WorldWideScience

Sample records for force fuels final

  1. Final disposition of MTR fuel

    Jonnson, Erik B.

    1996-01-01

    The final disposition of power reactor fuel has been investigated for a long time and some promising solutions to the problem have been shown. The research reactor fuels are normally not compatible with the zirkonium clad power reactor fuel and can thus not rely on the same disposal methods. The MTR fuels are typically Al-clad UAl x or U 3 Si 2 , HEU resp. LEU with essentially higher remaining enrichment than the corresponding power reactor fuel after full utilization of the uranium. The problems arising when evaluating the conditions at the final repository are the high corrosion rate of aluminum and uranium metal and the risk for secondary criticality due to the high content on fissionable material in the fully burnt MTR fuel. The newly adopted US policy to take back Foreign Research Reactor Spent Fuel of US origin for a period of ten years have given the research reactor society a reasonable time to evaluate different possibilities to solve the back end of the fuel cycle. The problem is, however, complicated and requires a solid engagement from the research reactor community. The task would be a suitable continuation of the RERTR program as it involves both the development of new fuel types and collecting data for the safe long-term disposal of the spent MTR fuel. (author)

  2. SRE fuel decladding. Final report

    Dennison, W.F.

    1977-01-01

    This report summarizes the task of decladding the SRE fuel assemblies, and shipment of the fuel to Savannah River for eventual reprocessing. The disposition of 16 unidentified RMDF storage canisters is also covered

  3. Fan Fuel Casting Final Report

    Imhoff, Seth D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    LANL was approached to provide material and design guidance for a fan-shaped fuel element. A total of at least three castings were planned. The first casting is a simple billet mold to be made from high carbon DU-10Mo charge material. The second and third castings are for optimization of the actual fuel plate mold. The experimental scope for optimization is only broad enough for a second iteration of the mold design. It is important to note that partway through FY17, this project was cancelled by the sponsor. This report is being written in order to capture the knowledge gained should this project resume at a later date.

  4. HEU to LEU fuel conversion. Final report

    Mulder, R.U.

    1994-10-01

    The Nuclear Regulatory Commission issued a ruling, effective March 27, 1986, that all U.S. non-power reactors convert from HEU fuel to LEU fuel. A Reduced Enrichment for Research and Test Reactors Program was conducted by the Department of Energy at Argonne National Laboratory to coordinate the development of the high density LEU fuel and assist in the development of Safety Analysis Reports for the smaller non-power reactors. Several meetings were held at Argonne in 1987 with the non-power reactor community to discuss the conversion and to set up a conversion schedule for university reactors. EG&G at Idaho was assigned the coordination of the fuel element redesigns. The fuel elements were manufactured by the Babcock & Wilcox Company in Lynchburg, Virginia. The University of Virginia was awarded a grant by the DOE Idaho Operations Office in 1988 to perform safety analysis studies for the LEU conversion for its 2 MW UVAR and 100 Watt CAVALIER reactors. The University subsequently decided to shut down the CAVALIER reactor. A preliminary SAR on the UVAR, along with Technical Specification changes, was submitted to the NRC in November, 1990. An updated SAR was approved by the NRC in January, 1991. In September, 1992, representatives from the fuel manufacturer (B&W) and the fuel designer (EG&G, Idaho) came to the UVAR facility to observe trial fittings of new 22 plate LEU mock fuel elements. B&W fabricated two non-fuel bearing elements, a regular 22 plate element and a control rod element. The elements were checked against the drawings and test fitted in the UVAR grid plate. The dimensions were acceptable and the elements fit in the grid plate with no problems. The staff made several suggestions for minor construction changes to the end pieces on the elements, which were incorporated into the final design of the actual fuel elements. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. HEU to LEU fuel conversion. Final report

    Mulder, R.U.

    1994-10-01

    The Nuclear Regulatory Commission issued a ruling, effective March 27, 1986, that all U.S. non-power reactors convert from HEU fuel to LEU fuel. A Reduced Enrichment for Research and Test Reactors Program was conducted by the Department of Energy at Argonne National Laboratory to coordinate the development of the high density LEU fuel and assist in the development of Safety Analysis Reports for the smaller non-power reactors. Several meetings were held at Argonne in 1987 with the non-power reactor community to discuss the conversion and to set up a conversion schedule for university reactors. EG ampersand G at Idaho was assigned the coordination of the fuel element redesigns. The fuel elements were manufactured by the Babcock ampersand Wilcox Company in Lynchburg, Virginia. The University of Virginia was awarded a grant by the DOE Idaho Operations Office in 1988 to perform safety analysis studies for the LEU conversion for its 2 MW UVAR and 100 Watt CAVALIER reactors. The University subsequently decided to shut down the CAVALIER reactor. A preliminary SAR on the UVAR, along with Technical Specification changes, was submitted to the NRC in November, 1990. An updated SAR was approved by the NRC in January, 1991. In September, 1992, representatives from the fuel manufacturer (B ampersand W) and the fuel designer (EG ampersand G, Idaho) came to the UVAR facility to observe trial fittings of new 22 plate LEU mock fuel elements. B ampersand W fabricated two non-fuel bearing elements, a regular 22 plate element and a control rod element. The elements were checked against the drawings and test fitted in the UVAR grid plate. The dimensions were acceptable and the elements fit in the grid plate with no problems. The staff made several suggestions for minor construction changes to the end pieces on the elements, which were incorporated into the final design of the actual fuel elements. Selected papers are indexed separately for inclusion in the Energy Science and Technology

  6. Renewable Fuel Pathways II Final Rule to Identify Additional Fuel Pathways under Renewable Fuel Standard Program

    This final rule describes EPA’s evaluation of biofuels derived from biogas fuel pathways under the RFS program and other minor amendments related to survey requirements associated with ULSD program and misfueling mitigation regulations for E15.

  7. MaxiFuels. Final report; Maxi-Fuels. Afslutningsrapport

    2008-07-01

    The MaxiFuel pilot plant opened September 2006 with a view to testing and developing a competitive integrated concept for 2nd generation bioethanol production from lignocellulosic biomass such as straw. This makes the raw material cheaper than crops cultivated for energy production purposes only, and the bioethanol production will not compete with production of food. The MaxiFuels concept is a patented technology which has proven in lab-scale to have the potential of producing bioethanol from residual biomass for a lower price than other existing 2nd generation bioethanol concepts. Lately a suitable pre-treatment process, Wet Explosion, has been developed, and enzymes and C6 fermentation based on yeast have been tested and further developed on pre-treated straw. Furthermore a special micro organism has been isolated, genetically engineered and tested on the pre-treated biomass. The micro organism converts C5 sugars to ethanol. Finally an attempt has been made to produce biogas from the remaining organic material, which can't be fermented to ethanol. All the abovementioned processes have been developed in lab-scale. The operation of these processes at the same time in one concept in pilot scale makes it possible to evaluate the concept's productivity in full-scale. The data of the pilot plant operation have been used for the set-up of an economical model of the whole concept. Based on this model a full-scale plant has been designed and a business plan for the implementation of this step has been elaborated. (BA)

  8. Montana fuel tax refunds : draft final report.

    2011-11-01

    "The primary source of funding for transportation infrastructure is the taxes that are imposed on motor fuels. One aspect of fuel tax collections is the process that requires consumers to apply for refunds of taxes paid on fuels used for tax-exempt p...

  9. Final Technical Report Transport Task Force Activities

    P.W. Terry

    2006-01-01

    The Transport Task Force has functioned as the primary scientific organization in the area of magnetic-fusion confinement and transport since its inception in 1988. It has defined and set research directions, coordinated broad research efforts, advocated new funding initiatives, and created a highly successful and widely admired interactive culture between experiment, theory and modeling. The Transport Task Force carries out its activities under the direction of its chair and the Executive Committee. The Executive Committee is comprised of the leaders and deputy leaders of the scientific working groups. The working groups are structured and organized according to research needs and priorities and have been organized around the areas of Core Transport, H Mode and Pedestal, Fast Particle Transport, Transient Transport Phenomena, and Modeling and Simulation. A steering committee provides advise on TTF activities. Further information on the working groups and the structure and management of the TTF can be found at http://psfcwww2.psfc.mit.edu/ttf/index.html. The TTF holds an annual workshop. A summary of the workshops held during the period of this report is given in Appendix I. During the period of this report the Transport Task Force was involved in several significant activities. Foremost of these was a sweeping review of the status of transport science, the key research tasks for progress during the next 5-10 years, and a proposal for a funding initiative to ensure application of adequate resources to these problems. The conclusions of this study were incorporated into a white paper, which is copied below in Appendix II. Other significant activities have included the introduction of an extended, ongoing discussion on verification and validation as a requisite for defining and codifying the path toward predictive capability, the orchestration of a gradual shift of focus from ion thermal confinement to electron thermal confinement, and a joining of efforts on edge

  10. Alternative Fuel Vehicle Forecasts : Final report.

    2016-04-01

    Federal and state fuel taxes account for the largest share of the Texas State Highway Fund at 48 percent and 29 percent, respectively, in Fiscal Year 2015. These taxes are levied on a per-gallon basis, meaning that as vehicles get more fuel efficient...

  11. Carbon-based Fuel Cell. Final report

    Steven S. C. Chuang

    2005-01-01

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO 2 , and (3) the production of a nearly pure CO 2 exhaust stream for the direct CO 2 sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts

  12. Handling of final storage of unreprocessed spent nuclear fuel

    1978-01-01

    In this report the various facilities incorporated in the proposed handling chain for spent fuel from the power stations to the final repository are discribed. Thus the geological conditions which are essential for a final repository is discussed as well as the buffer and canister materials and how they contribute towards a long-term isolation of the spent fuel. Furthermore one chapter deals with leaching of the deposited fuel in the event that the canister is penetrated as well as the transport mechanisms which determine the migration of the radioactive substances through the buffer material. The dispersal processes in the geosphere and the biosphere are also described together with the transfer mechanisms to the ecological systems as well as radiation doses. Finally a summary is given of the safety analysis of the proposed method for the handling and final storage of the spent fuel. (E.R.)

  13. Liquid fuels production from biomass. Final report

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  14. TMI-2 Lessons Learned Task Force. Final report

    1979-10-01

    In its final report reviewing the Three Mile Island accident, the TMI-2 Lessons Learned Task Force has suggested change in several fundamental aspects of basic safety policy for nuclear power plants. Changes in nuclear power plant design and operations and in the regulatory process are discussed in terms of general goals. The appendix sets forth specific recommendations for reaching these goals

  15. Prototypical consolidation demonstration project - Final fuel recommendation report

    Piscitella, R.R.; Paskey, W.R.

    1987-01-01

    The Prototypical Consolidation Demonstration (PCD) Project will, in its final phase, conduct a demonstration of the equipment's ability to consolidate actual spent commercial fuel. Since budget and schedule limitations do not allow this demonstration to include all types of fuel assemblies, a selection process was utilized to identify the fuel types that would represent predominate fuel inventories and that would demonstrate the equipment's abilities. The Pressurized Water Reactor (PWR) fuel assemblies that were suggested for use in the PCD Project Hot Demonstration were Babcock and Wilcox (B and W) 15 x 15's, and Westinghouse (WE) 15 x 15's. The Boiling Water Reactor (BWR) fuel suggested was the General Electric (GE) 8 x 8

  16. Final disposal of spent nuclear fuel - basis for site selection

    Anttila, P.

    1995-05-01

    International organizations, e.g. IAEA, have published several recommendations and guides for the safe disposal of radioactive waste. There are three major groups of issues affecting the site selection process, i.e. geological, environmental and socioeconomic. The first step of the site selection process is an inventory of potential host rock formations. After that, potential study areas are screened to identify sites for detailed investigations, prior to geological conditions and overall suitability for the safe disposal. This kind of stepwise site selection procedure has been used in Finland and in Sweden. A similar approach has been proposed in Canada, too. In accordance with the amendment to the Nuclear Energy Act, that entered into force in the beginning of 1995, Imatran Voima Oy has to make preparations for the final disposal of spent fuel in the Finnish bedrock. Relating to the possible site selection, the following geological factors, as internationally recommended and used in the Nordic countries, should be taken into account: topography, stability of bedrock, brokenness and fracturing of bedrock, size of bedrock block, rock type, predictability and natural resources. The bedrock of the Loviisa NPP site is a part of the Vyborg rapakivi massif. As a whole the rapakivi granite area forms a potential target area, although other rock types or areas cannot be excluded from possible site selection studies. (25 refs., 7 figs.)

  17. Forces on wheels and fuel consumption in cars

    Güémez, J.; Fiolhais, M.

    2013-07-01

    Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car's motion with the dragging forces taken into account is also discussed.

  18. Forces on wheels and fuel consumption in cars

    Güémez, J; Fiolhais, M

    2013-01-01

    Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car's motion with the dragging forces taken into account is also discussed. (paper)

  19. Final disposal of spent nuclear fuel

    Thoregren, U.

    1983-04-01

    Like many other countries whith similar geological conditions, Sweden plans to dispose of its long-lived radioactive nuclear waste by depositing it in final repositories located deep down in the crystalline bedrock. In order to be able to demonstrate that a given rock formation is suited for waste storage, it is necessary to have knowledge concerning its properties, particularly those that determine groundwater conditions and chemistry within the area. Also of importance are data that shed light on rock mechanics in the area and the occurrence of valuable minerals. The SKBF/KBS programme includes plans to carry out geological studies of 10-15 areas in different parts of the country during the 1980s. A standard programme for these studies is described in the following. The standard programme is inteded to serve as a basis for planning of the work and revisions or modifications that may be found to be appropriate in view of local conditions or experience. (author)

  20. Final safety analysis report for the irradiated fuels storage facility

    Bingham, G.E.; Evans, T.K.

    1976-01-01

    A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1 1 / 2 cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100 0 F is reached

  1. The effect of the fuel rod friction force to the fuel assembly lateral mechanical characteristics

    Ha, Dong Geun; Jeon, Sang Youn; Suh, Jung Min

    2012-01-01

    The Fuel Assembly (FA) for light water reactor consists of hundreds of fuel rods, guide tubes, spacer grids, top/bottom nozzles. The guide tubes transmit vertical loads between the top and bottom nozzles, position the fuel rod support grids vertically, react the loads from the fuel rods that are applied to the grids, and provide some of the lateral load capability for the overall fuel assembly. The guide tubes are the structural members of the skeleton assembly. And the spacer grids maintain the fuel rod array by providing positive lateral restraint to the fuel rod but only frictional restraint in the axial direction. Figure 1 shows the outline of skeleton, FA and the location of guide tubes in the view of cross section. 17x17 FA has 24 guide tubes and one instrumentation tube. When the FA is in reactor, the lateral stiffness is one of very important factors from the view point of in reactor integrity of fuel assembly such as guarantee of the cool able geometry, the control rod insertion etc. The lateral stiffness of FA is mainly determined by skeleton lateral stiffness. And the fuel rods loaded in the spacer grids reinforce the FA lateral stiffness. Generally, fuel rods and spacer grids create the nonlinear friction force between fuel rod tube and grid spring/dimple against external lateral force of FA. Thus, it is necessary to study the contribution of the fuel rods friction force to the FA lateral stiffness. So, this paper is to show how much amount of the fuel rod grid interaction contributes to the FA lateral stiffness based on the test results

  2. Encapsulation and handling of spent nuclear fuel for final disposal

    Loennerberg, B.; Larker, H.; Ageskog, L.

    1983-05-01

    The handling and embedding of those metal parts which arrive to the encapsulation station with the fuel is described. For the encapsulation of fuel two alternatives are presented, both with copper canisters but with filling of lead and copper powder respectively. The sealing method in the first case is electron beam welding, in the second case hot isostatic pressing. This has given the headline of the two chapters describing the methods: Welded copper canister and Pressed copper canister. Chapter 1, Welded copper canister, presents the handling of the fuel when it arrives to the encapsulation station, where it is first placed in a buffer pool. From this pool the fuel is transferred to the encapsulation process and thereby separated from fuel boxes and boron glass rod bundles, which are transported together with the fuel. The encapsulation process comprises charging into a copper canister, filling with molten lead, electron beam welding of the lid and final inspection. The transport to and handling in the final repository are described up to the deposition and sealing in the deposition hole. Handling of fuel residues is treated in one of the sections. In chapter 2, Pressed copper canister, only those parts of the handling, which differ from chapter 1 are described. The hot isostatic pressing process is given in the first sections. The handling includes drying, charging into the canister, filling with copper powder, seal lid application and hot isostatic pressing before the final inspection and deposition. In the third chapter, BWR boxes in concrete moulds, the handling of the metal parts, separated from the fuel, are dealt with. After being lifted from the buffer pool they are inserted in a concrete mould, the mould is filled with concrete, covered with a lid and after hardening transferred to its own repository. The deposition in this repository is described. (author)

  3. Final disposal of spent fuel in the Finnish bedrock

    1992-12-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent nuclear fuel from the Olkiluoto nuclear power plant (TVO-I and TVO-II reactors). According to present estimates, a total of 1840 tU of spent fuel will be accumulated during the 40-year lifetime of the power plant. An interim storage facility for spent fuel (TVO-KPA Store) has operated at Olkiluoto since 1987. The spent fuel will be held in storage for several decades before it is shipped to the repository site. Both train and road transportation are possible. The spent fuel will be encapsulated in composite copper and steel canisters (ACP Canister) in a facility that will be build above the ground on the site where the repository is located. The repository will be constructed at the depth of several hundreds of meters in the bedrock. In 1987 five areas were selected for preliminary site investigations. The safety analysis (TVO-92) that was carried out shows that the proposed safety criteria would be met at each of the candidate sites. In future expected conditions there would never be significant releases of radioactive substances to the biosphere. The site investigations will be continued in the period 1993 to 2000. In parallel, a R and D programme will be devoted to the safety and technology of final disposal. The site for final disposal will be selected in the year 2000 with the aim of having the capability to start the disposal operations in 2020

  4. The final management of nuclear fuel. Legal and economic aspects

    Villota, C. de

    2009-01-01

    This article gives a brief summary of the characteristics of spent fuel and the lines of action considered for its management. It describes the legal framework that supports the Radioactive Waste Management Plan (PGRR), which contains the lines applicable to Final Spent Fuel Management, as well as the evolution of this legal framework. The article contains the 2008 updated costs of the various items of the PGRR, with a more detailed description of those related to this type of fuel, as well the source and amount of the financial contributions to the fund for meeting these costs, including how they have evolved over time. finally, it provides some personal reflections on this issue. (Author)

  5. Achilles tests finally nail PWR fuel clad ballooning fears

    Dore, P.; McMinn, K.

    1992-01-01

    A conclusive series of experiments carried out by AEA Reactor Services at its Achilles rig in the UK has finally allayed fears that fuel clad ballooning is a major safety problem for Sizewell B, Britain's first Pressurized Water Reactor. The experiments are described in this article. (author)

  6. Ontario Select Committee on Alternative Fuel Sources : Final Report

    Galt, D.

    2002-06-01

    On June 28, 2001, the Ontario Legislative Assembly appointed the Select Committee an Alternative Fuel Sources, comprised of representatives of all parties, with a broad mandate to investigate, report and offer recommendations with regard to the various options to support the development and application of environmentally sustainable alternatives to the fossil fuel sources already existing. The members of the Committee elected to conduct extensive public hearings, conduct site visits, attend relevant conferences, do some background research to examine a vast number of alternative fuel and energy sources that could be of relevance to the province of Ontario. A discussion paper (interim report) was issued by the Committee in November 2001, and the present document represents the final report, containing 141 recommendations touching 20 topics. The information contained in the report is expected to assist in the development and outline of policy and programs designed to specifically support alternative fuels and energy sources and applicable technologies. Policy issues were discussed in Part A of the report, along with the appropriate recommendations. The recommendations on specific alternative fuels and energy sources were included in Part B of the report. It is believed that the dependence of Ontario on traditional petroleum-based fuels and energy sources can be reduced through aggressive action on alternative fuels and energy. The benefits of such action would be felt in the area of air quality, with social, and economic benefits as well. 3 tabs

  7. LMFBR fuel analysis. Task A: Oxide fuel dynamics. Final report, October 1, 1976--September 30, 1977

    Dhir, V.K.; Doshi, J.; Frank, M.; Hauss, B.; Kastenberg, W.E.; Wong, K.

    1977-10-01

    The study presented deals with several areas of uncertainty in the analysis of the unprotected overpower transient for the Clinch River Breeder Reactor. These areas of uncertainty include the time, place, and mode of fuel pin failure; pre-failure fuel motion; fuel freezing, plugging, and plate-out following pin failure; and the potential for re-criticality. Internal molten fuel motion prior to pin failure was found to be sensitive to ramp rate and burnup. The strain-limit fuel failure criterion was found to be inappropriate for analysis based on existing data. The coupling of pre-transient- and transient-induced stresses tended to force the failure location towards the core midplane

  8. Effect of compressive force on PEM fuel cell performance

    MacDonald, Colin Stephen

    Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in

  9. Decision nearing on final disposal of spent fuel in Finland

    Vira, J.

    2000-01-01

    The programme for final disposal of spent fuel from Finnish nuclear power plants is entering into important phase: in the year 2000 the Finnish Government is expected to decide whether the proposal made by Posiva Oy on the spent fuel disposal is in line with the overall good of society. Associated with the decision is also Posiva's proposal on siting the disposal facility at Olkiluoto in Eurajoki municipality on the western coast of Finland. An important document underlying Posiva's application for this principle decision is the report of the environmental impact assessment, which was completed in 1999. Safety considerations play an important role in the application. New assessments have, therefore, been made on both the operational and long-term safety as well as on safety of spent fuel transportation. (author)

  10. Ground measurements of fuel and fuel consumption from experimental and operational prescribed fires at Eglin Air Force Base, Florida

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Andrew T. Hudak

    2014-01-01

    Ground-level measurements of fuel loading, fuel consumption, and fuel moisture content were collected on nine research burns conducted at Eglin Air Force Base, Florida in November, 2012. A grass or grass-shrub fuelbed dominated eight of the research blocks; the ninth was a managed longleaf pine (Pinus palustrus) forest. Fuel loading ranged from 1.7 Mg ha-1 on a...

  11. TWTF project criticality task force final review and assessment

    McKinley, K.B.; Cannon, J.W.; Wheeler, F.J.; Worle, H.A.

    1980-11-01

    The Transuranic Waste Treatment Facility (TWTF) is being developed to process transuranic waste, stored and buried at the Idaho National Engineering Laboratory, into a chemically inert, physically stable basalt-like residue acceptable at a federal repository. A task force was assembled by the TWTF Project Division to review and assess all aspects of criticality safety for the TWTF. This document presents the final review, assessments, and recommendations of this task force. The following conclusions were made: Additional criticality studies are needed for the entire envelope of feed compositions and temperature effects. Safe operating k/sub eff/'s need to be determined for process components. Criticality analyses validation experiments may also be required. SRP neutron interrogation should be replaced by DDT neutron interrogation. Accuracy studies need to be performed for the proposed assaying techniques. Time-correlated neutron monitoring needs to be mocked up for process components to prove feasibility and determine accuracy. The criticality control techniques developed for the TWTF conceptual design are in compliance with ERDAM 0530, including the Double Contingency Rule. Detailed procedures and controls need to be developed

  12. Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"

    Dr. Andrew Myers

    2005-12-30

    Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

  13. Final Report - MEA and Stack Durability for PEM Fuel Cells

    Yandrasits, Michael A.

    2008-02-15

    the same. (6) Through the use of statistical lifetime analysis methods, it is possible to develop new MEAs with predicted durability approaching the DOE 2010 targets. (7) A segmented cell was developed that extend the resolution from ~ 40 to 121 segments for a 50cm2 active area single cell which allowed for more precise investigation of the local phenomena in a operating fuel cell. (8) The single cell concept was extended to a fuel size stack to allow the first of its kind monitoring and mapping of an operational fuel cell stack. An internal check used during this project involved evaluating the manufacturability of any new MEA component. If a more durable MEA component was developed in the lab, but could not be scaled-up to ‘high speed, high volume manufacturing’, then that component was not selected for the final MEA-fuel cell system demonstration. It is the intent of the team to commercialize new products developed under this project, but commercialization can not occur if the manufacture of said new components is difficult or if the price is significantly greater than existing products as to make the new components not cost competitive. Thus, the end result of this project is the creation of MEA and fuel cell system technology that is capable of meeting the DOEs 2010 target of 40,000 hours for stationary fuel cell systems (although this lifetime has not been demonstrated in laboratory or field testing yet) at a cost that is economically viable for the developing fuel cell industry. We have demonstrated over 2,000 hours of run time for the MEA and system developed under this project.

  14. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards : final rule

    2010-05-07

    Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...

  15. The final disposal facility of spent nuclear fuel

    Prvakova, S.; Necas, V.

    2001-01-01

    Today the most serious problem in the area of nuclear power engineering is the management of spent nuclear fuel. Due to its very high radioactivity the nuclear waste must be isolated from the environment. The perspective solution of nuclear fuel cycle is the final disposal into geological formations. Today there is no disposal facility all over the world. There are only underground research laboratories in the well developed countries like the USA, France, Japan, Germany, Sweden, Switzerland and Belgium. From the economical point of view the most suitable appears to build a few international repositories. According to the political and social aspect each of the country prepare his own project of the deep repository. The status of those programmes in different countries is described. The development of methods for the long-term management of radioactive waste is necessity in all countries that have had nuclear programmes. (authors)

  16. Final environmental impact statement: US Spent Fuel Policy. Charge for spent fuel storage

    1980-05-01

    The United States Government policy relating to nuclear fuel reprocessing, which was announced by President Carter on April 7, 1977, provides for an indefinite deferral of reprocessing, and thus commits light water reactor (LWR) plants to a once-through fuel cycle during that indefinite period. In a subsequent action implementing that policy, the Department of Energy (DOE) on October 18, 1977 announced a spent fuel policy which would enable domestic, and on a selective basis, foreign utilities to deliver spent fuel to the US Government for interim storage and final geologic disposal, and pay the Government a fee for such services. This volume addresses itself to whether the fee charged for these services, by its level or its structure, would have any effect on the environmental impacts of implementing the Spent Fuel Policy itself. This volume thus analyzes the fee and various alternatives to determine the interaction between the fee and the degree of participation by domestic utilities and foreign countries in the proposed spent fuel program for implementing the Spent Fuel Policy. It also analyzes the effect, if any, of the fee on the growth of nuclear power

  17. Handling final storage of unreprocessed spent nuclear fuel

    1978-01-01

    The present second report from KBS describes how the safe final storage of spent unreprocessed nuclear fuel can be implemented. According to the Swedish Stipulation Law, the owner must specify in which form the waste is to be stored, how final storage is to be effected, how the waste is to be transported and all other aspects of fuel handling and storage which must be taken into consideration in judging whether the proposed final storage method can be considered to be absolutely safe and feasible. Thus, the description must go beyond general plans and sketches. The description is therefore relatively detailed, even concerning those parts which are less essential for evaluating the safety of the waste storage method. For those parts of the handling chain which are the same for both alternatives of the Stipulation Law, the reader is referred in some cases to the first report. Both of the alternatives of the Stipulation Law may be used in the future. Handling equipment and facilities for the two storage methods are so designed that a combination in the desired proportions is practically feasible. In this first part of the report are presented: premises and data, a description of the various steps of the handling procedure, a summary of dispersal processes and a safety analysis. (author)

  18. Fuel Rod Consolidation Project: Phase 2, Final report: Volume 1

    1987-01-01

    This design report describes the NUS final design of the Prototype Spent Nuclear Fuel Rod Consolidation System. This summary presents the approach and the subsequent sections describe, in detail, the final design. Detailed data, drawings, and the design Basis Accident Report are provided in Volumes II thru V. The design as presented, represents one cell of a multicell facility for the dry consolidation of any type of PWR and BWR fuel used in the United States LWR industry that will exceed 1% of the fuel inventory at the year 2000. The system contains the automatically-controlled equipment required to consolidate 750MT (heavy metal)/year, at 75% availability. The equipment is designed as replaceable components using state-of-the-art tchnology. The control system utilizes the most advanced commercially available equipment on the market today. Two state-of-the-art advanced servo manipulators are provided for system maintenance. In general the equipment is designed utilizing fabricated and commercial components. For example, the main drive systems use commercially available roller screws. These rollers screws have 60,000 hours of operation in nuclear power plants and have been used extensively in other applications. The motors selected represent the most advanced designed servo motors on the market today for the precision control of machinery. In areas where precise positioning was not required, less expensive TRW Globe motors were selected. These are small compact motors with a long history of operations in radiation environments. The Robotic Bridge Transporters are modified versions of existing bridge cranes for remote automatic operations. Other equipment such as the welder for fuel canister closure operations is a commercially available product with an operating history applicable to this process. In general, this approach was followed throughout the design of all the equipment and will enable the system to be developed without costly development programs

  19. Fuel safety criteria and review by OECD / CSNI task force

    Van Doesburg, W.

    1999-01-01

    Full text of publication follows: with the advent of advanced fuel and core designs, and the implementation of more accurate (best estimate or statistical) design and analysis methods, there is a general feeling that safety margins have been or are being reduced. Historically, fuel safety margins were defined by adding conservatism to the safety limits, which in turn were also fixed in a conservative manner, here, the expression 'conservatism' expresses the fact that bounding or limiting numbers were chosen for model parameters, plant and fuel design data, and fuel operating history values. Unfortunately, as these conservatisms were not quantified (or quantifiable), the amount of safety available or the reduction thereof is difficult to substantiate. For the regulator, it is important to know the margin available with the utilities' request for approval of new fuel or methods; likewise, for the utility and vendor it is important to know what margins exist and what they are based on, to identify in which direction they can make further progress and optimize fuel and fuel cycle cost. Naturally, each party involved will have to decide on how much margin should be in place, to establish operational criteria and ensure that these can actually be met during operation. To assess the margins issue, safety criteria themselves need to be reviewed first. Most - if not all - of the currently existing safety criteria were established during the 60's and early 70's, and verified against experiments with fuel available at that time - mostly at zero exposure. Of course, verification was performed as designs progressed in later years, primarily with the aim to be able to prove that safety criteria were adequate as long as the said conservatisms would be retained, and not with the aim to reestablish limits. The mandate to the OECD/CSNI/PWG2 Task Force on Fuel Safety Criteria (TFFSC) is to assess the adequacy of existing fuel safety criteria, in view of the 'new design' elements (new

  20. Direct fuel cell power plants: the final steps to commercialization

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  1. Solid oxide fuel cells towards real life applications. Final report

    2010-07-01

    Solid Oxide Fuel Cells offer a clean and efficient way of producing electricity and heat from a wide selection of fuels. The project addressed three major challenges to be overcome by the technology to make commercialisation possible. (1) At the cell level, increased efficiency combined with production cost reduction has been achieved through an optimization of the manufacturing processes, b) by using alternative raw materials with a lower purchase price and c) by introducing a new generation of fuel cells with reduced loss and higher efficiency. (2) At the stack level, production cost reduction is reduced and manufacturing capacity is increased through an optimization of the stack production. (3) At the system level, development of integrated hotbox concepts for the market segments distributed generation (DG), micro combined heat and power (mCHP), and auxiliary power units (APU) have been developed. In the mCHP segment, two concepts have been developed and validated with regards to market requirements and scalability. In the APU-segment, different types of reformers have been tested and it has been proven that diesel can be reformed through appropriate reformers. Finally, operation experience and feedback has been gained by deployment of stacks in the test facility at the H.C. OErsted Power Plant (HCV). This demonstration has been carried out in collaboration between TOFC and DONG Energy Power A/S (DONG), who has participated as a subcontractor to TOFC. The demonstration has given valuable knowledge and experience with design, start-up and operation of small power units connected to the grid and future development within especially the mCHP segment will benefit from this. In this report, the project results are described for each of the work packages in the project. (Author)

  2. Geophysical borehole logging. Final disposal of spent fuel

    Rouhiainen, P.

