WorldWideScience

Sample records for force microscopy studies

  1. Microparticle adhesion studies by atomic force microscopy

    NARCIS (Netherlands)

    Segeren, L.H.G.J.; Siebum, B.; Karssenberg, F.G.; Berg, van den J.W.A.; Vancso, G.J.

    2002-01-01

    Atomic force microscopy (AFM) is one of the most flexible and simple techniques for probing surface interactions. This article reviews AFM studies on particle adhesion. Special attention is paid to the characterization of roughness and its effect on adhesion. This is of importance when comparing the

  2. Surface forces studied with colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Giesbers, M.

    2001-01-01

    Forces between surfaces are a determining factor for the performance of natural as well as synthetic colloidal systems, and play a crucial role in industrial production processes. Measuring these forces is a scientific and experimental challenge and over the years several techniques have

  3. Local adhesive surface properties studied by force microscopy

    International Nuclear Information System (INIS)

    Lekka, M.; Lekki, J.; Marszalek, M.; Stachura, Z.; Cleff, B.

    1998-01-01

    Scanning force microscopy was used in the contact mode to determine the adhesion force between a mica surface and a silicon nitride tip. The measurements were performed in an aqueous solution of sodium and calcium chlorides. The adhesion force according to the Derjaguin-Landau-Verwey-Overbeek theory depends on the competition between two kinds of forces: van der Waals and electrostatic 'double layer'. Two different curves of adhesion force versus salt concentration were obtained from the experiment with monovalent and divalent ions. The tip-surface adhesion force was determined from a statistical analysis of data obtained from the force vs. distance retracting curves. (author)

  4. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules.

    Science.gov (United States)

    Stukalov, Oleg; Korenevsky, Anton; Beveridge, Terry J; Dutcher, John R

    2008-09-01

    Bacteria can possess an outermost assembly of polysaccharide molecules, a capsule, which is attached to their cell wall. We have used two complementary, high-resolution microscopy techniques, atomic force microscopy (AFM) and transmission electron microscopy (TEM), to study bacterial capsules of four different gram-negative bacterial strains: Escherichia coli K30, Pseudomonas aeruginosa FRD1, Shewanella oneidensis MR-4, and Geobacter sulfurreducens PCA. TEM analysis of bacterial cells using different preparative techniques (whole-cell mounts, conventional embeddings, and freeze-substitution) revealed capsules for some but not all of the strains. In contrast, the use of AFM allowed the unambiguous identification of the presence of capsules on all strains used in the present study, including those that were shown by TEM to be not encapsulated. In addition, the use of AFM phase imaging allowed the visualization of the bacterial cell within the capsule, with a depth sensitivity that decreased with increasing tapping frequency.

  5. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, Séverine; Sadoun, Anaïs; Biarnes-Pelicot, Martine; Martinez, Manuel; Obeid, Sameh [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); Bongrand, Pierre [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); APHM, Hôpital de la Conception, Laboratoire d’Immunologie, Marseille F-13385 (France); Limozin, Laurent [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); Puech, Pierre-Henri, E-mail: pierre-henri.puech@inserm.fr [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France)

    2016-01-15

    A method is presented for combining atomic force microscopy (AFM) force mode and fluorescence microscopy in order to (a) mechanically stimulate immune cells while recording the subsequent activation under the form of calcium pulses, and (b) observe the mechanical response of a cell upon photoactivation of a small G protein, namely Rac. Using commercial set-ups and a robust signal coupling the fluorescence excitation light and the cantilever bending, the applied force and activation signals were very easily synchronized. This approach allows to control the entire mechanical history of a single cell up to its activation and response down to a few hundreds of milliseconds, and can be extended with very minimal adaptations to other cellular systems where mechanotransduction is studied, using either purely mechanical stimuli or via a surface bound specific ligand. - Highlights: • A signal coupling AFM and fluorescence microscopy was characterized for soft cantilevers. • It can be used as an intrinsic timer to synchronize images and forces. • Mechanical stimulation of single immune cells while recording calcium fluxes was detailed. • Light-induced mechanical modifications of lymphocytes using a PA-Rac protein were demonstrated. • The precautions and limitations of use of this effect were presented.

  6. Studying the Adhesion Force and Glass Transition of Thin Polystyrene Films by Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Kang, Hua; Qian, Xiaoqin; Guan, Li

    2018-01-01

    microscopy (AFM)-based forcedistance curve to study the relaxation dynamics and the film thickness dependence of glass transition temperature (T-g) for normal thin polystyrene (PS) films supported on silicon substrate. The adhesion force (F-ad) between AFM tip and normal thin PS film surfaces...

  7. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    Science.gov (United States)

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  8. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  9. Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance

    International Nuclear Information System (INIS)

    Lacava, L.M.; Lacava, B.M.; Azevedo, R.B.; Lacava, Z.G.M.; Buske, N.; Tronconi, A.L.; Morais, P.C.

    2001-01-01

    Atomic force microscopy (AFM), transmission electron microscopy (TEM), and ferromagnetic resonance (FMR) were used to unfold the nanoparticle size of a ferrofluid sample. Compared to TEM, the AFM method showed a nanoparticle diameter (D m ) reduction of 20% and standard deviation (σ) increase of 15%. The differences in D m and σ were associated with the AFM tip and the nanoparticle concentration on the substrate

  10. Atomic Force Microscopy Application in Biological Research: A Review Study

    Directory of Open Access Journals (Sweden)

    Surena Vahabi

    2013-06-01

    Full Text Available Atomic force microscopy (AFM is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  11. Study of Adhesion Interaction Using Atomic Force Microscopy

    Science.gov (United States)

    Grybos, J.; Pyka-Fosciak, G.; Lebed, K.; Lekka, M.; Stachura, Z.; Styczeñ, J.

    2003-05-01

    An atomic force microscope is a useful tool to study the interaction forces at molecular level. In particular the atomic force microscope can measure an unbinding force needed to separate the two single molecule complexes. Recent studies have shown that such unbinding force depends linearly on the logarithm of the applied loading rate, defined as a product of scanning velocity and the spring constant characterizing the investigated system (cantilever vs. surface). This dependence can be used to study the energy landscape shape of a molecular complex by the estimation of energy barrier locations and the related dissociation rates. In the present work the complex consisting of ethylene(di)aminetetraacetic acid and the bovine serum albumin was measured. The dependence between the unbinding force and the logarithm of the loading rate was linear. Using the Bell model describing the dissociation of the above molecules caused by the action of the external bond breaking force, two parameters were estimated: the dissociation rate and the position of the energy barrier needed to overcome during a transition from a bound to unbound state. The obtained results are similar to those obtained for a typical ligand--receptor interaction.

  12. Atomic force microscopy studies of native photosynthetic membranes.

    Science.gov (United States)

    Sturgis, James N; Tucker, Jaimey D; Olsen, John D; Hunter, C Neil; Niederman, Robert A

    2009-05-05

    In addition to providing the earliest surface images of a native photosynthetic membrane at submolecular resolution, examination of the intracytoplasmic membrane (ICM) of purple bacteria by atomic force microscopy (AFM) has revealed a wide diversity of species-dependent arrangements of closely packed light-harvesting (LH) antennae, capable of fulfilling the basic requirements for efficient collection, transmission, and trapping of radiant energy. A highly organized architecture was observed with fused preparations of the pseudocrystalline ICM of Blastochloris viridis, consiting of hexagonally packed monomeric reaction center light-harvesting 1 (RC-LH1) core complexes. Among strains which also form a peripheral LH2 antenna, images of ICM patches from Rhodobacter sphaeroides exhibited well-ordered, interconnected networks of dimeric RC-LH1 core complexes intercalated by rows of LH2, coexisting with LH2-only domains. Other peripheral antenna-containing species, notably Rhodospirillum photometricum and Rhodopseudomonas palustris, showed a less regular organization, with mixed regions of LH2 and RC-LH1 cores, intermingled with large, paracrystalline domains. The ATP synthase and cytochrome bc(1) complex were not observed in any of these topographs and are thought to be localized in the adjacent cytoplasmic membrane or in inaccessible ICM regions separated from the flat regions imaged by AFM. The AFM images have served as a basis for atomic-resolution modeling of the ICM vesicle surface, as well as forces driving segregation of photosynthetic complexes into distinct domains. Docking of atomic-resolution molecular structures into AFM topographs of Rsp. photometricum membranes generated precise in situ structural models of the core complex surrounded by LH2 rings and a region of tightly packed LH2 complexes. A similar approach has generated a model of the highly curved LH2-only membranes of Rba. sphaeroides which predicts that sufficient space exists between LH2 complexes

  13. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  14. Cellulose fibril aggregation studies of eucalyptus dissolving pulps using atomic force microscopy

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2006-11-01

    Full Text Available STUDIES OF Eucalyptus DISSOLVING PULPS USING ATOMIC FORCE MICROSCOPY V. Chunilall1, J.Wesley-Smith2, T. Bush1 1CSIR, Forestry and Forest Product Research Centre, P.O. Box 17001, Congella, 4013, South Africa. 2Electron Microscope Unit, University of Kwa... pulp using atomic force microscopy (AFM) have reported increased cellulose fibril aggregation during processing, and a concomitant decrease in surface area available for chemical reaction1,2. These findings were subsequently confirmed...

  15. Brown algal morphogenesis: Atomic Force Microscopy as a tool to study the role of mechanical forces

    Directory of Open Access Journals (Sweden)

    Benoit eTesson

    2014-09-01

    Full Text Available Over the last few years, a growing interest has been directed toward the use of macroalgae as a source of energy, food and molecules for the cosmetic and pharmaceutical industries. Besides this, macroalgal development remains poorly understood compared to other multicellular organisms. Brown algae (Phaeophyceae form a monophyletic lineage of usually large multicellular algae which evolved independently from land plants. In their environment, they are subjected to strong mechanical forces (current, waves and tide, in response to which they modify rapidly and reversibly their morphology. Because of their specific cellular features (cell wall composition, cytoskeleton organization, deciphering how they cope with these forces might help discover new control mechanisms of cell wall softening and cellulose synthesis. Despite the current scarcity in knowledge on brown algal cell wall dynamics and protein composition, we will illustrate, in the light of methods adapted to Ectocarpus siliculosus, to what extent atomic force microscopy can contribute to advance this field of investigation.

  16. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  17. Magnetic force microscopy and simulation studies on Co 50 Fe 50 ...

    Indian Academy of Sciences (India)

    We studied the magnetization reversal mechanism of single-layered Co50Fe50 nanomagnets by measuring the magnetization reversal and using the micromagnetic simulations. The magnetization reversal strongly depends on the thickness of the nanomagnets. In the remanent state, the magnetic force microscopy studies ...

  18. Photolithographic Polymerization of Diacetylene-Containing Phospholipid Bilayers Studied by Multimode Atomic Force Microscopy

    NARCIS (Netherlands)

    Morigaki, Kenichi; Schönherr, Holger; Frank, Curtis W.; Knoll, Wolfgang

    2003-01-01

    Photopolymerization of the diacetylene-containing phospholipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (1) in substrate-supported planar lipid bilayers (SPBs) has been studied by using multimode atomic force microscopy (AFM). Monolayers and bilayers of 1 have been transferred onto

  19. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  20. Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples

    International Nuclear Information System (INIS)

    Riedel, C; AlegrIa, A; Colmenero, J; Schwartz, G A; Saenz, J J

    2011-01-01

    We present a study of the lateral resolution in electrostatic force microscopy for dielectric samples in both force and gradient modes. Whereas previous studies have reported expressions for metallic surfaces having potential heterogeneities (Kelvin probe force microscopy), in this work we take into account the presence of a dielectric medium. We introduce a definition of the lateral resolution based on the force due to a test particle being either a point charge or a polarizable particle on the dielectric surface. The behaviour has been studied over a wide range of typical experimental parameters: tip-sample distance (1-20) nm, sample thickness (0-5) μm and dielectric constant (1-20), using the numerical simulation of the equivalent charge method. For potential heterogeneities on metallic surfaces expressions are in agreement with the bibliography. The lateral resolution of samples having a dielectric constant of more than 10 tends to metallic behaviour. We found a characteristic thickness of 100 nm, above which the lateral resolution measured on the dielectric surface is close to that of an infinite medium. As previously reported, the lateral resolution is better in the gradient mode than in the force mode. Finally, we showed that for the same experimental conditions, the lateral resolution is better for a polarizable particle than for a charge, i.e. dielectric heterogeneities should always look 'sharper' (better resolved) than inhomogeneous charge distributions. This fact should be taken into account when interpreting images of heterogeneous samples.

  1. Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, C; AlegrIa, A; Colmenero, J [Departamento de Fisica de Materiales UPV/EHU, Facultad de Quimica, Apartado 1072, 20080 San Sebastian (Spain); Schwartz, G A [Centro de Fisica de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastian (Spain); Saenz, J J, E-mail: riedel@ies.univ-montp2.fr [Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain)

    2011-07-15

    We present a study of the lateral resolution in electrostatic force microscopy for dielectric samples in both force and gradient modes. Whereas previous studies have reported expressions for metallic surfaces having potential heterogeneities (Kelvin probe force microscopy), in this work we take into account the presence of a dielectric medium. We introduce a definition of the lateral resolution based on the force due to a test particle being either a point charge or a polarizable particle on the dielectric surface. The behaviour has been studied over a wide range of typical experimental parameters: tip-sample distance (1-20) nm, sample thickness (0-5) {mu}m and dielectric constant (1-20), using the numerical simulation of the equivalent charge method. For potential heterogeneities on metallic surfaces expressions are in agreement with the bibliography. The lateral resolution of samples having a dielectric constant of more than 10 tends to metallic behaviour. We found a characteristic thickness of 100 nm, above which the lateral resolution measured on the dielectric surface is close to that of an infinite medium. As previously reported, the lateral resolution is better in the gradient mode than in the force mode. Finally, we showed that for the same experimental conditions, the lateral resolution is better for a polarizable particle than for a charge, i.e. dielectric heterogeneities should always look 'sharper' (better resolved) than inhomogeneous charge distributions. This fact should be taken into account when interpreting images of heterogeneous samples.

  2. Application of atomic force microscopy to the study of natural and model soil particles.

    Science.gov (United States)

    Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J

    2008-09-01

    The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with

  3. Atomic force and scanning near-field optical microscopy study of carbocyanine dye J-aggregates

    Czech Academy of Sciences Publication Activity Database

    Prokhorov, V.V.; Petrova, M.G.; Kovaleva, Natalia; Demikhov, E.I.

    2014-01-01

    Roč. 10, č. 5 (2014), s. 700-704 ISSN 1573-4137 Institutional support: RVO:68378271 Keywords : carbocyanine dye * elementary fibri * high-resolution atomic force microscopy * J-aggregate * probe microscopy * scanning near-field optical microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.096, year: 2014

  4. A resolution study for electrostatic force microscopy on bimetallic samples using the boundary element method

    International Nuclear Information System (INIS)

    Shen Yongxing; Lee, Minhwan; Lee, Wonyoung; Barnett, David M; Pinsky, Peter M; Prinz, Friedrich B

    2008-01-01

    Electrostatic force microscopy (EFM) is a special design of non-contact atomic force microscopy used for detecting electrostatic interactions between the probe tip and the sample. Its resolution is limited by the finite probe size and the long-range characteristics of electrostatic forces. Therefore, quantitative analysis is crucial to understanding the relationship between the actual local surface potential distribution and the quantities obtained from EFM measurements. To study EFM measurements on bimetallic samples with surface potential inhomogeneities as a special case, we have simulated such measurements using the boundary element method and calculated the force component and force gradient component that would be measured by amplitude modulation (AM) EFM and frequency modulation (FM) EFM, respectively. Such analyses have been performed for inhomogeneities of various shapes and sizes, for different tip-sample separations and tip geometries, for different applied voltages, and for different media (e.g., vacuum or water) in which the experiment is performed. For a sample with a surface potential discontinuity, the FM-EFM resolution expression agrees with the literature; however, the simulation for AM-EFM suggests the existence of an optimal tip radius of curvature in terms of resolution. On the other hand, for samples with strip- and disk-shaped surface potential inhomogeneities, we have obtained quantitative expressions for the detectability size requirements as a function of experimental conditions for both AM- and FM-EFMs, which suggest that a larger tip radius of curvature is moderately favored for detecting the presence of such inhomogeneities

  5. Interfacial force measurements using atomic force microscopy

    NARCIS (Netherlands)

    Chu, L.

    2018-01-01

    Atomic Force Microscopy (AFM) can not only image the topography of surfaces at atomic resolution, but can also measure accurately the different interaction forces, like repulsive, adhesive and lateral existing between an AFM tip and the sample surface. Based on AFM, various extended techniques have

  6. Implementing atomic force microscopy (AFM) for studying kinetics of gold nanoparticle's growth

    DEFF Research Database (Denmark)

    Georgiev, P.; Bojinova, A.; Kostova, B.

    2013-01-01

    In a novel experimental approach Atomic Force Microscopy (AFM) was applied as a tool for studying the kinetics of gold nanoparticle growth. The gold nanoparticles were obtained by classical Turkevich citrate synthesis at two different temperatures. From the analysis of AFM images during...... the synthesis process the nanoparticle s' sizes were obtained. To demonstrate the applicability and the reliability of the proposed experimental approach we studied the nanoparticles growth at two different temperatures by spectrophotometric measurements and compared them with the results from AFM experimental...

  7. Binding activity of patterned concanavalin A studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Lebed, Kateryna; Pyka-Fosciak, Grazyna; Raczkowska, Joanna; Lekka, Malgorzata; Styczen, Jan

    2005-01-01

    The mode of protein immobilization plays a crucial role in the preparation of protein microarrays used for a wide spectrum of applications in analytical biochemistry. The microcontact printing technique was used to form a protein pattern using concanavalin A (Con A) since Con A belongs to a group of proteins widely used in analytical assays due to their selectivity as regards different kinds of carbohydrates. Atomic force microscopy was used to image surface topography, delivering information about the quality of the protein pattern. The force spectroscopy mode was used to verify the functional activity of deposited proteins via determination of the forces of interaction between Con A and carboxypeptidase Y bearing carbohydrate structure recognized by Con A. The calculated binding force between Con A and CaY was 105 ± 2 pN and it was compared with that measured for Con A deposited directly from the protein solution. The similarity of the value obtained for the interaction force was independent of the mode of protein deposition, thereby verifying that the microcontact printing technique did not influence the carbohydrate binding activity of Con A. The correlation between the surface topography of patterned samples and adhesion maps obtained showed the possible use of AFM for studying the chemical properties of different regions of the micropatterns produced

  8. The effect of cigarette smoke extract on thrombomodulin-thrombin binding: an atomic force microscopy study.

    Science.gov (United States)

    Wei, Yujie; Zhang, Xuejie; Xu, Li; Yi, Shaoqiong; Li, Yi; Fang, Xiaohong; Liu, Huiliang

    2012-10-01

    Cigarette smoking is a well-known risk factor for cardiovascular disease. Smoking can cause vascular endothelial dysfunction and consequently trigger haemostatic activation and thrombosis. However, the mechanism of how smoking promotes thrombosis is not fully understood. Thrombosis is associated with the imbalance of the coagulant system due to endothelial dysfunction. As a vital anticoagulation cofactor, thrombomodulin (TM) located on the endothelial cell surface is able to regulate intravascular coagulation by binding to thrombin, and the binding results in thrombosis inhibition. This work focused on the effects of cigarette smoke extract (CSE) on TM-thrombin binding by atomic force microscopy (AFM) based single-molecule force spectroscopy. The results from both in vitro and live-cell experiments indicated that CSE could notably reduce the binding probability of TM and thrombin. This study provided a new approach and new evidence for studying the mechanism of thrombosis triggered by cigarette smoking.

  9. Light-free magnetic resonance force microscopy for studies of electron spin polarized systems

    International Nuclear Information System (INIS)

    Pelekhov, Denis V.; Selcu, Camelia; Banerjee, Palash; Chung Fong, Kin; Chris Hammel, P.; Bhaskaran, Harish; Schwab, Keith

    2005-01-01

    Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its excellent sensitivity opens the possibility for magnetic resonance studies of spin accumulation resulting from the injection of spin polarized currents into a para-magnetic collector. The method is based on mechanical detection of magnetic resonance which requires low noise detection of cantilever displacement; so far, this has been accomplished using optical interferometry. This is undesirable for experiments on doped silicon, where the presence of light is known to enhance spin relaxation rates. We report a non-optical displacement detection scheme based on sensitive microwave capacitive readout

  10. Study on orientation mechanisms of poly(vinylidenefluoride-trifluoroethylene) molecules aligned by atomic force microscopy

    International Nuclear Information System (INIS)

    Kimura, Kuniko; Kobayashi, Kei; Yamada, Hirofumi; Horiuchi, Toshihisa; Ishida, Kenji; Matsushige, Kazumi

    2006-01-01

    We have developed a molecular orientation control technique for polymers utilizing contact-mode atomic force microscopy (AFM). In this paper, we studied the molecular alignment mechanism of this technique by applying it to poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)). The resultant alignment and formed crystal size were strongly dependent on the temperature during the modification. They also depended on the scan line spacing of the modification. These results made the alignment mechanism clear. The obtained molecular alignment was stable against the heat treatment even at the temperatures just below T m

  11. Atomic force microscopy analysis of synthetic membranes applied in release studies

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, Anna, E-mail: annamar@amu.edu.pl; Nowak, Izabela

    2015-11-15

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  12. Atomic force microscopy analysis of synthetic membranes applied in release studies

    International Nuclear Information System (INIS)

    Olejnik, Anna; Nowak, Izabela

    2015-01-01

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  13. Binding studies of costunolide and dehydrocostuslactone with HSA by spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Gao Wenhua; Li Nana; Chen Gaopan; Xu Yanping; Chen Yaowen; Hu Shunlin; Hu Zhide

    2011-01-01

    Human serum albumin (HSA), a major plasma protein and plasma-derived therapeutic, interacts with a wide variety of drugs and native plasma metabolites. In this study the interactions of costunolide (CE) and dehydrocostuslactone (DE) with HSA were investigated by molecule modeling, atomic force microscopy (AFM), and different optical techniques. In the mechanism discussion, it was proved that fluorescence quenching of HSA by both of the drugs is a result of the formation of drug-HSA complexes. Binding parameters for the reactions were determined according to the Stern-Volmer equation and static quenching. The results of thermodynamic parameters ΔG 0 , ΔH 0 , and ΔS 0 at different temperatures indicated that hydrogen bonding interactions play a major role in the drug-HSA associations process. The binding properties were further studied by quantitative analysis of CD, FTIR, and Raman spectra. Furthermore, AFM results showed that the dimension of HSA molecules became more swollen after binding with the drugs. - Highlights: → Interactions of costunolide and dehydrocostuslactone with HSA have been investigated for the first time. → Raman spectra were used to analyze the drug-HSA interactions. → Atomic force microscopy has been used to study the topography change of HSA by addition of the drugs. → These results are important for the drugs containing costunolide and dehydrocostuslactone distribution and metabolism.

  14. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Sun Lanlan; Zhao Dongxu; Zhang Yue; Xu Fugang; Li Zhuang

    2011-01-01

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/μL. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  15. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lanlan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China); Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhao Dongxu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhang Yue; Xu Fugang [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China); Li Zhuang, E-mail: zli@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China)

    2011-05-15

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/{mu}L. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  16. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy

    Science.gov (United States)

    Ageev, O. A.; Blinov, Yu. F.; Il'ina, M. V.; Il'in, O. I.; Smirnov, V. A.; Tsukanova, O. G.

    2016-02-01

    The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70-120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.

  17. Applications of atomic force microscopy to the studies of biomaterials in biomolecular systems

    Science.gov (United States)

    Ma, Xiang

    Atomic force microscopy (AFM) is a unique tool for the studies of nanoscale structures and interactions. In this dissertation, I applied AFM to study transitions among multiple states of biomaterials in three different microscopic biomolecular systems: MukB-dependent DNA condensation, holdfast adhesion, and virus elasticity. To elucidate the mechanism of MukB-dependent DNA condensation, I have studied the conformational changes of MukB proteins as indicators for the strength of interactions between MukB, DNA and other molecular factors, such as magnesium and ParC proteins, using high-resolution AFM imaging. To determine the physical origins of holdfast adhesion, I have investigated the dynamics of adhesive force development of the holdfast, employing AFM force spectroscopy. By measuring rupture forces between the holdfast and the substrate, I showed that the holdfast adhesion is strongly time-dependent and involves transformations at multiple time scales. Understanding the mechanisms of adhesion force development of the holdfast will be critical for future engineering of holdfasts properties for various applications. Finally, I have examined the elasticity of self-assembled hepatitis B virus-like particles (HBV VLPs) and brome mosaic virus (BMV) in response to changes of pH and salinity, using AFM nanoindentation. The distributions of elasticity were mapped on a single particle level and compared between empty, RNA- and gold-filled HBV VLPs. I found that a single HBV VLP showed heterogeneous distribution of elasticity and a two-step buckling transition, suggesting a discrete property of HBV capsids. For BMV, I have showed that viruses containing different RNA molecules can be distinguished by mechanical measurements, while they are indistinguishable by morphology. I also studied the effect of pH on the elastic behaviors of three-particle BMV and R3/4 BMV. This study can yield insights into RNA presentation/release mechanisms, and could help us to design novel drug

  18. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: rbwagner@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States); Pittendrigh, Barry R. [Department of Entomology, University of Illinois, Champaign (United States); Raman, Arvind, E-mail: raman@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. Black-Right-Pointing-Pointer We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. Black-Right-Pointing-Pointer Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10-20 {mu}m long, 0.5-1 {mu}m diameter hair, and at a much smaller scale, 100 nm diameter and 30-60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m{sup 2}, these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  19. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    International Nuclear Information System (INIS)

    Wagner, Ryan; Pittendrigh, Barry R.; Raman, Arvind

    2012-01-01

    Highlights: ► We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. ► We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. ► Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10–20 μm long, 0.5–1 μm diameter hair, and at a much smaller scale, 100 nm diameter and 30–60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m 2 , these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  20. Sample preparation method for scanning force microscopy

    CERN Document Server

    Jankov, I R; Szente, R N; Carreno, M N P; Swart, J W; Landers, R

    2001-01-01

    We present a method of sample preparation for studies of ion implantation on metal surfaces. The method, employing a mechanical mask, is specially adapted for samples analysed by Scanning Force Microscopy. It was successfully tested on polycrystalline copper substrates implanted with phosphorus ions at an acceleration voltage of 39 keV. The changes of the electrical properties of the surface were measured by Kelvin Probe Force Microscopy and the surface composition was analysed by Auger Electron Spectroscopy.

  1. Acid-base properties and the chemical imaging of surface-bound functional groups studied with scanning force microscopy

    NARCIS (Netherlands)

    van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this paper we present a scanning force microscopy (SFM) study on electrostatic and hydrogen-bonding interactions between chemically modified SFM probes and surface functional groups. pH-dependent adhesion force measurements in aqueous media between various ionizable functional groups showed a

  2. Fabrication and atomic force microscopy/friction force microscopy (AFM/FFM) studies of polyacrylamide-carbon nanotubes (PAM-CNTs) copolymer thin films

    International Nuclear Information System (INIS)

    Li Xuefeng; Guan Wenchao; Yan Haibiao; Huang Lan

    2004-01-01

    A novel polyacrylamide-carbon nanotubes (PAM-CNTs) copolymer has been prepared by ultraviolet radiation initiated polymerization. The PAM-CNTs copolymer was characterized by the instruments of Fourier transform infrared spectroscopy, UV-vis absorbance spectra, fluorescence spectra and transmission electron microscope. The morphology and microtribological properties of PAM-CNTs thin films on mica were investigated by atomic force microscopy/friction force microscopy (AFM/FFM). The friction of the films was stable with the change of applied load and the friction coefficient decreased significantly as the CNTs addition. The results show that the rigid rod-like CNTs in polymer would enhance load-bearing and anti-wear properties of the thin films

  3. Atomic Force Microscopy Techniques for Nanomechanical Characterization: A Polymeric Case Study

    Science.gov (United States)

    Reggente, Melania; Rossi, Marco; Angeloni, Livia; Tamburri, Emanuela; Lucci, Massimiliano; Davoli, Ivan; Terranova, Maria Letizia; Passeri, Daniele

    2015-04-01

    Atomic force microscopy (AFM) is a versatile tool to perform mechanical characterization of surface samples at the nanoscale. In this work, we review two of such methods, namely contact resonance AFM (CR-AFM) and torsional harmonics AFM (TH-AFM). First, such techniques are illustrated and their applicability on materials with elastic moduli in different ranges are discussed, together with their main advantages and limitations. Then, a case study is presented in which we report the mechanical characterization using both CR-AFM and TH-AFM of polyaniline and polyaniniline doped with nanodiamond particles tablets prepared by a pressing process. We determined the indentation modulus values of their surfaces, which were found in fairly good agreement, thus demonstrating the accuracy of the techniques. Finally, the determined surface elastic moduli have been compared with the bulk ones measured through standard indentation testing.

  4. The Use of Atomic-Force Microscopy for Studying the Crystallization Process of Amorphous Alloys

    Science.gov (United States)

    Elmanov, G. N.; Ivanitskaya, E. A.; Dzhumaev, P. S.; Skrytniy, V. I.

    The crystallization process of amorphous alloys is accompanied by the volume changes as a result of structural phase transitions. This leads to changes in the surface topography, which was studied by atomic force microscopy (AFM). The changes of the surface topography, structure and phase composition during multistage crystallization process of the metallic glasses with composition Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 (AWS BNi2) has been investigated. The obtained results on changing of the surface topography in crystallization process are in good agreement with the data of X-ray diffraction analysis (XRD). The nature of redistribution of some alloy components in the crystallization process has been suggested.

  5. Atomic force microscopy study of anion intercalation into highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D; Haering, P; Haas, O; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H [University of Berne (Switzerland)

    1999-08-01

    In the context of ion transfer batteries, we studied highly oriented pyrolytic graphite (HOPG) in perchloric acid, as a model to elucidate the mechanism of electrochemical intercalation in graphite. Aim of the work is the local and time dependent investigation of dimensional changes of the host material during electrochemical intercalation processes on the nanometer scale. We used atomic force microscopy (AFM), combined with cyclic voltammetry, as in-situ tool of analysis during intercalation and expulsion of perchloric anions into the HOPG electrodes. According to the AFM measurements, the HOPG interlayer spacing increases by 32% when perchloric anions intercalate, in agreement with the formation of stage IV of graphite intercalation compounds. (author) 3 figs., 3 refs.

  6. Adsorption and manipulation of carbon onions on highly oriented pyrolytic graphite studied with atomic force microscopy

    International Nuclear Information System (INIS)

    Zhou Jianfeng; Shen Ziyong; Hou Shimin; Zhao Xingyu; Xue Zengquan; Shi Zujin; Gu Zhennan

    2007-01-01

    Carbon onions produced by DC arc discharge method were deposited on highly oriented pyrolytic graphite (HOPG) surface and their adsorption and manipulation was studied using an atomic force microscopy (AFM). Well-dispersed adsorption of carbon onions on HOPG surface was obtained and aggregations of onions were not observed. The van der Waals interaction between the onion and HOPG surface and that between two onions, were calculated and discussed using Hamaker's theory. The manipulation of adsorbed onions on HOPG surface was realized using the AFM in both the raster mode and the vector mode. The controllability and precision of two manipulation modes were compared and the vector mode manipulation was found superior, and is a useful technique for the construction of nano-scale devices based on carbon onions

  7. An atomic-force-microscopy study of the structure of surface layers of intact fibroblasts

    Science.gov (United States)

    Khalisov, M. M.; Ankudinov, A. V.; Penniyaynen, V. A.; Nyapshaev, I. A.; Kipenko, A. V.; Timoshchuk, K. I.; Podzorova, S. A.; Krylov, B. V.

    2017-02-01

    Intact embryonic fibroblasts on a collagen-treated substrate have been studied by atomic-force microscopy (AFM) using probes of two types: (i) standard probes with tip curvature radii of 2-10 nm and (ii) special probes with a calibrated 325-nm SiO2 ball radius at the tip apex. It is established that, irrespective of probe type, the average maximum fibroblast height is on a level of 1.7 μm and the average stiffness of the probe-cell contact amounts to 16.5 mN/m. The obtained AFM data reveal a peculiarity of the fibroblast structure, whereby its external layers move as a rigid shell relative to the interior and can be pressed inside to a depth dependent on the load only.

  8. Surface kinetic roughening caused by dental erosion: An atomic force microscopy study

    Science.gov (United States)

    Quartarone, Eliana; Mustarelli, Piercarlo; Poggio, Claudio; Lombardini, Marco

    2008-05-01

    Surface kinetic roughening takes place both in case of growth and erosion processes. Teeth surfaces are eroded by contact with acid drinks, such as those used to supplement mineral salts during sporting activities. Calcium-phosphate based (CPP-ACP) pastes are known to reduce the erosion process, and to favour the enamel remineralization. In this study we used atomic force microscopy (AFM) to investigate the surface roughening during dental erosion, and the mechanisms at the basis of the protection role exerted by a commercial CPP-ACP paste. We found a statistically significant difference (p<0.01) in the roughness of surfaces exposed and not exposed to the acid solutions. The treatment with the CPP-ACP paste determined a statistically significant reduction of the roughness values. By interpreting the AFM results in terms of fractal scaling concepts and continuum stochastic equations, we showed that the protection mechanism of the paste depends on the chemical properties of the acid solution.

  9. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy

    Science.gov (United States)

    Ryan Wagner; Robert J. Moon; Arvind Raman

    2016-01-01

    Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...

  10. Molecular structure of dipalmitoylphospatidylcholine Langmuir-Blodgett monolayers studied by atomic force microscopy.

    NARCIS (Netherlands)

    Zhai, X.; Kleijn, J.M.

    1997-01-01

    Monolayers of dipalmitoylphosphatidylcholine (DPPC) on the air-water interface have been transferred at various surface pressures onto quartz substrates using the Langmuir-Blodgett (LB) technique. The topography of these layers, on a molecular scale, has been examined by atomic force microscopy

  11. Single-molecule studies of DNA transcription using atomic force microscopy

    International Nuclear Information System (INIS)

    Billingsley, Daniel J; Crampton, Neal; Thomson, Neil H; Bonass, William A; Kirkham, Jennifer

    2012-01-01

    Atomic force microscopy (AFM) can detect single biomacromolecules with a high signal-to-noise ratio on atomically flat biocompatible support surfaces, such as mica. Contrast arises from the innate forces and therefore AFM does not require imaging contrast agents, leading to sample preparation that is relatively straightforward. The ability of AFM to operate in hydrated environments, including humid air and aqueous buffers, allows structure and function of biological and biomolecular systems to be retained. These traits of the AFM are ensuring that it is being increasingly used to study deoxyribonucleic acid (DNA) structure and DNA–protein interactions down to the secondary structure level. This report focuses in particular on reviewing the applications of AFM to the study of DNA transcription in reductionist single-molecule bottom-up approaches. The technique has allowed new insights into the interactions between ribonucleic acid (RNA) polymerase to be gained and enabled quantification of some aspects of the transcription process, such as promoter location, DNA wrapping and elongation. More recently, the trend is towards studying the interactions of more than one enzyme operating on a single DNA template. These methods begin to reveal the mechanics of gene expression at the single-molecule level and will enable us to gain greater understanding of how the genome is transcribed and translated into the proteome. (topical review)

  12. Atomic force microscopy applied to study macromolecular content of embedded biological material

    Energy Technology Data Exchange (ETDEWEB)

    Matsko, Nadejda B. [Electron Microscopy Centre, Institute of Applied Physics, HPM C 15.1, ETH-Hoenggerberg, CH-8093, Zurich (Switzerland)]. E-mail: matsko@iap.phys.ethz.ch

    2007-02-15

    We demonstrate that atomic force microscopy represents a powerful tool for the estimation of structural preservation of biological samples embedded in epoxy resin, in terms of their macromolecular distribution and architecture. The comparison of atomic force microscopy (AFM) and transmission electron microscopy (TEM) images of a biosample (Caenorhabditis elegans) prepared following to different types of freeze-substitution protocols (conventional OsO{sub 4} fixation, epoxy fixation) led to the conclusion that high TEM stainability of the sample results from a low macromolecular density of the cellular matrix. We propose a novel procedure aimed to obtain AFM and TEM images of the same particular organelle, which strongly facilitates AFM image interpretation and reveals new ultrastructural aspects (mainly protein arrangement) of a biosample in addition to TEM data.

  13. Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.

    Science.gov (United States)

    Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina

    2014-04-22

    In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.

  14. Atomic force microscopy study of nano-physiological response of ladybird beetles to photostimuli.

    Directory of Open Access Journals (Sweden)

    Natalia V Guz

    Full Text Available BACKGROUND: Insects are of interest not only as the most numerous and diverse group of animals but also as highly efficient bio-machines varying greatly in size. They are the main human competitors for crop, can transmit various diseases, etc. However, little study of insects with modern nanotechnology tools has been done. METHODOLOGY/PRINCIPAL FINDINGS: Here we applied an atomic force microscopy (AFM method to study stimulation of ladybird beetles with light. This method allows for measuring of the internal physiological responses of insects by recording surface oscillations in different parts of the insect at sub-nanometer amplitude level and sub-millisecond time. Specifically, we studied the sensitivity of ladybird beetles to light of different wavelengths. We demonstrated previously unknown blindness of ladybird beetles to emerald color (∼500nm light, while being able to see UV-blue and green light. Furthermore, we showed how one could study the speed of the beetle adaptation to repetitive flashing light and its relaxation back to the initial stage. CONCLUSIONS: The results show the potential of the method in studying insects. We see this research as a part of what might be a new emerging area of "nanophysiology" of insects.

  15. Higher order structure of short immunostimulatory oligonucleotides studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Dionne C.G., E-mail: dionne.c.g.klein@ntnu.no [Department of Physics, Norwegian University of Science and Technology, N-7491, Trondheim (Norway); Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489, Trondheim (Norway); Latz, Eicke [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489, Trondheim (Norway); Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 (United States); Institute of Innate Immunity, University Hospitals, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Espevik, Terje [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489, Trondheim (Norway); Stokke, Bjorn T. [Department of Physics, Norwegian University of Science and Technology, N-7491, Trondheim (Norway)

    2010-05-15

    Immunostimulatory CpG-DNA activates the innate immune system by binding to Toll-like receptor 9. Structurally different CpG-containing oligonucleotides trigger a different type of immune response while activating the same receptor. We therefore investigated the higher order structure of two different classes of immunostimulatory CpG-DNA. Class A, which contains a partly self-complementary sequence and poly-G ends, forms duplexes and nanoparticles in salt solution, while class B, which does not contain these features and is purely linear, does not form a duplex or nanoparticles. Results obtained here by high-resolution atomic force microscopy of classes A and B CpG-DNA, reflect these differences in secondary structure. Detailed structural analysis of the atomic force microscopy topographs is presented for two different sample preparation methods.

  16. A Study of Electrostatic Charge on Insulating Film by Electrostatic Force Microscopy

    International Nuclear Information System (INIS)

    Kikunaga, K; Toosaka, K; Kamohara, T; Sakai, K; Nonaka, K

    2011-01-01

    Electrostatic charge properties on polypropylene film have been characterized by atomic force microscopy and electrostatic force microscopy. The measurements have been carried out after the polypropylene film was electrified by contact and separation process in an atmosphere of controlled humidity. The negative and positive charge in concave surface has been observed. The correlation between concave surface and charge position suggests that the electrostatic charges could be caused by localized contact. On the other hand, positive charge on a flat surface has been observed. The absence of a relationship between surface profile and charge position suggests that the electrostatic charge should be caused by discharge during the separation process. The spatial migration of other positive charges through surface roughness has been observed. The results suggest that there could be some electron traps on the surface roughness and some potentials on the polypropylene film.

  17. Higher order structure of short immunostimulatory oligonucleotides studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Klein, Dionne C.G.; Latz, Eicke; Espevik, Terje; Stokke, Bjorn T.

    2010-01-01

    Immunostimulatory CpG-DNA activates the innate immune system by binding to Toll-like receptor 9. Structurally different CpG-containing oligonucleotides trigger a different type of immune response while activating the same receptor. We therefore investigated the higher order structure of two different classes of immunostimulatory CpG-DNA. Class A, which contains a partly self-complementary sequence and poly-G ends, forms duplexes and nanoparticles in salt solution, while class B, which does not contain these features and is purely linear, does not form a duplex or nanoparticles. Results obtained here by high-resolution atomic force microscopy of classes A and B CpG-DNA, reflect these differences in secondary structure. Detailed structural analysis of the atomic force microscopy topographs is presented for two different sample preparation methods.

  18. Surprising volume change in PPy(DBS): An atomic force microscopy study

    DEFF Research Database (Denmark)

    Smela, E.; Gadegaard, N.

    1999-01-01

    Communication: Conjugated polymers such as polypyrrole (PPy) have potential use as artificial muscles or in microsystems such as valves for micro-fluid handling. One of the most important parameters in such uses is the magnitude of volume change during associated redox processes; however, until now...... estimates have varied greatly. Atomic force microscopy is reported here as allowing direct measurement of the in situ thickness change during oxidation and reduction of thin films of PPy doped with dodecylbenzenesulfonate....

  19. Atomic force microscopy as nano-stethoscope to study living organisms, insects

    Science.gov (United States)

    Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia

    2012-02-01

    Atomic force microscopy (AFM) is a known method to study various surfaces. Here we report on the use of AFM to study surface oscillations (coming from the work of internal organs) of living organisms, like insects. As an example, ladybird beetles (Hippodamia convergens) measured in different parts of the insect at picometer level. This allows us to record a much broader spectral range of possible surface vibrations (up to several kHz) than the previously studied oscillations due to breathing, heartbeat cycles, coelopulses, etc. (up to 5 -10 Hz). The used here AFM method allows collecting signal from the area as small as ˜100nm2 (0.0001μm2) with an example of noise level of (2±0.2)x10-3 nm r.m.s. at the range of frequencies >50Hz (potentially, up to a MHz). Application of this method to humans is discussed. The method, being a relatively non-invasive technique providing a new type of information, may be useful in developing of what could be called ``nanophysiology.''

  20. Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study

    International Nuclear Information System (INIS)

    Hane, Francis; Moores, Brad; Amrein, Matthias; Leonenko, Zoya

    2009-01-01

    The air-lung interface is covered by a molecular film of pulmonary surfactant (PS). The major function of the film is to reduce the surface tension of the lung's air-liquid interface, providing stability to the alveolar structure and reducing the work of breathing. Earlier we have shown that function of bovine lipid extract surfactant (BLES) is related to the specific molecular architecture of surfactant films. Defined molecular arrangement of the lipids and proteins of the surfactant film also give rise to a local highly variable electrical surface potential of the interface. In this work we investigated a simple model of artificial lung surfactant consisting of DPPC, eggPG, and surfactant protein C (SP-C). Effects of surface compression and the presence of SP-C on the monolayer structure and surface potential distribution were investigated using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We show that topography and locally variable surface potential of DPPC-eggPG lipid mixture are similar to those of pulmonary surfactant BLES in the presence of SP-C and differ in surface potential when SP-C is absent.

  1. Kelvin probe force microscopy in liquid using electrochemical force microscopy

    Directory of Open Access Journals (Sweden)

    Liam Collins

    2015-01-01

    Full Text Available Conventional closed loop-Kelvin probe force microscopy (KPFM has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present. Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl and ionically-inactive (non-polar decane liquids by electrochemical force microscopy (EcFM, a multidimensional (i.e., bias- and time-resolved spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids, KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions. EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  2. Theoretical atomic-force-microscopy study of a stepped surface: Nonlocal effects in the probe

    International Nuclear Information System (INIS)

    Girard, C.

