic account of electrostatic interactions with adsorbed water. The force field is similar to the well-known "BKS" model [B. W. H. van Beest et al., Phys. Rev. Lett. 64, 1955 (1990)], but with reduced partial atomic charges and reoptimized covalent bond potential wells. The present force field reproduces the monoclinic to orthorhombic transition of silicalite. The force field correctly represents the hydrophobicity of pure silica silicalite, both the adsorption energy, and the molecular diffusion constants of water. Two types of adsorption, specific and weak unspecific, are predicted on the channel walls and at the channel intersection. We discuss molecular diffusion of water in silicalite, deducing a barrier to crossing between the straight and the zigzag channels. Analysis of the thermal motion shows that at room temperature, framework oxygen atoms incurring into the zeolite channels significantly influence the dynamics of adsorbed water.
The dynamic forces and moments required in handling tree-length logs.
John A. Sturos
1971-01-01
Realistic dynamic loading requirements for tree- or log-harvesting machines were determined. The study showed that dynamic forces and moments four times as great as those required statically can occur in the field.
Yi, Zheng; Lindner, Benjamin; Prinz, Jan-Hendrik; Noé, Frank; Smith, Jeremy C
2013-11-07
Neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.
Application of Connection in Molecular Dynamics
Sun, Xin
2018-03-01
The evolution of electronic states in molecule has two origins: dynamical one produced by Schrödinger equation and kinematical one caused by base transformation due to nuclear motion. In current theories, the former gets analytic expression; the latter depends on heavy numerical calculation, which contains uncertainty. By using connection of fiber bundles, this paper establishes an analytic formula for the latter, and the numerical work is simplified. It shows the mathematical structure of molecule is fiber bundle.
Differential representation of dynamic and static power grip force in the sensorimotor network.
Keisker, Birgit; Hepp-Reymond, Marie-Claude; Blickenstorfer, Armin; Kollias, Spyros S
2010-04-01
Previous studies investigating the blood oxygen level-dependent (BOLD) signal in the human sensorimotor cortex during static force (maintained for a few seconds) and dynamic force (repetitive force pulses) resulted in contradictory findings. Therefore, we conducted a whole-brain functional magnetic resonance imaging study during a visuomotor task requiring the production of either dynamic or static power grip force. Thereby we aimed at clarifying whether the BOLD signal behaves differently with dynamic and static force in the primary motor cortex, and whether it behaves in the same way in all areas and regions involved in force production. In the static condition, participants applied visually guided, isometric grip force on a dynamometer of 20% maximal voluntary contraction (MVC) and held this force for 21 s. In the dynamic condition, self-paced force pulses of 20% MVC were produced at a rate of 0.5 Hz. Static and dynamic force production activated an overlapping network of sensorimotor cortical and subcortical regions. However, the production of a significantly higher mean static force compared with the dynamic force resulted in a significantly smaller BOLD signal in the contralateral motor cortex, confirming observations of an earlier investigation. In addition, we found that the ipsilateral anterior cerebellum behaved similar to the motor cortex, whereas in all other activated regions the activation during static and dynamic force did not significantly differ. These findings demonstrate that various regions of the sensorimotor network participate differentially in the production and control of low static and dynamic grip force, and raise important questions concerning the interpretation of the BOLD signal with respect to mechanisms of neurovascular coupling.
Atomistic interactions of clusters on surfaces using molecular dynamics and hyper molecular dynamics
International Nuclear Information System (INIS)
Sanz-Navarro, Carlos F.
2002-01-01
The work presented in this thesis describes the results of Molecular Dynamics (MD) simulations applied to the interaction of silver clusters with graphite surfaces and some numerical and theoretical methods concerning the extension of MD simulations to longer time scales (hyper-MD). The first part of this thesis studies the implantation of clusters at normal incidence onto a graphite surface in order to determine the scaling of the penetration depth (PD) against the impact energy. A comparison with experimental results is made with good agreement. The main physical observations of the impact process are described and analysed. It is shown that there is a threshold impact velocity above which the linear dependence on PD on impact energy changes to a linear dependence on velocity. Implantation of silver clusters at oblique incidence is also considered. The second part of this work analyses the validity and feasibility of the three minimisation methods for the hyper-MD simulation method whereby time scales of an MD simulation can be extended. A correct mathematical basis for the iterative method is derived. It is found that one of the iterative methods, upon which hyper-lD is based, is very likely to fail in high-dimensional situations because it requires a too expensive convergence. Two new approximations to the hyper-MD approach are proposed, which reduce the computational effort considerably. Both approaches, although not exact, can help to search for some of the most likely transitions in the system. Some examples are given to illustrate this. (author)
Molecular dynamics study of atomic displacements in disordered solid alloys
Puzyrev, Yevgeniy S.
The effects of atomic displacements on the energetics of alloys plays important role in the determining the properties of alloys. We studied the atomic displacements in disordered solid alloys using molecular dynamics and Monte-Carlo methods. The diffuse scattering of pure materials, copper, gold, nickel, and palladium was calculated. The experimental data for pure Cu was obtained from diffuse scattering intensity of synchrotron x-ray radiation. The comparison showed the advantages of molecular dynamics method for calculating the atomic displacements in solid alloys. The individual nearest neighbor separations were calculated for Cu 50Au50 alloy and compared to the result of XAFS experiment. The molecular dynamics method provided theoretical predictions of nearest neighbor pair separations in other binary alloys, Cu-Pd and Cu-Al for wide range of the concentrations. We also experimentally recovered the diffuse scattering maps for the Cu47.3Au52.7 and Cu85.2Al14.8 alloy.
Dynamic forces and an actual load of a wire rope during its operation
Directory of Open Access Journals (Sweden)
Ritók Juraj
1996-12-01
Full Text Available Wire ropes are stressed by static and dynamic forces during their operation. The calculation of the wire ropes is based on their static stress.The dynamic forces are influenced by a higher value of safety. The intensity of the dynamic forces can be determined by a calculation, and by a practical measurement. The measurement was realized by the indicator of tension Talaten. The experimental work were caried out using the tensometric principle. The out-put of the obtained values is a graphical presentation with using a special software on PC. The dynamic forces and loads were measured on the hoisting wire rope. From measured data, the value of dynamic coeficient of rope was determined. The obtained measured values were compared with the results of empirical calculations.The knowledge of dynamic forces of ropes is of great importance for their safe operation, service life and economoc effect for users.
Studying Interactions by Molecular Dynamics Simulations at High Concentration
Directory of Open Access Journals (Sweden)
Federico Fogolari
2012-01-01
Full Text Available Molecular dynamics simulations have been used to study molecular encounters and recognition. In recent works, simulations using high concentration of interacting molecules have been performed. In this paper, we consider the practical problems for setting up the simulation and to analyse the results of the simulation. The simulation of beta 2-microglobulin association and the simulation of the binding of hydrogen peroxide by glutathione peroxidase are provided as examples.
An improved version of the Green's function molecular dynamics method
Kong, Ling Ti; Denniston, Colin; Müser, Martin H.
2011-02-01
.e., the crystal is rigidly translated, the force on any atom must be zero. This is known as the translational invariance, leading to the so-called acoustic sum rule: ∑Φ(Γ)=0 where Φ(Γ) is the kα,kβ component of the effective elastic coefficients at the Γ-point; we will denote it as Φ hereafter. α and β enumerate the Cartesian directions. In addition, Φ should be Hermitian (or symmetric, since at the Γ-point, the imaginary part of Φ is zero.) because of the commutative nature of the force constants: Φkα,kβΓ=Φkβ,kαΓ. These two properties are expected for Φ, yet the ASR is not satisfied during the measurement (done by FixGFC) because of the finite size effect. A scheme is therefore needed to enforce ASR on Φ afterwards, while the symmetric nature of Φ should be retained. We list below the detailed scheme adopted to enforce ASR implemented in the improved version of GFMD together with some other revisions to the code after the previous release. Restrictions: By adopting the new method to enforce the acoustic sum rule, the restriction that atoms in the Green's function slab must be in the same layer is lifted, while it is still necessary to ensure that the mean equilibrium positions of atoms in the Green's function slab satisfy the Born-von Karman boundary condition. In addition, only deformations within the harmonic regime are expected in the slab during Green's function molecular dynamics simulations. Additional comments: The new version is not compatible with the previous one: the contents in the binary file are different and therefore the effective elastic coefficients measured by the previous version of FixGFC cannot be used by the current version of FixGFMD. Running time: FixGFC varies from minutes to days, like a typical molecular dynamics simulation, depending on the system size, the number of processors used, and the complexity of the force field. FixGFMD varies from seconds to hours, depending on the system size and the number of processors
Successional dynamics in the seasonally forced diamond food web.
Klausmeier, Christopher A; Litchman, Elena
2012-07-01
Plankton seasonal succession is a classic example of nonequilibrium community dynamics. Despite the fact that it has been well studied empirically, it lacks a general quantitative theory. Here we investigate a food web model that includes a resource, two phytoplankton, and a shared grazer-the diamond food web-in a seasonal environment. The model produces a number of successional trajectories that have been widely discussed in the context of the verbal Plankton Ecology Group model of succession, such as a spring bloom of a good competitor followed by a grazer-induced clear-water phase, setting the stage for the late-season dominance of a grazer-resistant species. It also predicts a novel, counterintuitive trajectory where the grazer-resistant species has both early- and late-season blooms. The model often generates regular annual cycles but sometimes produces multiyear cycles or chaos, even with identical forcing each year. Parameterizing the model, we show how the successional trajectory depends on nutrient supply and the length of the growing season, two key parameters that vary among water bodies. This model extends nonequilibrium theory to food webs and is a first step toward a quantitative theory of plankton seasonal succession.
Driving Ordering Processes in Molecular-Dynamics Simulations
Dittmar, Harro; Kusalik, Peter G.
2014-05-01
Self-organized criticality describes the emergence of complexity in dynamical nonequilibrium systems. In this paper we introduce a unique approach whereby a driven energy conversion is utilized as a sampling bias for ordered arrangements in molecular dynamics simulations of atomic and molecular fluids. This approach gives rise to dramatically accelerated nucleation rates, by as much as 30 orders of magnitude, without the need of predefined order parameters, which commonly employed rare-event sampling methods rely on. The measured heat fluxes suggest how the approach can be generalized.
Femtochemistry and femtobiology ultrafast dynamics in molecular science
Douhal, Abderrazzak
2002-01-01
This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological mol
State-to-state dynamics of molecular energy transfer
Energy Technology Data Exchange (ETDEWEB)
Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)
1993-12-01
The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.
Enhanced Molecular Dynamics Methods Applied to Drug Design Projects.
Ziada, Sonia; Braka, Abdennour; Diharce, Julien; Aci-Sèche, Samia; Bonnet, Pascal
2018-01-01
Nobel Laureate Richard P. Feynman stated: "[…] everything that living things do can be understood in terms of jiggling and wiggling of atoms […]." The importance of computer simulations of macromolecules, which use classical mechanics principles to describe atom behavior, is widely acknowledged and nowadays, they are applied in many fields such as material sciences and drug discovery. With the increase of computing power, molecular dynamics simulations can be applied to understand biological mechanisms at realistic timescales. In this chapter, we share our computational experience providing a global view of two of the widely used enhanced molecular dynamics methods to study protein structure and dynamics through the description of their characteristics, limits and we provide some examples of their applications in drug design. We also discuss the appropriate choice of software and hardware. In a detailed practical procedure, we describe how to set up, run, and analyze two main molecular dynamics methods, the umbrella sampling (US) and the accelerated molecular dynamics (aMD) methods.
Towards bridging the gap from molecular forces to the movement of organisms
DEFF Research Database (Denmark)
Nielsen, Bjørn Gilbert
2004-01-01
-scale simulations of muscle, which may accommodate macroscopic properties of muscles, e.g. the catch-like effect, the Henneman principle and accurate twitch force and motor unit size distributions. As a test of the underlying principles, a model of the biceps caput breve muscle is presented and compared......Muscles are responsible for generating the forces required for the movement of multicellular organisms. Microscopically, these forces arise as a consequence of motor proteins (myosin) pulling and sliding along actin filaments. Current knowledge states that the molecular forces between actin...... [Nielsen (2002) J. Theor. Biol. 219, 99-119], inspired by results from protein pulling experiments showing that proteins often have non-linear entropic force-extension profiles. Irrespective of the case, the present study aims at integrating such basic force-producing properties into large...
Molecular Dynamics Simulations of Poly(dimethylsiloxane) Properties
Czech Academy of Sciences Publication Activity Database
Fojtíková, J.; Kalvoda, L.; Sedlák, Petr
2015-01-01
Roč. 128, č. 4 (2015), s. 637-639 ISSN 0587-4246 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : molecular dynamics * poly(dimethylsiloxane) * dissipative particle dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.525, year: 2015 http://przyrbwn.icm.edu.pl/APP/PDF/128/a128z4p40.pdf
Electron trapping in amorphous silicon: A quantum molecular dynamics study
Energy Technology Data Exchange (ETDEWEB)
Yang, Lin H.; Kalia, R.K.; Vashishta, P.
1990-12-01
Quantum molecular dynamics (QMD) simulations provide the real-time dynamics of electrons and ions through numerical solutions of the time-dependent Schrodinger and Newton equations, respectively. Using the QMD approach we have investigated the localization behavior of an excess electron in amorphous silicon at finite temperatures. For time scales on the order of a few picoseconds, we find the excess electron is localized inside a void of radius {approximately}3 {Angstrom} at finite temperatures. 12 refs.
A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations
Neumann, Philipp
2012-06-01
We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.