    1984-01-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 meters in the year 1984. The report deals with geophysical borehole logging methods, which could be used for the studies. The aim of geophysical borehole logging methods is to descripe specially hydrogeological and structural features. Only the most essential methods are dealt with in this report. Attention is paid to the information produced with the methods, derscription of the methods, interpretation and limitations. The feasibility and possibilities for the aims are evaluated. The evaluations are based mainly on the results from Sweden, England, Canada and USA as well as experiencies gained in Finland

  3. Final Environmental Assessment Travis Air Force Base Burke Property Housing

    1999-01-01

    ... (40 CFR Parts 1500-1508) and Air Force Instruction 32-7061, the U.S. Air Force conducted an assessment of the potential environmental consequences of the construction of up to 281 military family housing units at Travis AFB...

  4. Honeywell's Working Parents Task Force. Final Report and Recommendations.

    Honeywell, Inc., Minneapolis, Minn.

    This publication provides a summary of the Honeywell Working Parent Task Force's recommendations on how to solve problems experienced by working parents. The Task Force consisted of three committees: the Employment Practices Committee (EPC); the Parent Education Committee (PEC); and the Child Care Facilities Committee (CCFC). After examining a…

  5. Final Report on the Fuel Saving Effectiveness of Various Driver Feedback Approaches

    Gonder, J.; Earleywine, M.; Sparks, W.

    2011-03-01

    This final report quantifies the fuel-savings opportunities from specific driving behavior changes, identifies factors that influence drivers' receptiveness to adopting fuel-saving behaviors, and assesses various driver feedback approaches.

  6. Final disposal of high levels waste and spent nuclear fuel

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  7. Demonstration of fuel resistant to pellet-cladding interaction. Phase I. Final report

    Rosenbaum, H.S.

    1979-03-01

    This program has as its ultimate objective the demonstration of an advanced fuel design that is resistant to the failure mechanism known as fuel pellet-cladding interaction (PCI). Two fuel concepts are being developed for possible demonstration within this program: (a) Cu-barrier fuel, and (b) Zr-liner fuel. These advanced fuels (known collectively as barrier fuels) have special fuel cladding designed to protect the Zircaloy cladding tube from the harmful effects of localized stress, and reactive fission products during reactor service. This is the final report for PHASE 1 of this program. Support tests have shown that the barrier fuel resists PCI far better than does the conventional Zircaloy-clad fuel. Power ramp tests thus far have shown good PCI resistance for Cu-barrier fuel at burnup > 12 MWd/kg-U and for Zr-liner fuel > 16 MWd/kg-U. The program calls for continued testing to still higher burnup levels in PHASE 2

  8. Hawaii alternative fuels utilization program. Phase 3, final report

    Kinoshita, C.M.; Staackmann, M.

    1996-08-01

    The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.

  9. Final Nellis Air Force Base Capital Improvements Program Environmental Assessment

    2013-08-01

    pathology, radiology, dietetic and nutritional medicine, medical benefits and information. The 99th Security Forces Squadron provides flight-line...parking lots RKMF070024 Construct Soccer Field Parking Lot Roads/parking lots RKMF110155 Construct Solar Lighting At Hospital Track Recreation

  10. Urban Consortium Energy Task Force - Year 21 Final Report

    NONE

    2003-04-01

    The Urban Consortium Energy Task Force (UCETF), comprised of representatives of large cities and counties in the United States, is a subgroup of the Urban Consortium, an organization of the nation's largest cities and counties joined together to identify, develop and deploy innovative approaches and technological solutions to pressing urban issues.

  11. Task force on compliance and enforcement. Final report. Volume 2

    1978-03-01

    Recommendations for measures to strengthen the FEA enforcement program in the area of petroleum price regulation are presented. Results of task force efforts are presented in report and recommendations sections concerned with pending cases, compliance program organization, enforcement powers, compliance strategy, and audit staffing and techniques. (JRD)

  12. Final Environmental Assessment for the First Air Force Air Operations Center, First Air Force Headquarters/Air Force Forces Center, and Highway 98 Overpass at Tyndall Air Force Base, Florida

    2004-01-01

    no comments regarding the Draft Environmental Assessment for the First Air Force Operations Center, First Air Force Headquarters/Air Force Forces...COUNCIL ] No Comment BAY - BAY COUNTY No Final Comments Received ENVIRONMENTAL POLICY UNIT - OFFICE OF POLICY AND BUDGET, ENVIRONMENTAL POLICY UNIT NO ...CONSERVATION COMMISSION [ NO COMMENT BY BRIAN BARNETT ON 4/12/04. [STATE - FLORIDA DEPARTMENT OF STATE [ No Comment [TRANSPORTATION - FLORIDA DEPARTMENT

  13. Influence of plutonium contents in MOX fuel on destructive forces at fuel failure in the NSRR experiment

    Nakamura, Jinichi; Sugiyama, Tomoyuki; Nakamura, Takehiko; Kanazawa, Toru; Sasajima, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    In order to confirm safety margins of the Mixed Oxide (MOX) fuel use in LWRs, pulse irradiation tests are planned in the Nuclear Safety Research Reactor (NSRR) with the MOX fuel with plutonium content up to 12.8%. Impacts of the higher plutonium contents on safety of the reactivity-initiated-accident (RIA) tests are examined in terms of generation of destructive forces to threat the integrity of test capsules. Pressure pulses would be generated at fuel rod failure by releases of high pressure gases. The strength of the pressure pulses, therefore, depends on rod internal - external pressure difference, which is independent to plutonium content of the fuel. The other destructive forces, water hammer, would be generated by thermal interaction between fuel fragments and coolant water. Heat flux from the fragments to the water was calculated taking account of changes in thermal properties of MOX fuels at higher plutonium contents. The results showed that the heat transfer from the MOX fuel would be slightly smaller than that from UO{sub 2} fuel fragments at similar size in a short period to cause the water hammer. Therefore, the destructive forces were not expected to increase in the new tests with higher plutonium content MOX fuels. (author)

  14. [Research and workshop on alternative fuels for aviation. Final report

    NONE

    1999-09-01

    The Renewable Aviation Fuels Development Center (RAFDC) at Baylor University was granted U. S. Department of Energy (US DOE) and Federal Aviation Administration (FAA) funds for research and development to improve the efficiency in ethanol powered aircraft, measure performance and compare emissions of ethanol, Ethyl Tertiary Butyl Ether (ETBE) and 100 LL aviation gasoline. The premise of the initial proposal was to use a test stand owned by Engine Components Inc. (ECI) based in San Antonio, Texas. After the grant was awarded, ECI decided to close down its test stand facility. Since there were no other test stands available at that time, RAFDC was forced to find additional support to build its own test stand. Baylor University provided initial funds for the test stand building. Other obstacles had to be overcome in order to initiate the program. The price of the emission testing equipment had increased substantially beyond the initial quote. Rosemount Analytical Inc. gave RAFDC an estimate of $120,000.00 for a basic emission testing package. RAFDC had to find additional funding to purchase this equipment. The electronic ignition unit also presented a series of time consuming problems. Since at that time there were no off-the-shelf units of this type available, one had to be specially ordered and developed. FAA funds were used to purchase a Super Flow dynamometer. Due to the many unforeseen obstacles, much more time and effort than originally anticipated had to be dedicated to the project, with much of the work done on a volunteer basis. Many people contributed their time to the program. One person, mainly responsible for the initial design of the test stand, was a retired engineer from Allison with extensive aircraft engine test stand experience. Also, many Baylor students volunteered to assemble the. test stand and continue to be involved in the current test program. Although the program presented many challenges, which resulted in delays, the RAFDC's test

  15. Status of work on the final repository concept concerning direct disposal of spent fuel rods in fuel rod casks (BSK)

    Filbert, W.; Wehrmann, J.; Bollingerfehr, W.; Graf, R.; Fopp, S.

    2008-01-01

    The reference concept in Germany on direct final storage of spent fuel rods is the burial of POLLUX containers in the final repository salt dome. The POLLUX container is self-shielded. The final storage concept also includes un-shielded borehole storage of high-level waste and packages of compacted waste. GNS has developed a spent fuel container (BSK-3) for unshielded borehole storage with a mass of 5.2 tons that can carry the fuel rods of three PWR reactors of 9 BWR reactors. The advantages of BSK storage include space saving, faster storage processes, less requirements concerning technical barriers, cost savings for self-shielded casks.

  16. Final disposal of spent nuclear fuel in the Finnish bedrock

    1992-12-01

    Teollisuuden Voima Oy (TVO) studies Finnish bedrock for the final disposal of the spent nuclear fuel from the Olkiluoto nuclear power plant. The study is in accordance with the decision in principle by Finnish government in 1983. The report is the summary of the preliminary site investigations carried out during the years 1987-1992. On the basis of these investigations a few areas will be selected for detailed site investigation. The characterization comprises five areas selected from the shortlist of potential candidate areas resulted in the earlier study during 1983-1985. Areas are located in different parts of Finland and they represent the main formations of the Finnish bedrock. Romuvaara area in Kuhmo and Veitsivaara area in Hyrynsalmi represent the Archean basement. Kivetty area in Konginkangas consists of mainly younger granitic rocks. Syyry in Sievi is located in transition area of Svecofennidic rocks and granitic rocks. Olkiluoto in Eurajoki represents migmatites in southern Finland. For the field investigations area-specific programs were planned and executed. The field investigations have comprised airborne survey by helicopter, geophysical surveys, geological mappings and samplings, deep and shallow core drillings, geophysical and hydrological borehole measurements and groundwater samplings

  17. Final report of fuel dynamics Test E7

    Doerner, R.C.; Murphy, W.F.; Stanford, G.S.; Froehle, P.H.

    1977-04-01

    Test data from an in-pile failure experiment of high-power LMFBR-type fuel pins in a simulated $3/s transient-overpower (TOP) accident are reported and analyzed. Major conclusions are that (1) a series of cladding ruptures during the 100-ms period preceding fuel release injected small bursts of fission gas into the flow stream; (2) gas release influenced subsequent cladding melting and fuel release [there were no measurable FCI's (fuel-coolant interactions), and all fuel motion observed by the hodoscope was very slow]; (3) the predominant postfailure fuel motion appears to be radial swelling that left a spongy fuel crust on the holder wall; (4) less than 4 to 6 percent of the fuel moved axially out of the original fuel zone, and most of this froze within a 10-cm region above the original top of the fuel zone to form the outlet blockage. An inlet blockage approximately 1 cm long was formed and consisted of large interconnected void regions. Both blockages began just beyond the ends of the fuel pellets

  18. Final environmental impact statement: US Spent Fuel Policy. Executive summary

    1980-05-01

    The analysis of the environmental impacts for storage of domestic fuel shows that the impacts for the full range of alternatives considered are relatively small compared with available resources or background exposure of the population from natural radiation sources. The differences in impacts of storage of domestic fuel are attributed to the amount of fuel stored in Independent Spent Fuel Storage (ISFS) facilities, the storage time, and, to a lesser degree, the differences in spent fuel transportation. The differences between comparable alternatives of implementing the policy or not implementing the policy are small. The difference in impacts of storage of foreign fuel are attributed to the amount of fuel received under the policy and to the disposition mode analyzed. The impact of storage of foreign fuel (a small fraction of the amount of domestic fuel considered) is also small. As a result of the small differences in environmental impacts of all cases considered for foreign fuel, environmental impacts probably will not strongly influence the selection of the case that best meets US nonproliferation goals. Proliferation benefits of the various cases analyzed vary significantly. The structure and level of fee charged for storage of spent fuel will affect the degree of participation in the spent fuel storage program by utilities. However, the range of participation is within the range of alternatives analyzed in the draft EISs on storage of US and foreign fuels, for which the environmental effects were found to be relatively small. The fee computed on the basis of full recovery of government costs should not significantly affect the cost of generating nuclear power

  19. Cruising in afterburner: Air force fuel use and emerging energy policy

    Lucia, David J.

    2011-01-01

    Operational and mission efficiency were estimated for Air Force fighters, bombers and transports from fuel use data from 2001 through 2008 as reported in the Air Force Total Cost of Ownership (AFTOC) database. This analysis estimated efficiency in terms of the best performance theoretically possible for each platform based upon the energy available in the fuel expended. Operational efficiency considered aircraft operations in general, without regard for the type of mission. Mission efficiency only considered use of allocated fuel for combat (non-training) sorties. The cost associated with fuel inefficiency of the combined fighter, bomber and tanker force were estimated based on the fiscal year 2008 costs of fuel, fully burdened to include the cost of aerial refueling. The total cost of operational inefficiency was estimated at $5 billion per year. The fully burdened cost of mission inefficiency added an additional $3.6 billion for a total per year cost estimate of $8.6 billion. This represents 21.5% of the $40 billion portion of the 2009 budget dedicated to modernization. A business case for force-structure change is presented, which describes how these cost savings can be leveraged for modernization. - Highlights: → I assess how efficiently the United States Air Force uses fuel for aviation. → I estimate the cost associated with fuel inefficiency. → Improved technology can dramatically improve fuel efficiency. → There is potentially a large cost savings associated with improved fuel efficiency. → I present a business case to leverage this cost savings for modernization.

  20. Inhalation exposure to jet fuel (JP8) among U.S. Air Force personnel.

    Smith, Kristen W; Proctor, Susan P; Ozonoff, Al; McClean, Michael D

    2010-10-01

    As jet fuel is a common occupational exposure among military and civilian populations, this study was conducted to characterize jet fuel (JP8) exposure among active duty U.S. Air Force personnel. Personnel (n = 24) were divided a priori into high, moderate, and low exposure groups. Questionnaires and personal air samples (breathing zone) were collected from each worker over 3 consecutive days (72 worker-days) and analyzed for total hydrocarbons (THC), benzene, toluene, ethylbenzene, xylenes, and naphthalene. Air samples were collected from inside the fuel tank and analyzed for the same analytes. Linear mixed-effects models were used to evaluate the exposure data. Our results show that the correlation of THC (a measure of overall JP8 inhalation exposure) with all other analytes was moderate to strong in the a priori high and moderate exposure groups combined. Inhalation exposure to all analytes varied significantly by self-reported JP8 exposure (THC levels higher among workers reporting JP8 exposure), a priori exposure group (THC levels in high group > moderate group > low group), and more specific job task groupings (THC levels among workers in fuel systems hangar group > refueling maintenance group > fuel systems office group > fuel handling group > clinic group), with task groupings explaining the most between-worker variability. Among highly exposed workers, statistically significant job task-related predictors of inhalation exposure to THC indicated that increased time in the hangar, working close to the fuel tank (inside > less than 25 ft > greater than 25 ft), primary job (entrant > attendant/runner/fireguard > outside hangar), and performing various tasks near the fuel tank, such as searching for a leak, resulted in higher JP8 exposure. This study shows that while a priori exposure groups were useful in distinguishing JP8 exposure levels, job task-based categories should be considered in epidemiologic study designs to improve exposure classification. Finally

  1. Final Report: ATLAS Phase-2 Tracker Upgrade Layout Task Force

    Clark, A; The ATLAS collaboration; Hessey, N; Mättig, P; Styles, N; Wells, P; Burdin, S; Cornelissen, T; Todorov, T; Vankov, P; Watson, I; Wenig, S

    2012-01-01

    he mandate of the Upgrade Layout Task Force was to develop a benchmark layout proposal for the ATLAS Phase-2 Upgrade Letter of Intent (LOI), due in late 2012. The work described in this note has evolved from simulation and design studies made using an earlier "UTOPIA" upgrade tracker layout, and experience gained from the current ATLAS Inner Detector during the first years of data taking. The layout described in this document, called the LoI-layout, will be used as a benchmark layout for the LoI and will be used for simulation and engineering studies described in the LoI.

  2. Instrumentation of cars for fuel economy. Final report

    Morris, J E

    1982-04-01

    The development of an electronic system to control the air-fuel ratio (A/F) and ignition timing of an internal combustion engine to optimize fuel economy is described. Dynamometer and drive cycle testing of the system was performed. The results showed that a significant improvement in fuel economy can be achieved by a control system of the type developed. It is clear, however, that considerably more work needs to be done. One area mentioned is the need for more systematic fuel economy testing against speed and load as control parameters are varied for optimization, and a more economic air bypass system must be developed. (LCL)

  3. Stainless steel clad for light water reactor fuels. Final report

    Rivera, J.E.; Meyer, J.E.

    1980-07-01

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  4. Monitoring instrumentation spent fuel management program. Final report

    1979-01-01

    Preliminary monitoring system methodologies are identified as an input to the risk assessment of spent fuel management. Conceptual approaches to instrumentation for surveillance of canister position and orientation, vault deformation, spent fuel dissolution, temperature, and health physics conditions are presented. In future studies, the resolution, reliability, and uncertainty associated with these monitoring system methodologies will be evaluated

  5. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  6. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force.

    Carlton, G N; Smith, L B

    2000-06-01

    Jet fuel and benzene vapor exposures were measured during aircraft fuel tank entry and repair at twelve U.S. Air Force bases. Breathing zone samples were collected on the fuel workers who performed the repair. In addition, instantaneous samples were taken at various points during the procedures with SUMMA canisters and subsequent analysis by mass spectrometry. The highest eight-hour time-weighted average (TWA) fuel exposure found was 1304 mg/m3; the highest 15-minute short-term exposure was 10,295 mg/m3. The results indicate workers who repair fuel tanks containing explosion suppression foam have a significantly higher exposure to jet fuel as compared to workers who repair tanks without foam (p fuel, absorbed by the foam, to volatilize during the foam removal process. Fuel tanks that allow flow-through ventilation during repair resulted in lower exposures compared to those tanks that have only one access port and, as a result, cannot be ventilated efficiently. The instantaneous sampling results confirm that benzene exposures occur during fuel tank repair; levels up to 49.1 mg/m3 were found inside the tanks during the repairs. As with jet fuel, these elevated benzene concentrations were more likely to occur in foamed tanks. The high temperatures associated with fuel tank repair, along with the requirement to wear vapor-permeable cotton coveralls for fire reasons, could result in an increase in the benzene body burden of tank entrants.

  7. Case histories of West Valley spent fuel shipments: Final report

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

  8. Case histories of West Valley spent fuel shipments: Final report

    1987-01-01

    In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs

  9. Fuel Reduction for the Mobility Air Forces: Executive Summary

    2015-01-01

    to reduce fuel consumption. These measures include technology improvements ( aerodynamics , aircraft weight, propulsion, etc.) and fleet, flight, and...calculate fuel savings from an enterprise perspective. For example, there is significant literature on drag reduction of winglets ; however, most of this...an aircraft. If the weight of the paint can be reduced, then the fuel burn can also be reduced. • Microvanes. Microvanes are small aerodynamic

  10. TRIGA high wt -% LEU fuel development program. Final report

    West, G.B.

    1980-07-01

    The principal purpose of this work was to investigate the characteristics of TRIGA fuel where the contained U-235 was in a relatively high weight percent (wt %) of LEU (low enriched uranium - enrichment of less than 20%) rather than a relatively low weight percent of HEU (high enriched uranium). Fuel with up to 45 wt % U was fabricated and found to be acceptable after metallurgical examinations, fission product retention tests and physical property examinations. Design and safety analysis studies also indicated acceptable prompt negative temperature coefficient and core lifetime characteristics for these fuels

  11. Low enrichment fuel conversion for Iowa State University. Final report

    Bullen, D.B.; Wendt, S.E.

    1996-01-01

    The UTR-10 research and teaching reactor at Iowa State University (ISU) has been converted from high-enriched fuel (HEU) to low- enriched fuel (LEU) under Grant No. DE-FG702-87ER75360 from the Department of Energy (DOE). The original contract period was August 1, 1987 to July 31, 1989. The contract was extended to February 28, 1991 without additional funding. Because of delays in receiving the LEU fuel and the requirement for disassembly of the HEU assemblies, the contract was renewed first through May 31, 1992, then through May 31, 1993 with additional funding, and then again through July 31, 1994 with no additional funding. In mid-August the BMI cask was delivered to Iowa State. Preparations are underway to ship the HEU fuel when NRC license amendments for the cask are approved

  12. Ongoing evaluation of alternatively fueled buses : final report.

    2016-05-01

    The goal of this project is to continue collecting and reporting data on the performance and costs of alternatively fueled public transit vehicles in Florida in a consistent manner. Over the course of this project, researchers sent repeated data requ...

  13. Price transparency on the market for automotive fuels. Final report

    Meindert, L.; Van Schijndel, M.; Volkerink, B.

    2011-05-01

    The objective of this study is to answer the main question: which bottlenecks may obstruct the road to up-to-date, reliable and fully market covering price comparison services for the Dutch market for automotive fuels. [nl

  14. OECD-IAEA Paks Fuel Project. Final Report

    2010-05-01

    It is important for nuclear power plant designers, operators and regulators to effectively use lessons learned from events occurring at nuclear power plants since, in general, it is impossible to reproduce the event using experimental facilities. In particular, evaluation of the event using accident analysis codes is expected to contribute to improving understanding of phenomena during the events and to facilitate the validation of computer codes through simulation analyses. The information presented in this publication will be of use in future revisions of safety guides on accident analysis. During a fuel crud removal operation on the Paks-2 unit of the Paks nuclear power plant, Hungary on 10 April 2003, several fuel assemblies were severely damaged. The assemblies were being cleaned in a special tank under deep water in a service pit connected to the spent fuel storage pool. The first sign of fuel failures was the detection of some fission gases released from the cleaning tank. Later, visual inspection revealed that most of the 30 fuel assemblies suffered heavy oxidation and fragmentation. The first evaluation of the event showed that the severe fuel damage had been caused by inadequate cooling. The Paks-2 event was discussed in various committees of the OECD Nuclear Energy Agency (OECD/NEA) and of the International Atomic Energy Agency (IAEA). Recommendations were made to undertake actions to improve the understanding of the incident sequence and of the consequence this had on the fuel. It was considered that the Paks-2 event may constitute a useful case for a comparative exercise on safety codes, in particular for models devised to predict fuel damage and potential releases under abnormal cooling conditions and the analyses of the Paks-2 event may provide information which is relevant for in-reactor and spent fuel storage safety evaluations. The OECD-IAEA Paks Fuel Project was established in 2005 as a joint project between the IAEA and the OECD/NEA. The IAEA

  15. Key convention on safe management of spent fuel and radioactive waste to enter into force

    2001-01-01

    At a ceremony at IAEA Headquarters today, Ireland deposited its instrument of ratification to an important convention on the safe management of spent fuel and radioactive waste, thereby ensuring its entry into force. The Convention will be the first international instrument to address the safety of management and storage of radioactive wastes and spent fuels in countries with and without nuclear programmes

  16. Air quality effects of alternative fuels. Final report

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  17. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  18. RTR spent fuel treatment and final waste storage

    Thomasson, J.

    2000-01-01

    A number of RTR operators have chosen in the past to send their spent fuel to the US in the framework of the US take back program. However, this possibility ends as of May 12th, 2006. 3 different strategies are left for managing RTR spent fuel: extended storage, direct disposal and treatment-conditioning through reprocessing. Whilst former strategies raise a number of uncertainties, the latter already offers a management solution. It features two advantages. It benefits from the long experience of existing flexible industrial facilities from countries like France. Secondly, it offers a dramatic volume reduction of the ultimate waste to be stored under well-characterized, stable and durable forms. RTR spent fuel management through reprocessing-conditioning offers a durable management solution that can be fully integrated in whatever global radioactive waste management policy, including ultimate disposal

  19. Final Technical Report for the MIT Annular Fuel Research Project

    Mujid S. Kazimi; Pavel Hejzlar

    2008-01-01

    MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research Energy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in power density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghouse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited

  20. Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes

    Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.

    2016-01-01

    To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)

  1. Experimental study of defect power reactor fuel. Final report

    Forsyth, R.S.; Jonsson, T.

    1982-01-01

    Two BWR fuel rods, one intact and one defect, with the same manufacturing and irradiation data have been examined in a comparative study. The defect rod has been irradiated in a defect condition during approximately one reactor cycle and has consequently some secondary defects. The defect rod has two penetrating defects at a distance of about 1.5 meters from each other. Comparison with the intact rod shows a large Cs loss from the defect rod, especially between the cladding defects, where the loss is measured to about 30 %. The leachibility in deionized water is higher for Cs, U and Cm for fuel from the defect rod. The leaching results are more complex for Sr-90, Pu and Am. The fuel in the defect rod has undergone a change of structure with gain growth and formation of oriented fuel structure. The cladding of the defect rod is hydrided locally in some parts of the lower part of the rod and furthermore over a more extended region near the end of the rod. (Authors)

  2. The final management of nuclear fuel. Legal and economic aspects; La gestion final del combustible nuclear. Aspectos legales y economicos

    Villota, C. de

    2009-07-01

    This article gives a brief summary of the characteristics of spent fuel and the lines of action considered for its management. It describes the legal framework that supports the Radioactive Waste Management Plan (PGRR), which contains the lines applicable to Final Spent Fuel Management, as well as the evolution of this legal framework. The article contains the 2008 updated costs of the various items of the PGRR, with a more detailed description of those related to this type of fuel, as well the source and amount of the financial contributions to the fund for meeting these costs, including how they have evolved over time. finally, it provides some personal reflections on this issue. (Author)

  3. DE-NE0000735 - FINAL REPORT ON THORIUM FUEL CYCLE NEUP PROJECT

    Krahn, Steven [Vanderbilt Univ., Nashville, TN (United States); Ault, Timothy [Vanderbilt Univ., Nashville, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-30

    The report is broken into six chapters, including this executive summary chapter. Following an introduction, this report discusses each of the project’s three major components (Fuel Cycle Data Package (FCDP) Development, Thorium Fuel Cycle Literature Analysis and Database Development, and the Thorium Fuel Cycle Technical Track and Proceedings). A final chapter is devoted to summarization. Various outcomes, publications, etc. originating from this project can be found in the Appendices at the end of the document.

  4. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  5. Alternative Low-Sulfur Diesel Fuel Transition Program for Alaska Final Rule

    This final rule will implement the requirements for sulfur, cetane and aromatics for highway, nonroad, locomotive and marine diesel fuel produced in, imported into, and distributed or used in the rural areas of Alaska.

  6. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE; FINAL

    Hamid Farzan

    2001-01-01

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable

  7. Physics-based modeling of live wildland fuel ignition experiments in the Forced Ignition and Flame Spread Test apparatus

    C. Anand; B. Shotorban; S. Mahalingam; S. McAllister; D. R. Weise

    2017-01-01

    A computational study was performed to improve our understanding of the ignition of live fuel in the forced ignition and flame spread test apparatus, a setup where the impact of the heating mode is investigated by subjecting the fuel to forced convection and radiation. An improvement was first made in the physics-based model WFDS where the fuel is treated as fixed...

  8. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  9. Growth rates of breeder reactor fuel. Final report

    Ott, K.O.

    1979-01-01

    During the contract period, a consistent formalism for the definition of the growth rates (and thus the doubling time) of breeder reactor fuel has been developed. This formalism was then extended to symbiotic operation of breeder and converter reactors. Further, an estimation prescription for the growth rate has been developed which is based upon the breeding worth factors. The characteristics of this definition have been investigated, which led to an additional integral concept, the breeding bonus

  10. Regional environmental impacts of methanol-fueled vehicles. Final report

    Belian, T.; Morris, R.E.; Ligocki, M.P.; Whitten, G.Z.

    1991-01-01

    The objectives of the study were to obtain, through simulation modeling, preliminary estimates of the regional environmental impacts methanol-fueled vehicles and to estimate the sensitivity of the model to important parameters and assumptions that affect the calculation of the impacts. The regional environmental effects of the use of M85 fuel (85 percent methanol and 15 percent gasoline) and M100 (neat methanol) relative to gasoline (an indoline blend) were estimated using a Lagrangian (trajectory) acid deposition model. The Comprehensive Chemistry Acid Deposition Model (CCADM), contains a detailed treatment of gas-phase and aqueous-phase chemistry and associated mass transfer, but provides for a less comprehensive representation of advection and diffusion. Two different meteorological regimes were analyzed: clear sky conditions and cloudy skies with a rain event. The study also included a review of gas- and aqueous-phase chemistry, with particular emphasis on methanol. The CCADM chemical mechanism was updated to include state-of-the-science (as of 1990) gas- and aqueous-phase chemistry including methanol chemistry. The CCADM was then used to analyze the regional environmental impacts from the use of methanol fuels. In performing such an analysis it was necessary to make several assumptions. The sensitivity of the analysis was examined through a series of simulations that varied key input parameters within their ranges of uncertainty

  11. Safety criteria for spent-fuel transport. Final report

    Goldmann, K.; Gekler, W.C.

    1986-10-01

    The focus of this study is on the question, ''Do current regulations provide reasonable assurance of safety for a transport scenario of spent fuel, as presently anticipated by the Department of Energy, under the Nuclear Waste Policy Act.'' This question has been addressed by developing a methodology for identifying the expected frequency of Accidents Which Exceed Regulatory Conditions in Severity (AWERCS) for spent fuel transport casks and then assessing the health effects resulting from that frequency. By applying the methodology to an illustrative case of road transports, it was found that the accidental release of radioactive material from impact AWERCS would make negligible contributions to health effects associated with spent fuel transports by road. It is also concluded that the current regulatory drop test requirements in 10 CFR 71.51 which form the basis for cask design and were used to establish AWERCS screening criteria for this study are adequate, and that no basis was found to conclude that cask performance under expected road accident conditions represents an undue risk to the public

  12. Technical considerations associated with spent fuel acceptance. Final report

    Supko, E.M.