    1991-01-01

    The interaction force between a metallic tip and a nonplanar dielectric surface is derived from a nonlocal formalism. A general formulation is given for the case of a spherical tip of nanometer size and for surfaces of arbitrary shapes (stepped surfaces and single crystals adsorbed on a planar surface). The dispersion part of the attractive force is obtained from a nonlocal theory expressed in terms of generalized electric susceptibilities of the two constituents. Implications for atomic force microscopy in attractive modes are discussed. In this context, the present model indicates two different forms of corrugation: those due to the protuberance present on the tip leading to atomic corrugations; nanometer-sized corrugations detected in the attractive region by the spherical part of the tip

  3. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, Peter [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal)], E-mail: peter.eaton@fc.up.pt; Fernandes, Joao C. [Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Pereira, Eulalia [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Pintado, Manuela E.; Xavier Malcata, F. [Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2008-09-15

    Chitosan has been reported to be a non-toxic, biodegradable antibacterial agent. The aim of this work was to elucidate the relationship between the molecular weight of chitosan and its antimicrobial activity upon two model microorganisms, one Gram-positive (Staphylococcus aureus) and one Gram-negative (Escherichia coli). Atomic force microscopy (AFM) imaging was used to obtain high-resolution images of the effect of chitosans on the bacterial morphology. The AFM measurements were correlated with viable cell numbers, which show that the two species reacted differently to the high- and low-molecular-weight chitosan derivatives. The images obtained revealed not only the antibacterial effects, but also the response strategies used by the bacteria; cell wall collapse and morphological changes reflected cell death, whereas clustering of bacteria appeared to be associated with cell survival. In addition, nanoindentation experiments with the AFM revealed mechanical changes in the bacterial cell wall induced by the treatment. The nanoindentation results suggested that despite little modification observed in the Gram-positive bacteria in morphological studies, cell wall damage had indeed occurred, since cell wall stiffness was reduced after chitooligosaccharide treatment.

  4. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  5. Adsorption of chitosan onto carbonaceous surfaces and its application: atomic force microscopy study

    International Nuclear Information System (INIS)

    Tan Shengnan; Liu Zhiguo; Zu Yuangang; Fu Yujie; Xing Zhimin; Zhao Lin; Sun Tongze; Zhou Zhen

    2011-01-01

    The adsorption of chitosan onto highly ordered pyrolytic graphite(HOPG) surfaces and its applications have been studied by atomic force microscopy (AFM). The results indicated that chitosan topography formed on the HOPG surface significantly depends on the pH conditions and its concentration for the incubation. Under strongly acidic conditions (pH -1 , chitosan formed into uniform network structures composed of fine chains. When the solution pH was changed from 3.5 to 6.5, chitosan tends to form a thicker film. Under neutral and basic conditions, chitosan changed into spherical nanoparticles, and their sizes were increased with increasing pH. Dendritic structures have been observed when the chitosan concentration was increased up to 5 mg ml -1 . In addition, the chitosan topography can also be influenced by ionic strength and the addition of different metal ions. When 0.1 M metal ions Na + , Mg 2+ , Ca 2+ and Cu 2+ were added into the chitosan solution at pH 3.0 for the incubation, network structures, branched chains, block structures and dense networks attached with many small particles were observed, respectively. The potential applications of these chitosan structures on HOPG have been explored. Preliminary results characterized by AFM and XPS indicated that the chitosan network formed on the HOPG surface can be used for AFM lithography, selective adsorption of gold nanoparticles and DNA molecules.

  6. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus

    International Nuclear Information System (INIS)

    Eaton, Peter; Fernandes, Joao C.; Pereira, Eulalia; Pintado, Manuela E.; Xavier Malcata, F.

    2008-01-01

    Chitosan has been reported to be a non-toxic, biodegradable antibacterial agent. The aim of this work was to elucidate the relationship between the molecular weight of chitosan and its antimicrobial activity upon two model microorganisms, one Gram-positive (Staphylococcus aureus) and one Gram-negative (Escherichia coli). Atomic force microscopy (AFM) imaging was used to obtain high-resolution images of the effect of chitosans on the bacterial morphology. The AFM measurements were correlated with viable cell numbers, which show that the two species reacted differently to the high- and low-molecular-weight chitosan derivatives. The images obtained revealed not only the antibacterial effects, but also the response strategies used by the bacteria; cell wall collapse and morphological changes reflected cell death, whereas clustering of bacteria appeared to be associated with cell survival. In addition, nanoindentation experiments with the AFM revealed mechanical changes in the bacterial cell wall induced by the treatment. The nanoindentation results suggested that despite little modification observed in the Gram-positive bacteria in morphological studies, cell wall damage had indeed occurred, since cell wall stiffness was reduced after chitooligosaccharide treatment

  7. Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Ilko Bald

    2014-09-01

    Full Text Available DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.

  8. Friction force microscopy study of annealed diamond-like carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Seok; Joung, Yeun-Ho [School of Electrical Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of); Heo, Jinhee [Materials Safety Evaluation Group, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Hong, Byungyou, E-mail: byhong@skku.edu [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2012-10-15

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH{sub 4}) and hydrogen (H{sub 2}) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp{sup 3} content is decreased from 75.2% to 24.1% while the sp{sup 2} content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  9. Friction force microscopy study of annealed diamond-like carbon film

    International Nuclear Information System (INIS)

    Choi, Won Seok; Joung, Yeun-Ho; Heo, Jinhee; Hong, Byungyou

    2012-01-01

    In this paper we introduce mechanical and structural characteristics of diamond-like carbon (DLC) films which were prepared on silicon substrates by radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) method using methane (CH 4 ) and hydrogen (H 2 ) gas. The films were annealed at various temperatures ranging from 300 to 900 °C in steps of 200 °C using rapid thermal processor (RTP) in nitrogen ambient. Tribological properties of the DLC films were investigated by atomic force microscopy (AFM) in friction force microscopy (FFM) mode. The structural properties of the films were obtained by high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The wettability of the films was obtained using contact angle measurement. XPS analysis showed that the sp 3 content is decreased from 75.2% to 24.1% while the sp 2 content is increased from 24.8% to 75.9% when the temperature is changed from 300 to 900 °C. The contact angles of DLC films were higher than 70°. The FFM measurement results show that the highest friction coefficient value was achieved at 900 °C annealing temperature.

  10. Dynamic electrostatic force microscopy technique for the study of electrical properties with improved spatial resolution

    International Nuclear Information System (INIS)

    Maragliano, C; Heskes, D; Stefancich, M; Chiesa, M; Souier, T

    2013-01-01

    The need to resolve the electrical properties of confined structures (CNTs, quantum dots, nanorods, etc) is becoming increasingly important in the field of electronic and optoelectronic devices. Here we propose an approach based on amplitude modulated electrostatic force microscopy to obtain measurements at small tip–sample distances, where highly nonlinear forces are present. We discuss how this improves the lateral resolution of the technique and allows probing of the electrical and surface properties. The complete force field at different tip biases is employed to derive the local work function difference. Then, by appropriately biasing the tip–sample system, short-range forces are reconstructed. The short-range component is then separated from the generic tip–sample force in order to recover the pure electrostatic contribution. This data can be employed to derive the tip–sample capacitance curve and the sample dielectric constant. After presenting a theoretical model that justifies the need for probing the electrical properties of the sample in the vicinity of the surface, the methodology is presented in detail and verified experimentally. (paper)

  11. The application of neutron reflectometry and atomic force microscopy in the study of corrosion inhibitor films

    International Nuclear Information System (INIS)

    John, Douglas; Blom, Annabelle; Bailey, Stuart; Nelson, Andrew; Schulz, Jamie; De Marco, Roland; Kinsella, Brian

    2006-01-01

    Corrosion inhibitor molecules function by adsorbing to a steel surface and thus prevent oxidation of the metal. The interfacial structures formed by a range of corrosion inhibitor molecules have been investigated by in situ measurements based on atomic force microscopy and neutron reflectometry. Inhibitors investigated include molecules cetyl pyridinium chloride (CPC), dodecyl pyridinium chloride (DPC), 1-hydroxyethyl-2-oleic imidazoline (OHEI) and cetyl dimethyl benzyl ammonium chloride (CDMBAC). This has shown that the inhibitor molecules adsorb onto a surface in micellar structures. Corrosion measurements confirmed that maximum inhibition efficiency coincides with the solution critical micelle concentration

  12. An atomic force microscopy study on the transition from mushrooms to octopus surface ''micelles'' by changing the solvent quality

    NARCIS (Netherlands)

    Stamouli, A.; Pelletier, E.; Koutsos, V; van der Vegte, E.W.; Hadziioannou, G

    1996-01-01

    Atomic force microscopy (AFM) is used to study the behavior of a diblock copolymer onto a solid surface while the solvent quality is changed. In a first step, the copolymer poly(2-vinylpyridine)/polystyrene (P2VP/PS) is adsorbed onto mica from a selective solvent (the PS block is well solvated and

  13. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes.

    Science.gov (United States)

    Lacey, Steven D; Wan, Jiayu; von Wald Cresce, Arthur; Russell, Selena M; Dai, Jiaqi; Bao, Wenzhong; Xu, Kang; Hu, Liangbing

    2015-02-11

    A microscale battery comprised of mechanically exfoliated molybdenum disulfide (MoS2) flakes with copper connections and a sodium metal reference was created and investigated as an intercalation model using in situ atomic force microscopy in a dry room environment. While an ethylene carbonate-based electrolyte with a low vapor pressure allowed topographical observations in an open cell configuration, the planar microbattery was used to conduct in situ measurements to understand the structural changes and the concomitant solid electrolyte interphase (SEI) formation at the nanoscale. Topographical observations demonstrated permanent wrinkling behavior of MoS2 electrodes upon sodiation at 0.4 V. SEI formation occurred quickly on both flake edges and planes at voltages before sodium intercalation. Force spectroscopy measurements provided quantitative data on the SEI thickness for MoS2 electrodes in sodium-ion batteries for the first time.

  14. Mechanical properties of cancer cells depend on number of passages: Atomic force microscopy indentation study

    Science.gov (United States)

    Dokukin, Maxim E.; Guz, Natalia V.; Sokolov, Igor

    2017-08-01

    Here we investigate one of the key questions in cell biology, if the properties of cell lines depend on the number of passages in-vitro. It is generally assumed that the change of cell properties (phenotypic drift) is insignificant when the number of passages is low (cell body and parameters of the pericellular brush layer from indentation force curves, which are recorded by means of atomic force microscopy (AFM). Using this method, we tested the change of the cell properties of human cancer breast epithelial cell line, MCF-7 (ATCC® HTB-22™), within the passages between 2 and 10. In contrast to the previous expectations, we observed a substantial transient change of the elastic modulus of the cell body during the first four passages (up to 4 times). The changes in the parameters of the pericellular coat were less dramatic (up to 2 times) but still statistically significant.

  15. Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-06-18

    It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.

  16. Atomic force microscopy studies of lateral phase separation in mixed monolayers of dipalmitoylphosphatidylcholine and dilauroylphosphatidylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Jacqueline; Badia, Antonella

    2003-09-01

    Atomic force microscopy imaging of dipalmitoylphosphatidylcholine (DPPC)/dilauroylphosphatidylcholine (DLPC) monolayers deposited onto alkanethiol modified-gold surfaces by the Langmuir-Schaefer technique was used to investigate domain formation in a binary system where phase separation arises from a difference in the alkyl chain lengths of the lipids. We have established how the condensed domain structure (shape and size) in DPPC/DLPC monolayers depends on the surface pressure and lipid composition. The mixed monolayers exhibit a positive deviation from an ideal mixing behavior at surface pressures of {<=}32 mN/m. Lateral compression to pressures greater than the liquid-expanded-to-liquid-condensed (LE-to-LC) phase transition pressure of the mixed monolayer ({approx}8-16 mN/m) induces extensive separation into condensed DPPC-rich domains and a fluid DLPC matrix. The condensed structures observed at a few milliNeutons per meter above the LE-to-LC transition pressure resemble those reported for pure DPPC monolayers in the LE/LC co-existence region. At a bilayer equivalence pressure of 32 mN/m and 20 deg. C, condensed domains exist between x{sub DPPC} {approx}0.25 and {approx}0.80, analogous to aqueous DPPC/DLPC dispersions. Compression from 32 to 40 mN/m results in either a striking distortion of the DPPC domain shape or a break-up of the microscopic DPPC domains into a network of nanoscopic islands (at higher DPPC mol fractions), possibly reflecting a critical mixing behavior. The results of this study provide a fundamental framework for understanding and controlling the formation of lateral domain structures in mixed phospholipid monolayers.

  17. Magnetic anisotropy considerations in magnetic force microscopy studies of single superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Nocera, Tanya M; Agarwal, Gunjan; Chen Jun; Murray, Christopher B

    2012-01-01

    In recent years, superparamagnetic nanoparticles (SPNs) have become increasingly important in applications ranging from solid state memory devices to biomedical diagnostic and therapeutic tools. However, detection and characterization of the small and unstable magnetic moment of an SPN at the single particle level remains a challenge. Further, depending on their physical shape, crystalline structure or orientation, SPNs may also possess magnetic anisotropy, which can govern the extent to which their magnetic moments can align with an externally applied magnetic field. Here, we demonstrate how we can exploit the magnetic anisotropy of SPNs to enable uniform, highly-sensitive detection of single SPNs using magnetic force microscopy (MFM) in ambient air. Superconducting quantum interference device magnetometry and analytical transmission electron microscopy techniques are utilized to characterize the collective magnetic behavior, morphology and composition of the SPNs. Our results show how the consideration of magnetic anisotropy can enhance the ability of MFM to detect single SPNs at ambient room temperature with high force sensitivity and spatial resolution. (paper)

  18. Correlated Fluorescence-Atomic Force Microscopy Studies of the Clathrin Mediated Endocytosis in SKMEL Cells

    Science.gov (United States)

    Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam

    Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.

  19. Influence of Oxygen Pressure on the Domain Dynamics and Local Electrical Properties of BiFe0.95Mn0.05O3 Thin Films Studied by Piezoresponse Force Microscopy and Conductive Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Kunyu Zhao

    2017-11-01

    Full Text Available In this work, we have studied the microstructures, nanodomains, polarization preservation behaviors, and electrical properties of BiFe0.95Mn0.05O3 (BFMO multiferroic thin films, which have been epitaxially created on the substrates of SrRuO3, SrTiO3, and TiN-buffered (001-oriented Si at different oxygen pressures via piezoresponse force microscopy and conductive atomic force microscopy. We found that the pure phase state, inhomogeneous piezoresponse force microscopy (PFM response, low leakage current with unidirectional diode-like properties, and orientation-dependent polarization reversal properties were found in BFMO thin films deposited at low oxygen pressure. Meanwhile, these films under high oxygen pressures resulted in impurities in the secondary phase in BFMO films, which caused a greater leakage that hindered the polarization preservation capability. Thus, this shows the important impact of the oxygen pressure on modulating the physical effects of BFMO films.

  20. THE NANOSTRUCTURE OF ERYTHROCYTE MEMBRANES UNDER BLOOD INTOXICATION: AN ATOMIC FORCE MICROSCOPY STUDY

    Directory of Open Access Journals (Sweden)

    V. A. Sergunova

    2016-01-01

    Full Text Available Background: The effects of toxins on nanostructure of blood cells are one of the key problems of biophysics and medicine. Erythrocyte morphology and membrane structure are recognized as the main parameters of blood quality. Therefore, analysis of membrane defects under toxin effects seems an urgent issue. Aim: To identify characteristic features and patterns of changes in membrane nanostructure under hemin intoxication and during extended storage of erythrocyte suspension. Materials and methods: The study was done in vitro in human whole blood with addition of hemin, аnd in erythrocyte suspension with a CPD blood preservative stored at 4 °С for 30 days. The nanostructure of erythrocyte membrane was assessed by atomic force microscopy. Results: Characteristic size of space periods between “granules” was from 120 to 200 nm. “Granule” numbers within a topological defect varied from 4 to 5 and to several dozens. Such domains arose virtually on all cells in erythrocyte suspension, as well as after hemin addition to the blood. An increase in hemin intoxication and an increase in a storage time were associated by increases in echinocyte numbers that subsequently transformed into spherical echinocytes. Both under hemin and during the storage of erythrocyte suspension for 9 to 12 days, a specific abnormality in nanostructure of erythrocyte membrane was observed: structural clusters, i.e., domains with granular structure, were formed. Conclusion: The experiments showed that both hemin and oxidative processes in the blood can specifically affect the nanostructure of erythrocyte membranes with formation of domains on their surface. The specific size of granular structures in the domains is from 100 to 200 nm that coincides with a  specific size of spectrin matrix. These results can be used in basic and applied medicine, in blood transfusion, for the analysis of a toxin effects in the human body. The biophysical mechanisms of domain

  1. Magnetic force microscopy study on wide adjacent track erasure in perpendicular magnetic write heads

    Science.gov (United States)

    Ruksasakchai, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.

    2017-09-01

    We used a phase-contrast magnetic force microscopy (MFM) to observe and analyze the failure of magnetic write heads due to the WATEr problem, which limits the off-track performance. During MFM imaging, the magnetic write head was energized by a DC current. The induced out-of-plane magnetic field was then detected by scanning a MFM probe across the surface of the magnetic write head. MFM images were then mapped with WATEr measured results from a spin stand method. Results showed that WATEr effect can be generated by several factors, i.e. the structure of magnetic domains and walls from material discontinuities and the magnetic field leakage at different locations on magnetic write heads. Understanding WATEr mechanisms is useful for design and process development engineers.

  2. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study

    International Nuclear Information System (INIS)

    Passeri, D.; Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A.; Tamburri, E.; Lucci, M.; Davoli, I.; Berezina, S.

    2009-01-01

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.

  3. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Passeri, D., E-mail: daniele.passeri@uniroma1.it [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A. [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Tamburri, E. [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Lucci, M.; Davoli, I. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Berezina, S. [Department of Physics, University of Zilina, 01026, Univerzitna 1 Zilina (Slovakia)

    2009-11-15

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.

  4. Density Functional Theory and Atomic Force Microscopy Study of Oleate Functioned on Siderite Surface

    Directory of Open Access Journals (Sweden)

    Lixia Li

    2018-01-01

    Full Text Available Efficiently discovering the interaction of the collector oleate and siderite is of great significance for understanding the inherent function of siderite weakening hematite reverse flotation. For this purpose, investigation of the adsorption behavior of oleate on siderite surface was performed by density functional theory (DFT calculations associating with atomic force microscopy (AFM imaging. The siderite crystal geometry was computationally optimized via convergence tests. Calculated results of the interaction energy and the Mulliken population verified that the collector oleate adsorbed on siderite surface and the covalent bond was established as a result of electrons transferring from O1 atoms (in oleate molecule to Fe1 atoms (in siderite lattice. Therefore, valence-electrons’ configurations of Fe1 and O1 changed into 3d6.514s0.37 and 2s1.832p4.73 from 3d6.214s0.31 and 2s1.83p4.88 correspondingly. Siderite surfaces with or without oleate functioned were examined with the aid of AFM imaging in PeakForce Tapping mode, and the functioned siderite surface was found to be covered by vesicular membrane matters with the average roughness of 16.4 nm assuring the oleate adsorption. These results contributed to comprehending the interaction of oleate and siderite.

  5. A study of estimating cutting depth for multi-pass nanoscale cutting by using atomic force microscopy

    International Nuclear Information System (INIS)

    Lin, Zone-Ching; Hsu, Ying-Chih

    2012-01-01

    This paper studies two models for estimating cutting depth of multi-pass nanoscale cutting by using an atomic force microscopy (AFM) probe. One estimates cutting depth for multi-pass nanoscale cutting by using regression equations of nanoscale contact pressure factor (NCP factor) while the other uses equation of specific down force energy (SDFE). This paper proposes taking a diamond-coated probe of AFM as the cutting tool to carry out multi-pass nanoscale cutting experiments on the surface of sapphire substrate. In the process of experimentation, different down forces are set, and the probe shape of AFM is known, then using each down force to multi-pass cutting the sapphire substrate. From the measured experimental data of a central cutting depth of the machining groove by AFM, this paper calculates the specific down force energy of each down force. The experiment results reveal that the specific down force energy of each case of multi-pass nanoscale cutting for different down forces under a probe of AFM is close to a constant value. This paper also compares the nanoscale cutting results from estimating cutting depths for each pass of multi-pass among the experimental results and the calculating results obtained by the two theories models. It is found that the model of specific down force energy can calculate cutting depths for each nanoscale cutting pass by one equation. It is easier to use than the multi-regression equations of the nanoscale contact pressure factor. Besides, the estimations of cutting depth results obtained by the model of specific down force energy are closer to that of the experiment results. It shows that the proposed specific down force energy model in this paper is an acceptable model.

  6. Artificial ion tracks in volcanic dark mica simulating natural radiation damage: A scanning force microscopy study

    International Nuclear Information System (INIS)

    Lang, M.; Glasmacher, U.A.; Moine, B.; Mueller, C.; Neumann, R.; Wagner, G.A.

    2002-01-01

    A new dating technique uses alpha-recoil tracks (ART), formed by the natural α-decay of U, Th and their daughter products, to determine the formation age of Quaternary volcanic rocks ( 6 a). Visualization of etched ART by scanning force microscopy (SFM) enables to access track densities beyond 10 8 cm -2 and thus extend the new ART-dating technique to an age range >10 6 a. In order to simulate natural radiation damage, samples of phlogopite, originating from Quaternary and Tertiary volcanic rocks of the Eifel (Germany) and Kerguelen Islands (Indian Ocean) were irradiated with U, Ni (11.4 MeV/u), Xe, Cr, Ne (1.4 MeV/u) and Bi (200 keV) ions. After irradiation and etching with HF at various etching times, phlogopite surfaces were visualized by SFM. Hexagonal etch pits are typical of U, Xe and Cr ion tracks, but the etch pits of Ni, Ne and Bi ion tracks are triangular. Surfaces irradiated with U, Xe, Cr and Ni ions do not show any significant difference between etch pit density and irradiation fluence, whereas the Ne-irradiated surface show ∼14 times less etch pit density. The etching rate v H (parallel to cleavage) depends on the chemical composition of the phlogopite. The etching rate v T ' (along the track) increases with energy loss

  7. Synthesis of ZnS nanoparticles on a solid surface: Atomic force microscopy study

    International Nuclear Information System (INIS)

    Yuan Huizhen; Lian Wenping; Song Yonghai; Chen Shouhui; Chen Lili; Wang Li

    2010-01-01

    In this work, zinc sulfide (ZnS) nanoparticles had been synthesized on DNA network/mica and mica surface, respectively. The synthesis was carried out by first dropping a mixture of zinc acetate and DNA on a mica surface for the formation of the DNA networks or zinc acetate solution on a mica surface, and subsequently transferring the sample into a heated thiourea solution. The Zn 2+ adsorbed on DNA network/mica or mica surface would react with S 2- produced from thiourea and form ZnS nanoparticles on these surfaces. X-ray diffraction and atomic force microscopy (AFM) were used to characterize the ZnS nanoparticles in detail. AFM results showed that ZnS nanoparticles distributed uniformly on the mica surface and deposited preferentially on DNA networks. It was also found that the size and density of ZnS nanoparticles could be effectively controlled by adjusting reaction temperature and the concentration of Zn 2+ or DNA. The possible growth mechanisms have been discussed in detail.

  8. Substrate dependent morphologies of self-assembled nanocrystalline manganite films: An atomic force microscopy study

    International Nuclear Information System (INIS)

    Kale, S.N.; Mona, J.; Ganesan, V.; Choudhary, R.J.; Phase, D.M.

    2009-06-01

    Thin films of La 0 .7Sr 0 .3MnO 3 (LSMO) have been deposited on different substrates: Si (001), Al 2 O 3 (AlO) (0001) and LaAlO 3 (LAO) (001), using a pulsed laser deposition system. 100 nm films have been deposited at substrate temperature of 700 deg C and oxygen partial pressure of 400 mTorr. X-Ray diffraction analysis shows a polycrystalline growth of both layers on Si and Al 2 O 3 substrates, while a c-axis oriented growth on LAO substrate. Atomic force microscopy images exhibit interesting island-like morphology of grain size ∼ 250 nm on Si substrate. Similar morphology with much smaller (∼ 150 nm), closely packed islands are seen to grow on AlO substrate. Films on LAO show comparatively a smooth morphology with the grains size less than 100 nm, decorated by characteristic depressions at the grain boundaries. The formation of self-assembled nanostructures can be understood on the basis of film-substrate lattice misfit, strains in the systems and eventual growth of the films to attain energy minimization (author)

  9. Energy dissipation in multifrequency atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Valentina Pukhova

    2014-04-01

    Full Text Available The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip–sample interaction.

  10. Magnetic force microscopy : Quantitative issues in biomaterials

    NARCIS (Netherlands)

    Passeri, D.; Dong, C.; Reggente, M.; Angeloni, L.; Barteri, M.; Scaramuzzo, F.A.; De Angelis, F.; Marinelli, F.; Antonelli, F.; Rinaldi, F.; Marianecci, C.; Carafa, M.; Sorbo, A.; Sordi, D.; Arends, I.W.C.E.; Rossi, M.

    2014-01-01

    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples

  11. Direct measurements of intermolecular forces by chemical force microscopy

    Science.gov (United States)

    Vezenov, Dmitri Vitalievich

    1999-12-01

    Detailed description of intermolecular forces is key to understanding a wide range of phenomena from molecular recognition to materials failure. The unique features of atomic force microscopy (AFM) to make point contact force measurements with ultra high sensitivity and to generate spatial maps of surface topography and forces have been extended to include measurements between well-defined organic molecular groups. Chemical modification of AFM probes with self-assembled monolayers (SAMs) was used to make them sensitive to specific molecular interactions. This novel chemical force microscopy (CFM) technique was used to probe forces between different molecular groups in a range of environments (vacuum, organic liquids and aqueous solutions); measure surface energetics on a nanometer scale; determine pK values of the surface acid and base groups; measure forces to stretch and unbind a short synthetic DNA duplex and map the spatial distribution of specific functional groups and their ionization state. Studies of adhesion forces demonstrated the important contribution of hydrogen bonding to interactions between simple organic functionalities. The chemical identity of the tip and substrate surfaces as well as the medium had a dramatic effect on adhesion between model monolayers. A direct correlation between surface free energy and adhesion forces was established. The adhesion between epoxy polymer and model mixed SAMs varied with the amount of hydrogen bonding component in the monolayers. A consistent interpretation of CFM measurements in polar solvents was provided by contact mechanics models and intermolecular force components theory. Forces between tips and surfaces functionalized with SAMs terminating in acid or base groups depended on their ionization state. A novel method of force titration was introduced for highly local characterization of the pK's of surface functional groups. The pH-dependent changes in friction forces were exploited to map spatially the

  12. Morphogenesis of mimivirus and its viral factories: an atomic force microscopy study of infected cells.

    Science.gov (United States)

    Kuznetsov, Yuri G; Klose, Thomas; Rossmann, Michael; McPherson, Alexander

    2013-10-01

    Amoebas infected with mimivirus were disrupted at sequential stages of virus production and were visualized by atomic force microscopy. The development of virus factories proceeded over 3 to 4 h postinfection and resulted from the coalescence of 0.5- to 2-μm vesicles, possibly bearing nucleic acid, derived from either the nuclear membrane or the closely associated rough endoplasmic reticulum. Virus factories actively producing virus capsids on their surfaces were imaged, and this allowed the morphogenesis of the capsids to be delineated. The first feature to appear on a virus factory surface when a new capsid is born is the center of a stargate, which is a pentameric protein oligomer. As the arms of the stargate grow from the pentamer, a rough disk the diameter of a capsid thickens around it. This marks the initial emergence of a protein-coated membrane vesicle. The capsid self-assembles on the vesicle. Hillocks capped by different pentameric proteins spontaneously appear on the emerging vesicle at positions that are ultimately occupied by 5-fold icosahedral vertices. A lattice of coat protein nucleates at each of the 5-fold vertices, but not at the stargate, and then spreads outward from the vertices over the surface, merging seamlessly to complete the icosahedral capsid. Filling with DNA and associated proteins occurs by the transfer of nucleic acid from the interior of the virus factory into the nearly completed capsids. The portal, through which the DNA enters, is sealed by a plug of protein having a diameter of about 40 nm. A layer of integument protein that anchors the surface fibers is acquired by the passage of capsids through a membrane enriched in the protein. The coating of surface fibers is similarly acquired when the integument protein-coated capsids pass through a second membrane that has a forest of surface fibers embedded on one side.

  13. A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities

    International Nuclear Information System (INIS)

    Tambe, Nikhil S; Bhushan, Bharat

    2005-01-01

    Tribological studies on the micro/nanoscale conducted using an atomic force microscope (AFM) have been limited to low sliding velocities ( -1 ) due to inherent instrument limitations. Studies of tribological properties of materials, coatings and lubricants that find applications in micro/nanoelectromechanical systems and magnetic head-media in magnetic storage devices that operate at high sliding velocities have thus been rendered inadequate. We have developed a new technique to study nanotribological properties at high sliding velocities (up to 10 mm s -1 ) by modifying the commercial AFM set-up. A custom calibrated nanopositioning piezo stage is used for mounting samples and scanning is achieved by providing a triangular input voltage pulse. A capacitive sensor feedback control system is employed to ensure a constant velocity profile during scanning. Friction data are obtained by processing the AFM laser photo-diode signals using a high sampling rate data acquisition card. The utility of the modified set-up for nanoscale friction studies at high sliding velocities is demonstrated using results obtained from various tests performed to study the effect of scan size, rest time, acceleration and velocity on the frictional force for single crystal silicon (100) with native oxide

  14. Force reconstruction from tapping mode force microscopy experiments

    International Nuclear Information System (INIS)

    Payam, Amir F; Martin-Jimenez, Daniel; Garcia, Ricardo

    2015-01-01

    Fast, accurate, and robust nanomechanical measurements are intensely studied in materials science, applied physics, and molecular biology. Amplitude modulation force microscopy (tapping mode) is the most established nanoscale characterization technique of surfaces for air and liquid environments. However, its quantitative capabilities lag behind its high spatial resolution and robustness. We develop a general method to transform the observables into quantitative force measurements. The force reconstruction algorithm has been deduced on the assumption that the observables (amplitude and phase shift) are slowly varying functions of the tip–surface separation. The accuracy and applicability of the method is validated by numerical simulations and experiments. The method is valid for liquid and air environments, small and large free amplitudes, compliant and rigid materials, and conservative and non-conservative forces. (paper)

  15. Equilibrium capillary forces with atomic force microscopy

    NARCIS (Netherlands)

    Sprakel, J.H.B.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2007-01-01

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin

  16. Conductive atomic force microscopy studies on the transformation of GeSi quantum dots to quantum rings.

    Science.gov (United States)

    Zhang, S L; Xue, F; Wu, R; Cui, J; Jiang, Z M; Yang, X J

    2009-04-01

    Conductive atomic force microscopy has been employed to study the topography and conductance distribution of individual GeSi quantum dots (QDs) and quantum rings (QRs) during the transformation from QDs to QRs by depositing an Si capping layer on QDs. The current distribution changes significantly with the topographic transformation during the Si capping process. Without the capping layer, the QDs are dome-shaped and the conductance is higher at the ring region between the center and boundary than that at the center. After capping with 0.32 nm Si, the shape of the QDs changes to pyramidal and the current is higher at both the center and the arris. When the Si capping layer increases to 2 nm, QRs are formed and the current of individual QRs is higher at the rim than that at the central hole. By comparing the composition distributions obtained by scanning Auger microscopy and atomic force microscopy combined with selective chemical etching, the origin of the current distribution change is discussed.

  17. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Lulu Zhou

    2017-04-01

    Full Text Available Atomic force microscopy (AFM has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  18. A study of phase separation in peptide-loaded HPMC films using T(zero)-modulated temperature DSC, atomic force microscopy, and scanning electron microscopy.

    Science.gov (United States)

    Hussain, Samana; Grandy, David B; Reading, Mike; Craig, Duncan Q M

    2004-07-01

    Despite the widespread use of drug-loaded polymeric systems, there is still considerable uncertainty with regard to the nature of the distribution of the drug within the polymer matrix. The aim of this investigation was to develop thermal and microscopic techniques whereby the miscibility and spatial distribution of a model peptide, cyclosporin A (CyA), in hydroxypropyl methylcellulose (HPMC) films may be studied. The new technique of T(zero)-modulated temperature differential scanning calorimetry (T(zero) MTDSC), scanning electron microscopy (SEM), and pulse force mode atomic force microscopy (PFM-AFM) were used in conjunction to study films prepared using a solvent evaporation process, with a solvent extraction study performed to elucidate the nature of the observed phases. T(zero) MTDSC studies showed glass transitions for both the HPMC and CycA, with the T(g) for the HPMC and CycA seen for the mixed systems. SEM showed two spherical phases of differing electron density. PFM-AFM also showed spheres of differing adhesion that increased in size on addition of drug. Pixel intensity analysis indicated that the smaller spheres corresponded to CycA. Exposure of the films to dichloromethane, in which CycA is soluble but HPMC is not, resulted in the presence of voids that corresponded well to the spheres suggested to correspond to the drug. It was concluded that the system had undergone extensive or complete phase separation, and that the thermal and microscopic techniques outlined above are an effective means by which this issue may be studied. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:1672-1681, 2004

  19. Study of atomic force microscopy nanoindentation for the development of nanostructures

    International Nuclear Information System (INIS)

    Sirena, M.; Fusil, S.; Bouzehouane, K.; George, J.-M.; Cros, V.

    2009-01-01

    We have studied the fabrication of atomic force microscope (AFM) based nanotemplates using electrically controlled indentation (ECI) and a composite barrier (photoresist/alumina) that is resistant to the lithography process and presents good mechanical properties for indentation. The indentation process is affected by several factors such as the indentation speed, the trigger voltage and the barrier type. We have used the nanotemplate technique to fabricate small gold-gold nanocontacts (1-10 nm). In this limit, the size of the contacts that is obtained through the indentation process seems to be stochastic. However, low dimension, clean metallic contacts were achieved with high temporal stability and compatible with low temperature measurements. The fabricated nanotemplates are versatile and can be used in a wide range of applications, from nanojunctions to connecting a single nano-object. Small area metallic contacts can be used to study spin injection or ballistic transport.

  20. Study of atomic force microscopy nanoindentation for the development of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sirena, M., E-mail: sirena@cab.cnea.gov.a [Unite Mixte de Physique CNRS/Thales, Campus de Polytechnique. 1 Avenue A. Fresnel, 91767 Palaiseau (France); Fusil, S. [Universite d' Evry, Batiment des Sciences, rue du pere Jarlan, 91205 Every (France); Bouzehouane, K.; George, J.-M.; Cros, V. [Unite Mixte de Physique CNRS/Thales, Campus de Polytechnique. 1 Avenue A. Fresnel, 91767 Palaiseau (France)

    2009-10-01

    We have studied the fabrication of atomic force microscope (AFM) based nanotemplates using electrically controlled indentation (ECI) and a composite barrier (photoresist/alumina) that is resistant to the lithography process and presents good mechanical properties for indentation. The indentation process is affected by several factors such as the indentation speed, the trigger voltage and the barrier type. We have used the nanotemplate technique to fabricate small gold-gold nanocontacts (1-10 nm). In this limit, the size of the contacts that is obtained through the indentation process seems to be stochastic. However, low dimension, clean metallic contacts were achieved with high temporal stability and compatible with low temperature measurements. The fabricated nanotemplates are versatile and can be used in a wide range of applications, from nanojunctions to connecting a single nano-object. Small area metallic contacts can be used to study spin injection or ballistic transport.

  1. Tip-Loading, Force-Dependent Tunneling Behavior in Alkanethiol Self-Assembled Monolayers Studied Through Conducting Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Lee, Min Hyung; Song, Hyun Wook

    2013-01-01

    The force-dependent tunneling transport in metal/alkanethiol/metal junctions was examined using CAFM. Tunneling current and current density through alkanethiol SAMs increased with increasing tip-loading force in CAFM, which suggests that a potential change in geometry of the molecules under the tip loads influences the transport properties of alkanethiol SAMs. Enhanced intermolecular tunneling transport in the tilted molecular configuration under tip-loading effect is likely responsible for such an increase in tunneling current density. We also demonstrated that through-bond tunneling is a more efficient pathway in alkanethiol SAMs than are intermolecular chain-to-chain pathways, by demonstrating a dependence of current density on the associated tunneling distances. We report a tip-loading, force-dependent tunneling behavior in alkanethiol SAMs using CAFM. A variable tip-loading force applies to alkanethiol SAMs with a standard AFM feedback, and current(I)-voltage(V) characteristics are simultaneously measured while varying the loading forces. In particular, we observe how a tip-loading force in CAFM influences the transport properties of alkanethiol SAMs

  2. Atomic force microscopy for the determination of refractive index profiles of optical fibres and waveguides: a quantitative study

    International Nuclear Information System (INIS)

    Huntington, S.T.; Mulvaney, P.; Roberts, K.A.

    1997-01-01

    The use of preferential etching and atomic force microscopy to measure refractive index profiles of optical fibres is investigated. Both the etch rate and the position of lateral features are shown to be independent of etch time. An elliptical core fibre has been studied and the resultant profile found to be in qualitative agreement with the preform index profile. It is shown, however, that the ellipticity of the core has changed during the drawing process. The method has been extended to fluorine and germanium doped planar waveguides and the results correlated with the fabrication process

  3. Epifluorescence and atomic force microscopy: Two innovative applications for studying phage-host interactions in Lactobacillus helveticus.

    Science.gov (United States)

    Zago, Miriam; Scaltriti, Erika; Fornasari, Maria Emanuela; Rivetti, Claudio; Grolli, Stefano; Giraffa, Giorgio; Ramoni, Roberto; Carminati, Domenico

    2012-01-01

    Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥6log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Atomic force microscopy and scanning electron microscopy evaluation of efficacy of scaling and root planing using magnification: A randomized controlled clinical study

    Directory of Open Access Journals (Sweden)

    Ranjana Mohan

    2013-01-01

    Full Text Available Aim: A randomized controlled clinical study was undertaken to evaluate the effectiveness of scaling and root planing (SRP by using Magnifying Loupes (ML and dental operating microscope (DOM. Materials and Methods: A total of 90 human teeth scheduled for extraction from 18 patients aged between 25 and 65 years suffering from generalized chronic severe periodontitis were randomly assigned to three treatment groups. Group 1 consisted SRP performed without using magnification (unaided, Group 2-SRP with ML and Group 3-SRP with DOM. Following extractions, samples were prepared for (i evaluation of surface topography by atomic force microscopy, (ii presence of smear layer, debris by scanning electron microscopy (iii elemental analysis by energy dispersive X-ray analysis. Data was subjected to statistical analysis using analysis of variance, post-hoc (Tukey-HSD and Chi-square test. Results: Statistically significant (P < 0.001 difference was found among the different treatment groups. Group 3 was the best while Group 1 was the least effective technique for SRP. Order of efficacy in terms of the surface was found to be - Palatal < Lingual < Distal ≅ Mesial < Buccal. Efficiency in mandibular to maxillary teeth was found to be significant (P < 0.05, also anterior to posterior teeth (P < 0.05. Conclusion: Magnification tools significantly enhance the efficacy of supragingival and subgingival SRP.

  5. Coffee Cup Atomic Force Microscopy

    Science.gov (United States)

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  6. Force modulation for improved conductive-mode atomic force microscopy

    NARCIS (Netherlands)

    Koelmans, W.W.; Sebastian, Abu; Despont, Michel; Pozidis, Haris

    We present an improved conductive-mode atomic force microscopy (C-AFM) method by modulating the applied loading force on the tip. Unreliable electrical contact and tip wear are the primary challenges for electrical characterization at the nanometer scale. The experiments show that force modulation

  7. An Atomic Force Microscopy Study of the Interactions Involving Polymers and Silane Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo L. Oréfice

    1998-12-01

    Full Text Available ABSTRACT: Silane coupling agents have been frequently used as interfacial agents in polymer composites to improve interfacial strength and resistance to fluid migration. Although the capability of these agents in improving properties and performance of composites has been reported, there are still many uncertainties regarding the processing-structure-property relationships and the mechanisms of coupling developed by silane agents. In this work, an Atomic Force Microscope (AFM was used to measure interactions between polymers and silica substrates, where silane networks with a series of different structures were processed. The influence of the structure of silane networks on the interactions with polymers was studied and used to determine the mechanisms involved in the coupling phenomenon. The AFM results showed that phenomena such as chain penetration, entanglements, intersegment bonding, chain conformation in the vicinities of rigid surfaces were identified as being relevant for the overall processes of adhesion and adsorption of polymeric chains within a silane network. AFM adhesion curves showed that penetration of polymeric chains through a more open silane network can lead to higher levels of interactions between polymer and silane agents.

  8. Self-assembled monolayers of alkyl-thiols on InAs: A Kelvin probe force microscopy study

    Science.gov (United States)

    Szwajca, A.; Wei, J.; Schukfeh, M. I.; Tornow, M.

    2015-03-01

    We report on the preparation and characterization of self-assembled monolayers from aliphatic thiols with different chain length and termination on InAs (100) planar surfaces. This included as first step the development and investigation of a thorough chemical InAs surface preparation step using a dedicated bromine/NH4OH-based etching process. Ellipsometry, contact angle measurements and atomic force microscopy (AFM) indicated the formation of smooth, surface conforming monolayers. The molecular tilt angles were obtained as 30 ± 10° with respect to the surface normal. Kelvin probe force microscopy (KPFM) measurements in hand with Parameterized Model number 5 (PM5) calculations of the involved molecular dipoles allowed for an estimation of the molecular packing densities on the surface. We obtained values of up to n = 1014 cm- 2 for the SAMs under study. These are close to what is predicted from a simple geometrical model that would calculate a maximum density of about n = 2.7 × 1014 cm- 2. We take this as additional conformation of the substrate smoothness and quality of our InAs-SAM hybrid layer systems.

  9. Study of magnetism in Ni–Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, G.V.K.; Kumar, Anish, E-mail: anish@igcar.gov.in; Chakraborty, Gopa; Albert, S.K; Rao, B. Purna Chandra; Bhaduri, A.K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni–Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni–Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr–C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co–Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni–Cr alloy deposits on stainless steel. - Highlights: • Study of evolution of ferromagnetism in Comonoy-6 deposit on austenitic steel. • Magnetic force microscopy (MFM) exhibited ferromagnetic matrix in first two layers. • The maximum MFM

  10. Nucleation and growth of elastin-like peptide fibril multilayers: an in situ atomic force microscopy study

    International Nuclear Information System (INIS)

    Yang Guocheng; Yip, Christopher M; Wong, Michael K; Lin, Lauren E

    2011-01-01

    Controlling how molecules assemble into complex supramolecular architectures requires careful consideration of the subtle inter- and intra-molecular interactions that control their association. This is particularly crucial in the context of assembly at interfaces, where both surface chemistry and structure can play a role in directing structure formation. We report here the results of a study into the self-assembly of the elastin-like peptide EP I on structurally modified highly ordered pyrolytic graphite, including the role of spatial confinement on fibril nucleation and the growth of oriented fibril multilayers. In situ atomic force microscopy performed in fluid and at elevated temperature provided direct evidence of frustrated fibril nuclei and oriented growth of independent fibril domains. These results portend the application of this in situ strategy for studies of the nucleation and growth mechanisms of other fibril- and amyloid-forming proteins.

  11. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  12. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    Science.gov (United States)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  13. Electronic properties of dioctylterthiophene-based organic thin-film transistors: A Kelvin probe force microscopy study

    International Nuclear Information System (INIS)

    Afsharimani, N.; Nysten, B.