Molecular dynamics study of nanojoining between axially positioned Ag nanowires
International Nuclear Information System (INIS)
Cui, Jianlei; Theogene, Barayavuga; Wang, Xuewen; Mei, Xuesong; Wang, Wenjun; Wang, Kedian
2016-01-01
Highlights: • The temperature and distance have a great impact on joining effect without solders. • At high temperature, Ag atoms are disordered and the atomic queues become to distort. • When the distance is large, the Ag nanowires are not connected at any temperature. • When the distance is small and the temperature is low, Ag NWs on the Si substrate can be obtained relatively good nanoconnection. - Abstract: The miniaturization of electronics devices into nanometer scale is indispensable for next-generation semiconductor technology. Ag nanowires (Ag NWs) are considered to be the promising candidates for future electronic circuit owing to the excellent electrical and thermal properties. The nanojoining of axially positioned Ag NWs was performed by molecular dynamics simulation. Through the detailed atomic evolution during the nanojoining, the results indicate that the temperature and the distance between Ag NWs in axial direction have a great impact on nanojoining effect. When the nanojoining temperature is relatively high, the atoms are disordered and the atomic queues become to distort with strong thermodynamic properties and weak effect of metal bonds. At the relatively low temperature, the Ag NWs can be well connected with good junction quality and their own morphology, which is similar to the cold welding without fusion, while the distance between Ag NWs should be controlled for interaction and diffusion of interfacial atoms at nanowires head. When the Ag NWs are placed on Si and SiO 2 substrate, because the atomic species and lattice structure of substrate material can differently affect the motions of Ag atoms through the interactive force between the atoms, the nanojoining quality of Ag NWs on Si substrate is better than that on the SiO 2 substrate. So, for getting effective and reliable nanojoining without nanosolders and other materials, the temperature, distance and substrate surface should be reasonably controlled and selected, providing
Molecular dynamics study of nanojoining between axially positioned Ag nanowires
Energy Technology Data Exchange (ETDEWEB)
Cui, Jianlei, E-mail: cjlxjtu@xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Theogene, Barayavuga, E-mail: 1400584887@qq.com [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Wang, Xuewen, E-mail: 358994796@qq.com [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Mei, Xuesong, E-mail: xsmeixjtu@163.com [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wenjun, E-mail: wangwenjun1981@yeah.net [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Kedian, E-mail: kedianwang@yeah.net [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)
2016-08-15
Highlights: • The temperature and distance have a great impact on joining effect without solders. • At high temperature, Ag atoms are disordered and the atomic queues become to distort. • When the distance is large, the Ag nanowires are not connected at any temperature. • When the distance is small and the temperature is low, Ag NWs on the Si substrate can be obtained relatively good nanoconnection. - Abstract: The miniaturization of electronics devices into nanometer scale is indispensable for next-generation semiconductor technology. Ag nanowires (Ag NWs) are considered to be the promising candidates for future electronic circuit owing to the excellent electrical and thermal properties. The nanojoining of axially positioned Ag NWs was performed by molecular dynamics simulation. Through the detailed atomic evolution during the nanojoining, the results indicate that the temperature and the distance between Ag NWs in axial direction have a great impact on nanojoining effect. When the nanojoining temperature is relatively high, the atoms are disordered and the atomic queues become to distort with strong thermodynamic properties and weak effect of metal bonds. At the relatively low temperature, the Ag NWs can be well connected with good junction quality and their own morphology, which is similar to the cold welding without fusion, while the distance between Ag NWs should be controlled for interaction and diffusion of interfacial atoms at nanowires head. When the Ag NWs are placed on Si and SiO{sub 2} substrate, because the atomic species and lattice structure of substrate material can differently affect the motions of Ag atoms through the interactive force between the atoms, the nanojoining quality of Ag NWs on Si substrate is better than that on the SiO{sub 2} substrate. So, for getting effective and reliable nanojoining without nanosolders and other materials, the temperature, distance and substrate surface should be reasonably controlled and selected
Molecular dynamics simulations of bubble nucleation in dark matter detectors.
Denzel, Philipp; Diemand, Jürg; Angélil, Raymond
2016-01-01
Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.
Structure of beryllium isotopes in fermionic molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Torabi, Bahram Ramin
2009-02-16
Modern theoretical nuclear physics faces two major challenges. The first is finding a suitable interaction, which describes the forces between nucleons. The second challenge is the solution of the nuclear many-body problem for a given nucleus while applying a realistic potential. The potential used in the framework of this thesis is based on the Argonne AV18 potential. It was transformed by means of the Unitary Correlation Operator Method (UCOM) to optimize convergence. The usual phenomenological corrections were applied to improve the potential for the Hilbert space used in Fermionic Molecular Dynamics (FMD). FMD is an approach to solve the nuclear many-body problem. It uses a single-particle basis which is a superposition of Gaussian distributions in phase-space. The most simple many-body state is the antisymmetric product of the singleparticle states: a Slater determinant, the so called intrinsic state. This intrinsic state is projected on parity, total angular momentum and a center of mass momentum zero. The Hilbert space is spanned by several of these projected states. The states are obtained by minimizing their energy while demanding certain constraints. The expectation values of Slater determinants, parity projected and additionally total angular momentum projected Slater determinants are used. The states that are relevant in the low energy regime are obtained by diagonalization. The lowest moments of the mass-, proton- or neutron-distribution and the excitation in proton- and neutron-shells of a harmonic oscillator are some of the used constraints. The low energy regime of the Beryllium isotopes with masses 7 to 14 is calculated by using these states. Energies, radii, electromagnetic transitions, magnetic moments and point density distributions of the low lying states are calculated and are presented in this thesis. (orig.)
Dai, L.; Sorkin, V.; Zhang, Y. W.
2017-04-01
We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.
Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann
Energy Technology Data Exchange (ETDEWEB)
Melenev, Petr, E-mail: melenev@icmm.ru [Ural Federal University, 4, Turgeneva str., 620000 Ekaterinburg (Russian Federation); Institute of Continuous Media Mechanics, 1, Koroleva str., 614013 Perm (Russian Federation)
2017-06-01
Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces. - Highlights: • The combination of molecular dynamics and lattice Boltzmann method is utilized for the reveal of the role of hydrodynamic interaction in rotational dynamics of colloid particles. • The verification of the model parameters is done based on the comparison with the results of Langevin dynamics. • For the task of free rotational diffusion of the pair of colloid particles the influence of the hydrodynamic interactions on the relaxation time is examined in the case of nonmagnetic particles and at the presence of weak dipolar interaction.
Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann
International Nuclear Information System (INIS)
Melenev, Petr
2017-01-01
Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces. - Highlights: • The combination of molecular dynamics and lattice Boltzmann method is utilized for the reveal of the role of hydrodynamic interaction in rotational dynamics of colloid particles. • The verification of the model parameters is done based on the comparison with the results of Langevin dynamics. • For the task of free rotational diffusion of the pair of colloid particles the influence of the hydrodynamic interactions on the relaxation time is examined in the case of nonmagnetic particles and at the presence of weak dipolar interaction.
ANLIZE: a molecular mechanics force field visualization tool and its application to 18-crown-6.
Stolworthy, L D; Shirts, R B
1997-03-01
We describe a software tool that allows one to visualize and analyze the importance of each individual steric interaction in a molecular mechanics force field. ANLIZE is presently implemented for the Dreiding force field for use with the Cerius2 software package, but could be implemented in any molecular mechanics package with a graphical user interface. ANLIZE calculates individual interactions in the force field, sorts them by size, and displays them in several ways from a menu of choices. This allows the user to scan through selected interactions to visualize which interactions are the primary determinants of preferred conformations. The features of ANLIZE are illustrated using 18-crown-6 as an example, and the factors governing conformational preference in 18-crown-6 are demonstrated. Users of molecular mechanics packages are encouraged to demand this functionality from commercial software producers.
Molecular circuits for dynamic noise filtering.
Zechner, Christoph; Seelig, Georg; Rullan, Marc; Khammash, Mustafa
2016-04-26
The invention of the Kalman filter is a crowning achievement of filtering theory-one that has revolutionized technology in countless ways. By dealing effectively with noise, the Kalman filter has enabled various applications in positioning, navigation, control, and telecommunications. In the emerging field of synthetic biology, noise and context dependency are among the key challenges facing the successful implementation of reliable, complex, and scalable synthetic circuits. Although substantial further advancement in the field may very well rely on effectively addressing these issues, a principled protocol to deal with noise-as provided by the Kalman filter-remains completely missing. Here we develop an optimal filtering theory that is suitable for noisy biochemical networks. We show how the resulting filters can be implemented at the molecular level and provide various simulations related to estimation, system identification, and noise cancellation problems. We demonstrate our approach in vitro using DNA strand displacement cascades as well as in vivo using flow cytometry measurements of a light-inducible circuit in Escherichia coli.
Frequency locking by external force from a dynamical system with strange nonchaotic attractor
International Nuclear Information System (INIS)
Guan Shuguang; Wang Xingang; Lai, C.-H.
2006-01-01
Usually, phase synchronization is studied in chaotic systems driven by either periodic force or chaotic force. In the present work, we consider frequency locking in chaotic Roessler oscillator by a special driving force from a dynamical system with a strange nonchaotic attractor. In this case, a transition from generalized marginal synchronization to frequency locking is observed. We investigate the bifurcation of the dynamical system and explain why generalized marginal synchronization can occur in this model
International Nuclear Information System (INIS)
Kang, Jeong Won; Hwang, Ho Jung
2004-01-01
We investigated the internal dynamics of ionic fluidic shuttle memory elements consisting of potassium ions encapsulated in C 640 nanocapsules. The systems proposed were the encapsulated-ion shuttle memory devices such as (13 K + ) at C 640 , (3 K + -C 60 -2 K + ) at C 640 and (5 K + -C 60 ) at C 640 . The energetics and the operating responses of ionic fluidic shuttle memory devices, such as transitions between the two states of the C 640 capsule, were examined by using classical molecular dynamics simulations of the shuttle media in the C 640 capsule under external force fields. The operating force fields for stable operations of the shuttle memory device were investigated.
Molecular dynamics studies of superionic conductors
International Nuclear Information System (INIS)
Rahman, A.
1979-01-01
Over the last fifteen years computer modeling of liquids and solids has become a useful method of understanding the structural and dynamical correlations in these systems. Some characteristics of the method are presented with an example from work on homogeneous nucleation in monoatomic liquids; the interaction potential determines the structure: a Lennard--Jones system nucleates a close packed structure while an alkali metal potential nucleates a bcc packing. In the study of ionic systems like CaF 2 the Coulomb interaction together with the short range repulsion is enough to produce a satisfactory model for the motion of F - ions in CaF 2 at approx. 1600 0 K. Analysis of this motion shows that F - ions reside at their fluorite sites for about 6 x 10 -12 s and that the diffusion is mainly due to F - jumps in the 100 direction. The motion can be analyzed in terms of the generation and annihilation of anti-Frenkel pairs. The temperature dependence of the F - diffusion constant at two different densities has also been calculated. The computer model does not correspond with experiment in this regard
The detection and role of molecular tension in focal adhesion dynamics.
Hoffman, Brenton D
2014-01-01
Cells are exquisitely sensitive to the mechanical nature of their environment, including applied force and the stiffness of the extracellular matrix (ECM). Recent evidence has shown that these variables are critical regulators of diverse processes mediating embryonic development, adult tissue physiology, and many disease states, including cancer, atherosclerosis, and myopathies. Often, detection of mechanical stimuli is mediated by the structures that link cells that surround ECM, the focal adhesions (FAs). FAs are intrinsically force sensitive and display altered dynamics, structure, and composition in response to applied load. While much progress has been made in determining the proteins that localize to and regulate the formation of these structures, less is known about the role of tension across specific proteins in this process. A recently developed class of force-sensitive biosensors is enabling a greater understanding of the molecular bases of cellular mechanosensitivity and cell migration. © 2014 Elsevier Inc. All rights reserved.
Moffett, Alexander S; Bender, Kyle W; Huber, Steven C; Shukla, Diwakar
2017-07-28
The structural motifs responsible for activation and regulation of eukaryotic protein kinases in animals have been studied extensively in recent years, and a coherent picture of their activation mechanisms has begun to emerge. In contrast, non-animal eukaryotic protein kinases are not as well understood from a structural perspective, representing a large knowledge gap. To this end, we investigated the conformational dynamics of two key Arabidopsis thaliana receptor-like kinases, brassinosteroid-insensitive 1 (BRI1) and BRI1-associated kinase 1 (BAK1), through extensive molecular dynamics simulations of their fully phosphorylated kinase domains. Molecular dynamics simulations calculate the motion of each atom in a protein based on classical approximations of interatomic forces, giving researchers insight into protein function at unparalleled spatial and temporal resolutions. We found that in an otherwise "active" BAK1 the αC helix is highly disordered, a hallmark of deactivation, whereas the BRI1 αC helix is moderately disordered and displays swinging behavior similar to numerous animal kinases. An analysis of all known sequences in the A. thaliana kinome found that αC helix disorder may be a common feature of plant kinases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Determining Equilibrium Constants for Dimerization Reactions from Molecular Dynamics Simulations
De Jong, Djurre H.; Schafer, Lars V.; De Vries, Alex H.; Marrink, Siewert J.; Berendsen, Herman J. C.; Grubmueller, Helmut
2011-01-01
With today's available computer power, free energy calculations from equilibrium molecular dynamics simulations "via counting" become feasible for an increasing number of reactions. An example is the dimerization reaction of transmembrane alpha-helices. If an extended simulation of the two helices
Molecular dynamics simulations of oscillatory flows in microfluidic channels
DEFF Research Database (Denmark)
Hansen, J.S.; Ottesen, Johnny T.
2006-01-01
In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, hi...
Metal cluster fission: jellium model and Molecular dynamics simulations
DEFF Research Database (Denmark)
Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia
2004-01-01
Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18...
Hydration of Cd(II): molecular dynamics study | M. Mohammed ...