    1996-06-01

    This study was initiated by the Electric Power Research Institute (EPRI) to identify technical considerations associated with spent fuel acceptance and implementation of a waste management system that includes the use of transportable storage systems, and to serve as an opening dialogue among Standard Contract Holders and the department of Energy's Office of Civilian Radioactive Waste management (OCRWM) prior to the development of waste acceptance criteria or issuance of a Notice of Proposed Rulemaking by OCRWM to amend the Standard Contract. The original purpose of the Notice of Proposed Rulemaking was to address changes to the Standard Contract to implement a multi-purpose canister based system and to address other issues that were not adequately addressed in the standard contract. Even if DOE does not develop a multi-purpose canister based system for waste acceptance, it will still be necessary to develop waste acceptance criteria in order to accept spent fuel in transportable storage systems that are being deployed for at-reactor storage. In this study, technical issues associated with spent fuel acceptance will be defined and potential options and alternatives for resolution of technical considerations will be explored

  13. Final environmental statement: US Spent Fuel Policy. Storage of foreign spent power reactor fuel

    1980-05-01

    In October 1977, the Department of Energy (DOE) announced a Spent Fuel Storage Policy for nuclear power reactors. Under this policy, as approved by the President, US utilities will be given the opportunity to deliver spent fuel to US Government custody in exchange for payment of a fee. The US Government will also be prepared to accept a limited amount of spent fuel from foreign sources when such action would contribute to meeting nonproliferation goals. Under the new policy, spent fuel transferred to the US Government will be delivered - at user expense - to a US Government-approved site. Foreign spent fuel would be stored in Interim Spent Fuel Storage (ISFS) facilities with domestic fuel. This volume of the environmental impact statement includes effects associated with implementing or not implementing the Spent Fuel Storage Policy for the foreign fuels. The analyses show that there are no substantial radiological health impacts whether the policy is implemented or not. In no case considered does the population dose commitment exceed 0.000006% of the world population dose commitment from natural radiation sources over the period analyzed. Full implementation of the US offer to accept a limited amount of foreign spent fuel for storage provides the greatest benefits for US nonproliferation policy. Acceptance of lesser quantities of foreign spent fuel in the US or less US support of foreign spent fuel storage abroad provides some nonproliferation benefits, but at a significantly lower level than full implementation of the offer. Not implementing the policy in regard to foreign spent fuel will be least productive in the context of US nonproliferation objectives. The remainder of the summary provides a brief description of the options that are evaluated, the facilities involved in these options, and the environmental impacts, including nonproliferation considerations, associated with each option

  14. From waste to traffic fuel -projects. Final report

    Rasi, S; Lehtonen, E; Aro-Heinilae, E [and others

    2012-11-01

    The main objective of the project was to promote biogas production and its use as traffic fuel. The aims in the four Finnish and two Estonian case regions were to reduce the amount and improve the sustainable use of waste and sludge, to promote biogas production, to start biogas use as traffic fuel and to provide tools for implementing the aims. The results of this study show that achieving the food waste prevention target will decrease greenhouse gas emissions by 415 000 CO{sub 2}-eq tons and result in monetary savings for the waste generators amounting to almost 300 euro/ capita on average in all case regions in 2020. The results show that waste prevention should be the first priority in waste management and the use of waste materials as feedstock for energy production the second priority. In total 3 TWh energy could be produced from available biomass in the studied case regions. This corresponds to the fuel consumption of about 300 000 passenger cars. When a Geographical Information System (GIS) was used to identify suitable biogas plant site locations with particular respect to the spatial distribution of available biomass, it was found that a total of 50 biogas plants with capacity varying from 2.1 to 14.5 MW could be built in the case regions. This corresponds to 2.2 TWh energy and covers from 5 to 40% of the passenger car fuel consumption in these regions. Using all produced biogas (2.2 TWh energy) for vehicle fuel GHG emissions would lead to a 450 000 t CO{sub 2}-eq reduction. The same effect on emissions would be gained if more than 100 000 passenger cars were to be taken off the roads. On average, the energy consumed by biogas plants represents approximately 20% of the produced energy. The results also show that biomethane production from waste materials is profitable. In some cases the biomethane production costs can be covered with the gained gate fees. The cost of biomethane production from agricultural materials is less than 96 euro/MWh{sub th

  15. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    Skutnik, Steven E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    2017-06-19

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared to a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output

  16. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems' Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment

  17. Fossil fuel derivatives with reduced carbon. Phase I final report

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  18. Solid oxide fuel cell systems development. Final report

    NONE

    2012-12-15

    The main objective in this project has been to develop a generic and dynamic tool for SOFC systems simulation and development. Developing integrated fuel cell systems is very expensive and therefore having the right tools to reduce the development cost and time to market for products becomes an important feature. The tools developed in this project cover a wide range of needs in Dantherm Power, R and D, and can be divided into 3 categories: 1. Component selection modeling; to define component specification requirements and selection of suppliers. 2. Application simulation model built from scratch, which can simulate the interface between customer demand and system output and show operation behavior for different control settings. 3. System operation strategy optimization with respect to operation cost and customer benefits. a. Allows to see how system size, in terms of electricity and heat output, and operation strategy influences a specific business case. b. Gives a clear overview of how a different property, in the system, affects the economics (e.g. lifetime, electrical and thermal efficiency, fuel cost sensitivity, country of deployment etc.). The main idea behind the structure of the tool being separated into 3 layers is to be able to service different requirements, from changing stakeholders. One of the major findings in this project has been related to thermal integration between the existing installation in a private household and the fuel cell system. For a normal family requiring 4500 kWh of electricity a year, along with the possibility of only running the system during the heating season (winter), the heat storage demand is only 210kWh of heat with an approximate value of Dkr 160,- in extra gas consumption. In this case, it would be much more cost effective to dump the heat, in the house, and save the expense of adding heat storage to the system. This operation strategy is only valid in Denmark for the time being, since the feed-In-Tariff allows for a

  19. EPRI fuel performance data base: user's manual. Final report

    Simpson, J.; Lee, S.; Rumble, E.

    1980-10-01

    This user's manual provides instructions for accessing the data in the EPRI fuel performance data base (FPDB) and manipulating that data to solve specific problems that the user wishes to specify. The user interacts with the FPDB through the Relational Information Management System (RIMS) computer program. The structure and format of the FPDB and the general syntax of the data base commands are described. Instructions follow for the use of each command. Appendixes provide more detailed information about the FPDB and its software. The FPDB currently resides on a PRIME-750 computer

  20. Fuel Cooling in Absence of Forced Flow at Shutdown Condition with PHTS Partially Drained

    Parasca, L.; Pecheanu, D.L., E-mail: laurentiu.parasca@cne.ro, E-mail: doru.pecheanu@cne.ro [Cernavoda Nuclear Power Plant, Cernavoda (Romania)

    2014-09-15

    During the plant outage for maintenance on primary side (e.g. for the main Heat Transport System pumps maintenance, the Steam Generators inspection), there are situations which require the primary heat transport system (HTS) drainage to a certain level for opening the circuit. The primary fuel heat sink for this configuration is provided by the shutdown cooling system (SDCS). In case of losing the forced cooling (e.g. due to the loss of SDCS, design basis earthquake-DBE), flow conditions in the reactor core may become stagnant. Inside the fuel channels, natural circulation phenomena known as Intermittent Buoyancy Induced Flow (IBIF) will initiate, providing an alternate heat sink mechanism for the fuel. However, this heat sink is effective only for a limited period of time (recall time). The recall time is defined as the elapsed time until the water temperature in the HTS headers exceeds a certain limit. Until then, compensatory measures need to be taken (e.g. by re-establishing the forced flow or initiate Emergency Core Cooling system injection) to preclude fuel failures. The present paper briefly presents the results of an analysis performed to demonstrate that fuel temperature remains within acceptable limits during IBIF transient. One of the objectives of this analysis was to determine the earliest moment since the reactor shut down when maintenance activities on the HTS can be started such that IBIF is effective in case of losing the forced circulation. The resulting peak fuel sheath and pressure tube temperatures due to fuel heat up shall be within the acceptable limits to preclude fuel defect or fuel channel defects.Thermalhydraulic circuit conditions were obtained using a CATHENA model for the primary side of HTS (drained to a certain level), an ECC system model and a system model for SDCS. A single channel model was developed in GOTHIC code for the fuel assessment analysis. (author)

  1. Final report on LDRD project ''proliferation-resistant fuel cycles''

    Brown, N W; Hassberger, J A.

    1999-01-01

    This report provides a summary of LDRD work completed during 1997 and 1998 to develop the ideas and concepts that lead to the Secure, Transportable, Autonomous Reactor (STAR) program proposals to the DOE Nuclear Energy Research Initiative (NERI). The STAR program consists of a team of three national laboratories (LLNL, ANL, and LANL), three universities, (UC Berkeley, TAMU, and MIT) and the Westinghouse Research Center. Based on the LLNL work and their own efforts on related work this team prepared and integrated a package of twelve proposals that will carry the LDRD work outlined here into the next phase of development. We are proposing to develop a new nuclear system that meets stringent requirements for a high degree of safety and proliferation resistance, and also deals directly with the related nuclear waste and spent fuel management issues

  2. Final Environmental Assessment for the California Space Center at Vandenberg Air Force Base, California

    2010-06-02

    rooted , mesophylic plant species that Chapter 3. Affected Environment Final Environmental Assessment - California Space Center, Vandenberg Air...Chapter 3. Affected Environment 3-12 Final Environmental Assessment - California Space Center, Vandenberg Air Force Base the root and debris zone of the...protruding objects, slippery soils or mud, and biological hazards including vegetation (i.e. poison oak and stinging nettle ), animals (i.e. insects

  3. ClearFuels-Rentech Integrated Biorefinery Final Report

    Pearson, Joshua [Project Director

    2014-02-26

    The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

  4. Fuel utilization improvements in a once-through PWR fuel cycle. Final report on Task 6

    Dabby, D.

    1979-06-01

    In studying the position of the United States Department of Energy, Non-proliferation Alternative Systems Assessment Program, this report determines the uranium saving associated with various improvement concepts applicable to a once-through fuel cycle of a standard four-loop Westinghouse Pressurized Water Reactor. Increased discharged fuel burnup from 33,000 to 45,000 MWD/MTM could achieve a 12% U 3 O 8 saving by 1990. Improved fuel management schemes combined with coastdown to 60% power, could result in U 3 O 8 savings of 6%

  5. LMFBR fuel analysis. Task A: oxide fuel dynamics. Final report, October 1977--September 1978

    Dhir, V.K.; Frank, M.; Kastenberg, W.E.; McKone, T.E.

    1979-03-01

    Three aspects of LMFBR safety are discussed. The first concerns the potential reactivity effects of whole core fuel motion prior to pin failure in low ramp rate transient overpower accidents. The second concerns the effects of flow blockages following pin failure on the coolability of a core following an unprotected overpower transient. The third aspect concerns the safety related implications of using thorium based fuels in LMFBR's

  6. Joint Maneuver Test Range on Eglin Air Force Base, Florida Final Environmental Assessment

    2009-12-14

    ir Force B ase, Florida Page 3-2 Final E nvironm ental A ssessm ent A ffected E nvironm ent W ater R esources Figure 3-1. Physical and...nvironm ent W ater R esources Figure 3-2. Physical and Biological Resources Within Range B-9 Existing Components 14. Hills!Qoss Slope Legend --Creek

  7. SP-100 coated-particle fuel development. Phase I. Final report

    1983-03-01

    This document is the final report of Phase I of the SP-100 Coated-Particle Fuel Development Program conducted by GA Technologies Inc. for the US Department of Energy under contract DE-AT03-82SF11690. The general objective of the study conducted between September and December 1982 was to evaluate coated-particle type fuel as an alternate or backup fuel to the UO 2 tile-and-fin arrangement currently incorporated into the reference design of the SP-100 reactor core. This report presents and discusses the following topics in the order listed: the need for an alternative fuel for the SP-100 nuclear reactor; an abbreviated description of the reference and coated-particle fuel module concepts; the bases and results of the study and analysis leading to the preliminary design of a coated particle suitable for the SP-100 space power reactor; incorporation of the fuel particles into compacts and heat-pipe-cooled modules; initial efforts and plans to fabricate coated-particle fuel and fuel compacts; the design and performance of the proposed alternative core relative that of the reference fuel; and a summary of critical issues and conclusions consistent with the level of effort and duration of the study

  8. Final summary report of fuel-dynamics tests H2 and E4

    Doerner, R.C.; Rothman, A.B.; De Volpi, A.; Dickerman, C.E.; Deitrich, L.W; Stahl, D.; Murphy, W.F.

    1976-02-01

    Results of two failure experiments using LMFBR-type fuel during simulated unprotected transient overpower accidents are reported and analyzed. In both experiments, a single fresh fuel pin in a Mark-IIA loop was subjected to a temperature-limited, step-reactivity irradiation in the TREAT reactor. Total energy was 490 MJ in Test H2 and 690 MJ in Test E4. Except for their timing, the sequence of events in the failure scenario was the same for both tests. Local coolant boiling began 25-50 msec before failure. Significant upward fuel flow in the center of the pin started as early as 100 msec before cladding failure. Cladding failure was due to melting after contact with molten fuel and occurred at the top of the fuel column. Formation of an outlet flow-channel blockage began about 10 msec after failure and was complete by 50 msec. Inlet blockage began later and was less extensive. No significant amount of fuel sweepout was observed. Fuel remains separated into a small group of 50-1000-μm fragments and a macroscopic group of chunks and clinkers. The final distribution of fuel remains may have resulted from a delayed fuel/steel interaction in the inlet region

  9. Intergovernmental Advanced Stationary PEM Fuel Cell System Demonstration Final Report

    Rich Chartrand

    2011-08-31

    efficiency and reducing costs of PEMFC based power systems using LPG fuel and continues to makes steps towards meeting DOE's targets. Plug Power would like to thank DOE for their support of this program.

  10. Micro solid oxide fuel cell on the chip. Final report

    Stutz, M.; Hotz, N.; Bieri, N.; Poulikakos, D.

    2006-07-01

    The aim of this project is the numerical and experimental investigation of hydrocarbon-to-syngas reforming in micro reformers for incorporation into an entire micro fuel cell system. Numerical simulations are used to achieve deeper understanding of several determining aspects in such a micro reformer. These insights are used to optimize the reforming performance by proper choice of operational and geometrical parameters of a reformer. These numerical results are continued by comprehensive experimental studies. In the first chapter, the effect of wall conduction of a tubular methane micro reformer is investigated numerically. Methane is used as the representative hydrocarbon because its detailed surface reaction mechanism is known. It is found that the axial wall conduction can strongly influence the performance of the microreactor and should not be neglected without a careful a priori investigation of its impact. In the second chapter, the effect of the catalyst amount and reactor geometry on the reforming process was investigated. It was found that the hydrogen selectivity changes significantly with varying catalyst loading. Thus, the reaction path leading to higher hydrogen production becomes more important by increasing the catalyst surface site density on the active surface. Another unexpected result is the presence of optimum channel geometry and optimum catalyst amount. In the third chapter of this project, the capability of flame-made Rh/Ce{sub 0.5}Zr{sub 0.5}O{sub 2} nanoparticles catalyzing the reforming of butane to H{sub 2}- and CO-rich syngas was investigated experimentally in a packed bed reactor. The main goal of this study was the efficient reforming of butane at temperatures between 500 and 600 {sup o}C for a micro intermediate-temperature SOFC system. Our results showed that Rh/Ce{sub 0.5}Zr{sub 0.5}O{sub 2} nanoparticles proved to be a very promising material for butane-to-syngas reforming with complete butane conversion and a hydrogen yield of 77

  11. Site selection - siting of the final repository for spent nuclear fuel

    2011-03-01

    SKB has selected Forsmark as the site for the final repository for spent nuclear fuel. The site selection is the end result of an extensive siting process that began in the early 1990s. The strategy and plan for the work was based on experience from investigations and development work over a period of more than ten years prior to then. This document describes the siting work and SKB's choice of site for the final repository. It also presents the information on which the choice was based and the reasons for the decisions made along the way. The document comprises Appendix PV to applications under the Nuclear Activities Act and the Environmental Code for licences to build and operate an encapsulation plant adjacent to the central interim storage facility for spent nuclear fuel in Oskarshamn, and to build and operate a final repository for spent nuclear fuel in Forsmark in Oesthammar Municipality

  12. Site selection - siting of the final repository for spent nuclear fuel

    2011-03-15

    SKB has selected Forsmark as the site for the final repository for spent nuclear fuel. The site selection is the end result of an extensive siting process that began in the early 1990s. The strategy and plan for the work was based on experience from investigations and development work over a period of more than ten years prior to then. This document describes the siting work and SKB's choice of site for the final repository. It also presents the information on which the choice was based and the reasons for the decisions made along the way. The document comprises Appendix PV to applications under the Nuclear Activities Act and the Environmental Code for licences to build and operate an encapsulation plant adjacent to the central interim storage facility for spent nuclear fuel in Oskarshamn, and to build and operate a final repository for spent nuclear fuel in Forsmark in Oesthammar Municipality

  13. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    2011-07-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  14. Environmental Impact Statement. March 2011. Interim storage, encapsulation and final disposal of spent nuclear fuel

    2011-01-01

    An Environmental Impact Statement (EIS) shall be prepared and submitted along with applications for permissibility and a licence under the Environmental Code and a licence under the Nuclear Activities Act for new nuclear facilities. This Environmental Impact Statement has been prepared by Svensk Kaernbraenslehantering AB (the Swedish Nuclear Fuel and Waste Management Co, SKB) to be included in the licence applications for continued operation of Clab (central interim storage facility for spent nuclear fuel) in Simpevarp in Oskarshamn Municipality and construction and operation of facilities for encapsulation (integrated with Clab) and final disposal of spent nuclear fuel in Forsmark in Oesthammar Municipality

  15. Advanced Fuel Cycle Initiative University Fellowship Program. Final Progress Report

    Dixon, Cathy

    2012-01-01

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missions in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.

  16. LMFBR fuel analysis. Task A: oxide fuel dynamics. Final report, July 1, 1975--September 30, 1976

    Dhir, V.K.; Hauss, B.; Kastenberg, W.E.; Saqui, R.; Sun, Y.H.; Wong, K.

    1976-11-01

    The report summarizes the results of studies conducted in support of the U.S. Nuclear Regulatory Commission's review of the Preliminary Safety Analysis Report for the Clinch River Breeder Reactor. In particular it deals with three aspects of the unprotected transient overpower accident. The first aspect is the response of the Clinch River Breeder Reactor to low reactivity insertion rates. Second, the investigation of a new method for computing the time, place and mode of fuel pin failure is studied. Lastly, the question of post-failure, fuel freezing, and plate-out is addressed. Several areas of uncertainty in the analysis of these accidents is also discussed

  17. Quantify and improve PEM fuel cell durability. Final report

    Grahl-Madsen, L.; Odgaard, M.; Munksgaard Nielsen, R. (IRD Fuel Cell A/S, Svendborg (Denmark)); Li, Q.; Jensen, Jens Oluf (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Andersen, Shuang Ma; Speder, J.; Skou, E. (Syddansk Univ. (SDU), Odense (Denmark))

    2010-07-01

    The aim of the present project is to systematically quantify and improve the durability of the PEM FC including the following three PEM FC variants: LT PEM FC, DMFC, and HT PEM FC. Different factors influencing dissolution properties of noble metal catalyst platinum and platinum-ruthenium alloy has been studied. The dissolution was found to increase by increasing the CV cycle upper potential limit, number of potential cycles, solution acidity, oxygen partial pressure, involvement of chloride, and temperature. Ruthenium was found to deteriorate ten (10) times faster than platinum catalyst; and carbon supported catalyst (Pt: 20%, Ru: up to 100%) deteriorate ten (10) times faster than non-supported catalyst (Pt: 2%, Ru: 30%) at the same condition. Loss of sulphonic acid groups and fluoride from perfluorinated sulfonic acid membrane was confirmed by different techniques, which locally leads to loss of acidity, and consequently enhances dissolution of noble metal catalyst. Degradation of Nafion ionomer in the electrode was enhanced by noble metal catalyst and the thermal decomposition properties has synergetic effect with carbon degradation. Hydrophobicity of GDL and electrode on GDL were found to degrade e.g. radical attack, oxidation, and physical wear out. The very top micro surface structure turned out to be responsible for wetting property after chemical ageing. Optimal catalyst and ionomer ratio is also reflected in contact angle value, which can be understood in terms of catalyst/carbon - ionomer affinity and layered structure. Long-term tested and 'virgin' LT PEM MEAs have been characterised with respect to SEM, TEM, EDS, and XRD. Both failed and well-functioning MEAs have been characterised. The Post Mortem analysis has shown and quantified degradation mechanisms like catalyst growth and carbon corrosion. Furthermore, the effect of fuel starvation was shown by pronounced Ru-catalyst band within the membrane. The catalyst coarsening observed after

  18. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    1978-01-01

    The report gives a general summary of the Swedish KBS-project on management and disposal of vitrified reprocessed waste. Its final aim is to demostrate that the means of processing and managing power reactor waste in an absolutely safe way, as stipulated in the Swedish so called Conditions Act, already exist. Chapters on Storage facility for spent fuel, Intermidiate storage of reprocessed waste, Geology, Final repository, Transportation, Protection, and Siting. (L.E.)

  19. Interagency task force on the health effects of ionizing radiation. final report

    1979-06-01

    This is the final report of the task force and incorporates the findings and recommendations of six smaller work groups, each with a more specific focus; i.e., science, privacy, care and benefits, exposure reduction, public information, and institutional arrangements. A research agenda that could provide some answers to questions about the effects of low-level radiation is proposed, along with recommendations to facilitate research. A public information program is outlined. Recommendations are advanced to improve systems that deliver care and benefits to those who may have been injured by exposure to radiation, and proposals for steps that might reduce unnecessary radiation exposure in the future are identified. The task force also recommends measures to institutionalize the interagency cooperation that characterized the task force. Three tables and one figure show the collective estimates of the U.S. general population, Federal research financing, cancer linked to radiation in particular populations, and a general dose-response model

  20. Spent fuel management strategies in eight countries and applicability to Sweden. Final report

    1986-01-01

    The spent fuel management activities described in volume 1 are compared in three areas. The first section summarizes the spent fuel management options being followed in each country and compares those options with regard to cost, environmental impact and public acceptability. Next section reviews and compares national policies on nuclear power, spent fuel management and high-level waste disposal and assesses their impact on the development and licensing of nuclear power plants. The third section compares the regulatory requirements affecting spent fuel managementin terms of their overall spirit and characteristics and in terms of the responsibilities of the utilities and the regulatory authorities. Finally, the last section addresses the applicability to Sweden of the findings from these comparisons, focusing on cost efficiency, health and safety, environmental impact, public acceptance and licensing procedures

  1. Effects of fuel Lewis number on localised forced ignition of turbulent homogeneous mixtures: A numerical investigation

    Dipal Patel

    2016-09-01

    Full Text Available The influences of fuel Lewis number LeF (ranging from 0.8 to 1.2 on localised forced ignition and early stages of combustion of stoichiometric and fuel-lean homogeneous mixtures have been analysed using simple chemistry three-dimensional compressible direct numerical simulations for different values of root-mean-square velocity fluctuation and the energy deposition characteristics (i.e. characteristic width and the duration of energy deposition by the ignitor. The localised forced ignition is modelled using a source term in the energy transport equation, which deposits energy in a Gaussian manner from the centre of the ignitor over a stipulated period of time. The fuel Lewis number LeF has been found to have significant influences on the extent of burning of stoichiometric and fuel-lean homogeneous mixtures. It has been shown that the width of ignition energy deposition and the duration over which the ignition energy is deposited have significant influences on the success of ignition and subsequent flame propagation. An increase in the width of ignition energy deposition and the duration of energy deposition for a given amount of ignition energy have been found to have detrimental effects on the ignition event, which may ultimately lead to misfire. For a given value of u' (LeF, the rate of heat transfer from the hot gas kernel increases with increasing LeF (u', which in turn leads to a reduction in the extent of overall burning for both stoichiometric and fuel-lean homogeneous mixtures but the detrimental effects of high values of u' on localised forced ignition are particularly prevalent for fuel-lean mixtures. Detailed physical explanations have been provided for the observed LeF,u' and energy deposition characteristics effects.

  2. Safeguards for final disposal of spent nuclear fuel. Methods and technologies for the Olkiluoto site

    Okko, O.

    2003-05-01

    The final disposal of the nuclear material shall introduce new safeguards concerns which have not been addressed previously in IAEA safeguards approaches for spent fuel. The encapsulation plant to be built at the site will be the final opportunity for verification of spent fuel assemblies prior to their transfer to the geological repository. Moreover, additional safety and safeguards measures are considered for the underground repository. Integrated safeguards verification systems will also concentrate on environmental monitoring to observe unannounced activities related to possible diversion schemes at the repository site. The final disposal of spent nuclear fuel in geological formation will begin in Finland within 10 years. After the geological site investigations and according to legal decision made in 2001, the final repository of the spent nuclear fuel shall be located at the Olkiluoto site in Eurajoki. The next phase of site investigations contains the construction of an underground facility, called ONKALO, for rock characterisation purposes. The excavation of the ONKALO is scheduled to start in 2004. Later on, the ONKALO may form a part of the final repository. The plans to construct the underground facility for nuclear material signify that the first safeguards measures, e.g. baseline mapping of the site area, need to take prior to the excavation phase. In order to support the development and implementation of the regulatory control of the final disposal programme, STUK established an independent expert group, LOSKA. The group should support the STUK in the development of the technical safeguards requirements, in the implementation of the safeguards and in the evaluation of the plans of the facility operator. This publication includes four background reports produced by this group. The first of these 'NDA verification of spent fuel, monitoring of disposal canisters, interaction of the safeguards and safety issues in the final disposal' describes the new

  3. The production of fuels and chemicals from food processing wastes & cellulosics. Final research report

    Dale, M.C.; Okos, M.; Burgos, N. [and others

    1997-06-15

    High strength food wastes of about 15-20 billion pounds solids are produced annually by US food producers. Low strength food wastes of 5-10 billion pounds/yr. are produced. Estimates of the various components of these waste streams are shown in Table 1. Waste paper/lignocellulosic crops could produce 2 to 5 billion gallons of ethanol per year or other valuable chemicals. Current oil imports cost the US about $60 billion dollars/yr. in out-going balance of trade costs. Many organic chemicals that are currently derived from petroleum can be produced through fermentation processes. Petroleum based processes have been preferred over biotechnology processes because they were typically cheaper, easier, and more efficient. The technologies developed during the course of this project are designed to allow fermentation based chemicals and fuels to compete favorably with petroleum based chemicals. Our goals in this project have been to: (1) develop continuous fermentation processes as compared to batch operations; (2) combine separation of the product with the fermentation, thus accomplishing the twin goals of achieving a purified product from a fermentation broth and speeding the conversion of substrate to product in the fermentation broth; (3) utilize food or cellulosic waste streams which pose a current cost or disposal problem as compared to high cost grains or sugar substrates; (4) develop low energy recovery methods for fermentation products; and finally (5) demonstrate successful lab scale technologies on a pilot/production scale and try to commercialize the processes. The scale of the wastes force consideration of {open_quotes}bulk commodity{close_quotes} type products if a high fraction of the wastes are to be utilized.

  4. Spent fuel stability under repository conditions - final report of the european project

    Poinssot, Ch.; Ferry, C.; Kelm, M.; Cavedon, J.M.; Corbel, C.; Jegou, Ch.; Lovera, P.; Miserque, F.; Poulesquen, A.; Grambow, B.; Andriambololona, Z.; Martinez-Esparza, A.; Kelm, M.; Loida, A.; Rondinella, V.; Wegen, D.; Spahiu, K.; Johnson, L.; Cachoir, Ch.; Lemmens, K.; Quinones, J.; Bruno, J.; Christensen, H.; Grambow, B.; Pablo, J. de

    2005-01-01

    This report is the final report of the European Project 'Spent Fuel Stability under Repository Conditions' (FIKW-CT-2001-00192 SFS) funded by the European Commission from Nov.2000 to Oct.2004. Gathering the work performed by 13 partners from 6 countries, it aims to specifically focus on the spent nuclear fuel long term alteration in deep repository and the subsequent radionuclides release rate as a function of time. This report synthesised the wide experimental work performed within this project and enlightens the major outcomes, which can be summarised as follow: - A new model for defining the Instant Release Fraction was developed in order to consider the potential fuel evolution before the water penetrates the canister. Quantitative assessment has been produced and shows a significant contribution to the long term dose; - Based on new experimental data, kinetic radiolytic scheme have been upgraded and are used to determine the amount of oxidants produced at the fuel/water interface; - The existence of a dose threshold below which the water radiolysis does not influence the fuel alteration has been demonstrated and occurs between 3.5 and 33 MBq.g UO21. Above the threshold, the fuel alteration rates is directly related to the dose rate. - Hydrogen was experimentally demonstrated to be an efficient oxidants scavenger preventing therefore the fuel oxidation. Molecular mechanism still need to be understood. - Finally, a new Matrix Alteration Model integrating most of the SFS results (apart of the hydrogen effect) has been developed and used to assess the fuel long tern stability in representative conditions of deep repository in salt, clay-rock and granite. The breadth of the results and the significance of the conclusions testify of the success of the collaboration within the project. (authors)

  5. Fuel safety criteria technical review - Results of OECD/CSNI/PWG2 Task Force on Fuel Safety Criteria

    Hollasky, N.; Valtonen, K.; Hache, G.; Gross, H.; Bakker, K.; Recio, M.; Bart, G.; Zimmermann, M.; Van Doesburg, W.; Killeen, J.; Meyer, R.O.; Speis, T.

    2000-01-01

    With the advent of advanced fuel and core designs, the adoption of more aggressive operational modes and the implementation of more accurate (best estimate or statistical) design and analysis methods, there is a concern if safety margins have remained adequate. Most - if not all - of the currently existing safety criteria were established during the 60's and early 70's, and verified against experiments with fuel that was available at that time, mostly with unirradiated specimens. Verification was of course performed as designs progressed in later years, however mostly with the aim to be able to prove that these designs adequately complied with existing criteria, and not to establish new limits. The OECD/CSNI/PWG2 Task Force on Fuel Safety Criteria (TFFSC) was therefore given the mandate to technically review the existing fuel safety criteria, focusing on the 'new design' elements (new fuel and core design, cladding materials, manufacturing processes, high burnup, MOX, etc.) introduced by the industry. It should also identify if additional efforts may be required (experimental, analytical) to ensure that the basis for fuel safety criteria is adequate to address the relevant safety issues. In this report, fuel-related criteria are discussed without attempting to categorize them according to event type or risk significance. For each of these 20 criteria, we present a brief description of the criterion as it is used in several applications along with the rationale for having such a criterion. New design elements, such as different cladding materials, higher burnup, and the use of MOX fuels, can affect fuel-related margins and, in some cases, the criteria themselves. Some of the more important effects are mentioned in order to indicate whether the criteria need to be re-evaluated. The discussion may not cover all possible effects, but should be sufficient to identify those criteria that need to be addressed. A summary of these discussions is given in Section 7. As part

  6. Forced-convection boiling tests performed in parallel simulated LMR fuel assemblies

    Rose, S.D.; Carbajo, J.J.; Levin, A.E.; Lloyd, D.B.; Montgomery, B.H.; Wantland, J.L.