    2013-01-01

    It appeared in the past decades that semi-conducting organic liquid crystals could be used as the active layer in organic thin film transistors (OTFTs). They can be processed by simple methods such as inkjet printing, which paves the way to applications for cheap plastic electronics such as electronic tags, biosensors, and flexible screens. However, the measured field-effect mobility in these OTFTs is relatively low compared to inorganic devices. Generally, such low field-effect mobility values result from extrinsic effects such as grain boundaries or imperfect interfaces with source and drain electrodes. It has been shown that reducing the number of grain boundaries between the source and drain electrodes improves the field effect mobility. Therefore, it is important to understand the transport mechanisms by studying the local structure and electronic properties of organic thin films within the channel and at the interfaces with source and drain electrodes in order to improve the field-effect mobility in OTFTs. Kelvin probe force microscopy (KPFM) is an ideal tool for that purpose since it allows to simultaneously investigate the local structure and the electrical potential distribution in electronic devices. In this work, the structure and the electrical properties of OTFTs based on dioctylterthiophene (DOTT) were studied. The transistors were fabricated by spin-coating DOTT on the transistor structures with untreated and treated (silanized) channel silicon oxide. The potential profiles across the channel and at the metal-electrode interfaces were measured by KPFM. The effect of surface treatment on the electrical properties, charge trapping phenomenon and hysteresis effects is demonstrated and analyzed. - Highlights: • Kelvin probe force microscopy study of organic thin film transistors. • Cost and time savings by using solution processable molecules as active layers. • Smaller crystals and less charge trapping effects in silanized devices. • Decrement

  14. System analysis of force feedback microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Mario S. [CFMC/Dep. de Física, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Costa, Luca [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France); Université Joseph Fourier BP 53, 38041 Grenoble Cedex 9 (France); Chevrier, Joël [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France); Université Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Comin, Fabio [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France)

    2014-02-07

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.

  15. System analysis of force feedback microscopy

    International Nuclear Information System (INIS)

    Rodrigues, Mario S.; Costa, Luca; Chevrier, Joël; Comin, Fabio

    2014-01-01

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions

  16. Hofmeister effect on the interfacial free energy of aliphatic and aromatic surfaces studied by chemical force microscopy.

    Science.gov (United States)

    Patete, Jonathan; Petrofsky, John M; Stepan, Jeffery; Waheed, Abdul; Serafin, Joseph M

    2009-01-15

    This work describes chemical force microscopy (CFM) studies of specific-ion effects on the aqueous interfacial free energy of hydrophobic monolayers. CFM measurements allow for the characterization of interfacial properties on length scales below 100 nm. The ions chosen span the range of the Hofmeister series, from the kosmotropic Na(2)SO(4) to the chaotropic NaSCN. The salt concentrations used are typical of many laboratory processes such as protein crystallization, 2-3 M. Both aliphatic (terminal methyl) and aromatic (terminal phenyl) monolayers were examined, and rather pronounced differences were observed between the two cases. The specific-ion dependence of the aliphatic monolayer closely follows the Hofmeister series, namely the chaotropic ions lowered the interfacial free energy and the kosmotropic ions increased the interfacial free energy. However, the aromatic monolayer had significant deviations from the Hofmeister series. Possible origins for this difference are discussed.

  17. Fidelity imaging for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, Sayan, E-mail: ghos0087@umn.edu; Salapaka, Murti, E-mail: murtis@umn.edu [Nanodynamics Systems Laboratory, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  18. Backscattering position detection for photonic force microscopy

    International Nuclear Information System (INIS)

    Volpe, Giovanni; Kozyreff, Gregory; Petrov, Dmitri

    2007-01-01

    An optically trapped particle is an extremely sensitive probe for the measurement of pico- and femto-Newton forces between the particle and its environment in microscopic systems (photonic force microscopy). A typical setup comprises an optical trap, which holds the probe, and a position sensing system, which uses the scattering of a beam illuminating the probe. Usually the position is accurately determined by measuring the deflection of the forward-scattered light transmitted through the probe. However, geometrical constraints may prevent access to this side of the trap, forcing one to make use of the backscattered light instead. A theory is presented together with numerical results that describes the use of the backscattered light for position detection. With a Mie-Debye approach, we compute the total (incident plus scattered) field and follow its evolution as it is collected by the condenser lenses and projected onto the position detectors and the responses of position sensitive detectors and quadrant photodetectors to the displacement of the probe in the optical trap, both in forward and backward configurations. We find out that in the case of backward detection, for both types of detectors the displacement sensitivity can change sign as a function of the probe size and is null for some critical sizes. In addition, we study the influence of the numerical aperture of the detection system, polarization, and the cross talk between position measurements in orthogonal directions. We finally discuss how these features should be taken into account in experimental designs

  19. Laboratory Exercise for Studying the Morphology of Heat-Denatured and Amyloid Aggregates of Lysozyme by Atomic Force Microscopy

    Science.gov (United States)

    Gokalp, Sumeyra; Horton, William; Jónsdóttir-Lewis, Elfa B.; Foster, Michelle; Török, Marianna

    2018-01-01

    To facilitate learning advanced instrumental techniques, essential tools for visualizing biomaterials, a simple and versatile laboratory exercise demonstrating the use of Atomic Force Microscopy (AFM) in biomedical applications was developed. In this experiment, the morphology of heat-denatured and amyloid-type aggregates formed from a low-cost…

  20. Boron-doped Diamond Electrodes: Electrochemical, Atomic Force Microscopy and Raman Study towards Corrosion-modifications at Nanoscale

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Vlčková Živcová, Zuzana; Petrák, Václav; Frank, Otakar; Janda, Pavel; Tarábková, Hana; Nesladek, M.; Mortet, Vincent

    2015-01-01

    Roč. 179, OCT 2015 (2015), s. 626-636 ISSN 0013-4686 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 ; RVO:68378271 Keywords : Raman spectroelectrochemistry * atomic force microscopy * boron doped diamond Subject RIV: CG - Electrochemistry Impact factor: 4.803, year: 2015

  1. Tapping mode atomic force microscopy in liquid

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1994-01-01

    We show that standard silicon nitride cantilevers can be used for tapping mode atomic force microscopy (AFM) in air, provided that the energy of the oscillating cantilever is sufficiently high to overcome the adhesion of the water layer. The same cantilevers are successfully used for tapping mode

  2. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  3. Atomic Force Microscopy Based Cell Shape Index

    Science.gov (United States)

    Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia

    2013-03-01

    Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.

  4. Analysis of long- and short-range contribution to adhesion work in cardiac fibroblasts: An atomic force microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Sbaizero, O., E-mail: sbaizero@units.it [Department of Engineering and Architecture, University of Trieste (Italy); University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States); DelFavero, G. [Department of Engineering and Architecture, University of Trieste (Italy); Martinelli, V. [International Center for Genetic Engineering and Biotechnology, Trieste (Italy); Long, C.S.; Mestroni, L. [University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora (United States)

    2015-04-01

    Atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) and Poisson statistic were used to analyze the detachment work recorded during the removal of gold-covered microspheres from cardiac fibroblasts. The effect of Cytochalasin D, a disruptor of the actin cytoskeleton, on cell adhesion was also tested. The adhesion work was assessed using a Poisson analysis also derived from single-cell force spectroscopy retracting curves. The use of Poisson analysis to get adhesion work from AFM curves is quite a novel method, and in this case, proved to be effective to study the short-range and long-range contributions to the adhesion work. This method avoids the difficult identification of minor peaks in the AFM retracting curves by creating what can be considered an average adhesion work. Even though the effect of actin depolymerisation is well documented, its use revealed that control cardiac fibroblasts (CT) exhibit a work of adhesion at least 5 times higher than that of the Cytochalasin treated cells. However, our results indicate that in both cells short-range and long-range contributions to the adhesion work are nearly equal and the same heterogeneity index describes both cells. Therefore, we infer that the different adhesion behaviors might be explained by the presence of fewer membrane adhesion molecules available at the AFM tip–cell interface under circumstances where the actin cytoskeleton has been disrupted. - Highlights: • AFM force–deformation curve was used to characterize the cardiac fibroblast adhesion behavior. • The amount and nature of adhesion were assessed using a Poisson analysis applied to the AFM curve. • The work of adhesion for control cells was about four times higher than that of the Cyt-D treated cells. • Short- and long-range contributions to adhesion are nearly equal for both control and treated cells.

  5. An atomic force microscopy study of the interactions between indolicidin and supported planar bilayers

    DEFF Research Database (Denmark)

    Askou, Hans Jakob; Jakobsen, Rasmus Neergaard; Fojan, Peter

    2008-01-01

    . The present study indicates that the mode of action for indolicidin can be best described by a stepwise interaction of the peptide with the membrane. Formation of pores however can not be supported on the basis of our experiments. (Cited By) View on PubMed PMID: 19049026 Udgivelsesdato: SEP...

  6. In situ atomic force microscopy in the study of electrogeneration of polybithiophene on Pt electrode

    International Nuclear Information System (INIS)

    Innocenti, M.; Loglio, F.; Pigani, L.; Seeber, R.; Terzi, F.; Udisti, R.

    2005-01-01

    Electrochemical AFM technique has been used for the in situ study of the electrogeneration-deposition process of polybithiophene at varying the polymerisation conditions, such as supporting electrolyte, i.e., LiClO 4 or tetrabutylammonium hexafluorophosphate, and polymerisation procedure, i.e., either potentiostatic or potentiodynamic method. In order to better follow the evolution of the morphology of the deposit, particularly during the early stages of the polymer film growth, a suitable home-made electrochemical cell has been used

  7. Single Molecule Atomic Force Microscopy Studies of Photosensitized Singlet Oxygen Behavior on a DNA Origami Template

    DEFF Research Database (Denmark)

    Helmig, Sarah Wendelboe; Rotaru, Alexandru; Arian, Dumitru

    2010-01-01

    DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can...... be conjugated to each of the short staple strands, the origami method offers a unique possibility of arranging molecules and materials in well-defined positions on a structured surface. Here we combine the action of light with AFM and DNA nanostructures to study the production of singlet oxygen from a single...... photosensitizer molecule conjugated to a selected DNA origami staple strand on an origami structure. We demonstrate a distance-dependent oxidation of organic moieties incorporated in specific positions on DNA origami by singlet oxygen produced from a single photosensitizer located at the center of each origami....

  8. Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy

    International Nuclear Information System (INIS)

    Canet-Ferrer, Josep; Coronado, Eugenio; Forment-Aliaga, Alicia; Pinilla-Cienfuegos, Elena

    2014-01-01

    AFM images are always affected by artifacts arising from tip convolution effects, resulting in a decrease in the lateral resolution of this technique. The magnitude of such effects is described by means of geometrical considerations, thereby providing better understanding of the convolution phenomenon. We demonstrate that for a constant tip radius, the convolution error is increased with the object height, mainly for the narrowest motifs. Certain influence of the object shape is observed between rectangular and elliptical objects with the same height. Such moderate differences are essentially expected among elongated objects; in contrast they are reduced as the object aspect ratio is increased. Finally, we propose an algorithm to study the influence of the size, shape and aspect ratio of different nanometric motifs on a flat substrate. Indeed, with this algorithm, convolution artifacts can be extended to any kind of motif including real surface roughness. From the simulation results we demonstrate that in most cases the real motif’s width can be estimated from AFM images without knowing its shape in detail. (paper)

  9. Atomic force microscopy and Raman scattering spectroscopy studies on heat-induced fibrous aggregates of β-lactoglobulin

    OpenAIRE

    Ikeda, Shinya

    2003-01-01

    Nanometer-thick fibrous aggregates of β-lactoglobulin alone and its mixture with other globular proteins were formed by heating aqueous solutions at pH 2 with maintaining an effective level of electrostatic repulsion among denatured protein molecules. In atomic force microscopy (AFM) images, these fibrous aggregates appeared to be fairly uniform in width and height and composed of strings of globular elements. Fibrous aggregates formed in β-lactoglobulin individual systems were only slightly ...

  10. In Situ Atomic Force Microscopy Studies on Nucleation and Self-Assembly of Biogenic and Bio-Inspired Materials

    Directory of Open Access Journals (Sweden)

    Cheng Zeng

    2017-08-01

    Full Text Available Through billions of years of evolution, nature has been able to create highly sophisticated and ordered structures in living systems, including cells, cellular components and viruses. The formation of these structures involves nucleation and self-assembly, which are fundamental physical processes associated with the formation of any ordered structure. It is important to understand how biogenic materials self-assemble into functional and highly ordered structures in order to determine the mechanisms of biological systems, as well as design and produce new classes of materials which are inspired by nature but equipped with better physiochemical properties for our purposes. An ideal tool for the study of nucleation and self-assembly is in situ atomic force microscopy (AFM, which has been widely used in this field and further developed for different applications in recent years. The main aim of this work is to review the latest contributions that have been reported on studies of nucleation and self-assembly of biogenic and bio-inspired materials using in situ AFM. We will address this topic by introducing the background of AFM, and discussing recent in situ AFM studies on nucleation and self-assembly of soft biogenic, soft bioinspired and hard materials.

  11. Thickness and morphology of polyelectrolyte coatings on silica surfaces before and after protein exposure studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haselberg, Rob, E-mail: r.haselberg@vu.nl [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Flesch, Frits M. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); Boerke, Arjan [Department of Biochemistry and Cell Biology, Utrecht University, Yalelaan 2, 3508 TD Utrecht (Netherlands); Somsen, Govert W. [Biomolecular Analysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); AIMMS Division of BioMolecular Analysis, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2013-05-24

    Graphical abstract: -- Highlights: •Atomic force microscopy is used to characterize polyelectrolyte coatings. •Coating procedure leads to nm-thick layers on a silica surface. •Polyelectrolyte coatings effectively prevent protein adsorption. •AFM provides the high resolution to investigate these thin films. •AFM results support earlier findings obtained with capillary electrophoresis. -- Abstract: Analyte–wall interaction is a significant problem in capillary electrophoresis (CE) as it may compromise separation efficiencies and migration time repeatability. In CE, self-assembled polyelectrolyte multilayer films of Polybrene (PB) and dextran sulfate (DS) or poly(vinylsulfonic acid) (PVS) have been used to coat the capillary inner wall and thereby prevent analyte adsorption. In this study, atomic force microscopy (AFM) was employed to investigate the layer thickness and surface morphology of monolayer (PB), bilayer, (PB-DS and PB-PVS), and trilayer (PB-DS-PB and PB-PVS-PB) coatings on glass surfaces. AFM nanoshaving experiments providing height distributions demonstrated that the coating procedures led to average layer thicknesses between 1 nm (PB) and 5 nm (PB-DS-PB), suggesting the individual polyelectrolytes adhere flat on the silica surface. Investigation of the surface morphology of the different coatings by AFM revealed that the PB coating does not completely cover the silica surface, whereas full coverage was observed for the trilayer coatings. The DS-containing coatings appeared on average 1 nm thicker than the corresponding PVS-containing coatings, which could be attributed to the molecular structure of the anionic polymers applied. Upon exposure to the basic protein cytochrome c, AFM measurements showed an increase of the layer thickness for bare (3.1 nm) and PB-DS-coated (4.6 nm) silica, indicating substantial protein adsorption. In contrast, a very small or no increase of the layer thickness was observed for the PB and PB-DS-PB coatings

  12. Glycerol-3-phosphate acyltransferase 2 expression modulates cell roughness and membrane permeability: An atomic force microscopy study.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Cattaneo

    Full Text Available In mammalian cells, de novo glycerolipid synthesis begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferases (GPAT. GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions, and overexpressed in several types of cancers and cancer-derived human cell lines where its expression contributes to the tumor phenotype. Using gene silencing and atomic force microscopy, we studied the correlation between GPAT2 expression and cell surface topography, roughness and membrane permeability in MDA-MB-231 cells. In addition, we analyzed the glycerolipid composition by gas-liquid chromatography. GPAT2 expression altered the arachidonic acid content in glycerolipids, and the lack of GPAT2 seems to be partially compensated by the overexpression of another arachidonic-acid-metabolizing enzyme, AGPAT11. GPAT2 expressing cells exhibited a rougher topography and less membrane damage than GPAT2 silenced cells. Pore-like structures were present only in GPAT2 subexpressing cells, correlating with higher membrane damage evidenced by lactate dehydrogenase release. These GPAT2-induced changes are consistent with its proposed function as a tumor-promoting gene, and might be used as a phenotypic differentiation marker. AFM provides the basis for the identification and quantification of those changes, and demonstrates the utility of this technique in the study of cancer cell biology.

  13. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, B. S. [CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012 (India); Rajasthan Technical University, Rawatbhata Road, Kota 324010 (India); Singh, A.; Tyagi, P. K. [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Tanwar, S. [Rajasthan Technical University, Rawatbhata Road, Kota 324010 (India); Kumar, M. Senthil; Kushvaha, S. S., E-mail: kushvahas@nplindia.org [CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012 (India)

    2016-04-13

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surface with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.

  14. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  15. Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Joao C. [Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Eaton, Peter, E-mail: peter.eaton@fc.up.pt [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Gomes, Ana M.; Pintado, Manuela E.; Xavier Malcata, F. [Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2009-07-15

    Bacillus cereus is a Gram-positive, spore-forming bacterium that is widely distributed in nature. Its intrinsic thermal resistance coupled with the extraordinary resistance against common food preservation techniques makes it one of the most frequent food-poisoning microorganisms causing both intoxications and infections. In order to control B. cereus growth/sporulation, and hence minimize the aforementioned hazards, several antimicrobial compounds have been tested. The aim of this work was to assess by atomic force microscopy (AFM) the relationship between the molecular weight (MW) of chitosan and its antimicrobial activity upon both vegetative and resistance forms of B. cereus. The use of AFM imaging studies helped us to understand how chitosans with different MW act differently upon B. cereus. Higher MW chitosans (628 and 100 kDa) surrounded both forms of B. cereus cells by forming a polymer layer-which eventually led to the death of the vegetative form by preventing the uptake of nutrients yet did not affect the spores since these can survive for extended periods without nutrients. Chitooligosaccharides (COS) (<3 kDa), on the other hand, provoked more visible damages in the B. cereus vegetative form-most probably due to the penetration of the cells by the COS. The use of COS by itself on B. cereus spores was not enough for the destruction of a large number of cells, but it may well weaken the spore structure and its ability to contaminate, by inducing exosporium loss.

  16. Aggregation of Aß(25-35 on DOPC and DOPC/DHA bilayers: an atomic force microscopy study.

    Directory of Open Access Journals (Sweden)

    Matilde Sublimi Saponetti

    Full Text Available β amyloid peptide plays an important role in both the manifestation and progression of Alzheimer disease. It has a tendency to aggregate, forming low-molecular weight soluble oligomers, higher-molecular weight protofibrillar oligomers and insoluble fibrils. The relative importance of these single oligomeric-polymeric species, in relation to the morbidity of the disease, is currently being debated. Here we present an Atomic Force Microscopy (AFM study of Aβ(25-35 aggregation on hydrophobic dioleoylphosphatidylcholine (DOPC and DOPC/docosahexaenoic 22∶6 acid (DHA lipid bilayers. Aβ(25-35 is the smallest fragment retaining the biological activity of the full-length peptide, whereas DOPC and DOPC/DHA lipid bilayers were selected as models of cell-membrane environments characterized by different fluidity. Our results provide evidence that in hydrophobic DOPC and DOPC/DHA lipid bilayers, Aβ(25-35 forms layered aggregates composed of mainly annular structures. The mutual interaction between annular structures and lipid surfaces end-results into a membrane solubilization. The presence of DHA as a membrane-fluidizing agent is essential to protect the membrane from damage caused by interactions with peptide aggregates; to reduces the bilayer defects where the delipidation process starts.

  17. Prenatally administered HMB modifies the enamel surface roughness in spiny mice offspring: An atomic force microscopy study.

    Science.gov (United States)

    Świetlicka, Izabela; Muszyński, Siemowit; Tomaszewska, Ewa; Dobrowolski, Piotr; Kwaśniewska, Anita; Świetlicki, Michał; Skic, Anna; Gołacki, Krzysztof

    2016-10-01

    The aim of this research was to check the effect of the prenatally administered β-hydroxy β-methylbutyrate (HMB) on the development of enamel surface of the spiny mice offspring. The spiny mice dams were randomly assigned into three groups: control group (not supplemented with HMB) and two experimental groups in which powdered HMB was given at the daily dosage of 0.2g/kg of body weight (group I) and 0.02g/kg of body weight (group II) during the last period of gestation. Newborn pups were euthanized by CO 2 inhalation. The morphology of incisor teeth was analysed using atomic force microscopy (AFM) in semi-contact mode in the height, magnitude and phase domains. Height images became a basis for determination of surface roughness parameters. Conducted study indicated that maternal HMB administration markedly influences enamel development. Enamel of offspring's teeth in both experimental groups was characterized by significantly smaller values of indices describing surface roughness and profile. HMB supplementation influenced the calculated parameters regardless of the diet type and offspring sex, however higher dose of HMB caused stronger changes in enamel surface's physical properties and could be observed in higher intensity in the male group. HMB administration caused reduction in the irregularities of enamel surface, thereby possibly reducing the probability of bacteria adhesion and caries development. These observations may serve to improve nutrition and supplementation of animals and could be a lead for further research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation

    International Nuclear Information System (INIS)

    Fernandes, Joao C.; Eaton, Peter; Gomes, Ana M.; Pintado, Manuela E.; Xavier Malcata, F.

    2009-01-01

    Bacillus cereus is a Gram-positive, spore-forming bacterium that is widely distributed in nature. Its intrinsic thermal resistance coupled with the extraordinary resistance against common food preservation techniques makes it one of the most frequent food-poisoning microorganisms causing both intoxications and infections. In order to control B. cereus growth/sporulation, and hence minimize the aforementioned hazards, several antimicrobial compounds have been tested. The aim of this work was to assess by atomic force microscopy (AFM) the relationship between the molecular weight (MW) of chitosan and its antimicrobial activity upon both vegetative and resistance forms of B. cereus. The use of AFM imaging studies helped us to understand how chitosans with different MW act differently upon B. cereus. Higher MW chitosans (628 and 100 kDa) surrounded both forms of B. cereus cells by forming a polymer layer-which eventually led to the death of the vegetative form by preventing the uptake of nutrients yet did not affect the spores since these can survive for extended periods without nutrients. Chitooligosaccharides (COS) (<3 kDa), on the other hand, provoked more visible damages in the B. cereus vegetative form-most probably due to the penetration of the cells by the COS. The use of COS by itself on B. cereus spores was not enough for the destruction of a large number of cells, but it may well weaken the spore structure and its ability to contaminate, by inducing exosporium loss.

  19. Atomic force microscopy study of stacking modes of martensitic transformation in Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Liu, D.Z.; Kikuchi, T.; Kajiwara, S.; Shinya, N.

    2000-01-01

    Stacking modes of thermally induced and stress-induced martensitic transformation in Fe-28Mn-6Si-5Cr shape memory alloys have been studied using atomic force microscopy (AFM). It has been found that thermally induced martensite plates appear with the self-accommodated stacking form, in which all the three possible variants with different left angle 112 right angle shear directions in a {111} plane are activated and formed in parallel but at separate places; i.e. each plate corresponds to one variant. In addition, a plastic deformation band is always induced in austenite between two different variants. On the other hand, stress-induced martensite plates appear with the mono-partial stacking form, i.e. only single variant is activated in a {111} plane in a grain. The difference between stacking modes of thermally induced and stress-induced martensites makes them play a different role in contributing to shape memory effect in Fe-Mn-Si based shape memory alloys. (orig.)

  20. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  2. Conductive atomic force microscopy study of InAs growth kinetics on vicinal GaAs (110)

    International Nuclear Information System (INIS)

    Tejedor, Paloma; Diez-Merino, Laura; Beinik, Igor; Teichert, Christian

    2009-01-01

    Conductive atomic force microscopy has been used to investigate the effect of atomic hydrogen and step orientation on the growth behavior of InAs on GaAs (110) misoriented substrates. Samples grown by conventional molecular beam epitaxy exhibit higher conductivity on [110]-multiatomic step edges, where preferential nucleation of InAs nanowires takes place by step decoration. On H-terminated substrates with triangular terraces bounded by [115]-type steps, three-dimensional InAs clusters grow selectively at the terrace apices as a result of a kinetically driven enhancement in upward mass transport via AsH x intermediate species and a reduction in the surface free energy.

  3. Morphological study of chitin from Xiphopenaeus kroyeri exoskeletons by using atomic force microscopy (AFM) and CPMAS 13 C NMR

    International Nuclear Information System (INIS)

    Silva, K.M.; Tavares, M.I.; Andrade, C.T.; Simao, R.A.

    1999-01-01

    A sample of α chitin was isolated from exoskeletons of Xiphopenaeus kroyeri. This sample ws dissolved in phosphoric acid and recovered as a fibrous precipitate. Atomic force microscopy was used in noncontact mode to obtain images of the native chitin sample. Different morphological features were observed, including rigid rod crystals 200-300 nm wide. Solid state 13 C NMR techniques were used to investigate chitin samples, and revealed molecular order in both samples. The differences observed in the proton spin-lattice relaxation times in the rotating frame, T H1 p were attributed to the formation of hydrogen bonds in preferential sites in the samples. (author)

  4. Role of organoclay in controlling the morphology and crystal-growth behavior of biodegradable polymer-blend thin films studied using atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-09-01

    Full Text Available clays, their organic modifications and their initial d(sub001)-spacing on the morphology and crystal growth behavior of the PLA/PBSA blend were studied. An atomic force microscopy equipped with a hot-stage scanner was used to examine the crystalline...

  5. The mechanism of PTFE and PE friction deposition: a combined scanning electron and scanning force microscopy study on highly oriented polymeric sliders

    NARCIS (Netherlands)

    Schönherr, Holger; Schaeben, H.; Vancso, Gyula J.

    1998-01-01

    The mechanism of friction deposition of polytetrafluoroethylene (PTFE) and polyethylene (PE) was studied by scanning electron (SEM) and scanning force microscopy (SFM) on the worn surfaces of PTFE and PE sliders that were used in friction deposition on glass substrates. These surfaces exhibited a

  6. Principles and applications of force spectroscopy using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Kyu; Kim, Woong; Park, Joon Won [Dept. of Chemistry, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-12-15

    Single-molecule force spectroscopy is a powerful technique for addressing single molecules. Unseen structures and dynamics of molecules have been elucidated using force spectroscopy. Atomic force microscope (AFM)-based force spectroscopy studies have provided picoNewton force resolution, subnanometer spatial resolution, stiffness of substrates, elasticity of polymers, and thermodynamics and kinetics of single-molecular interactions. In addition, AFM has enabled mapping the distribution of individual molecules in situ, and the quantification of single molecules has been made possible without modification or labeling. In this review, we describe the basic principles, sample preparation, data analysis, and applications of AFM-based force spectroscopy and its future.

  7. Study of NaCl:Mn2+ nanostructures in the Suzuki phase by optical spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Mejía-Uriarte, E.V.; Kolokoltsev, O.; Navarrete Montesinos, M.; Camarillo, E.; Hernández A, J.; Murrieta S, H.

    2015-01-01

    NaCl:Mn 2+ nanostructures in the Suzuki phase have been studied by fluorescence (emission and excitation) spectroscopy and atomic force microscopy (AFM) as a function of temperature. The “as-grown” samples give rise to two broad emission bands that peak at 508 (green emission) and 610 nm (red emission). The excitation spectrum shows peaks at 227 nm and 232 nm for emission wavelengths at 508 nm and 610 nm, respectively. When the samples are heated continuously from room temperature up to 220 °C, the green emission (associated to the excitation peak at 227 nm) disappears at a temperature close to 120 °C, whilst only the red emission remains, which is characteristic of manganese ions. AFM images on the (0 0 1) surface (freshly cleaved) show several conformations of nanostructures, such as disks of 20–50 nm in diameter. Particularly, the images also reveal nanostructures with rectangular shape of ~280×160 nm 2 and ~6 nm height; these are present only in samples with green emission associated to the Suzuki phase. Then, the evidence suggests that this topographic configuration might be related to the interaction with the first neighbors and the next neighbors, according to the configuration that has been suggested for the Suzuki phase. - Highlights: • NaCl:Mn 2+ single crystals in the Suzuki phase contain rectangular nanostructures. • Double emission of manganese ions: green (508 nm) and red (610 nm) bands. • The excitation peak at 227 nm is attributed to rectangular nanostructures. • The green emission band associated to Suzuki phase is extinguished at 120 °C

  8. Molecular dimensions of dried glucose oxidase on a Au(1 1 1) surface studied by dynamic mode scanning force microscopy

    International Nuclear Information System (INIS)

    Otsuka, Ichiro; Yaoita, Masashi; Nagashima, Seiichi; Higano, Michi

    2005-01-01

    We have investigated the molecular dimensions of a dried single glucose oxidase (GO) molecule adsorbed on a Au(1 1 1) surface with the UHV non-contact atomic force microscopy (NC-AFM) and tapping mode atomic force microcopy (TMAFM). The smallest air-dried GO particles in a TMAFM-measured size distribution are found to be 10-11 nm wide and 0.3-0.4 nm high. We find each collapsed ellipsoidal feature with a groove in a NC-AFM image, which measured 12 nm x 10 nm x 0.5 nm. The lateral dimensions (12 nm x 10 nm) of the observed feature is close to those of a GO monomer measured by scanning tunneling microscopy (STM) [Quijin et al., 12.2 nm x 8.9 nm as the size of one wing of an opening butterfly (dimer) appeared in a STM image] and by contact mode AFM [Quinto et al., 14 nm x 8 nm]. Our value of the vertical dimension (0.5 nm) is consistent with AFM results and molecular dynamics simulations that suggest a surface-induced complete unfolding, showing the average diameter of amino acid residues

  9. Reconstruction of Undersampled Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Arildsen, Thomas; Østergaard, Jan

    2013-01-01

    Atomic force microscopy (AFM) is one of the most advanced tools for high-resolution imaging and manipulation of nanoscale matter. Unfortunately, standard AFM imaging requires a timescale on the order of seconds to minutes to acquire an image which makes it complicated to observe dynamic processes....... Moreover, it is often required to take several images before a relevant observation region is identified. In this paper we show how to significantly reduce the image acquisition time by undersampling. The reconstruction of an undersampled AFM image can be viewed as an inpainting, interpolating problem...... should be reconstructed using interpolation....

  10. Atomic force microscopy of starch systems.

    Science.gov (United States)

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  11. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    Science.gov (United States)

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  12. Electrostatic Force Microscopy of Self Assembled Peptide Structures

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Pantagos, Spyros P.

    2011-01-01

    In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures. In partic......In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures...

  13. Atomic force microscopy study of TiO2 sol-gel films thermally treated under NH3 atmosphere

    International Nuclear Information System (INIS)

    Trapalis, C.; Todorova, N.; Anastasescu, M.; Anastasescu, C.; Stoica, M.; Gartner, M.; Zaharescu, M.; Stoica, T.

    2009-01-01

    Multilayered TiO 2 films were obtained by sol-gel and dipping deposition on quartz substrate followed by thermal treatment under NH 3 atmosphere. In an attempt to understand the close relationship between microstructural characteristics and the synthesis parameters, a systematic research of the structure and the morphology of NH 3 modified TiO 2 sol-gel films by XRD and Atomic Force Microscopy is reported. The surface morphology has been evaluated in terms of grains size, fractal dimension and surface roughness. For each surface, it was found a self-similar behavior (with mean fractal dimension in the range of 2.67-3.00) related to an optimum morphology favorable to maintain a nano-size distribution of the grains. The root mean square (RMS) roughness of the samples was found to be in the range of 0.72-6.02 nm.

  14. Cell-matrix interactions of Entamoeba histolytica and E. dispar. A comparative study by electron-, atomic force- and confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Talamás-Lara, Daniel, E-mail: daniel_talamas@hotmail.com [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); Talamás-Rohana, Patricia, E-mail: ptr@cinvestav.mx [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); Fragoso-Soriano, Rogelio Jaime, E-mail: rogelio@fis.cinvestav.mx [Department of Physics, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); Espinosa-Cantellano, Martha, E-mail: mespinosac@cinvestav.mx [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); Chávez-Munguía, Bibiana, E-mail: bchavez@cinvestav.mx [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); González-Robles, Arturo, E-mail: goroa@cinvestav.mx [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico); Martínez-Palomo, Adolfo, E-mail: amartine@cinvestav.mx [Department of Infectomics and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados, Apartado Postal 14-740, Mexico City (Mexico)

    2015-10-01

    Invasion of tissues by Entamoeba histolytica is a multistep process that initiates with the adhesion of the parasite to target tissues. The recognition of the non-invasive Entamoeba dispar as a distinct, but closely related protozoan species raised the question as to whether the lack of its pathogenic potential could be related to a weaker adhesion due to limited cytoskeleton restructuring capacity. We here compared the adhesion process of both amebas to fibronectin through scanning, transmission, atomic force, and confocal microscopy. In addition, electrophoretic and western blot assays of actin were also compared. Adhesion of E. histolytica to fibronectin involves a dramatic reorganization of the actin network that results in a tighter contact to and the subsequent focal degradation of the fibronectin matrix. In contrast, E. dispar showed no regions of focal adhesion, the cytoskeleton was poorly reorganized and there was little fibronectin degradation. In addition, atomic force microscopy using topographic, error signal and phase modes revealed clear-cut differences at the site of contact of both amebas with the substrate. In spite of the morphological and genetic similarities between E. histolytica and E. dispar the present results demonstrate striking differences in their respective cell-to-matrix adhesion processes, which may be of relevance for understanding the invasive character of E. histolytica. - Highlights: • Striking differences in adhesion to FN between E. histolytica and E. dispar. • A greater degree of cell stiffness in E. histolytica with respect to E. dispar. • E. histolytica but not E. dispar forms regions of close contact with FN. • The actin cytoskeleton is involved in the pathogenicity of E. histolytica.

  15. Cell-matrix interactions of Entamoeba histolytica and E. dispar. A comparative study by electron-, atomic force- and confocal microscopy

    International Nuclear Information System (INIS)

    Talamás-Lara, Daniel; Talamás-Rohana, Patricia; Fragoso-Soriano, Rogelio Jaime; Espinosa-Cantellano, Martha; Chávez-Munguía, Bibiana; González-Robles, Arturo; Martínez-Palomo, Adolfo

    2015-01-01

    Invasion of tissues by Entamoeba histolytica is a multistep process that initiates with the adhesion of the parasite to target tissues. The recognition of the non-invasive Entamoeba dispar as a distinct, but closely related protozoan species raised the question as to whether the lack of its pathogenic potential could be related to a weaker adhesion due to limited cytoskeleton restructuring capacity. We here compared the adhesion process of both amebas to fibronectin through scanning, transmission, atomic force, and confocal microscopy. In addition, electrophoretic and western blot assays of actin were also compared. Adhesion of E. histolytica to fibronectin involves a dramatic reorganization of the actin network that results in a tighter contact to and the subsequent focal degradation of the fibronectin matrix. In contrast, E. dispar showed no regions of focal adhesion, the cytoskeleton was poorly reorganized and there was little fibronectin degradation. In addition, atomic force microscopy using topographic, error signal and phase modes revealed clear-cut differences at the site of contact of both amebas with the substrate. In spite of the morphological and genetic similarities between E. histolytica and E. dispar the present results demonstrate striking differences in their respective cell-to-matrix adhesion processes, which may be of relevance for understanding the invasive character of E. histolytica. - Highlights: • Striking differences in adhesion to FN between E. histolytica and E. dispar. • A greater degree of cell stiffness in E. histolytica with respect to E. dispar. • E. histolytica but not E. dispar forms regions of close contact with FN. • The actin cytoskeleton is involved in the pathogenicity of E. histolytica

  16. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells

    International Nuclear Information System (INIS)

    Meller, Karl; Theiss, Carsten

    2006-01-01

    We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 o C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton

  17. Atomic Force Microscopy for Soil Analysis

    Science.gov (United States)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  18. Characterization of nanoparticles using Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Rao, A; Schoenenberger, M; Gnecco, E; Glatzel, Th; Meyer, E; Braendlin, D; Scandella, L

    2007-01-01

    Nanoparticles are becoming increasingly important in many areas, including catalysis, biomedical applications, and information storage. Their unique size-dependent properties make these materials superior. Using the Atomic Force Microscope (AFM), individual particles and groups of particles can be resolved and unlike other microscopy techniques, the AFM offers visualization and analysis in three dimensions. We prepared titanium oxide, zirconium oxide and alumina nanoparticles and/or agglomerates on different surfaces and characterized them by AFM in the dynamic mode. The goal was to determine the shape, size and/or size distribution of nanoparticles. Different dilutions of nanoparticles were applied on various substrates e.g. clean silicon, mica and chemically treated silicon and imaged at ambient conditions. Nanoparticles deposited on mica appeared to be coagulated as compared to those on silicon. Whereas, on a chemically treated surface the density of the nanoparticles was very low because of the increased hydrophobicity of the surface

  19. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  20. Imaging of RNA in situ hybridization by atomic force microscopy

    NARCIS (Netherlands)

    Kalle, W.H.J.; Macville, M.V.E.; van de Corput, M.P.C.; de Grooth, B.G.; Tanke, H.J.; Raap, A.K.

    In this study we investigated the possibility of imaging internal cellular molecules after cytochemical detection with atomic force microscopy (AFM). To this end, rat 9G and HeLa cells were hybridized with haptenized probes for 28S ribosomal RNA, human elongation factor mRNA and cytomegalovirus

  1. Interactive forces between lignin and cellulase as determined by atomic force microscopy

    OpenAIRE

    Qin, Chengrong; Clarke, Kimberley; Li, Kecheng

    2014-01-01

    Background Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups invo...

  2. 3D Viscoelastic Traction Force Microscopy

    Science.gov (United States)

    Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M.; Henann, David L.; Franck, Christian

    2014-01-01

    Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in-vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels. PMID:25170569

  3. Resolving amorphous solid-liquid interfaces by atomic force microscopy

    International Nuclear Information System (INIS)

    Burson, Kristen M.; Gura, Leonard; Kell, Burkhard; Büchner, Christin; Lewandowski, Adrian L.; Heyde, Markus; Freund, Hans-Joachim

    2016-01-01

    Recent advancements in liquid atomic force microscopy make it an ideal technique for probing the structure of solid-liquid interfaces. Here, we present a structural study of a two-dimensional amorphous silica bilayer immersed in an aqueous solution utilizing liquid atomic force microscopy with sub-nanometer resolution. Structures show good agreement with atomically resolved ultra-high vacuum scanning tunneling microscopy images obtained on the same sample system, owing to the structural stability of the silica bilayer and the imaging clarity from the two-dimensional sample system. Pair distance histograms of ring center positions are utilized to develop quantitative metrics for structural comparison, and the physical origin of pair distance histogram peaks is addressed by direct assessment of real space structures.

  4. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    Science.gov (United States)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  5. Nanoscale electrowetting effects observed by using friction force microscopy.

    Science.gov (United States)

    Revilla, Reynier; Guan, Li; Zhu, Xiao-Yang; Yang, Yan-Lian; Wang, Chen

    2011-06-21

    We report the study of electrowetting (EW) effects under strong electric field on poly(methyl methacrylate) (PMMA) surface by using friction force microscopy (FFM). The friction force dependence on the electric field at nanometer scale can be closely related to electrowetting process based on the fact that at this scale frictional behavior is highly affected by capillary phenomena. By measuring the frictional signal between a conductive atomic force microscopy (AFM) tip and the PMMA surface, the ideal EW region (Young-Lippmann equation) and the EW saturation were identified. The change in the interfacial contact between the tip and the PMMA surface with the electric field strength is closely associated with the transition from the ideal EW region to the EW saturation. In addition, a reduction of the friction coefficient was observed when increasing the applied electric field in the ideal EW region. © 2011 American Chemical Society

  6. Drive frequency dependent phase imaging in piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-01-01

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  7. Traction force microscopy of engineered cardiac tissues.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit

    2018-01-01

    Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.

  8. Investigating bioconjugation by atomic force microscopy

    Science.gov (United States)

    2013-01-01

    Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448

  9. Conducting atomic force microscopy studies on doped CulnO2 thin films for resistive memory device applications

    International Nuclear Information System (INIS)

    Mehta, B.R.

    2009-01-01

    Full text: Delafosite thin films have interesting structural, optical and electronic properties due to the highly anisotropic crystal structure and possibility of bipolar conductivity. In this presentation, optical, structural and electrical properties of Sn (n type) and Ca (p type) doped CulnO 2 layers grown by rf magnetron sputtering technique will be discussed. Depending on doping and deposition temperature, these films show nanocolumnar structure with (110) and (006) preferred orientations. The observed decrease in activation energy from 0.9 eV to about 0.10 eV and a large decrease in conductivity from 2.11 x 10 -10 Scm -1 to 1.66 x 10 -1 Scm -1 on Sn doping has been explained due to the change in preferred orientation along with efficient doping. Our results show that crystallite orientation is the most important factor controlling the electrical conduction in delafossite thin films. The anisotropy of electrical conduction along (006) and (110) directions in tin doped samples has been further established using conducting atomic force microscopy (CAFM) measurements. The CAFM measurements shows the presence of nanoconducting region when the current flow direction is aligned along the BO 6 layer and complete absence of conducting regions when the current direction is perpendicular to the film surface. Resistive memory devices based on Sn and Ca doped CulnO 2 films show stable and reproducible 'on' and 'off' states. CAFM measurement on these devices carried out before and after 'forming' show the growth of nanoconducting filaments on the application of a threshold voltage. It is possible to control resistance in the 'on' and 'off' states and magnitude of the forming and switching voltages by controlling the doping concentration and crystallite orientation in CulnO 2 layers

  10. A study of the native cell wall structures of the marine alga Ventricaria ventricosa (Siphonocladales, Chlorophyceae) using atomic force microscopy.

    Science.gov (United States)

    Eslick, Enid M; Beilby, Mary J; Moon, Anthony R

    2014-04-01

    A substantial proportion of the architecture of the plant cell wall remains unknown with a few cell wall models being proposed. Moreover, even less is known about the green algal cell wall. Techniques that allow direct visualization of the cell wall in as near to its native state are of importance in unravelling the spatial arrangement of cell wall structures and hence in the development of cell wall models. Atomic force microscopy (AFM) was used to image the native cell wall of living cells of Ventricaria ventricosa (V. ventricosa) at high resolution under physiological conditions. The cell wall polymers were identified mainly qualitatively via their structural appearance. The cellulose microfibrils (CMFs) were easily recognizable and the imaging results indicate that the V. ventricosa cell wall has a cross-fibrillar structure throughout. We found the native wall to be abundant in matrix polysaccharides existing in different curing states. The soft phase matrix polysaccharides susceptible by the AFM scanning tip existed as a glutinous fibrillar meshwork, possibly incorporating both the pectic- and hemicellulosic-type substances. The hard phase matrix producing clearer images, revealed coiled fibrillar structures associated with CMFs, sometimes being resolved as globular structures by the AFM tip. The coiling fibrillar structures were also seen in the images of isolated cell wall fragments. The mucilaginous component of the wall was discernible from the gelatinous cell wall matrix as it formed microstructural domains over the surface. AFM has been successful in imaging the native cell wall and revealing novel findings such as the 'coiling fibrillar structures' and cell wall components which have previously not been seen, that is, the gelatinous matrix phase.

  11. FEATURES OF MEASURING IN LIQUID MEDIA BY ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Mikhail V. Zhukov

    2016-11-01

    Full Text Available Subject of Research.The paper presents results of experimental study of measurement features in liquids by atomic force microscope to identify the best modes and buffered media as well as to find possible image artifacts and ways of their elimination. Method. The atomic force microscope Ntegra Aura (NT-MDT, Russia with standard prism probe holder and liquid cell was used to carry out measurements in liquids. The calibration lattice TGQ1 (NT-MDT, Russia was chosen as investigated structure with a fixed shape and height. Main Results. The research of probe functioning in specific pH liquids (distilled water, PBS - sodium phosphate buffer, Na2HPO4 - borate buffer, NaOH 0.1 M, NaOH 0.5 M was carried out in contact and semi-contact modes. The optimal operating conditions and the best media for the liquid measurements were found. Comparison of atomic force microscopy data with the results of lattice study by scanning electron microscopy was performed. The features of the feedback system response in the «probe-surface» interaction were considered by the approach/retraction curves in the different environments. An artifact of image inversion was analyzed and recommendation for its elimination was provided. Practical Relevance. These studies reveal the possibility of fine alignment of research method for objects of organic and inorganic nature by atomic force microscopy in liquid media.