African Journals Online (AJOL)
The inclusion of the three-body correction was found to be crucial for the description of the system, and results thus obtained are in good agreement with experimental values. Radial ... KEY WORDS: Molecular dynamics, Umbrella sampling, Hydration structure, Cd(II), Water exchange, Three-body corrections. Bull. Chem.
Projector augmented wave method: ab initio molecular dynamics ...
Indian Academy of Sciences (India)
Unknown
The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. .... In that case the muffin–tin approximation is used solely to define the basis set. ..... functions probe the local character of the auxiliary wave function in the atomic region. Examples ...
Active site modeling in copper azurin molecular dynamics simulations
Rizzuti, B; Swart, M; Sportelli, L; Guzzi, R
Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the
CF3+ etching silicon surface: A molecular dynamics study
Zhao, C.; Lu, X.; He, P.; Zhang, P.; Sun, W.; Zhang, Jingwei; Chen, F.; Gou, F.
2012-01-01
In this study, a molecular dynamics simulation method has been employed to investigate CF3 + ions, bombarding Si surface with the energy of 100, 200, 300 and 400 eV and an incident angle of 45 degrees with respect to the normal. The simulation results show that when CF3+ ions approach the Si surface
Molecular Dynamics and Bioactivity of a Novel Mutated Human ...
African Journals Online (AJOL)
version 3.5,. Accelrys Inc., San Diego, CA) was used for protein design and molecular dynamics simulation. The analysis of the MD data was made using Origin Pro (version 9.0). Mean ± standard error of mean (SEM) of the data were computed.
Molecular dynamics simulations and free energy profile of ...
Indian Academy of Sciences (India)
Molecular dynamics simulations and free energy profile of Paracetamol in DPPC and DMPC lipid bilayers. YOUSEF NADEMIa, SEPIDEH AMJAD IRANAGHb, ABBAS YOUSEFPOURa,. SEYEDEH ZAHRA MOUSAVIa and HAMID MODARRESSa,∗. aDepartment of Chemical Engineering, bDepartment of Chemistry, ...
Molecular Dynamics and Bioactivity of a Novel Mutated Human ...
African Journals Online (AJOL)
Purpose: To design and evaluate a novel human parathyroid hormone (hPTH) analog. Methods: Mutation stability prediction was processed on hPTH, docked the mutant hPTH with its receptor, and then proceeded with molecular dynamics using Discovery Studio 3.5 software package for the complex. The bioactivity of the ...
Molecular dynamics study on the relaxation properties of bilayered ...
Indian Academy of Sciences (India)
2017-08-31
Aug 31, 2017 ... Abstract. The influence of defects on the relaxation properties of bilayered graphene (BLG) has been studied by molecular dynamics simulation in nanometre sizes. Type and position of defects were taken into account in the calculated model. The results show that great changes begin to occur in the ...
Stability mechanisms of a thermophilic laccase probed by molecular dynamics
DEFF Research Database (Denmark)
Christensen, Niels Johan; Kepp, Kasper Planeta
2013-01-01
Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD) was applied to a Trametes versicolor laccase in response...
Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations
Bulacu, Monica; Goga, Nicolae; Zhao, Wei; Rossi, Giulia; Monticelli, Luca; Periole, Xavier; Tieleman, D. Peter; Marrink, Siewert J.
Potentials routinely used in atomistic molecular dynamics simulations are not always suitable for modeling systems at coarse-grained resolution. For example, in the calculation of traditional torsion angle potentials, numerical instability is often encountered in the case of very flexible molecules.
Thermodynamics of small clusters of atoms: A molecular dynamics simulation
DEFF Research Database (Denmark)
Damgaard Kristensen, W.; Jensen, E. J.; Cotterill, Rodney M J
1974-01-01
The thermodynamic properties of clusters containing 55, 135, and 429 atoms have been calculated using the molecular dynamics method. Structural and vibrational properties of the clusters were examined at different temperatures in both the solid and the liquid phase. The nature of the melting...
A molecular dynamics study of SiSe2 glass
International Nuclear Information System (INIS)
Antonio, G.A.; Kalia, R.K.; Vashishta, P.
1988-10-01
We report the results of a molecular dynamics study of molten and glassy SiSe 2 using an effective interparticle interaction. Results for the partial pair-correlation functions, partial structure factors, bond-angle distributions and statistics of rings are reported. Results are in good agreement with the neutron diffraction experiments. 11 refs., 6 figs
Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics
Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de
1997-01-01
The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.
Structure of hydrogenated amorphous silicon from ab initio molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))
1991-09-15
We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting
Molecular Dynamics Investigation of Efficient SO₂ Absorption by ...
Indian Academy of Sciences (India)
Ionic liquids are appropriate candidates for the absorption of acid gases such as SO₂. Six anion functionalized ionic liquids with different basicities have been studied for SO₂ absorption capacity by employing quantum chemical calculations and molecular dynamics (MD) simulations. Gas phase quantum calculations ...
Molecular dynamics simulations of phase transformations in niti bicrystals
Srinivasan, P.; Nicola, L.; Simone, A.; Floryan, J.M.; Tvergaard, V.; van Campen, D.
2016-01-01
The influence of grain boundaries and grain misorientation on the nucleation and growth of martensite in an equi-atomic nickeltitanium (NiTi) shape memory alloy (SMA) is investigated by performing molecular dynamics (MD) simulations on bicrystals with a modified embedded atom method (MEAM)
Molecular dynamics simulations of lipid vesicle fusion in atomic detail
Knecht, Volker; Marrink, Siewert-Jan
The fusion of a membrane-bounded vesicle with a target membrane is a key step in intracellular trafficking, exocytosis, and drug delivery. Molecular dynamics simulations have been used to study the fusion of small unilamellar vesicles composed of a dipalmitoyl-phosphatidylcholine (DPPC)/palmitic
Molecular dynamics of the structure and thermodynamics of dusty ...
African Journals Online (AJOL)
The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...
Coarse – grained molecular dynamics simulation of cross – linking ...
African Journals Online (AJOL)
Coarse – grained molecular dynamics simulation of cross – linking of DGEBA epoxy resin and estimation of the adhesive strength. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...
Dynamical photo-induced electronic properties of molecular junctions
Beltako, K.; Michelini, F.; Cavassilas, N.; Raymond, L.
2018-03-01
Nanoscale molecular-electronic devices and machines are emerging as promising functional elements, naturally flexible and efficient, for next-generation technologies. A deeper understanding of carrier dynamics in molecular junctions is expected to benefit many fields of nanoelectronics and power devices. We determine time-resolved charge current flowing at the donor-acceptor interface in molecular junctions connected to metallic electrodes by means of quantum transport simulations. The current is induced by the interaction of the donor with a Gaussian-shape femtosecond laser pulse. Effects of the molecular internal coupling, metal-molecule tunneling, and light-donor coupling on photocurrent are discussed. We then define the time-resolved local density of states which is proposed as an efficient tool to describe the absorbing molecule in contact with metallic electrodes. Non-equilibrium reorganization of hybridized molecular orbitals through the light-donor interaction gives rise to two phenomena: the dynamical Rabi shift and the appearance of Floquet-like states. Such insights into the dynamical photoelectronic structure of molecules are of strong interest for ultrafast spectroscopy and open avenues toward the possibility of analyzing and controlling the internal properties of quantum nanodevices with pump-push photocurrent spectroscopy.
Shojaei, S H Reza; Morini, Filippo; Deleuze, Michael S
2013-03-07
The results of experimental studies of the valence electronic structure of tetrahydrofuran employing He I photoelectron spectroscopy as well as Electron Momentum Spectroscopy (EMS) have been reinterpreted on the basis of Molecular Dynamical simulations employing the classical MM3 force field and large-scale quantum mechanical simulations employing Born-Oppenheimer Molecular Dynamics in conjunction with the dispersion corrected ωB97XD exchange-correlation functional. Analysis of the produced atomic trajectories demonstrates the importance of thermal deviations from the lowest energy path for pseudorotation, in the form of considerable variations of the ring-puckering amplitude. These deviations are found to have a significant influence on several outer-valence electron momentum distributions, as well as on the He I photoelectron spectrum.
Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide
Verma, Akarsh; Parashar, Avinash
2018-03-01
The aim of this article is to study the effects of functional groups such as hydroxyl, epoxide and carboxyl on the fracture toughness of graphene. These functional groups form the backbone of the intrinsic atomic structure of graphene oxide (GO). Molecular dynamics based simulations were performed in conjunction with reactive force field parameters to capture the Mode-I fracture toughness of functionalised graphene. Simulations were performed in stages, to study the effect of these functional groups, individually as well as all together on the fracture toughness of GO nanosheets. The molecular dynamics based simulations performed in this article helps us to conclude that the spatial distribution and concentration of functional groups significantly affects the fracture behavior of GO nanosheets.
Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong
2018-01-01
Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0o-45o). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.
Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong
2018-01-11
Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0 o -45 o ). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.
Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann
Melenev, Petr
2017-06-01
Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces.
Dynamics of flagellar force generated by a hyperactivated spermatozoon.
Ishijima, Sumio
2011-09-01
The flagellar force generated by a hyperactivated monkey spermatozoon was evaluated using the resistive force theory applied to the activated (nonhyperactivated) and hyperactivated flagellar waves that were obtained using high-speed video microscopy and digital image processing in order to clarify the mechanism of sperm penetration through the zona pellucida. No difference in the maximum propulsive force, which was parallel to the longitudinal sperm head axis, was found between the activated and hyperactivated spermatozoa. The maximum transverse force (45 pN), which was perpendicular to the longitudinal sperm head axis, of the hyperactivated spermatozoon was ∼2.5 times its propulsive force. As the beat frequency of the flagellar beating remarkably decreased during the hyperactivation, the slowly oscillating transverse force (5 Hz) by the hyperactivated spermatozoon seems to be most effective for sperm penetration through the zona pellucida.
Structure and dynamics of alkali borate glasses: a molecular dynamics study
Verhoef, A.H; den Hartog, H. W.
Structural and dynamical properties of lithium, cesium and mixed alkali (i.e., lithium and cesium) borate glasses have been studied by the molecular dynamics method. The calculations yield glass structures consisting of planar BO3 triangles and BO4 tetrahedrons with no sixfold ring structures at
Emulating Molecular Orbitals and Electronic Dynamics with Ultracold Atoms
Directory of Open Access Journals (Sweden)
Dirk-Sören Lühmann
2015-08-01
Full Text Available In recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly correlated phases and complex phenomena in solid-state systems. Here, we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated π electron system with special regard to localization and spin order. The dynamical time scales of ultracold atom simulators are on the order of milliseconds, which allows for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated π system of the artificial benzene molecule.
Stauch, Tim
2018-03-25
The sensing of mechanical stress in polymers is indispensable for investigating the origin and propagation of cracks that lead to material failure and for designing mechanically responsive polymers. Here the unique approaches of using the force-induced switching of aromaticity and homoaromaticity in molecular optical force sensors for the real time measurement of mechanical forces acting in stretched polymers are suggested. The mechanical switching of aromaticity in Dewar benzene is an irreversible event, whereas the degree of pi-orbital overlap in homoaromatic compounds like homotropylium can be adjusted progressively over a wide range of forces. Using computational methods, it is demonstrated that both approaches lead to significant changes in the visible part of the UV/VIS spectra of the force sensors upon application of weak forces (pN-nN). Polymers that incorporate such molecular force sensors therefore change their color well before material failure occurs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The force synergy of human digits in static and dynamic cylindrical grasps.
Kuo, Li-Chieh; Chen, Shih-Wei; Lin, Chien-Ju; Lin, Wei-Jr; Lin, Sheng-Che; Su, Fong-Chin
2013-01-01
This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.
The force synergy of human digits in static and dynamic cylindrical grasps.
Directory of Open Access Journals (Sweden)
Li-Chieh Kuo
Full Text Available This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.
Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan
2016-01-28
The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential
Tarek, M; Tobias, D J
2000-12-01
We present results from an extensive molecular dynamics simulation study of water hydrating the protein Ribonuclease A, at a series of temperatures in cluster, crystal, and powder environments. The dynamics of protein hydration water appear to be very similar in crystal and powder environments at moderate to high hydration levels. Thus, we contend that experiments performed on powder samples are appropriate for discussing hydration water dynamics in native protein environments. Our analysis reveals that simulations performed on cluster models consisting of proteins surrounded by a finite water shell with free boundaries are not appropriate for the study of the solvent dynamics. Detailed comparison to available x-ray diffraction and inelastic neutron-scattering data shows that current generation force fields are capable of accurately reproducing the structural and dynamical observables. On the time scale of tens of picoseconds, at room temperature and high hydration, significant water translational diffusion and rotational motion occur. At low hydration, the water molecules are translationally confined but display appreciable rotational motion. Below the protein dynamical transition temperature, both translational and rotational motions of the water molecules are essentially arrested. Taken together, these results suggest that water translational motion is necessary for the structural relaxation that permits anharmonic and diffusive motions in proteins. Furthermore, it appears that the exchange of protein-water hydrogen bonds by water rotational/librational motion is not sufficient to permit protein structural relaxation. Rather, the complete exchange of protein-bound water molecules by translational displacement seems to be required.
Directory of Open Access Journals (Sweden)
Li Yuqin
2014-01-01
Full Text Available The interaction of patulin with human serum albumin (HSA was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis, circular dichroism (CD, atomic force microscopy (AFM, and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments.
Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation
2014-01-01
Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585
Charge-state dynamics in electrostatic force spectroscopy
Czech Academy of Sciences Publication Activity Database
Ondráček, Martin; Hapala, Prokop; Jelínek, Pavel
2016-01-01
Roč. 27, č. 27 (2016), 1-13, č. článku 274005. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : atomic force microscopy * electron tunneling * redox nanoswitches * electrostatic force spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2016
Dynamic force spectroscopy of oppositely charged polyelectrolyte brushes
Spruijt, E.; Cohen Stuart, M.A.; Gucht, van der J.