    1985-01-01

    Forced-convection tests have been carried out using parallel simulated Liquid Metal Reactor fuel assemblies in an engineering-scale sodium loop, the Thermal-Hydraulic Out-of-Reactor Safety facility. The tests, performed under single- and two-phase conditions, have shown that for low forced-convection flow there is significant flow augmentation by thermal convection, an important phenomenon under degraded shutdown heat removal conditions in an LMR. The power and flows required for boiling and dryout to occur are much higher than decay heat levels. The experimental evidence supports analytical results that heat removal from an LMR is possible with a degraded shutdown heat removal system

  7. Handling of spent nuclear fuel and final storage of nitrified high level reprocessing waste

    The following stages of handling and transport of the fuel on its way to final storage are dealt with in the report. 1) The spent nuclear fuel is stored at the power station or in the central fuel storage facility awaiting reprocessing. 2) The fuel is reprocessed, i.e. uranium, plutonium and waste are separated from each other. Reprocessing does not take place in Sweden. The highlevel waste is vitrified and can be sent back to Sweden in the 1990s. 3) Vitrified waste is stored for about 30 years awaiting deposition in the final repository. 4) The waste is encapsulated in highly durable materials to prevent groundwater from coming into contact with the waste glass while the radioactivity of the waste is still high. 5) The canisters are emplaced in a final repository which is built at a depth of 500 m in rock of low permeability. 6) All tunnels and shafts are filled with a mixture of clay and sand of low permeability. A detailed analysis of possible harmful effects resulting from normal acitivties and from conceivable accidents is presented in a special section. (author)

  8. Methods of characterization of salt formations in view of spent fuel final disposal

    Diaconu, Daniela; Balan, Valeriu; Mirion, Ilie

    2002-01-01

    Deep disposal in geological formations of salt, granite and clay seems to be at present the most proper and commonly adopted solution for final disposal of high-level radioactive wastes and spent fuel. Disposing such wastes represents the top-priority issue of the European research community in the field of nuclear power. Although seemingly premature for Romanian power system, the interest for final disposal of spent fuel is justified by the long duration implied by the studies targeting this objective. At the same time these studies represent the Romanian nuclear research contribution in the frame of the efforts of integration within the European research field. Although Romania has not made so far a decision favoring a given geological formation for the final disposal of spent fuel resulting from Cernavoda NPP, the most generally taken into consideration appears the salt formation. The final decision will be made following the evaluation of its performances to spent fuel disposal based on the values of the specific parameters of the geological formation. In order to supply the data required as input parameters in the codes of evaluation of the geological formation performances, the INR Pitesti initiated a package of modern and complex methodologies for such determinations. The studies developed so far followed up the special phenomenon of salt convergence, a phenomenon characteristic for only this kind of rock, as well as the radionuclide migration. These studies allow a better understanding of these processes of upmost importance for disposal's safety. The methods and the experimental installation designed and realized at INR Pitesti aimed at determination of thermal expansion coefficient, thermal conductivity, specific heat, which are all parameters of high specific interest for high level radioactive waste or spent fuel disposal. The paper presents the results of these studies as well as the methodologies, the experimental installations and the findings

  9. Getting ready for final disposal in Finland - Independent verification of spent fuel

    Tarvainen, Matti; Honkamaa, Tapani; Martikka, Elina; Varjoranta, Tero; Hautamaeki, Johanna; Tiitta, Antero

    2001-01-01

    Full text: Final disposal of spent nuclear fuel has been known to be the solution for the back-end of the fuel cycle in Finland already for a long time. This has allowed the State system for accounting and control (SSAC) to prepare for the safeguards requirements in time. The Finnish SSAC includes the operator, the State authority STUK and the parties above them e.g. the Ministry for Trade and Industry. Undisputed responsibility of the safe disposal of spent fuel is on the operator. The role of the safety authority STUK. is to set up detailed requirements, to inspect the operator plans and by using different tools of a quality audit approach to verity that the requirements will be complied with in practice. Responsibility on the safeguards issues is similar with the addition of the role of the regional and the international verification organizations represented by Euratom and the IAEA, As the competent safeguards authority, STUK has decided to maintain its active role also in the future. This will be reflected in the future in the increasing cooperation between the SSAC and the IAEA in the new safeguards activities related to the Additional Protocol. The role of Euratom will remain the same concerning the implementation of conventional safeguards. Based on its SSAC role, STUK has continued carrying out safeguards inspections including independent verification measurements on spent fuel also after joining the EU and Euratom safeguards in 1995. Verification of the operator declared data is the key verification element of safeguards. This will remain to be the case also under the Integrated Safeguards (IS) in the future. It is believed that the importance of high quality measurements will rather increase than decrease when the frequency of interim inspections will decrease. Maintaining the continuity of knowledge makes sense only when the knowledge is reliable and independently verified. One of the corner stones of the high quality of the Finnish SSAC activities is

  10. Impact forces on a core shroud of an excited PWR fuel assembly

    Collard, B.; Vallory, J. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    Seismic excitation of PWR internals may induce large motions of the fuel assemblies (FA). This could result in impact between assemblies or between assemblies and core shroud. Forces generated during these shocks are often the basis for the maximum design loads of the spacer grids and fuel rods. An experimental program has been conducted at the French Nuclear Reactor Directorate (CEA) to measure the impact forces of a reduced scale FA on the test section under different environmental conditions. Within the framework of the tests presented, the effect of the FA environment (air, stagnant water, water under flow) on the maximum impact forces measured at grid levels and on the energy dissipated during the shock is examined. A 'fluid cushioning' effect (dissipative) between the grids and the wall is sought. Experimental results show that the axial flow has a great influence on the impact forces. The greater the axial flow velocity is, the lower the impact forces are. The tests of impact of an assembly on a wall were analyzed compared to the tests carried out without impact. This analysis related on the measured forces of impact and the variation of the measured/computed total energy of the system. The whole of these tests in air and water shows that the 'fluid cushioning' effect required exists but is not significant. Thus the presence of water does not decrease the forces of impact, and does not amplify the quantity of energy dissipated during the shock. The fact that the 'fluid cushioning' effect is weak compared to more analytical tests probably comes from our 'not perfect' or 'realistic' conditions of tests which involve an angle between the grid and the wall at the shock moment.

  11. Impact forces on a core shroud of an excited PWR fuel assembly

    Collard, B.; Vallory, J.

    2001-01-01

    Seismic excitation of PWR internals may induce large motions of the fuel assemblies (FA). This could result in impact between assemblies or between assemblies and core shroud. Forces generated during these shocks are often the basis for the maximum design loads of the spacer grids and fuel rods. An experimental program has been conducted at the French Nuclear Reactor Directorate (CEA) to measure the impact forces of a reduced scale FA on the test section under different environmental conditions. Within the framework of the tests presented, the effect of the FA environment (air, stagnant water, water under flow) on the maximum impact forces measured at grid levels and on the energy dissipated during the shock is examined. A 'fluid cushioning' effect (dissipative) between the grids and the wall is sought. Experimental results show that the axial flow has a great influence on the impact forces. The greater the axial flow velocity is, the lower the impact forces are. The tests of impact of an assembly on a wall were analyzed compared to the tests carried out without impact. This analysis related on the measured forces of impact and the variation of the measured/computed total energy of the system. The whole of these tests in air and water shows that the 'fluid cushioning' effect required exists but is not significant. Thus the presence of water does not decrease the forces of impact, and does not amplify the quantity of energy dissipated during the shock. The fact that the 'fluid cushioning' effect is weak compared to more analytical tests probably comes from our 'not perfect' or 'realistic' conditions of tests which involve an angle between the grid and the wall at the shock moment

  12. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier; Klennert, Lindsay A.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno A.; Koch, Wolfgang; Pretzsch, Gunter Guido; Brucher, Wenzel; Steyskal, Michele D.

    2008-01-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO 2 , CeO 2 , plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and

  13. Characterisation and final disposal behaviour of theoria-based fuel kernels in aqueous phases

    Titov, M.

    2005-08-01

    Two high-temperature reactors (AVR and THTR) operated in Germany have produced about 1 million spent fuel elements. The nuclear fuel in these reactors consists mainly of thorium-uranium mixed oxides, but also pure uranium dioxide and carbide fuels were tested. One of the possible solutions of utilising spent HTR fuel is the direct disposal in deep geological formations. Under such circumstances, the properties of fuel kernels, and especially their leaching behaviour in aqueous phases, have to be investigated for safety assessments of the final repository. In the present work, unirradiated ThO 2 , (Th 0.906 ,U 0.094 )O 2 , (Th 0.834 ,U 0.166 )O 2 and UO 2 fuel kernels were investigated. The composition, crystal structure and surface of the kernels were investigated by traditional methods. Furthermore, a new method was developed for testing the mechanical properties of ceramic kernels. The method was successfully used for the examination of mechanical properties of oxide kernels and for monitoring their evolution during contact with aqueous phases. The leaching behaviour of thoria-based oxide kernels and powders was investigated in repository-relevant salt solutions, as well as in artificial leachates. The influence of different experimental parameters on the kernel leaching stability was investigated. It was shown that thoria-based fuel kernels possess high chemical stability and are indifferent to presence of oxidative and radiolytic species in solution. The dissolution rate of thoria-based materials is typically several orders of magnitude lower than of conventional UO 2 fuel kernels. The life time of a single intact (Th,U)O 2 kernel under aggressive conditions of salt repository was estimated as about hundred thousand years. The importance of grain boundary quality on the leaching stability was demonstrated. Numerical Monte Carlo simulations were performed in order to explain the results of leaching experiments. (orig.)

  14. NUFACTS-nuclear fuel cycle activity simulator: reference manual. Final report

    Triplett, M.B.; Waddell, J.D.; Breese, T.A.

    1978-01-01

    The Nuclear Fuel Cycle Activity Simulator (NUFACTS) is a package of FORTRAN subroutines which facilitate the simulation of a diversity of nuclear power growth scenarios. An approach to modeling the nuclear fuel cycle has been developed that is highly adaptive and capable of addressing a variety of problems. Being a simulation model rather than an optimization model, NUFACTS mimics the events and processes that are characteristic of the nuclear fuel cycle. This approach enables the model user to grasp the modeling approach rather quickly. Within this report descriptions of the model and its components are provided with several emphases. First, a discussion of modeling approach and basic assumptions is provided. Next, instructions are provided for generating data, inputting the data properly, and running the code. Finally, detailed descriptions of individual program element are given as an aid to modifying and extending the present capabilities

  15. Repeated soil application of organic waste amendments reduces draught force and fuel consumption for soil tillage

    Peltrea, Clément; Nyord, Tavs; Bruun, Sander

    2015-01-01

    Abstract Soil application of organic waste products (OWP) can maintain or increase soil organic carbon (SOC) content, which in turn could lead to increased porosity and potentially to reduced energy use for soil tillage. Only a few studies have addressed the effect of SOC content on draught force...... for soil tillage, and this still needs to be addressed for fields that receive diverse types of organic waste of urban, agricultural and agro-industrial origin. The objective of this study was to determine the effect of changes in SOC induced by repeated soil application of OWP on draught force for soil...... tillage and tractor fuel consumption. Draught force was measured for tillage with conventional spring tillage tines, as well as bulk density, soil texture and SOC content in the CRUCIAL field experiment, Denmark in which diverse types of OWP had been applied annually for 11 years. The OWP included...

  16. Long term fuel price elasticity: effects on mobility tool ownership and residential location choice - Final report

    Erath, A.; Axhausen, K. W.

    2010-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) examines the long-term effects of fuel price elasticity. The study analyses how mobility tool usage and ownership as well as residence location choice are affected by rising fuel costs. Based on econometric models, long-term fuel price elasticity is derived. The authors quote that the demand reactions to higher fuel prices mainly observed are the reduction of mileage and the consideration of smaller-engined and diesel-driven cars. As cars with natural gas powered engines and electric drives were hardly considered in the survey, the results of the natural gas model can, according to the authors, only serve as a trend. No stable model could be estimated for the demand and usage of electric cars. A literature overview is presented and the design of the survey is discussed, whereby socio-demographical variables and the effects of price and residence changes are discussed. Modelling of mobility tool factors and results obtained are looked at. Finally, residence choice factors are modelled and discussed. Several appendices complete the report.

  17. Final disposal of spent fuels and high activity waste: status and trends in the world

    Herscovich de Pahissa, Marta

    2007-01-01

    Geological disposal of spent nuclear fuel and high level waste from reprocessing, properly conditioned, is described. This issue is a major challenge related to radioactive waste management. Several options are analyzed, such as application of separation and transmutation to high level waste before final disposal; need of multinational repositories; a phased approach to deep geological disposal and long term surface storage. Bearing in mind this information, a future article will report the state of art in the world. (author) [es

  18. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    1978-01-01

    A summary of the planning of transportation and plant design in the Swedish KBS project on management and disposal reprocessed radioactive waste. It describes a transportation system, a central storage facility for used fuel elements, a plant for intermediate storage and encapsulation and a final repository for the vitrified waste. Accounts are given for the reprocessing and vitrification. The safety of the entire system is discussed

  19. Sensitivity of nuclear fuel-cycle cost to uncertainties in nuclear data. Final report

    Becker, M.; Harris, D.R.

    1980-11-01

    An improved capability for assessing the economic implications of uncertainties in nuclear data and methods on the power reactor fuel cycle was developed. This capability is applied to the sensitivity analysis of fuel-cycle cost with respect to changes in nuclear data and related computational methods. Broad group sensitivities for both a typical BWR and a PWR are determined under the assumption of a throwaway fuel cycle as well as for a scenario under which reprocessing is allowed. Particularly large dollar implications are found for the thermal and resonance cross sections of fissile and fertile materials. Sensitivities for the throwaway case are found to be significantly larger than for the recycle case. Constrained sensitivities obtained for cases in which information from critical experiments or other benchmarks is used in the design calculation to adjust a parameter such as anti ν are compared with unconstrained sensitivities. Sensitivities of various alternate fuel cycles were examined. These included the extended-burnup (18-month) LWR cycle, the mixed-oxide (plutonium) cycle, uranium-thorium and denatured uranium-thorium cycles, as well as CANDU-type reactor cycles. The importance of the thermal capture and fission cross sections of 239 Pu is shown to be very large in all cases. Detailed, energy dependent sensitivity profiles are provided for the thermal range (below 1.855 eV). Finally, sensitivity coefficients are combined with data uncertainties to determine the impact of such uncertainties on fuel-cycle cost parameters

  20. Study and modeling of fluctuating fluid forces exerted on fuel rods in pressurized water reactors

    Bhattacharjee, Saptarshi

    2016-01-01

    Flow-induced vibrations in a pressurized water reactor (PWR) core can cause fretting wear in the fuel rods. Due to friction, wear occurs at the contact locations between the spacer grid and the fuel rod. This could compromise the first safety barrier of the nuclear reactor by damaging the fuel rod cladding. In order to ensure the integrity of the cladding, it is necessary to know the random fluctuating forces acting on the rods. However, the spectra for these fluid forces are not well known. The goal of this PhD thesis was to use simple geometrical elements to check the reproducibility of realistic pressurized water reactor spacer grids. As a first step, large eddy simulations were performed on a concentric annular pipe for different mesh refinements using the CFD code Trio CFD (previously Trio U) developed by CEA. A mesh sensitivity study was performed to obtain an acceptable mesh for reproducing standard literature results. This information on mesh resolution was used when carrying out simulations using various geometric obstacles inside the pipe, namely, mixing vanes, circular spacer grid and a combination of square spacer grid with mixing vanes. The last of the three configurations is the closest to a realistic PWR fuel assembly. Structured mesh was generated for the annular pipe case and circular grid case. An innovative hybrid mesh was used for the two remaining cases of the mixing vanes and the square grid: keeping unstructured mesh around the obstacles and structured mesh in the rest of the domain. The inner wall of the domain was representative of the fuel rod cladding. Both hydraulic and wall pressure characteristics were analyzed for each case. The results for the square grid case were found to be an approximate combination of the mixing vane case and circular grid case. Simulation results were compared with experiments performed at CEA Cadarache. Some preliminary comparisons were also made with classical semi-empirical models. (author) [fr

  1. Material control in nuclear fuel fabrication facilities. Part I. Fuel descriptions and fabrication processes, P.O. 1236909 Final report

    Borgonovi, G.M.; McCartin, T.J.; Miller, C.L.

    1978-12-01

    The report presents information on foreign nuclear fuel fabrication facilities. Fuel descriptions and fuel fabrication information for three basic reactor types are presented: The information presented for LWRs assumes that Pu--U Mixed Oxide Fuel (MOX) will be used as fuel

  2. High temperature reactor: Driving force to convert CO2 to fuel - HTR2008-58132

    McCormick, J. L.

    2008-01-01

    The rapidly increasing cost of petroleum products and uncertainty of long-term supply have prompted the U.S. military to aggressively pursue production of alternative fuels (synfuels) such as coal-to-liquids (CTL). U.S. Air Force is particularly active in this effort while the entire military is involved in simultaneously developing fuel specifications for alternative fuels that enable a single fuel for the entire battle space; all ground vehicles, aircraft and fuel cells. By limiting its focus on coal, tar sands and oil shale resources, the military risks violating federal law which requires the use of synfuels that have life cycle greenhouse gas emissions less than or equal to emissions from conventional petroleum fuels. A climate-friendly option would use a high temperature nuclear reactor to split water. The hydrogen (H 2 ) would be used in the reverse water gas shift (RWGS) to react with carbon dioxide (CO 2 ) to produce carbon monoxide (CO) and water. The oxygen (O 2 ) would be fed into a supercritical (SC) coal furnace. The flue gas CO 2 emissions would be stripped of impurities before reacting with H 2 in a RWGS process. Resultant carbon monoxide (CO) is fed, with additional H2, (extra H 2 needed to adjust the stoichiometry: 2 moles H 2 to one mole CO) into a conventional Fischer-Tropsch synthesis (FTS) to produce a heavy wax which is cracked and isomerized and refined to Jet Propulsion 8 (JP-8) and Jet Propulsion 5 (JP-5) fuels. The entire process offers valuable carbon-offsets and multiple products that contribute to lower syn-fuel costs and to comply with the federal limitation imposed on syn-fuel purchases. While the entire process is not commercially available, component parts are being researched; their physical and chemical properties understood and some are state-of-the-art technologies. An international consortium should complete physical, chemical and economic flow sheets to determine the feasibility of this concept that, if pursued, has broad

  3. Site-selection studies for final disposal of spent fuel in Finland

    Vuorela, P.; Aeikaes, T.

    1984-02-01

    In the management of waste by the Industrial Power Company Ltd. (TVO) preparations are being made for the final disposal of unprocessed spent fuel into the Finnish bedrock. The site selection program will advance in three phases. The final disposal site must be made at the latest by the end of the year 2000, in accordance with a decision laid down by the Finnish Government. In the first phase, 1983-85, the main object is to find homogeneous stable bedrock blocks surrounded by fracture zones located at a safe distance from the planned disposal area. The work usually starts with a regional structural analysis of mosaics of Landsat-1 winter and summer imagery. Next an assortment of different maps, which cover the whole country, is used. Technical methods for geological and hydrogeological site investigations are being developed during the very first phase of the studies, and a borehole 1000 meters deep will be made in southwestern Finland. Studies for the final disposal of spent fuel or high-level reprocessing waste have been made since 1974 in Finland. General suitability studies of the bedrock have been going on since 1977. The present results indicate that suitable investigation areas for the final disposal of highly active waste can be found in Finland

  4. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual; FINAL

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B-Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  5. Treatment and final storage of radioactive wastes from the nuclear fuel cycle

    Krause, H [Kernforschungszentrum Karlsruhe (Germany, F.R.)

    1977-05-01

    Types, amounts and activity concentrations of the radioactive wastes arising from the different sections of the fuel cycle are described as well as the methods of their treatment and final disposal. By conversion to glass products, highly active fission product solutions can be transferred into a form well suited for final disposal. Low and medium level waste waters are purified so far that safe discharge or reuse is possible. The concentrates thus produced are incorporated into concrete or bitumen. Baling lends itself for treatment of non-combustible solid wastes. Combustible wastes can be incinerated, the residues are incorporated into concrete. For final storage of the conditioned wastes, salt formations in the deep underground are chosen in the Federal Republic of Germany. They offer a series of favourable preconditions for this purpose and guarantee the isolation of the radionuclides from the biocycle over secular periods of time.

  6. 75 FR 59622 - Supplemental Determination for Renewable Fuels Produced Under the Final RFS2 Program From Canola Oil

    2010-09-28

    ..., heating oil or jet fuel). In addition, this rule includes a new regulatory provision establishing a... work would be completed through a supplemental final rulemaking process. This supplemental final rule... the final RFS2 rule, EPA will revisit our lifecycle analyses in the future as new information becomes...

  7. Development of an international safeguards approach to the final disposal of spent fuel in geological repositories

    Murphey, W.M.; Moran, B.W.; Fattah, A.

    1996-01-01

    The International Atomic Energy Agency (IAEA) is currently pursuing development of an international safeguards approach for the final disposal of spent fuel in geological repositories through consultants meetings and through the Program for Development of Safeguards for Final Disposal of Spent Fuel in Geological Repositories (SAGOR). The consultants meetings provide policy guidance to IAEA; SAGOR recommends effective approaches that can be efficiently implemented by IAEA. The SAGOR program, which is a collaboration of eight Member State Support Programs (MSSPs), was initiated in July 1994 and has identified 15 activities in each of three areas (i.e. conditioning facilities, active repositories, and closed repositories) that must be performed to ensure an efficient, yet effective safeguards approach. Two consultants meetings have been held: the first in May 1991 and the last in November 1995. For nuclear materials emplaced in a geological repository, the safeguards objectives were defined to be (1) to detect the diversion of spent fuel, whether concealed or unconcealed, from the repository and (2) to detect undeclared activities of safeguards concern (e.g., tunneling, underground reprocessing, or substitution in containers)

  8. Evaluation of friction forces between control bars and guide tubes of CAREM fuel element

    Ghiselli, Alberto M.; Fiori, Jose M.; Yedros, Pablo A.

    2003-01-01

    The design of the MSAC (Mecanismo del Sistema de ajuste y control, Mechanism of the Adjustment and control system, MACS) for CAREM reactor shall consider all loads that the reactor shall support during its operation. Several charges are originated by friction forces produced on contact points of the control Bars/Guide tubes assembly against other components. A test facility was designed and manufactured for the determination of friction components and the damping characteristics of the assembly formed by guide tubes fuel element, the control bars and the guide of the bar of the MACS. In this work a description of the test performed and the results obtained is presented. (author)

  9. Phase 1A Final Report for the AREVA Team Enhanced Accident Tolerant Fuels Concepts

    Morrell, Mike E. [AREVA Federal Services LLC, Charlotte, NC (United States)

    2015-03-19

    In response to the Department of Energy (DOE) funded initiative to develop and deploy lead fuel assemblies (LFAs) of Enhanced Accident Tolerant Fuel (EATF) into a US reactor within 10 years, AREVA put together a team to develop promising technologies for improved fuel performance during off normal operations. This team consisted of the University of Florida (UF) and the University of Wisconsin (UW), Savannah River National Laboratory (SRNL), Duke Energy and Tennessee Valley Authority (TVA). This team brought broad experience and expertise to bear on EATF development. AREVA has been designing; manufacturing and testing nuclear fuel for over 50 years and is one of the 3 large international companies supplying fuel to the nuclear industry. The university and National Laboratory team members brought expertise in nuclear fuel concepts and materials development. Duke and TVA brought practical utility operating experience. This report documents the results from the initial “discovery phase” where the team explored options for EATF concepts that provide enhanced accident tolerance for both Design Basis (DB) and Beyond Design Basis Events (BDB). The main driver for the concepts under development were that they could be implemented in a 10 year time frame and be economically viable and acceptable to the nuclear fuel marketplace. The economics of fuel design make this DOE funded project very important to the nuclear industry. Even incremental changes to an existing fuel design can cost in the range of $100M to implement through to LFAs. If this money is invested evenly over 10 years then it can take the fuel vendor several decades after the start of the project to recover their initial investment and reach a breakeven point on the initial investment. Step or radical changes to a fuel assembly design can cost upwards of $500M and will take even longer for the fuel vendor to recover their investment. With the projected lifetimes of the current generation of nuclear power

  10. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Klennert, Lindsay A.; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2008-03-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively

  11. Atomic force microscopy employed as the final imaging stage for soft x-ray contact microscopy

    Cotton, R.A.; Stead, A.D.; Ford, T.W.; Fletcher, J.H.

    1993-01-01

    Soft X-ray contact microscopy (SXCM) enables a high resolution image of a living biological specimen to be recorded in an X-ray sensitive photoresist at unity magnification. Until recently scanning electron microscopes (SEM) have been employed to obtain the final magnified image. Although this has been successful in producing many high resolution images, this method of viewing the resist has several disadvantages. Firstly, a metallic coating has to be applied to the resist surface to provide electrical conductivity, rendering further development of the resist impossible. Also, electron beam damage to the resist surface can occur, in addition to poor resolution and image quality. Atomic force microscopy (AFM) allows uncoated resists to be imaged at a superior resolution, without damage to the surface. The use of AFM is seen as a major advancement in SXCM. The advantages and disadvantages of the two technologies are discussed, with illustrations from recent studies of a wide variety of hydrated biological specimens imaged using SXCM

  12. Evaluation of the Field Performance of Residential Fuel Cells: Final Report

    Torrero, E.; McClelland, R.

    2004-05-01

    Distributed generation has attracted significant interest from rural electric cooperatives and their customers. Cooperatives have a particular nexus because of inherently low customer density, growth patterns at the end of long lines, and an influx of customers and high-tech industries seeking to diversify out of urban environments. Fuel cells are considered a particularly interesting DG candidate for these cooperatives because of their power quality, efficiency, and environmental benefits. The National Rural Electric Cooperative Association Cooperative Research Network residential fuel cell program demonstrated RFC power plants and assessed related technical and application issues. This final subcontract report is an assessment of the program's results. This 3-year program leveraged Department of Energy (DOE) and National Renewable Energy Laboratory (NREL) funding.

  13. Inventory of concepts for mixed diesel fuels containing renewable components. Final report

    Kronberg, B. [Inst. for Surface Chemistry, Stockholm (Sweden); Berg, R. [Befri Konsult, Solna (Sweden); Berg, J. [Svenska Lantmaennen/Agro Oil, Stockholm (Sweden)

    2000-08-01

    The present report has involved the assembly of two sub-reports, which have been put together to form this final report. Both of the sub-reports deal with the incorporation of ethanol in diesel fuels. The potential advantages are the decreased net emissions of carbon dioxide, due to the renewable nature of ethanol (if obtained from renewable raw materials), and the decrease of NO{sub x} emissions, due to the decreased combustion temperature. The first sub-report is a compilation of scientific articles and patents/patent applications regarding the possibility to blend ethanol into diesel to form a stable solution in the form of a so called microemulsion, with the aid of surfactants and/or co-solvents. The second sub-report briefly describes the test work, both in the laboratory and in field tests, that is being done in various countries, regarding the blending of ethanol into diesel fuel.

  14. Spent fuel management strategies in eight countries and applicability to Sweden. Final report

    1986-01-01

    International Energy Associates Limited (IEAL) undertook this study on behalf of Sweden's National Board for Spent Nuclear Fuel (SKN) from June to October 1986. The purpose of the project was to compare the programs and regulations for the management of spent fuel from nuclear power plants and disposal of high-level radioactive waste in eight countries: Belgium, Canada, the Federal Republic of Germany, France, Japan, Switzerland, the United Kingdom and the United States. This final report includes revisions requested by SKN upon review of the draft report dated in September 26, 1986. The study is presented in three volumes. Volume I (Section 2.0 of the report) consists of detailed country-specific reports on the policies, regulations and strategies for spent fuel and high-level waste management in each of the eight countries. The information contained in these country-specific reports was used as the basis for comparing the options in each country in terms of cost, environmental impact, and public acceptability, and for comparing the policies and regulatory requirements affecting these activities in each country. These comparisons are provided in Volume II (Section 3.0 of the report). Section 3.0 also includes a discussion of the applicability to Sweden of the strategies and policies in the eight countries studied. Finally, Volume III of the report (Section 4.0) presents the laws, regulations and other documents pertinent to spent fuel and high-level waste management in these countries. Descriptive summaries of the documents are provided in Section 4.0, a comparison guide to the documents themselves (the great majority of them in English) which are provided in 15 volumes of appendices

  15. Full-Length High-Temperature Severe Fuel Damage Test No. 5: Final safety analysis

    Lanning, D.D.; Lombardo, N.J.; Panisko, F.E.

    1993-09-01

    This report presents the final safety analysis for the preparation, conduct, and post-test discharge operation for the Full-Length High Temperature Experiment-5 (FLHT-5) to be conducted in the L-24 position of the National Research Universal (NRU) Reactor at Chalk River Nuclear Laboratories (CRNL), Ontario, Canada. The test is sponsored by an international group organized by the US Nuclear Regulatory Commission. The test is designed and conducted by staff from Pacific Northwest Laboratory with CRNL staff support. The test will study the consequences of loss-of-coolant and the progression of severe fuel damage

  16. Gothic simulation of single-channel fuel heatup following a loss of forced flow

    Chen, X-Q; Tahir, A. [NSS, Dept. of Thermal Hydraulics Analysis, Toronto, Ontario (Canada); Parlatan, Y. [Ontario Power Generation, NSATD, Pickering, Ontario (Canada); Kwee, M. [Bruce Power, NSASD, Toronto, Ontario (Canada)

    2011-07-01

    GOTHIC v7.2 was used to develop a computer model for the simulation of 28- and 37-element fuel heat-up at a loss of forced flow. The model has accounted for the non-uniformity of both axial and radial power distributions along the fuel channel for a typical CANDU reactor. In addition, the model has also accounted for the fuel rods, end-fittings, feeders and headers. Experimental test conditions for both 28- and 37-element bundles at either low or high powers were used for model validation. GOTHIC predictions of the rod and/or pressure-tube temperatures at a variety of test locations were compared with the corresponding experimental measurements. It is found that the numerical results agree well with the experimental measurements for most of the test locations. Results have also shown that the channel venting time is sensitive to the initial temperature distribution in the feeders and headers. An imposed temperature asymmetry at the beginning will cause the channel flow to vent earlier. (author)

  17. Determination of consumption biogenic solid fuels in the commercial sector, trade, services (tertiary sector). Final report

    Viehmann, Cornelia; Westerkamp, Tanja; Schwenker, Andre; Schenker, Marian; Thraen, Daniela; Lenz, Volker; Ebert, Marcel

    2012-01-01

    The policy has both national and European level ambitious program aimed at expansion of renewable energy and related to the reduction of greenhouse gas emissions. In the national action plan for renewable energy of the Federal Republic of Germany these goals are defined by 2020. The share of renewable energy in the provision of heat and cold should therefore rise from 6.6% to 15.5% of gross final energy consumption. According to the increasing importance of solar-thermal, near-surface and geothermal heat, the relative share of biomass is decreasing. However biomass makes with those listed in the national action plan with 79% an essential amount in regenerative heat market [BMU 2010]. For the pursuit of goals and reviews, the support measures and packages of measures which are initiated in this context, a regular and timely reporting on the development of the above objectives is mandatory. The diverse and growing reporting requirements such as in the EU directive on the promotion of renewable energy, require, however well-founded knowledge of the sector-specific energy consumption from renewable sources. While the data available for use of biogenic solid fuels in the sectors household and industry has improved significantly in recent years, for the sector commercial sector, trade, services (tertiary sector) reliable figures are still lacking. Against this background, the objective is to present study, in close cooperation with the Federal Environment Agency (UBA), the determination of the final energy consumption biogenic solid fuels in the tertiary sector in Germany for the year 2008. The basis is, in addition to the development of the current knowledge of the energy and heat consumption, the delimitation and characterization of the sector and the development of an extrapolation tools. The demand for this tool is its expandability and update possibility. From the industry-nonspecific and industry-specific input data can be derived, collecting for the extrapolation

  18. Female Reproductive Effects of Exposure to Jet Fuel at U.S. Air Force Bases

    1998-11-01

    first breath sample until the Monday morning ofyour final breath sample. Avoid self-service refueling of your vehicle or lawn mower this week (outside of...fuel the lawn mower and mow the lawn for her - Post-pone painting, spraying pesticides/insecticides or using solvents if she might be in the area and...U No U_ 2. In the PAST WEEK, that is, one week ago today, did you... a).. .use the self-service tank when refueling of your vehicle or lawn mower this

  19. SKB 91. Final disposal of spent nuclear fuel. Importance of the bedrock for safety

    1992-05-01

    The safety of a deep repository for spent nuclear fuel has been assessed in this report. The spent fuel is assumed to be encapsulated in a copper canister and deposited at a depth of 600 m in the bedrock. The primary purpose has been to shed light on the importance of the geological features of the site for the safety of a final repository. The assessment shows that the encapsulated fuel will, in all likelihood, be kept isolated from the groundwater for millions of years. This is considerably longer than the more than 100 000 years that are required in order for the toxicity of the waste to have declined to a level equivalent to that of rich uranium ores. However, in order to be able to study the role of the rock as a barrier to the dispersal of radioactive materials, calculations have been carried out under the assumption that waste canisters leak. The results show that the safety of a carefully designed repository is only affected to a small extent by the ability of the rock to retain the escaping radionuclides. The primary role of the rock is to provide stable mechanical and chemical conditions in the repository over a long period of time so that the function of the engineered barriers is not jeopardized. (187 refs.) (au)

  20. Urinary biomarkers of occupational jet fuel exposure among Air Force personnel.

    Smith, Kristen W; Proctor, Susan P; Ozonoff, A L; McClean, Michael D

    2012-01-01

    There is a potential for widespread occupational exposure to jet fuel among military and civilian personnel. Urinary metabolites of naphthalene have been suggested for use as short-term biomarkers of exposure to jet fuel (jet propulsion fuel 8 (JP8)). In this study, urinary biomarkers of JP8 were evaluated among US Air Force personnel. Personnel (n=24) were divided a priori into high, moderate, and low exposure groups. Pre- and post-shift urine samples were collected from each worker over three workdays and analyzed for metabolites of naphthalene (1- and 2-naphthol). Questionnaires and breathing-zone naphthalene samples were collected from each worker during the same workdays. Linear mixed-effects models were used to evaluate the exposure data. Post-shift levels of 1- and 2-naphthol varied significantly by a priori exposure group (levels in high group>moderate group>low group), and breathing-zone naphthalene was a significant predictor of post-shift levels of 1- and 2-naphthol, indicating that for every unit increase in breathing-zone naphthalene, there was an increase in naphthol levels. These results indicate that post-shift levels of urinary 1- and 2-naphthol reflect JP8 exposure during the work-shift and may be useful surrogates of JP8 exposure. Among the high exposed workers, significant job-related predictors of post-shift levels of 1- and 2-naphthol included entering the fuel tank, repairing leaks, direct skin contact with JP8, and not wearing gloves during the work-shift. The job-related predictors of 1- and 2-naphthol emphasize the importance of reducing inhalation and dermal exposure through the use of personal protective equipment while working in an environment with JP8.