  12. Microstructure influence on corrosion behavior of a Fe–Cr–V–N tool alloy studied by SEM/EDS, scanning Kelvin force microscopy and electrochemical measurement

    International Nuclear Information System (INIS)

    Sababi, Majid; Ejnermark, Sebastian; Andersson, Jörgen; Claesson, Per M.; Pan, Jinshan

    2013-01-01

    Highlights: ► Localized corrosion of a new N-based tool alloy (Fe–Cr–V–N) has been studied. ► One-pass mode of scanning Kelvin force microscopy (KFM) was used in the study. ► The focus was on correlation between microstructure and localized corrosion. - Abstract: Microstructure influence on corrosion behavior of an N-based tool alloy (Fe–Cr–V–N) has been studied. Electron microscopy analysis showed two types of hard phases in the alloy. One-pass mode scanning Kelvin force microscopy (KFM) was used to investigate relative nobility of the hard phases. Volta potential mapping indicates higher nobility for the hard phases than the alloy matrix, and, the V- and N-rich particles exhibit the highest Volta potential. Post-polarization analysis by SEM revealed localized dissolution initiated in matrix regions adjacent to hard phase particles, and the boundary region surrounding the Cr- and Mo-rich particles is more prone to localized corrosion.

  13. The influence of surface topography on Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Sadewasser, S; Leendertz, C; Streicher, F; Lux-Steiner, M Ch

    2009-01-01

    Long-range electrostatic forces govern the imaging mechanism in electrostatic force microscopy as well as in Kelvin probe force microscopy. To improve the analysis of such images, simulations of the electrostatic field distribution have been performed in the past using a flat surface and a cone-shaped tip. However, the electrostatic field distribution between a tip and a sample depends strongly on the surface topography, which has been neglected in previous studies. It is therefore of general importance to study the influence of sample topography features on Kelvin probe force microscopy images, which we address here by performing finite element simulations. We show how the surface potential measurement is influenced by surface steps and surface grooves, considering potential variations in the form of a potential peak and a potential step. The influence of the topography on the measurement of the surface potential is found to be rather small compared to a typical experimental resolution. Surprisingly, in the case of a coinciding topography and potential step an improvement of the potential profile due to the inclusion of the topography is observed. Finally, based on the obtained results, suggestions for the realization of KPFM measurement are given.

  14. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  15. Advanced atomic force microscopy: Development and application

    Science.gov (United States)

    Walters, Deron A.

    Over the decade since atomic force microscopy (AFM) was invented, development of new microscopes has been closely intertwined with application of AFM to problems of interest in physics, chemistry, biology, and engineering. New techniques such as tapping mode AFM move quickly in our lab from the designer's bench to the user's table-since this is often the same piece of furniture. In return, designers get ample feedback as to what problems are limiting current instruments, and thus need most urgent attention. Tip sharpness and characterization are such a problem. Chapter 1 describes an AFM designed to operate in a scanning electron microscope, whose electron beam is used to deposit sharp carbonaceous tips. These tips can be tested and used in situ. Another limitation is addressed in Chapter 2: the difficulty of extracting more than just topographic information from a sample. A combined AFM/confocal optical microscope was built to provide simultaneous, independent images of the topography and fluorescence of a sample. In combination with staining or antibody labelling, this could provide submicron information about the composition of a sample. Chapters 3 and 4 discuss two generations of small cantilevers developed for lower-noise, higher-speed AFM of biological samples. In Chapter 4, a 26 mum cantilever is used to image the process of calcite growth from solution at a rate of 1.6 sec/frame. Finally, Chapter 5 explores in detail a biophysics problem that motivates us to develop fast, quiet, and gentle microscopes; namely, the control of crystal growth in seashells by the action of soluble proteins on a growing calcite surface.

  16. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, O. A., E-mail: ageev@sfedu.ru [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation); Bykov, Al. V. [NT-MDT (Russian Federation); Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Tsukanova, O. G. [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation)

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is within the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.

  17. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    Science.gov (United States)

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  18. Scanning/friction force microscopy study of YBa2Cu3O7-δ single crystals grown in BaZrO3 crucibles

    International Nuclear Information System (INIS)

    Lang, H.P.; Jess, P.; Hubler, U.

    1996-01-01

    Very pure YBa 2 Cu 3 O 7-δ (YBCO) single crystals grown in BaZrO 3 crucibles are studied in the as-grown and the oxidized state by scanning force (SFM), friction force (FFM) and scanning tunneling microscopies (STM). The images show clean terraces with step-heights of one unit cell along YBCO(001), i.e. 1.2 nm. Only close to step edges is material contrast observed by FFM indicating traces of flux. Some crystal surfaces exhibit over-layer features, such as star-like, ribbon-like and checkerboard-like structures, which exhibit friction contrast implying the presence of different materials on the surface. Tunneling spectroscopy at 4-7 K in high vacuum reveals a superconducting energy gap of 2Δ ∼ 26 meV

  19. In situ atomic force microscopy studies of reversible light-induced switching of surface roughness and adhesion in azobenzene-containing PMMA films

    International Nuclear Information System (INIS)

    Mueller, M.; Gonzalez-Garcia, Y.; Pakula, C.; Zaporojtchenko, V.; Strunskus, T.; Faupel, F.; Herges, R.; Zargarani, D.; Magnussen, O.M.

    2011-01-01

    Thin films in the range 40-80 nm of a blend of PMMA with an azobenzene derivative have been studied directly during UV and blue light irradiation by atomic force microscopy (AFM), revealing highly reversible changes in the surface roughness and the film adhesion. UV light induces an ∼80% increase in surface roughness, whereas illumination by blue light completely reverses these changes. Based on the observed surface topography and transition kinetics a reversible mass flow mechanisms is suggested, where the polarity changes upon switching trigger a wetting-dewetting transition in a surface segregation layer of the chromophore. Similar AFM measurements of the pull-off force indicate a decrease upon UV and an increase after blue light illumination with a complex kinetic behavior: a rapid initial change, attributed to the change in the cis isomer fraction of the azobenzene derivative, and a more gradual change, indicative of slow structural reorganization.

  20. Corrected direct force balance method for atomic force microscopy lateral force calibration

    International Nuclear Information System (INIS)

    Asay, David B.; Hsiao, Erik; Kim, Seong H.

    2009-01-01

    This paper reports corrections and improvements of the previously reported direct force balance method (DFBM) developed for lateral calibration of atomic force microscopy. The DFBM method employs the lateral force signal obtained during a force-distance measurement on a sloped surface and relates this signal to the applied load and the slope of the surface to determine the lateral calibration factor. In the original publication [Rev. Sci. Instrum. 77, 043903 (2006)], the tip-substrate contact was assumed to be pinned at the point of contact, i.e., no slip along the slope. In control experiments, the tip was found to slide along the slope during force-distance curve measurement. This paper presents the correct force balance for lateral force calibration.

  1. Observation of multicellular spinning behavior of Proteus mirabilis by atomic force microscopy and multifunctional microscopy.

    Science.gov (United States)

    Liu, Yanxia; Deng, Yuanxin; Luo, Shuxiu; Deng, Yu; Guo, Linming; Xu, Weiwei; Liu, Lei; Liu, Junkang

    2014-01-01

    This study aimed to observe the multicellular spinning behavior of Proteus mirabilis by atomic force microscopy (AFM) and multifunctional microscopy in order to understand the mechanism underlying this spinning movement and its biological significance. Multifunctional microscopy with charge-coupled device (CCD) and real-time AFM showed changes in cell structure and shape of P. mirabilis during multicellular spinning movement. Specifically, the morphological characteristics of P. mirabilis, multicellular spinning dynamics, and unique movement were observed. Our findings indicate that the multicellular spinning behavior of P. mirabilis may be used to collect nutrients, perform colonization, and squeeze out competitors. The movement characteristics of P. mirabilis are vital to the organism's biological adaptability to the surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Near field plasmon and force microscopy

    NARCIS (Netherlands)

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the

  3. Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel

    International Nuclear Information System (INIS)

    Kalin, M.; Simič, R.

    2013-01-01

    Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2–20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.

  4. Atomic force microscopy and tribology study of the adsorption of alcohols on diamond-like carbon coatings and steel

    Energy Technology Data Exchange (ETDEWEB)

    Kalin, M., E-mail: mitjan.kalin@tint.fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia); Simič, R. [University of Ljubljana, Faculty of Mechanical Engineering, Laboratory for Tribology and Interface Nanotechnology, Bogišićeva 8, 1000 Ljubljana (Slovenia)

    2013-04-15

    Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2–20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.

  5. Quantitative measurements of shear displacement using atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-01-01

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  6. Imaging stability in force-feedback high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Kim, Byung I.; Boehm, Ryan D.

    2013-01-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force–distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2 s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. - Highlights: ► We investigated the imaging stability of force-feedback HSAFM. ► Stable–unstable imaging transitions rely on applied force and sample hydrophilicity. ► The stable–unstable transitions are found to be independent of imaging rate

  7. Influence of tip indentation on the adhesive behavior of viscoelastic polydimethylsiloxane networks studied by atomic force microscopy

    NARCIS (Netherlands)

    Pickering, J.P.; Vancso, Gyula J.

    2001-01-01

    A commercial atomic force microscope (AFM) outfitted with a custom control and data acquisition system was used to investigate the adhesive nature of a viscoelastic polydimethylsiloxane (PDMS) network. Due to the complex dependence of the adhesion of this sample on factors such as indentation,

  8. Study of morphology and crystal growth behaviour of nanoclay-containing biodegradable polymer blend thin films using atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2012-04-01

    Full Text Available temperatures, were visualized with atomic force microscope (AFM). AFM images showed that the size of the dispersed PBS phase was reduced on the addition of 2 wt% clay to the PLA/PBS blend, and the size of the dispersed phase increases with the further addition...

  9. Near field plasmon and force microscopy

    OpenAIRE

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the probe size to about 20 nm. At variance to previous work, utilizing a scanning tunneling microscope (STM) with a metallic tip, a dielectric silicon-nitride tip is used in contact mode. This arrangement ...

  10. Multimodal sensing and imaging technology by integrated scanning electron, force, and nearfield microwave microscopy and its application to submicrometer studies

    OpenAIRE

    Hänßler, Olaf C.

    2018-01-01

    The work covers a multimodal microscope technology for the analysis, manipulation and transfer of materials and objects in the submicrometer range. An atomic force microscope (AFM) allows imaging of the surface topography and a Scanning Microwave Microscope (SMM) detects electromagnetic properties, both operating in a Scanning Electron Microscope (SEM). The described technology demonstrator allows to observe the region-of-interest live with the SEM, while at the same time a characterization w...

  11. High-speed atomic force microscopy coming of age

    International Nuclear Information System (INIS)

    Ando, Toshio

    2012-01-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed. (topical review)

  12. High-speed atomic force microscopy coming of age

    Science.gov (United States)

    Ando, Toshio

    2012-02-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.

  13. Depletion interaction measured by colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration.

  14. Ferritin protein imaging and detection by magnetic force microscopy.

    Science.gov (United States)

    Hsieh, Chiung-Wen; Zheng, Bin; Hsieh, Shuchen

    2010-03-14

    Magnetic force microscopy was used to image and detect ferritin proteins and the strength of the magnetic signal is discussed, revealing a large workable lift height between the magnetic tip and the ferritin sample.

  15. Role of attractive forces in tapping tip force microscopy

    DEFF Research Database (Denmark)

    Kyhle, Anders; Sørensen, Alexis Hammer; Bohr, Jakob

    1997-01-01

    We present experimental and numerical results demonstrating the drastic influence of attractive forces on the behaviour of the atomic force microscope when operated in the resonant tapping tip mode in an ambient environment. It is often assumed that tapping is related to repulsive interaction...

  16. Scanning force microscopy study of phase segregation in fuel cell membrane materials as a function of solvent polarity and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Marilyn Emily [Los Alamos National Laboratory; Kim, Yu S [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory

    2010-01-01

    Scanning force microscopy (SFM) phase imaging provides a powerful method for directly studying and comparing phase segregation in fuel cell membrane materials due to different preparation and under different temperature and hwnidity exposures. In this work, we explored two parameters that can influence phase segregation: the properties of the solvents used in casting membrane films and how these solvents alter phase segregation after exposure to boiling water as a function of time. SFM was used under ambient conditions to image phase segregation in Nafion samples prepared using five different solvents. Samples were then subjected to water vapor maintained at 100C for periods ranging from 30 minutes to three hours and re-imaged using the same phase imaging conditions. SFM shows what appears to be an increase in phase segregation as a function of solvent polarity that changes as a function of water exposure.

  17. Intermittent contact atomic force microscopy in electrochemical environment

    Energy Technology Data Exchange (ETDEWEB)

    Haering, P; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H [Bern Univ., Bern (Switzerland)

    1997-06-01

    In situ measurements with Atomic Force Microscopy may cause surface modifications due to the tip-surface interactions. As an alternative and less destructive method, Intermittent Contact Atomic Force Microscopy (ICAFM) has been tested in an electrolytic environment. In the ICAFM mode the tip is not constantly in contact with the surface under investigation but is tapping onto the surface with a certain frequency. A commercial Park Scientific Instruments Microscopy has been modified to enable in situ experiment with ICAFM. It was possible to image iridium oxide films with ICAFM in the electrolytic environment without any noticeable surface modifications. (author) 3 figs., 4 refs.

  18. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; de Grooth, B.G.; Hansma, Paul K.; van Hulst, N.F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect

  19. Atomic force microscopy employed as the final imaging stage for soft x-ray contact microscopy

    International Nuclear Information System (INIS)

    Cotton, R.A.; Stead, A.D.; Ford, T.W.; Fletcher, J.H.

    1993-01-01

    Soft X-ray contact microscopy (SXCM) enables a high resolution image of a living biological specimen to be recorded in an X-ray sensitive photoresist at unity magnification. Until recently scanning electron microscopes (SEM) have been employed to obtain the final magnified image. Although this has been successful in producing many high resolution images, this method of viewing the resist has several disadvantages. Firstly, a metallic coating has to be applied to the resist surface to provide electrical conductivity, rendering further development of the resist impossible. Also, electron beam damage to the resist surface can occur, in addition to poor resolution and image quality. Atomic force microscopy (AFM) allows uncoated resists to be imaged at a superior resolution, without damage to the surface. The use of AFM is seen as a major advancement in SXCM. The advantages and disadvantages of the two technologies are discussed, with illustrations from recent studies of a wide variety of hydrated biological specimens imaged using SXCM

  20. Polarization contrast in photon scanning tunnelling microscopy combined with atomic force microscopy

    NARCIS (Netherlands)

    Propstra, K.; Propstra, K.; van Hulst, N.F.

    1995-01-01

    Photon scanning tunnelling microscopy combined with atomic force microscopy allows simultaneous acquisition and direct comparison of optical and topographical images, both with a lateral resolution of about 30 nm, far beyond the optical diffraction limit. The probe consists of a modified

  1. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  2. Simple test system for single molecule recognition force microscopy

    International Nuclear Information System (INIS)

    Riener, Christian K.; Stroh, Cordula M.; Ebner, Andreas; Klampfl, Christian; Gall, Alex A.; Romanin, Christoph; Lyubchenko, Yuri L.; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    We have established an easy-to-use test system for detecting receptor-ligand interactions on the single molecule level using atomic force microscopy (AFM). For this, avidin-biotin, probably the best characterized receptor-ligand pair, was chosen. AFM sensors were prepared containing tethered biotin molecules at sufficiently low surface concentrations appropriate for single molecule studies. A biotin tether, consisting of a 6 nm poly(ethylene glycol) (PEG) chain and a functional succinimide group at the other end, was newly synthesized and covalently coupled to amine-functionalized AFM tips. In particular, PEG 800 diamine was glutarylated, the mono-adduct NH 2 -PEG-COOH was isolated by ion exchange chromatography and reacted with biotin succinimidylester to give biotin-PEG-COOH which was then activated as N-hydroxysuccinimide (NHS) ester to give the biotin-PEG-NHS conjugate which was coupled to the aminofunctionalized AFM tip. The motional freedom provided by PEG allows for free rotation of the biotin molecule on the AFM sensor and for specific binding to avidin which had been adsorbed to mica surfaces via electrostatic interactions. Specific avidin-biotin recognition events were discriminated from nonspecific tip-mica adhesion by their typical unbinding force (∼40 pN at 1.4 nN/s loading rate), unbinding length (<13 nm), the characteristic nonlinear force-distance relation of the PEG linker, and by specific block with excess of free d-biotin. The convenience of the test system allowed to evaluate, and compare, different methods and conditions of tip aminofunctionalization with respect to specific binding and nonspecific adhesion. It is concluded that this system is well suited as calibration or start-up kit for single molecule recognition force microscopy

  3. Electrostatic characteristics of nanostructures investigated using electric force microscopy

    International Nuclear Information System (INIS)

    Qiu, X.H.; Qi, G.C.; Yang, Y.L.; Wang, C.

    2008-01-01

    Nanosized materials possess many interesting physical and chemical properties that differ significantly from their macroscopic counterparts. Understanding the size- and shape-dependent properties of nanostructures are of great value to rational design of nanomaterials with desired functionality. Electric force microscopy (EFM) and its variations offer unique opportunities to deepen our insights into the electrical characteristics of nanostructures. In this paper, we review recent progress of this versatile technique and its applications in studying the electrical properties of nanosized materials. A variety of important issues in EFM experimentation and theoretical modeling are discussed, with an emphasis on the ongoing efforts to improve the precision in quantitative measurements of charge density and dielectric properties of nanostructures. - Graphical abstract: We review recent progress of electric force microscopy (EFM) and its applications in studying the electrical properties of nanostructures. A variety of important issues in EFM experimentation and theoretical modeling are discussed, with an emphasis on the ongoing efforts to improve the precision in quantitative measurements of charge density and dielectric properties of nanostructures

  4. Atomic force microscopy and X-ray photoelectron spectroscopy study of NO2 reactions on CaCO3 (1014) surfaces in humid environments.

    Science.gov (United States)

    Baltrusaitis, Jonas; Grassian, Vicki H

    2012-09-13

    In this study, alternating current (AC) mode atomic force microscopy (AFM) combined with phase imaging and X-ray photoelectron spectroscopy (XPS) were used to investigate the effect of nitrogen dioxide (NO2) adsorption on calcium carbonate (CaCO3) (101̅4) surfaces at 296 K in the presence of relative humidity (RH). At 70% RH, CaCO3 (101̅4) surfaces undergo rapid formation of a metastable amorphous calcium carbonate layer, which in turn serves as a substrate for recrystallization of a nonhydrated calcite phase, presumably vaterite. The adsorption of nitrogen dioxide changes the surface properties of CaCO3 (101̅4) and the mechanism for formation of new phases. In particular, the first calcite nucleation layer serves as a source of material for further island growth; when it is depleted, there is no change in total volume of nitrocalcite, Ca(NO3)2, particles formed whereas the total number of particles decreases. This indicates that these particles are mobile and coalesce. Phase imaging combined with force curve measurements reveals areas of inhomogeneous energy dissipation during the process of water adsorption in relative humidity experiments, as well as during nitrocalcite particle formation. Potential origins of the different energy dissipation modes within the sample are discussed. Finally, XPS analysis confirms that NO2 adsorbs on CaCO3 (101̅4) in the form of nitrate (NO3(-)) regardless of environmental conditions or the pretreatment of the calcite surface at different relative humidity.

  5. Capillary forces in tapping mode atomic force microscopy

    NARCIS (Netherlands)

    Zitzler, L.; Herminghaus, S.; Mugele, Friedrich Gunther

    2002-01-01

    We investigated the influence of the relative humidity on amplitude and phase of the cantilever oscillation while operating an atomic force microscope (AFM) in the tapping mode. If the free oscillation amplitude A0 exceeds a certain critical amplitude Ac, the amplitude- and phase-distance curves

  6. Localization and force analysis at the single virus particle level using atomic force microscopy

    International Nuclear Information System (INIS)

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming

    2012-01-01

    Highlights: ► Localization of single virus particle. ► Force measurements. ► Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  7. Energy dissipation effects on imaging of soft materials by dynamic atomic force microscopy: A DNA-chip study

    Energy Technology Data Exchange (ETDEWEB)

    Phaner-Goutorbe, M., E-mail: magali.phaner@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Iazykov, M. [Université de Lyon, laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 allée d' Italie 69364 Lyon cedex 07 (France); Villey, R. [Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Université de Lyon, laboratoire de Physique de la Matière Condensée et Nanostructures, Université Claude Bernard Lyon 1, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin 43 boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Sicard, D.; Robach, Y. [Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France)

    2013-05-01

    Using amplitude-mode AFM (AM-AFM), we have obtained valuable information during these recent years through the study of amplitude and phase shift dependence on tip–sample separation, leading to a comprehensive understanding of the interaction processes. Two imaging regimes, attractive and repulsive, have been identified and a relationship between phase and dissipative energy was established, providing information on observed material properties. Most of the previous studies have concerned model systems: either hard or soft materials. In this paper, we present the analysis of a mixed system of soft structures on a hard substrate. This is a DNA chip for biological applications consisting of oligonucleotides covalently linked by a layer of silane to a silicon substrate. A detailed study of amplitude-phase curves as a function of the tip–sample separation allowed us to define the best experimental conditions to obtain specific information: we got reliable conditions to minimize noise during topographic imaging and an understanding of the processes of energy dissipation involved in the DNA breaking for DNA arrays. By calculating the energy dissipated as a function of the amplitude of oscillation, we have demonstrated a transition from an energy dissipation process governed by localized viscoelastic interactions (due to the soft layer) to a process governed by extended irreversible deformations (due to the hard substrate). Highlights: ► Amplitude mode AFM analysis of a DNA array is presented. ► Reliable conditions for noise minimization on topographic images are presented. ► Phase, amplitude vs distance curves are analyzed for different setpoint amplitudes. ► Energy dissipation processes are described from viscoelasticity to DNA breaking.

  8. Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Wojcikiewicz Ewa P.

    2004-01-01

    Full Text Available We describe the use of atomic force microscopy (AFM in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1/intercellular adhesion molecule-1 (ICAM-1 as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study.

  9. Boron-doped Diamond Electrodes: Electrochemical, Atomic Force Microscopy and Raman Study towards Corrosion-modifications at Nanoscale

    International Nuclear Information System (INIS)

    Kavan, Ladislav; Vlckova Zivcova, Zuzana; Petrak, Vaclav; Frank, Otakar; Janda, Pavel; Tarabkova, Hana; Nesladek, Milos; Mortet, Vincent

    2015-01-01

    Highlights: • B-doped diamond is nanostructured by corrosion-driven modifications occurring at carbonaceous impurity sites (sp 2 -carbons). • The electrochemical oxidation partly transforms a hydrogen-terminated diamond surface to O-terminated one, but the electrocatalytic activity of plasmatically O-terminated diamond is not achieved. • In contrast to all usual sp 2 carbons, the Raman spectra of B-doped diamond electrodes do not change upon electrochemical charging/discharging. - Abstract: Comparative studies of boron-doped diamonds electrodes (polycrystalline, single-crystalline, H-/O-terminated, and with different sp 3 /sp 2 ratios) indicate morphological modifications of diamond which are initiated by corrosion at nanoscale. In-situ electrochemical AFM imaging evidences that the textural changes start at non-diamond carbonaceous impurity sites treated at high positive potentials (>2.2 V vs. Ag/AgCl). The primary perturbations subsequently develop into sub-micron-sized craters. Raman spectroscopy shows that the primary erosion site is graphite-like (sp 2 -carbon), which is preferentially removed by anodic oxidation. Other non-diamond impurity, viz. tetrahedral amorphous carbon (t-aC), is less sensitive to oxidative decomposition. The diamond-related Raman features, including the B-doping-assigned modes, are intact during reversible electrochemical charging/discharging, which is a salient difference from all usual sp 2 -carbons. The electrochemical oxidation partly transforms a hydrogen-terminated diamond surface to O-terminated one, but the electrocatalytic activity of plasmatically O-terminated diamond is not achieved for a model redox couple, Fe 3+/2+ . Electrochemical impedance spectra were fitted to six different equivalent circuits. The determination of acceptor concentrations is feasible even for highly-doped diamond electrodes.

  10. Force microscopy of layering and friction in an ionic liquid

    International Nuclear Information System (INIS)

    Hoth, Judith; Hausen, Florian; Bennewitz, Roland; Müser, Martin H

    2014-01-01

    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py 1,4 ][FAP]) in confinement between a SiO x and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip–sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface. (paper)

  11. Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy.

    Science.gov (United States)

    Kitta, Mitsunori; Akita, Tomoki; Maeda, Yasushi; Kohyama, Masanori

    2012-08-21

    Spinel lithium titanate (Li(4)Ti(5)O(12), LTO) is a promising anode material for a lithium ion battery because of its excellent properties such as high rate charge-discharge capability and life cycle stability, which were understood from the viewpoint of bulk properties such as small lattice volume changes by lithium insertion. However, the detailed surface reaction of lithium insertion and extraction has not yet been studied despite its importance to understand the mechanism of an electrochemical reaction. In this paper, we apply both atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the changes in the atomic and electronic structures of the Li(4)Ti(5)O(12) surface during the charge-discharged (lithium insertion and extraction) processes. The AFM observation revealed that irreversible structural changes of an atomically flat Li(4)Ti(5)O(12) surface occurs at the early stage of the first lithium insertion process, which induces the reduction of charge transfer resistance at the electrolyte/Li(4)Ti(5)O(12) interface. The TEM observation clarified that cubic rock-salt crystal layers with a half lattice size of the original spinel structure are epitaxially formed after the first charge-discharge cycle. Electron energy loss spectroscopy (EELS) observation revealed that the formed surface layer should be α-Li(2)TiO(3). Although the transformation of Li(4)Ti(5)O(12) to Li(7)Ti(5)O(12) is well-known as the lithium insertion reaction of the bulk phase, the generation of surface product layers should be inevitable in real charge-discharge processes and may play an effective role in the stable electrode performance as a solid-electrolyte interphase (SEI).

  12. Studying the InAs quantum points on the vicinal surface of a GaAs crystal by the atomic force microscopy

    CERN Document Server

    Evtikhiev, V P; Kotelnikov, E Y; Matveentsev, A V; Titkov, A N; Shkolnik, A S

    2002-01-01

    The methodology for processing the images, obtained through the atomic force microscopy, is proposed. It is shown by the concrete example, how the parameters of the InAs clusters on the vicinal surface of the GaAs crystal are determined. This makes it possible to calculate the energy levels of the electrons and holes in the quantum point with application of the previously developed cluster spherical model

  13. The contribution of the electrostatic proximity force to atomic force microscopy with insulators

    International Nuclear Information System (INIS)

    Stanley Czarnecki, W.; Schein, L.B.

    2005-01-01

    Measurements, using atomic force microscopy, of the force and force derivative on a charged insulating micron sized sphere as a function of gap between the sphere and a conductive plane have revealed attractive forces at finite gaps that are larger than predicted by either van der Waals or conventional electrostatic forces. We suggest that these observations may be due to an electrostatic force that we have identified theoretically and call the proximity force. This proximity force is due to the discrete charges on the surface of the sphere in close proximity to the plane

  14. The contribution of the electrostatic proximity force to atomic force microscopy with insulators

    Energy Technology Data Exchange (ETDEWEB)

    Stanley Czarnecki, W. [Aetas Technology Corporation, P.O. Box 53398, Irvine, CA 92619-3398 (United States); IBM Corporation, 5600 Cottle Rd., Building 13, San Jose, CA 95193 (United States); Schein, L.B. [Aetas Technology Corporation, P.O. Box 53398, Irvine, CA 92619-3398 (United States)]. E-mail: schein@prodigy.net

    2005-05-16

    Measurements, using atomic force microscopy, of the force and force derivative on a charged insulating micron sized sphere as a function of gap between the sphere and a conductive plane have revealed attractive forces at finite gaps that are larger than predicted by either van der Waals or conventional electrostatic forces. We suggest that these observations may be due to an electrostatic force that we have identified theoretically and call the proximity force. This proximity force is due to the discrete charges on the surface of the sphere in close proximity to the plane.

  15. Friction of ice measured using lateral force microscopy

    International Nuclear Information System (INIS)

    Bluhm, Hendrik; Inoue, Takahito; Salmeron, Miquel

    2000-01-01

    The friction of nanometer thin ice films grown on mica substrates is investigated using atomic force microscopy (AFM). Friction was found to be of similar magnitude as the static friction of ice reported in macroscopic experiments. The possible existence of a lubricating film of water due to pressure melting, frictional heating, and surface premelting is discussed based on the experimental results using noncontact, contact, and lateral force microscopy. We conclude that AFM measures the dry friction of ice due to the low scan speed and the squeezing out of the water layer between the sharp AFM tip and the ice surface. (c) 2000 The American Physical Society

  16. Atomic force microscopy characterization of cellulose nanocrystals

    Science.gov (United States)

    Roya R. Lahiji; Xin Xu; Ronald Reifenberger; Arvind Raman; Alan Rudie; Robert J. Moon

    2010-01-01

    Cellulose nanocrystals (CNCs) are gaining interest as a “green” nanomaterial with superior mechanical and chemical properties for high-performance nanocomposite materials; however, there is a lack of accurate material property characterization of individual CNCs. Here, a detailed study of the topography, elastic and adhesive properties of individual wood-derived CNCs...

  17. Conductivity of Langmuir-Blodgett films of a disk-shaped liquid-crystalline molecule-DNA complex studied by current-sensing atomic force microscopy

    Science.gov (United States)

    Nayak, Alpana; Suresh, K. A.

    2008-08-01

    We have studied the electrical conductivity in monolayer films of an ionic disk-shaped liquid-crystal molecule, pyridinium tethered with hexaalkoxytriphenylene (PyTp), and its complex with DNA by current-sensing atomic force microscopy (CS-AFM). The pure PyTp and PyTp-DNA complex monolayer films were first formed at the air-water interface and then transferred onto conducting substrates by the Langmuir-Blodgett (LB) technique to study the nanoscale electron transport through these films. The conductive tip of CS-AFM, the LB film, and the metal substrate form a nanoscopic metal-LB film-metal (M-LB-M) junction. We have measured the current-voltage (I-V) characteristics for the M-LB-M junction using CS-AFM and have analyzed the data quantitatively. We find that the I-V curves fit well to the Fowler-Nordheim (FN) model, suggesting electron tunneling to be a possible mechanism for electron transport in our system. Further, analysis of the I-V curves based on the FN model yields the barrier heights of PyTp-DNA complex and pure PyTp films. Electron transport studies of films of ionic disk-shaped liquid-crystal molecules and their complex with DNA are important from the point of view of their applications in organic electronics.

  18. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality.

    Science.gov (United States)

    Carvalho, Filomena A; Martins, Ivo C; Santos, Nuno C

    2013-03-01

    Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination

    Directory of Open Access Journals (Sweden)

    Miriam Jaafar

    2011-09-01

    Full Text Available The most outstanding feature of scanning force microscopy (SFM is its capability to detect various different short and long range interactions. In particular, magnetic force microscopy (MFM is used to characterize the domain configuration in ferromagnetic materials such as thin films grown by physical techniques or ferromagnetic nanostructures. It is a usual procedure to separate the topography and the magnetic signal by scanning at a lift distance of 25–50 nm such that the long range tip–sample interactions dominate. Nowadays, MFM is becoming a valuable technique to detect weak magnetic fields arising from low dimensional complex systems such as organic nanomagnets, superparamagnetic nanoparticles, carbon-based materials, etc. In all these cases, the magnetic nanocomponents and the substrate supporting them present quite different electronic behavior, i.e., they exhibit large surface potential differences causing heterogeneous electrostatic interaction between the tip and the sample that could be interpreted as a magnetic interaction. To distinguish clearly the origin of the tip–sample forces we propose to use a combination of Kelvin probe force microscopy (KPFM and MFM. The KPFM technique allows us to compensate in real time the electrostatic forces between the tip and the sample by minimizing the electrostatic contribution to the frequency shift signal. This is a great challenge in samples with low magnetic moment. In this work we studied an array of Co nanostructures that exhibit high electrostatic interaction with the MFM tip. Thanks to the use of the KPFM/MFM system we were able to separate the electric and magnetic interactions between the tip and the sample.

  20. Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Se-Hui; Park, Jin-Young; Yoo, Je-Ok; Shin, Incheol; Kim, Young-Myeong; Ha, Kwon-Soo

    2009-01-01

    Atomic force microscopy (AFM) is an emerging technique for imaging biological samples at subnanometer resolution; however, the method is not widely used for cell imaging because it is limited to analysis of surface topology. In this study, we demonstrate identification and ultrastructural imaging of microfilaments using new approaches based on AFM. Photodynamic therapy (PDT) with a new chlorin-based photosensitizer DH-II-24 induced cell shrinkage, membrane blebbing, and reorganization of cytoskeletons in bladder cancer J82 cells. We investigated cytoskeletal changes using confocal microscopy and atomic force microscopy. Extracellular filaments formed by PDT were analyzed with a tandem imaging approach based on confocal microscopy and atomic force microscopy. Ultrathin filaments that were not visible by confocal microscopy were identified as microfilaments by on-stage labeling/imaging using atomic force microscopy. Furthermore, ultrastructural imaging revealed that these microfilaments had a stranded helical structure. Thus, these new approaches were useful for ultrastructural imaging of microfilaments at the molecular level, and, moreover, they may help to overcome the current limitations of fluorescence-based microscopy and atomic force microscopy in cell imaging.

  1. Magnetic elements for switching magnetization magnetic force microscopy tips

    International Nuclear Information System (INIS)

    Cambel, V.; Elias, P.; Gregusova, D.; Martaus, J.; Fedor, J.; Karapetrov, G.; Novosad, V.

    2010-01-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, low switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.

  2. High spatial resolution Kelvin probe force microscopy with coaxial probes

    International Nuclear Information System (INIS)

    Brown, Keith A; Westervelt, Robert M; Satzinger, Kevin J

    2012-01-01

    Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we present coaxial AFM probes in which the cantilever and cone are shielded by a conducting shell, confining the tip–sample electrostatic interaction to a small region near the end of the tip. We have developed a technique to measure the true CPD despite the presence of the shell electrode. We find that the behavior of these probes agrees with an electrostatic model of the force, and we observe a factor of five improvement in spatial resolution relative to unshielded probes. Our discussion centers on KPFM, but the field confinement offered by these probes may improve any variant of electrostatic force microscopy. (paper)

  3. Atomic force microscopy of gastric mucin

    Science.gov (United States)

    Chasan, Bernard; Hong, Zhenning; Bansil, Rama; Turner, Bradley; Ramakrishnan Bhaskar, K.; Afdhal, Nezam

    2001-03-01

    We report on the first results from an AFM study of porcine gastric mucin employing the tapping mode technique in aqueous solution. This glycoprotein is responsible for protecting the stomach epithelium from acid damage. Mucin was imaged on a mica substrate at pH7, and at pH2. At the higher pH we detected individual molecules in disordered configuration, with characteristic lengths of 20-40 nm. At the lower pH the mucin forms extended rod-like clusters that, at high concentrations, are aligned into planar arrays. Individual clusters are of order 50 nm long and 20 nm wide while the entire array is of order several hundred nm both in length and width. The clustering behavior at low pH is consistent with that previously detected in dynamic light scattering experiments by Cao et. al. (Biophysical J. 76:120-1258 1999).

  4. Importance of length and sequence order on magnesium binding to surface-bound oligonucleotides studied by second harmonic generation and atomic force microscopy.

    Science.gov (United States)

    Holland, Joseph G; Geiger, Franz M

    2012-06-07

    The binding of magnesium ions to surface-bound single-stranded oligonucleotides was studied under aqueous conditions using second harmonic generation (SHG) and atomic force microscopy (AFM). The effect of strand length on the number of Mg(II) ions bound and their free binding energy was examined for 5-, 10-, 15-, and 20-mers of adenine and guanine at pH 7, 298 K, and 10 mM NaCl. The binding free energies for adenine and guanine sequences were calculated to be -32.1(4) and -35.6(2) kJ/mol, respectively, and invariant with strand length. Furthermore, the ion density for adenine oligonucleotides did not change as strand length increased, with an average value of 2(1) ions/strand. In sharp contrast, guanine oligonucleotides displayed a linear relationship between strand length and ion density, suggesting that cooperativity is important. This data gives predictive capabilities for mixed strands of various lengths, which we exploit for 20-mers of adenines and guanines. In addition, the role sequence order plays in strands of hetero-oligonucleotides was examined for 5'-A(10)G(10)-3', 5'-(AG)(10)-3', and 5'-G(10)A(10)-3' (here the -3' end is chemically modified to bind to the surface). Although the free energy of binding is the same for these three strands (averaged to be -33.3(4) kJ/mol), the total ion density increases when several guanine residues are close to the 3' end (and thus close to the solid support substrate). To further understand these results, we analyzed the height profiles of the functionalized surfaces with tapping-mode atomic force microscopy (AFM). When comparing the average surface height profiles of the oligonucleotide surfaces pre- and post- Mg(II) binding, a positive correlation was found between ion density and the subsequent height decrease following Mg(II) binding, which we attribute to reductions in Coulomb repulsion and strand collapse once a critical number of Mg(II) ions are bound to the strand.

  5. Surface structure investigations using noncontact atomic force microscopy

    International Nuclear Information System (INIS)

    Kolodziej, J.J.; Such, B.; Goryl, M.; Krok, F.; Piatkowski, P.; Szymonski, M.

    2006-01-01

    Surfaces of several A III B V compound semiconductors (InSb, GaAs, InP, InAs) of the (0 0 1) orientation have been studied with noncontact atomic force microscopy (NC-AFM). Obtained atomically resolved patterns have been compared with structural models available in the literature. It is shown that NC-AFM is an efficient tool for imaging complex surface structures in real space. It is also demonstrated that the recent structural models of III-V compound surfaces provide a sound base for interpretation of majority of features present in recorded patterns. However, there are also many new findings revealed by the NC-AFM method that is still new experimental technique in the context of surface structure determination

  6. Force microscopy on insulators: imaging of organic molecules

    International Nuclear Information System (INIS)

    Pfeiffer, O; Gnecco, E; Zimmerli, L; Maier, S; Meyer, E; Nony, L; Bennewitz, R; Diederich, F; Fang, H; Bonifazi, D

    2005-01-01

    So far, most of the high resolution scanning probe microscopy studies of organic molecules were restricted to metallic substrates. Insulating substrates are mandatory when the molecules need to be electrically decoupled in a electronic circuit. In such a case, atomic force microscopy is required. In this paper we will discuss our recent studies on different organic molecules deposited on KBr surfaces in ultra-high vacuum, and then imaged by AFM at room temperature. The distance between tip and surface was controlled either by the frequency-shift of the cantilever resonance or by the excitation signal required to keep the oscillation amplitude constant. Advantages and drawbacks of both techniques are discussed. The high mobility of the molecules, due to their weak interaction with the substrate, hinders the formation of regular self assembled structures. To overcome this problem we created artificial structures on the surface by annealing and by electron irradiation, which made possible the growth of the molecules onto step edges and their confinement into rectangular pits

  7. Study of structural order in porphyrin-fullerene dyad ZnDHD6ee monolayers by electron diffraction and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    D' yakova, Yu. A.; Suvorova, E. I.; Orekhov, Andrei S.; Orekhov, Anton S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Alekseev, A. S. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Gainutdinov, R. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Tereschenko, E. Yu. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Tkachenko, N. V.; Lemmetyinen, H. [Tampere University of Technology (Finland); Feigin, L. A.; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15

    The structure of porphyrin-fullerene dyad ZnDHD6ee monolayers formed on the surface of aqueous subphase in a Langmuir trough and transferred onto solid substrates has been studied. The data obtained are interpreted using simulation of the structure of isolated molecules and their packing in monolayer and modeling of diffraction patterns from molecular aggregates having different sizes and degrees of order. Experiments on the formation of condensed ZnDHD6ee monolayers are described. The structure of these monolayers on a water surface is analyzed using {pi}-A isotherms. The structure of the monolayers transferred onto solid substrates is investigated by electron diffraction and atomic force microscopy. The unit-cell parameters of two-dimensional domains, which are characteristic of molecular packing in monolayers and deposited films, are determined. Domains are found to be organized into a texture (the molecular axes are oriented by the [001] direction perpendicular to the substrate). The monolayers contain a limited number of small 3D domains.

  8. Water-induced morphology changes in an ultrathin silver film studied by ultraviolet-visible, surface-enhanced Raman scattering spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Li Xiaoling; Xu Weiqing; Jia Huiying; Wang Xu; Zhao Bing; Li Bofu; Ozaki, Yukihiro

    2005-01-01

    Water-induced changes in the morphology and optical properties of an ultrathin Ag film (3 nm thickness) have been studied by use of ultraviolet-visible (UV-Vis) spectroscopy, atomic force microscopy (AFM) and surface-enhanced Raman scattering (SERS) spectroscopy. A confocal micrograph shows that infinite regular Ag rings with almost uniform size (4 μm) emerge on the film surface after the ultrathin Ag film was immersed into water. The AFM measurement further confirms that the Ag rings consist of some metal holes with pillared edges. The UV-Vis spectrum shows that an absorption band at 486 nm of the Ag film after the immersion in water (I-Ag film) blue shifts by 66 nm with a significant decrease in absorbance, which is attributed to the macroscopic loss of some Ag atoms and the change in the morphology of the Ag film. The polarized UV-Vis spectra show that a band at 421 nm due to the normal component of the plasmon oscillation blue shifts after immersing the ultrathin Ag film into water. This band is found to be strongly angle-dependent for p-polarized light, indicating that the optical properties of the ultrathin Ag film are changed. The I-Ag film is SERS-active, and the SERS enhancement depends on different active sites on the film surface. Furthermore, it seems that the orientation of an adsorbate is related to the morphology of the I-Ag film

  9. Kelvin probe force microscopy studies of the charge effects upon adsorption of carbon nanotubes and C60 fullerenes on hydrogen-terminated diamond

    Science.gov (United States)

    Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.

    2018-01-01

    Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.

  10. Comparative study of donor-induced quantum dots in Si nano-channels by single-electron transport characterization and Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Tyszka, K.; Moraru, D.; Samanta, A.; Mizuno, T.; Tabe, M.; Jabłoński, R.

    2015-01-01

    We comparatively study donor-induced quantum dots in Si nanoscale-channel transistors for a wide range of doping concentration by analysis of single-electron tunneling transport and surface potential measured by Kelvin probe force microscopy (KPFM). By correlating KPFM observations of donor-induced potential landscapes with simulations based on Thomas-Fermi approximation, it is demonstrated that single-electron tunneling transport at lowest gate voltages (for smallest coverage of screening electrons) is governed most frequently by only one dominant quantum dot, regardless of doping concentration. Doping concentration, however, primarily affects the internal structure of the quantum dot. At low concentrations, individual donors form most of the quantum dots, i.e., “donor-atom” quantum dots. In contrast, at high concentrations above metal-insulator transition, closely placed donors instead of individual donors form more complex quantum dots, i.e., “donor-cluster” quantum dots. The potential depth of these “donor-cluster” quantum dots is significantly reduced by increasing gate voltage (increasing coverage of screening electrons), leading to the occurrence of multiple competing quantum dots

  11. Atomic structure of surface defects in alumina studied by dynamic force microscopy: strain-relief-, translation- and reflection-related boundaries, including their junctions

    International Nuclear Information System (INIS)

    Simon, G H; König, T; Heinke, L; Lichtenstein, L; Heyde, M; Freund, H-J

    2011-01-01

    We present an extensive atomic resolution frequency modulation dynamic force microscopy study of ultrathin aluminium oxide on a single crystalline NiAl(110) surface. One-dimensional surface defects produced by domain boundaries have been resolved. Images are presented for reflection domain boundaries (RDBs), four different types of antiphase domain boundaries, a nucleation-related translation domain boundary and also domain boundary junctions. New structures and aspects of the boundaries and their network are revealed and merged into a comprehensive picture of the defect arrangements. The alumina film also covers the substrate completely at the boundaries and their junctions and follows the structural building principles found in its unit cell. This encompasses square and rectangular groups of surface oxygen sites. The observed structural elements can be related to the electronic signature of the boundaries and therefore to the electronic defects associated with the boundaries. A coincidence site lattice predicted for the RDBs is in good agreement with experimental data. With Σ = 19 it can be considered to be of low-sigma type, which frequently coincides with special boundary properties. Images of asymmetric RDBs show points of good contact alternating with regions of nearly amorphous disorder in the oxygen sublattice. (paper)

  12. Effect of multiple autoclave cycles on the surface roughness of HyFlex CM and HyFlex EDM files: an atomic force microscopy study.