2010-01-01
Ion pairing is the main driving force in the formation of polyelectrolyte complexes, which find widespread use in micellar assemblies, drug carriers, and coatings. In this paper we examine the actual ion pairing forces in a polyelectrolyte complex between two oppositely charged polyelectrolyte
Molecular electron recollision dynamics in intense circularly polarized laser pulses
Bandrauk, André D.; Yuan, Kai-Jun
2018-04-01
Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.
Experimental investigation of unsteady fluid dynamic forces acting on tube array
International Nuclear Information System (INIS)
Tanaka, Hiroki; Takahara, Shigeru; Tanaka, Mitsutoshi
1981-01-01
It is well-known that the cylinder bundle vibrates in cross flow. Many studies of the vibration have been made, and it has been clarified that the vibration is caused by fluid-elastic vibration coupling to neighboring cylinders. The theory given in this paper considers unsteady fluid dynamic forces to be composed of inertia forces due to added mass of fluid, damping forces of fluid which are in phase to cylinder vibrating velocity, and stiffness forces which are proportional to cylinder displacements. Furthermore, taking account of the influences of neighboring cylinder vibrations, ten kinds of unsteady fluid dynamic forces are considered to act on a cylinder in cylinder bundles. Equations of motion of cylinders were deduced and the critical velocities were calculated with the measured unsteady fluid dynamic forces. Critical velocity tests were also conducted with cylinders which were supported with elastic spars. The calculated critical velocities coincided well with the test results. (author)
i-PI: A Python interface for ab initio path integral molecular dynamics simulations
Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
2014-03-01
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic
Synchronous monitoring of muscle dynamics and muscle force for maximum isometric tetanus
Zakir Hossain, M.; Grill, Wolfgang
2010-03-01
Skeletal muscle is a classic example of a biological soft matter . At both macro and microscopic levels, skeletal muscle is exquisitely oriented for force generation and movement. In addition to the dynamics of contracting and relaxing muscle which can be monitored with ultrasound, variations in the muscle force are also expected to be monitored. To observe such force and sideways expansion variations synchronously for the skeletal muscle a novel detection scheme has been developed. As already introduced for the detection of sideways expansion variations of the muscle, ultrasonic transducers are mounted sideways on opposing positions of the monitored muscle. To detect variations of the muscle force, angle of pull of the monitored muscle has been restricted by the mechanical pull of the sonic force sensor. Under this condition, any variation in the time-of-flight (TOF) of the transmitted ultrasonic signals can be introduced by the variation of the path length between the transducers. The observed variations of the TOF are compared to the signals obtained by ultrasound monitoring for the muscle dynamics. The general behavior of the muscle dynamics and muscle force shows almost an identical concept. Since muscle force also relates the psychological boosting-up effects, the influence of boosting-up on muscle force and muscle dynamics can also be quantified form this study. Length-tension or force-length and force-velocity relationship can also be derived quantitatively with such monitoring.
A general-purpose coarse-grained molecular dynamics program
Aoyagi, Takeshi; Sawa, Fumio; Shoji, Tatsuya; Fukunaga, Hiroo; Takimoto, Jun-ichi; Doi, Masao
2002-05-01
In this article, we describe a general-purpose coarse-grained molecular dynamics program COGNAC ( COarse Grained molecular dynamics program by NAgoya Cooperation). COGNAC has been developed for general molecular dynamics simulation, especially for coarse-grained polymer chain models. COGNAC can deal with general molecular models, in which each molecule consists of coarse-grained atomic units connected by chemical bonds. The chemical bonds are specified by bonding potentials for the stretching, bending and twisting of the bonds, each of which are the functions of the position coordinates of the two, three and four atomic units. COGNAC can deal with both isotropic and anisotropic interactions between the non-bonded atomic units. As an example, the Gay-Berne potential is implemented. New potential functions can be added to the list of existing potential functions by users. COGNAC can do simulations for various situations such as under constant temperature, under constant pressure, under shear and elongational deformation, etc. Some new methods are implemented in COGNAC for modeling multiphase structures of polymer blends and block copolymers. A density biased Monte Carlo method and a density biased potential method can generate equilibrium chain configurations from the results of the self-consistent field calculations. Staggered reflective boundary conditions can generate interfacial structures with smaller system size compared with those of periodic boundary conditions.
Zhai, X.; Kleijn, J.M.
1997-01-01
Monolayers of dipalmitoylphosphatidylcholine (DPPC) on the air-water interface have been transferred at various surface pressures onto quartz substrates using the Langmuir-Blodgett (LB) technique. The topography of these layers, on a molecular scale, has been examined by atomic force microscopy
Benjamin, Ilan; Pohorille, Andrew
1993-01-01
The gauche-trans isomerization reaction of 1,2-dichloroethane at the liquid-vapor interface of water is studied using molecular-dynamics computer simulations. The solvent bulk and surface effects on the torsional potential of mean force and on barrier recrossing dynamics are computed. The isomerization reaction involves a large change in the electric dipole moment, and as a result the trans/gauche ratio is considerably affected by the transition from the bulk solvent to the surface. Reactive flux correlation function calculations of the reaction rate reveal that deviation from the transition-state theory due to barrier recrossing is greater at the surface than in the bulk water. This suggests that the system exhibits non-Rice-Ramsperger-Kassel-Marcus behavior due to the weak solvent-solute coupling at the water liquid-vapor interface.
DEFF Research Database (Denmark)
Zappone, Bruno; Patil, Navinkumar J.; Madsen, Jan Busk
2015-01-01
By combining dynamic light scattering, circular dichroism spectroscopy, atomic force microscopy, and surface force apparatus, the conformation of bovine submaxillary mucin in dilute solution and nanomechanical properties of mucin layers adsorbed on mica have been investigated. The samples were......-ranged, repulsive, and nonhysteretic forces upon compression of the adsorbed layers. Detailed analysis of such forces suggests that adsorbed mucins had an elongated conformation favored by the stiffness of the central domain. Acidification of aqueous media was chosen as means to reduce mucin−mucin and mucin......−substrate electrostatic interactions. The hydrodynamic diameter in solution did not significantly change when the pH was lowered, showing that the large persistence length of the mucin molecule is due to steric hindrance between sugar chains, rather than electrostatic interactions. Remarkably, the force generated...
Orbital free molecular dynamics; Approche sans orbitale des plasmas denses
Energy Technology Data Exchange (ETDEWEB)
Lambert, F
2007-08-15
The microscopic properties of hot and dense plasmas stay a field essentially studied thanks to classical theories like the One Component Plasma, models which rely on free parameters, particularly ionization. In order to investigate these systems, we have used, in this PhD work, a semi-classical model, without free parameters, that is based on coupling consistently classical molecular dynamics for the nuclei and orbital free density functional theory for the electrons. The electronic fluid is represented by a free energy entirely determined by the local density. This approximation was validated by a comparison with an ab initio technique, quantum molecular dynamics. This one is identical to the previous except for the description of the free energy that depends on a quantum-independent-particle model. Orbital free molecular dynamics was then used to compute equation of state of boron and iron plasmas in the hot and dense regime. Furthermore, comparisons with classical theories were performed on structural and dynamical properties. Finally, equation of state and transport coefficients mixing laws were studied by direct simulation of a plasma composed of deuterium and copper. (author)
Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron
International Nuclear Information System (INIS)
Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.
2010-01-01
Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.
Molecular dynamics of TBP and DBP studied by neutron transmission
International Nuclear Information System (INIS)
Salles Filho, J.B.V.; Refinetti, M.E.; Fulfaro, R.; Vinhas, L.A.
1984-04-01
Differences between the properties of TBP and DBP, concerning the uranium extraction processes, may be related to certain characteristics of the molecular dynamics of each compound. In order to investigate the dynamical behaviour of hydrogen in these molecules, neutron transmission of TBP and DBP has been measured as a function of neutron wavelenght in the range 4.0 - 6.0 A, at room temperature. Scattering cross sections per hydrogen atom have been obtained. From the comparison with results previously obtained for n-butanol, similar dynamical behaviour of butyl radicals in these compounds could be observed. This similarity indicates that the presence of two or three butyl radicals in butylphosphate molecules does not exert influence in the hydrogen motion of methyl and methylene groups. This suggests that the different chemical behaviour between TBP and DBP is related to the dynamics of the hydrogen directly bound to the DBP phosphate group.(Author) [pt
Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron
Energy Technology Data Exchange (ETDEWEB)
Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.
2010-03-14
Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.
New Force Field Model for Propylene Glycol: Insight to Local Structure and Dynamics.
Ferreira, Elisabete S C; Voroshylova, Iuliia V; Koverga, Volodymyr A; Pereira, Carlos M; Cordeiro, M Natália D S
2017-12-07
In this work we developed a new force field model (FFM) for propylene glycol (PG) based on the OPLS all-atom potential. The OPLS potential was refined using quantum chemical calculations, taking into account the densities and self-diffusion coefficients. The validation of this new FFM was carried out based on a wide range of physicochemical properties, such as density, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. The molecular dynamics (MD) simulations were performed over a large range of temperatures (293.15-373.15 K). The comparison with other force field models, such as OPLS, CHARMM27, and GAFF, revealed a large improvement of the results, allowing a better agreement with experimental data. Specific structural properties (radial distribution functions, hydrogen bonding and spatial distribution functions) were then analyzed in order to support the adequacy of the proposed FFM. Pure propylene glycol forms a continuous phase, displaying no microstructures. It is shown that the developed FFM gives rise to suitable results not only for pure propylene glycol but also for mixtures by testing its behavior for a 50 mol % aqueous propylene glycol solution. Furthermore, it is demonstrated that the addition of water to the PG phase produces a homogeneous solution and that the hydration interactions prevail over the propylene glycol self-association interactions.
Accelerating convergence of molecular dynamics-based structural relaxation
DEFF Research Database (Denmark)
Christensen, Asbjørn
2005-01-01
We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...... the influence of spectral properties and dimensionality of the molecular system on the algorithm efficiency. We test two algorithms, the MinMax and Lanczos, for spectral estimation from an MD trajectory, and use this to derive a practical scheme of time step adaptation in MD relaxation algorithms to improve...
Spectra modelling combining molecular dynamics and quantum mechanics
Czech Academy of Sciences Publication Activity Database
Novák, Vít; Bouř, Petr
2015-01-01
Roč. 22, č. 1 (2015), s. 48 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] R&D Projects: GA ČR GAP208/11/0105; GA ČR GA15-09072S Grant - others:GA MŠk(CZ) LM2010005; GA MŠk(CZ) ED3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : Raman scattering * molecular dynamics * autocorrelation function Subject RIV: CF - Physical ; Theoretical Chemistry
International Nuclear Information System (INIS)
Kalligiannaki, Evangelia; Harmandaris, Vagelis; Katsoulakis, Markos A.; Plecháč, Petr
2015-01-01
Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems
Energy Technology Data Exchange (ETDEWEB)
Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion (Greece); Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion (Greece); Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion (Greece); Katsoulakis, Markos A., E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Plecháč, Petr, E-mail: plechac@math.udel.edu [Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716 (United States)
2015-08-28
Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems.
Kalligiannaki, Evangelia; Harmandaris, Vagelis; Katsoulakis, Markos A; Plecháč, Petr
2015-08-28
Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems.
MDWiZ: a platform for the automated translation of molecular dynamics simulations.
Rusu, Victor H; Horta, Vitor A C; Horta, Bruno A C; Lins, Roberto D; Baron, Riccardo
2014-03-01
A variety of popular molecular dynamics (MD) simulation packages were independently developed in the last decades to reach diverse scientific goals. However, such non-coordinated development of software, force fields, and analysis tools for molecular simulations gave rise to an array of software formats and arbitrary conventions for routine preparation and analysis of simulation input and output data. Different formats and/or parameter definitions are used at each stage of the modeling process despite largely contain redundant information between alternative software tools. Such Babel of languages that cannot be easily and univocally translated one into another poses one of the major technical obstacles to the preparation, translation, and comparison of molecular simulation data that users face on a daily basis. Here, we present the MDWiZ platform, a freely accessed online portal designed to aid the fast and reliable preparation and conversion of file formats that allows researchers to reproduce or generate data from MD simulations using different setups, including force fields and models with different underlying potential forms. The general structure of MDWiZ is presented, the features of version 1.0 are detailed, and an extensive validation based on GROMACS to LAMMPS conversion is presented. We believe that MDWiZ will be largely useful to the molecular dynamics community. Such fast format and force field exchange for a given system allows tailoring the chosen system to a given computer platform and/or taking advantage of a specific capabilities offered by different software engines. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Elmore, Donald E.; Guayasamin, Ryann C.; Kieffer, Madeleine E.
2010-01-01
As computational modeling plays an increasingly central role in biochemical research, it is important to provide students with exposure to common modeling methods in their undergraduate curriculum. This article describes a series of computer labs designed to introduce undergraduate students to energy minimization, molecular dynamics simulations,…
Unified Model of Dynamic Forced Barrier Crossing in Single Molecules
Energy Technology Data Exchange (ETDEWEB)
Friddle, R W
2007-06-21
Thermally activated barrier crossing in the presence of an increasing load can reveal kinetic rate constants and energy barrier parameters when repeated over a range of loading rates. Here we derive a model of the mean escape force for all relevant loading rates--the complete force spectrum. Two well-known approximations emerge as limiting cases; one of which confirms predictions that single-barrier spectra should converge to a phenomenological description in the slow loading limit.
Dynamics of the Thermohaline Circulation under Wind forcing
Gao, Hongjun; Duan, Jinqiao
2001-01-01
The ocean thermohaline circulation, also called meridional overturning circulation, is caused by water density contrasts. This circulation has large capacity of carrying heat around the globe and it thus affects the energy budget and further affects the climate. We consider a thermohaline circulation model in the meridional plane under external wind forcing. We show that, when there is no wind forcing, the stream function and the density fluctuation (under appropriate metrics) tend to zero ex...