  1. Final disposal of spent fuels and high activity waste: status and trends in the world. Part 2

    Herscovich de Pahissa, Marta

    2008-01-01

    The proper management of spent fuel arising from nuclear power production is a key issue for the sustainable development of nuclear energy. Some countries have adopted reprocessing of spent fuel and part of them has continued to develop and improve closed fuel cycle technologies; some other countries have adopted a direct final disposal. The objective in this article is to provide an update on the latest development in the world related with the geological disposal of spent nuclear fuel and high level wastes. (author) [es

  2. Comparison of radiative forcing impacts of the use of wood, peat, and fossil fuels

    Savolainen, I.; Hillebrand, K.; Nousiainen, I.; Sinisalo, J.

    1994-01-01

    The present study investigates the greenhouse impacts and the relevant time factors of the use of peat and wood for energy production and compares them with those of fossil fuels. Emissions and sinks of the whole energy production chain and subsequent use of the wood or peat production site are taken into account. The radiative forcing caused by energy production is used as a measure for the greenhouse impact. Economical considerations are not included. Radiative forcing is calculated for carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) emissions. The real emissions of energy production are calculated by subtracting the emissions of non-use from the emissions of energy production. All the emissions are given as a function of time, i.e. their evolution over time is taken into account. At this point the estimates for some emission developments are quite crude and should be considered exemplary. The studied energy production chains can be divided roughly into three groups, if the greenhouse impact caused by continuous energy production of hundred years is considered. In this case forest residues, planted stands and unused merchantable wood cause the least radiative forcing per unit of primary energy generated. Natural gas and peat from cultivated peatland form the middle group. According to the calculations coal and conventional peat cause the greatest greenhouse impact

  3. Interim Storage of Spent Nuclear Fuel before Final Disposal in Germany - Regulator's view

    Arens, G.; Goetz, Ch.; Geupel, Sandra; Gmal, B.; Mester, W.

    2014-01-01

    For spent nuclear fuel management in Germany the concept of dry interim storage in dual purpose casks before direct disposal is applied. The Federal Office for Radiation Protection (BfS) is the competent authority for licensing of interim storage facilities. The competent authority for surveillance of operation is the responsible authority of the respective federal state (Land). Currently operation licenses for storage facilities have been granted for a storage time of 40 years and are based on safety demonstrations for all safety issues as safe enclosure, shielding, sub-criticality and decay heat removal under consideration of operation conditions. In addition, transportability of the casks for the whole storage period has to be provided. Due to current delay in site selection and exploration of a disposal site, an extension of the storage time beyond 40 years could be needed. This will cause appropriate actions by the licensee and the competent authorities as well. A brief description of the regulatory base of licensing and surveillance of interim storage is given from the regulators view. Furthermore the current planning for final disposal of spent nuclear fuel and high level waste and its interconnections between storage and disposal concepts are shortly explained. Finally the relevant aspects for licensing of extended storage time beyond 40 years will be discussed. Current activities on this issue, which have been initiated by the Federal Government, will be addressed. On the regulatory side a review and amendment of the safety guideline for interim storage of spent fuel has been performed and the procedure of periodic safety review is being implemented. A guideline for implementing an ageing management programme is available in a draft version. Regarding safety of long term storage a study focussing on the identification and evaluation of long term effects as well as gaps of knowledge has been finished in 2010. A continuation and update is currently underway

  4. Final Environmental Assessment: To Relocate Air Force Explosive Ordnance Disposal Administrative Complex at Eglin Air Force Base

    2006-10-01

    Trips PM10E = .0022 * Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE...Air Force Base, Florida To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000 NOx (tons/yr) = NOxE * DPYII/2000

  5. Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05).

    Thornberg, Steven Michael; Coker, Eric Nicholas; Jarek, Russell L.; Steen, William Arthur

    2005-12-01

    qualitatively as well as the ETEK material for the ORR, a non-trivial achievement. A fuel cell test showed that Pt/C outperformed the ETEK material by an average of 50% for a 300 hour test. Increasing surface area decreases the amount of Pt needed in a fuel cell, which translates into cost savings. Furthermore, the increased performance realized in the fuel cell test might ultimately mean less Pt is needed in a fuel cell; this again translates into cost savings. Finally, enhanced long-term stability is a key driver within the fuel cell community as improvements in this area must be realized before fuel cells find their way into the marketplace; these Pt/C materials hold great promise of enhanced stability over time. An external laser desorption ion source was successfully installed on the existing Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometer. However, operation of this laser ablation source has only generated metal atom ions, no clusters have been found to date. It is believed that this is due to the design of the pulsed-nozzle/laser vaporization chamber. The final experimental configuration and design of the two source housings are described.

  6. An innovative fuel design concept for improved light water reactor performance and safety. Final technical report

    Tulenko, J.S.; Connell, R.G.

    1995-07-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. The purpose of this research was to explore a technique for extending fuel performance by thermally bonding LWR fuel with a non-alkaline liquid metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide (UO 2 ) fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Due to the thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high conductivity liquid metal thermally bonds the fuel to the cladding, and eliminates the large temperature change across the gap, while preserving the expansion and pellet loading capabilities. The resultant lower fuel temperature directly impacts fuel performance limit margins and also core transient performance. The application of liquid bonding techniques to LWR fuel was explored for the purposes of increasing LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) has been developed under the program to analyze the in-reactor performance of the liquid metal bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of Liquid Metal Bonded LWR fuel

  7. Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel.

    Merchant-Borna, Kian; Rodrigues, Ema G; Smith, Kristen W; Proctor, Susan P; McClean, Michael D

    2012-07-01

    Jet propulsion fuel-8 (JP-8) is the primary jet fuel used by the US military, collectively consuming ~2.5 billion gallons annually. Previous reports suggest that JP-8 is potentially toxic to the immune, respiratory, and nervous systems. The objectives of this study were to evaluate inhalation exposure to JP-8 constituents among active duty United States Air Force (USAF) personnel while performing job-related tasks, identify significant predictors of inhalation exposure to JP-8, and evaluate the extent to which surrogate exposure classifications were predictive of measured JP-8 exposures. Seventy-three full-time USAF personnel from three different air force bases were monitored during four consecutive workdays where personal air samples were collected and analyzed for benzene, ethylbenzene, toluene, xylenes, total hydrocarbons (THC), and naphthalene. The participants were categorized a priori into high- and low-exposure groups, based on their exposure to JP-8 during their typical workday. Additional JP-8 exposure categories included job title groups and self-reported exposure to JP-8. Linear mixed-effects models were used to evaluate predictors of personal air concentrations. The concentrations of THC in air were significantly different between a priori exposure groups (2.6 mg m(-3) in high group versus 0.5 mg m(-3) in low, P fuel distribution/maintenance, though self-reported exposure to JP-8 was an even stronger predictor of measured exposure in models that explained 72% (THC) and 67% (naphthalene) of between-worker variability. In fact, both self-report JP-8 exposure and a priori exposure groups explained more between-worker variability than job categories. Personal exposure to JP-8 varied by job and was positively associated with the relative humidity. However, self-reported exposure to JP-8 was an even stronger predictor of measured exposure than job title categories, suggesting that self-reported JP-8 exposure is a valid surrogate metric of exposure when

  8. Site safety progress review of spent fuel central interim storage facility. Final report

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  9. The impact of a final disposal facility for spent nuclear fuel on a municipality's image

    Kankaanpaeae, H.; Haapavaara, L.; Lampinen, T.

    1999-02-01

    The study comprised on one hand a nationwide telephone interview (totally 800 interviews) aimed at mapping out the current image of possible host municipalities to a final disposal facility for spent nuclear fuel, and on the other hand some group interviews of people of another parish but of interest from the municipalities' point of view. The purpose of these group interviews was the same as that of the telephone interview, i.e. to find out what kind of an impact locating a final disposal facility of spent nuclear fuel in a certain municipality would have on the host municipality's image. Because the groups interviewed were selected on different grounds the results of the interviews are not fully comparable. The most important result of the study is that the current attitude towards a final disposal facility for spent nuclear fuel is calm and collected and that the matter is often considered from the standpoint of an outsider. The issue is easily ignored, classified as a matter 'which does not concern me', provided that the facility will not be placed too near one's own home. Among those interviewed the subject seemed not to be of any 'great interest and did not arouse spontaneous feelings for or against'. There are, however, deeply rooted beliefs concerning the facility and quite strong negative and positive attitudes towards it. The facility itself and the associated decision-making procedure arouse many questions, which at present to a large extent are still unexpressed because the subject is considered so remote. It is, however, necessary to give concrete answers to the questions because this makes it possible for people to relate the issue to daily life. It is further important that things arousing fear and doubts also can be discussed because a silence in this respect only emphasizes their importance. The attitude towards the facility is varying. On one hand there are economic and technical factors: the probable economic benefit from it, the obligation to

  10. Prototypical spent nuclear fuel rod consolidation equipment: Phase 2, Final design report: Volume 1, Detailed design

    Blissell, W.H.; Ciez, A.P.; Goedicke, F.E.; Bessko, C.

    1987-01-01

    This document describes the Westinghouse Final Design for the Prototypical Spent Fuel Consolidation Equipment Demonstration Project. This design represents a fully qualified, licensable, cost effective spent fuel rod consolidation system. As a result of significant concerns raised by DOE and its Technical Review Committee during the 30% Design Review, significant changes were made to the original Preliminary Design resulting from Phase I activities. These changes focused on increased automation, end fitting removal, the rod pulling process and the need to maintain the consolidation canisters as clean as possible. As a result of these changes, the new system is greatly enhanced with a much greater probability of meeting or exceeding the project functional requirements. As a result of delays in resolving cost and contractual differences, additional bench testing was not conducted during Phase II. It is however our belief that the current design exceeds the 90% confidence level required by DOE because of the confidence gained from the Phase I tests, the additional engineering detail completed and the fact that our rod pulling tool has been demonstrated in a similar application at Oconee while our ID tube cutter is a modified (mounting method only) off-the-shelf design. 7 refs., 49 figs., 36 tabs

  11. Final Report. Fumex-III. Improvement of Models Used for Fuel Behaviour Simulation

    Kulacsy, Katalin

    2013-01-01

    The FUMEX-III coordinated research programme organised by the IAEA was the first FUMEX exercise in which AEKI (Hungarian Academy of Sciences KFKI Atomic Energy Research Institute) took part with the partial support of Paks NPP. The aim of the participation was to test the code FUROM developed at AEKI against not only measurements but also other fuel behaviour simulation codes, to share and discuss modelling experience and issues, and to establish acquaintance with fuel modellers in other countries. Among the numerous cases proposed for the programme, AEKI chose to simulate normal operation up to high burn-up and ramp tests, with special interest in VVER rods and PWR rods with annular pellets. The US PWR 16x16, the SPC RE GINNA, the Kola3-MIR, the IFA-519.9 cases and the AREVA idealised rod were thus selected. The present Final Report gives a short description of the FUROM models relevant to the selected cases, presents the results for the 5 cases and summarises the conclusions of the FUMEX-III programme. The input parameters used for the simulations can be found in the Appendix at the end of the Report. Observations concerning the IFPE datasets are collected for each dataset in their respective Sections for possible use in the IFPE database. (author)

  12. Closing the gap between spent fuel storage and final disposal in a multinational management system

    Bredell, P.J.

    1999-01-01

    In this paper, a multinational spent fuel management concept is proposed. The management concept is based on a service agreement between countries, which intend participating in a common spent fuel (SNF) management venture. Accordingly, one of the participants in this venture would act as the hosting country, while the others fulfil the role of customer countries. The hosting country would agree to accept SNF from customer countries under specific conditions, as required by the service agreement. The service agreement should cover a sufficient number of options that customers can use, such as storage, reprocessing or disposal. The service offering should be flexible enough to accommodate diverse customer requirements. Typically, the first step in the multinational management process is the storage of the SNF delivered to the hosting country. The final step being the disposal of the material in a deep geologic repository. This paper explores the ways and means of closing the gap between the first and last steps in the management process. (author)

  13. Final Report of the National Black Health Providers Task Force on High Blood Pressure Education and Control.

    Public Health Service (DHHS), Rockville, MD.

    This is the final report of National Black Health Providers Task Force (NBHPTF) on High Blood Pressure Education and Control. The first chapter of the report recounts the history of the NBHPTF and its objectives. In the second chapter epidemiological evidence is presented to demonstrate the need for a suggested 20 year plan aimed at controlling…

  14. Life cycle assessment of geological repositories for the final disposal of spent fuel in Finland and Sweden

    Puhrer, A.; Bauer, C.

    2014-01-01

    This paper presents a Life Cycle Assessment (LCA) of the geological repositories for the final disposal of spent nuclear fuel in Finland and Sweden. A separate LCA has been performed for the geological spent fuel repository in each country and the results have been compared. A further benchmark comparison has been made with the LCA of the Swiss geological repository for high-level waste and spent fuel. The life cycle inventory (LCI) product system boundaries include the spent fuel repository and encapsulation facility in each country. All materials, processes, consumed utilities and transport associated with the construction, operation and closure of the repositories for spent fuel are included in the LCI. The life cycle impact assessment (LCIA) is performed using two methods: IPCC 2007 Climate Change and ReCiPe. These assessment methods return results pertaining to global warming potential (GWP) as well as a number of environmental impact categories such as human toxicity and natural land transformation. Results indicate that the use of copper for disposal canister fabrication and bentonite for repository backfilling are the causes for most of the environmental impact of the spent fuel repositories in Finland and Sweden. Alternate, less bentonite-intensive backfilling scenarios may mitigate this impact. While the Swiss bentonite consumption is lower and no copper is used for canister fabrication, the Swiss electricity and fuel consumption associated with final disposal of high-level waste and spent fuel is significantly higher than in Finland or Sweden. Approximately 1 g CO 2 -eq is emitted due to the final disposal of spent fuel and HLW per kWh of nuclear generated electricity. This represents some 10% of the emissions due to the entire nuclear energy chain and is practically negligible in the context of GHG emissions of other energy technologies. (authors)

  15. Proposed Expansion of German Air Force Operations at Holloman AFB, New Mexico. Final Environmental Impact Statement. Volume III: Comment Letters and Responses to Comments

    1998-01-01

    The Final Environmental Impact Statement analyzed the potential environmental consequences from the proposal to beddown 30 additional German Air Force Tornado aircraft and 640 personnel at Holloman Air Force Base (AFB) New Mexico...

  16. Final repository for spent nuclear fuel - the role of the municipality

    Berggren, Marie; Lindfors, Virpi; Andersson Oehrn, Barbro; Alm, Bertil; Soederblom, Anna-Lena; Berggren, Marie; Lindfors, Virpi

    2014-01-01

    In Sweden there is a long tradition of local self-government which is enshrined within the Swedish constitution, and the municipalities are responsible for matters relating to its inhabitants and their immediate environment. The municipality of Oesthammar has been engaged in the project of final repository for spent nuclear fuel since 1995 and by that time a consultative committee was established with representatives from all the political parties within the municipality and neighbouring municipalities. Future potentials as well as threats must be considered when making decisions on the most favourable site and the method used for the disposal of nuclear waste, and the application from SKB, as well as the review by the authorities, must stand up to a number of public demands. The work has included several stages of decisions for the municipality, due to the site selection process for SKB. The dialogue between the municipality and SKB as well as between the municipality and the authorities has been of great importance for getting the stepwise decision making process that has become practice in this question. The municipality has intensively followed the process concerning establishment of a final repository through consultation meetings, by being observer on meetings between SKB and Swedish Radiation Safety Authority (SSM), seminars, statements, etc. The openness and transparency throughout the process has been essential between all actors. However, if the municipalities have a right of absolute veto, the government still can say yes even if the municipality has said no

  17. Fuel dynamics loss-of-flow test L3. Final report

    Fischer, A.K.; Lo, R.K.; Barts, E.W.

    1976-06-01

    The behavior of FTR-type, mixed-oxide, preirradiated, ''intermediate-power-structure'' fuel during a simulation of an FTR loss-of-flow accident was studied in the Mark-IIA integral TREAT loop. Analysis of the data reported here leads to a postulated scenario (sequence and timing) of events in the test. This scenario is presented, together with the calculated timing of events obtained by use of the SAS code. The initial fuel motion, starting during the preheat phase, consisted of coherent motion of the entire intact fuel bundle toward the pump. Incoherence developed as temperature rose. The fuel motion was mostly upward, and the greatest was in the top third of the fuel column. Fuel fragments formed against the pump side of the fluted tube near the original fuel midplane. A penetration of fluted tube occurred. A sudden voiding of the central region of the fuel column occurred at 29.75 s and was largely completed within 150 ms. The lower steel blockage of the fuel elements occurred in the vicinity of the lower insulator pellets. The upper steel blockage just above the tops of the original fuel pins appeared to have channels through it. Cladding and spacer wires melted away in the fuel section. Fuel pellets were only evident at and above the top and at the bottom of the original fuel column, where a large mass of melted fuel was present. Over the length of the fuel column, most of the fluted tube had melted away

  18. Lessons learned in demonstration projects regarding operational safety during final disposal of vitrified waste and spent fuel

    Filbert, Wolfgang; Herold, Philipp

    2015-01-01

    The paper summarizes the lessons learned in demonstration projects regarding operational safety during the final disposal of vitrified waste and spent fuel. The three demonstration projects for the direct disposal of vitrified waste and spent fuel are described. The first two demonstration projects concern the shaft transport of heavy payloads of up to 85 t and the emplacement operations in the mine. The third demonstration project concerns the borehole emplacement operation. Finally, open issues for the next steps up to licensing of the emplacement and disposal systems are summarized.

  19. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  20. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Wegst, Ulrike G.K.; Sridharan, Kumar

    2014-01-01

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  1. Freeze-casting as a Novel Manufacturing Process for Fast Reactor Fuels. Final Report

    Wegst, Ulrike G.K. [Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States)

    2014-04-07

    Advanced burner reactors are designed to reduce the amount of long-lived radioactive isotopes that need to be disposed of as waste. The input feedstock for creating advanced fuel forms comes from either recycle of used light water reactor fuel or recycle of fuel from a fast burner reactor. Fuel for burner reactors requires novel fuel types based on new materials and designs that can achieve higher performance requirements (higher burn up, higher power, and greater margins to fuel melting) then yet achieved. One promising strategy to improved fuel performance is the manufacture of metal or ceramic scaffolds which are designed to allow for a well-defined placement of the fuel into the host, and this in a manner that permits greater control than that possible in the production of typical CERMET fuels.

  2. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºC to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich

  3. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    McDeavitt, Sean M.

    2011-01-01

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500 C to 600 C) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: (1) Hot working fabrication using mechanical alloying and extrusion - Design, fabricate, and assemble extrusion equipment - Extrusion database on DU metal - Extrusion database on U-10Zr alloys - Extrusion database on U-20xx-10Zr alloys - Evaluation and testing of tube sheath metals (2) Low-temperature sintering of U alloys - Design, fabricate, and assemble equipment - Sintering database on DU metal - Sintering database on U-10Zr alloys - Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research and Development (FCR and D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the

  4. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    NONE

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  5. Impact Force Applied on the Spent Nuclear Fuel Disposal Canister that Accidentally Drops and Collides onto the Ground

    Kwon, Young Joo

    2016-01-01

    In this paper, a mathematical methodology was theoretically studied to obtain the impact force caused by the collision between rigid bodies. This theoretical methodology was applied to compute the impact force applied on the spent nuclear fuel disposal canister that accidentally drops and collides onto the ground. From this study, the impact force required to ensure a structurally safe canister design was theoretically formulated. The main content of the theoretical study concerns the rigid body kinematics and equation of motion during collision between two rigid bodies. On the basis of this study, a general impact theory to compute the impact force caused by the collision between two bodies was developed. This general impact theory was applied to theoretically formulate the approximate mathematical solution of the impact force that affects the spent nuclear fuel disposal canister that accidentally falls to the ground. Simultaneously, a numerical analysis was performed using the computer code to compute the numerical solution of the impact force, and the numerical result was compared with the approximate mathematical solution

  6. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    1980-01-01

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options

  7. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    1980-03-25

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options.

  8. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    Klingler, James J [GENCO Infrastructure Solutions, Inc.

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  9. Gas-cooled fast reactor fuel-cost assessment. Final report, October 1978-September 1979

    Thompson, M.L.

    1979-01-01

    This program, contracted to provide a Gas Cooled Fast Reactor (GCFR) fuel assembly fabrication cost assessment, comprised the following basic activities: establish agreement on the ground rules for cost assessment, prepare a fuel factory flow sheet, and prepare a cost assessment for fuel assembly fabrication. Two factory sizes, 250 and 25 MTHM/year, were considered for fuel assembly fabrication cost assessment. The work on this program involved utilizing GE LMFBR cost assessment and fuel factory studies experience to provide a cost assessment of GCFR fuel assembly fabrication. The recent impact of highly sensitive safety and safeguards environment policies on fuel factory containment, safety, quality assurance and safeguards costs are significantly higher than might have been expected just a few years ago. Fuel assembly fabrication costs are significant because they represent an estimated 30 to 60% of the total fuel cycle costs. In light of the relative high cost of fabrication, changes in the core and assembly design may be necessary in order to enhance the overall fuel cycle economics. Fabrication costs are based on similar operations and experience used in other fuel cycle studies. Because of extrapolation of present technology (e.g., remote fuel fabrication versus present contact fabrication) and regulatory requirements, conservative cost estimates were made.

  10. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION. FINAL REPORT

    J. Hnat; L.M. Bartone; M. Pineda

    2001-01-01

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology

  11. Unified force and its relation with global warming crave for hydrogen energy and promote fuel cell technology

    Krishnan, K.J.; Kalam, A.

    2011-01-01

    Global warming is presently a tremendous public interest and has become a threat to every individual. Huge quantities of CO/sub 2/ are emitted to the atmosphere by burning of fossil fuels to produce electricity in power plants and burning of gasoline in aeroplanes and vehicles. Enormous amount of greenhouse gasses are sent into the air when garbage is burnt in landfills. Cutting down of trees and other plants which collect CO/sub 2/ a greenhouse gas which is inhaled and which gives back oxygen which is exhaled makes global warming worse. 'Self-Compressive Surrounding Pressure Force' which is also known as Unified Force is also related with global warming which is proportional to increase of H/sub 2/O level in sea and causes floods, storms, droughts and severe impacts to the environment and society. In order to better understand global warming and its relation with Unified Force, this paper discusses the cause and effect system on the amount of greenhouse gases emitted to the atmosphere from the burning of fossil fuels and also the other green house gases like CH/sub 4/, water vapour, NOx etc. and emphasis its importance to focus on crave for Hydrogen Energy and to promote Fuel Cell technology to keep the earth green and safer from the impacts of global warming. The benefit of switching from fossil fuels to Hydrogen Energy and Fuel Cell technology reduces the impact of global warming, elimination of pollution caused by fossil fuels and greenhouse gases, economic dependence and distributed production. (author)

  12. Final disposal of spent nuclear fuel-equipment for site characterization

    Almen, K.; Hansson, K.; Johansson, B.E.; Nilsson, G.; Andersson, O.; Wikberg, P.; Aahagen, H.

    1983-05-01

    The suitability of a certain geological formation as a repository for the final disposal of spent nuclear fuel can be determined only after detailed investigation and analysis. The purpose of the investigations is to provide information on the geology and the hydrology and chemistry of the site concerned. The value of these data largely depends on the way in which they have been collected. The report of the findings should enable the investigating party to evaluate the function and the accuracy of the equipment with which field data have been collected for KBS 3. This report describes the geophysical equipment, the hydraulic testing equipment, the water chemistry sample extracting equipment and the core-logging equipment used. The objectives of the instrument development have been: - to obtain a high data quality. - to collect data automatically in logs and tape recorders for direct transfer to a central processing unit. - to provide back-up in order to counteract loss of data. - to make instrument more efficient. (author)

  13. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    Gewirth, Andrew A. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Kenis, Paul J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical and Biomolecular Engineering; Nuzzo, Ralph G. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Rauchfuss, Thomas B. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry

    2016-01-18

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  14. Analysis of forces on core structures during a loss-of-coolant accident. Final report

    Griggs, D.P.; Vilim, R.B.; Wang, C.H.; Meyer, J.E.

    1980-08-01

    There are several design requirements related to the emergency core cooling which would follow a hypothetical loss-of-coolant accident (LOCA). One of these requirements is that the core must retain a coolable geometry throughout the accident. A possible cause of core damage leading to an uncoolable geometry is the action of forces on the core and associated support structures during the very early (blowdown) stage of the LOCA. An equally unsatisfactory design result would occur if calculated deformations and failures were so extensive that the geometry used for calculating the next stages of the LOCA (refill and reflood) could not be known reasonably well. Subsidiary questions involve damage preventing the operation of control assemblies and loss of integrity of other needed safety systems. A reliable method of calculating these forces is therefore an important part of LOCA analysis. These concerns provided the motivation for the study. The general objective of the study was to review the state-of-the-art in LOCA force determination. Specific objectives were: (1) determine state-of-the-art by reviewing current (and projected near future) techniques for LOCA force determination, and (2) consider each of the major assumptions involved in force determination and make a qualitative assessment of their validity

  15. Ohio State University Nuclear Reactor Laboratory HEU fuel shipment summary. Final

    1997-01-01

    In November 1988, OSURR converted from HEU fuel to LEU fuel. As a result they needed to get rid of their HEU fuel by shipping it to Savannah River. The players in the fuel shipping game are: OSURR as the keeper of the fuel; DOE as the owner of fuel and shipper of record; Tri-State Motor Transit Co. for transporting the cask; Muth Brothers as the rigger responsible for getting the cask on and off the truck and in and out of the building; Hoffman LaRoche/Cintichem as the owner of the cask; Savannah River as the receiver of the fuel; and the NRC for approval of the Security Plan, QA Plan, etc. This report gives a chronological history of the events from February 1989 to June 1, 1995, the actual day of shipment. The cask was received at Savannah River on June 2, 1995

  16. Spent-Fuel Test - Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Executive summary of final results

    Patrick, W.C.

    1986-01-01

    This summary volume outlines results that are covered in more detail in the final report of the Spent-Fuel Test - Climate project. The project was conducted between 1978 and 1983 in the granitic Climax stock at the Nevada Test Site. Results indicate that spent fuel can be safely stored for periods of years in this host medium and that nuclear waste so emplaced can be safely retrieved. We also evaluated the effects of heat and radiation (alone and in combination) on emplacement canisters and the surrounding rock mass. Storage of the spent-fuel affected the surrounding rock mass in measurable ways, but did not threaten the stability or safety of the facility at any time

  17. Greenhouse impact due to the use of combustible fuels: life cycle viewpoint and relative radiative forcing commitment.

    Kirkinen, Johanna; Palosuo, Taru; Holmgren, Kristina; Savolainen, Ilkka

    2008-09-01

    Extensive information on the greenhouse impacts of various human actions is important in developing effective climate change mitigation strategies. The greenhouse impacts of combustible fuels consist not only of combustion emissions but also of emissions from the fuel production chain and possible effects on the ecosystem carbon storages. It is important to be able to assess the combined, total effect of these different emissions and to express the results in a comprehensive way. In this study, a new concept called relative radiative forcing commitment (RRFC) is presented and applied to depict the greenhouse impact of some combustible fuels currently used in Finland. RRFC is a ratio that accounts for the energy absorbed in the Earth system due to changes in greenhouse gas concentrations (production and combustion of fuel) compared to the energy released in the combustion of fuel. RRFC can also be expressed as a function of time in order to give a dynamic cumulative picture on the caused effect. Varying time horizons can be studied separately, as is the case when studying the effects of different climate policies on varying time scales. The RRFC for coal for 100 years is about 170, which means that in 100 years 170 times more energy is absorbed in the atmosphere due to the emissions of coal combustion activity than is released in combustion itself. RRFC values of the other studied fuel production chains varied from about 30 (forest residues fuel) to 190 (peat fuel) for the 100-year study period. The length of the studied time horizon had an impact on the RRFC values and, to some extent, on the relative positions of various fuels.