    Science.gov (United States)

    Yılmaz, K; Uslu, G; Özyürek, T

    2018-02-13

    To compare the effect of autoclave cycles on the surface topography and roughness of HyFlex CM and HyFlex EDM instruments using atomic force microscopy (AFM) analysis. Eight new files of each brand were subdivided into four subgroups (n = 2/each subgroup). One group was allocated as the control group and not subjected to autoclave sterilization. The other three groups were subjected to different numbers (1, 5, and 10) of autoclave sterilization cycles. After the cycle instruments were subjected to AFM analysis. Roughness average (Ra) and the root mean square (RMS) values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way ANOVA and post hoc Tamhane tests at 5% significant level. The lowest Ra and RMS values were observed in the HyFlex EDM files that served as the control and in those subjected to a single cycle of autoclave sterilization (P cycles of autoclave sterilization (P cycles, whereas those of the HyFlex EDM group exhibited a significant change after five autoclave cycles (P cycles of autoclave sterilization. In contrast, the surface roughness values of the HyFlex CM files did not increase until 10 cycles of autoclave sterilization. Present study indicated that autoclave sterilization negatively affected the surface roughness of the tested NiTi files.

  13. Imaging and manipulation of single viruses by atomic force microscopy

    NARCIS (Netherlands)

    Baclayon, M.; Wuite, G. J. L.; Roos, W. H.

    2010-01-01

    The recent developments in virus research and the application of functional viral particles in nanotechnology and medicine rely on sophisticated imaging and manipulation techniques at nanometre resolution in liquid, air and vacuum. Atomic force microscopy (AFM) is a tool that combines these

  14. Atomic force microscopy of torus-bearing pit membranes

    Science.gov (United States)

    Roland R. Dute; Thomas Elder

    2011-01-01

    Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...

  15. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    International Nuclear Information System (INIS)

    Miranda, Adelaide; De Beule, Pieter A. A.; Martins, Marco

    2015-01-01

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate

  16. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Adelaide; De Beule, Pieter A. A., E-mail: pieter.de-beule@inl.int [Applied Nano-Optics Laboratory, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga (Portugal); Martins, Marco [Nano-ICs Group, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, s/n, 4715-330 Braga (Portugal)

    2015-09-15

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate.

  17. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun, E-mail: khchung@ulsan.ac.kr

    2016-02-15

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8–29% smaller than those obtained from the other two methods. This discrepancy decreased to 3–19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. - Highlights: • Quantitative assessment of three lateral force calibration methods for AFM. • Advantages and disadvantages of three different lateral force calibration method. • Implementation of Multi-Load Pivot method as non-contact calibration technique. • The torsional mode correction for Lateral AFM Thermal-Sader method.

  18. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy

    International Nuclear Information System (INIS)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun

    2016-01-01

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8–29% smaller than those obtained from the other two methods. This discrepancy decreased to 3–19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method. - Highlights: • Quantitative assessment of three lateral force calibration methods for AFM. • Advantages and disadvantages of three different lateral force calibration method. • Implementation of Multi-Load Pivot method as non-contact calibration technique. • The torsional mode correction for Lateral AFM Thermal-Sader method.

  19. Localization and force analysis at the single virus particle level using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Hao [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Horng, Jim-Tong [Department of Biochemistry, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Chang, Jeng-Shian [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Hsieh, Chung-Fan [Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Tseng, You-Chen [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Lin, Shiming, E-mail: til@ntu.edu.tw [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Center for Optoelectronic Biomedicine, College of Medicine, Nation Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  20. Nanomechanical cutting of boron nitride nanotubes by atomic force microscopy

    International Nuclear Information System (INIS)

    Zheng, Meng; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C; Pugno, Nicola M

    2013-01-01

    The length of nanotubes is a critical structural parameter for the design and manufacture of nanotube-based material systems and devices. High-precision length control of nanotubes by means of mechanical cutting using a scriber has not materialized due to the lack of the knowledge of the appropriate cutting conditions and the tube failure mechanism. In this paper, we present a quantitative nanomechanical study of the cutting of individual boron nitride nanotubes (BNNTs) using atomic force microscopy (AFM) probes. In our nanotube cutting measurements, a nanotube standing still on a flat substrate was laterally scribed by an AFM tip. The tip–tube collision force deformed the tube, and eventually fractured the tube at the collision site by increasing the cutting load. The mechanical response of nanotubes during the tip–tube collision process and the roles of the scribing velocity and the frictional interaction on the tip–tube collision contact in cutting nanotubes were quantitatively investigated by cutting double-walled BNNTs of 2.26–4.28 nm in outer diameter. The fracture strength of BNNTs was also quantified based on the measured collision forces and their structural configurations using contact mechanics theories. Our analysis reports fracture strengths of 9.1–15.5 GPa for the tested BNNTs. The nanomechanical study presented in this paper demonstrates that the AFM-based nanomechanical cutting technique not only enables effective control of the length of nanotubes with high precision, but is also promising as a new nanomechanical testing technique for characterizing the mechanical properties of tubular nanostructures. (paper)

  1. Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping

    Science.gov (United States)

    Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung

    2017-08-01

    Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.

  2. The effects of atomic force microscopy upon nominated living cells

    Energy Technology Data Exchange (ETDEWEB)

    O' Hagan, Barry Michael Gerard [School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, County Londonderry, BT52 1SA (United Kingdom)]. E-mail: bmg.ohagan@ulstser.ac.uk; Doyle, Peter [Unilever Research, Port Sunlight, The Wirral, Merseyside (United Kingdom); Allen, James M. [School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, County Londonderry, BT52 1SA (United Kingdom); Sutton, Kerry [School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, County Londonderry, BT52 1SA (United Kingdom); McKerr, George [School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, County Londonderry, BT52 1SA (United Kingdom)

    2004-12-15

    This work describes a system for precise re-location of cells within a monolayer after atomic force imaging. As we know little about probe interaction with soft biological surfaces any corroborative evidence is of great importance. For example, it is of paramount importance in living cell force microscopy that interrogated cells can be re-located and imaged by other corroborative technologies. Methodologies expressed here have shown that non-invasive force parameters can be established for specific cell types. Additionally, we show that the same sample can be transferred reliably to an SEM. Results here indicate that further work with live cells should initially establish appropriate prevailing force parameters and that cell damage should be checked for before and after an imaging experiment.

  3. The effects of atomic force microscopy upon nominated living cells

    International Nuclear Information System (INIS)

    O'Hagan, Barry Michael Gerard; Doyle, Peter; Allen, James M.; Sutton, Kerry; McKerr, George

    2004-01-01

    This work describes a system for precise re-location of cells within a monolayer after atomic force imaging. As we know little about probe interaction with soft biological surfaces any corroborative evidence is of great importance. For example, it is of paramount importance in living cell force microscopy that interrogated cells can be re-located and imaged by other corroborative technologies. Methodologies expressed here have shown that non-invasive force parameters can be established for specific cell types. Additionally, we show that the same sample can be transferred reliably to an SEM. Results here indicate that further work with live cells should initially establish appropriate prevailing force parameters and that cell damage should be checked for before and after an imaging experiment

  4. Composition and conductance distributions of single GeSi quantum rings studied by conductive atomic force microscopy combined with selective chemical etching.

    Science.gov (United States)

    Lv, Y; Cui, J; Jiang, Z M; Yang, X J

    2013-02-15

    Atomic force microscopy imaging combined with selective chemical etching is employed to quantitatively investigate three-dimensional (3D) composition distributions of single GeSi quantum rings (QRs). In addition, the 3D quantitative composition distributions and the corresponding conductance distributions are simultaneously obtained on the same single GeSi QRs by conductive atomic force microscopy combined with selective chemical etching, allowing us to investigate the correlations between the conductance and composition distributions of single QRs. The results show that the QRs' central holes have higher Ge content, but exhibit lower conductance, indicating that the QRs' conductance distribution is not consistent with their composition distribution. By comparing the topography, composition and conductance profiles of the same single QRs before and after different etching processes, it is found that the conductance distributions of GeSi QRs do not vary with the change of composition distribution. Instead, the QRs' conductance distributions are found to be consistent with their topographic shapes, which can be supposed to be due to the shape determined electronic structures.

  5. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    Science.gov (United States)

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. Copyright © 2015 The American Physiological Society.

  6. Probing stem cell differentiation using atomic force microscopy

    International Nuclear Information System (INIS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-01-01

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  7. Probing stem cell differentiation using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaobin [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan); Shi, Xuetao, E-mail: mrshixuetao@gmail.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ostrovidov, Serge [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Wu, Hongkai, E-mail: chhkwu@ust.hk [Department of Chemistry & Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Nakajima, Ken [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  8. Towards nano-physiology of insects with atomic force microscopy.

    Science.gov (United States)

    Dokukin, M E; Guz, N V; Sokolov, I

    2011-02-01

    Little study of insects with modern nanotechnology tools has been done so far. Here we use one of such tool, atomic force microscopy (AFM) to study surface oscillations of the ladybird beetles (Hippodamia convergens) measured in different parts of the insect at picometer level. This allows us to record a much broader spectral range of possible surface vibrations (up to several kHz) than the previously studied oscillations due to breathing, heartbeat cycles, coelopulses, etc. (up to 5-10Hz). Here we demonstrate three different ways with which one can identify the origins of the observed peaks - by physical positioning the probe near a specific organ, and by using biological or chemical stimuli. We report on identification of high frequency peaks associated with H. convergens heart, spiracular closer muscles, and oscillations associated with muscles activated while drinking. The method, being a relatively non-invasive technique providing a new type of information, may be useful in developing "nanophysiology" of insects. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Esteban, A. [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Horcas, I. [Nanotec Electronica S.L., Centro Empresarial Euronova 3, Ronda de Poniente 12, 28760 Tres Cantos, Madrid (Spain); Hernando-Perez, M. [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Ares, P. [Nanotec Electronica S.L., Centro Empresarial Euronova 3, Ronda de Poniente 12, 28760 Tres Cantos, Madrid (Spain); Perez-Berna, A.J.; San Martin, C.; Carrascosa, J.L. [Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, 28049 Madrid (Spain); Pablo, P.J. de [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Gomez-Herrero, J., E-mail: julio.gomez@uam.es [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-03-15

    Control and minimization of tip-sample interaction forces are imperative tasks to maximize the performance of atomic force microscopy. In particular, when imaging soft biological matter in liquids, the cantilever dragging force prevents identification of the tip-sample mechanical contact, resulting in deleterious interaction with the specimen. In this work we present an improved jumping mode procedure that allows detecting the tip-sample contact with high accuracy, thus minimizing the scanning forces ({approx}100 pN) during the approach cycles. To illustrate this method we report images of human adenovirus and T7 bacteriophage particles which are prone to uncontrolled modifications when using conventional jumping mode. -- Highlights: Black-Right-Pointing-Pointer Improvement in atomic force microscopy in buffer solution. Black-Right-Pointing-Pointer Peak force detection. Black-Right-Pointing-Pointer Subtracting the cantilever dragging force. Black-Right-Pointing-Pointer Forces in the 100 pN range. Black-Right-Pointing-Pointer Imaging of delicate viruses with atomic force microscopy.

  10. Metal layer mask patterning by force microscopy lithography

    International Nuclear Information System (INIS)

    Filho, H.D. Fonseca; Mauricio, M.H.P.; Ponciano, C.R.; Prioli, R.

    2004-01-01

    The nano-lithography of a metallic surface in air by atomic force microscopy while operated in contact mode and equipped with a diamond tip is presented. The aluminum mask was prepared by thermal deposition on arsenic sulfide films. The analysis of the scratches performed by the tip on the metallic mask show that the depth of the lithographed pattern increases with the increase of the applied normal force. The scanning velocity is also shown to influence the AFM patterning process. As the scanning velocity increases, the scratch depth and width decreases. Nano-indentations performed with the diamond tip show that the plastically deformed surface increases with the increase of the duration of the applied force. The use of the nano-lithography method to create nano-structures is discussed

  11. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Walder, Robert; Van Patten, William J; Adhikari, Ayush; Perkins, Thomas T

    2018-01-23

    Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.

  12. Some image artefacts in non-contact mode force microscopy

    International Nuclear Information System (INIS)

    Dinte, B.P.; Watson, G.S.; Dobson, J.F.; Myhra, S.

    1996-01-01

    Full text: Non-contact mode Atomic Force Microscopy (AFM), performed in air, of two-dimensional hexagonal close-packed (2DHCP) layers of 200 nm diameter polystyrene spheres yields images containing artefacts ('ghost spheres') at layer edges and vacancy sites. The origin of these artefacts is clearly not the simple convolution of the tip and sample geometries, but must be the interaction between them. A computer program was written to simulate the experimental contours, assuming that the only force between the tip and the sample is the van der Waals (dispersion) force, and that the contours traced by the AFM tip are those of constant force derivative. The energy was calculated by integrating R -6 over the volumes of the tip and the sample, with a (constant) arbitrary scaling factor. The experimental contours were reproduced by the simulations, except for the 'ghost' artefacts. The assumption that there is only a dispersion force is thus incorrect. The experiments were performed in air, so that all surfaces were coated by a layer of adsorbed moisture. It is proposed that meniscus forces may be the origin of the artefacts

  13. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  14. Observation of self-assembled fluorescent beads by scanning near-field optical microscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Jo, W.; Kim, Min-Gon; Kyu Park, Hyun; Hyun Chung, Bong

    2006-01-01

    Optical response and topography of fluorescent latex beads both on flat self-assembled monolayer and on a micron-patterned surface with poly(dimethylsiloxane) are studied. Scanning near-field optical microscopy and atomic force microscopy were utilized together for detecting fluorescence and imaging topography of the patterned latex beads, respectively. As a result, the micro-patterned latex beads where a specific chemical binding occurred show a strong signal, whereas no signals are observed in the case of nonspecific binding. With fluorescein isothiocyanate (FITC), it is convenient to measure fluorescence signal from the patterned beads allowing us to monitor the small balls of fluorescent latex

  15. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    International Nuclear Information System (INIS)

    Baniasadi, Mahmoud; Xu, Zhe; Du, Yingjie; Lu, Hongbing; Minary-Jolandan, Majid; Gandee, Leah; Zimmern, Philippe

    2014-01-01

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model. (paper)

  16. Distinguishing ferritin from apoferritin using magnetic force microscopy

    International Nuclear Information System (INIS)

    Nocera, Tanya M; Zeng, Yuzhi; Agarwal, Gunjan

    2014-01-01

    Estimating the amount of iron-replete ferritin versus iron-deficient apoferritin proteins is important in biomedical and nanotechnology applications. This work introduces a simple and novel approach to quantify ferritin by using magnetic force microscopy (MFM). We demonstrate how high magnetic moment probes enhance the magnitude of MFM signal, thus enabling accurate quantitative estimation of ferritin content in ferritin/apoferritin mixtures in vitro. We envisage MFM could be adapted to accurately determine ferritin content in protein mixtures or in small aliquots of clinical samples. (fast track communication)

  17. Distinguishing ferritin from apoferritin using magnetic force microscopy

    Science.gov (United States)

    Nocera, Tanya M.; Zeng, Yuzhi; Agarwal, Gunjan

    2014-11-01

    Estimating the amount of iron-replete ferritin versus iron-deficient apoferritin proteins is important in biomedical and nanotechnology applications. This work introduces a simple and novel approach to quantify ferritin by using magnetic force microscopy (MFM). We demonstrate how high magnetic moment probes enhance the magnitude of MFM signal, thus enabling accurate quantitative estimation of ferritin content in ferritin/apoferritin mixtures in vitro. We envisage MFM could be adapted to accurately determine ferritin content in protein mixtures or in small aliquots of clinical samples.

  18. CO tip functionalization in subatomic resolution atomic force microscopy

    International Nuclear Information System (INIS)

    Kim, Minjung; Chelikowsky, James R.

    2015-01-01

    Noncontact atomic force microscopy (nc-AFM) employing a CO-functionalized tip displays dramatically enhanced resolution wherein covalent bonds of polycyclic aromatic hydrocarbon can be imaged. Employing real-space pseudopotential first-principles calculations, we examine the role of CO in functionalizing the nc-AFM tip. Our calculations allow us to simulate full AFM images and ascertain the enhancement mechanism of the CO molecule. We consider two approaches: one with an explicit inclusion of the CO molecule and one without. By comparing our simulations to existing experimental images, we ascribe the enhanced resolution of the CO functionalized tip to the special orbital characteristics of the CO molecule

  19. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson

    2012-03-01

    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  20. Atomic force microscopy on chromosomes, chromatin and DNA: a review.

    Science.gov (United States)

    Kalle, Wouter; Strappe, Padraig

    2012-12-01

    The purpose of this review is to discuss the achievements and progress that has been made in the use of atomic force microscopy in DNA related research in the last 25 years. For this review DNA related research is split up in chromosomal-, chromatin- and DNA focused research to achieve a logical flow from large- to smaller structures. The focus of this review is not only on the AFM as imaging tool but also on the AFM as measuring tool using force spectroscopy, as therein lays its greatest advantage and future. The amazing technological and experimental progress that has been made during the last 25 years is too extensive to fully cover in this review but some key developments and experiments have been described to give an overview of the evolution of AFM use from 'imaging tool' to 'measurement tool' on chromosomes, chromatin and DNA. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Electrostatic force microscopy with a self-sensing piezoresistive cantilever

    International Nuclear Information System (INIS)

    Pi, U. H.; Kye, J. I.; Shin, S.; Khim, Z. G.; Hong, J. W.; Yoon, S.

    2003-01-01

    We present a new method for electrostatic force microscopy (EFM) using a piezoresistive cantilever instead of the conventional cantilever with an optical detector. In EFM with a piezoresistive cantilever, the electrostatic force between the tip and the sample is monitored by sensing the change in the resistance of the piezoresistive cantilever at a frequency of several tens of kHz. A large stray capacitance effect can be rejected by using an appropriate phase tuning of the phase-sensitive detection. We observed the ferroelectric domain images of a triglycine sulfate single crystal. We could also write fine patterns on a lead-zirconate-titanate (PZT) thin film through domain reversal by applying various dc voltages between the tip and the sample. We suggest that the EFM technique using a self-sensing and self-actuating piezoresistive cantilever can be applied to a high-density data storage field

  2. Capillary force between wetted nanometric contacts and its application to atomic force microscopy.

    Science.gov (United States)

    Crassous, Jérôme; Ciccotti, Matteo; Charlaix, Elisabeth

    2011-04-05

    We extend to the case of perfect wetting the exact calculation of Orr et al. (J. Fluid. Mech. 1975, 67, 723) for a pendular ring connecting two dry surfaces. We derive an approximate analytical expression for the capillary force between two highly curved surfaces covered by a wetting liquid film. The domain of validity of this expression is assessed and extended by a custom-made numerical simulation based on the full exact mathematical description. In the case of attractive liquid-solid van der Waals interactions, the capillary force increases monotonically with decreasing vapor pressure up to several times its saturation value. This accurate description of the capillary force makes it possible to estimate the adhesion force between wet nanoparticles; it can also be used to quantitatively interpret pull-off forces measured by atomic force microscopy.

  3. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.

    Science.gov (United States)

    Kent, Ronald D; Vikesland, Peter J

    2012-07-03

    Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution kinetics are complicated by nanoparticle aggregation. Herein, nanosphere lithography (NSL) was used to fabricate uniform arrays of AgNPs immobilized on glass substrates. Nanoparticle immobilization enabled controlled evaluation of AgNP dissolution in an air-saturated phosphate buffer (pH 7.0, 25 °C) under variable NaCl concentrations in the absence of aggregation. Atomic force microscopy (AFM) was used to monitor changes in particle morphology and dissolution. Over the first day of exposure to ≥10 mM NaCl, the in-plane AgNP shape changed from triangular to circular, the sidewalls steepened, the in-plane radius decreased by 5-11 nm, and the height increased by 6-12 nm. Subsequently, particle height and in-plane radius decreased at a constant rate over a 2-week period. Dissolution rates varied linearly from 0.4 to 2.2 nm/d over the 10-550 mM NaCl concentration range tested. NaCl-catalyzed dissolution of AgNPs may play an important role in AgNP fate in saline waters and biological media. This study demonstrates the utility of NSL and AFM for the direct investigation of unaggregated AgNP dissolution.

  4. Atomic force microscopy for university students: applications in biomaterials

    International Nuclear Information System (INIS)

    Kontomaris, S V; Stylianou, A

    2017-01-01

    Atomic force microscopy (AFM) is a powerful tool used in the investigation of the structural and mechanical properties of a wide range of materials including biomaterials. It provides the ability to acquire high resolution images of biomaterials at the nanoscale. It also provides information about the response of specific areas under controlled applied force, which leads to the mechanical characterization of the sample at the nanoscale. The wide range of information provided by AFM has established it as a powerful research tool. In this paper, we present a general overview of the basic operation and functions of AFM applications in biomaterials. The basic operation of AFM is explained in detail with a focus on the real interactions that take place at the nanoscale level during imaging. AFM’s ability to provide the mechanical characterization (force curves) of specific areas at the nanoscale is also explained. The basic models of applied mechanics that are used for processing the data obtained by the force curves are presented. The aim of this paper is to provide university students and young scientists in the fields of biophysics and nanotechnology with a better understanding of AFM. (review)

  5. Restoration the domain structure from magnetic force microscopy image

    Science.gov (United States)

    Wu, Dongping; Lou, Yuanfu; Wei, Fulin; Wei, Dan

    2012-04-01

    This contribution gives an approximation method to calculate the stray field of the scanning plane from the magnetic force microscopy (MFM) force gradient image. Before calculation, a Butterworth low-pass filter has been used to remove a part of the noise of the image. The discrete Fourier transform (DFT) method has been used to calculate the magnetic potential of the film surface. It shows that the potential is not correct because the low-frequency noise has been enlarged. The approximation method gives a better result of the potential and proves that the MFM force gradient of the perpendicular component image also gives the perpendicular component of the stray field. Supposing that the distance between the tip and the sample is as small as near zero, the force gradient image also gives the magnetic charge distribution of the film surface. So if the orientation of the film from hysteresis loop is known, then the domain structure of the film can be determined. For perpendicular orientation, the absolution value of the perpendicular component of stray field gives the domain and domain wall position. For in-plane orientation, the absolution value of in-plane component of stray field gives the domain and domain wall position.

  6. Structure of ordered polyelectrolyte films from atomic-force microscopy and X-ray reflectivity data

    International Nuclear Information System (INIS)

    Belyaev, V.V.; Tolstikhina, A.L.; Stepina, N.D.; Kayushina, R.L.

    1998-01-01

    The possible application of atomic-force microscopy and X-ray reflectometry methods to structural studies of polyelectrolyte films obtained due to alternating adsorption of oppositely charged polyanion [sodium polysterenesulfonate (PSS)] and polycation [poly(allylamine) hydrochloride (PAA)] layers on solid substrates has been considered. The atomic-force microscopy study has revealed the characteristic features of the surface topography of samples consisting of different numbers of polyelectrolyte layers deposited from solutions characterized by different ionic strength values. It is shown that the shape of the reflectivity curves obtained from thin polyelectrolyte films depends on their surface structure

  7. Multifarious applications of atomic force microscopy in forensic science investigations.

    Science.gov (United States)

    Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y

    2017-04-01

    Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Humidity effects on scanning polarization force microscopy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue, E-mail: shenyue@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Yuan, E-mail: zhouy@isl.ac.cn [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); Sun, Yanxia; Zhang, Lijuan [Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Ying; Hu, Jun; Zhang, Yi [Key Laboratory of Interfacial Physics and Technology of Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-08-01

    Highlights: • The humidity dramatically affects the contrast of scanning polarization force microscopy (SPFM) imaging on mica surface. • This influence roots in the sensitive dielectric constant of mica surface to the humidity change. • A strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM is proposed. - Abstract: Scanning polarization force microscopy (SPFM) is a useful surface characterization technique to visually characterize and distinguish nanomaterial with different local dielectric properties at nanometer scale. In this paper, taking the individual one-atom-thick graphene oxide (GO) and reduced graphene oxide (rGO) sheets on mica as examples, we described the influences of environmental humidity on SPFM imaging. We found that the apparent heights (AHs) or contrast of SPFM imaging was influenced significantly by relative humidity (RH) at a response time of a few seconds. And this influence rooted in the sensitive dielectric constant of mica surface to the RH change. While dielectric properties of GO and rGO sheets were almost immune to the humidity change. In addition, we gave the method to determine the critical humidity at which the contrast conversion happened under different conditions. And this is important to the contrast control and repeatable imaging of SPFM through RH adjusting. These findings suggest a strategy of controllable and repeatable imaging the local dielectric properties of nanomaterials with SPFM, which is critically important for further distinguishment, manipulation, electronic applications, etc.

  9. Conformational studies of self-organized regioregular poly(3-dodecylthiophene)s using non-contact atomic force microscopy in ultra high vacuum condition

    International Nuclear Information System (INIS)

    Tanaka, Shukichi; Grevin, Benjamin; Rannou, Patrice; Suzuki, Hitoshi; Mashiko, Shinro

    2006-01-01

    Conformations of one of the variations of π-conjugated poly-alkylthiophene, poly(3-dodecylthiophene)s (P3DDT)s on the surface in ultra high vacuum (UHV) were investigated by non-contact atomic force microscopy (NC-AFM) operated by frequency-modulation mode (FM-mode). From individual molecules to several multi-layered ones, polymer chains on the surface were clearly resolved on conducting highly oriented pyrolytic graphite (HOPG) substrates and insulating mica ones, respectively. Solvent evaporation was found to have two stages, which influenced the diffusion, ordering, and adhesion processes of polymer chains on the substrate. To keep the ordered conformations of deposited polymer chains when they are transferred from ambient condition to UHV, these evaporation processes should be carefully considered. The initial conformation of polymers on the substrate was found to depend strongly on the lattice matching conditions and interactions between polymers and substrates. Formations of stripe-like structures of P3DDT polymers were found on the mica substrates, which is promising for device application

  10. Electron microscopy of intermediate filaments: teaming up with atomic force and confocal laser scanning microscopy.

    Science.gov (United States)

    Kreplak, Laurent; Richter, Karsten; Aebi, Ueli; Herrmann, Harald

    2008-01-01

    Intermediate filaments (IFs) were originally discovered and defined by electron microscopy in myoblasts. In the following it was demonstrated and confirmed that they constitute, in addition to microtubules and microfilaments, a third independent, general filament system in the cytoplasm of most metazoan cells. In contrast to the other two systems, IFs are present in cells in two principally distinct cytoskeletal forms: (i) extended and free-running filament arrays in the cytoplasm that are integrated into the cytoskeleton by associated proteins of the plakin type; and (ii) a membrane- and chromatin-bound thin 'lamina' of a more or less regular network of interconnected filaments made from nuclear IF proteins, the lamins, which differ in several important structural aspects from cytoplasmic IF proteins. In man, more than 65 genes code for distinct IF proteins that are expressed during embryogenesis in various routes of differentiation in a tightly controlled manner. IF proteins exhibit rather limited sequence identity implying that the different types of IFs have distinct biochemical properties. Hence, to characterize the structural properties of the various IFs, in vitro assembly regimes have been developed in combination with different visualization methods such as transmission electron microscopy of fixed and negatively stained samples as well as methods that do not use staining such as scanning transmission electron microscopy (STEM) and cryoelectron microscopy as well as atomic force microscopy. Moreover, with the generation of both IF-type specific antibodies and chimeras of fluorescent proteins and IF proteins, it has become possible to investigate the subcellular organization of IFs by correlative fluorescence and electron microscopic methods. The combination of these powerful methods should help to further develop our understanding of nuclear architecture, in particular how nuclear subcompartments are organized and in which way lamins are involved.

  11. Polarizability of DNA Block Copolymer Nanoparticles Observed by Electrostatic Force Microscopy

    NARCIS (Netherlands)

    Sowwan, Mukhles; Faroun, Maryam; Mentovich, Elad; Ibrahim, Imad; Haboush, Shayma; Alemdaroglu, Fikri Emrah; Kwak, Minseok; Richter, Shachar; Herrmann, Andreas

    2010-01-01

    In this study, DNA block copolymer (DBC) micelles with a polystyrene (PS) core and a single-stranded (ss) DNA shell were doped with ferrocene (Fc) molecules. Tapping mode atomic force microscopy (AFM) was used to study the morphology of the doped and undoped block copolymer aggregates. We show that

  12. Investigation of graphite composite anodes surfaces by atomic force microscopy and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hirasawa, Karen Akemi; Nishioka, Keiko; Sato, Tomohiro; Yamaguchi, Shoji; Mori, Shoichiro [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan)

    1997-11-01

    The surface of a synthetic graphite (KS-44) and polyvinylidene difluoride binder (PVDF) anode for lithium-ion secondary batteries is imaged using atomic force microscopy (AFM) and several related scanning probe microscope (SPM) instruments including: dynamic force microscopy (DFM), friction force microscopy (FFM), laterally-modulated friction force microscopy (LM-FFM), visco-elasticity atomic force microscopy (VE-AFM), and AFM/simultaneous current measurement mode (SCM). DFM is found to be an exceptional mode for topographic imaging while FFM results in the clearest contrast distinction between PVDF binder and KS-44 graphite regions. (orig.)

  13. In-situ piezoresponse force microscopy cantilever mode shape profiling

    International Nuclear Information System (INIS)

    Proksch, R.

    2015-01-01

    The frequency-dependent amplitude and phase in piezoresponse force microscopy (PFM) measurements are shown to be a consequence of the Euler-Bernoulli (EB) dynamics of atomic force microscope (AFM) cantilever beams used to make the measurements. Changes in the cantilever mode shape as a function of changes in the boundary conditions determine the sensitivity of cantilevers to forces between the tip and the sample. Conventional PFM and AFM measurements are made with the motion of the cantilever measured at one optical beam detector (OBD) spot location. A single OBD spot location provides a limited picture of the total cantilever motion, and in fact, experimentally observed cantilever amplitude and phase are shown to be strongly dependent on the OBD spot position for many measurements. In this work, the commonly observed frequency dependence of PFM response is explained through experimental measurements and analytic theoretical EB modeling of the PFM response as a function of both frequency and OBD spot location on a periodically poled lithium niobate sample. One notable conclusion is that a common choice of OBD spot location—at or near the tip of the cantilever—is particularly vulnerable to frequency dependent amplitude and phase variations stemming from dynamics of the cantilever sensor rather than from the piezoresponse of the sample

  14. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  15. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  16. Compensator design for improved counterbalancing in high speed atomic force microscopy

    OpenAIRE

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-01-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, ...

  17. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.

    Science.gov (United States)

    Cho, Shin Hyo; Park, Su-Moon

    2006-12-28

    Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.

  18. Atomic Force Microscopy Study of Protein–Protein Interactions in the Cytochrome CYP11A1 (P450scc-Containing Steroid Hydroxylase System

    Directory of Open Access Journals (Sweden)

    Zöllner A

    2011-01-01

    Full Text Available Abstract Atomic force microscopy (AFM and photon correlation spectroscopy (PCS were used for monitoring of the procedure for cytochrome CYP11A1 monomerization in solution without phospholipids. It was shown that the incubation of 100 μM CYP11A1 with 12% Emulgen 913 in 50 mM KP, pH 7.4, for 10 min at T = 22°C leads to dissociation of hemoprotein aggregates to monomers with the monomerization degree of (82 ± 4%. Following the monomerization procedure, CYP11A1 remained functionally active. AFM was employed to detect and visualize the isolated proteins as well as complexes formed between the components of the cytochrome CYP11A1-dependent steroid hydroxylase system. Both Ad and AdR were present in solution as monomers. The typical heights of the monomeric AdR, Ad and CYP11A1 images were measured by AFM and were found to correspond to the sizes 1.6 ± 0.2 nm, 1.0 ± 0.2 nm and 1.8 ± 0.2 nm, respectively. The binary Ad/AdR and AdR/CYP11A1mon complexes with the heights 2.2 ± 0.2 nm and 2.8 ± 0.2 nm, respectively, were registered by use of AFM. The Ad/CYP11A1mon complex formation reaction was kinetically characterized based on optical biosensor data. In addition, the ternary AdR/Ad/CYP11A1 complexes with a typical height of 4 ± 1 nm were AFM registered.

  19. Electrochemical, atomic force microscopy and infrared reflection absorption spectroscopy studies of pre-formed mussel adhesive protein films on carbon steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: fanzhang@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Pan, Jinshan [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Claesson, Per Martin [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Institute for Surface Chemistry, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Brinck, Tore [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Physical Chemistry, Division of Physical Chemistry, Teknikringen 36, SE-10044 Stockholm (Sweden)

    2012-10-01

    Electrochemical measurements, in situ and ex situ atomic force microscopy (AFM) experiments and infrared reflection absorption spectroscopy (IRAS) analysis were performed to investigate the formation and stability as well as corrosion protection properties of mussel adhesive protein (Mefp-1) films on carbon steel, and the influence of cross-linking by NaIO{sub 4} oxidation. The in situ AFM measurements show flake-like adsorbed protein aggregates in the film formed at pH 9. The ex situ AFM images indicate multilayer-like films and that the film becomes more compact and stable in NaCl solution after the cross-linking. The IRAS results reveal the absorption bands of Mefp-1 on carbon steel before and after NaIO{sub 4} induced oxidation of the pre-adsorbed protein. Within a short exposure time, a certain corrosion protection effect was noted for the pre-formed Mefp-1 film in 0.1 M NaCl solution. Cross-linking the pre-adsorbed film by NaIO{sub 4} oxidation significantly enhanced the protection efficiency by up to 80%. - Highlights: Black-Right-Pointing-Pointer Mussel protein was tested as 'green' corrosion protection strategy for steel. Black-Right-Pointing-Pointer At pH 9, the protein adsorbs on carbon steel and forms a multilayer-like film. Black-Right-Pointing-Pointer NaIO{sub 4} leads to structural changes and cross-linking of the protein film. Black-Right-Pointing-Pointer Cross-linking results in a dense and compact film with increased stability. Black-Right-Pointing-Pointer Cross-linking of preformed film significantly enhances the corrosion protection.

  20. Calibrated work function mapping by Kelvin probe force microscopy

    Science.gov (United States)

    Fernández Garrillo, Pablo A.; Grévin, Benjamin; Chevalier, Nicolas; Borowik, Łukasz

    2018-04-01

    We propose and demonstrate the implementation of an alternative work function tip calibration procedure for Kelvin probe force microscopy under ultrahigh vacuum, using monocrystalline metallic materials with known crystallographic orientation as reference samples, instead of the often used highly oriented pyrolytic graphite calibration sample. The implementation of this protocol allows the acquisition of absolute and reproducible work function values, with an improved uncertainty with respect to unprepared highly oriented pyrolytic graphite-based protocols. The developed protocol allows the local investigation of absolute work function values over nanostructured samples and can be implemented in electronic structures and devices characterization as demonstrated over a nanostructured semiconductor sample presenting Al0.7Ga0.3As and GaAs layers with variable thickness. Additionally, using our protocol we find that the work function of annealed highly oriented pyrolytic graphite is equal to 4.6 ± 0.03 eV.

  1. Measuring the elasticity of plant cells with atomic force microscopy.

    Science.gov (United States)

    Braybrook, Siobhan A

    2015-01-01

    The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Molecular dynamics simulation of amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Hu, Xiaoli; Martini, Ashlie; Egberts, Philip; Dong, Yalin

    2015-01-01

    Molecular dynamics (MD) simulations were used to model amplitude modulation atomic force microscopy (AM-AFM). In this novel simulation, the model AFM tip responds to both tip–substrate interactions and to a sinusoidal excitation signal. The amplitude and phase shift of the tip oscillation observed in the simulation and their variation with tip–sample distance were found to be consistent with previously reported trends from experiments and theory. These simulation results were also fit to an expression enabling estimation of the energy dissipation, which was found to be smaller than that in a corresponding experiment. The difference was analyzed in terms of the effects of tip size and substrate thickness. Development of this model is the first step toward using MD to gain insight into the atomic-scale phenomena that occur during an AM-AFM measurement. (paper)

  3. Unlocking higher harmonics in atomic force microscopy with gentle interactions.

    Science.gov (United States)

    Santos, Sergio; Barcons, Victor; Font, Josep; Verdaguer, Albert

    2014-01-01

    In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity.

  4. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    International Nuclear Information System (INIS)

    Atabak, Mehrdad; Unverdi, Ozhan; Ozer, H. Ozguer; Oral, Ahmet

    2009-01-01

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 x 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  5. Langmuir- Blodgett layers of amphiphilic molecules investigated by Atomic Force Microscopy

    NARCIS (Netherlands)

    Zdravkova, Aneliya Nikolova

    2007-01-01

    Langmuir - Blodgett technique and Atomic Force Microscopy were used to study the phase behaviour of organic molecules (fatty alcohols and monoacid saturated triglycerides) at air-water and air-solid interfaces. The structure of binary mixed LB monolayers of fatty alcohols was reported. The

  6. The use of atomic force microscopy to evaluate warm mix asphalt.

    Science.gov (United States)

    2013-01-01

    The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...

  7. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  8. High resolution magnetic force microscopy: instrumentation and application for recording media

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.

    This thesis describes aspects of the use of magnetic force microscopy for the study of magnetic recording media. The maximum achievable storage density in magnetic recording is limited by the magnetic reversal behaviour of the medium and by the stability of the written information. The shape and

  9. Surface physics studied by means of scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Besenbacher, F.; Laegsgaard, E.; Stensgaard, I.

    1993-01-01

    Scanning tunneling microscopy has been applied to study silicon crystal structures, oxygen on Cu (110), and real industrial catalyst surfaces. For the latter purpose an Atomic Force Microscope is being developed. (EG)

  10. Improving tapping mode atomic force microscopy with piezoelectric cantilevers

    International Nuclear Information System (INIS)

    Rogers, B.; Manning, L.; Sulchek, T.; Adams, J.D.

    2004-01-01

    This article summarizes improvements to the speed, simplicity and versatility of tapping mode atomic force microscopy (AFM). Improvements are enabled by a piezoelectric microcantilever with a sharp silicon tip and a thin, low-stress zinc oxide (ZnO) film to both actuate and sense deflection. First, we demonstrate self-sensing tapping mode without laser detection. Similar previous work has been limited by unoptimized probe tips, cantilever thicknesses, and stress in the piezoelectric films. Tests indicate self-sensing amplitude resolution is as good or better than optical detection, with double the sensitivity, using the same type of cantilever. Second, we demonstrate self-oscillating tapping mode AFM. The cantilever's integrated piezoelectric film serves as the frequency-determining component of an oscillator circuit. The circuit oscillates the cantilever near its resonant frequency by applying positive feedback to the film. We present images and force-distance curves using both self-sensing and self-oscillating techniques. Finally, high-speed tapping mode imaging in liquid, where electric components of the cantilever require insulation, is demonstrated. Three cantilever coating schemes are tested. The insulated microactuator is used to simultaneously vibrate and actuate the cantilever over topographical features. Preliminary images in water and saline are presented, including one taken at 75.5 μm/s - a threefold improvement in bandwidth versus conventional piezotube actuators

  11. Probing the stiffness of isolated nucleoli by atomic force microscopy.

    Science.gov (United States)

    Louvet, Emilie; Yoshida, Aiko; Kumeta, Masahiro; Takeyasu, Kunio

    2014-04-01

    In eukaryotic cells, ribosome biogenesis occurs in the nucleolus, a membraneless nuclear compartment. Noticeably, the nucleolus is also involved in several nuclear functions, such as cell cycle regulation, non-ribosomal ribonucleoprotein complex assembly, aggresome formation and some virus assembly. The most intriguing question about the nucleolus is how such dynamics processes can occur in such a compact compartment. We hypothesized that its structure may be rather flexible. To investigate this, we used atomic force microscopy (AFM) on isolated nucleoli. Surface topography imaging revealed the beaded structure of the nucleolar surface. With the AFM's ability to measure forces, we were able to determine the stiffness of isolated nucleoli. We could establish that the nucleolar stiffness varies upon drastic morphological changes induced by transcription and proteasome inhibition. Furthermore, upon ribosomal proteins and LaminB1 knockdowns, the nucleolar stiffness was increased. This led us to propose a model where the nucleolus has steady-state stiffness dependent on ribosome biogenesis activity and requires LaminB1 for its flexibility.

  12. Atomic force microscopy of pea starch: origins of image contrast.

    Science.gov (United States)

    Ridout, Michael J; Parker, Mary L; Hedley, Cliff L; Bogracheva, Tatiana Y; Morris, Victor J

    2004-01-01

    Atomic force microscopy (AFM) has been used to image the internal structure of pea starch granules. Starch granules were encased in a nonpenetrating matrix of rapid-set Araldite. Images were obtained of the internal structure of starch exposed by cutting the face of the block and of starch in sections collected on water. These images have been obtained without staining, or either chemical or enzymatic treatment of the granule. It has been demonstrated that contrast in the AFM images is due to localized absorption of water within specific regions of the exposed fragments of the starch granules. These regions swell, becoming "softer" and higher than surrounding regions. The images obtained confirm the "blocklet model" of starch granule architecture. By using topographic, error signal and force modulation imaging modes on samples of the wild-type pea starch and the high amylose r near-isogenic mutant, it has been possible to demonstrate differing structures within granules of different origin. These architectural changes provide a basis for explaining the changed appearance and functionality of the r mutant. The growth-ring structure of the granule is suggested to arise from localized "defects" in blocklet distribution within the granule. It is proposed that these defects are partially crystalline regions devoid of amylose.

  13. Diameter measurements of polystyrene particles with atomic force microscopy

    International Nuclear Information System (INIS)

    Garnaes, J

    2011-01-01

    The size of (nano) particles is a key parameter used in controlling their function. The particle size is also important in order to understand their physical and chemical properties and regulate their number in health and safety issues. In this work, the geometric diameters of polystyrene spheres of nominal diameter 100 nm are measured using atomic force microscopy. The measurements are based on the apex height and on the average distance between neighbouring spheres when they form a close-packed monolayer on a flat mica substrate. The most important influence parameters for the determination of the geometric diameter are the lateral air gaps and deformation of the spheres. The lateral air gaps are caused by significant size variations of the individual spheres, and a correction is calculated based on the simulation of packing of spheres. The deformation of the spheres is caused mainly by capillary forces acting when they are in contact with each other or with the mica substrate. Based on calculated capillary forces and the literature values of the elastic properties of the polystyrene and mica, the deformation is estimated to be 2 nm with a standard uncertainty of 2 nm. The geometric diameter of the polystyrene spheres was measured with a combined standard uncertainty of ≈3 nm. The measured vertical diameter of 92.3 nm and the certified mobility equivalent diameter measured by differential mobility analysis (DMA) are marginally consistent at a confidence level of 95%. However, the measured lateral geometric diameter was 98.9 nm and is in good agreement with DMA

  14. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids

    International Nuclear Information System (INIS)

    MartInez, N F; Lozano, J R; Herruzo, E T; Garcia, F; Garcia, R; Richter, C; Sulzbach, T

    2008-01-01

    We have developed a dynamic atomic force microscopy (AFM) method based on the simultaneous excitation of the first two flexural modes of the cantilever. The instrument, called a bimodal atomic force microscope, allows us to resolve the structural components of antibodies in both monomer and pentameric forms. The instrument operates in both high and low quality factor environments, i.e., air and liquids. We show that under the same experimental conditions, bimodal AFM is more sensitive to compositional changes than amplitude modulation AFM. By using theoretical and numerical methods, we study the material contrast sensitivity as well as the forces applied on the sample during bimodal AFM operation

  15. Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.Q., E-mail: wangzhiqian@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Jiao, N.D. [State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016 (China); Tung, S. [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Dong, Z.L. [State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016 (China)

    2011-02-01

    The atomic force microscopy (AFM)-based repeated nanomachining of nanochannels on silicon oxide surfaces is investigated both theoretically and experimentally. The relationships of the initial nanochannel depth vs. final nanochannel depth at a normal force are systematically studied. Using the derived theory and simulation results, the final nanochannel depth can be predicted easily. Meanwhile, if a nanochannel with an expected depth needs to be machined, a right normal force can be selected simply and easily in order to decrease the wear of the AFM tip. The theoretical analysis and simulation results can be effectively used for AFM-based fabrication of nanochannels.