Molecular Dynamics Methodologies for Probing Cannabinoid Ligand/Receptor Interaction
Lynch, Diane L.; Hurst, Dow P.; Shore, Derek M.; Pitman, Mike C.; Reggio, Patricia H.
2018-01-01
The cannabinoid type 1 and 2 G-protein-coupled receptors are currently important pharmacological targets with significant drug discovery potential. These receptors have been shown to display functional selectivity or biased agonism, a property currently thought to have substantial therapeutic potential. Although recent advances in crystallization techniques have provided a wealth of structural information about this important class of membrane-embedded proteins, these structures lack dynamical information. In order to fully understand the interplay of structure and function for this important class of proteins, complementary techniques that address the dynamical aspects of their function are required such as NMR as well as a variety of other spectroscopies. Complimentary to these experimental approaches is molecular dynamics, which has been effectively used to help unravel, at the atomic level, the dynamics of ligand binding and activation of these membrane-bound receptors. Here, we discuss and present several representative examples of the application of molecular dynamics simulations to the understanding of the signatures of ligand-binding and -biased signaling at the cannabinoid type 1 and 2 receptors. PMID:28750815
Molecular dynamics simulation of ion-beam-amorphization of Si, Ge and GaAs
Nord, J D; Keinonen, J
2002-01-01
We use molecular dynamics simulations to study ion-irradiation-induced amorphization in Si, Ge and GaAs using several different interatomic force models. We find that the coordination number is higher, and the average bond length longer, for the irradiated amorphous structures than for the molten ones in Si and Ge. For amorphous GaAs, we suggest that longer Ga-Ga bonds, also present in pure Ga, are produced during the irradiation. In Si the amorphization is found to proceed via growth of amorphous regions, and low energy recoils are found to induce athermal recrystallization during irradiation.
Cui, Peng; Zhang, Heng; Ma, Ying; Hao, Qingquan; Liu, Gang; Sun, Jichao; Yuan, Shiling
2017-10-01
The translocation behavior of preformed particle gel (PPG) in porous media is crucial for its application in enhanced oil recovery. By means of non-equilibrium molecular dynamics simulation, the translocation mechanism of PPG confined in different silica nanopores were investigated. The influence of surface chemistry and chemical heterogeneity of silica nanopore on the translocation process was revealed. As the degree of surface hydroxylation increases and the heterogeneity decreases, the pulling force needed to drive PPG decreases. We infer that the nanopore's surface (i.e. surface chemistry and heterogeneity) affects the translocation of PPG indirectly by forming different hydration layers.
Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals.
Huang, Yanhua; Zong, Wenjun
2014-01-01
In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation of the two materials is achieved by dislocation activities, the deformation behavior and related physical phenomena, such as the machining forces, machined surface quality, and chip morphology, are significantly different for different materials. Furthermore, the influence of material properties on the nanometric cutting has a strong dependence on the operating temperature.
The dielectric response to photoexcitation of GFP: A molecular dynamics study
Xu, Yao; Gnanasekaran, Ramachandran; Leitner, David M.
2013-03-01
The dielectric response to photoexcitation of the Green Fluorescent Protein (GFP) chromophore and contributions to it from water and GFP are computed by molecular simulations using a force field for the chromophore parametrized by ab initio calculations of ground and excited states. The chromophore is embedded in the β-barrel where it is surrounded by about 10 waters, which are found to play a significant role in slow dielectric relaxation. Dynamics of hydrogen bonds between water and GFP is examined and found to be slower and more heterogeneous for hydrogen bonds inside the β-barrel than in the hydration layer around GFP.
Ozcan, Aydin; Perego, Claudio; Salvalaglio, Matteo; Parrinello, Michele; Yazaydin, Ozgur
2017-05-01
In this study, we introduce a new non-equilibrium molecular dynamics simulation method to perform simulations of concentration driven membrane permeation processes. The methodology is based on the application of a non-conservative bias force controlling the concentration of species at the inlet and outlet of a membrane. We demonstrate our method for pure methane, ethane and ethylene permeation and for ethane/ethylene separation through a flexible ZIF-8 membrane. Results show that a stationary concentration gradient is maintained across the membrane, realistically simulating an out-of-equilibrium diffusive process, and the computed permeabilities and selectivity are in good agreement with experimental results.
The application of Car-Parrinello molecular dynamics to the study of tetrahedral amorphous carbon
International Nuclear Information System (INIS)
McKenzie, D.R.; McCulloch, D.G.; Goringe, C.M.
1998-01-01
The Car-Parrinello method for carrying out molecular dynamics enables the forces between atoms to be calculated by solving Schroedinger's equation for the valence electrons using Density Functional Theory. The method is capable of giving good structural predictions for amorphous network solids by quenching from the melt, even in situations where the bonding changes from one site to another. In amorphous carbon where, depending on its environment, carbon may show sp 2 or sp 3 bonds. The method is applied here to the study of network solids using the example of tetrahedral amorphous carbon
Studies on thermal decomposition behaviors of polypropylene using molecular dynamics simulation
Huang, Jinbao; He, Chao; Tong, Hong; Pan, Guiying
2017-11-01
Polypropylene (PP) is one of the main components of waste plastics. In order to understand the mechanism of PP thermal decomposition, the pyrolysis behaviour of PP has been simulated from 300 to 1000 K in periodic boundary conditions by molecular dynamic method, based on AMBER force field. The simulation results show that the pyrolysis process of PP can mostly be divided into three stages: low temperature pyrolysis stage, intermediate temperature stage and high temperature pyrolysis stage. PP pyrolysis is typical of random main-chain scission, and the possible formation mechanism of major pyrolysis products was analyzed.
Coalescence of silver unidimensional structures by molecular dynamics simulation
International Nuclear Information System (INIS)
Perez A, M.; Gutierrez W, C.E.; Mondragon, G.; Arenas, J.
2007-01-01
The study of nanoparticles coalescence and silver nano rods phenomena by means of molecular dynamics simulation under the thermodynamic laws is reported. In this work we focus ourselves to see the conditions under which the one can be given one dimension growth of silver nano rods for the coalescence phenomenon among two nano rods or one nano rod and one particle; what allows us to study those structural, dynamic and morphological properties of the silver nano rods to different thermodynamic conditions. The simulations are carried out using the Sutton-Chen potentials of interaction of many bodies that allow to obtain appropriate results with the real physical systems. (Author)
Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers
Energy Technology Data Exchange (ETDEWEB)
Mercer, Brian Scott [Univ. of California, Berkeley, CA (United States)
2016-05-19
In this work, molecular dynamics modeling is used to study the mechanical properties of PPTA crystallites, which are the fundamental microstructural building blocks of polymer aramid bers such as Kevlar. Particular focus is given to constant strain rate axial loading simulations of PPTA crystallites, which is motivated by the rate-dependent mechanical properties observed in some experiments with aramid bers. In order to accommodate the covalent bond rupture that occurs in loading a crystallite to failure, the reactive bond order force eld ReaxFF is employed to conduct the simulations. Two major topics are addressed: The rst is the general behavior of PPTA crystallites under strain rate loading. Constant strain rate loading simulations of crystalline PPTA reveal that the crystal failure strain increases with increasing strain rate, while the modulus is not a ected by the strain rate. Increasing temperature lowers both the modulus and the failure strain. The simulations also identify the C N bond connecting the aromatic rings as weakest primary bond along the backbone of the PPTA chain. The e ect of chain-end defects on PPTA micromechanics is explored, and it is found that the presence of a chain-end defect transfers load to the adjacent chains in the hydrogen-bonded sheet in which the defect resides, but does not in uence the behavior of any other chains in the crystal. Chain-end defects are found to lower the strength of the crystal when clustered together, inducing bond failure via stress concentrations arising from the load transfer to bonds in adjacent chains near the defect site. The second topic addressed is the nature of primary and secondary bond failure in crystalline PPTA. Failure of both types of bonds is found to be stochastic in nature and driven by thermal uctuations of the bonds within the crystal. A model is proposed which uses reliability theory to model bonds under constant strain rate loading as components with time-dependent failure rate
Directory of Open Access Journals (Sweden)
Qixin Liu
2014-07-01
Full Text Available This paper presents studies on the characteristics of gas molecular mean freepath in nanopores by molecular dynamics simulation. Our study results indicate that themean free path of all molecules in nanopores depend on both the radius of the nanoporeand the gas-solid interaction strength. Besides mean free path of all molecules in thenanopore, this paper highlights the gas molecular mean free path at different positions ofthe nanopore and the anisotropy of the gas molecular mean free path at nanopores. Themolecular mean free path varies with the molecule’s distance from the center of thenanopore. The least value of the mean free path occurs at the wall surface of the nanopore.The present paper found that the gas molecular mean free path is anisotropic when gas isconfined in nanopores. The radial gas molecular mean free path is much smaller than themean free path including all molecular collisions occuring in three directions. Our studyresults also indicate that when gas is confined in nanopores the gas molecule number densitydoes not affect the gas molecular mean free path in the same way as it does for the gas inunbounded space. These study results may bring new insights into understanding the gasflow’s characteristic at nanoscale.
Czech Academy of Sciences Publication Activity Database
Chocholoušová, Jana; Feig, M.
2006-01-01
Roč. 27, č. 6 (2006), s. 719-729 ISSN 0192-8651 Keywords : molecular surface * generalized Born formalisms * molecular dynamic simulations Subject RIV: CC - Organic Chemistry Impact factor: 4.893, year: 2006
Statistical ensembles and molecular dynamics studies of anisotropic solids. II
International Nuclear Information System (INIS)
Ray, J.R.; Rahman, A.
1985-01-01
We have recently discussed how the Parrinello--Rahman theory can be brought into accord with the theory of the elastic and thermodynamic behavior of anisotropic media. This involves the isoenthalpic--isotension ensemble of statistical mechanics. Nose has developed a canonical ensemble form of molecular dynamics. We combine Nose's ideas with the Parrinello--Rahman theory to obtain a canonical form of molecular dynamics appropriate to the study of anisotropic media subjected to arbitrary external stress. We employ this isothermal--isotension ensemble in a study of a fcc→ close-packed structural phase transformation in a Lennard-Jones solid subjected to uniaxial compression. Our interpretation of the Nose theory does not involve a scaling of the time variable. This latter fact leads to simplifications when studying the time dependence of quantities
Optical spectra and lattice dynamics of molecular crystals
Zhizhin, GN
1995-01-01
The current volume is a single topic volume on the optical spectra and lattice dynamics of molecular crystals. The book is divided into two parts. Part I covers both the theoretical and experimental investigations of organic crystals. Part II deals with the investigation of the structure, phase transitions and reorientational motion of molecules in organic crystals. In addition appendices are given which provide the parameters for the calculation of the lattice dynamics of molecular crystals, procedures for the calculation of frequency eigenvectors of utilizing computers, and the frequencies and eigenvectors of lattice modes for several organic crystals. Quite a large amount of Russian literature is cited, some of which has previously not been available to scientists in the West.
Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates
International Nuclear Information System (INIS)
Zhang Junfang; Rivero, Mayela; Choi, S K
2007-01-01
We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 A. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added
Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates
Energy Technology Data Exchange (ETDEWEB)
Zhang Junfang [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia); Rivero, Mayela [CSIRO Petroleum, PO Box 1130, Bentley, Western Australia, 6102 (Australia); Choi, S K [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia)
2007-02-14
We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 A. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.
Molecular Modeling of Enzyme Dynamics Towards Understanding Solvent Effects
DEFF Research Database (Denmark)
Wedberg, Nils Hejle Rasmus Ingemar
) in water and organic solvents. The effects of solvent on structural and dynamical enzyme properties are studied, and special attention is given to how enzyme properties in organic solvents are affected by the hydration level, which is shown to be related to the water activity. In experimental studies...... of enzyme kinetics in non-aqueous media, it has been a fruitful approach to fix the enzyme hydration level by controlling the water activity of the medium. In this work, a protocol is therefore developed for determining the water activity in non-aqueous protein simulations. The method relies on determining......This thesis describes the development of a molecular simulation methodology to study properties of enzymes in non-aqueous media at fixed thermodynamic water activities. The methodology is applied in a molecular dynamics study of the industrially important enzyme Candida antarctica lipase B (CALB...
Neely, Kristina A; Coombes, Stephen A; Planetta, Peggy J; Vaillancourt, David E
2013-03-01
A central topic in sensorimotor neuroscience is the static-dynamic dichotomy that exists throughout the nervous system. Previous work examining motor unit synchronization reports that the activation strategy and timing of motor units differ for static and dynamic tasks. However, it remains unclear whether segregated or overlapping blood-oxygen-level-dependent (BOLD) activity exists in the brain for static and dynamic motor control. This study compared the neural circuits associated with the production of static force to those associated with the production of dynamic force pulses. To that end, healthy young adults (n = 17) completed static and dynamic precision grip force tasks during functional magnetic resonance imaging (fMRI). Both tasks activated core regions within the visuomotor network, including primary and sensory motor cortices, premotor cortices, multiple visual areas, putamen, and cerebellum. Static force was associated with unique activity in a right-lateralized cortical network including inferior parietal lobe, ventral premotor cortex, and dorsolateral prefrontal cortex. In contrast, dynamic force was associated with unique activity in left-lateralized and midline cortical regions, including supplementary motor area, superior parietal lobe, fusiform gyrus, and visual area V3. These findings provide the first neuroimaging evidence supporting a lateralized pattern of brain activity for the production of static and dynamic precision grip force. Copyright © 2011 Wiley Periodicals, Inc.