  18. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude

  19. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project (SPAR-II)

    NONE

    2012-07-01

    As storage of spent fuel has become a key technology in spent fuel management, wet and dry storage have become mature technologies and continue to demonstrate good performance. Increased spent fuel storage capacity in combination with longer storage durations will be needed over the foreseeable future as many countries have delayed their decision on spent fuel disposal or reprocessing. Extended spent fuel storage is, and will remain, an important activity for all countries with nuclear power programmes. A number of countries are planning or have already initiated research programmes on spent fuel storage performance, and there is a continuing benefit in exchanging spent fuel storage experience of the Member States in order to build a comprehensive technology knowledge base. Potential degradation mechanisms that may affect cladding integrity during wet storage are uniform corrosion, pitting, galvanic, and microbiologically-influenced corrosion. Potential degradation mechanisms that may affect cladding integrity during dry storage and subsequent handling and transportation operations are air oxidation, thermal creep, stress corrosion cracking (SCC), delayed hydride cracking (DHC), hydride re-orientation, hydrogen migration and re-distribution. Investigations carried out so far indicate that from the degradation mechanisms that may affect the integrity of spent fuel assembly/bundle structure during interim storage, hydride re-orientation has the potential to impair the ability of the cladding to effectively withstand potentially adverse mechanical challenges resulting from handling or transportation accidents. Fuel integrity issues are related to the definition and criteria of fuel integrity, failure classification, packaging and retrieval of damaged fuel and transport of damaged fuel assemblies. Various monitoring technologies have been developed and used to confirm the continued spent fuel integrity during storage or to provide an early indication of developing

  20. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project (SPAR-II)

    2012-01-01

    As storage of spent fuel has become a key technology in spent fuel management, wet and dry storage have become mature technologies and continue to demonstrate good performance. Increased spent fuel storage capacity in combination with longer storage durations will be needed over the foreseeable future as many countries have delayed their decision on spent fuel disposal or reprocessing. Extended spent fuel storage is, and will remain, an important activity for all countries with nuclear power programmes. A number of countries are planning or have already initiated research programmes on spent fuel storage performance, and there is a continuing benefit in exchanging spent fuel storage experience of the Member States in order to build a comprehensive technology knowledge base. Potential degradation mechanisms that may affect cladding integrity during wet storage are uniform corrosion, pitting, galvanic, and microbiologically-influenced corrosion. Potential degradation mechanisms that may affect cladding integrity during dry storage and subsequent handling and transportation operations are air oxidation, thermal creep, stress corrosion cracking (SCC), delayed hydride cracking (DHC), hydride re-orientation, hydrogen migration and re-distribution. Investigations carried out so far indicate that from the degradation mechanisms that may affect the integrity of spent fuel assembly/bundle structure during interim storage, hydride re-orientation has the potential to impair the ability of the cladding to effectively withstand potentially adverse mechanical challenges resulting from handling or transportation accidents. Fuel integrity issues are related to the definition and criteria of fuel integrity, failure classification, packaging and retrieval of damaged fuel and transport of damaged fuel assemblies. Various monitoring technologies have been developed and used to confirm the continued spent fuel integrity during storage or to provide an early indication of developing

  1. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    D.R. Jackson; G.R. Kiebel

    1999-01-01

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training

  2. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    McGill, R [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P; Nylund, N O [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  3. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  4. Equipment to take up the axial forces occuring on fuel elements in the operation of a nuclear reactor

    Sankovich, M.

    1977-01-01

    A constructive solution for the spring support of fuel elements between a lower and upper grid is given which prevents vibrations from the influence of axial forces due to thermal expansion and/or coolant flow with the least possible resistance to the coolant flow. As plate or screw springs usually allow certain vibrations or even encourage these, and to compensate for the flow resistance thus caused nominal increase of the total cooling power is necessary, i.e. the total efficiency of the plants is lowered; therefore a combined torsion and spring was constructed. 4 each of these springs surround in an approximately horizontal plane the head of a fuel element containing the usual number of fuel rods. Each spring forms a U seen from above and surrounds the fuel element head on one side completely and about half the length of the two adjacent sides. The three sides of the spring are inbedded in the openings of the fuel element end pieces so as not to cause any nominal resistance for the coolant flow rising from the fuel elements. (HP) [de

  5. Theoretical models to predict the transient heat transfer performance of HIFAR fuel elements under non-forced convective conditions

    Green, W.J.

    1987-04-01

    Simple theoretical models have been developed which are suitable for predicting the thermal responses of irradiated research fuel elements of markedly different geometries when they are subjected to loss-of-coolant accident conditions. These models have been used to calculate temperature responses corresponding to various non-forced convective conditions. Comparisons between experimentally observed temperatures and calculated values have shown that a suitable value for surface thermal emissivity is 0.35; modelling of the fuel element beyond the region of the fuel plate needs to be included since these areas account for approximately 25 per cent of the thermal power dissipated; general agreement between calculated and experimental temperatures for both transient and steady-state conditions is good - the maximum discrepancy between calculated and experimental temperatures for a HIFAR Mark IV/V fuel element is ∼ 70 deg C, and for an Oak Ridge Reactor (ORR) box-type fuel element ∼ 30 deg C; and axial power distribution does not significantly affect thermal responses for the conditions investigated. Overall, the comparisons have shown that the models evolved can reproduce experimental data to a level of accuracy that provides confidence in the modelling technique and the postulated heat dissipation mechanisms, and that these models can be used to predict thermal responses of fuel elements in accident conditions that are not easily investigated experimentally

  6. Attitudes towards a final repository for the spent nuclear fuel. Structure and causes

    Sjoeberg, Lennart

    2008-09-01

    This report presents the results of a questionnaire survey of attitudes towards a final repository for the spent nuclear fuel. The questionnaire was mailed to 3,000 persons. Participants were young and older people in Oskarshamn municipality and Oesthammar municipality as well as in the rest of the country. Fifty-one percent responded. The questionnaire included a large number of questions of possible relevance for understanding the structure of and reasons for the person's attitude towards a final repository. Questions concerning nuclear power were dealt with in a special section. Men were more positively disposed towards a repository than women, older people more than young. The gender differences are mainly attributable to the variation in attitude towards nuclear power and concern about nuclear accidents. In the case of older people, interest was also a factor. Young people were not as interested in the issue. The most important factor in determining the attitude towards a final repository was the benefit it was expected to bring to the municipality. Moral and emotional aspects were also important. Risk played a relatively subordinate role. Social aspects were very important: those who frequently spoke with people who were positively disposed tended to be positive themselves, and vice versa for those who were negative. This factor could explain some of the gender differences in attitude. Attitudes in Oskarshamn were slightly more positive than in Oesthammar, probably due to the fact that the residents in Oskarshamn had a greater sense of participation in the municipality's decision in the matter. Information from SKB was also found to be an important factor for the differences in attitude between the municipalities. Eight percentage points more people had received information in Oskarshamn than in Oesthammar. The difference may be small, but it exists and does appear to be of some importance. Attitudes in Oskarshamn and Oesthammar continued to be much more

  7. Readability of Air Force Publications: A Criterion Referenced Evaluation. Final Report.

    Hooke, Lydia R.; And Others

    In a study of the readability of Air Force regulations, the writer-estimated reading grade level (RGL) for each regulation was rechecked by using the FORCAST readability formula. In four of the seven cases, the regulation writers underestimated the RGL of their regulation by more than one grade level. None of the writers produced a document with…

  8. Final Environmental Impact Statement for the Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    2000-01-01

    DOE is responsible for the safe and efficient management of its sodium-bonded spent nuclear fuel. This fuel contains metallic sodium, a highly reactive material; metallic uranium, which is also reactive; and in some cases, highly enriched uranium. The presence of reactive materials could complicate the process of qualifying and licensing DOE's sodium-bonded spent nuclear fuel inventory for disposal in a geologic repository. Currently, more than 98 percent of this inventory is located at the Idaho National Engineering and Environmental Laboratory (INEEL), near Idaho Falls, Idaho. In addition, in a 1995 agreement with the State of Idaho, DOE committed to remove all spent nuclear fuel from Idaho by 2035. This EIS evaluates the potential environmental impacts associated with the treatment and management of sodium-bonded spent nuclear fuel in one or more facilities located at Argonne National Laboratory-West (ANL-W) at INEEL and either the F-Canyon or Building 105-L at the Savannah River Site (SRS) near Aiken, South Carolina. DOE has identified and assessed six proposed action alternatives in this EIS. These are: (1) electrometallurgical treatment of all fuel at ANL-W, (2) direct disposal of blanket fuel in high-integrity cans with the sodium removed at ANL-W, (3) plutonium-uranium extraction (PUREX) processing of blanket fuel at SRS, (4) melt and dilute processing of blanket fuel at ANL-W, (5) melt and dilute processing of blanket fuel at SRS, and (6) melt and dilute processing of all fuel at ANL-W. In addition, Alternatives 2 through 5 include the electrometallurgical treatment of driver fuel at ANL-W. Under the No Action Alternative, the EIS evaluates both the continued storage of sodium-bonded spent nuclear fuel until the development of a new treatment technology or direct disposal without treatment. Under all of the alternatives, the affected environment is primarily within 80 kilometers (50 miles) of spent nuclear fuel treatment facilities. Analyses indicate

  9. Conditioning of spent fuel for interim and final storage in the pilot conditioning plant (PKA) at Gorleben

    Lahr, H.; Willax, H.O.; Spilker, H.

    1999-01-01

    In 1994, due to the change of the nuclear law in Germany, the concept of direct final disposal for spent fuel was developed as an equivalent alternative to the waste management with reprocessing. Since 1979, tests for the direct final disposal of spent fuel have been conducted in Germany. In 1985, the State and the utilities came to an agreement to develop this concept of waste management to technical maturity. Gesellschaft fuer Nuklear-Service (GNS) was commissioned by the utilities with the following tasks: to develop and test components with regard to conditioning technology, to construct and operate the pilot conditioning plant (PKA), and to develop casks suitable for final disposal. Since 1990, the construction of the PKA has taken place at the Brennelementlager Gorleben site. The PKA has been designed as a multipurpose facility and can thus fulfil various tasks within the framework of the conditioning and management of spent fuel assemblies and radioactive waste. The pilot character of the plant allows for development and testing in the field of spent fuel assembly conditioning. The objectives of the PKA may be summarized as follows: to condition spent fuel assemblies, to reload spent fuel assemblies and waste packages, to condition radioactive waste, and to do maintenance work on transport and storage casks as well as on waste packages. Currently, the buildings of the PKA are constructed and the technical facilities are installed. The plant will be ready for service in the middle of 1999. It is the first plant of its kind in the world. (author)

  10. The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report

    Lancaster, D.

    1992-10-26

    The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

  11. Final Report - Effects of Impurities on Fuel Cell Performance and Durability

    Trent Molter

    2012-08-18

    This program is focused on the experimental determination of the effects of key hydrogen side impurities on the performance of PEM fuel cells. Experimental data has been leveraged to create mathematical models that predict the performance of PEM fuel cells that are exposed to specific impurity streams. These models are validated through laboratory experimentation and utilized to develop novel technologies for mitigating the effects of contamination on fuel cell performance. Results are publicly disseminated through papers, conference presentations, and other means.

  12. Potential health and environmental impacts attributable to the nuclear and coal fuel cycles: Final report

    Gotchy, R.L.

    1987-06-01

    Estimates of mortality and morbidity are presented based on present-day knowledge of health effects resulting from current component designs and operations of the nuclear and coal fuel cycles, and anticipated emission rates and occupational exposure for the various fuel cycle facilities expected to go into operation during the next decade. The author concluded that, although there are large uncertainties in the estimates of potential health effects, the coal fuel cycle alternative has a greater health impact on man than the uranium fuel fycle. However, the increased risk of health effects for either fuel cycle represents a very small incremental risk to the average individual in the public for the balance of this century. The potential for large impacts exists in both fuel cycles, but the potential impacts associated with a runaway Greenhouse Effect from combustion of fossil fuels, such as coal, cannot yet be reasonably quantified. Some of the potential environmental impacts of the coal fuel cycle cannot currently be realistically estimated, but those that can appear greater than those from the nuclear fuel cycle. 103 refs., 1 fig., 18 tabs

  13. Supply Chain Based Solution to Prevent Fuel Tax Evasion: Proof of Concept Final Report

    Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Earl, Dennis Duncan [ORNL; West, David L [ORNL; McIntyre, Timothy J [ORNL; Chin, Shih-Miao [ORNL; Hwang, Ho-Ling [ORNL; Connatser, Raynella M [ORNL; Lewis Sr, Samuel Arthur [ORNL; Moore, Sheila A [ORNL

    2011-12-01

    The goal of this research was to provide a proof-of-concept (POC) system for preventing non-taxable (non-highway diesel use) or low-taxable (jet fuel) petrochemical products from being blended with taxable fuel products and preventing taxable fuel products from cross-jurisdiction evasion. The research worked to fill the need to validate the legitimacy of individual loads, offloads, and movements by integrating and validating, on a near-real-time basis, information from global positioning system (GPS), valve sensors, level sensors, and fuel-marker sensors.

  14. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    NONE

    1997-06-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  15. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs. Final summary report

    Greenspan, E

    2006-01-01

    The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity in particular for BWR's, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR's and BWR's without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR's and BWR's were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density ? on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR's more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fueled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ∼2/3 that of the MOX fuel and the discharged hydride fuel is

  16. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  17. Detailed site characterization for final disposal of spent fuel in Finland - Case study Loviisa

    Anttila, P.; Ahokas, H.; Ruotsalainen, P.; Cosma, C.; Keskinen, J.; Hinkkanen, H.; Rouhiainen, P.; Oehberg, A.

    1998-01-01

    The spent fuel from the Finnish nuclear power plants will be disposed of in the Finnish bedrock. Pos iva Oy is responsible for the site selection programme carried out in accordance with the governmental decisions. Preliminary site investigations were made in five areas in 1987-1992. Based on the results, three areas, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki, were selected for the detailed site characterization in 1993-2000. The final site will be selected by the end of the year 2000. The interim reporting of the detailed studies of the three areas was made in 1996. In 1997, the island of Haestholmen, as the host to the Loviisa NPP, was included as a fourth candidate site in the programme for the detailed site investigations. The goal is to characterize this site also in detail by the end of 2000 to attain the same level of knowledge as available from the three other sites. The background information existing from the studies made for the construction of the repository for the low-and intermediate-level wastes will create a good basis to reach the target. The research programme for the detailed site characterization has mainly been focused on groundwater flow and geochemistry due to their importance in terms of long-term safety of the repository. Equipment and methodology development by Posiva has introduced new tools that provide more accurate data on relevant parameters than the ones used in previous stages of site characterization. The programme also contains studies for additional information of the structural and geological properties of the bedrock towards the depth. Also predictive modelling has been made for evaluating the relevance of the assumptions made. The methods applied in the site characterization have comprised, e.g., geological mapping, deep core drilling, groundwater sampling and analyzing, hydraulic testing and geophysical measurements

  18. Detailed site characterization for final disposal of spent fuel in Finland - Case study Loviisa

    Anttila, P. [IVO Power Engineering Ltd. (Finland); Ahokas, H.; Ruotsalainen, P. [Fintact Oy (Finland); Cosma, C.; Keskinen, J. [Vibrometric Oy (Finland); Hinkkanen, H. [Posiva Oy (Finland); Rouhiainen, P. [PRG-Tec Oy (Finland); Oehberg, A. [Saanio and Riekkola Consulting Engineers (Finland)

    1998-09-01

    The spent fuel from the Finnish nuclear power plants will be disposed of in the Finnish bedrock. Pos iva Oy is responsible for the site selection programme carried out in accordance with the governmental decisions. Preliminary site investigations were made in five areas in 1987-1992. Based on the results, three areas, Romuvaara in Kuhmo, Kivetty in Aeaenekoski and Olkiluoto in Eurajoki, were selected for the detailed site characterization in 1993-2000. The final site will be selected by the end of the year 2000. The interim reporting of the detailed studies of the three areas was made in 1996. In 1997, the island of Haestholmen, as the host to the Loviisa NPP, was included as a fourth candidate site in the programme for the detailed site investigations. The goal is to characterize this site also in detail by the end of 2000 to attain the same level of knowledge as available from the three other sites. The background information existing from the studies made for the construction of the repository for the low-and intermediate-level wastes will create a good basis to reach the target. The research programme for the detailed site characterization has mainly been focused on groundwater flow and geochemistry due to their importance in terms of long-term safety of the repository. Equipment and methodology development by Posiva has introduced new tools that provide more accurate data on relevant parameters than the ones used in previous stages of site characterization. The programme also contains studies for additional information of the structural and geological properties of the bedrock towards the depth. Also predictive modelling has been made for evaluating the relevance of the assumptions made. The methods applied in the site characterization have comprised, e.g., geological mapping, deep core drilling, groundwater sampling and analyzing, hydraulic testing and geophysical measurements 23 refs, 4 figs

  19. Interactive Multimedia Software on Fundamental Particles and Forces. Final Technical Report

    Jack Sculley

    1999-01-01

    Research in the SBIR Phase 2 grant number 95 ER 81944 centered on creating interactive multimedia software for teaching basic concepts in particle physics on fundamental particles and forces. The work was undertaken from February 1997 through July 1998. Overall the project has produced some very encouraging results in terms of product development, interest from the general public and interest from potential Phase 3 funders. Although the original Phase 3 publisher, McGraw Hill Home Interactive, was dissolved by its parent company, and other changes in the CD-ROM industry forced them to change their focus from CD-ROM to the Internet, there has been substantial interest from software publishers and online content providers in the content developed in the course of the Phase 2 research. Results are summarized

  20. Final Environmental Assessment for Shared Use Paths (SUP), Eglin Air Force Base, Florida

    2011-07-01

    social effects...Use Path (SUP)Environmental AssesmentEglin Air Force Base, Florida "/ "/ "/ "/ "/ "/ "/ "/ "/ "/ "/ Eighth StEglin Blvd Memoria l Dr Griffin Way...StEglin Blvd Memoria l Dr Griffin Way Nomad Way Eglin B lvd FL HW Y 8 5 Chinquapin Dr Perimeter Rd VALPARISO Park Tunn el Taxiw ay PT A rea Com miss

  1. Santa Rosa Island Final Range Environmental Assessment, Revision 1. Eglin Air Force Base, Florida

    2012-03-01

    west coast; 3) Dry Tortugas , Florida, Subpopulation; 4) Florida Panhandle Subpopulation occurring at Eglin AFB and the beaches near Panama City; and... Tortugas , florida, Subpopulation, (4) Northwest florida Subpopulation occurring at Eglin Ai r Force Base and the beaches near Panama City; and (5...annually from 1995 and 2005 (FWC/FWRI sea turtle nesting database and unpublished data). A nearly complete census of the Dry Tortugas Subpopulation

  2. Fuel Testing for Sylvatex: Cooperative Research and Development Final Report, CRADA Number CRD-16-636

    Burton, Jonathan L. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-02-07

    Sylvatex is a green nano-chemistry company that has developed a platform technology utilizing renewable, non-toxic inputs to create a stable nanoparticle that can be used in multiple applications. Their mission is to increase the use of renewables globally, to empower a cleaner and healthier future. The main application is a fuel technology product - MicroX - that utilizes proprietary knowledge to scale low-cost, cleaner-burning renewable diesel fuel and additives by using a co-location commercial model. The aspects of this project will include testing of two Sylvatex MicroX fuels on an engine dynamometer platform. Industry standard ultra-low sulfur diesel (ULSD) B3 fuel and a ULSD B20 will both be used for comparison of the Sylvatex fuels (U.S. standard diesel fuel at the pump contains an average of approximately 3% biodiesel; this is why B3 would be used as a baseline comparison). Sylvatex is currently using a prototype formulation (MicroX 1) that applies a high cost surfactant. An experimental formulation (MicroX 2) that uses lower cost materials is under development. The MicroX 1 will be blended at a 10% level into the B3 ULSD fuel and the MicroX 2 will be blended at a 10% level into both the B3 and the B20 ULSD fuels for study on the engine dynamometer test platform. All fuel blends will be tested over the FTP transient engine test cycle and a steady state ramped modal engine test cycle. Each test cycle will be performed a minimum of 3 times for each fuel. Tailpipe and/or engine out gaseous exhaust emissions (CO2, CO, NOx, THC, O2,), engine out PM emissions, and brake-specific fuel consumption rates will be evaluated for all test cycles.

  3. Final Report - Stationary and Emerging Market Fuel Cell System Cost Assessment

    Contini, Vince [Battelle Memorial Inst., Columbus, OH (United States); Heinrichs, Mike [Battelle Memorial Inst., Columbus, OH (United States); George, Paul [Battelle Memorial Inst., Columbus, OH (United States); Eubanks, Fritz [Battelle Memorial Inst., Columbus, OH (United States); Jansen, Mike [Battelle Memorial Inst., Columbus, OH (United States); Valluri, Manoj [Battelle Memorial Inst., Columbus, OH (United States); Mansouri, Mahan [Battelle Memorial Inst., Columbus, OH (United States); Swickrath, Mike [Battelle Memorial Inst., Columbus, OH (United States)

    2017-04-30

    The U.S. Department of Energy (DOE) is focused on providing a portfolio of technology solutions to meet energy security challenges of the future. Fuel cells are a part of this portfolio of technology offerings. To help meet these challenges and supplement the understanding of the current research, Battelle has executed a five-year program that evaluated the total system costs and total ownership costs of two technologies: (1) an ~80 °C polymer electrolyte membrane fuel cell (PEMFC) technology and (2) a solid oxide fuel cell (SOFC) technology, operating with hydrogen or reformate for different applications. Previous research conducted by Battelle, and more recently by other research institutes, suggests that fuel cells can offer customers significant fuel and emission savings along with other benefits compared to incumbent alternatives. For this project, Battelle has applied a proven cost assessment approach to assist the DOE Fuel Cell Technologies Program in making decisions regarding research and development, scale-up, and deployment of fuel cell technology. The cost studies and subsequent reports provide accurate projections of current system costs and the cost impact of state-of-the-art technologies in manufacturing, increases in production volume, and changes to system design on system cost and life cycle cost for several near-term and emerging fuel cell markets. The studies also provide information on types of manufacturing processes that must be developed to commercialize fuel cells and also provide insights into the optimization needed for use of off-the-shelf components in fuel cell systems. Battelle’s analysis is intended to help DOE prioritize investments in research and development of components to reduce the costs of fuel cell systems while considering systems optimization.

  4. Notice and Supplemental Determination for Renewable Fuels Produced Under the Final Renewable Fuel Standard Program from Canola Oil

    This rule finalizes the determination that canola oil biodiesel meets the lifecycle greenhouse gas (GHG) emission reduction threshold of 50 required by the Energy Independence and Security Act of 2007 (EISA).

  5. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    NONE

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  6. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  7. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    Yang, Won Sik; Lin, C. S.; Hader, J. S.; Park, T. K.; Deng, P.; Yang, G.; Jung, Y. S.; Kim, T. K.; Stauff, N. E.

    2016-01-01

    This report presents the performance characteristics of two ''two-stage'' fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  8. Final Report on Two-Stage Fast Spectrum Fuel Cycle Options

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Lin, C. S. [Purdue Univ., West Lafayette, IN (United States); Hader, J. S. [Purdue Univ., West Lafayette, IN (United States); Park, T. K. [Purdue Univ., West Lafayette, IN (United States); Deng, P. [Purdue Univ., West Lafayette, IN (United States); Yang, G. [Purdue Univ., West Lafayette, IN (United States); Jung, Y. S. [Purdue Univ., West Lafayette, IN (United States); Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States); Stauff, N. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-30

    This report presents the performance characteristics of two “two-stage” fast spectrum fuel cycle options proposed to enhance uranium resource utilization and to reduce nuclear waste generation. One is a two-stage fast spectrum fuel cycle option of continuous recycle of plutonium (Pu) in a fast reactor (FR) and subsequent burning of minor actinides (MAs) in an accelerator-driven system (ADS). The first stage is a sodium-cooled FR fuel cycle starting with low-enriched uranium (LEU) fuel; at the equilibrium cycle, the FR is operated using the recovered Pu and natural uranium without supporting LEU. Pu and uranium (U) are co-extracted from the discharged fuel and recycled in the first stage, and the recovered MAs are sent to the second stage. The second stage is a sodium-cooled ADS in which MAs are burned in an inert matrix fuel form. The discharged fuel of ADS is reprocessed, and all the recovered heavy metals (HMs) are recycled into the ADS. The other is a two-stage FR/ADS fuel cycle option with MA targets loaded in the FR. The recovered MAs are not directly sent to ADS, but partially incinerated in the FR in order to reduce the amount of MAs to be sent to the ADS. This is a heterogeneous recycling option of transuranic (TRU) elements

  9. Future combustion technology for synthetic and renewable fuels in compression ignition engines (REFUEL). Final report

    Aakko-Saksa, P.; Brink, A.; Happonen, M. [and others

    2012-07-01

    This domestic project, Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (ReFuel), was part of a Collaborative Task 'Future Combustion Technology for Synthetic and Renewable Fuels in Transport' of International Energy Agency (IEA) Combustion Agreement. This international Collaborative Task is coordinated by Finland. The three-year (2009-2011) prooject was a joint research project with Aalto University (Aalto), Tampere University of Technology (TUT), Technical Research Centre of Finland (VTT) and Aabo Akademi University (AAU). The project was funded by TEKES, Waertsilae Oyj, Agro Sisu Power, Aker Arctic Technology Oy and the research partners listed above. Modern renewable diesel fuels have excellent physical and chemical properties, in comparison to traditional crude oil based fuels. Purely paraffinic fuels do not contain aromatic compounds and they are totally sulphur free. Hydrotreated Vegetable Oil (HVO) was studied as an example of paraffinic high cetane number (CN) diesel fuels. HVO has no storage and low temperature problems like the fatty acid methyl esters (FAMEs) have. The combustion properties are better than those of crude oil based fuels and FAME, because they have very high cetane numbers and contain no polyaromatic hydrocarbons (PAH). With low HVO density, viscosity and distillation temperatures, these advantageous properties allow far more advanced combustion strategies, such as very high exhaust gas recirculation (EGR) rates or extreme Miller timings, than has been possible with current fossil fuels. The implementation of these advanced combustion technologies, together with the novel renewable diesel fuel, brought significant nitrogen oxides (NO{sub x}), particulate matter (PM) emission reductions with no efficiency losses. (orig.)

  10. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  11. Life cycle assessment of biomass-to-liquid fuels - Final report

    Jungbluth, N.; Buesser, S.; Frischknecht, R.; Tuchschmid, M.

    2008-02-15

    This study elaborates a life cycle assessment of using of BTL-fuels (biomass-to-liquid). This type of fuel is produced in synthesis process from e.g. wood, straw or other biomass. The life cycle inventory data of the fuel provision with different types of conversion concepts are based on the detailed life cycle assessment compiled and published within a European research project. The inventory of the fuel use emissions is based on information published by automobile manufacturers on reductions due to the use of BTL-fuels. Passenger cars fulfilling the EURO3 emission standards are the basis for the comparison. The life cycle inventories of the use of BTL-fuels for driving in passenger cars are investigated from cradle to grave. The full life cycle is investigated with the transportation of one person over one kilometre (pkm) as a functional unit. This includes all stages of the life cycle of a fuel (biomass and fuel production, distribution, combustion) and the necessary infrastructure (e.g. tractors, conversion plant, cars and streets). The use of biofuels is mainly promoted for the reason of reducing the climate change impact and the use of scarce non-renewable resources e.g. crude oil. The possible implementation of BTL-fuel production processes would potentially help to achieve this goal. The emissions of greenhouse gases due to transport services could be reduced by 28% to 69% with the BTL-processes using straw, forest wood or short-rotation wood as a biomass input. The reduction potential concerning non-renewable energy resources varies between 37% und 61%. A previous study showed that many biofuels cause higher environmental impacts than fossil fuels if several types of ecological problems are considered. The study uses two single score impact assessment methods for the evaluation of the overall environmental impacts, namely the Eco-indicator 99 (H,A) and the Swiss ecological scarcity 2006 method. The transportation with the best BTL-fuel from short

  12. Environmental implications of thorium use in selected nuclear fuel cycles. Final

    Buckley, D.W.; Simmons, G.L.; Ziskind, R.A.

    1978-01-01

    The objective of this study was to assess the environmental implications of the nuclear fuel cycle associated with the highly enriched uranium concept of the High Temperature Gas Cooled Reactor. Model fuel cycles were constructed for the HTGR and a reference light water reactor (LWR) cycle. Mass flows were developed, control technology cases proposed and costed, effluents determined, and population doses calculated. Emphasis was given to the intercomparison of the fuel cycles to delineate areas which show pronounced departure. The dose commitment received by the population both within and outside a radius of 50 miles of each facility was determined. The 100 year population dose commitments due to a single year's plant operation was selected to facilitate intercomparison among fuel cycle components. No account was taken for long term waste sources associated with the fuel cycle such as mill tailing piles or terminal waste storage (study groundrule). The resource utilization and radionuclide activity of various fuel cycle options for using thorium in a Pressurized Water Reactor were studied. These data were contrasted with similar results obtained for a uranium fuel PWR

  13. U.S. Air Force Hydroprocessed Renewable Jet (HRJ) Fuel Research

    2012-07-01

    general finding is that the neat HRJ fuels show high BOCLE unadditized and that most fuels respond immediately to low dosages of additive but quickly...Lo Power Cruise 3 Combat 4 Descent 5 Ground Idle 6 Start Time (el. min) 0 25 46 88 91 97 End Time (el. min

  14. Determination and microscopic study of incipient defects in irradiated power reactor fuel rods. Final report

    Pasupathi, V.; Perrin, J.S.; Roberts, E.

    1978-05-01

    This report presents the results of nondestructive and destructive examinations carried out on the Point Beach-1 (PWR) and Dresden-3 (BWR) candidate fuel rods selected for the study of pellet-clad interaction (PCI) induced incipient defects. In addition, the report includes results of examination of sections from Oskarshamn-1 (BWR) fuel rods. Eddy current examination of Point Beach-1 rods showed indications of possible incipient defects in the fuel rods. The profilometry and the gamma scan data also indicated that the source of the eddy current indications may be incipient defects. No failed rods or rods with incipient failure were found in the sample from Point Beach-1. Despite the lack of success in finding incipient defects and filed rods, the mechanism for fuel rod failures in Point Beach-1 is postulated to be PCI-related, with high startup rates and fuel handling being the key elements. Nine out of the 10 candidate fuel rods from Dresden-3 (BWR) were failed, and all the failed rods had leaked water so that the initial mechanism was observed. Examination of clad inner surfaces of the specimens from failed and unfailed rods showed fuel deposits of widely varying appearance. The deposits were found to contain uranium, cesium, and tellurium. Transmission electron microscopy of clad specimens showed evidence of microscopic strain. Metallographic examination of fuel pellets from the peak transient power location showed extensive grain boundary separation and axial movement of the fuel indicative of rapid release of fission products. Examination of Oskarshamn clad specimens did not show any stress corrosion crack (SCC) type defects. The defects found in the examinations appear to be related to secondary hydriding. The clad inner surface of the Oskarshamn specimens also showed uranium-rich deposits of varying features

  15. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  16. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  17. Final Environmental Assessment For Proposed Family Campground Expansion Maxwell Air Force Base, Montgomery County, Alabama

    2013-03-27

    during Final EA preparation. Providing private address information with your comment is voluntary and such personal information will be kept confidential ...commercially available. 4.2 Commercial kitchen appliances shall be either ENERGY STAR®, FEMP designated or qualified for California Utilities Rebate Program... kitchen pre-rinse spray valves (PRSV) with low flow nozzles) i. Install or convert to only ENERGY STAR® Commercial Dishwashers j. Install or convert to

  18. Final Environmental Assessment for a Solar Power System at Davis-Monthan Air Force Tucson, Arizona

    2009-09-01

    to the following factors depending on the corresponding years. Year 2005 through 2009: VOCE = .016 * Trips NOxE = .015 * Trips PM10E = .0022...Trips COE = .262 * Trips Year 2010 and beyond: VOCE = .012 * Trips NOxE = .013 * Trips PM10E = .0022 * Trips COE = .262 * Trips FINAL...ENVIRONMENTAL ASSESSMENT B-8 Solar Power System (SPS) at Davis-Monthan AFB To convert from pounds per day to tons per year: VOC (tons/yr) = VOCE * DPYII/2000

  19. Safety research needs for carbide and nitride fueled LMFBR's. Final report

    Kastenberg, W.E.