  16. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    International Nuclear Information System (INIS)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-01-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations

  17. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, Ireneusz [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany); Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław (Poland); Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert [Peter Grünberg Institut (PGI-3) and JARA-Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-15

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  18. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+ T cells using atomic force microscopy

    International Nuclear Information System (INIS)

    Hu Mingqian; Wang Jiongkun; Cai Jiye; Wu Yangzhe; Wang Xiaoping

    2008-01-01

    To date, nanoscale imaging of the morphological changes and adhesion force of CD4 + T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4 + T cells. The AFM images revealed that the volume of activated CD4 + T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4 + T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity

  19. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+ T cells using atomic force microscopy.

    Science.gov (United States)

    Hu, Mingqian; Wang, Jiongkun; Cai, Jiye; Wu, Yangzhe; Wang, Xiaoping

    2008-09-12

    To date, nanoscale imaging of the morphological changes and adhesion force of CD4(+) T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4(+) T cells. The AFM images revealed that the volume of activated CD4(+) T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4(+) T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.

  20. Atomic force microscopy and transmission electron microscopy analyses of low-temperature laser welding of the cornea.

    Science.gov (United States)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-07-01

    Low-temperature laser welding of the cornea is a technique used to facilitate the closure of corneal cuts. The procedure consists of staining the wound with a chromophore (indocyanine green), followed by continuous wave irradiation with an 810 nm diode laser operated at low power densities (12-16 W/cm(2)), which induces local heating in the 55-65 degrees C range. In this study, we aimed to investigate the ultrastructural modifications in the extracellular matrix following laser welding of corneal wounds by means of atomic force microscopy and transmission electron microscopy. The results evidenced marked disorganization of the normal fibrillar assembly, although collagen appeared not to be denatured under the operating conditions we employed. The mechanism of low-temperature laser welding may be related to some structural modifications of the nonfibrillar extracellular components of the corneal stroma.

  1. Impact of thermal frequency drift on highest precision force microscopy using quartz-based force sensors at low temperatures

    Directory of Open Access Journals (Sweden)

    Florian Pielmeier

    2014-04-01

    Full Text Available In frequency modulation atomic force microscopy (FM-AFM the stability of the eigenfrequency of the force sensor is of key importance for highest precision force measurements. Here, we study the influence of temperature changes on the resonance frequency of force sensors made of quartz, in a temperature range from 4.8–48 K. The sensors are based on the qPlus and length extensional principle. The frequency variation with temperature T for all sensors is negative up to 30 K and on the order of 1 ppm/K, up to 13 K, where a distinct kink appears, it is linear. Furthermore, we characterize a new type of miniaturized qPlus sensor and confirm the theoretically predicted reduction in detector noise.

  2. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  3. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy.

    Science.gov (United States)

    Kannan, Ashwin; Karumanchi, Subbalakshmi Latha; Krishna, Vinatha; Thiruvengadam, Kothai; Ramalingam, Subramaniam; Gautam, Pennathur

    2014-01-01

    Colonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM). The experiments were carried out to quantify the effect of surface roughness on the adhesion force of biofilm. The results show that the adhesion force increased from 1.5 ± 0.5 to 13.2 ± 0.9 nN with increase in the surface roughness of silicon substrate. The results suggest that the adhesion force of biofilm is affected by surface roughness of substrate. © 2014 Wiley Periodicals, Inc.

  4. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding....... The strain-dependent susceptibility to bacterial colonization on conventional PLL-g-PEG illustrates how bacterial diversity challenges development of “universal” antifouling coatings, and AFM single-cell force spectroscopy was proven to be a powerful tool to provide insights into the molecular mechanisms...

  5. Development of Tuning Fork Based Probes for Atomic Force Microscopy

    Science.gov (United States)

    Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood

    2014-03-01

    This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.

  6. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.

  7. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    International Nuclear Information System (INIS)

    Higgins, M.J.; Proksch, R.; Sader, J.E.; Polcik, M.; Mc Endoo, S.; Cleveland, J.P.; Jarvis, S.P.

    2006-01-01

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity

  8. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    Science.gov (United States)

    Higgins, M. J.; Proksch, R.; Sader, J. E.; Polcik, M.; Mc Endoo, S.; Cleveland, J. P.; Jarvis, S. P.

    2006-01-01

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.

  9. Magnetic Force Microscopy Observation of Perpendicular Recording Head Remanence

    Science.gov (United States)

    Dilekrojanavuti, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.

    2017-09-01

    In this work, magnetic force microscopy (MFM) was utilized to observe the magnetic write head remanence, which is the remaining out-of-plane magnetic field on magnetic write heads after a write current is turned off. This remnant field can write unwanted tracks or erase written tracks on a magnetic media. The write head remanence can also occur from device and slider fabrication, either by applying current to the write coil during the inspection or biasing the external magnetic field to magnetic recording heads. This remanence can attract magnetic nanoparticles, which is suspended in cleaning water or surrounding air, and cause device contamination. MFM images were used to examine locations of the remnant field on the surface of magnetic recording heads. Experimental results revealed that the remanence occurred mostly on the shield and is dependent on the initial direction of magnetic moments. In addition, we demonstrated a potential use of MFM imaging to investigate effects of different etching gases on the head remanence.

  10. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2013-11-15

    A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelf components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.

  11. Atomic force microscopy investigation of the giant mimivirus

    International Nuclear Information System (INIS)

    Kuznetsov, Yuri G.; Xiao Chuan; Sun Siyang; Raoult, Didier; Rossmann, Michael; McPherson, Alexander

    2010-01-01

    Mimivirus was investigated by atomic force microscopy in its native state following serial degradation by lysozyme and bromelain. The 750-nm diameter virus is coated with a forest of glycosylated protein fibers of lengths about 140 nm with diameters 1.4 nm. Fibers are capped with distinctive ellipsoidal protein heads of estimated Mr = 25 kDa. The surface fibers are attached to the particle through a layer of protein covering the capsid, which is in turn composed of the major capsid protein (MCP). The latter is organized as an open network of hexagonal rings with central depressions separated by 14 nm. The virion exhibits an elaborate apparatus at a unique vertex, visible as a star shaped depression on native particles, but on defibered virions as five arms of 50 nm width and 250 nm length rising above the capsid by 20 nm. The apparatus is integrated into the capsid and not applied atop the icosahedral lattice. Prior to DNA release, the arms of the star disengage from the virion and it opens by folding back five adjacent triangular faces. A membrane sac containing the DNA emerges from the capsid in preparation for fusion with a membrane of the host cell. Also observed from disrupted virions were masses of distinctive fibers of diameter about 1 nm, and having a 7-nm periodicity. These are probably contained within the capsid along with the DNA bearing sac. The fibers were occasionally observed associated with toroidal protein clusters interpreted as processive enzymes modifying the fibers.

  12. Medical applications of atomic force microscopy and Raman spectroscopy.

    Science.gov (United States)

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  13. Low temperature corneal laser welding investigated by atomic force microscopy

    Science.gov (United States)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-02-01

    The structural modifications in the stromal matrix induced by low-temperature corneal laser welding were investigated by atomic force microscopy (AFM). This procedure consists of staining the wound with Indocyanine Green (ICG), followed by irradiation with a near-infrared laser operated at low-power densities. This induces a local heating in the 55-65 °C range. In welded tissue, extracellular components undergo heat-induced structural modifications, resulting in a joining effect between the cut edges. However, the exact mechanism generating the welding, to date, is not completely understood. Full-thickness cuts, 3.5 mm in length, were made in fresh porcine cornea samples, and these were then subjected to laser welding operated at 16.7 W/cm2 power density. AFM imaging was performed on resin-embedded semi-thin slices once they had been cleared by chemical etching, in order to expose the stromal bulk of the tissue within the section. We then carried out a morphological analysis of characteristic fibrillar features in the laser-treated and control samples. AFM images of control stromal regions highlighted well-organized collagen fibrils (36.2 +/- 8.7 nm in size) running parallel to each other as in a typical lamellar domain. The fibrils exhibited a beaded pattern with a 22-39 nm axial periodicity. Laser-treated corneal regions were characterized by a significant disorganization of the intralamellar architecture. At the weld site, groups of interwoven fibrils joined the cut edges, showing structural properties that were fully comparable with those of control regions. This suggested that fibrillar collagen is not denatured by low-temperature laser welding, confirming previous transmission electron microscopy (TEM) observations, and thus it is probably not involved in the closure mechanism of corneal cuts. The loss of fibrillar organization may be related to some structural modifications in some interfibrillar substance as proteoglycans or collagen VI. Furthermore, AFM

  14. Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: A study using photonic force microscopy

    International Nuclear Information System (INIS)

    Abu-Hamdah, Rania; Cho, Won Jin; Hoerber, J.K.H.; Jena, Bhanu P.

    2006-01-01

    It is well established that actin and microtubule cytoskeletal systems are involved in organelle transport and membrane trafficking in cells. This is also true for the transport of secretory vesicles in neuroendocrine cells and neurons. It was however unclear whether secretory vesicles remain free-floating, only to associate with such cytoskeletal systems when needing transport. This hypothesis was tested using live pancreatic acinar cells in physiological buffer solutions, using the photonic force microscope (PFM). When membrane-bound secretory vesicles (0.2-1.2 μm in diameter) in live pancreatic acinar cells were trapped at the laser focus of the PFM and pulled, they were all found tethered to filamentous structures. Mild exposure of cells to nocodazole and cytochalasin B, disrupts the tether. Immunoblot analysis of isolated secretory vesicles, further demonstrated the association of actin, myosin V, and kinesin. These studies demonstrate for the first time that secretory vesicles in live pancreatic acinar cells are tethered and not free-floating, suggesting that following vesicle biogenesis, they are placed on their own railroad track, ready to be transported to their final destination within the cell when required. This makes sense, since precision and regulation are the hallmarks of all cellular process, and therefore would hold true for the transport and localization of subcellular organelles such as secretory vesicles

  15. Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: A study using photonic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Hamdah, Rania [Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, 540 E. Canfield, Detroit, MI 48201 (United States); Cho, Won Jin [Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, 540 E. Canfield, Detroit, MI 48201 (United States); Hoerber, J.K.H. [Department of Physics, University of Bristol, Bristol BS8 1TD (United Kingdom); Jena, Bhanu P. [Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, 540 E. Canfield, Detroit, MI 48201 (United States)]. E-mail: bjena@med.wayne.edu

    2006-06-15

    It is well established that actin and microtubule cytoskeletal systems are involved in organelle transport and membrane trafficking in cells. This is also true for the transport of secretory vesicles in neuroendocrine cells and neurons. It was however unclear whether secretory vesicles remain free-floating, only to associate with such cytoskeletal systems when needing transport. This hypothesis was tested using live pancreatic acinar cells in physiological buffer solutions, using the photonic force microscope (PFM). When membrane-bound secretory vesicles (0.2-1.2 {mu}m in diameter) in live pancreatic acinar cells were trapped at the laser focus of the PFM and pulled, they were all found tethered to filamentous structures. Mild exposure of cells to nocodazole and cytochalasin B, disrupts the tether. Immunoblot analysis of isolated secretory vesicles, further demonstrated the association of actin, myosin V, and kinesin. These studies demonstrate for the first time that secretory vesicles in live pancreatic acinar cells are tethered and not free-floating, suggesting that following vesicle biogenesis, they are placed on their own railroad track, ready to be transported to their final destination within the cell when required. This makes sense, since precision and regulation are the hallmarks of all cellular process, and therefore would hold true for the transport and localization of subcellular organelles such as secretory vesicles.

  16. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Bosse, J. L.; Huey, B. D. [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Tovee, P. D.; Kolosov, O. V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-04-14

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the

  17. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    International Nuclear Information System (INIS)

    Bosse, J. L.; Huey, B. D.; Tovee, P. D.; Kolosov, O. V.

    2014-01-01

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm 2 unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular

  18. Dimensional characterization of extracellular vesicles using atomic force microscopy

    International Nuclear Information System (INIS)

    Sebaihi, N; De Boeck, B; Pétry, J; Yuana, Y; Nieuwland, R

    2017-01-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from healthy subjects to patients suffering from particular disease. So, EV have gained a strong scientific and clinical interest as potential biomarkers for diagnosis and prognosis of disease. Due to their small size, accurate detection and characterization of EV remain challenging. The aim of the presented work is to propose a characterization method of erythrocyte-derived EV using atomic force microscopy (AFM). The vesicles are immobilized on anti-CD235a-modified mica and analyzed by AFM under buffer liquid and dry conditions. EV detected under both conditions show very similar sizes namely ∼30 nm high and ∼90 nm wide. The size of these vesicles remains stable over drying time as long as 7 d at room temperature. Since the detected vesicles are not spherical, EV are characterized by their height and diameter, and not only by the height as is usually done for spherical nanoparticles. In order to obtain an accurate measurement of EV diameters, the geometry of the AFM tip was evaluated to account for the lateral broadening artifact inherent to AFM measurements. To do so, spherical polystyrene (PS) nanobeads and EV were concomitantly deposited on the same mica substrate and simultaneously measured by AFM under dry conditions. By applying this procedure, direct calibration of the AFM tip could be performed together with EV characterization under identical experimental conditions minimizing external sources of uncertainty on the shape and size of the tip, thus allowing standardization of EV measurement. (paper)

  19. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    Science.gov (United States)

    Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.

  20. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    International Nuclear Information System (INIS)

    Bippes, Christian A; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA

  1. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses.

    Science.gov (United States)

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-09-01

    Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental

  2. Investigation of the structure of nanocrystalline refractory oxides by X-ray diffraction, electron microscopy, and atomic force microscopy

    International Nuclear Information System (INIS)

    Ulyanova, T. M.; Titova, L. V.; Medichenko, S. V.; Zonov, Yu. G.; Konstantinova, T. E.; Glazunova, V. A.; Doroshkevich, A. S.; Kuznetsova, T. A.

    2006-01-01

    The structures of nanocrystalline fibrous powders of refractory oxides have been investigated by different methods: determination of coherent-scattering regions, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic-force microscopy (AFM). The sizes of nanograins of different crystalline phases of refractory metal oxides have been determined during the formation of these nanograins and the dynamics of their growth during heat treatment in the temperature range 600-1600 deg. C has been studied. The data on the structure of nanocrystalline refractory oxide powders, obtained by different methods, are in good agreement. According to the data on coherent-scattering regions, the sizes of the ZrO 2 (Y 2 O 3 ) and Al 2 O 3 grains formed are in the range 4-6 nm, and the particle sizes determined according to the TEM and AFM data are in the ranges 5-7 and 2-10 nm, respectively. SEM analysis made it possible to investigate the dynamics of nanoparticle growth at temperatures above 1000 deg. C and establish the limiting temperatures of their consolidation in fibers

  3. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    Science.gov (United States)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  4. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    Science.gov (United States)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  5. [Comparison of cell elasticity analysis methods based on atomic force microscopy indentation].

    Science.gov (United States)

    Wang, Zhe; Hao, Fengtao; Chen, Xiaohu; Yang, Zhouqi; Ding, Chong; Shang, Peng

    2014-10-01

    In order to investigate in greater detail the two methods based on Hertz model for analyzing force-distance curve obtained by atomic force microscopy, we acquired the force-distance curves of Hela and MCF-7 cells by atomic force microscopy (AFM) indentation in this study. After the determination of contact point, Young's modulus in different indentation depth were calculated with two analysis methods of "two point" and "slope fitting". The results showed that the Young's modulus of Hela cell was higher than that of MCF-7 cell,which is in accordance with the F-actin distribution of the two types of cell. We found that the Young's modulus of the cells was decreased with increasing indentation depth and the curve trends by "slope fitting". This indicated that the "slope fitting" method could reduce the error caused by the miscalculation of contact point. The purpose of this study was to provide a guidance for researcher to choose an appropriate method for analyzing AFM indentation force-distance curve.

  6. Algorithms for Reconstruction of Undersampled Atomic Force Microscopy Images Supplementary Material

    DEFF Research Database (Denmark)

    2017-01-01

    Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods.......Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods....

  7. Micropatterning of bacteria on two-dimensional lattice protein surface observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Jo, W.; Lim, J.; Park, S.; Kim, Y.S.; Kim, Y.

    2008-01-01

    In this study, we characterized the two-dimensional lattice of bovine serum albumin (BSA) as a chemical and physical barrier against bacterial adhesion, using fluorescence microscopy and atomic force microscopy (AFM). The lattice of BSA on glass surface was fabricated by micro-contact printing (μCP), which is a useful way to pattern a wide range of molecules into microscale features on different types of substrates. The contact-mode AFM measurements showed that the average height of the printed BSA monolayer was 5-6 nm. Escherichia coli adhered rapidly on bare glass slide, while the bacterial adhesion was minimized on the lattices in the range of 1-3 μm 2 . Especially, the bacterial adhesion was completely inhibited on a 1 μm 2 lattice. The results suggest that the anti-adhesion effects are due by the steric repulsion forces exerted by BSA

  8. Imaging latex–carbon nanotube composites by subsurface electrostatic force microscopy

    International Nuclear Information System (INIS)

    Patel, Sajan; Petty, Clayton W.; Krafcik, Karen Lee

    2016-01-01

    Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant. Comparing this model to the data results in nanotube depths that appear to be slightly above the film–air interface. Furthermore, this result suggests that water-mediated charge build-up at the film–air interface may be the source of electrostatic phase contrast in ambient conditions.

  9. Characterization of the magnetic micro- and nanostructure in unalloyed steels by magnetic force microscopy

    Science.gov (United States)

    Batista, L.; Rabe, U.; Hirsekorn, S.

    2013-01-01

    The formation of a cementite phase influences significantly the macroscopic mechanical and magnetic properties of steels. Based on a correlation between mechanical and magnetic properties, mechanical properties as well as the morphology and content of the cementite phase can be inspected by electromagnetic non-destructive testing methods. The influence of the carbon content on bulk magnetic properties of unalloyed steels is studied on a macroscopic scale by hysteresis loop and Barkhausen noise measurements. The micro- and nanostructure is investigated by atomic force microscopy and magnetic force microscopy. Surface topography images and magnetic images of globular cementite precipitates embedded in a ferrite matrix are presented. The size, shape, and orientation of the precipitates influence the domain configuration. Applied external magnetic fields cause magnetization processes mainly in the ferrite matrix: Bloch walls move and are pinned by the cementite precipitates. The correlation between the microscopic observations and macroscopic magnetic properties of the material is discussed.

  10. Lateral force calibration in atomic force microscopy: A new lateral force calibration method and general guidelines for optimization

    International Nuclear Information System (INIS)

    Cannara, Rachel J.; Eglin, Michael; Carpick, Robert W.

    2006-01-01

    Proper force calibration is a critical step in atomic and lateral force microscopies (AFM/LFM). The recently published torsional Sader method [C. P. Green et al., Rev. Sci. Instrum. 75, 1988 (2004)] facilitates the calculation of torsional spring constants of rectangular AFM cantilevers by eliminating the need to obtain information or make assumptions regarding the cantilever's material properties and thickness, both of which are difficult to measure. Complete force calibration of the lateral signal in LFM requires measurement of the lateral signal deflection sensitivity as well. In this article, we introduce a complete lateral force calibration procedure that employs the torsional Sader method and does not require making contact between the tip and any sample. In this method, a colloidal sphere is attached to a 'test' cantilever of the same width, but different length and material as the 'target' cantilever of interest. The lateral signal sensitivity is calibrated by loading the colloidal sphere laterally against a vertical sidewall. The signal sensitivity for the target cantilever is then corrected for the tip length, total signal strength, and in-plane bending of the cantilevers. We discuss the advantages and disadvantages of this approach in comparison with the other established lateral force calibration techniques, and make a direct comparison with the 'wedge' calibration method. The methods agree to within 5%. The propagation of errors is explicitly considered for both methods and the sources of disagreement discussed. Finally, we show that the lateral signal sensitivity is substantially reduced when the laser spot is not centered on the detector

  11. Scanning force microscopy and fluorescence microscopy of microcontact printed antibodies and antibody fragments.

    Science.gov (United States)

    LaGraff, John R; Chu-LaGraff, Quynh

    2006-05-09

    Unlabeled primary immunoglobulin G (IgG) antibodies and its F(ab')2 and Fc fragments were attached to oxygen-plasma-cleaned glass substrates using either microcontact printing (MCP) or physical adsorption during bath application from dilute solutions. Fluorescently labeled secondary IgGs were then bound to surface-immobilized IgG, and the relative surface coverage was determined by measuring the fluorescence intensity. Results indicated that the surface coverage of IgG increased with increasing protein solution concentration for both MCP and bath-applied IgG and that a greater concentration of IgG was transferred to a glass substrate using MCP than during physisorption during bath applications. Scanning force microscopy (SFM) showed that patterned MCP IgG monolayers were 5 nm in height, indicating that IgG molecules lie flat on the substrate. After incubation with a secondary IgG, the overall line thickness increased to around 15 nm, indicating that the secondary IgG was in a more vertical orientation with respect to the substrate. The surface roughness of these MCP patterned IgG bilayers as measured by SFM was observed to increase with increasing surface coverage. Physisorption of IgG to both unmodified patterned polydimethylsiloxane (PDMS) stamps and plasma-cleaned glass substrates was modeled by Langmuir adsorption kinetics yielding IgG binding constants of K(MCP) = 1.7(2) x 10(7) M(-1) and K(bath) = 7.8(7) x 10(5) M(-1), respectively. MCP experiments involving primary F(ab')2 and Fc fragments incubated in fluorescently labeled fragment-specific secondary IgGs were carried out to test for the function and orientation of IgG. Finally, possible origins of MCP stamping defects such as pits, pull outs, droplets, and reverse protein transfer are discussed.

  12. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  13. Nanomechanical properties of lithiated Si nanowires probed with atomic force microscopy

    International Nuclear Information System (INIS)

    Lee, Hyunsoo; Shin, Weonho; Choi, Jang Wook; Park, Jeong Young

    2012-01-01

    The nanomechanical properties of fully lithiated and pristine Si nanowires (NWs) deposited on a Si substrate were studied with atomic force microscopy (AFM). Si NWs were synthesized using the vapour-liquid-solid process on stainless-steel substrates using an Au catalyst. Fully lithiated Si NWs were obtained using the electrochemical method, followed by drop-casting on a Si substrate. The roughness of the Si NWs, which was derived from AFM images, is greater for the lithiated Si NWs than for the pristine Si NWs. Force spectroscopy was used to study the influence of lithiation on the tip-surface adhesion force. The lithiated Si NWs revealed a smaller tip-surface adhesion force than the Si substrate by a factor of two, while the adhesion force of the Si NWs is similar to that of the Si substrate. Young's modulus, obtained from the force-distance curve, also shows that the pristine Si NWs have a relatively higher value than the lithiated Si NWs due to the elastically soft and amorphous structures of the lithiated region. These results suggest that force spectroscopy can be used to probe the degree of lithiation at nanometer scale during the charging and discharging processes. (paper)

  14. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment

    International Nuclear Information System (INIS)

    Legleiter, Justin

    2009-01-01

    In tapping mode atomic force microscopy (AFM), a sharp probe tip attached to an oscillating cantilever is allowed to intermittently strike a surface. By raster scanning the probe while monitoring the oscillation amplitude of the cantilever via a feedback loop, topographical maps of surfaces with nanoscale resolution can be acquired. While numerous studies have employed numerical simulations to elucidate the time-resolved tapping force between the probe tip and surface, until recent technique developments, specific read-outs from such models could not be experimentally verified. In this study, we explore, via numerical simulation, the impact of imaging parameters, i.e. set point ratio and drive frequency as a function of resonance, on time-varying tip-sample force interactions, which are directly compared to reconstructed tapping forces from real AFM experiments. As the AFM model contains a feedback loop allowing for the simulation of the entire scanning process, we further explore the impact that various tip-sample force have on the entire imaging process.

  15. Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques

    International Nuclear Information System (INIS)

    Kimura, Kuniko; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2013-01-01

    Recently, some papers reported successful imaging of subsurface features using atomic force microscopy (AFM). Some theoretical studies have also been presented, however the imaging mechanisms are not fully understood yet. In the preceeding papers, imaging of deeply buried nanometer-scale features has been successful only if they were buried in a soft matrix. In this paper, subsurface features (Au nanoparticles) buried in a soft polymer matrix were visualized. To elucidate the imaging mechanisms, various AFM techniques; heterodyne force microscopy, ultrasonic atomic force microscopy (UAFM), 2nd-harmonic UAFM and force modulation microscopy (FMM) were employed. The particles buried under 960 nm from the surface were successfully visualized which has never been achieved. The results elucidated that it is important for subsurface imaging to choose a cantilever with a suitable stiffness range for a matrix. In case of using the most suitable cantilever, the nanoparticles were visualized using every technique shown above except for FMM. The experimental results suggest that the subsurface features buried in a soft matrix with a depth of at least 1 µm can affect the local viscoelasticity (mainly viscosity) detected as the variation of the amplitude and phase of the tip oscillation on the surface. This phenomenon presumably makes it possible to visualize such deeply buried nanometer-scale features in a soft matrix. - Highlights: • We visualized subsurface features buried in soft matrix, and investigated its imaging mechanism. • AFM techniques; UAFM, FMM, HFM and 2nd-harmonic UAFM were applied to elucidate the mechanism. • Au nanoparticles buried under 960 nm from surface were visualized, which has never been achieved. • Imaging at contact resonance using a cantilever of suitable stiffness is important. • Subsurface features in a soft matrix affect surface viscoelasticity, which are detected by AFM

  16. Effectiveness of Modal Decomposition for Tapping Atomic Force Microscopy Microcantilevers in Liquid Environment.

    Science.gov (United States)

    Kim, Il Kwang; Lee, Soo Il

    2016-05-01

    The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.

  17. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy

    Science.gov (United States)

    Krause, Marina; te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  18. Atomic force microscopy of silica nanoparticles and carbon nanohorns in macrophages and red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Tetard, L. [Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Passian, A., E-mail: passianan@ornl.gov [Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States); Farahi, R.H. [Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Thundat, T. [Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics, University of Tennessee, Knoxville, TN 37996 (United States)

    2010-05-15

    The emerging interest in understanding the interactions of nanomaterial with biological systems necessitates imaging tools that capture the spatial and temporal distributions and attributes of the resulting nano-bio amalgam. Studies targeting organ specific response and/or nanoparticle-specific system toxicity would be profoundly benefited from tools that would allow imaging and tracking of in-vivo or in-vitro processes and particle-fate studies. Recently we demonstrated that mode synthesizing atomic force microscopy (MSAFM) can provide subsurface nanoscale information on the mechanical properties of materials at the nanoscale. However, the underlying mechanism of this imaging methodology is currently subject to theoretical and experimental investigation. In this paper we present further analysis by investigating tip-sample excitation forces associated with nanomechanical image formation. Images and force curves acquired under various operational frequencies and amplitudes are presented. We examine samples of mouse cells, where buried distributions of single-walled carbon nanohorns and silica nanoparticles are visualized.

  19. Specialized probes based on hydroxyapatite calcium for heart tissues research by atomic force microscopy

    International Nuclear Information System (INIS)

    Zhukov, Mikhail; Golubok, Alexander; Gulyaev, Nikolai

    2016-01-01

    The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of created specialized probes at study a calcinations process of the aortic heart tissues.

  20. Growth models of coexisting p(2 × 1) and c(6 × 2) phases on an oxygen-terminated Cu(110) surface studied by noncontact atomic force microscopy at 78 K

    International Nuclear Information System (INIS)

    Li, Yan Jun; Lee, Seung Hwan; Kinoshita, Yukinori; Wen, Huanfei; Naitoh, Yoshitaka; Sugawara, Yasuhiro; Ma, Zong Min; Nomura, Hikaru

    2016-01-01

    We present an experimental study of coexisting p(2 × 1) and c(6 × 2) phases on an oxygen-terminated Cu(110) surface by noncontact atomic force microscopy (NC-AFM) at 78 K. Ball models of the growth processes of coexisting p(2 × 1)/c(6 × 2) phases on a terrace and near a step are proposed. We found that the p(2 × 1) and c(6 × 2) phases are grown from the super Cu atoms on both sides of O–Cu–O rows of an atomic spacing. In this paper, we summarize our investigations of an oxygen-terminated Cu(110) surface by NC-AFM employing O- and Cu-terminated tips. Also, we state several problems and issues for future investigation. (paper)

  1. Enhanced efficiency in the excitation of higher modes for atomic force microscopy and mechanical sensors operated in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Penedo, M., E-mail: mapenedo@imm.cnm.csic.es; Hormeño, S.; Fernández-Martínez, I.; Luna, M.; Briones, F. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Raman, A. [Birck Nanotechnology Center and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47904 (United States)

    2014-10-27

    Recent developments in dynamic Atomic Force Microscopy where several eigenmodes are simultaneously excited in liquid media are proving to be an excellent tool in biological studies. Despite its relevance, the search for a reliable, efficient, and strong cantilever excitation method is still in progress. Herein, we present a theoretical modeling and experimental results of different actuation methods compatible with the operation of Atomic Force Microscopy in liquid environments: ideal acoustic, homogeneously distributed force, distributed applied torque (MAC Mode™), photothermal and magnetostrictive excitation. From the analysis of the results, it can be concluded that magnetostriction is the strongest and most efficient technique for higher eigenmode excitation when using soft cantilevers in liquid media.

  2. Microstructural and micromechanical characterisation of TiAl alloys using atomic force microscopy and nanoindentation

    International Nuclear Information System (INIS)

    Gebhard, S.; Pyczak, F.; Goeken, M.

    2009-01-01

    Different microstructures were generated in the Ti-45Al-4.6Nb-0.2B-0.2C and Ti-45Al-1Cr alloys (at.%) by heat treatment. The microstructures were investigated using nanoindentation and atomic force microscopy which was compared with transmission electron microscopy. Topographic contrast is usually used for phase identification in the atomic force microscope. However, it was found that the topographic order of the phases changes with different microstructures and specimen preparations. Nanoindentation measurements provided local hardness values not obtainable by other methods and enabled clear distinction of the phases. The hardness values can give information on surrounding microstructure and solid solution hardening. The mean lamellar spacing of the colonies was measured using both atomic force microscopy and transmission electron microscopy. Atomic force microscopy was found to be suitable to determine the spacing between α 2 /γ-interfaces offering the advantages of easier sample preparation and fewer specimens compared to evaluation by TEM analysis.

  3. Kelvin probe force microscopy from single charge detection to device characterization

    CERN Document Server

    Glatzel, Thilo

    2018-01-01

    This book provides a comprehensive introduction to the methods and variety of Kelvin probe force microscopy, including technical details. It also offers an overview of the recent developments and numerous applications, ranging from semiconductor materials, nanostructures and devices to sub-molecular and atomic scale electrostatics. In the last 25 years, Kelvin probe force microscopy has developed from a specialized technique applied by a few scanning probe microscopy experts into a tool used by numerous research and development groups around the globe. This sequel to the editors’ previous volume “Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces,” presents new and complementary topics. It is intended for a broad readership, from undergraduate students to lab technicians and scanning probe microscopy experts who are new to the field.

  4. Stacking it up: Exploring the limits of ultra-high resolution atomic force microscopy

    NARCIS (Netherlands)

    van der Heijden, N.J.

    2017-01-01

    Atomic force microscopy (AFM) is a technique wherein an atomically sharp needle raster scans across a surface, detecting forces between it and the sample. In state-of-the-art AFM experiments the measured forces are typically on the order of pico-Newtons, and the lateral resolution is on the order of

  5. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs

    Energy Technology Data Exchange (ETDEWEB)

    Prunici, Pavel [Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg (Germany); Hess, Peter [Institute of Physical Chemistry, University of Heidelberg, D-69120 Heidelberg (Germany)], E-mail: peter.hess@urz.uni-heidelberg.de

    2008-06-15

    If the photodetector and cantilever of an atomic force microscope (AFM) are not properly adjusted, crosstalk effects will appear. These effects disturb measurements of the absolute vertical and horizontal cantilever deflections, which are involved in friction force microscopy (FFM). A straightforward procedure is proposed to study quantitatively crosstalk effects observed in scan-by-probe SPMs. The advantage of this simple, fast, and accurate procedure is that no hardware change or upgrade is needed. The results indicate that crosstalk effects depend not only on the alignment of the detector but also on the cantilever properties, position, and detection conditions. The measurements may provide information on the origin of the crosstalk effect. After determination of its magnitude, simple correction formulas can be applied to correct the crosstalk effects and then the single-load wedge method, using a commercially available grating, can be employed for accurate calibration of the lateral force.

  6. Quantitative characterization of crosstalk effects for friction force microscopy with scan-by-probe SPMs

    International Nuclear Information System (INIS)

    Prunici, Pavel; Hess, Peter

    2008-01-01

    If the photodetector and cantilever of an atomic force microscope (AFM) are not properly adjusted, crosstalk effects will appear. These effects disturb measurements of the absolute vertical and horizontal cantilever deflections, which are involved in friction force microscopy (FFM). A straightforward procedure is proposed to study quantitatively crosstalk effects observed in scan-by-probe SPMs. The advantage of this simple, fast, and accurate procedure is that no hardware change or upgrade is needed. The results indicate that crosstalk effects depend not only on the alignment of the detector but also on the cantilever properties, position, and detection conditions. The measurements may provide information on the origin of the crosstalk effect. After determination of its magnitude, simple correction formulas can be applied to correct the crosstalk effects and then the single-load wedge method, using a commercially available grating, can be employed for accurate calibration of the lateral force

  7. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    Science.gov (United States)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under

  8. Monitoring ligand-receptor interactions by photonic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jeney, Sylvia [M E Mueller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, 4056 (Switzerland); Mor, Flavio; Forro, Laszlo [Laboratory of Complex Matter Physics (LPMC), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Koszali, Roland [Institute for Information and Communication Technologies (IICT), University of Applied Sciences of Western Switzerland (HEIG-VD), Rue Galilee 15, CH 1401 Yverdon-les-bains (Switzerland); Moy, Vincent T, E-mail: sylvia.jeney@unibas.ch, E-mail: vmoy@miami.edu [Department of Physiology and Biophysics, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136 (United States)

    2010-06-25

    We introduce a method for the acquisition of single molecule force measurements of ligand-receptor interactions using the photonic force microscope (PFM). Biotin-functionalized beads, manipulated with an optical trap, and a streptavidin-functionalized coverslip were used to measure the effect of different pulling forces on the lifetime of individual streptavidin-biotin complexes. By optimizing the design of the optical trap and selection of the appropriate bead size, pulling forces in excess of 50 pN were achieved. Based on the amplitude of three-dimensional (3D) thermal position fluctuations of the attached bead, we were able to select for a bead-coverslip interaction that was mediated by a single streptavidin-biotin complex. Moreover, the developed experimental system was greatly accelerated by automation of data acquisition and analysis. In force-dependent kinetic measurements carried out between streptavidin and biotin, we observed that the streptavidin-biotin complex exhibited properties of a catch bond, with the lifetime increasing tenfold when the pulling force increased from 10 to 20 pN. We also show that silica beads were more appropriate than polystyrene beads for the force measurements, as tethers, longer than 200 nm, could be extracted from polystyrene beads.

  9. Monitoring ligand-receptor interactions by photonic force microscopy

    International Nuclear Information System (INIS)

    Jeney, Sylvia; Mor, Flavio; Forro, Laszlo; Koszali, Roland; Moy, Vincent T

    2010-01-01

    We introduce a method for the acquisition of single molecule force measurements of ligand-receptor interactions using the photonic force microscope (PFM). Biotin-functionalized beads, manipulated with an optical trap, and a streptavidin-functionalized coverslip were used to measure the effect of different pulling forces on the lifetime of individual streptavidin-biotin complexes. By optimizing the design of the optical trap and selection of the appropriate bead size, pulling forces in excess of 50 pN were achieved. Based on the amplitude of three-dimensional (3D) thermal position fluctuations of the attached bead, we were able to select for a bead-coverslip interaction that was mediated by a single streptavidin-biotin complex. Moreover, the developed experimental system was greatly accelerated by automation of data acquisition and analysis. In force-dependent kinetic measurements carried out between streptavidin and biotin, we observed that the streptavidin-biotin complex exhibited properties of a catch bond, with the lifetime increasing tenfold when the pulling force increased from 10 to 20 pN. We also show that silica beads were more appropriate than polystyrene beads for the force measurements, as tethers, longer than 200 nm, could be extracted from polystyrene beads.

  10. An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy

    Science.gov (United States)

    Russo, D.; Fagan, R. D.; Hesjedal, T.

    2011-01-01

    The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…

  11. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    DEFF Research Database (Denmark)

    van der Heijden, Nadine J.; Smith, Daniel; Calogero, Gaetano

    2016-01-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy image...

  12. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.

    Science.gov (United States)

    Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R

    2015-10-01

    Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.

  13. Protein crystals as scanned probes for recognition atomic force microscopy.

    Science.gov (United States)

    Wickremasinghe, Nissanka S; Hafner, Jason H

    2005-12-01

    Lysozyme crystal growth has been localized at the tip of a conventional silicon nitride cantilever through seeded nucleation. After cross-linking with glutaraldehyde, lysozyme protein crystal tips image gold nanoparticles and grating standards with a resolution comparable to that of conventional tips. Force spectra between the lysozyme crystal tips and surfaces covered with antilysozyme reveal an adhesion force that drops significantly upon blocking with free lysozyme, thus confirming that lysozyme crystal tips can detect molecular recognition interactions.

  14. Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy

    International Nuclear Information System (INIS)

    Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S

    2008-01-01

    Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)

  15. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  16. The Use of Atomic Force Microscopy as a Technique for the Identification of Cancerous Cells

    International Nuclear Information System (INIS)

    Lekka, M.

    2007-11-01

    The monograph presents the use of atomic force microscopy (AFM) as a tool for the identification of cancerous cells by studies of the expression of different types of molecules directly on the surface of living cells. The full quantitative description (that is not accessible by other techniques) performed for a given type of molecular interactions has been obtained by using the following quantities: an unbinding force, probability, rupture length and the effective spring constant taking into account the stiffness of a single complex. All, these parameters were extracted from AFM measurements The analysis of the interaction forces performed by AFM allows the quantitative determination of: i) the static properties of a single molecular complex where its strength of interaction and stiffness of the studied complex can be obtained, ii) dynamic properties, on the basis of which the kinetic properties of the unbinding process can be delivered, and iii) properties of adhesion clusters, where the interrelation between single complexes can be characterized, in particular the mechanism of the unbinding can be obtained. The presented characterization of the interaction force between single molecules demonstrates that atomic force microscopy can be used as exceptional technique to study the expression of molecules on a cell surface. Such measurements are not limited to a typical interactions occurring between single molecules but also it is possible to study the interactions between parts of molecules. The results presented in this monograph point to a novel approach to identify cancer-related changes in a quantitative way what can be used for describing and confirming the pathological state of a single cell. (author)

  17. Noise performance of frequency modulation Kelvin force microscopy

    Directory of Open Access Journals (Sweden)

    Heinrich Diesinger

    2014-01-01

    Full Text Available Noise performance of a phase-locked loop (PLL based frequency modulation Kelvin force microscope (FM-KFM is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as “noise gain” from operational amplifier (OpAmp design that offers the advantage of decoupling the noise performance study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modulation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion determines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design. Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more integral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values.

  18. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  19. Enhancing dynamic scanning force microscopy in air: as close as possible

    International Nuclear Information System (INIS)

    Palacios-Lidon, E; Perez-Garcia, B; Colchero, J

    2009-01-01

    Frequency modulation dynamic scanning force microscopy has been implemented in ambient conditions using low oscillation amplitudes (<1 nm) to simultaneously record not only topographic but also additional channels of information, in particular contact potential images. The performance of this mode as compared to the conventional amplitude modulation mode is analyzed in detail using a biological molecule, turning yellow mosaic virus RNA, as the model sample. On the basis of scanning force microscopy imaging as well as spectroscopy experiments, we find that for such very small samples the frequency modulation mode is superior since it can be operated with smaller tip-sample interaction, smaller effective tip-sample distance and lower forces. Combined with Kelvin probe microscopy it results not only in considerably higher electrostatic resolution, but also in correct quantitative values for the contact potential as compared to traditional amplitude modulation scanning force microscopy.

  20. A Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon

    OpenAIRE

    Berman, G. P.; Doolen, G. D.; Tsifrinovich, V. I.

    2000-01-01

    We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines the well-developed silicon technology with expected advances in MRFM.

  1. Molecular recognition of DNA-protein complexes: A straightforward method combining scanning force and fluorescence microscopy

    NARCIS (Netherlands)

    H. Sanchez (Humberto); R. Kanaar (Roland); C. Wyman (Claire)

    2010-01-01

    textabstractCombining scanning force and fluorescent microscopy allows simultaneous identification of labeled biomolecules and analysis of their nanometer level architectural arrangement. Fluorescent polystyrene nano-spheres were used as reliable objects for alignment of optical and topographic

  2. High resolution magnetic force microscopy using focussed ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Summary form only given. Magnetic force microscopy (MFM) is well established for imaging surface magnetic stray fields. With commercial microscopes and magnetic tips, images with 50 nm resolution are quite routine; however, obtaining higher resolutions is experimentally more demanding. Higher

  3. [Atomic force microscopy: a tool to analyze the viral cycle].

    Science.gov (United States)

    Bernaud, Julien; Castelnovo, Martin; Muriaux, Delphine; Faivre-Moskalenko, Cendrine

    2015-05-01

    Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level. © 2015 médecine/sciences – Inserm.

  4. Structure and stability of semiconductor tip apexes for atomic force microscopy

    International Nuclear Information System (INIS)

    Pou, P; Perez, R; Ghasemi, S A; Goedecker, S; Jelinek, P; Lenosky, T

    2009-01-01

    The short range force between the tip and the surface atoms, that is responsible for atomic-scale contrast in atomic force microscopy (AFM), is mainly controlled by the tip apex. Thus, the ability to image, manipulate and chemically identify single atoms in semiconductor surfaces is ultimately determined by the apex structure and its composition. Here we present a detailed and systematic study of the most common structures that can be expected at the apex of the Si tips used in experiments. We tackle the determination of the structure and stability of Si tips with three different approaches: (i) first principles simulations of small tip apexes; (ii) simulated annealing of a Si cluster; and (iii) a minima hopping study of large Si tips. We have probed the tip apexes by making atomic contacts between the tips and then compared force-distance curves with the experimental short range forces obtained with dynamic force spectroscopy. The main conclusion is that although there are multiple stable solutions for the atomically sharp tip apexes, they can be grouped into a few types with characteristic atomic structures and properties. We also show that the structure of the last atomic layers in a tip apex can be both crystalline and amorphous. We corroborate that the atomically sharp tips are thermodynamically stable and that the tip-surface interaction helps to produce the atomic protrusion needed to get atomic resolution.

  5. Single molecule imaging of RNA polymerase II using atomic force microscopy

    International Nuclear Information System (INIS)

    Rhodin, Thor; Fu Jianhua; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzi; Ishikawa, Mitsuru

    2003-01-01

    An atomic force microscopy (AFM) study of the shape, orientation and surface topology of RNA polymerase II supported on silanized freshly cleaved mica was made. The overall aim is to define the molecular topology of RNA polymerase II in appropriate fluids to help clarify the relationship of conformational features to biofunctionality. A Nanoscope III atomic force microscope was used in the tapping mode with oxide-sharpened (8-10 nm) Si 3 N 4 probes in aqueous zinc chloride buffer. The main structural features observed by AFM were compared to those derived from electron-density plots based on X-ray crystallographic studies. The conformational features included a bilobal silhouette with an inverted umbrella-shaped crater connected to a reaction site. These studies provide a starting point for constructing a 3D-AFM profiling analysis of proteins such as RNA polymerase complexes

  6. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.