Li, Mi; Liu, Lianqing; Xu, Xinning; Xing, Xiaojing; Dang, Dan; Xi, Ning; Wang, Yuechao
2018-03-27
Cell mechanics plays an important role in regulating the physiological activities of cells. The advent of atomic force microscopy (AFM) provides a novel powerful instrument for quantifying the mechanics of single cells at the nanoscale. The applications of AFM in single-cell mechanical assays in the past decade have significantly contributed to the field of cell and molecular biology. However, current AFM-based cellular mechanical studies are commonly carried out with fixed measurement parameters, which provides limited information about the dynamic cellular mechanical behaviors in response to the variable external stimuli. In this work, we utilized AFM to investigate cellular viscoelasticity (portrayed as relaxation time) with varying measurement parameters, including ramp rate and surface dwell time, on both cell lines and primary cells. The experimental results show that the obtained cellular relaxation times are remarkably dependent on the parameter surface dwell time and ramp rate during measurements. Besides, the dependencies to the measurement parameters are variable for different types of cells, which can be potentially used to indicate cell states. The research improves our understanding of single-cell dynamic rheology and provides a novel idea for discriminating different types of cells by AFM-based cellular viscoelastic assays with varying measurement parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Force on Force Modeling with Formal Task Structures and Dynamic Geometry
2017-03-24
that are nested from Division to Corps to Joint Force Land Component (Operational level of war) and all the way to the Combined Joint Task Force...entities followed during specific phases of the operation. This allowed for filtering of the TOEL to depict only those entities we were concerned with as...provide another way to filter information as the model was being developed from the TOEL. Secondly, for each phase of the operation, the events were
Thermal Conductivity of Supercooled Water: An Equilibrium Molecular Dynamics Exploration.
English, Niall J; Tse, John S
2014-11-06
The thermal conductivity of both supercooled and ambient-temperature water at atmospheric pressure has been computed over the 140-270 K temperature range for three popular water models via equilibrium molecular dynamics in the Green-Kubo setting. No strong temperature dependence of thermal conductivity was observed. The underlying phonon modes contributing to thermal conduction processes have been examined in the present work, and it has been established that (translational) acoustic modes dominate in supercooled water.
Thermal Transport in Fullerene Derivatives Using Molecular Dynamics Simulations
Chen, Liang; Wang, Xiaojia; Kumar, Satish
2015-01-01
In order to study the effects of alkyl chain on the thermal properties of fullerene derivatives, we perform molecular dynamics (MD) simulations to predict the thermal conductivity of fullerene (C60) and its derivative phenyl-C61-butyric acid methyl ester (PCBM). The results of non-equilibrium MD simulations show a length-dependent thermal conductivity for C60 but not for PCBM. The thermal conductivity of C60, obtained from the linear extrapolation of inverse conductivity vs. inverse length cu...
Spin dynamics of an ultra-small nanoscale molecular magnet
Directory of Open Access Journals (Sweden)
Ciftja Orion
2007-01-01
Full Text Available AbstractWe present mathematical transformations which allow us to calculate the spin dynamics of an ultra-small nanoscale molecular magnet consisting of a dimer system of classical (high Heisenberg spins. We derive exact analytic expressions (in integral form for the time-dependent spin autocorrelation function and several other quantities. The properties of the time-dependent spin autocorrelation function in terms of various coupling parameters and temperature are discussed in detail.
Molecular dynamics simulations of freezing of water and salt solutions
Czech Academy of Sciences Publication Activity Database
Vrbka, Luboš; Jungwirth, Pavel
2007-01-01
Roč. 134, č. 1 (2007), s. 64-70 ISSN 0167-7322 R&D Projects: GA MŠk LC512; GA ČR(CZ) GD203/05/H001 Institutional research plan: CEZ:AV0Z40550506 Keywords : ice freezing * salt ions * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.982, year: 2007
Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties
Energy Technology Data Exchange (ETDEWEB)
Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche
1997-09-01
Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.
Reliable Approximation of Long Relaxation Timescales in Molecular Dynamics
Directory of Open Access Journals (Sweden)
Wei Zhang
2017-07-01
Full Text Available Many interesting rare events in molecular systems, like ligand association, protein folding or conformational changes, occur on timescales that often are not accessible by direct numerical simulation. Therefore, rare event approximation approaches like interface sampling, Markov state model building, or advanced reaction coordinate-based free energy estimation have attracted huge attention recently. In this article we analyze the reliability of such approaches. How precise is an estimate of long relaxation timescales of molecular systems resulting from various forms of rare event approximation methods? Our results give a theoretical answer to this question by relating it with the transfer operator approach to molecular dynamics. By doing so we also allow for understanding deep connections between the different approaches.
Non-Adiabatic Molecular Dynamics Methods for Materials Discovery
Energy Technology Data Exchange (ETDEWEB)
Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)
2017-04-04
The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.
Protein Dynamics in Organic Media at Varying Water Activity Studied by Molecular Dynamics Simulation
DEFF Research Database (Denmark)
Wedberg, Nils Hejle Rasmus Ingemar; Abildskov, Jens; Peters, Günther H.J.
2012-01-01
relies on determining the water content of the bulk phase and uses a combination of Kirkwood−Buff theory and free energy calculations to determine corresponding activity coefficients. We apply the method in a molecular dynamics study of Candida antarctica lipase B in pure water and the organic solvents......In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method...
Analysis of nanoscale two-phase flow of argon using molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Verma, Abhishek Kumar; Kumar, Rakesh [Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur - 208016 (India)
2014-12-09
Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.
Soliton ratchetlike dynamics by ac forces with harmonic mixing
DEFF Research Database (Denmark)
Salerno, Mario; Zolotaryuk, Yaroslav
2002-01-01
in the system. Effective soliton transport is achieved when the internal mode and the external force get phase locked. We find that for kinks driven by biharmonic drivers consisting of the superposition of a fundamental driver with its first odd harmonic, the transport arises only due to this internal mode......The possibility of unidirectional motion of a kink (topological soliton) of a dissipative sine-Gordon equation in the presence of ac forces with harmonic mixing (at least biharmonic) and of zero mean, is presented. The dependence of the kink mean velocity on system parameters is investigated...
Directory of Open Access Journals (Sweden)
Fang Te-Hua
2009-01-01
Full Text Available Abstract Molecular dynamics simulations using tight-binding many body potential are carried out to study the roller imprint process of a gold single crystal. The effect of the roller tooth’s taper angle, imprint depth, imprint temperature, and imprint direction on the imprint force, adhesion, stress distribution, and strain are investigated. A two-stage roller imprint process was obtained from an imprint force curve. The two-stage imprint process included the imprint forming with a rapid increase of imprint force and the unloading stage combined with the adhesion stage. The results show that the imprint force and adhesion rapidly increase with decreasing taper angle and increasing imprint depth. The magnitude of the maximum imprint force and the time at which this maximum occurs are proportional to the imprint depth, but independent of the taper angle. In a comparison of the imprint mechanisms with a vertical imprint case, while high stress and strain regions are concentrated below the mold for vertical imprint, they also occur around the mold in the case of roller imprint. The regions were only concentrated on the substrate atoms underneath the mold in vertical imprint. Plastic flow increased with increasing imprint temperature.
Molecular dynamics algorithms for path integrals at constant pressure
Martyna, Glenn J.; Hughes, Adam; Tuckerman, Mark E.
1999-02-01
Extended system path integral molecular dynamics algorithms have been developed that can generate efficiently averages in the quantum mechanical canonical ensemble [M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein, J. Chem. Phys. 99, 2796 (1993)]. Here, the corresponding extended system path integral molecular dynamics algorithms appropriate to the quantum mechanical isothermal-isobaric ensembles with isotropic-only and full system cell fluctuations are presented. The former ensemble is employed to study fluid systems which do not support shear modes while the latter is employed to study solid systems. The algorithms are constructed by deriving appropriate dynamical equations of motions and developing reversible multiple time step algorithms to integrate the equations numerically. Effective parallelization schemes for distributed memory computers are presented. The new numerical methods are tested on model (a particle in a periodic potential) and realistic (liquid and solid para-hydrogen and liquid butane) systems. In addition, the methodology is extended to treat the path integral centroid dynamics scheme, [J. Cao and G. A. Voth, J. Chem. Phys. 99, 10070 (1993)], a novel method which is capable of generating semiclassical approximations to quantum mechanical time correlation functions.
Large scale molecular dynamics simulations of nuclear pasta
Horowitz, C. J.; Berry, D.; Briggs, C.; Chapman, M.; Clark, E.; Schneider, A.
2014-09-01
We report large-scale molecular dynamics simulations of nuclear pasta using from 50,000 to more than 3,000,000 nucleons. We use a simple phenomenological two-nucleon potential that reproduces nuclear saturation. We find a complex ``nuclear waffle'' phase in addition to more conventional rod, plate, and sphere phases. We also find long-lived topological defects involving screw like dislocations that may reduce the electrical conductivity and thermal conductivity of lasagna phases. From MD trajectories we calculate a variety of quantities including static structure factor, dynamical response function, shear modulus and breaking strain. We report large-scale molecular dynamics simulations of nuclear pasta using from 50,000 to more than 3,000,000 nucleons. We use a simple phenomenological two-nucleon potential that reproduces nuclear saturation. We find a complex ``nuclear waffle'' phase in addition to more conventional rod, plate, and sphere phases. We also find long-lived topological defects involving screw like dislocations that may reduce the electrical conductivity and thermal conductivity of lasagna phases. From MD trajectories we calculate a variety of quantities including static structure factor, dynamical response function, shear modulus and breaking strain. Supported in parts by DOE Grants No. DE-FG02-87ER40365 (Indiana University) and No. DE-SC0008808 (NUCLEI SciDAC Collaboration).
The dynamics of molecular evolution over 60,000 generations.
Good, Benjamin H; McDonald, Michael J; Barrick, Jeffrey E; Lenski, Richard E; Desai, Michael M
2017-11-02
The outcomes of evolution are determined by a stochastic dynamical process that governs how mutations arise and spread through a population. However, it is difficult to observe these dynamics directly over long periods and across entire genomes. Here we analyse the dynamics of molecular evolution in twelve experimental populations of Escherichia coli, using whole-genome metagenomic sequencing at five hundred-generation intervals through sixty thousand generations. Although the rate of fitness gain declines over time, molecular evolution is characterized by signatures of rapid adaptation throughout the duration of the experiment, with multiple beneficial variants simultaneously competing for dominance in each population. Interactions between ecological and evolutionary processes play an important role, as long-term quasi-stable coexistence arises spontaneously in most populations, and evolution continues within each clade. We also present evidence that the targets of natural selection change over time, as epistasis and historical contingency alter the strength of selection on different genes. Together, these results show that long-term adaptation to a constant environment can be a more complex and dynamic process than is often assumed.
Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing.
Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda
2015-05-07
We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.
Molecular dynamics simulations of lysozyme in water/sugar solutions
Energy Technology Data Exchange (ETDEWEB)
Lerbret, A. [Department of Food Science, Cornell University, 101 Stocking Hall, Ithaca, NY 14853 (United States); Affouard, F. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: frederic.affouard@univ-lille1.fr; Bordat, P. [Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR 5624, Universite de Pau et des Pays de l' Adour, 64000 Pau (France); Hedoux, A.; Guinet, Y.; Descamps, M. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)
2008-04-18
Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.
Liquid-vapor coexistence by molecular dynamics simulation
International Nuclear Information System (INIS)
Baranyai, Andras; Cummings, Peter T.
2000-01-01
We present a simple and consistent molecular dynamics algorithm for determining the equilibrium properties of a bulk liquid and its coexisting vapor phase. The simulation follows the dynamics of the two systems simultaneously while maintaining the volume and the number of particles of the composite system fixed. The thermostat can constrain either the total energy or the temperature at a desired value. Division of the extensive properties between the two phases is governed by the difference of the corresponding intensive state variables. Particle numbers are continuous variables and vary only in virtual sense, i.e., the real sizes of the two systems are the same and do not change during the course of the simulation. Calculation of the chemical potential is separate from the dynamics; thus, one can replace the particle exchange step with other method if it improves the efficiency of the code. (c) 2000 American Institute of Physics
A rotary nano ion pump: a molecular dynamics study.
Lohrasebi, A; Feshanjerdi, M
2012-09-01
The dynamics of a rotary nano ion pump, inspired by the F (0) part of the F(0)F(1)-ATP synthase biomolecular motor, were investigated. This nanopump is composed of a rotor, which is constructed of two carbon nanotubes with benzene rings, and a stator, which is made of six graphene sheets. The molecular dynamics (MD) method was used to simulate the dynamics of the ion nanopump. When the rotor of the nanopump rotates mechanically, an ion gradient will be generated between the two sides of the nanopump. It is shown that the ion gradient generated by the nanopump is dependant on parameters such as the rotary frequency of the rotor, temperature and the amounts and locations of the positive and negative charges of the stator part of the nanopump. Also, an electrical potential difference is generated between the two sides of the pump as a result of its operation.
Molecular dynamics of coalescence and collisions of silver nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Guevara-Chapa, Enrique, E-mail: enrique_guevara@hotmail.com [Universidad Autónoma de Nuevo León, Facultad de Ciencias Físico Matemáticas (Mexico); Mejía-Rosales, Sergio [Universidad Autónoma de Nuevo León, Center for Innovation, Research and Development in Engineering and Technology (CIIDIT), and CICFIM-Facultad de Ciencias Físico Matemáticas (Mexico)
2014-12-15
We study how different relative orientations and impact velocity on the collision of two silver nanoparticles affect the first stages of the formation of a new, larger nanoparticle. In order to do this, we implemented a set of molecular dynamics simulations on the NVE ensemble on pairs of silver icosahedral nanoparticles at several relative orientations, that allowed us to follow the dynamics of the first nanoseconds of the coalescence processes. Using bond angle analysis, we found that the initial relative orientation of the twin planes has a critical role on the final stability of the resulting particle, and on the details of the dynamics itself. When the original particles have their closest twins aligned to each other, the formed nanoparticle will likely stabilize its structure onto a particle with a defined center and a low surface-to-volume ratio, while nanoparticles with misaligned twins will promote the formation of highly defective particles with a high inner energy.