    1975-01-01

    The results of a study initiated at UCLA during the academic year 1974--1975 to evaluate and review the potential safety related research needs for carbide and nitride fueled LMFBR's are presented. The tasks included the following: (1) Review Core and primary system designs for any significant differences from oxide fueled reactors, (2) Review carbide (and nitride) fuel element irradiation behavior, (3) Review reactor behavior in postulated accidents, (4) Examine analytical methods of accident analysis to identify major gaps in models and data, and (5) Examine post accident heat removal. (TSS)

  20. Spent fuel management strategies in eight countries and applicability to Sweden. Final report

    1986-01-01

    International Energy Associates Limited undertook this study on behalf of Sweden's National Board for Spent Nuclear Fuel. The purpose of the project was to compare the programs and regulations for the management of spent fuel from nuclear power plants in eight countries: Belgium, Canada, the Federal Republic of Germany, France, Japan, Switzerland, The United Kingdom and the Uinted States. The study is presented in three volumes. Volume I consists of detailed country-specific reports on the policies, regulations, and strategies for spent fuel and high-level waste management in each of the eight countries

  1. High Performance Fuel Laboratory, Hanford Reservation, Richland, Washington. Final environmental impact statement

    1977-09-01

    The High Performance Fuel Laboratory (HPFL) will provide pilot scale tests of manufacturing processes, equipment, and handling systems and of accountability and safeguards, methods, and equipment while keeping radiological and chemical exposures of the workers, public, and environment at the lowest practicable levels. The experience gained from designing, constructing and operating the HPFL can be used in future commitments to commercial fuel fabrication plants in the late 1980s and beyond for processing of nuclear fuel. The HPFL site is located in the 400 Area of the 559-square mile, federally owned Hanford Reservation. This environmental impact statement considers effects of the HPFL under normal conditions and in the event of an accident

  2. Final Report: Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation

    Rowsell, David Leon [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-06-01

    This report documents the Contractor Readiness Assessment (CRA) for TREAT Fuel Movement and Control Rod Drives Isolation. The review followed the approved Plan of Action (POA) and Implementation Plan (IP) using the identified core requirements. The activity was limited scope focusing on the control rod drives functional isolation and fuel element movement. The purpose of this review is to ensure the facility's readiness to move fuel elements thus supporting inspection and functionally isolate the control rod drives to maintain the required shutdown margin.

  3. Signatures of Extended Storage of Used Nuclear Fuel Comprehensive Final Report

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-21

    This report serves as a comprehensive overview of the Extended Storage of Used Nuclear Fuel work performed for the Material Protection, Accounting and Control Technologies campaign under the Department of Energy Office of Nuclear Energy. This paper describes a signature based on the source and fissile material distribution found within a population of used fuel assemblies combined with the neutron absorbers found within cask design that is unique to a specific cask with its specific arrangement of fuel. The paper describes all the steps used in producing and analyzing this signature from the beginning to the project end.

  4. Vibration of fuel bundles

    Chen, S.S.

    1975-06-01

    Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods

  5. Final environmental impact statement: US Spent Fuel Policy. Comment letters on draft statements and major comments with DOE responses

    1980-05-01

    Notice of availability of the draft environmental impact statement for storage of US spent power reactor fuel was published by DOE in the Federal Register on September 6, 1978. A subsequent notice was published in the Federal Register on December 14, 1978, on the availability of the draft EISs on storage of foreign fuel, on charge for spent fuel storage, and a supplement to the draft EIS on storage of US fuel. Copies of the draft EISs were distributed for review and comment by appropriate Federal agencies, state governments, and other organizations and individuals who were known to have an interest in spent fuel storage activities and those who requested them. Comments and views concerning the draft EISs were requested from other interested agencies, organizations, and individuals by means of the Federal Register notices. Approximately 1600 copies each of the draft Domestic, Foreign, and Charge EISs were distributed for comment. The closing date for comments to be received on the draft EISs was February 15, 1979. Copies of the EISs (upon publication) and comment letters received were placed for public inspection in DOE public document rooms at 10 locations throughout the country. To the extent practicable, comments received after the closing date were also considered in the preparation of the final EIS. A total of 78 comment letters (some with supplements) were received. These comment letters are reproduced in their entirety in Section I of this volume. Approximately 600 specific comments were identified in these letters

  6. Department of the Navy final environmental impact statement for a container system for the management of naval spent nuclear fuel

    1996-11-01

    This Final Environmental Impact Statement (EIS) addresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination. This EIS describes environmental impacts of (1) producing and implementing the container systems (including those impacts resulting from the addition of the capability to load the containers covered in this EIS in dry fuel handling facilities at Idaho National Engineering Laboratory (INEL)); (2) loading of naval spent nuclear fuel at the Expended Core Facility or at the Idaho Chemical Processing Plant with subsequent storage at INEL; (3) construction of a storage facility (such as a paved area) at alternative locations at INEL; and (4) loading of containers and their shipment to a geologic repository or to a centralized interim storage site outside the State of Idaho once one becomes available. As indicated in the EIS, the systems and facilities might also be used for handling low-level radiological waste categorized as special case waste. The Navy's preferred alternative for a container system for the management of naval spent fuel is a dual-purpose canister system. The primary benefits of a dual-purpose canister system are efficiencies in container manufacturing and fuel reloading operations, and potential reductions in radiation exposure

  7. Review of the KBS II plan for handling and final storage of unreprocessed spent nuclear fuel

    1980-01-01

    The Swedish utilities programme for disposal of spent nuclear fuel elements (KBS II) is summarized. Comments and criticism to the programme are given by experts from several foreign or international institutions. (L.E.)

  8. Fuel Rod Consolidation Project: Phase 2, Final report: Volume 2, Appendices

    1987-01-01

    This document, Volume 2, provides the appendices to Volume 1 of the Fuel Rod Consolidation Project. It provides information on the following: References; Trade-off Studies; Instrument List; RAM Data; Fabrication Specifications; Software Specifications; and Design Requirements

  9. SPEAR-BETA fuel-performance code system: fission-gas-release module. Final report

    Christensen, R.

    1983-03-01

    The original SPEAR-BETA general description manual covers both mechanistic and statistical models for fuel reliability, but only mechanistic modeling of fission gas release. This addendum covers the SPEAR-BETA statistical model for fission gas release

  10. Final report for fuel acquisition and design of a fast subcritical blanket facility

    Clikeman, F.M.; Ott, K.O.

    1976-01-01

    A summary is presented of work leading to the design of a subcritical facility for the study of fast reactor blankets. Included are activities related to fuel acquisition, design of the facility, and experiment planning

  11. FFTF fuel failure detection and characterization by cover gas monitoring. Final report

    Miller, W.C.; Holt, F.E.

    1977-01-01

    The Fast Flux Test Facility (FFTF) will include a Fuel Failure Monitoring (FFM) System designed to detect, characterize, and locate fuel and absorber pin failures (i.e., cladding breaches) using a combination of delayed neutron detection, cover gas radioisotope monitoring, and gas tagging. During the past several years the Hanford Engineering Development Laboratory has been involved in the development, design, procurement, and installation of this integrated system. The paper describes one portion of the FFM System, the Cover Gas Monitoring System (CGMS), which has the primary function of fuel failure detection and characterization in the FFTF. By monitoring the various radioisotopes in the cover gas, the CGMS will both detect fuel and absorber pin failures and characterize those failures as to magnitude and severity

  12. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  13. Development and Demonstration of Carbon Fuel Cell Final Report CRADA No. TC02091.0

    Cooper, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berner, J. K. [Contained Energy, Inc., Shaker Heights, OH (United States)

    2017-09-08

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Contained Energy, Inc. (CEI), to conduct necessary research and to develop, fabricate and test a multi-cell carbon fuel cell.

  14. Fuel cell power systems for remote applications. Phase 1 final report and business plan

    NONE

    1998-02-01

    The goal of the Fuel Cell Power Systems for Remote Applications project is to commercialize a 0.1--5 kW integrated fuel cell power system (FCPS). The project targets high value niche markets, including natural gas and oil pipelines, off-grid homes, yachts, telecommunication stations and recreational vehicles. Phase 1 includes the market research, technical and financial analysis of the fuel cell power system, technical and financial requirements to establish manufacturing capability, the business plan, and teaming arrangements. Phase 1 also includes project planning, scope of work, and budgets for Phases 2--4. The project is a cooperative effort of Teledyne Brown Engineering--Energy Systems, Schatz Energy Research Center, Hydrogen Burner Technology, and the City of Palm Desert. Phases 2 through 4 are designed to utilize the results of Phase 1, to further the commercial potential of the fuel cell power system. Phase 2 focuses on research and development of the reformer and fuel cell and is divided into three related, but potentially separate tasks. Budgets and timelines for Phase 2 can be found in section 4 of this report. Phase 2 includes: Task A--Develop a reformate tolerant fuel cell stack and 5 kW reformer; Task B--Assemble and deliver a fuel cell that operates on pure hydrogen to the University of Alaska or another site in Alaska; Task C--Provide support and training to the University of Alaska in the setting up and operating a fuel cell test lab. The Phase 1 research examined the market for power systems for off-grid homes, yachts, telecommunication stations and recreational vehicles. Also included in this report are summaries of the previously conducted market reports that examined power needs for remote locations along natural gas and oil pipelines. A list of highlights from the research can be found in the executive summary of the business plan.

  15. Store and process for intermediate or final storage of used fuel elements from a nuclear reactor

    Kumpf, H.

    1986-01-01

    The fuel elements are enclosed in boxes at the nuclear reactor and transported in these to the incoming station. Transport is a by truck, which makes it possible for the transport container to move in a vertical position, where the upper side is on the top side of the truck. The fuel elements in their boxes are handed over to a magazine there, which can be reached by a loading machine serving the storage room. (orig./HP) [de

  16. Evaluation of biodiesel fuel and oxidation catalyst in an underground metal mine : revised final report

    Watts, W.F. Jr.; Spears, M.; Johnson, J. [Minnesota Univ., St. Paul, MN (United States); Birch, E.; Cantrell, B.K. [National Inst, for Occupational Safety and Health, Morgantown, VW (United States); Grenier, M. [Canada Centre for Mineral and Energy Technology, Ottawa, ON (Canada); Walker, J. [Ortech International, Mississauga, ON (Canada); Bagley, S. [Michigan Technological Univ., Houghton, MI (United States); Maskery, D.; Stachulak, J.S.; Conard, B.R. [Inco Ltd., Toronto, ON (Canada)

    1998-09-24

    The impact of blended biodiesel fuel and modern diesel oxidation catalyst (DOC) on air quality and diesel emissions were evaluated. The study was conducted in October 1997 at Inco's Creighton Mine in Sudbury, Ontario. The concentration of diesel particulate matter (DPM) and exhaust gas emissions in a non-producing test section were characterized. A diesel-powered scoop was operated on low sulfur, number 2 diesel fuel (D2) during the first week of the evaluation. The scoop was operated on 58 per cent (by mass) blend of soy methyl ester (SME) biodiesel fuel and a low sulfur D2 during the second week. A pair of identical, advanced design DOC equipped the scoop. The changes in exhaust emissions and an estimation of the operating costs of a test vehicle fueled with blended biodiesel were determined and represented the objectives of the study. A summary of the data collected for the determination in the difference in gaseous and particulate matter concentrations attributable to the use of a blended biodiesel fuel and catalyst was presented. The Emissions Assisted Maintenance Procedure (EAMP) was used to determine the day-to-day variation in emissions. The DOCs performed as expected and there were no major changes in engine emissions. An increase in nitrogen dioxide concentrations was noted, and carbon monoxide was effectively removed. The combination of the blended biodiesel fuel and DOCs used in this study decreased total carbon emissions by approximately 21 per cent, as indicated by air samples collected in the test section. During both weeks, sulphur dioxide levels were low. In an underground mine, the use of biodiesel fuel un combination with DOCs represents a passive control option. Cost is an obstacle, biodiesel selling for 3.00 to 3.50 American dollars per gallon. It is estimated that using a 50 per cent blended biodiesel fuel would cost between 2.00 and 2.25 American dollars per gallon. 35 refs., 18 tabs., 10 figs.

  17. Development of Techniques for Spent Fuel Assay - Differential Dieaway Final Report

    Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Desimone, David J.; Rael, Carlos D.; Henzl, Vladimir; Polk, Paul John

    2016-01-01

    This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work covers the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.

  18. Final Technical Report for Alternative Fuel Source Study-An Energy Efficient and Environmentally Friendly Approach

    Zee, Ralph [Auburn University, AL (United States); Schindler, Anton [Auburn University, AL (United States); Duke, Steve [Auburn University, AL (United States); Burch, Thom [Auburn University, AL (United States); Bransby, David [Auburn University, AL (United States); Stafford, Don [Lafarge North America, Inc., Alpharetta, GA (United States)

    2010-08-31

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels were examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.

  19. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    N/A

    2000-04-14

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  20. Engineering study: 105KE to 105KW Basin fuel and sludge transfer. Final report

    Gant, R.G.

    1994-01-01

    In the last five years, there have been three periods at the 105KE fuel storage basin (KE Basin) where the reported drawdown test rates were in excess of 25 gph. Drawdown rates in excess of this amount have been used during past operations as the primary indicators of leaks in the basin. The latest leak occurred in March, 1993. The reported water loss from the KE Basin was estimated at 25 gph. This engineering study was performed to identify and recommend the most feasible and practical method of transferring canisters of irradiated fuel and basin sludge from the KE Basin to the 105KW fuel storage basin (KW Basin). Six alternatives were identified during the performance of this study as possible methods for transferring the fuel and sludge from the KE Basin to the KW Basin. These methods were then assessed with regard to operations, safety, radiation exposure, packaging, environmental concerns, waste management, cost, and schedule; and the most feasible and practical methods of transfer were identified. The methods examined in detail in this study were based on shipment without cooling water except where noted: Transfer by rail using the previously used transfer system and water cooling; Transfer by rail using the previously used transfer system (without water cooling); Transfer by truck using the K Area fuel transfer cask (K Area cask); Transfer by truck using a DOE shipping cask; Transfer by truck using a commercial shipping cask; and Transfer by truck using a new fuel shipping cask

  1. Final Report - Durable Catalysts for Fuel Cell Protection during Transient Conditions

    Atanasoski, Radoslav [3M Company, St. Paul, MN (United States); van der Vliet, Dennis [3M Company, St. Paul, MN (United States); Cullen, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atanasoska, Ljiljana [3M Company, St. Paul, MN (United States)

    2015-01-26

    The objective of this project was to develop catalysts that will enable proton exchange membranes (PEM) fuel cell systems to weather the damaging conditions in the fuel cell at voltages beyond the thermodynamic stability of water during the transient periods of start-up/shut-down and fuel starvation. Such catalysts are required to make it possible for the fuel cell to satisfy the 2015 DOE targets for performance and durability. The project addressed a key issue of importance for successful transition of PEM fuel cell technology from development to pre-commercial phase. This issue is the failure of the catalyst and the other thermodynamically unstable membrane electrode assembly (MEA) components during start-up/shut-down and local fuel starvation at the anode, commonly referred to as transient conditions. During these periods the electrodes can reach potentials higher than the usual 1.23V upper limit during normal operation. The most logical way to minimize the damage from such transient events is to minimize the potential seen by the electrodes. At lower positive potentials, increased stability of the catalysts themselves and reduced degradation of the other MEA components is expected.

  2. Evaluation of spectral shift controlled reactors operating on the uranium fuel cycle. Final report

    Matzie, R.A.; Sider, F.M.

    1979-08-01

    The performance of the spectral shift controlled reactor (SSCR) operating on uranium fuel cycles was evaluated and compared with the conventional pressurized water reactor (PWR). In order to analyze the SSCR, the PSR design methodology was extended to include systems moderated by mixtures of light water and heavy water and these methods were validated by comparison with experimental results. Once the design methods had been formulated, the resouce requirements and power costs were determined for the uranium-fueled SSCR. The ore requirements of the UO 2 once-through fuel cycle and the UO 2 fuel cycle with self-generated recycle (SGR) of plutonium were found to be 10% and 19% less than those of similarly fueled PWRs, respectively. A fuel cycle optimization study was performed for the UO 2 once-through SSCR and the SGR SSCR. By individually altering lattice parameters, discharge exposure or number of in-core batches, savings of less than 8% in resource requirements and less than 1% in power costs were obtained

  3. Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report

    Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodsell, Alison [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Iliev, Metodi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Desimone, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rael, Carlos D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Polk, Paul John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-28

    This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work covers the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.

  4. Effects of clamping force on the water transport and performance of a PEM (proton electrolyte membrane) fuel cell with relative humidity and current density

    Cha, Dowon; Ahn, Jae Hwan; Kim, Hyung Soon; Kim, Yongchan

    2015-01-01

    The clamping force should be applied to a proton electrolyte membrane (PEM) fuel cell due to its structural characteristics. The clamping force affects the ohmic and mass transport resistances in the PEM fuel cell. In this study, the effects of the clamping force on the water transport and performance characteristics of a PEM fuel cell are experimentally investigated with variations in the relative humidity and current density. The water transport characteristics were analyzed by calculating the net drag coefficient. The ohmic resistance decreased with the increase in the clamping force due to the reduced contact resistance and more even membrane hydration. However, the mass transport resistance increased with the increase in the clamping force due to the gas diffusion layer compression. The net drag coefficient decreased with the increase in the clamping force due to high water back-diffusion. Additionally, the relationship between the total resistance and the net drag coefficient was investigated. - Highlights: • Effects of clamping force on the performance of a PEM fuel cell are investigated. • Water transport characteristics are analyzed using net drag coefficient. • Ohmic resistance decreased with clamping force, but mass transport resistance increased. • Net drag coefficient decreased with the increase in clamping force. • Total resistance was significantly degraded for a net drag coefficient below 0.2.

  5. Biofuels: An Alternative to U.S. Air Force Petroleum Fuel Dependency

    Danigole, Mark S

    2007-01-01

    .... In conjunction with the President's mandate to reduce dependency on foreign procured oil and in an effort to stem unfunded fuel expenses, the USAF established an active alternative energy program...

  6. Rock quality designation of the hydraulic properties in the near field of a final repository for spent nuclear fuel

    Carlsson, Hans; Carlsson, Leif; Pusch, Roland

    1989-06-01

    Quality assurance of a final repository for spent nuclear fuel requires detailed information on the characteristics of the rock, backfill, canisters and the waste itself. Furthermore, and of fundamental importance, is the knowledge of the behaviour of the integrated system of the waste and the different barriers. The in-situ characteristics of the rock must therefore be assessed and their influence on and interactions with the remaining barriers must be predicted and verified. A rock quality designation process of the hydraulic properties in the near-field is out-lined both for the KBS-3 system as well as for the WP-cave system. The process, once updated and approved, will be included in a Quality Assurance Program for the final repository for spent nuclear fuel. Some of the available methods for the near-field designation process are presented as well as techniques that need further development or are not developed at all. Finally, a presentation is given of a generic designation process of the KBS-3 and WP-cave repository systems in the previously investigated area in Central Sweden, where the final repository for reactor waste, SFR, is located. Geological and hydrogeological data are here at hand and it is therefore possible to carry out a simulation of how the designation process would be accomplished. (authors) (72 figs., 12 tabs., 43 refs.)

  7. An assessment of the use of tires as an alternative fuel : final report

    Pegg, M.J.; Amyotte, P.R.; Fels, M.; Cumming, C.R.R.; Poushay, J.C. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Process Engineering and Applied Science

    2007-04-15

    This study examined the benefits of using scrap tires as tire-derived fuel (TDF) in industrial applications. The study was comprised of a literature review of emissions from TDF in cement plants; risk management frameworks for TDF applications; and a review of potential applications. The aim of the study was to consider a program for recycling waste tires in the province of Nova Scotia. In Canada, approximately 20 per cent of waste tires are used as TDF. The majority of TDF in Canada is used as a supplemental fuel in cement kilns. The fuel now has a number of potential industrial applications within the province of Nova Scotia in the pulp and paper industry as well as in generating stations. A review of reported emissions showed decreases in nitrogen oxides (NO{sub x}) when tires were used as a supplementary fuel in industrial applications. However, carbon monoxide (CO) levels are typically higher when TDF fuels are used. Emission levels of dioxins and furans show wide variability. The study provided recommendations for future studies on dioxin and furan emissions, as well as a comprehensive testing program at a cement plant to determine stack emissions and off-site ground pollutant concentrations. Dispersion modelling and risk management assessments were also recommended. 59 refs., 19 tabs., 15 figs.

  8. An assessment of the use of tires as an alternative fuel : final report

    Pegg, M.J.; Amyotte, P.R.; Fels, M.; Cumming, C.R.R.; Poushay, J.C.

    2007-04-01

    This study examined the benefits of using scrap tires as tire-derived fuel (TDF) in industrial applications. The study was comprised of a literature review of emissions from TDF in cement plants; risk management frameworks for TDF applications; and a review of potential applications. The aim of the study was to consider a program for recycling waste tires in the province of Nova Scotia. In Canada, approximately 20 per cent of waste tires are used as TDF. The majority of TDF in Canada is used as a supplemental fuel in cement kilns. The fuel now has a number of potential industrial applications within the province of Nova Scotia in the pulp and paper industry as well as in generating stations. A review of reported emissions showed decreases in nitrogen oxides (NO x ) when tires were used as a supplementary fuel in industrial applications. However, carbon monoxide (CO) levels are typically higher when TDF fuels are used. Emission levels of dioxins and furans show wide variability. The study provided recommendations for future studies on dioxin and furan emissions, as well as a comprehensive testing program at a cement plant to determine stack emissions and off-site ground pollutant concentrations. Dispersion modelling and risk management assessments were also recommended. 59 refs., 19 tabs., 15 figs

  9. Characteristic of The RSG-Gas Oxide Fuel Element Temperature Under Forced Convection And Natural Convection Mode

    Sudarmono

    2000-01-01

    One of the methods used for fuel element plate temperature measurement in RSG-Gas is a direct measurement. Evaluation on the measurement results were done by using HEATHYDE and NATCON code, which was then compared to the safety margin criteria. Results of thermalhydraulic measurement on transitional core both under forced and natural convection were compared with the results of calculations using the two codes. Measurement result for maximum fuel element plate temperature at typical working core of 30 MW, was 121 o C. The deviation between calculation and measurement result was under 9.75 %. Under normal operation, safety margin on DNB and OFI are 3.56 and 2.60, respectively. Natcon calculation result showed that the typical working core under the natural circulation mode, an onset of nucleate boiling (ONB)occurred at a core power level of 826 kW (2.8% of the nominal power)

  10. Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report

    Luczak, F.

    1998-03-01

    Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

  11. Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results

    Battelle

    1998-10-01

    In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend (E85, which is 85% transportation-grade ethanol and 15% gasoline) as a transportation fuel in flexible-fuel vehicles (FFVs). The study included ten FFVs and three gasoline vehicles (used as control vehicles) operated by five state agencies. The project included 24 months of data collection on vehicle operations. This report presents the data collection and analysis from the study, with a focus on the last year.

  12. Supply Chain-Based Solution to Prevent Fuel Tax Evasion: Final Report

    Capps, Gary J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering and Transportation Sciences Division; Franzese, Oscar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering and Transportation Sciences Division; Lascurain, Mary Beth [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering and Transportation Sciences Division; Siekmann, Adam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering and Transportation Sciences Division; Barker, Alan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Electrical and Electronics Systems Research Division

    2016-07-28

    The primary source of funding for the United States transportation system is derived from motor fuel and other highway use taxes. Loss of revenue attributed to fuel-tax evasion has been assessed to be somewhere between 1 billion and 3 billion per year. Any solution that addresses this problem needs to include not only the tax-collection agencies and auditors, but also the carriers transporting oil products and the carriers customers. This report presents a system developed by the Oak Ridge National Laboratory (ORNL) for the Federal Highway Administration which has the potential to reduce or eliminate many fuel-tax evasion schemes. The solution balances the needs of tax-auditors and those of the fuel-hauling companies and their customers. The system has three main components. The on-board subsystem combined sensors, tracking and communication devices, and software (the on-board Evidential Reasoning System, or obERS) to detect, monitor, and geo-locate the transfer of fuel among different locations. The back office sub-system (boERS) used self-learning algorithms to determine the legitimacy of the fuel loading and offloading (important for tax auditors) and detect potential illicit operations such as fuel theft (important for carriers and their customers, and may justify the deployment costs). The third sub-system, the Fuel Distribution and Auditing System or FDAS, is a centralized database, which together with a user interface allows tax auditors to query the data submitted by the fuel-hauling companies and correlate different parameters to quickly identify any anomalies. Industry partners included Barger Transport of Weber City, Virginia (fleet); Air-Weigh, of Eugene, Oregon (and their wires and harnesses); Liquid Bulk Tank (LBT) of Omaha, Nebraska (three five-compartment trailers); and Innovative Software Engineering (ISE) of Coralville, Iowa(on-board telematics device and back-office system). ORNL conducted a pilot test with the three instrumented vehicles

  13. The Final Stage of Mongol Invasion of Europe: A Military Force and Secret Diplomacy (1 »

    A.V. Maiorov

    2015-01-01

    Full Text Available The paper analyzes the sources of information on the direct contact of the Emperor Frederick II with the Mongols before the attack of the latter on Europe, the persistent rumors of his collusion with the invaders, who came to blow mainly to the enemies of Frederick, the refusal of the Emperor of an armed clash with the Tatars, the refusal to participate in the Crusade prepared by the German prelates against the Tatars, but instead – a withdrawal of the imperial troops in Italy and the siege of Rome in order to force the pope to recognize the supremacy of the Emperor, the sudden retreat of the Tartars themselves from the German border and the abandonment of the original plans for the conquest of Germany, unexpected counteraction against Frederick of the German prelates who had been previously loyal to the Emperor and who accused him of a serious crime against the Church and the whole of Christianity. The author concludes that the Emperor Frederick and the leaders of the Western Mongol campaign were associated with secret mutual obligations. Many of his contemporaries were aware of the Emperor’s secret contacts with the Tartars (Albert von Beheim, Matthew Paris, and others.. The author analyzes the information and is trying to separate the elements of political propaganda from the established facts. The Emperor’s conspiracy with the Tatar leaders is indicated both by direct evidence and numerous indirect information analyzed in the article. On the one hand, the Emperor did everything possible to avoid a direct military confrontation with the Tatars and disrupt plans of his supporters in Germany to combat the invaders. On the other hand, the Tatar impact in Europe fell entirely on the Friedrich’s enemies who took the side of the pope in the latter’s conflict with Emperor. As a result of the Tatar invasion of Europe position of the Emperor in his confrontation with the Roman church greatly strengthened. This change in the balance of power

  14. The Final Stage of Mongol Invasion of Europe: A Military Force and Secret Diplomacy (2 »

    A.V. Mayorov

    2015-01-01

    Full Text Available The paper analyzes the sources of information on the direct contact of the Emperor Frederick II with the Mongols before the attack of the latter on Europe, the persistent rumors of his collusion with the invaders, who came to blow mainly to the enemies of Frederick, the refusal of the Emperor of an armed clash with the Tatars, the refusal to participate in the Crusade prepared by the German prelates against the Tatars, but instead – a withdrawal of the imperial troops in Italy and the siege of Rome in order to force the pope to recognize the supremacy of the Emperor, the sudden retreat of the Tartars themselves from the German border and the abandonment of the original plans for the conquest of Germany, unexpected counteraction against Frederick of the German prelates who had been previously loyal to the Emperor and who accused him of a serious crime against the Church and the whole of Christianity. The author concludes that the Emperor Frederick and the leaders of the Western Mongol campaign were associated with secret mutual obligations. Many of his contemporaries were aware of the Emperor’s secret contacts with the Tartars (Albert von Beheim, Matthew Paris, and others.. The author analyzes the information and is trying to separate the elements of political propaganda from the established facts. The Emperor’s conspiracy with the Tatar leaders is indicated both by direct evidence and numerous indirect information analyzed in the article. On the one hand, the Emperor did everything possible to avoid a direct military confrontation with the Tatars and disrupt plans of his supporters in Germany to combat the invaders. On the other hand, the Tatar impact in Europe fell entirely on the Frederick’s enemies who took the side of the pope in the latter’s conflict with Emperor. As a result of the Tatar invasion of Europe position of the Emperor in his confrontation with the Roman church greatly strengthened. This change in the balance of power

  15. Spent fuel management strategies in eight countries and applicability to Sweden. Final report

    1986-01-01

    This volume presents the texts of laws and regulations on the management of spent nuclear fuel in eight countries: Belgium, Canada, the Federal Republic of Germany, France, Japan, Switzerland, the United Kingdom and the United States. Reports and articles presented by the governments are also provided which in many cases offer useful descriptions of programs, regulations, and policies. Summary descriptions of each of the documents are presented in this volume. The scope of the materials provided covers policies and regulations on spent fuel storage (wet and dry, at-reactor and centralized), packaging, handling, transportation, reprocessing, and disposal. Types of documents include legislation, decrees and ordinances, regulations and regulatory guidance, statements of policy and important articles. All important nuclear legislation is included whether or not it deals with spent fuel management explicitly. This includes basic atomic energy laws and laws on financial liability, environmental protection, physical security etc. Similarly, regulations and ordinances having broad impact on nuclear activities are included, such as radiation protection, environmental protection and emergency planning requirements, as well as regulations dealing with spent fuel and waste management topics directly. All legal documents provided are currently in effect

  16. Optimised fuel cell operation management. Final report; Optimiertes Betriebsmanagement von Brennstoffzellen. Schlussbericht

    NONE

    2003-11-05

    Investigations were carried out on two fuel cell systems of the type ONSI PC 25C (large fuel cells) and three fuel cell heaters of the type HXS 1000 PREMIERE by Sulzer HEXIS (small fuel cells) for long periods of time and in different modes of operation. Information was obtained on efficiencies and performance, pollutant emissions, degradation and availability. The status of the project is reported and compared with the goals stated initially. (orig.) [German] Das Hauptziel des Projektes bestand darin, Kriterien fuer den optimalen Betrieb (hohe Verfuegbarkeit, geringe Anzahl von Abschaltungen, hohe Energienutzung etc.) von Brennstoffzellen im Zusammenspiel mit den peripheren Komponenten der Gebaeudetechnik zu ermitteln. Hierzu wurden Untersuchungen an zwei Brennstoffzellen-Anlagen vom Typ ONSI PC 25C (grosse BZ) und an drei Brennstoffzellen-Heizgeraeten HXS 1000 PREMIERE von Sulzer HEXIS (kleine BZ) ueber laengere Zeitraeume und bei weitestgehend unterschiedlichen Betriebsweisen durchgefuehrt. In Auswertung dieser Messkomplexe wurden Aussagen zum Betriebsverhalten der Brennstoffzellen, wie z.B. zu Wirk- und Nutzungsgraden, Schadstoffemissionen, Verlauf der Degradation sowie zur Verfuegbarkeit getroffen. Im vorliegenden Bericht wird der erreichte Sachstand detailliert dargestellt und mit den Zielsetzungen des FuE-Antrages verglichen. (orig.)