    Science.gov (United States)

    Coceano, G; Yousafzai, M S; Ma, W; Ndoye, F; Venturelli, L; Hussain, I; Bonin, S; Niemela, J; Scoles, G; Cojoc, D; Ferrari, E

    2016-02-12

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young's modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines' elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  7. Subsurface measurement of nanostructures on GaAs by electrostatic force microscopy

    International Nuclear Information System (INIS)

    Yamada, Fumihiko; Kamiya, Itaru

    2013-01-01

    The size of surface buried oxide nanostructures are measured by electrostatic force microscopy (EFM). In contrast to atomic force microscopy that cannot probe subsurface structures and thickness, we show that EFM data include information about the thickness of individual nanostructures, consequently allowing us to determine the thickness of buried nanostructures on semiconductor substrates. We further show that this measurement can be performed simultaneously with AFM using EFM modulation spectroscopy.

  8. Contrast artifacts in tapping tip atomic force microscopy

    DEFF Research Database (Denmark)

    Kyhle, Anders; Sørensen, Alexis Hammer; Zandbergen, Julie Bjerring

    1998-01-01

    When recording images with an atomic force microscope using the resonant vibrating cantilever mode, surprising strange results are often achieved. Typical artifacts are strange contours, unexpected height shifts, and sudden changes of the apparent resolution in the acquired images. Such artifacts...

  9. Atomic force microscopy on domains in biological model membranes

    NARCIS (Netherlands)

    Rinia, H.A.

    2001-01-01

    This thesis describes the preparation and imaging of supported lipid bilayers, which can be regarded as biological modelmembranes, in the light of the formation of domains. The bilayers were prepared with either the Langmuir-Blodgett method, or with vesicle fusion. They were imaged with Atomic Force

  10. Two-dimensional dopant profiling by electrostatic force microscopy using carbon nanotube modified cantilevers

    International Nuclear Information System (INIS)

    Chin, S.-C.; Chang, Y.-C.; Chang, C.-S.; Tsong, T T; Hsu, Chen-Chih; Wu, Chih-I; Lin, W-H; Woon, W-Y; Lin, L-T; Tao, H-J

    2008-01-01

    A two-dimensional (2D) dopant profiling technique is demonstrated in this work. We apply a unique cantilever probe in electrostatic force microscopy (EFM) modified by the attachment of a multiwalled carbon nanotube (MWNT). Furthermore, the tip apex of the MWNT was trimmed to the sharpness of a single-walled carbon nanotube (SWNT). This ultra-sharp MWNT tip helps us to resolve dopant features to within 10 nm in air, which approaches the resolution achieved by ultra-high vacuum scanning tunnelling microscopy (UHV STM). In this study, the CNT-probed EFM is used to profile 2D buried dopant distribution under a nano-scale device structure and shows the feasibility of device characterization for sub-45 nm complementary metal-oxide-semiconductor (CMOS) field-effect transistors

  11. Characterization of virus-like particles by atomic force microscopy in ambient conditions

    International Nuclear Information System (INIS)

    Oropesa, Reinier; Ramos, Jorge R; Falcón, Viviana; Felipe, Ariel

    2013-01-01

    Recombinant virus-like particles (VLPs) are attractive candidates for vaccine design since they resemble native viroids in size and morphology, but they are non-infectious due to the absence of a viral genome. The visualization of surface morphologies and structures can be used to deepen the understanding of physical, chemical, and biological phenomena. Atomic force microscopy (AFM) is a useful tool for the visualization of soft biological samples in a nanoscale resolution. In this work we have investigated the morphology of recombinant surface antigens of hepatitis B (rHBsAg) VLPs from Cuban vaccine against hepatitis B. The rHBsAg VLPs sizes estimated by AFM between 15 and 30 nm are similar to those reported on previous transmission electron microscopy (TEM) studies. (paper)

  12. Nanoscale observation of local bound charges of patterned protein arrays by scanning force microscopy

    International Nuclear Information System (INIS)

    Oh, Y J; Jo, W; Kim, S; Park, S; Kim, Y S

    2008-01-01

    A protein patterned surface using micro-contact printing methods has been investigated by scanning force microscopy. Electrostatic force microscopy (EFM) was utilized for imaging the topography and detecting the electrical properties such as the local bound charge distribution of the patterned proteins. It was found that the patterned IgG proteins are arranged down to 1 μm, and the 90 deg. rotation of patterned anti-IgG proteins was successfully undertaken. Through the estimation of the effective areas, it was possible to determine the local bound charges of patterned proteins which have opposite electrostatic force behaviors. Moreover, we studied the binding probability between IgG and anti-IgG in a 1 μm 2 MIMIC system by topographic and electrostatic signals for applicable label-free detections. We showed that the patterned proteins can be used for immunoassay of proteins on the functional substrate, and that they can also be used for bioelectronics device application, indicating distinct advantages with regard to accuracy and a label-free detection

  13. Dynamic force microscopy with quartz tuning forks at high oscillation amplitudes

    International Nuclear Information System (INIS)

    Labardi, M

    2007-01-01

    Dynamic force microscopy (DFM) with the self-oscillator (SO) method allows reasonably high scanning rates even with high Q-factors of the resonant force sensor, typical of cantilevers in ultra-high vacuum and of quartz tuning forks. However, due to simpler interpretation of force spectroscopy measurements, small oscillation amplitudes (sub-nm level) are generally preferred. In applications like 'apertureless' scanning near-field optical microscopy (SNOM), oscillation amplitudes of the order of 5-10 nm are needed to increase optical sensitivity and to apply standard optical artefact suppression methods. This motivates the study of the behaviour of tuning forks driven at such high amplitudes, as compared to usual air-operated cantilevers. Both constant-excitation-amplitude (CE) and constant-oscillation-amplitude (CA) modes of SO-DFM are analysed, since the CA mode is more convenient for SNOM applications, denoting remarkable differences. In particular, possible instability effects, previously found in CE mode, are not anticipated for CA mode. It is shown how resonance and approach ('isophase') curves in both modes can be conveniently described in terms of the usual 'normalized frequency shift' γ and of a 'normalized gain' η, defined as a measurement of surface dissipation

  14. Modeling and simulation of viscoelastic biological particles' 3D manipulation using atomic force microscopy

    Science.gov (United States)

    Korayem, M. H.; Habibi Sooha, Y.; Rastegar, Z.

    2018-05-01

    Manipulation of the biological particles by atomic force microscopy is used to transfer these particles inside body's cells, diagnosis and destruction of the cancer cells and drug delivery to damaged cells. According to the impossibility of simultaneous observation of this process, the importance of modeling and simulation can be realized. The contact of the tip with biological particle is important during manipulation, therefore, the first step of the modeling is choosing appropriate contact model. Most of the studies about contact between atomic force microscopy and biological particles, consider the biological particle as an elastic material. This is not an appropriate assumption because biological cells are basically soft and this assumption ignores loading history. In this paper, elastic and viscoelastic JKR theories were used in modeling and simulation of the 3D manipulation for three modes of tip-particle sliding, particle-substrate sliding and particle-substrate rolling. Results showed that critical force and time in motion modes (sliding and rolling) for two elastic and viscoelastic states are very close but these magnitudes were lower in the viscoelastic state. Then, three friction models, Coulomb, LuGre and HK, were used for tip-particle sliding mode in the first phase of manipulation to make results closer to reality. In both Coulomb and LuGre models, critical force and time are very close for elastic and viscoelastic states but in general critical force and time prediction of HK model was higher than LuGre and the LuGre model itself had higher prediction than Coulomb.

  15. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy.

    Science.gov (United States)

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V; Lee, Shinbuhm; Lee, Ho Nyung; Morozovska, Anna N; Kim, Yunseok

    2016-07-28

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. However, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. Here, we suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. Our combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response.

  16. Polythiophenes and fullerene derivatives based donor-acceptor system: topography by atomic force microscopy

    International Nuclear Information System (INIS)

    Marcakova, M. L.; Repovsky, D.; Cik, G.; Velic, D.

    2017-01-01

    The goal of this work is to examine the surface of a polythiophene/fullerene film in order to understand the structure. In this work polythiophene is used as electron donor and fullerene-derivative is used as electron acceptor. Atomic force microscopy (AFM), is an ideal method to study surfaces and nanostructures. Surfaces of fullerene C60 , fullerene-derivates PCBM, polythiophene P12 and a mixture of P12 and PCBM are characterized. In all samples, the average roughness, the arithmetical value of divergence from the high of the surface, is determined concluding that P12 and PCBM mix together well and form a film with specific topography. (authors)

  17. Note: Switching crosstalk on and off in Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Polak, Leo; Wijngaarden, Rinke J.; Man, Sven de

    2014-01-01

    In Kelvin Probe Force Microscopy (KPFM) electronic crosstalk can occur between the excitation signal and probe deflection signal. Here, we demonstrate how a small modification to our commercial instrument enables us to literally switch the crosstalk on and off. We study in detail the effect of crosstalk on open-loop KPFM and compare with closed-loop KPFM. We measure the pure crosstalk signal and verify that we can correct for it in the data-processing required for open-loop KPFM. We also demonstrate that open-loop KPFM results are independent of the frequency and amplitude of the excitation signal, provided that the influence of crosstalk has been eliminated

  18. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    Science.gov (United States)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  19. Time dependence of the natural passivation process on AISI 304 in an alkaline medium: Atomic force microscopy and scanning Kelvin probe force microscopy as additional tools to electrochemical impedance spectroscopy

    Science.gov (United States)

    Benaioun, N. E.; Maafa, I.; Florentin, A.; Denys, E.; Hakiki, N. E.; Moulayat, N.; Bubendorff, J. L.

    2018-04-01

    Thin surface films formed on AISI 304 samples in an alkaline solution of pH = 13 are studied by atomic force microscopy (AFM), scanning Kelvin probe force microscopy (SKPFM) and electrochemical impedance spectroscopy (EIS) as a function of immersion time. The results reveal that changes on EIS diagrams correspond to topographical modifications on the sample surface as shown by AFM. Both techniques are therefore complementary. The oxide layer is chemically homogenous as shown by SKPFM imaging and our ultra-thin passive layer is an efficient barrier against corrosion.

  20. Atomic force microscopy and light scattering study of onion-type micelles formed by polystyrene-block-poly(2-vinylpyridine) and poly(2-vinylpyridine)-block-poly(ethylene oxide) copolymers in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Štěpánek, M.; Uchman, M.; Procházka, K.; Špírková, Milena

    2006-01-01

    Roč. 71, č. 5 (2006), s. 723-738 ISSN 0010-0765 R&D Projects: GA ČR GA203/04/0490; GA AV ČR IAA400500505 Grant - others:Marie Curie Research and Training Network(XE) 505 027 POLYAMPHI Institutional research plan: CEZ:AV0Z40500505 Keywords : atomic force microscopy * light scattering * polymer micelles Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.881, year: 2006

  1. Dissipative and electrostatic force spectroscopy of indium arsenide quantum dots by non-contact atomic force microscopy

    Science.gov (United States)

    Stomp, Romain-Pierre

    This thesis is devoted to the studies of self-assembled InAs quantum dots (QD) by low-temperature Atomic Force Microscopy (AFM) in frequency modulation mode. Several spectroscopic methods are developed to investigate single electron charging from a two-dimensional electron gas (2DEG) to an individual InAs QD. Furthermore, a new technique to measure the absolute tip-sample capacitance is also demonstrated. The main observables are the electrostatic force between the metal-coated AFM tip and sample as well as the sample-induced energy dissipation, and therefore no tunneling current has to be collected at the AFM tip. Measurements were performed by recording simultaneously the shift in the resonant frequency and the Q-factor degradation of the oscillating cantilever either as a function of tip-sample voltage or distance. The signature of single electron charging was detected as an abrupt change in the frequency shift as well as corresponding peaks in the dissipation. The main experimental features in the force agree well with the semi-classical theory of Coulomb blockade by considering the free energy of the system. The observed dissipation peaks can be understood as a back-action effect on the oscillating cantilever beam due to the fluctuation in time of electrons tunneling back and forth between the 2DEG and the QD. It was also possible to extract the absolute value of the tip-sample capacitance, as a consequence of the spectroscopic analysis of the electrostic force as a function of tip-sample distance for different values of the applied voltage. At the same time, the contact potential difference and the residual non-capacitive force could also be determined as a function of tip-sample distance.

  2. Modeling and boundary force control of microcantilevers utilized in atomic force microscopy for cellular imaging and characterization

    Science.gov (United States)

    Eslami, Sohrab

    This dissertation undertakes the theoretical and experimental developments microcantilevers utilized in Atomic Force Microscopy (AFM) with applications to cellular imaging and characterization. The capability of revealing the inhomogeneties or interior of ultra-small materials has been of most interest to many researchers. However, the fundamental concept of signal and image formation remains unexplored and not fully understood. For his, a semi-empirical nonlinear force model is proposed to show that virtual frequency generation, regarded as the simplest synthesized subsurface probe, occurs optimally when the force is tuned to the van der Waals form. This is the first-time observation of a novel theoretical dynamic multi-frequency force microscopy that has not been already reported. Owing to the broad applications of microcantilevers in the nanoscale imaging and microscopic techniques, there is an essential feeling to study and propose a comprehensive model of such systems. Therefore, in the theoretical part of this dissertation, a distributed-parameters representation modeling of the microcantilever along with a general interaction force comprising of two attractive and repulsive components with general amplitude and power terms is studied. This model is investigated in a general 2D Cartesian coordinate to consider the motions of the probe with a tip mass. There is an excitation at the microcantilever's base such that the end of the beam is subject to the proposed general force. These forces are very sensitive to the amplitude and power terms of these parts; on the other hand, atomic intermolecular force is a function of the distance such that this distance itself is also a function of the interaction force that will result in a nonlinear implicit equation. From a parametric study in the probe-sample excitation, it is shown that the predicted behavior of the generated difference-frequency oscillation amplitude agrees well with experimental measurements. Following

  3. Effects of substrates on biofilm formation observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Lee, N.R.; Jo, W.; Jung, W.K.; Lim, J.S.

    2009-01-01

    Formation of biofilm is known to be strongly dependent on substrates including topography, materials, and chemical treatment. In this study, a variety of substrates are tested for understanding biofilm formation. Sheets of aluminum, steel, rubber, and polypropylene have been used to examine their effects on formation of Pseudomonas aeruginosa biofilm. In particular, the morphological variation, transition, and adhesiveness of biofilm were investigated through local measurement by atomic force microscopy (AFM). Mechanism of removing biofilm from adhering to substrate is also analyzed, thus the understanding of the mechanism can be potentially useful to prevent the biofilm formation. The results reveal that formation of biofilm can remain on rough surface regardless of substrates in hot water, which may easily induce extra-polymeric substances detachment from bacterial surface. By probing using AFM, local force-distance characterization of extra-cellular materials extracted from the bacteria can exhibit the progress of the biofilm formation and functional complexities.

  4. Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Casuso, I; Fumagalli, L; Samitier, J; Padros, E; Reggiani, L; Akimov, V; Gomila, G

    2007-01-01

    We present a reliable methodology to perform electron transport measurements at the nanoscale on supported biomembranes by conductive atomic force microscopy (C-AFM). It allows measurement of both (a) non-destructive conductive maps and (b) force controlled current-voltage characteristics in wide voltage bias range in a reproducible way. Tests experiments were performed on purple membrane monolayers, a two-dimensional (2D) crystal lattice of the transmembrane protein bacteriorhodopsin. Non-destructive conductive images show uniform conductivity of the membrane with isolated nanometric conduction defects. Current-voltage characteristics under different compression conditions show non-resonant tunneling electron transport properties, with two different conduction regimes as a function of the applied bias, in excellent agreement with theoretical predictions. This methodology opens the possibility for a detailed study of electron transport properties of supported biological membranes, and of soft materials in general

  5. Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casuso, I [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain); Fumagalli, L [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain); Samitier, J [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain); Padros, E [Unitat de BiofIsica, Departamento de BioquImica i de Biologia Molecular, Facultat de Medicina i Centre d' Estudis en BiofIsica, Universitat Autonoma de Barcelona, Barcelona (Spain); Reggiani, L [CNR-INFM National Nanotechnology Laboratory, Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, Lecce (Italy); Akimov, V [CNR-INFM National Nanotechnology Laboratory, Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, Lecce (Italy); Gomila, G [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain)

    2007-11-21

    We present a reliable methodology to perform electron transport measurements at the nanoscale on supported biomembranes by conductive atomic force microscopy (C-AFM). It allows measurement of both (a) non-destructive conductive maps and (b) force controlled current-voltage characteristics in wide voltage bias range in a reproducible way. Tests experiments were performed on purple membrane monolayers, a two-dimensional (2D) crystal lattice of the transmembrane protein bacteriorhodopsin. Non-destructive conductive images show uniform conductivity of the membrane with isolated nanometric conduction defects. Current-voltage characteristics under different compression conditions show non-resonant tunneling electron transport properties, with two different conduction regimes as a function of the applied bias, in excellent agreement with theoretical predictions. This methodology opens the possibility for a detailed study of electron transport properties of supported biological membranes, and of soft materials in general.

  6. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.

  7. Techniques for imaging human metaphase chromosomes in liquid conditions by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ushiki, Tatsuo; Hoshi, Osamu [Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510 (Japan); Shigeno, Masatsugu [SII NanoTechnology Incorporated, RBM Tsukiji Building, Shintomi 2-15-5, Chuo-ku, Tokyo 104-0041 (Japan)], E-mail: t-ushiki@med.niigata-u.ac.jp

    2008-09-24

    The purpose of this study was to obtain three-dimensional images of wet chromosomes by atomic force microscopy (AFM) in liquid conditions. Human metaphase chromosomes-obtained either by chromosome spreads or by an isolation technique-were observed in a dynamic mode by AFM in a buffer solution. Under suitable operating conditions with a soft triangular cantilever (with the spring constant of 0.08-0.4 N m{sup -1}), clear images of fixed chromosomes in the chromosome spread were obtained by AFM. For imaging isolated chromosomes with the height of more than 400 nm, a cantilever with a high aspect ratio probing tip was required. The combination of a Q-control system and the sampling intelligent scan (SIS) system in dynamic force mode AFM was useful for obtaining high-quality images of the isolated chromosomes, in which globular or cord-like structures about 50 nm thick were clearly observed on the surface of each chromatid.

  8. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  9. Microscopy

    Science.gov (United States)

    Patricia A. Moss; Les Groom

    2001-01-01

    Microscopy is the study and interpretation of images produced by a microscope. "Interpretation" is the keyword, because the microscope enables one to see structures that are too small or too close together to be resolved by the unaided eye. (The human eye cannot separate two points or lines that are closer together than 0.1 mm.) it is important to...

  10. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Moreno, C.; Stetsovych, Oleksandr; Shimizu, T.K.; Custance, O.

    2015-01-01

    Roč. 15, č. 4 (2015), s. 2257-2262 ISSN 1530-6984 Institutional support: RVO:68378271 Keywords : noncontact atomic force microscopy (NC- AFM ) * submolecular resolution * three-dimensional dynamic force spectroscopy * high-resolution imaging Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.779, year: 2015

  11. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an

  12. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    DEFF Research Database (Denmark)

    Kageshima, M.; Jensenius, Henriette; Dienwiebel, M.

    2002-01-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane surface were detected both in the frequency shift and dissipation. Due to t...

  13. Combined atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) studies of glucose oxidase (GOx) immobilised onto self-assembled monolayer on the gold film

    International Nuclear Information System (INIS)

    Losic, D.; Shapter, J.; Gooding, J.; Erokin, P.; Short, K.

    1999-01-01

    In fabrication of biosensors, self-assembled monolayers (SAM) are an attractive method of immobilising enzymes at electrode surface since it allows precise control over the amount and spatial distribution of the immobilized enzyme. The covalent attachment of glucose oxidase (GOx) to a carboxylic terminated SAM chemisorbed onto gold films was achieved via carbodiimide activation of the carboxylic acids to a reactive intermediate susceptible to nucleophilic attack by amines on free lysine chains of the enzyme. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and quartz crystal microbalance (QCM) measurements were used for characterisation of GOx modified gold surfaces. Tapping mode AFM studies have revealed that GOx molecules form slightly disordered arrays of pentagonal or hexagonal clusters. Observed features of immobilised GOx are distributed as a submonolayer on the SAM surface which has allowed visualisation of native and unfolded enzyme structure. The presence of the SAM and enzyme on the gold surface was detected by XPS spectroscopy. Spectra show typical peaks for the C 1s, O 1s and N 1s regions. A kinetic study of the adsorption of GOx onto activated SAM using in-situ QCM allowed determination the amount of immobilised GOx on the layer and consequently the optimal immobilisation conditions. Performance parameters of the biosensor such as sensitivity to glucose concentration as a function of enzyme loading were evaluated amperometrically using the redox mediator p-benzoquinone

  14. Atomic force microscopy. A new method for atom identification and manipulation

    International Nuclear Information System (INIS)

    Abe, Masayuki; Sugimoto, Yoshiaki; Morita, Seizo

    2007-01-01

    Frequency modulation atomic force microscopy (FM-AFM) is a scanning probe technique that detects the interaction forces between the outermost atom of a sharp tip and the atoms at a surface to image the sample surface. It is expected that the FM-AFM can cover the research field which scanning tunneling microscopy does not provide. In this article, we would introduce FM-AFM experiments applied to site-specific force measurements and atom manipulation, including how to solve the problems to achieve precise FM-AFM measurements. (author)

  15. Correlated topographic and spectroscopic imaging by combined atomic force microscopy and optical microscopy

    International Nuclear Information System (INIS)

    Hu Dehong; Micic, Miodrag; Klymyshyn, Nicholas; Suh, Y.D.; Lu, H.P.

    2004-01-01

    Near-field scanning microscopy is a powerful approach to obtain topographic and spectroscopic characterization simultaneously for imaging biological and nanoscale systems. To achieve optical imaging at high spatial resolution beyond the diffraction limit, aperture-less metallic scanning tips have been utilized to enhance the laser illumination local electromagnetic field at the apex of the scanning tips. In this paper, we discuss and review our work on combined fluorescence imaging with AFM-metallic tip enhancement, finite element method simulation of the tip enhancement, and their applications on AFM-tip enhanced fluorescence lifetime imaging (AFM-FLIM) and correlated AFM and FLIM imaging of the living cells

  16. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy

    International Nuclear Information System (INIS)

    Kumar, Bharat; Crittenden, Scott R

    2013-01-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson–Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length. (paper)

  17. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy.

    Science.gov (United States)

    Kumar, Bharat; Crittenden, Scott R

    2013-11-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.

  18. Height drift correction in non-raster atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Travis R. [Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095 (United States); Ziegler, Dominik [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Brune, Christoph [Institute for Computational and Applied Mathematics, University of Münster (Germany); Chen, Alex [Statistical and Applied Mathematical Sciences Institute, Research Triangle Park, NC 27709 (United States); Farnham, Rodrigo; Huynh, Nen; Chang, Jen-Mei [Department of Mathematics and Statistics, California State University Long Beach, Long Beach, CA 90840 (United States); Bertozzi, Andrea L., E-mail: bertozzi@math.ucla.edu [Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095 (United States); Ashby, Paul D., E-mail: pdashby@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-02-01

    We propose a novel method to detect and correct drift in non-raster scanning probe microscopy. In conventional raster scanning drift is usually corrected by subtracting a fitted polynomial from each scan line, but sample tilt or large topographic features can result in severe artifacts. Our method uses self-intersecting scan paths to distinguish drift from topographic features. Observing the height differences when passing the same position at different times enables the reconstruction of a continuous function of drift. We show that a small number of self-intersections is adequate for automatic and reliable drift correction. Additionally, we introduce a fitness function which provides a quantitative measure of drift correctability for any arbitrary scan shape. - Highlights: • We propose a novel height drift correction method for non-raster SPM. • Self-intersecting scans enable the distinction of drift from topographic features. • Unlike conventional techniques our method is unsupervised and tilt-invariant. • We introduce a fitness measure to quantify correctability for general scan paths.

  19. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chiou

    Full Text Available Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young's modulus (E(eff relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.

  20. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment.

    Science.gov (United States)

    Chiou, Yu-Wei; Lin, Hsiu-Kuan; Tang, Ming-Jer; Lin, Hsi-Hui; Yeh, Ming-Long

    2013-01-01

    Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM)-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young's modulus (E(eff)) relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.

  1. Conditions to minimize soft single biomolecule deformation when imaging with atomic force microscopy.

    Science.gov (United States)

    Godon, Christian; Teulon, Jean-Marie; Odorico, Michael; Basset, Christian; Meillan, Matthieu; Vellutini, Luc; Chen, Shu-Wen W; Pellequer, Jean-Luc

    2017-03-01

    A recurrent interrogation when imaging soft biomolecules using atomic force microscopy (AFM) is the putative deformation of molecules leading to a bias in recording true topographical surfaces. Deformation of biomolecules comes from three sources: sample instability, adsorption to the imaging substrate, and crushing under tip pressure. To disentangle these causes, we measured the maximum height of a well-known biomolecule, the tobacco mosaic virus (TMV), under eight different experimental conditions positing that the maximum height value is a specific indicator of sample deformations. Six basic AFM experimental factors were tested: imaging in air (AIR) versus in liquid (LIQ), imaging with flat minerals (MICA) versus flat organic surfaces (self-assembled monolayers, SAM), and imaging forces with oscillating tapping mode (TAP) versus PeakForce tapping (PFT). The results show that the most critical parameter in accurately measuring the height of TMV in air is the substrate. In a liquid environment, regardless of the substrate, the most critical parameter is the imaging mode. Most importantly, the expected TMV height values were obtained with both imaging with the PeakForce tapping mode either in liquid or in air at the condition of using self-assembled monolayers as substrate. This study unambiguously explains previous poor results of imaging biomolecules on mica in air and suggests alternative methodologies for depositing soft biomolecules on well organized self-assembled monolayers. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Atomic force microscopy as a tool for the investigation of living cells.

    Science.gov (United States)

    Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas

    2013-01-01

    Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.

  3. Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy

    Science.gov (United States)

    Slobodian, Oleksandr M.; Lytvyn, Peter M.; Nikolenko, Andrii S.; Naseka, Victor M.; Khyzhun, Oleg Yu.; Vasin, Andrey V.; Sevostianov, Stanislav V.; Nazarov, Alexei N.

    2018-05-01

    Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.

  4. Local charge trapping in Ge nanoclustersdetected by Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kondratenko, S.V., E-mail: kondr@univ.kiev.ua [Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601, Kyiv (Ukraine); Lysenko, V.S. [Institute of Semiconductor Physics, 41 Prospect Nauki, 03028, Kyiv (Ukraine); Kozyrev, Yu. N. [O.O. Chuiko Institute of Surface Chemistry, 17 GeneralaNaumova Str. 03164, Kiev (Ukraine); Kratzer, M. [Institute of Physics, MontanuniversitätLeoben, Franz Josef Str. 18, A-8700, Leoben (Austria); Storozhuk, D.P.; Iliash, S.A. [Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601, Kyiv (Ukraine); Czibula, C. [Institute of Physics, MontanuniversitätLeoben, Franz Josef Str. 18, A-8700, Leoben (Austria); Teichert, C., E-mail: teichert@unileoben.ac.at [Institute of Physics, MontanuniversitätLeoben, Franz Josef Str. 18, A-8700, Leoben (Austria)

    2016-12-15

    The understanding of local charge trapping on the nanoscale is crucial for the design of novel electronic devices and photodetectors based on SiGe nanoclusters (NCs). Here, the local spatial distribution of the surface potential of the Ge NCs was detected using Kelvin probe force microscopy (KPFM). Different surface potentials between Ge NCs and the wetting layer (WL) surface were detected at room temperature. Changes of the local contact potential differences (CPD) were studied after injection of electrons or holes into single Ge NCs on top of the Si layer using a conductive atomic force microscopy tip. The CPD image contrast was increased after electron injection by applying a forward bias to the n-tip/i-Ge NC/p-Si junction. Injecting holes into a single Ge NC was also accompanied by filling of two-dimensional states in the surrounding region, which is governed by leakage currents through WL or surface states and Coulomb charging effects. A long retention time of holes trapped by the Ge NC was found.

  5. Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy

    KAUST Repository

    Shearer, Melinda J.

    2018-02-01

    Nanomaterials are interesting for a variety of applications, such as optoelectronics and photovoltaics. However, they often have spatial heterogeneity, i.e. composition change or physical change in the topography or structure, which can lead to varying properties that would influence their applications. New techniques must be developed to understand and correlate spatial heterogeneity with changes in electronic properties. Here we highlight the technique of surface photovoltage-Kelvin probe force microscopy (SPV-KFM), which is a modified version of non-contact atomic force microscopy capable of imaging not only the topography and surface potential, but also the surface photovoltage on the nanoscale. We demonstrate its utility in probing monolayer WSe2-MoS2 lateral heterostructures, which form an ultrathin p-n junction promising for photovoltaic and optoelectronic applications. We show surface photovoltage maps highlighting the different photoresponse of the two material regions as a result of the effective charge separation across this junction. Additionally, we study the variations between different heterostructure flakes and emphasize the importance of controlling the synthesis and transfer of these materials to obtain consistent properties and measurements.

  6. Time-series observation of the spreading out of microvessel endothelial cells with atomic force microscopy

    International Nuclear Information System (INIS)

    Han Dong; Ma Wanyun; Liao Fulong; Yeh Meiling; Ouyang Zhigang; Sun Yunxu

    2003-01-01

    The spreading out of microvessel endothelial cells plays a key role in angiogenesis and the post-injury healing of endothelial cells. In our study, a physical force applied with an atomic force microscopic (AFM) cantilever tip in contact mode partly broke the peripheral adhesion that just-confluent cultured rat cerebral microvessel endothelial cells had formed with basal structures and resulted in the cells actively withdrawing from the stimulated area. Time-series changes in cell extension were imaged using tapping mode AFM, in conjunction with total internal reflection fluorescence microscopy, intensified charge-coupled device and field emission scanning electron microscopy. We also interpreted phase images of living endothelial cells. The results showed that formation of a fibronectin molecule monolayer is key to the spreading out of the cells. Lamellipods as well as filopods would spread out in temporal and spatial distribution following the formation of fibronectin layer. In addition, a lattice-like meshwork of filopods formed in the regions leading lamellipods, which would possibly provide a fulcrum for the filaments of the cytoskeleton within the leading cell body periphery

  7. Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy

    KAUST Repository

    Shearer, Melinda J.; Li, Ming-yang; Li, Lain-Jong; Jin, Song; Hamers, Robert J

    2018-01-01

    Nanomaterials are interesting for a variety of applications, such as optoelectronics and photovoltaics. However, they often have spatial heterogeneity, i.e. composition change or physical change in the topography or structure, which can lead to varying properties that would influence their applications. New techniques must be developed to understand and correlate spatial heterogeneity with changes in electronic properties. Here we highlight the technique of surface photovoltage-Kelvin probe force microscopy (SPV-KFM), which is a modified version of non-contact atomic force microscopy capable of imaging not only the topography and surface potential, but also the surface photovoltage on the nanoscale. We demonstrate its utility in probing monolayer WSe2-MoS2 lateral heterostructures, which form an ultrathin p-n junction promising for photovoltaic and optoelectronic applications. We show surface photovoltage maps highlighting the different photoresponse of the two material regions as a result of the effective charge separation across this junction. Additionally, we study the variations between different heterostructure flakes and emphasize the importance of controlling the synthesis and transfer of these materials to obtain consistent properties and measurements.

  8. Visualising the Micro World of Chemical/Geochemical Interactions Using Atomic Force Microscopy (AFM)

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G M; Sorbie, K S

    1997-12-31

    Scanning force microscopy, in particular AFM (Atomic Force Microscopy), provides a particular useful and interesting tool for the examination of surface structure at the near-atomic level. AFM is particularly well suited to the study of interactions at the surface in aqueous solutions using real time in-situ measurements. In this paper there is presented AFM images showing in situ crystal growth from supersaturated BaSO{sub 4} solutions onto the surface of barite. Growth structures in the form of spiral crystal growth features, presumably originating from screw dislocations, are illustrated. AFM images of novel scale crystal growth inhibition experiments are presented. Examination of the manner in which generically different species adsorb onto growth structures may help to explain mechanistic differences in the way which different inhibitor species perform against barium sulphate scale formation. Adsorption of polyacrylamide species onto mica surfaces have been viewed. The general utility of AFM to a number of other common surface interactions in oil field chemistry will be discussed. 17 refs., 3 figs.

  9. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.; Giridharagopal, Rajiv; Ginger, David S., E-mail: ginger@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States)

    2016-05-15

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is critical to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.

  10. STRUCTURE CONTROL FOR DIFFERENT TYPES OF PAPER BY ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    M. V. Zhukov

    2014-01-01

    Full Text Available The paper deals with the precision control for the parameters of manufactured paper production, such as various kinds of paper and photo paper for printing. Research of untreated, matte, glossy and laminated paper is conducted by atomic force microscopy by means of educational and scientific scanning probe microscope NanoEducator LE in the framework of this paper. Visualization of characteristic structure for each type of studied paper was conducted, histogram of roughness was obtained, and average roughness of height differences was defined. A laminated paper has got the lowest roughness (Ra of about 70 nm and glossy paper has got Ra of about 170 nm; roughness of untreated paper with cellulose fibers is about 530- 540 nm, and matte paper has got the highest roughness parameters (Ra about 670-680 nm. Scanning probe microscopy application for parameters monitoring of cellulosic paper production is shown to give the possibility of such microscopy type application in the production of paper products and high-precision control of its parameters.

  11. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  12. Autopilot for frequency-modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il [Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2015-10-15

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  13. Autopilot for frequency-modulation atomic force microscopy.

    Science.gov (United States)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  14. Adhesion force imaging in air and liquid by adhesion mode atomic force microscopy

    NARCIS (Netherlands)

    van der Werf, Kees; Putman, C.A.J.; Putman, Constant A.; de Grooth, B.G.; Greve, Jan

    1994-01-01

    A new imaging mode for the atomic force microscope(AFM), yielding images mapping the adhesion force between tip and sample, is introduced. The adhesion mode AFM takes a force curve at each pixel by ramping a piezoactuator, moving the silicon‐nitride tip up and down towards the sample. During the

  15. The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Phuthong, Witchukorn; Huang, Zubin; Wittkopp, Tyler M.; Sznee, Kinga; Heinnickel, Mark L.; Dekker, Jan P.; Frese, Raoul N.; Prinz, Fritz B.; Grossman, Arthur R.

    2015-07-28

    To investigate the dynamics of photosynthetic pigment-protein complexes in vascular plants at high resolution in an aqueous environment, membrane-protruding oxygen-evolving complexes (OECs) associated with photosystem II (PSII) on spinach (Spinacia oleracea) grana membranes were examined using contact mode atomic force microscopy. This study represents, to our knowledge, the first use of atomic force microscopy to distinguish the putative large extrinsic loop of Photosystem II CP47 reaction center protein (CP47) from the putative oxygen-evolving enhancer proteins 1, 2, and 3 (PsbO, PsbP, and PsbQ) and large extrinsic loop of Photosystem II CP43 reaction center protein (CP43) in the PSII-OEC extrinsic domains of grana membranes under conditions resulting in the disordered arrangement of PSII-OEC particles. Moreover, we observed uncharacterized membrane particles that, based on their physical characteristics and electrophoretic analysis of the polypeptides associated with the grana samples, are hypothesized to be a domain of photosystem I that protrudes from the stromal face of single thylakoid bilayers. Our results are interpreted in the context of the results of others that were obtained using cryo-electron microscopy (and single particle analysis), negative staining and freeze-fracture electron microscopy, as well as previous atomic force microscopy studies.

  16. In Situ Adsorption Studies at the Solid/Liquid Interface: Characterization of Biological Surfaces and Interfaces Using Sum Frequency Generation Vibrational Spectroscopy, Atomic Force Microscopy, and Quartz Crystal Microbalance

    International Nuclear Information System (INIS)

    Phillips, D.C.

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste

  17. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Diana Christine [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures (α-helix and β-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  18. Structural analysis of γ radiation-induced chromosomal aberrations observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Qu Shuang; Chen Ying; Ge Shili; Liu Xiulin; Zhou Pingkun; Zhang Sa; Zhang Detian

    2003-01-01

    Objective: To find a new method for the measurement of radiation-induced damage, the structures of normal chromosomes and 60 Co γ-ray-induced chromosomal aberration were analyzed by atomic force microscopy. Methods: Normal and irradiated chromosomes of human peripheral blood lymphocytes were prepared, then three-dimensional structure and height of chromosomes were analyzed by atomic force microscopy. Results: Three-dimensional structures of normal chromosomes and dicentric aberration in irradiated chromosomes were observed clearly. The data of chromosome height were helpful to recognizing the dicentric aberrations. Conclusion: Atomic force microscopy providing three-dimension image and linear measurement is a new and valuable tool for structural analysis of radiation-induced chromosomal aberrations

  19. Morphological study of chitin from Xiphopenaeus kroyeri exoskeletons by using atomic force microscopy (AFM) and CPMAS {sup 13} C NMR; Estudo morfologico de quitina da exocuticula de Xiphopenaeus kroyeri por AFM e por CPMAS {sup 13} C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Silva, K.M.; Tavares, M.I.; Andrade, C.T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas; Simao, R.A. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Metalurgica e de Materiais

    1999-07-01

    A sample of {alpha} chitin was isolated from exoskeletons of Xiphopenaeus kroyeri. This sample ws dissolved in phosphoric acid and recovered as a fibrous precipitate. Atomic force microscopy was used in noncontact mode to obtain images of the native chitin sample. Different morphological features were observed, including rigid rod crystals 200-300 nm wide. Solid state {sup 13} C NMR techniques were used to investigate chitin samples, and revealed molecular order in both samples. The differences observed in the proton spin-lattice relaxation times in the rotating frame, T{sup H1}{sub p} were attributed to the formation of hydrogen bonds in preferential sites in the samples. (author)

  20. A new image correction method for live cell atomic force microscopy

    International Nuclear Information System (INIS)

    Shen, Y; Sun, J L; Zhang, A; Hu, J; Xu, L X

    2007-01-01

    During live cell imaging via atomic force microscopy (AFM), the interactions between the AFM probe and the membrane yield distorted cell images. In this work, an image correction method was developed based on the force-distance curve and the modified Hertzian model. The normal loading and lateral forces exerted on the cell membrane by the AFM tip were both accounted for during the scanning. Two assumptions were made in modelling based on the experimental measurements: (1) the lateral force on the endothelial cells was linear to the height; (2) the cell membrane Young's modulus could be derived from the displacement measurement of a normal force curve. Results have shown that the model could be used to recover up to 30% of the actual cell height depending on the loading force. The accuracy of the model was also investigated with respect to the loading force and mechanical property of the cell membrane

  1. A new image correction method for live cell atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y; Sun, J L; Zhang, A; Hu, J; Xu, L X [College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2007-04-21

    During live cell imaging via atomic force microscopy (AFM), the interactions between the AFM probe and the membrane yield distorted cell images. In this work, an image correction method was developed based on the force-distance curve and the modified Hertzian model. The normal loading and lateral forces exerted on the cell membrane by the AFM tip were both accounted for during the scanning. Two assumptions were made in modelling based on the experimental measurements: (1) the lateral force on the endothelial cells was linear to the height; (2) the cell membrane Young's modulus could be derived from the displacement measurement of a normal force curve. Results have shown that the model could be used to recover up to 30% of the actual cell height depending on the loading force. The accuracy of the model was also investigated with respect to the loading force and mechanical property of the cell membrane.

  2. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Muhunthan, N.; Singh, Om Pal [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India); Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N., E-mail: singhvn@nplindia.org [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India)

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  3. Current mapping of low-energy (120 eV) helium and hydrogen irradiated tungsten by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Endo, Takashi [Nano-micro Materials Analysis Laboratory, Hokkaido University, Sapporo (Japan); Bi, Zhenghua; Yan, Weibin [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Ohnuki, Somei [Nano-micro Materials Analysis Laboratory, Hokkaido University, Sapporo (Japan); Yang, Qi; Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China)

    2017-04-01

    Both conductive atomic force microscopy (CAFM) and transmission electron microscopy have been used to characterize the defects or He bubbles in low-energy (120 eV) H and He irradiated tungsten (W). By a comparative study, we find that the current mapping from CAFM is very sensitive in the detection of nanometer-sized defects in low-energy H and He irradiated W. Our calculation confirms that the resistance change in H and He irradiated W is strongly affected by the distance between atomic force microscopy tip and defects/He bubbles. CAFM can accurately detect defects/He bubbles in the W surface layer, however, it is infeasible to measure them in the deep layer (>20 nm), especially due to the existence of defects in the surface layer.

  4. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology.

    Science.gov (United States)

    Hansma, P K; Elings, V B; Marti, O; Bracker, C E

    1988-10-14

    The scanning tunneling microscope (STM) and the atomic force microscope (AFM) are scanning probe microscopes capable of resolving surface detail down to the atomic level. The potential of these microscopes for revealing subtle details of structure is illustrated by atomic resolution images including graphite, an organic conductor, an insulating layered compound, and individual adsorbed oxygen atoms on a semiconductor. Application of the STM for imaging biological materials directly has been hampered by the poor electron conductivity of most biological samples. The use of thin conductive metal coatings and replicas has made it possible to image some biological samples, as indicated by recently obtained images of a recA-DNA complex, a phospholipid bilayer, and an enzyme crystal. The potential of the AFM, which does not require a conductive sample, is shown with molecular resolution images of a nonconducting organic monolayer and an amino acid crystal that reveals individual methyl groups on the ends of the amino acids. Applications of these new microscopes to technology are demonstrated with images of an optical disk stamper, a diffraction grating, a thin-film magnetic recording head, and a diamond cutting tool. The STM has even been used to improve the quality of diffraction gratings and magnetic recording heads.

  5. Use of Kelvin probe force microscopy for identification of CVD grown graphene flakes on copper foil

    Science.gov (United States)

    Kumar, Rakesh; Mehta, B. R.; Kanjilal, D.

    2017-05-01

    Graphene flakes have been grown by chemical vapour deposition (CVD) method on Cu foils. The obtained graphene flakes have been characterized by optical microscopy, field emission scanning electron microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy. The graphene flakes grown on Cu foil comprise mainly single layer graphene and confirm that the nucleation for graphene growth starts very quickly. Moreover, KPFM has been found to be a valuable technique to differentiate between covered and uncovered portion of Cu foil by graphene flakes deposited for shorter duration. The results show that KPFM can be a very useful technique in understanding the mechanism of graphene growth.

  6. Silicon Nano fabrication by Atomic Force Microscopy-Based Mechanical Processing

    International Nuclear Information System (INIS)

    Miyake, Sh.; Wang, M.; Kim, J.

    2014-01-01

    This paper reviews silicon nano fabrication processes using atomic force microscopy (AFM). In particular, it summarizes recent results obtained in our research group regarding AFM-based silicon nano fabrication through mechanochemical local oxidation by diamond tip sliding, as well as mechanical, electrical, and electromechanical processing using an electrically conductive diamond tip. Microscopic three-dimensional manufacturing mainly relies on etching, deposition, and lithography. Therefore, a special emphasis was placed on nano mechanical processes, mechanochemical reaction by potassium hydroxide solution etching, and mechanical and electrical approaches. Several important surface characterization techniques consisting of scanning tunneling microscopy and related techniques, such as scanning probe microscopy and AFM, were also discussed.