Molecular dynamics simulations of lysozyme in water/sugar solutions
International Nuclear Information System (INIS)
Lerbret, A.; Affouard, F.; Bordat, P.; Hedoux, A.; Guinet, Y.; Descamps, M.
2008-01-01
Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface
Coriolis’ force in the earth’s solid tidal dynamics
Czech Academy of Sciences Publication Activity Database
Burša, Milan; Groten, E.; Šíma, Zdislav
2006-01-01
Roč. 50, č. 2 (2006), s. 181-188 ISSN 0039-3169 R&D Projects: GA ČR GA205/05/2381 Institutional research plan: CEZ:AV0Z10030501 Keywords : Earth’s rotation * Coriolis force * deflection of the vertical Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.603, year: 2006
Boek, E. S.; Jusufi, A.; Löwen, H.; Maitland, G. C.
2002-10-01
Understanding how macroscopic properties depend on intermolecular interactions for complex fluid systems is an enormous challenge in statistical mechanics. This issue is of particular importance for designing optimal industrial fluid formulations such as responsive oilfield fluids, based on viscoelastic surfactant solutions. We have carried out extensive molecular dynamics simulations, resolving the full chemical details in order to study how the structure of the lamellar phase of viscoelastic surfactant solutions depends on the head group (HG) chemistry of the surfactant. In particular, we consider anionic carboxylate and quaternary ammonium HGs with erucyl tails in aqueous solutions together with their sodium and chloride counterions at room temperature. We find a strong HG dependence of the lamellar structure as characterized by suitable pair correlation functions and density distributions. The depth of penetration of water into the bilayer membrane, the nature of counterion condensation on the HGs and even the order and correlation of the tails in the lamellae depend sensitively on the chemical details of the HG. We also determine the compressibility of the lamellar system as a first step to using atom-resolved molecular dynamics in order to link the molecular and macroscopic scales of length and time. The results give important insight into the links between molecular details and surfactant phase structure which is being exploited to develop more systematic procedures for the molecular design and formulation of industrial systems.
Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures
DEFF Research Database (Denmark)
Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.
2014-01-01
of air in water at different pressures. Using the calibrated force field, we conduct MD simulations to study the interface between a hydrophilic silica substrate and water surrounded by air at different pressures. We find that the static water contact angle is independent of the air pressure imposed......Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...... on the system. Our simulations reveal the presence of a nanometer thick layer of gas at the water–silica interface. We believe that this gas layer could promote nucleation and stabilization of surface nanobubbles at amorphous silica surfaces. © 2014 Elsevier B.V. All rights reserved....
Proton momentum distributions in water: A path integral molecular dynamics study
Srinivasan, Varadharajan; Morrone, Joseph A.; Sebastiani, Daniel; Car, Roberto
2007-03-01
Recent neutron Compton scattering experiments have detected the proton momentum distributions of water. This density in momentum space is a quantum mechanical property of the proton, due to the confining anharmonic potential from covalent and hydrogen bonds. The theoretical calculation of this property can be carried out via ``open'' path integral expressions. In this work, we present an extension of the staging path integral molecular dynamics method, which is then employed to calculate the proton momentum distributions of water in the solid, liquid, and supercritical phases. We utilize the SPC/F2 empirical force field to model the system's interactions. The calculated momentum distributions depict both agreement and discrepancies with experiment. The differences may be explained by the deviation of the force field from the true interactions. These distributions provide an abundance of information about the environment and interactions surrounding the proton.
Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori
2009-01-01
The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.
Graybill, George
2007-01-01
Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.
Accelerated molecular dynamics methods: introduction and recent developments
Energy Technology Data Exchange (ETDEWEB)
Uberuaga, Blas Pedro [Los Alamos National Laboratory; Voter, Arthur F [Los Alamos National Laboratory; Perez, Danny [Los Alamos National Laboratory; Shim, Y [UNIV OF TOLEDO; Amar, J G [UNIV OF TOLEDO
2009-01-01
A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usually involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) [10, 19, 23] to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what
Accelerated molecular dynamics methods: introduction and recent developments
International Nuclear Information System (INIS)
Uberuaga, Blas Pedro; Voter, Arthur F.; Perez, Danny; Shim, Y.; Amar, J.G.
2009-01-01
A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usually involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) (10, 19, 23) to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what
Directory of Open Access Journals (Sweden)
Yue Hou
2017-07-01
Full Text Available Recent research shows that macro-scale cracking in asphalt binder may originate from its intrinsic defects at the nano-scale. In this paper, a molecular dynamics (MD simulation was conducted to evaluate the nucleation of natural defects in asphalt. The asphalt microstructure was modeled using an ensemble of three different types of molecules to represent a constituent species: asphaltenes, naphthene aromatics and saturates, where the weight proportion of 20:60:20 was used to create an asphalt-like ensemble of molecules. Tension force was then applied on the molecular boundaries to study the crack initiation and propagation. It was discovered that the natural distribution of atoms at microscale would affect the intrinsic defects in asphalt and further influence crack initiation and propagation in asphalt.
Adsorption behavior of acetone solvent at the HMX crystal faces: A molecular dynamics study.
Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Ma, Yiding; Kang, Ying; Ge, Zhongxue
2017-06-01
Molecular dynamics simulations have been performed to understand the adsorption behavior of acetone (AC) solvent at the three surfaces of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctan (HMX) crystal, i.e. (011), (110), and (020) faces. The simulation results show that the structural features and electrostatic potentials of crystal faces are determined by the HMX molecular packing, inducing distinct mass density distribution, dipole orientation, and diffusion of solvent molecules in the interfacial regions. The solvent adsorption is mainly governed by the van der Waals forces, and the crystal-solvent interaction energies among three systems are ranked as (020)≈(110)>(011). The adsorption sites for solvent incorporation at the crystal surface were found and visualized with the aid of occupancy analysis. A uniform arrangement of adsorption sites is observed at the rough (020) surface as a result of ordered adsorption motif. Copyright © 2017 Elsevier Inc. All rights reserved.
Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
Zhang, Linfeng; Han, Jiequn; Wang, Han; Car, Roberto; E, Weinan
2018-04-01
We introduce a scheme for molecular simulations, the deep potential molecular dynamics (DPMD) method, based on a many-body potential and interatomic forces generated by a carefully crafted deep neural network trained with ab initio data. The neural network model preserves all the natural symmetries in the problem. It is first-principles based in the sense that there are no ad hoc components aside from the network model. We show that the proposed scheme provides an efficient and accurate protocol in a variety of systems, including bulk materials and molecules. In all these cases, DPMD gives results that are essentially indistinguishable from the original data, at a cost that scales linearly with system size.
Molecular Dynamics Simulation for the Mechanical Properties of CNT/Polymer Nanocomposites
International Nuclear Information System (INIS)
Yang, Seung Hwa; Cho, Maeg Hyo
2007-01-01
In order to obtain mechanical properties of CNT/Polymer nano-composites, molecular dynamics simulation is performed. Overall system was modeled as a flexible unit cell in which carbon nanotubes are embedded into a polyethylene matrix for N σ T ensemble simulation. COMPASS force field was chosen to describe inter and intra molecular potential and bulk effect was achieved via periodic boundary conditions. In CNT-polymer interface, only Lennard-Jones non-bond potential was considered. Using Parrinello-Rahman fluctuation method, mechanical properties of orthotropic nano-composites under various temperatures were successfully obtained. Also, we investigated thermal behavior of the short CNT reinforced nanocomposites system with predicting glass transition temperature
Hydroxyl and water molecule orientations in trypsin: comparison to molecular dynamic structures.
McDowell, R S; Kossiakoff, A A
1996-01-01
A comparison is presented of experimentally observed hydroxyl and water hydrogens in trypsin determined from neutron density maps with the results of a 140ps molecular dynamics (MD) simulation. Experimental determination of hydrogen and deuterium atom positions in molecules as large as proteins is a unique capability of neutron diffraction. The comparison addresses the degree to which a standard force-field approach can adequately describe the local electrostatic and van der Waals forces that determine the orientations of these hydrogens. The molecular dynamics simulation, based on the all-atom AMBER force-field, allowed free rotation of all hydroxyl groups and movement of water molecules making up a bath surrounding the protein. The neutron densities, derived from 2.1A D2O-H2O difference Fourier maps, provide a database of 27 well-ordered hydroxyl hydrogens. Virtually all of the simulated hydroxyl orientations are within a standard deviation of the experimentally-observed positions, including several examples in which both the simulation and the neutron density indicate that a hydroxyl group is shifted from a 'standard' rotamer. For the most highly ordered water molecules, the hydrogen distributions calculated from the trajectory were in good agreement with neutron density; simulated water molecules that displayed multiple hydrogen bonding networks had correspondingly broadened neutron density profiles. This comparison was facilitated by development of a method to construct a pseudo 2A density map based on the hydrogen atom distributions from the simulation. The degree of internal water molecules is shown to result primarily from the electrostatic environment surrounding that water molecule as opposed to the cavity size available to the molecule. A method is presented for comparing the discrete observations sampled in a dynamics trajectory with the time-averaged data obtained from X-ray or neutron diffraction studies. This method is particularly useful for
Molecular dynamics studies of protein folding and aggregation
Ding, Feng
This thesis applies molecular dynamics simulations and statistical mechanics to study: (i) protein folding; and (ii) protein aggregation. Most small proteins fold into their native states via a first-order-like phase transition with a major free energy barrier between the folded and unfolded states. A set of protein conformations corresponding to the free energy barrier, Delta G >> kBT, are the folding transition state ensemble (TSE). Due to their evasive nature, TSE conformations are hard to capture (probability ∝ exp(-DeltaG/k BT)) and characterize. A coarse-grained discrete molecular dynamics model with realistic steric constraints is constructed to reproduce the experimentally observed two-state folding thermodynamics. A kinetic approach is proposed to identify the folding TSE. A specific set of contacts, common to the TSE conformations, is identified as the folding nuclei which are necessary to be formed in order for the protein to fold. Interestingly, the amino acids at the site of the identified folding nuclei are highly conserved for homologous proteins sharing the same structures. Such conservation suggests that amino acids that are important for folding kinetics are under selective pressure to be preserved during the course of molecular evolution. In addition, studies of the conformations close to the transition states uncover the importance of topology in the construction of order parameter for protein folding transition. Misfolded proteins often form insoluble aggregates, amyloid fibrils, that deposit in the extracellular space and lead to a type of disease known as amyloidosis. Due to its insoluble and non-crystalline nature, the aggregation structure and, thus the aggregation mechanism, has yet to be uncovered. Discrete molecular dynamics studies reveal an aggregate structure with the same structural signatures as in experimental observations and show a nucleation aggregation scenario. The simulations also suggest a generic aggregation mechanism
Directory of Open Access Journals (Sweden)
Giuliano Malloci
2016-01-01
Full Text Available The accurate and exhaustive description of the conformational ensemble sampled by small molecules in solution, possibly at different physiological conditions, is of primary interest in many fields of medicinal chemistry and computational biology. Recently, we have built an on-line database of compounds with antimicrobial properties, where we provide all-atom force-field parameters and a set of molecular properties, including representative structures extracted from cluster analysis over μs-long molecular dynamics (MD trajectories. In the present work, we used a medium-sized antibiotic from our sample, namely ampicillin, to assess the quality of the conformational ensemble. To this aim, we compared the conformational landscape extracted from previous unbiased MD simulations to those obtained by means of Replica Exchange MD (REMD and those originating from three freely-available conformer generation tools widely adopted in computer-aided drug-design. In addition, for different charge/protonation states of ampicillin, we made available force-field parameters and static/dynamic properties derived from both Density Functional Theory and MD calculations. For the specific system investigated here, we found that: (i the conformational statistics extracted from plain MD simulations is consistent with that obtained from REMD simulations; (ii overall, our MD-based approach performs slightly better than any of the conformer generator tools if one takes into account both the diversity of the generated conformational set and the ability to reproduce experimentally-determined structures.
Transient molecular dynamics simulations of liquid viscosity for nonpolar and polar fluids
Thomas, Jason C.; Rowley, Richard L.
2011-01-01
A transient molecular dynamics (TMD) method for obtaining fluid viscosity is extended to multisite, force-field models of both nonpolar and polar liquids. The method overlays a sinusoidal velocity profile over the peculiar particle velocities and then records the transient decay of the velocity profile. The viscosity is obtained by regression of the solution of the momentum equation with an appropriate constitutive equation and initial and boundary conditions corresponding to those used in the simulation. The transient velocity decays observed appeared to include both relaxation and retardation effects. The Jeffreys viscoelastic model was found to model accurately the transient responses obtained for multisite models for n-butane, isobutane, n-hexane, water, methanol, and 1-hexanol. TMD viscosities obtained for saturated liquids over a wide range of densities agreed well for the polar fluids, both with nonequilibrium molecular dynamics (NEMD) results using the same force-field models and with correlations based on experimental data. Viscosities obtained for the nonpolar fluids agreed well with the experimental and NEMD results at low to moderate densities, but underpredicted experimental values at higher densities where shear-thinning effects and viscous heating may impact the TMD simulations.
Analysis of dynamic regimes in stochastically forced Kaldor model
International Nuclear Information System (INIS)
Bashkirtseva, Irina; Ryazanova, Tatyana; Ryashko, Lev
2015-01-01
We consider the business cycle Kaldor model forced by random noise. Detailed parametric analysis of deterministic system is carried out and zones of coexisting stable equilibrium and stable limit cycle are found. Noise-induced transitions between these attractors are studied using stochastic sensitivity function technique and confidence domains method. Critical values of noise intensity corresponding to noise-induced transitions “equilibrium → cycle” and “cycle → equilibrium” are estimated. Dominants in combined stochastic regimes are discussed.