  7. Differential MS2 Interaction with Food Contact Surfaces Determined by Atomic Force Microscopy and Virus Recovery.

    Science.gov (United States)

    Shim, J; Stewart, D S; Nikolov, A D; Wasan, D T; Wang, R; Yan, R; Shieh, Y C

    2017-12-15

    Enteric viruses are recognized as major etiologies of U.S. foodborne infections. These viruses are easily transmitted via food contact surfaces. Understanding virus interactions with surfaces may facilitate the development of improved means for their removal, thus reducing transmission. Using MS2 coliphage as a virus surrogate, the strength of virus adhesion to common food processing and preparation surfaces of polyvinyl chloride (PVC) and glass was assessed by atomic force microscopy (AFM) and virus recovery assays. The interaction forces of MS2 with various surfaces were measured from adhesion peaks in force-distance curves registered using a spherical bead probe preconjugated with MS2 particles. MS2 in phosphate-buffered saline (PBS) demonstrated approximately 5 times less adhesion force to glass (0.54 nN) than to PVC (2.87 nN) ( P force for PVC (∼0 nN) and consistently increased virus recovery by 19%. With direct and indirect evidence of virus adhesion, this study illustrated a two-way assessment of virus adhesion for the initial evaluation of potential means to mitigate virus adhesion to food contact surfaces. IMPORTANCE The spread of foodborne viruses is likely associated with their adhesive nature. Virus attachment on food contact surfaces has been evaluated by quantitating virus recoveries from inoculated surfaces. This study aimed to evaluate the microenvironment in which nanometer-sized viruses interact with food contact surfaces and to compare the virus adhesion differences using AFM. The virus surrogate MS2 demonstrated less adhesion force to glass than to PVC via AFM, with the force-contributing factors including the intrinsic nature and the topography of the contact surfaces. This adhesion finding is consistent with the virus recoveries, which were determined indirectly. Greater numbers of viruses were recovered from glass than from PVC, after application at the same levels. The stronger MS2 adhesion onto PVC could be interrupted by incorporating a

  8. A serial-kinematic nanopositioner for high-speed atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wadikhaye, Sachin P., E-mail: sachin.wadikhaye@uon.edu.au; Yong, Yuen Kuan; Reza Moheimani, S. O. [School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW (Australia)

    2014-10-15

    A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion.

  9. Local photoconductivity of microcrystalline silicon thin films measured by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ledinsky, Martin; Fejfar, Antonin; Vetushka, Aliaksei; Stuchlik, Jiri; Rezek, Bohuslav; Kocka, Jan [Institute of Physics, Academy of Sciences of the Czech Republic, v.v.i. Cukrovarnicka 10, 162 00 Praha 6 (Czech Republic)

    2011-11-15

    Local currents measured under standard conductive atomic force microscopy (C-AFM) conditions on microcrystalline silicon ({mu}c-Si:H) thin films were studied. It was shown that the AFM detection diode illuminating the AFM cantilever (see the figure on the right side) 100 x enhanced the current flows through the photosensitive {mu}c-Si:H layer. The local current map and current-voltage characteristics were measured under dark conditions. This study enables mapping of both the dark current and photocurrent. C-AFM cantilever illuminated by the detection diode during measurement on {mu}c-Si:H thin film. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Mechanical Properties of Boehmite Evaluated by Atomic Force Microscopy Experiments and Molecular Dynamic Finite Element Simulations

    International Nuclear Information System (INIS)

    Fankhanel, J.; Daum, B.; Kempe, A.; Rolfes, R.; Silbernagl, D.; Khorasani, M.Gh.Z.; Sturm, H.; Sturm, H.

    2016-01-01

    Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM) experiments and Molecular Dynamic Finite Element Method (MDFEM) simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work. The studies are substantiated with accompanying X-ray diffraction and Raman experiments.

  11. A serial-kinematic nanopositioner for high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Wadikhaye, Sachin P.; Yong, Yuen Kuan; Reza Moheimani, S. O.

    2014-01-01

    A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion

  12. Model-based traction force microscopy reveals differential tension in cellular actin bundles.

    Science.gov (United States)

    Soiné, Jérôme R D; Brand, Christoph A; Stricker, Jonathan; Oakes, Patrick W; Gardel, Margaret L; Schwarz, Ulrich S

    2015-03-01

    Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force microscopy that in contrast to traditional methods uses additional image data for cytoskeleton and adhesion structures and a biophysical model to improve the robustness of the inverse procedure and abolishes the need for regularization. We use this method to demonstrate that ventral stress fibers of U2OS-cells are typically under higher mechanical tension than dorsal stress fibers or transverse arcs.

  13. Mechanical design and force calibration of dual-axis micromechanical probe for friction force microscopy

    International Nuclear Information System (INIS)

    Fukuzawa, Kenji; Terada, Satoshi; Shikida, Mitsuhiro; Amakawa, Hiroaki; Zhang, Hedong; Mitsuya, Yasunaga

    2007-01-01

    A dual-axis micromechanical probe that combines a double cantilever and torsion beams is presented. This probe can reduce the mechanical cross-talk between the lateral and vertical force detections. In addition, dual-axis forces can be detected by measuring the dual-axis displacement of the probe end using the optical lever-based method used in conventional friction force microscopes (FFMs). In this paper, the mechanical design of the probe, the details of the fabrication method, FFM performance, and calibration of the friction force are discussed. The mechanical design and the microfabrication method for probes that can provide a force resolution of the order of 1 nN without mechanical cross-talk are presented. Calibration of the lateral force signal is possible by using the relationship between the lateral force and the piezodisplacement at the onset of the probe scanning. The micromechanical probe enables simultaneous and independent detection of atomic and friction forces. This leads to accurate investigation of nanotribological phenomena and visualization of the distribution of the friction properties, which helps the identification of the material properties

  14. Mapping Electrostatic Forces Using Higher Harmonics Tapping Mode Atomic Force Microscopy in Liquid

    NARCIS (Netherlands)

    van Noort, S.J.T.; Willemsen, O.H.; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1999-01-01

    A simple model of a damped, harmonic oscillator is used to describe the motion of an atomic force microscope cantilever tapping in fluid. By use of experimentally obtained parameters, excellent agreement is found between theory and experimental results. From the model we estimate that the force

  15. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merghni, Abderrahmen, E-mail: abderrahmen_merghni@yahoo.fr [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Kammoun, Dorra [Laboratoire de Biomatériaux et Biotechnologie, Faculté de Médecine Dentaire, Monastir (Tunisia); Hentati, Hajer [Laboratoire de Recherche en Santé Orale et Réhabilitation Bucco-Faciale (LR12ES11), Faculté de Médecine Dentaire de Monastir, Université de Monastir (Tunisia); Janel, Sébastien [BioImaging Center Lille-FR3642, Lille (France); Popoff, Michka [Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Lafont, Frank [BioImaging Center Lille-FR3642, Lille (France); Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Aouni, Mahjoub [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Mastouri, Maha [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Laboratoire de Microbiologie, CHU Fattouma Bourguiba de Monastir (Tunisia)

    2016-08-30

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  16. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    International Nuclear Information System (INIS)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-01-01

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  17. Evidence of the no-slip boundary condition of water flow between hydrophilic surfaces using atomic force microscopy.

    Science.gov (United States)

    Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat

    2009-10-20

    In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.

  18. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    Science.gov (United States)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  19. Potential profile and photovoltaic effect in nanoscale lateral pn junction observed by Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Nowak, Roland; Moraru, Daniel; Mizuno, Takeshi; Jablonski, Ryszard; Tabe, Michiharu

    2014-01-01

    Nanoscale pn junctions have been investigated by Kelvin probe force microscopy and several particular features were found. Within the depletion region, a localized noise area is observed, induced by temporal fluctuations of dopant states. Electronic potential landscape is significantly affected by dopants with ground-state energies deeper than in bulk. Finally, the effects of light illumination were studied and it was found that the depletion region shifts its position as a function of light intensity. This is ascribed to charge redistribution within the pn junction as a result of photovoltaic effect and due to the impact of deepened-level dopants. - Highlights: • In pn nano-junctions, temporal potential fluctuations are found in depletion layer. • Fluctuations are due to frequent capture and emission of free carriers by dopants. • Depletion layer position shifts as a function of the intensity of irradiated light. • The depletion layer shifts are due to changes of deep-level dopants' charge states

  20. Observation of nuclear track in organic material by atomic force microscopy in real time during etching

    CERN Document Server

    Palmino, F; Labrune, J C

    1999-01-01

    The developments of Atomic Force Microscopy (AFM) allow to investigated solid surfaces with a nanometer scale. These techniques are useful methods allowing direct observation of surface morphologies. Particularly in the nuclear track fields, they offer a new tool to give many new informations on track formation. In this paper we present the preliminary results of a new use of this technique to characterize continuously the formation of the revealed track in a cellulose nitrate detector (LR115) after an alpha particle irradiation. For that, a specific cell has been used to observe, by nano-observations, the evolution of track shapes simultaneously with chemical treatment. Thus, the track shape evolution has been studied; visualizing the evolution of the tracks in real time, in situ during the chemical etching process.

  1. Monitoring the elasticity changes of HeLa cells during mitosis by atomic force microscopy

    Science.gov (United States)

    Jiang, Ningcheng; Wang, Yuhua; Zeng, Jinshu; Ding, Xuemei; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Cell mitosis plays a crucial role in cell life activity, which is one of the important phases in cell division cycle. During the mitosis, the cytoskeleton micro-structure of the cell changed and the biomechanical properties of the cell may vary depending upon different mitosis stages. In this study, the elasticity property of HeLa cells during mitosis was monitored by atomic force microscopy. Also, the actin filaments in different mitosis stages of the cells were observed by confocal imaging. Our results show that the cell in anaphase is stiffer than that in metaphase and telophase. Furthermore, lots of actin filaments gathered in cells' center area in anaphase, which contributes to the rigidity of the cell in this phase. Our findings demonstrate that the nano-biomechanics of living cells could provide a new index for characterizing cell physiological states.

  2. Micro and nanostructural characterization of surfaces and interfaces of Portland cement mortars using atomic force microscopy

    International Nuclear Information System (INIS)

    Barreto, M.F.O.; Brandao, P.R.G.

    2014-01-01

    The characterization of Portland cement mortars is very important in the study the interfaces and surfaces that make up the system grout/ceramic block. In this sense, scanning electron microscopy and energy-dispersive (X-ray) spectrometer are important tools in investigating the morphology and chemical aspects. However, more detailed topographic information can be necessary in the characterization process. In this work, the aim was to characterize topographically surfaces and interfaces of mortars applied onto ceramic blocks. This has been accomplished by using the atomic force microscope (AFM) - MFP-3D-SA Asylum Research. To date, the results obtained from this research show that the characterization of cementitious materials with the help of AFM has an important contribution in the investigation and differentiation of hydrated calcium silicates (CSH), calcium hydroxide (Ca(OH)2, ettringite and calcium carbonate by providing morphological and micro topographical data, which are extremely important and reliable for the understanding of cementitious materials. (author)

  3. Atomic Force Microscopy Investigation of Morphological and Nanomechanical Properties of Pseudomonas aeruginosa Cells

    DEFF Research Database (Denmark)

    Mortensen, Ninell Pollas

    2008-01-01

    changes in the fraction of individual bacteria and bacteria undergoing proliferation, and decrease of cell length of mother and daughter cells. The results indicated that colistin arrested the bacterial growth just after septum formation. Furthermore did the morphology change from a smooth bacterial......Atomic Force Microscopy (AFM) is unique in the aspect of studying living biological sample under physiological conditions. AFM was invented in 1986 by Binnig and Gerber and began in the early 1990’s to be implemented in life science. AFM can give a detailed three dimensional image of an intact cell......, but also be used to examine the nanomechanical properties on single cell level. These qualities make AFM a powerful tool in biology and can be used to examine both morphological and nanomechanical response to various liquids environments, such as osmotic pressure, but also the effects of e.g. antibiotic...

  4. Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis.

    Science.gov (United States)

    Zhou, Peilin; Yu, Haibo; Yang, Wenguang; Wen, Yangdong; Wang, Zhidong; Li, Wen Jung; Liu, Lianqing

    2017-05-17

    In this article, we present a novel method of spatial manipulation and assembly of nanoparticles via atomic force microscopy tip-induced dielectrophoresis (AFM-DEP). This method combines the high-accuracy positioning of AFM with the parallel manipulation of DEP. A spatially nonuniform electric field is induced by applying an alternating current (AC) voltage between the conductive AFM probe and an indium tin oxide glass substrate. The AFM probe acted as a movable DEP tweezer for nanomanipulation and assembly of nanoparticles. The mechanism of AFM-DEP was analyzed by numerical simulation. The effects of solution depth, gap distance, AC voltage, solution concentration, and duration time were experimentally studied and optimized. Arrays of 200 nm polystyrene nanoparticles were assembled into various nanostructures, including lines, ellipsoids, and arrays of dots. The sizes and shapes of the assembled structures were controllable. It was thus demonstrated that AFM-DEP is a flexible and powerful tool for nanomanipulation.

  5. The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy.

    Science.gov (United States)

    Satzinger, Kevin J; Brown, Keith A; Westervelt, Robert M

    2012-09-15

    A realistic interpretation of the measured contact potential difference (CPD) in Kelvin probe force microscopy (KPFM) is crucial in order to extract meaningful information about the sample. Central to this interpretation is a method to include contributions from the macroscopic cantilever arm, as well as the cone and sharp tip of a KPFM probe. Here, three models of the electrostatic interaction between a KPFM probe and a sample are tested through an electrostatic simulation and compared with experiment. In contrast with previous studies that treat the KPFM cantilever as a rigid object, we allow the cantilever to bend and rotate; accounting for cantilever bending provides the closest agreement between theory and experiment. We demonstrate that cantilever dynamics play a major role in CPD measurements and provide a simulation technique to explore this phenomenon.

  6. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    International Nuclear Information System (INIS)

    Hong Xia; Liu Yanmei; Li Jun; Guo Wei; Bai Yubai

    2009-01-01

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  7. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hong Xia [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry, Jilin University, Changchun 130023 (China)], E-mail: xiahong@nenu.edu.cn; Liu Yanmei; Li Jun; Guo Wei; Bai Yubai [College of Chemistry, Jilin University, Changchun 130023 (China)

    2009-09-15

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  8. Biological Atomic Force Microscopy for Imaging Gold-Labeled Liposomes on Human Coronary Artery Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ana-María Zaske

    2013-01-01

    Full Text Available Although atomic force microscopy (AFM has been used extensively to characterize cell membrane structure and cellular processes such as endocytosis and exocytosis, the corrugated surface of the cell membrane hinders the visualization of extracellular entities, such as liposomes, that may interact with the cell. To overcome this barrier, we used 90 nm nanogold particles to label FITC liposomes and monitor their endocytosis on human coronary artery endothelial cells (HCAECs in vitro. We were able to study the internalization process of gold-coupled liposomes on endothelial cells, by using AFM. We found that the gold-liposomes attached to the HCAEC cell membrane during the first 15–30 min of incubation, liposome cell internalization occurred from 30 to 60 min, and most of the gold-labeled liposomes had invaginated after 2 hr of incubation. Liposomal uptake took place most commonly at the periphery of the nuclear zone. Dynasore monohydrate, an inhibitor of endocytosis, obstructed the internalization of the gold-liposomes. This study showed the versatility of the AFM technique, combined with fluorescent microscopy, for investigating liposome uptake by endothelial cells. The 90 nm colloidal gold nanoparticles proved to be a noninvasive contrast agent that efficiently improves AFM imaging during the investigation of biological nanoprocesses.

  9. Effect of contact stiffness on wedge calibration of lateral force in atomic force microscopy

    International Nuclear Information System (INIS)

    Wang Fei; Zhao Xuezeng

    2007-01-01

    Quantitative friction measurement of nanomaterials in atomic force microscope requires accurate calibration method for lateral force. The effect of contact stiffness on lateral force calibration of atomic force microscope is discussed in detail and an improved calibration method is presented. The calibration factor derived from the original method increased with the applied normal load, which indicates that separate calibration should be required for every given applied normal load to keep the accuracy of friction measurement. We improve the original method by introducing the contact factor, which is derived from the contact stiffness between the tip and the sample, to the calculation of calibration factors. The improved method makes the calculation of calibration factors under different applied normal loads possible without repeating the calibration procedure. Comparative experiments on a silicon wafer have been done by both the two methods to validate the method in this article

  10. Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Markus Moosmann

    2017-08-01

    Full Text Available Underwater air retention of superhydrophobic hierarchically structured surfaces is of increasing interest for technical applications. Persistent air layers (the Salvinia effect are known from biological species, for example, the floating fern Salvinia or the backswimmer Notonecta. The use of this concept opens up new possibilities for biomimetic technical applications in the fields of drag reduction, antifouling, anticorrosion and under water sensing. Current knowledge regarding the shape of the air–water interface is insufficient, although it plays a crucial role with regards to stability in terms of diffusion and dynamic conditions. Optical methods for imaging the interface have been limited to the micrometer regime. In this work, we utilized a nondynamic and nondestructive atomic force microscopy (AFM method to image the interface of submerged superhydrophobic structures with nanometer resolution. Up to now, only the interfaces of nanobubbles (acting almost like solids have been characterized by AFM at these dimensions. In this study, we show for the first time that it is possible to image the air–water interface of submerged hierarchically structured (micro-pillars surfaces by AFM in contact mode. By scanning with zero resulting force applied, we were able to determine the shape of the interface and thereby the depth of the water penetrating into the underlying structures. This approach is complemented by a second method: the interface was scanned with different applied force loads and the height for zero force was determined by linear regression. These methods open new possibilities for the investigation of air-retaining surfaces, specifically in terms of measuring contact area and in comparing different coatings, and thus will lead to the development of new applications.

  11. Magnetic force microscopy of thin film media for high density magnetic recording

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.; Abelmann, Leon; Lodder, J.C.

    1998-01-01

    This paper discusses various aspect of magnetic force microscopy (MFM) for use in the field of high density magnetic recording. After an introduction of the most important magnetic imaging techniques, an overview is given of the operation and theory of MFM. The developments in instrumentation, MFM

  12. Magni: A Python Package for Compressive Sampling and Reconstruction of Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Oxvig, Christian Schou; Pedersen, Patrick Steffen; Arildsen, Thomas

    2014-01-01

    Magni is an open source Python package that embraces compressed sensing and Atomic Force Microscopy (AFM) imaging techniques. It provides AFM-specific functionality for undersampling and reconstructing images from AFM equipment and thereby accelerating the acquisition of AFM images. Magni also pr...... as a convenient platform for researchers in compressed sensing aiming at obtaining a high degree of reproducibility of their research....

  13. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    DEFF Research Database (Denmark)

    Marinello, Francesco; Pezzuolo, Andrea; Carmignato, Simone

    2015-01-01

    fast direct and non-destructive measurement of Young's modulus and related surface parameters.In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever...

  14. Magnetic resonance force microscopy quantum computer with tellurium donors in silicon.

    Science.gov (United States)

    Berman, G P; Doolen, G D; Hammel, P C; Tsifrinovich, V I

    2001-03-26

    We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.

  15. Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2001-01-01

    We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations

  16. Characterization of polyethersulfone-polyimide hollow fiber membranes by atomic force microscopy and contact angle goniometery

    NARCIS (Netherlands)

    Khulbe, K.C.; Feng, C.; Matsuura, T.; Kapantaidakis, G.; Wessling, Matthias; Koops, G.H.

    2003-01-01

    Asymmetric blend polyethersulfone-polyimide (PES-PI) hollow fiber membranes prepared at different air gap and used for gas separation are characterized by atomic force microscopy (inside and out side surfaces) and by measuring the contact angle of out side surface. The outer surface was entirely

  17. Attachment of trianglamines to silicon wafers, chiral recognition by chemical force microscopy

    Czech Academy of Sciences Publication Activity Database

    Hlinka, J.; Hodačová, Jana; Raehm, L.; Granier, M.; Ramonda, M.; Durand, J. O.

    2010-01-01

    Roč. 13, č. 4 (2010), s. 481-485 ISSN 1631-0748 R&D Projects: GA MŠk MEB020748 Institutional research plan: CEZ:AV0Z40550506 Keywords : trianglamines * chemical force microscopy * chiral recognition Subject RIV: CC - Organic Chemistry Impact factor: 1.600, year: 2010

  18. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  19. Imaging modes of atomic force microscopy for application in molecular and cell biology

    NARCIS (Netherlands)

    Dufrêne, Yves F.; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, A.H.; Gerber, Christoph; Müller, Daniel J.

    2017-01-01

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM

  20. Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy

    NARCIS (Netherlands)

    Polak, L.; Wijngaarden, Rinke J.

    2016-01-01

    Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a

  1. Microcontroller-driven fluid-injection system for atomic force microscopy.

    Science.gov (United States)

    Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  2. Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips

    NARCIS (Netherlands)

    Ruhrig, M.; Rührig, M.; Porthun, S.; Porthun, S.; Lodder, J.C.; Mc vitie, S.; Heyderman, L.J.; Johnston, A.B.; Chapman, J.N.

    1996-01-01

    The stray field, magnetic microstructure, and switching behavior of high‐resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a

  3. Atomic force microscopy imaging to measure precipitate volume fraction in nickel-based superalloys

    International Nuclear Information System (INIS)

    Bourhettar, A.; Troyon, M.; Hazotte, A.

    1995-01-01

    In nickel-based superalloys, quantitative analysis of scanning electron microscopy images fails in providing accurate microstructural data, whereas more efficient techniques are very time-consuming. As an alternative approach, the authors propose to perform quantitative analysis of atomic force microscopy images of polished/etched surfaces (quantitative microprofilometry). This permits the measurement of microstructural parameters and the depth of etching, which is the main source of measurement bias. Thus, nonbiased estimations can be obtained by extrapolation of the measurements up to zero etching depth. In this article, the authors used this approach to estimate the volume fraction of γ' precipitates in a nickel-based superalloy single crystal. Atomic force microscopy images of samples etched for different times show definition, homogeneity, and contrast high enough to perform image analysis. The result after extrapolation is in very good agreement with volume fraction values available from published reports

  4. Role of tip chemical reactivity on atom manipulation process in dynamic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Sugimoto, Y.; Yurtsever, A.; Abe, M.; Morita, S.; Ondráček, Martin; Pou, P.; Perez, R.; Jelínek, Pavel

    2013-01-01

    Roč. 7, č. 8 (2013), s. 7370-7376 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GPP204/11/P578 Grant - others:GA AV ČR(CZ) M100101207 Institutional support: RVO:68378271 Keywords : noncontact atomic force microscopy * atomic manipulation * force spectroscopy * chemical interaction force * DFT simulations * nudged elastic band Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 12.033, year: 2013 http://pubs.acs.org/doi/abs/10.1021/nn403097p

  5. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.

    Science.gov (United States)

    Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U

    2006-07-01

    In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.

  6. An atomic force microscopy-based method for line edge roughness measurement

    Energy Technology Data Exchange (ETDEWEB)

    Fouchier, M.; Pargon, E.; Bardet, B. [CNRS/UJF-Grenoble1/CEA LTM, 17 avenue des Martyrs, 38054 Grenoble cedex 9 (France)

    2013-03-14

    With the constant decrease of semiconductor device dimensions, line edge roughness (LER) becomes one of the most important sources of device variability and needs to be controlled below 2 nm for the future technological nodes of the semiconductor roadmap. LER control at the nanometer scale requires accurate measurements. We introduce a technique for LER measurement based upon the atomic force microscope (AFM). In this technique, the sample is tilted at about 45 Degree-Sign and feature sidewalls are scanned along their length with the AFM tip to obtain three-dimensional images. The small radius of curvature of the tip together with the low noise level of a laboratory AFM result in high resolution images. Half profiles and LER values on all the height of the sidewalls are extracted from the 3D images using a procedure that we developed. The influence of sample angle variations on the measurements is shown to be small. The technique is applied to the study of a full pattern transfer into a simplified gate stack. The images obtained are qualitatively consistent with cross-section scanning electron microscopy images and the average LER values agree with that obtained by critical dimension scanning electron microscopy. In addition to its high resolution, this technique presents several advantages such as the ability to image the foot of photoresist lines, complex multi-layer stacks regardless of the materials, and deep re-entrant profiles.

  7. Ultrastructural organization of premature condensed chromosomes at S-phase as observed by atomic force microscopy

    International Nuclear Information System (INIS)

    Fan Yihui; Zhang Xiaohong; Bai Jing; Mao Renfang; Zhang Chunyu; Lei Qingquan; Fu Songbin

    2007-01-01

    In this study, we used calyculin A to induce premature condensed chromosomes (PCC). S-phase PCC is as 'pulverized' appearance when viewed by light microscopy. Then, we applied atomic force microscopy (AFM) to investigate the ultrastructual organization of S-phase PCC. S-phase PCC shows ridges and grooves as observed by AFM. After trypsin treatment, chromosome surface roughness is increased and chromosome thickness is decreased. At high magnification, the ridges are composed of densely packed 30 nm chromatin fibers which form chromosome axis. Around the ridges, many 30 nm chromatin fibers radiate from center. Some of the 30 nm chromatin fibers are free ends. The grooves are not real 'gap', but several 30 nm chromatin fibers which connect two ridges and form 'grid' structure. There are four chromatin fibers detached from chromosome: two free straight 30 nm chromatin fibers, one loop chromatin fiber and one straight combining with loop chromatin fiber. These results suggested that the S-phase PCC was high-order organization of 30 nm chromatin fibers and the 30 nm chromatin fibers could exist as loops and free ends

  8. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    International Nuclear Information System (INIS)

    Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Inês M.; Ramu, Vasanthakumar G.; Heras, Montserrat; Bardaji, Eduard R.; Castanho, Miguel A.R.B.

    2012-01-01

    Highlights: ► New kyotorphin derivatives have antimicrobial properties against S. aureus. ► Atomic force microscopy show membrane disturbing effects of KTP–NH 2 and IbKTP–NH 2 . ► None of the KTP derivatives are hemolytic. ► The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) – KTP–NH 2 , IbKTP, IbKTP–NH 2 – were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view and broadens the therapeutic potential and application of kyotorphin peptides.

  9. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Ines M. [Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa (Portugal); Ramu, Vasanthakumar G.; Heras, Montserrat; Bardaji, Eduard R. [Laboratori d' Innovacio en Processos i Productes de Sintesi Organica (LIPPSO), Departament de Quimica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Castanho, Miguel A.R.B., E-mail: macastanho@fm.ul.pt [Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa (Portugal)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer New kyotorphin derivatives have antimicrobial properties against S. aureus. Black-Right-Pointing-Pointer Atomic force microscopy show membrane disturbing effects of KTP-NH{sub 2} and IbKTP-NH{sub 2}. Black-Right-Pointing-Pointer None of the KTP derivatives are hemolytic. Black-Right-Pointing-Pointer The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH{sub 2}, IbKTP, IbKTP-NH{sub 2} - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view

  10. How to orient the functional GroEL-SR1 mutant for atomic force microscopy investigations

    International Nuclear Information System (INIS)

    Schiener, Jens; Witt, Susanne; Hayer-Hartl, Manajit; Guckenberger, Reinhard

    2005-01-01

    We present high-resolution atomic force microscopy (AFM) imaging of the single-ring mutant of the chaperonin GroEL (SR-EL) from Escherichia coli in buffer solution. The native GroEL is generally unsuitable for AFM scanning as it is easily being bisected by forces exerted by the AFM tip. The single-ring mutant of GroEL with its simplified composition, but unaltered capability of binding substrates and the co-chaperone GroES, is a more suited system for AFM studies. We worked out a scheme to systematically investigate both the apical and the equatorial faces of SR-EL, as it binds in a preferred orientation to hydrophilic mica and hydrophobic highly ordered pyrolytic graphite. High-resolution topographical imaging and the interaction of the co-chaperone GroES were used to assign the orientations of SR-EL in comparison with the physically bisected GroEL. The usage of SR-EL facilitates single molecule studies on the folding cycle of the GroE system using AFM

  11. Topographic analysis by atomic force microscopy of proteoliposomes matrix vesicle mimetics harboring TNAP and AnxA5

    DEFF Research Database (Denmark)

    Bolean, Maytê; Borin, Ivana A; Simão, Ana M S

    2017-01-01

    Atomic force microscopy (AFM) is one of the most commonly used scanning probe microscopy techniques for nanoscale imaging and characterization of lipid-based particles. However, obtaining images of such particles using AFM is still a challenge. The present study extends the capabilities of AFM...... with type II collagen, thus mimicking early MV activity during biomineralization. AFM images of these proteoliposomes, acquired in dynamic mode, revealed the presence of surface protrusions with distinct viscoelasticity, thus suggesting that the presence of the proteins induced local changes in membrane...

  12. VEDA: a web-based virtual environment for dynamic atomic force microscopy.

    Science.gov (United States)

    Melcher, John; Hu, Shuiqing; Raman, Arvind

    2008-06-01

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.

  13. Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy

    Science.gov (United States)

    Melcher, John; Hu, Shuiqing; Raman, Arvind

    2008-06-01

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.

  14. Dynamic tunneling force microscopy for characterizing electronic trap states in non-conductive surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.; Williams, C. C., E-mail: clayton@physics.utah.edu [Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-09-15

    Dynamic tunneling force microscopy (DTFM) is a scanning probe technique for real space mapping and characterization of individual electronic trap states in non-conductive films with atomic scale spatial resolution. The method is based upon the quantum mechanical tunneling of a single electron back and forth between a metallic atomic force microscopy tip and individual trap states in completely non-conducting surface. This single electron shuttling is measured by detecting the electrostatic force induced on the probe tip at the shuttling frequency. In this paper, the physical basis for the DTFM method is unfolded through a physical model and a derivation of the dynamic tunneling signal as a function of several experimental parameters is shown. Experimental data are compared with the theoretical simulations, showing quantitative consistency and verifying the physical model used. The experimental system is described and representative imaging results are shown.

  15. Atomic Force Microscopy Based Nanorobotics Modelling, Simulation, Setup Building and Experiments

    CERN Document Server

    Xie, Hui; Régnier, Stéphane; Sitti, Metin

    2012-01-01

    The atomic force microscope (AFM) has been successfully used to perform nanorobotic manipulation operations on nanoscale entities such as particles, nanotubes, nanowires, nanocrystals, and DNA since 1990s. There have been many progress on modeling, imaging, teleoperated or automated control, human-machine interfacing, instrumentation, and applications of AFM based nanorobotic manipulation systems in literature. This book aims to include all of such state-of-the-art progress in an organized, structured, and detailed manner as a reference book and also potentially a textbook in nanorobotics and any other nanoscale dynamics, systems and controls related research and education. Clearly written and well-organized, this text introduces designs and prototypes of the nanorobotic systems in detail with innovative principles of three-dimensional manipulation force microscopy and parallel imaging/manipulation force microscopy.

  16. Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy

    Science.gov (United States)

    Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André

    2017-05-01

    We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.

  17. Novel operation mode for eliminating influence of inclination angle and friction in atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Fei; Wang, Yueyu; Zhou, Faquan; Zhao, Xuezeng

    2010-01-01

    The accuracy of topography imaging in contact force mode of atomic force microscopy (AFM) depends on the one-to-one corresponding relationship between the cantilever deflection and the tip-sample distance, whereas such a relationship cannot be always achieved in the presence of friction and incline angle of sample surface. Recently, we have developed a novel operation mode in which we keep the van der Waals force as constant instead of the applied normal force, to eliminate the effect of inclination angle and friction on topography imaging in the contact force mode. We have improved our AFM to enable the new operation mode for validation. Comparative experiments have been performed and the results have shown that the effect of friction and inclination angle on topography imaging in contact mode of AFM can be eliminated or at least decreased effectively by working in the new operation mode we present.

  18. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    Science.gov (United States)

    Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.

    2012-12-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  19. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    Science.gov (United States)

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  20. Diminish electrostatic in piezoresponse force microscopy through longer or ultra-stiff tips

    Science.gov (United States)

    Gomez, A.; Puig, T.; Obradors, X.

    2018-05-01

    Piezoresponse Force Microscopy is a powerful but delicate nanoscale technique that measures the electromechanical response resulting from the application of a highly localized electric field. Though mechanical response is normally due to piezoelectricity, other physical phenomena, especially electrostatic interaction, can contribute to the signal read. We address this problematic through the use of longer ultra-stiff probes providing state of the art sensitivity, with the lowest electrostatic interaction and avoiding working in high frequency regime. In order to find this solution we develop a theoretical description addressing the effects of electrostatic contributions in the total cantilever vibration and its quantification for different setups. The theory is subsequently tested in a Periodically Poled Lithium Niobate (PPLN) crystal, a sample with well-defined 0° and 180° domains, using different commercial available conductive tips. We employ the theoretical description to compare the electrostatic contribution effects into the total phase recorded. Through experimental data our description is corroborated for each of the tested commercially available probes. We propose that a larger probe length can be a solution to avoid electrostatic forces, so the cantilever-sample electrostatic interaction is reduced. Our proposed solution has great implications into avoiding artifacts while studying soft biological samples, multiferroic oxides, and thin film ferroelectric materials.

  1. Compensator design for improved counterbalancing in high speed atomic force microscopy.

    Science.gov (United States)

    Bozchalooi, I S; Youcef-Toumi, K; Burns, D J; Fantner, G E

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds. © 2011 American Institute of Physics

  2. Sub-nanometer-resolution imaging of peptide nanotubes in water using frequency modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, Tomoki; Hayashi, Itsuho; Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Kimura, Kenjiro, E-mail: kimura@gold.kobe-u.ac.jp [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Tamura, Atsuo [Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan)

    2013-06-20

    Highlights: ► Peptide nanotubes were aligned on highly oriented pyrolytic graphite surface. ► We visualized sub-nanometer-scale structure on peptide nanotube surface in water. ► We observed hydration structure at a peptide nanotube/water interface. - Abstract: Peptide nanotubes are self-assembled fibrous materials composed of cyclic polypeptides. Recently, various aspects of peptide nanotubes have been studied, in particular the utility of different methods for making peptide nanotubes with diverse designed functions. In order to investigate the relationship between formation, function and stability, it is essential to analyze the precise structure of peptide nanotubes. Atomic-scale surface imaging in liquids was recently achieved using frequency modulation atomic force microscopy with improved force sensing. Here we provide a precise surface structural analysis of peptide nanotubes in water without crystallizing them obtained by imaging the nanotubes at the sub-nanometer scale in water. In addition, the local hydration structure around the peptide nanotubes was observed at the nanotube/water interface.

  3. Compensator design for improved counterbalancing in high speed atomic force microscopy

    Science.gov (United States)

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-11-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, feedforward controlled, counter actuation mechanism to compensate for the excited out-of-plane scanner dynamics. For this purpose, the AFM controller output is properly filtered via a linear compensator and then applied to a counter actuating piezo. An effective algorithm for estimating the compensator parameters is developed. The information required for compensator design is extracted from the cantilever deflection signal, hence eliminating the need for any additional sensors. The proposed approach is implemented and experimentally evaluated on the dynamic response of a custom made AFM. It is further assessed by comparing the imaging performance of the AFM with and without the application of the proposed technique and in comparison with the conventional counterbalancing methodology. The experimental results substantiate the effectiveness of the method in significantly improving the imaging performance of AFM at high scan speeds.

  4. Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy

    Science.gov (United States)

    Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng

    2016-12-01

    Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.

  5. Significant improvements in stability and reproducibility of atomic-scale atomic force microscopy in liquid

    International Nuclear Information System (INIS)

    Akrami, S M R; Nakayachi, H; Fukuma, T; Watanabe-Nakayama, T; Asakawa, H

    2014-01-01

    Recent advancement of dynamic-mode atomic force microscopy (AFM) for liquid-environment applications enabled atomic-scale studies on various interfacial phenomena. However, instabilities and poor reproducibility of the measurements often prevent systematic studies. To solve this problem, we have investigated the effect of various tip treatment methods for atomic-scale imaging and force measurements in liquid. The tested methods include Si coating, Ar plasma, Ar sputtering and UV/O 3 cleaning. We found that all the methods provide significant improvements in both the imaging and force measurements in spite of the tip transfer through the air. Among the methods, we found that the Si coating provides the best stability and reproducibility in the measurements. To understand the origin of the fouling resistance of the cleaned tip surface and the difference between the cleaning methods, we have investigated the tip surface properties by x-ray photoelectron spectroscopy and contact angle measurements. The results show that the contaminations adsorbed on the tip during the tip transfer through the air should desorb from the surface when it is immersed in aqueous solution due to the enhanced hydrophilicity by the tip treatments. The tip surface prepared by the Si coating is oxidized when it is immersed in aqueous solution. This creates local spots where stable hydration structures are formed. For the other methods, there is no active mechanism to create such local hydration sites. Thus, the hydration structure formed under the tip apex is not necessarily stable. These results reveal the desirable tip properties for atomic-scale AFM measurements in liquid, which should serve as a guideline for further improvements of the tip treatment methods. (paper)

  6. Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress.

    Science.gov (United States)

    Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A; Dague, Etienne; François, Jean M

    2016-08-01

    A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or

  7. Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress

    Science.gov (United States)

    Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A.; Dague, Etienne

    2016-01-01

    ABSTRACT A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae. However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell

  8. Investigating biomolecular recognition at the cell surface using atomic force microscopy.

    Science.gov (United States)

    Wang, Congzhou; Yadavalli, Vamsi K

    2014-05-01

    Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Topographic and electronic contrast of the graphene moir´e on Ir(111) probed by scanning tunneling microscopy and noncontact atomic force microscopy

    NARCIS (Netherlands)

    Sun, Z.; Hämäläinen, K.; Sainio, K.; Lahtinen, J.; Vanmaekelbergh, D.A.M.; Liljeroth, P.

    2011-01-01

    Epitaxial graphene grown on transition-metal surfaces typically exhibits a moir´e pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) to probe the electronic and topographic contrast

  10. Nanometer-Scale Dissection of Chromosomes by Atomic Force Microscopy Combined with Heat-Denaturing Treatment

    Science.gov (United States)

    Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru

    2006-03-01

    We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.

  11. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  12. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    International Nuclear Information System (INIS)

    Ren, Juan; Zou, Qingze

    2014-01-01

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality

  13. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Juan; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Rd, Piscataway, New Jersey 08854 (United States)

    2014-07-15

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.

  14. Diagnosis of thalassemia and iron deficiency anemia using confocal and atomic force microscopy

    Science.gov (United States)

    Tariq, Saira; Bilal, Muhammad; Shahzad, Shaheen; Firdous, Shamaraz; Aziz, Uzma; Ahmed, Mushtaq

    2017-11-01

    Anemia is the most prevalent blood disorder, categorized into thalassemia and iron deficiency anemia. In anemia, the morphology of erythrocytes is disturbed, thus leading to abnormal functioning of the erythrocytes. Globally, thalassemia affects 1.3% of individuals and is one of the most widespread monogenic disorders in Pakistan. All over the World, women and children are most frequently affected by a type of nutritional deficiency known as iron deficiency anemia. The morphological changes that occur in erythrocytes due to these diseases are investigated in this study at the nano-scale level. Fifty samples of blood from individuals suffering from thalassemia or iron deficiency anemia were obtained from different hospitals in Rawalpindi and Islamabad. The blood samples were scanned using atomic force microscopy (AFM) and laser scanning confocal microscopy (LSCM) to check the morphological changes in both types of anemia. According to the present study, thalassemia is most prevalent in females in the age group between 5 and 15 years old, and iron deficiency is most prevalent in females in the age groups of 16-25 and 36-45 years old. Erythrocyte morphology is the significant determinant for diagnosing and discriminating between these two types of diseases. The study reports deformed erythrocytes in anemic patients, which were different from the ones that existed in the control. Thalassemia erythrocytes showed a crenated shape, iron deficiency anemia erythrocytes showed an elliptocyte shape and healthy erythrocytes showed a biconcave disk shape when using AFM and LSCM. These techniques seem to be very promising, cheap and less time consuming in determining the structure-function relationship of erythrocytes of thalassemic and iron deficiency anemic patients. The results of LSCM and AFM are quite useful in determining the morphological changes in erythrocytes and to study the disease at the molecular level within short period of time. Hence, we encourage employing

  15. Study of Perylenetetracarboxylic Acid Dimethylimide Films by Cyclic Thermal Desorption and Scanning Probe Microscopy

    Science.gov (United States)

    Pochtennyi, A. E.; Lappo, A. N.; Il'yushonok, I. P.

    2018-02-01

    Some results of studying the direct-current (DC) conductivity of perylenetetracarboxylic acid dimethylimide films by cyclic oxygen thermal desorption are presented. The microscopic parameters of hopping electron transport over localized impurity and intrinsic states were determined. The bandgap width and the sign of major current carriers were determined by scanning probe microscopy methods (atomic force microscopy, scanning probe spectroscopy, and photoassisted Kelvin probe force microscopy). The possibility of the application of photoassisted scanning tunneling microscopy for the nanoscale phase analysis of photoconductive films is discussed.

  16. INVESTIGATION OF POLYMER SURFACES USING SCANNING FORCE MICROSCOPY (SFM) - A NEW DIRECT LOOK ON OLD POLYMER PROBLEMS

    NARCIS (Netherlands)

    GRIM, PCM; BROUWER, HJ; SEYGER, RM; OOSTERGETEL, GT; BERGSMASCHUTTER, WG; ARNBERG, AC; GUTHNER, P; DRANSFELD, K; HADZIIOANNOU, G

    In this contribution, the general concepts of force microscopy will be presented together with its application to polymer surfaces (Ref.1). Several examples will be presented to illustrate that force microscopy is a powerful and promising tool for investigation of (polymer) surfaces, such as the

  17. Automated setpoint adjustment for biological contact mode atomic force microscopy imaging

    International Nuclear Information System (INIS)

    Casuso, Ignacio; Scheuring, Simon

    2010-01-01

    Contact mode atomic force microscopy (AFM) is the most frequently used AFM imaging mode in biology. It is about 5-10 times faster than oscillating mode imaging (in conventional AFM setups), and provides topographs of biological samples with sub-molecular resolution and at a high signal-to-noise ratio. Unfortunately, contact mode imaging is sensitive to the applied force and intrinsic force drift: inappropriate force applied by the AFM tip damages the soft biological samples. We present a methodology that automatically searches for and maintains high resolution imaging forces. We found that the vertical and lateral vibrations of the probe during scanning are valuable signals for the characterization of the actual applied force by the tip. This allows automated adjustment and correction of the setpoint force during an experiment. A system that permanently performs this methodology steered the AFM towards high resolution imaging forces and imaged purple membrane at molecular resolution and live cells at high signal-to-noise ratio for hours without an operator.

  18. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Grutzik, Scott J.; Zehnder, Alan T. [Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853 (United States); Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F. [Nanomechanical Properties Group, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  19. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    International Nuclear Information System (INIS)

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-01-01

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included

  20. Influence of Poisson's ratio variation on lateral spring constant of atomic force microscopy cantilevers

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Tai, N.-Ha; Chen, B.-Y.

    2008-01-01

    Atomic force microscopy (AFM) can be used to measure the surface morphologies and the mechanical properties of nanostructures. The force acting on the AFM cantilever can be obtained by multiplying the spring constant of AFM cantilever and the corresponding deformation. To improve the accuracy of force experiments, the spring constant of AFM cantilever must be calibrated carefully. Many methods, such as theoretical equations, the finite element method, and the use of reference cantilever, were reported to obtain the spring constant of AFM cantilevers. For the cantilever made of single crystal, the Poisson's ratio varies with different cantilever-crystal angles. In this paper, the influences of Poisson's ratio variation on the lateral spring constant and axial spring constant of rectangular and V-shaped AFM cantilevers, with different tilt angles and normal forces, were investigated by the finite element analysis. When the cantilever's tilt angle is 20 deg. and the Poisson's ratio varies from 0.02 to 0.4, the finite element results show that the lateral spring constants decrease 11.75% for the rectangular cantilever with 1 μN landing force and decrease 18.60% for the V-shaped cantilever with 50 nN landing force, respectively. The influence of Poisson's ratio variation on axial spring constant is less than 3% for both rectangular and V-shaped cantilevers. As the tilt angle increases, the axial spring constants for rectangular and V-shaped cantilevers decrease substantially. The results obtained can be used to improve the accuracy of the lateral force measurement when using atomic force microscopy