Restrained molecular dynamics of solvated duplex DNA using the particle mesh Ewald method
International Nuclear Information System (INIS)
Konerding, David E.; Cheatham, Thomas E.; Kollman, Peter A.; James, Thomas L.
1999-01-01
Restrained and unrestrained aqueous solution molecular dynamics simulations applying the particle mesh Ewald (PME) method to DNA duplex structures previously determined via in vacuo restrained molecular dynamics with NMR-derived restraints are reported. Without experimental restraints, the DNA decamer, d(CATTTGCATC).d(GATGCAAATG) and trisdecamer, d(AGCTTGCCTTGAG).d(CTCAAGGCAAGCT), structures are stable on the nanosecond time scale and adopt conformations in the B-DNA family. These free DNA simulations exhibit behavior characteristic of PME simulations previously performed on DNA sequences, including a low helical twist, frequent sugar pucker transitions, BI- BII(ε-ζ) transitions and coupled crankshaft (α-γ) motion. Refinement protocols similar to the original in vacuo restrained molecular dynamics (RMD) refinements but in aqueous solution using the Cornell et al. force field [Cornell et al. (1995) J. Am. Chem. Soc., 117, 5179-5197] and a particle mesh Ewald treatment produce structures which fit the restraints very well and are very similar to the original in vacuo NMR structure, except for a significant difference in the average helical twist. Figures of merit for the average structure found in the RMD PME decamer simulations in solution are equivalent to the original in vacuo NMR structure while the figures of merit for the free MD simulations are significantly higher. The free MD simulations with the PME method, however, lead to some sequence-dependent structural features in common with the NMR structures, unlike free MD calculations with earlier force fields and protocols. There is some suggestion that the improved handling of electrostatics by PME improves long-range structural aspects which are not well defined by the short-range nature of NMR restraints
Interacting trophic forcing and the population dynamics of herring
DEFF Research Database (Denmark)
Lindegren, Martin; Ostman, Orjan; Gardmark, Anna
2011-01-01
. Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life......Small pelagic fish occupy a central position in marine ecosystems worldwide, largely by determining the energy transfer from lower trophic levels to predators at the top of the food web, including humans. Population dynamics of small pelagic fish may therefore be regulated neither strictly bottom......-up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue...
Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa
Kuechler, Rony R.; Dupont, Lydie M.; Schefuß, Enno
2018-01-01
The Pliocene is regarded as a potential analogue for future climate with conditions generally warmer-than-today and higher-than-preindustrial atmospheric CO2 levels. Here we present the first orbitally resolved records of continental hydrology and vegetation changes from West Africa for two Pliocene time intervals (5.0-4.6 Ma, 3.6-3.0 Ma), which we compare with records from the last glacial cycle (Kuechler et al., 2013). Our results indicate that changes in local insolation alone are insufficient to explain the full degree of hydrologic variations. Generally two modes of interacting insolation forcings are observed: during eccentricity maxima, when precession was strong, the West African monsoon was driven by summer insolation; during eccentricity minima, when precession-driven variations in local insolation were minimal, obliquity-driven changes in the summer latitudinal insolation gradient became dominant. This hybrid monsoonal forcing concept explains orbitally controlled tropical climate changes, incorporating the forcing mechanism of latitudinal gradients for the Pliocene, which probably increased in importance during subsequent Northern Hemisphere glaciations.
Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa
Directory of Open Access Journals (Sweden)
R. R. Kuechler
2018-01-01
Full Text Available The Pliocene is regarded as a potential analogue for future climate with conditions generally warmer-than-today and higher-than-preindustrial atmospheric CO2 levels. Here we present the first orbitally resolved records of continental hydrology and vegetation changes from West Africa for two Pliocene time intervals (5.0–4.6 Ma, 3.6–3.0 Ma, which we compare with records from the last glacial cycle (Kuechler et al., 2013. Our results indicate that changes in local insolation alone are insufficient to explain the full degree of hydrologic variations. Generally two modes of interacting insolation forcings are observed: during eccentricity maxima, when precession was strong, the West African monsoon was driven by summer insolation; during eccentricity minima, when precession-driven variations in local insolation were minimal, obliquity-driven changes in the summer latitudinal insolation gradient became dominant. This hybrid monsoonal forcing concept explains orbitally controlled tropical climate changes, incorporating the forcing mechanism of latitudinal gradients for the Pliocene, which probably increased in importance during subsequent Northern Hemisphere glaciations.
Risselada, H. Jelger; Marrink, Siewert J.
2009-01-01
The molecular packing details of lipids in planar bilayers are well characterized. For curved bilayers, however, little data is available. In this paper we study the effect of temperature and membrane composition on the structural and dynamical properties of a liposomal membrane in the limit of high
Czech Academy of Sciences Publication Activity Database
Brennan, J.K.; Lísal, Martin; Gubbins, K.E.; Rice, B.M.
2004-01-01
Roč. 70, č. 6 (2004), 0611031-0611034 ISSN 1063-651X R&D Projects: GA ČR GA203/03/1588 Grant - others:NSF(US) CTS-0211792 Institutional research plan: CEZ:AV0Z4072921 Keywords : reacting systems * simulation * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.352, year: 2004
Marrink, SJ; Mark, AE
2003-01-01
Here, we use coarse grained molecular dynamics (MD) simulations to study the spontaneous aggregation of dipalmitoylphosphatidylcholine (DPPC) lipids into small unilamellar vesicles. We show that the aggregation process occurs on a nanosecond time scale, with bicelles and cuplike vesicles formed at
Static and Dynamic Performance Simulation of Direct-Acting Force Motor Valve
Ye, Xinghai; Ding, Jianjun; Zheng, Gang; Jiang, Kunpeng; Chen, Dongdong
2017-07-01
This work focuses on static and dynamic characteristics of direct-acting force motor valve. First, we analyzed the structure features and operating principle of the Mitsubishi-Hitachi force motor valve (FMV) and the operating principle of its internal permanent-magnet moving-coil force motor magnetic circuit, determined the transfer function of the FMV force motor system, and established a mathematical model for the system. Secondly, we established a static performance analysis model using the AMESIM software and utilized the model in combination with experimental results to analyze the effects of electro-hydraulic servo valve structural parameters on static characteristics. Lastly, we deduced the trajectory equation of the system, established the relationship between dynamic characteristic indexes and structural parameters, and analyzed the effects of different parameter values on the dynamic characteristics of the system. This research can provide a theoretical guidance for designing and manufacturing the FMV body.
Prediction of static contact angles on the basis of molecular forces and adsorption data.
Diaz, M Elena; Savage, Michael D; Cerro, Ramon L
2016-08-01
At a three-phase contact line, a liquid bulk phase is in contact with and coexists with a very thin layer of adsorbed molecules. This adsorbed film in the immediate vicinity of a liquid wedge modifies the balance of forces between the liquid and solid phases such that, when included in the balance of forces, a quantitative relationship emerges between the adsorbed film thickness and the static contact angle. This relationship permits the prediction of static contact angles from molecular forces and equilibrium adsorption data by means of quantities that are physically meaningful and measurable. For n-alkanes on polytetrafluoroethylene, for which there are experimental data available on adsorption and contact angles, our computations show remarkable agreement with the data. The results obtained are an improvement on previously published calculations-particularly for alkanes with a low number of carbon atoms, for which adsorption is significant.
Ahmed, Ghada H.
2016-09-19
Hybrid organic/inorganic perovskites have recently emerged as an important class of materials and have exhibited remarkable performance in photovoltaics. To further improve their device efficiency, an insightful understanding of the interfacial charge transfer (CT) process is required. Here, we report the first direct experimental observation of the tremendous effect that the shape of perovskite nanocrystals (NCs) has on interfacial CT in the presence of a molecular acceptor. A dramatic change in CT dynamics at the interfaces of three different NC shapes, spheres, platelets, and cubes, is recorded. Our results clearly demonstrate that the mechanism of CT is significantly affected by the NC shape. More importantly, the results demonstrate that complexation on the NC surface acts as an additional driving force not only to tune the CT dynamics but also to control the reaction mechanism at the interface. This observation opens a new venue for further developing perovskite NCs-based applications.
Goclon, Jakub; Panczyk, Tomasz; Winkler, Krzysztof
2018-03-01
Considering the varied applications of hybrid polymer/carbon nanotube composites and the constant progress in the synthesis methods of such materials, we report a theoretical study of interfacial layer formation between pristine single-wall carbon nanotubes (SWCNTs) and polyurethane (PU) using molecular dynamic simulations. We vary the SWCNT diameter and the number of PU chains to examine various PU-SWCNT interaction patterns. Our simulations indicate the important role of intra-chain forces in PU. No regular polymeric structures could be identified on the carbon nanotube surface during the simulations. We find that increasing the SWCNT diameter results in stronger polymer binding. However, higher surface loadings of PU lead to stronger interpenetration by the polymeric segments; this effect is more apparent for SWCNTs with small diameters. Our core finding is that the attached PU binds most strongly to the carbon nanotubes with the largest diameters. Polymer dynamics reveal the loose distribution of PU chains in these systems.
Molecular dynamics simulations of Pd-Ni transition metal alloys
International Nuclear Information System (INIS)
Kart, S. O.; Kart, H. H.; Uludogan, M.; Tomak, M.; Cagin, T.
2002-01-01
Molecular Dynamics simulations are performed to study bulk properties of fcc metals and metal alloys by using the quantum Sutton-Chen many-body potentials within the context of the tight-binding approach. The Molecular Dynamics algorithms we used in the simulations of Pd-Ni alloys are based on an extended Hamiltonian formalism arising from the works of Andersen (1980), Parinello and Rahman (1980), Nose (1984), Hoover (1985) and Cagin (1988). In these simulations, the effect of temperature and concentration on the solid and liquid properties are studied. Elastic constants and phonon dispersion relation are the solid properties we simulated in this work. Dynamic and static properties of liquid Pd-Ni are also computed by examining the behavior of density, enthalpy, pair distribution function and structure factor. The melting temperatures of Pd-Ni alloys are investigated. The diffusion coefficients are calculated from the mean square displacement using Einstein relation and from velocity auto-correlation function using Green-Kubo relations. The simulation results are in good agreement with the experiments
Structural and vibrational dynamics of molecular solids under variable temperature and pressure
Schatschneider, Bohdan Hindulak
An ultra-high resolution FTIR study (0.01cm-1) coupled with molecular simulations of para-terphenyl (PTP) under variable temperatures and pressures has been conducted in an effort to better understand the molecular dynamics (MD) of organic molecular crystals. PTP's use as an electrooptic material and as a host matrix for single molecular spectroscopy has created significant interest into the systems dynamics under variable conditions. Our high resolution study reveals many structure and dynamics changes in the PTP matrix as a result of changes in temperature and pressure. Further spectroscopic analysis using MD verifies these structural and dynamics alterations. Accurately modeled pressure and temperature phase transitions between the low-temperature low-pressure triclinic phase and the high-pressure high-temperature monoclinic phase of PTP was accomplished by a one-parameter optimization of the torsion potential component of the polymer consistent force field (PCFF) along with incorporation of COMPASS' (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) non-bond parameters. Initial MD simulations implementing the universal force field COMPASS could not adequately model the experimental crystal structure at 113K, nor could it reproduce the known transition temperature at ambient pressure or yield a well-defined transition pressure at low temperature. Therefore, we needed to create a new potential which was shown to reproduce the solid-solid phase transitions. The previously never simulated pressure induced solid-solid phase transition of PTP at low temperature (20K) and varying pressures (0-1GPa) was modeled. The symmetry based crystal/molecular rearrangement shows a compression and distortion of the unit cell and corresponding angles along with a flattening of the once twisted PTP molecules at high pressures (>0.5GPa). A fourth crystal phase (Phase IV) has been successfully identified through analysis of the individual molecule
International Nuclear Information System (INIS)
Dellerue, Serge
2000-01-01
Understand the structure-dynamics-function relation in the case of proteins is essential. But few experimental techniques allow to have access to knowledge of fast internal movements of biological macromolecules. With the neutron scattering method, it has been possible to study the reorientation dynamics of side chains and of polypeptide skeleton for two proteins in terms of water or detergent and of temperature. With the use of the molecular dynamics method, essential for completing and interpreting the experimental data, it has been possible to assess the different contributions of the whole structure of proteins to the overall dynamics. It has been shown that the polypeptide skeleton presents an energy relaxation comparable to those of the side chains. Moreover, it has been explained that the protein dynamics can only be understood in terms of relaxation time distribution. (author) [fr
Validation of molecular force field parameters for peptides including isomerized amino acids.
Oda, Akifumi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Yamaotsu, Noriyuki; Hirono, Shuichi; Takahashi, Ohgi
2018-04-01
Recently, stereoinversions and isomerizations of amino acid residues in the proteins of living beings have been observed. Because isomerized amino acids cause structural changes and denaturation of proteins, isomerizations of amino acid residues are suspected to cause age-related diseases. In this study, AMBER molecular force field parameters were tested by using computationally generated nonapeptides and tripeptides including stereoinverted and/or isomerized amino acid residues. Energy calculations by using density functional theory were also performed for comparison. Although the force field parameters were developed by parameter fitting for l-α-amino acids, the accuracy of the computational results for d-amino acids and β-amino acids was comparable to those for l-α-amino acids. The conformational energies for tripeptides calculated by using density functional theory were reproduced more accurately than those for nonapeptides calculated by using the molecular mechanical force field. The evaluations were performed for the ff99SB, ff03, ff12SB, and the latest ff14SB force field parameters. © 2018 Wiley Periodicals, Inc.