  17. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks; FINAL

    Stodolsky, F.; Gaines, L.; Vyas, A.

    2000-01-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter

  18. Fossil Fuel (CO2) Emission Verification Capability07-ERD-064Final Report

    Guilderson, T. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cameron-Smith, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-04-26

    This work focused exclusively on designing a system for California as a test-bed. Fossil fuel CO2 emissions account for ~96% of the total California anthropogenic CO2 emissions (CEC GHG Inventory, 2006).

  19. Technology development goals for automotive fuel cell power systems. Final report

    James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1994-08-01

    This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

  20. Immunotoxicity of jet fuel. Final report, 1 October 1994-31 October 1995

    Harris, D.T.

    1995-10-31

    During our preliminary year of experimentation we have made an initial examination Off the immunotoxicological effects of JP-8 jet fuel exposure. Inbred C57BL6 mice were exposed to varying concentrations (either 500, 1000 or 2500 mg/m3) of aerosolized JP-8 jet fuel for a period of 7 days with an exposure period of 1 hour per day. Animal exposure was performed via nose-only presentation while the animals were held in individual subject loading tubes. The tubes were nose cone fitted to receiving adapters that originated from a common anodized aluminum exposure chamber. Nose only exposure was utilized to minimize ingestion of jet fuel during self grooming. Animals were rotated on a daily basis through the 12 adapter positions on the exposure chamber. This rotation was done to minimize proximity to the jet fuel source as a variable in exposure concentration or composition. Exposure concentration was determined by a seven stage --cascade impactor, and were measured after each exposure (1,2). 24 hours after the last exposure the animals were sacrificed and examined for changes in immune system composition and function. The major immune system organ systems (i.e., spleen, thymus, lymph nodes, blood and bone marrow) were recovered and examined for changes in organ weight total cell numbers, immune cell components (by differential histochemical staining).

  1. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  2. Suitability of Haestholmen Loviisa for final disposal of spent fuel. Preliminary study; Loviisan Haestholmenin soveltuvuus kaeytetyn polttoaineen loppusijoitukseen. Esiselvitys

    NONE

    1996-12-01

    Based on the amendment of the Nuclear Energy Act the spent nuclear fuel of Imatran Voima Oy (IVO) will be disposed of in Finland instead of returning it to Russia. After Teollisuuden Voima Oy (TVO) and IVO had founded a joint company Posiva Oy the work IVO started in 1995 was brought together with the ongoing research programme for final disposal of spent fuel and extended to a feasibility study. The feasibility study was launched in the beginning of 1996. The geological evaluation was mainly based on the previous investigations at the island. For this study the complementary geological mapping has been carried out at the Haestholmen and on the surrounding area with a radius of 20 km. (49 refs.).

  3. Near limit flame spread over thick fuels in a concurrent forced flow

    Di Blasi, C.; Crescitelli, S.; Russo, G.

    1988-01-01

    The influence of the ambient level of oxygen concentration on the flow assisted flame spread over thick solid fuels and the extinction of the fame is studied by means of numerical modeling. The pyrolysis spread rate decreases with the oxygen concentration, showing qualitative agreement with experimental data. In fact, as the oxygen level decreases, the flame temperature decreases, causing lower heat fluxes at the fuel surfaces and lower pyrolysis mass rates so that the spread process is slowed. The effects due to finite kinetics are of increasing importance as extinction is approached. These effects appear mainly at the upstream flame leading edge, where the extinction length (distance of the flame leading edge from the edge of the fuel slab) increases. However, the spread process continues, that is, the flame and pyrolysis lengths increase with time, until the pyrolysis spread rate is greater than the upstream extinction rate. Complete extinction occurs when the extinction distance extends to the position of the pyrolysis front

  4. Two dimensional point of use fuel cell : a final LDRD project report.

    Zavadil, Kevin Robert; Hickner, Michael A. (Pennsylvania State University, University Park, PA); Gross, Matthew L. (Pennsylvania State University, University Park, PA)

    2011-03-01

    The Proliferation Assessment (program area - Things Thin) within the Defense Systems and Assessment Investment Area desires high energy density and long-lived power sources with moderate currents (mA) that can be used as building blocks in platforms for the continuous monitoring of chemical, biological, and radiological agents. Fuel cells can be an optimum choice for a power source because of the high energy densities that are possible with liquid fuels. Additionally, power generation and fuel storage can be decoupled in a fuel cell for independent control of energy and power density for customized, application-driven power solutions. Direct methanol fuel cells (DMFC) are explored as a possible concept to develop into ultrathin or two-dimensional power sources. New developments in nanotechnology, advanced fabrication techniques, and materials science are exploited to create a planar DMFC that could be co-located with electronics in a chip format. Carbon nanotubes and pyrolyzed polymers are used as building block electrodes - porous, mechanically compliant current collectors. Directed assembly methods including surface functionalization and layer-by-layer deposition with polyelectrolytes are used to pattern, build, and add functionality to these electrodes. These same techniques are used to incorporate nanoscale selective electrocatalyst into the carbon electrodes to provide a high density of active electron transfer sites for the methanol oxidation and oxygen reduction reactions. The resulting electrodes are characterized in terms of their physical properties, electrocatalytic function, and selectivity to better understand how processing impacts their performance attributes. The basic function of a membrane electrode assembly is demonstrated for several prototype devices.

  5. Enhanced Emission Performance and Fuel Efficiency for HD Methane Engines. Literature Study. Final Report

    Broman, R.; Staalhammar, P.; Erlandsson, L.

    2010-05-15

    A literature survey has been conducted in order to define state-of-the-art for methane fuelled engines to be used in heavy duty vehicles. Use of methane can be favourable to increase security of supply and mitigate CO2 emissions, especially when the methane origins from biomass. Furthermore, methane used as a fuel in heavy duty engines has a potential to reduce toxic exhaust emissions. Historically, use of methane in heavy duty engines has often been hampered by poor efficiency, i.e. high fuel consumption when using the Otto-cycle. However, current generation technology engines might be within 5-10 % of the efficiency of Diesel engine technology. In this context it is worth mentioning that compliance-driven changes for meeting future emission regulations for Diesel engines may have a negative impact on fuel efficiency, thereby narrowing the gap. This may present an opportunity for heavy methane fuelled engines. The reliability and durability of the exhaust aftertreatment devices for methane fuelled engines has also given rise to some concerns. Some concepts are performing acceptable while others do not meet expectations. This is partly due to difficulties in handling methane in the aftertreatment device and partly to issues in the design of the ignition system. Methane is a fuel used worldwide and has a potential to be an important complement to Diesel oil. There are two categories of HD methane engines available to end-users: Retrofitted engines, which often include computer controlled retrofit systems developed as 'bolt-on' technologies that can be removed if necessary, to resell the vehicle with a normal diesel engine, and those developed specifically for and in conjunction with engine manufacturers and delivered to customers as factory-built engines or vehicles (OEM). Additionally, both these categories can include engines that use the Otto- or Diesel combustion cycles. When adapting a HD Diesel engine to run on methane there are two options, either

  6. Analysis and Environmental Fate of Air Force Distillate and High Density Fuels

    1981-10-01

    728.1 128 0.8 Toluenc 751.3 92 0.6 XTHDCPD 1049.6 136 66.8 NTHDCPD 1079.2 136 1.5HNN 1509.6 186 20.1 JP-1O XTHDCPD 1050.3 136 96.8 ITHDCPD 1079.6 136 1,5...deionized water and the salts listed below. Blanks of both waters were routinely extracted and analyzed for possible 4.nterferences. MNN PXTX XTHDCPD ...through 13; complete data summaries for the distillate fuels may be found in Appendix C. All com- ponents of the high density fuels except XTHDCPD of

  7. Spent fuel verification options for final repository safeguards in Finland. A study on verification methods, their feasibility and safety aspects

    Hautamaeki, J.; Tiitta, A.

    2000-12-01

    The verification possibilities of the spent fuel assemblies from the Olkiluoto and Loviisa NPPs and the fuel rods from the research reactor of VTT are contemplated in this report. The spent fuel assemblies have to be verified at the partial defect level before the final disposal into the geologic repository. The rods from the research reactor may be verified at the gross defect level. Developing a measurement system for partial defect verification is a complicated and time-consuming task. The Passive High Energy Gamma Emission Tomography and the Fork Detector combined with Gamma Spectrometry are the most potential measurement principles to be developed for this purpose. The whole verification process has to be planned to be as slick as possible. An early start in the planning of the verification and developing the measurement devices is important in order to enable a smooth integration of the verification measurements into the conditioning and disposal process. The IAEA and Euratom have not yet concluded the safeguards criteria for the final disposal. E.g. criteria connected to the selection of the best place to perform the verification. Measurements have not yet been concluded. Options for the verification places have been considered in this report. One option for a verification measurement place is the intermediate storage. The other option is the encapsulation plant. Crucial viewpoints are such as which one offers the best practical possibilities to perform the measurements effectively and which would be the better place in the safeguards point of view. Verification measurements may be needed both in the intermediate storages and in the encapsulation plant. In this report also the integrity of the fuel assemblies after wet intermediate storage period is assessed, because the assemblies have to stand the handling operations of the verification measurements. (orig.)

  8. Reference concepts for the final disposal of LWR spent fuel and other high activity wastes in Spain

    Huertas, F.; Ulibarri, A.

    1993-01-01

    Studies over the last three years have been recently concluded with the selection of a reference repository concept for the final disposal of spent fuel and other high activity wastes in deep geological formations. Two non-site specific preliminary designs, at a conceptual level, have been developed; one considers granite as the host rock and the other rock salt formations. The Spanish General Radioactive Waste Program also considers clay as a potential host rock for HLW deep disposal; conceptualization for a deep repository in clay is in the initial phase of development. The salt repository concept contemplates the disposal of the HLW in self-shielding casks emplaced in the drifts of an underground facility, excavated at a depth of 850 m in a bedded salt formation. The Custos Type I(7) cask admits up to seven intact PWR fuel assemblies or 21 of BWR type. The final repository facilities are planned to accept a total of 20,000 fuel assemblies (PWR and BWR) and 50 vitrified waste canisters over a period of 25 years. The total space needed for the surface facilities amounts to 322,000 m 2 , including the rock salt dump. The space required for the underground facilities amounts to 1.2 km 2 , approximately. The granite repository concept contemplates the disposal of the HLW in carbon steel canisters, embedded in a 0.75 m thick buffer of swelling smectite clay, in the drifts of an underground facility, excavated at a depth of 55 m in granite. Each canister can host 3 PWR or 9 BWR fuel assemblies. For this concept the total number of canisters needed amounts to 4,860. The space required for the surface and underground facilities is similar to that of the salt concept. The technical principles and criteria used for the design are discussed, and a description of the repository concept is presented

  9. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1

  10. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George; Fatouraie, Mohammad

    2017-11-30

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to train a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the

  11. Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report

    Dayton, David C

    2010-03-24

    Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested

  12. Thin film battery/fuel cell power generating system. Final report, Task E-4, April 1976-April 1978

    Feduska, W.

    1978-03-31

    A two-year researth program to design and demonstrate the technical feasibility of a high-temperature solid-electrolyte fuel cell is described in detail. A rare-earth chromite, in particular, La /sub 95/Mg /sub 05/Cr /sub 75/Al /sub 25/0/sub 3/ was identified, synthesized by RF-sputtering tested for resistivity, thermal expansion and inertness in contact with yttria-stabilized zirconia, and was found promising as a candidate interconnection material. Films of these interconnection materials have been successfully deposited onto stabilized zirconia tubes by electrochemical vapor deposition (EVD) and the technique has been used to fabricate such films in building fuel cell stacks. Tin-doped indium oxide and antimony-doped tin oxide air electrode current collector materials have been successfully (CVD) chemically vapor deposited, as thin films, onto zirconia tubes. Fabrication procedures for the preparation of thin films of the nickel-cermet fuel electrode and yttria-stabilized zirconia solid electrolyte have been re-verified and improved for use in preparing unit cells and cell stacks on the program. An in-house extrusion technology for porous calcia-stabilized zirconia tubes has been developed and has been used to provide suitable support tubes for component combination samples, unit cell and cell stack sample preparation. Test concepts for component combinations and for unit cells and cell stacks have been evolved, particularly, the crossed electrode technique, and test equipment has been designed, built and used to evaluate fuel cell components and their interfaces. A five-cell fuel cell stack has been fabricated and operated for 700 hours at 200 mA/cm/sup 2/ at 950 to 980/sup 0/C and was subjected to three temperature cycles during the testing. Three series connected cells of this five cell stack met the 80% voltage efficiency final target objective of the program (less than 10% voltage degradation in 700 hours - with only 300 hours required.)

  13. Judgement of properties and function of concrete in connection with final disposal of nuclear fuel wastes in rock

    Bergstroem, S.G.; Fagerlund, G.; Romben, L.

    1977-06-01

    This report deals with the possibility of using concrete in conjuction with the permanent storage of nuclear fuel waste in rock storage facilities. The emphasis has been placed on properties such as strength and tightness and how these may be affected by internal and external causes of destruction during a filling stage of approximately 100 years and during the final storage stage of 1 000 - 100 000 years. It is established that spontaneous structural changes, which lead to a certain increase in porosity, cannot be precluded during the filling stage and uring the final storage stage. It is deemed possible to avoid cracking during the manufacture and during the filling stage if the concrete is kept moist. The risk for cracking during the final storage stage is difficult to assess. Attempts are made to estimate the tightness of aged concrete during the various stages. The tightness during the final storage stage is difficult to assess due to the fact that the scope of the cracking cannot be estimated. Chemical attacks during the filling stage are deemed to be small and can be repaired. The risk for destruction due to radioactive radiation is extremely small. Reinforcement, if any, can be protected during the filling stage on condition that the concrete is kep saturated but all reinforcement will be destroyed during the final storage stage. By way of conclusion, a number of general views on the choice of concrete and work methods are provided. (author)

  14. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    Fornetti, Micheal [Escanaba Paper Company, MI (United States); Freeman, Douglas [Escanaba Paper Company, MI (United States)

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  15. Evaluation of fuel cycle options for plutonium utilization: 1977 study. Final report

    Pardue, W.M.; Madia, W.J.; Pobereskin, M.; Tripplett, M.B.; Waddell, J.D.

    1977-05-01

    This is the third in a series of three reports on the analysis of plutonium recycle. Analyses are based upon an October, 1976, middle case ERDA forecast of nuclear growth which predicts 510 GWe of nuclear capacity in the year 2000. Four fuel cycle options were reviewed, ranging from no LWR recycle of uranium of plutonium to recycle options both with and without breeder reactors. A special effort was devoted to the review of various estimates of the costs of reprocessing nuclear fuels, with a resulting value of $190/kg of heavy metal (deflated 1975 dollars). The associated range is estimated to $125/kg to $250/kg. Sensitivity analysis of reprocessing costs, uranium consumption, average generation costs, and total discounted costs of electricity indicate that the long-term economic advantages of plutonium recycle are quite conclusive. Nuclear scenarios which project low growth rates and which delay the start of recycle and introduction of a breeder reactor postpone the apparent economic advantages

  16. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibility for high volume manufacturability.

  17. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Krumpelt, M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  18. Evaluation of temperature coefficients of reactivity for 233U--thorium fueled HTGR lattices. Final report

    Newman, D.F.; Leonard, B.R. Jr.; Trapp, T.J.; Gore, B.F.; Kottwitz, D.A.; Thompson, J.K.; Purcell, W.L.; Stewart, K.B.

    1977-05-01

    A comparison of calculated and measured neutron multiplication factors as a function of temperature was made for three graphite-moderated lattices in the High Temperature Lattice Test Reactor (HTLTR) using 233 UO 2 --ThO 2 fuels in varying amounts and configurations. Correlation of neutronic analysis methods and cross section data with the experimental measurements forms the basis for assessing the accuracy of the methods and data and developing confidence in the ability to predict the temperature coefficient of reactivity for various High Temperature Gas-Cooled Reactor (HTGR) conditions in which 233 U and thorium are present in the fuel. The calculated values of k/sub infinity/(T) were correlated with measured values using two least-squares-fitted correlation coefficients: (1) a normalization factor, and (2) a temperature coefficient bias factor. These correlations indicate the existence of a negative (nonconservative) bias in temperature coefficients of reactivity calculated using ENDF/B-IV cross section data

  19. Center for Fuel Cell Research and Applications development phase. Final report

    NONE

    1998-12-01

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

  20. Special routing of spent fuel shipments. Final report Dec 79-Apr 81

    Berkowitz, R.L.; Shaver, D.K.; Rudd, T.J.

    1982-05-01

    Special rail routing of spent fuel shipments from commercial nuclear power plants to Away-From-Reactor (AFR) storage and disposal sites has been proposed as one means of reducing the consequences and severity of radioactive materials accidents in areas of high population density. Whether or not special rail routing of spent fuel shipments does indeed decrease radiation exposure levels under normal and accident transportation conditions and at what incremental cost forms the basis of this study funded by the Federal Railroad Administration. The study is divided into five areas: (1) developing analytical models for assessing the risks associated with both the normal and accident transport modes; (2) selecting representative origin to destination routing pairs using the normal transportation and accident risk models; (3) analyzing rail shipment costs for nuclear spent fuel; and (4) performing sensitivity analyses to identify parameters that critically affect the total exposure level. The major findings resulting from this study are: (1) the risk over the seven example routes is relatively small for the normal transport mode; (2) the risk associated with an accident is at least an order of magnitude larger than the normal transport dose in all cases and as such is the overriding contribution to the total expected transport dose; and (3) no beneficial cost versus dose reduction relationship was found for any of the routes studied

  1. Liquid fuels production from biomass. Final report, for period ending June 30, 1980

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-01-01

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current program are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  2. Solid oxide fuel cells for combined heat and power. Final report

    Gottrup Barfod, R.; Juel Jensen, K.; Holt, T.; Drejer Jensen, M.; Danoe, S. (TOFC, Kgs. Lyngby (Denmark)); Mikkelsen, L.; Lund Frandsen, H. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2011-01-15

    The project has focused on examining three aspects that are important to the commercialization of ceramic fuel cells. The three main topics are: - the life and durability of ceramic fuel cells - the design of scalable units - increasing the electrical power. The studies range widely - from fundamental materials studies of the components in a stack to analysis of the requirements from the system that affect the design and the electrical connection of individual cells. In previous designs the lifetime was limited by the corrosion of the metal plate that electrically and mechanically connects the individual fuel cells in a stack. In this project, studies of various commercial types of steel, however, show that the lifetime can be increased significantly by choosing the right type of steel and an optimum operating temperature. In the project a lifetime of the steel of about seven years was achieved, and the steel is both cheaper and stronger than that which has hitherto been used. Another important result from the project is a significant increase of the electrical power. Compared with results from a previous project, the electrical power for a stack with the same area, same operating temperature and the same cell voltage increased by 130 %. This is achieved by a new design of the connection between the individual cells, optimized cells and improved utilization of the cell area. (ln)

  3. Final Generic Environmental Impact Statement. Handling and storage of spent light water power reactor fuel. Volume 2. Appendices

    1979-08-01

    This volume contains the following appendices: LWR fuel cycle, handling and storage of spent fuel, termination case considerations (use of coal-fired power plants to replace nuclear plants), increasing fuel storage capacity, spent fuel transshipment, spent fuel generation and storage data, characteristics of nuclear fuel, away-from-reactor storage concept, spent fuel storage requirements for higher projected nuclear generating capacity, and physical protection requirements and hypothetical sabotage events in a spent fuel storage facility

  4. Fuel Thermo-physical Characterization Project. Fiscal Year 2014 Final Report

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Buck, Edgar C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Matthew K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); MacFarlan, Paul J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Slonecker, Bruce D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Frances N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steen, Franciska H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-15

    The Office of Material Management and Minimization (M3) Reactor Conversion Fuel Thermo-Physical Characterization Project at Pacific Northwest National Laboratory (PNNL) was tasked with using PNNL facilities and processes to receive irradiated low enriched uranium–molybdenum (LEU-Mo) fuel plate samples and perform analysis in support of the M3 Reactor Conversion Program. This work is in support of the M3 Reactor Conversion Fuel Development Pillar that is managed by Idaho National Laboratory. The primary research scope was to determine the thermo-physical properties as a function of temperature and burnup. Work conducted in Fiscal Year (FY) 2014 complemented measurements performed in FY 2013 on four additional irradiated LEU-Mo fuel plate samples. Specifically, the work in FY 2014 investigated the influence of different processing methods on thermal property behavior, the absence of aluminum alloy cladding on thermal property behavior for additional model validation, and the influence of higher operating surface heat flux / more aggressive irradiation conditions on thermal property behavior. The model developed in FY 2013 and refined in FY 2014 to extract thermal properties of the U-Mo alloy from the measurements conducted on an integral fuel plate sample (i.e., U-Mo alloy with a thin Zr coating and clad in AA6061) continues to perform very well. Measurements conducted in FY 2014 on samples irradiated under similar conditions compare well to measurements performed in FY 2013. In general, there is no gross influence of fabrication method on thermal property behavior, although the difference in LEU-Mo foil microstructure does have a noticeable influence on recrystallization of grains during irradiation. Samples irradiated under more aggressive irradiation conditions, e.g., higher surface heat flux, revealed lower thermal conductivity when compared to samples irradiated at moderate surface heat fluxes, with the exception of one sample. This report documents thermal

  5. Operational Readiness Review Final Report for K Basin Fuel Transfer System

    DAVIES, T.H.

    2002-01-01

    An Operational Readiness Review (ORR) was conducted by the U.S. Department of Energy (DOE), Richland Operations Office (RL) to verify that an adequate state of readiness had been achieved for startup of the K Basin Fuel Transfer System (FTS). The DOE ORR was conducted during the period November 6-18, 2002. The DOE ORR team concluded that the K Basin Fuel Transfer System is ready to start operations, subject to completion and verification of identified pre-start findings. The ORR was conducted in accordance with the Spent Nuclear Fuel (SNF) K Basin Fuel Transfer System (FTS) Operational Readiness Review (ORR) Plan of Action and the Operational Readiness Review Implementation Plan for K Basin Fuel Transfer System. Review activities consisted of staff interviews, procedure and document reviews, and observations of normal facility operations, operational upset conditions, and an emergency drill. The DOE ORR Team also reviewed and assessed the adequacy of the contractor ORR3 and the RL line management review. The team concurred with the findings and observations identified in these two reports. The DOE ORR for the FTS evaluated the contractor under single-shift operations. Of concern to the ORR Team was that SNF Project management intended to change from a single-shift FTS operation to a two-shift operation shortly after the completion of the DOE ORR. The ORR team did not assess two-shift FTS operations and the ability of the contractor to conduct a smooth transition from shift to shift. However, the DOE ORR team did observe an operational upset drill that was conducted during day shift and carried over into swing shift; during this drill, swing shift was staffed with fewer personnel as would be expected for two-shift operations. The facility was able to adequately respond to the event with the reduced level of staff. The ORR Team was also able to observe a Shift Manager turnover meeting when one shift manager had to be relieved during the middle of the day. The ORR

  6. Prototypical spent nuclear nuclear fuel rod consolidation equipment, Phase 2: Final design report: Volume 2, Appendices: Part 1

    Ciez, A.P.

    1987-01-01

    The purpose of this specification is to establish functional and design requirements for the Prototypical Spent Nuclear Fuel Rod Consolidation System. The Department of Energy-Idaho Operations Office (DOE-ID) is responsible for the implementation of the Prototypic Dry Rod Consolidation Demonstration Project. This program is to develop and demonstrate a fully qualified, licensable, cost-effective, dry spent fuel rod consolidation system by July 1989. The work is divided into four phases as follows: Phase I--Preliminary Design, Phase II--Final Design Option, Phase III--Fabrication and System Checkout Option, and Phase IV--Installation and Hot Demonstration Option. This specification is part of the Phase II effort. The objectives of this specification are to provide functional and design requirements for the Prototypical Spent Nuclear Fuel Rod Consolidation equipment; establish specific tool and subsystem requirements such that the integrated and overall system requirements are satisfied; and establish positioning, envelope and size interface control requirements for each tool or subsystem such that the individual components will interface properly with the overall system design

  7. Female Reproductive Effects of Exposure to Jet Fuel at U.S. Air Force Bases

    2001-05-01

    System of Tank Entry Workers" (See Appendix VI). James Kesner ( National Institute of Occupational Safety and Health) has received NIOSH support to evaluate...time employment at the Centers for Disease Control’s National Institutes for Occupational Safety and Health. Another doctoral quantitative... Neurasthenic symptoms in workers occupationally exposed to jet fuel. Acta Psychiat Scand 60:39-49 (1979). (29) Langman JM. Xylene: its toxicity

  8. Microalgae as a source of liquid fuels. Final technical report. [200 references

    Benemann, J.R.; Goebel, R.P.; Weissman, J.C.; Augenstein, D.C.

    1982-05-15

    The economics of liquid-fuels production from microalgae was evaluated. A detailed review of published economic analyses of microalgae biomass production revealed wide variations in the published costs, which ranged from several dollars per pound for existing commercial health-food production in the Far East, to less than .05/lb costs projected for microalgae biomass for fuel conversion. As little design information or specific cost data has been published, a credible cost estimate required the conceptual engineering design and cost estimating of microalgae to liquid-fuels processes. Two systems were analyzed, shallow (2 to 3'') covered ponds and deeper (1 ft) open ponds. Only the latter was selected for an in-depth analysis due to the many technical shortcomings of the former approach. Based on the cost analysis of a very simple and low cost process, the most optimistic costs extrapolated were about $60/barrel. These were based on many optimistic assumptions. Additional, more detailed, engieering and cost analyses would be useful. However, the major emphasis in future work in this area should be on demonstrating the basic premises on which this design was based: high productivity and oil content of microalgae strains that can dominate in open ponds and which can be harvested by a simple bioflocculation process. Several specific basic research needs were identified: (1) Fundamentals of species selection and control in open pond systems. Effects of environmental variables on species dominance is of particular interest. (2) Mechanisms of algae bioflocculation. (3) Photosynthetic pathways and efficiency under conditions of high lipid production. (4) Effects of non-steady state operating conditions, particularly pH (CO/sub 2/ availability), on productivity. 18 figures, 47 tables.

  9. Development of molten-carbonate fuel-cell technology. Final report, February-December 1980

    1980-01-01

    The objective of the work was to focus on the basic technology for producing molten carbonate fuel cell (MCFC) components. This included the development and fabrication of stable anode structures, preparation of lithiated nickel oxide cathodes, synthesis and characterization of a high surface area (gamma-lithium-aluminate) electrolyte support, pressurized cell testing and modeling of the overall electrolyte distribution within a cell to aid performance optimization of the different cell components. The electrode development program is highlighted by two successful 5000 hour bench-scale tests using stabilized anode structures. One of these provided better performance than in any previous state-of-the-art, bench-scale cell (865 mV at 115 mA/cm/sup 2/ under standard conditions). Pressurized testing at 10 atmosphere of a similar stabilized, high surface area, Ni/Co anode structure in a 300 cm/sup 2/ cell showed that the 160 mA/cm/sup 2/ performance goal of 850 mV on low Btu fuel (80% conversion) can be readily met. A study of the H/sub 2/S-effects on molten carbonate fuel cells showed that ERC's Ni/Co anode provided better tolerance than a Ni/Cr anode. Prelithiated nickel oxide plaques were prepared from materials made by a low temperature and a high temperature powder-production process. The methods for fabricating handleable cathodes of various thicknesses were also investigated. In electrolyte matrix development, accelerated out-of-cell and in-cell tests have confirmed the superior stability of ..gamma..-LiAlO/sub 2/.

  10. Integrated HT-PEMFC and multi-fuel reformer for micro CHP. Final report

    2010-07-01

    The project was initiated in April 2008 and completed by the end of March 2010. The project consortium consisted of: Dantherm Power, Serenergy and Department of Energy Technology at Aalborg University (project manager). The activities were coordinated with the project ''Nordjysk H2FC Center'' funded by the Region of Northern Jutland. A number of experimental characterization methods were developed through this project to improve the understanding in fuel cell performance under different operating conditions. In particular the application of Electrochemical Impedance Spectroscopy was found useful and lead to new information about individual losses in the fuel cell. Techniques to measure local temperatures of the MEA were also successfully developed. Durability studies were made on single cells as well as complete stacks. A dedicated test facility was constructed in a container to isolate the test from disturbances that occur in the laboratory. The stack tests were run for just above 6 months with few interruptions and it was found that single cell and stack degradation rates were comparable. Operation temperature was found to have the most pronounced influence on degradation. The information formed the basis for a simple modeling tool to optimize the stack operating temperature versus reformate gas CO concentration. The activities on multi-fuel reformer development were mostly focused on two issues; manufacturability and analyses of flow distribution and heat transfer. The latter was required since these areas these turned out to cause challenges in the reactor design. Through a combination of experimental tests, CFD analyses and flow network modeling design modifications were suggested to improve flow distribution on both the flue gas side and the reformate side. Most of these design changes were not validated in this project through the construction and test of a new reformer. In spite of the problems identifies, the reformed successfully

  11. Design study of a fusion-driven tokamak hybrid reactor for fissile fuel production. Final report

    Rose, R.P.

    1979-05-01

    This study evaluated conceptual approaches for a tokamak fusion-driven fuel producing reactor. The conceptual design of this hybrid reactor was based on using projected state-of-the-art technology for the late 1980s. This reactor would be a demonstration plant and, therefore, first-of-a-kind considerations have been included. The conceptual definitions of two alternatives for the fusion driver were evaluated. A Two-Component Tokamak (TCT) concept, based on the TFTR plasma physics parameters, was compared to a Beam-Driven Thermonuclear (BDTN) concept, based on the USSR T-20 plasma physics parameters

  12. Breeder Spent Fuel Handling (BSFH) cask study for FY83. Final report

    Diggs, J.M.

    1985-01-01

    This report documents a study conducted to investigate the applicability of existing LWR casks to shipment of long-cooled LMFBR fuel from the Clinch River Breeder Reactor Plant (CRBRP) to the Breeder Reprocessing Engineering Test (BRET) Facility. This study considered a base case of physical constraints of plants and casks, handling capabilities of plants, through-put requirements, shielding requirements due to transportation regulation, and heat transfer capabilities of the cask designs. Each cask design was measured relative to the base case. 15 references, 4 figures, 6 tables

  13. Status Report on Activities of the Systems Assessment Task Force, OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs

    Bragg-Sitton, Shannon Michelle [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force (TF1) includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, and identification of fuel performance and system codes applicable to ATF evaluation. The Cladding and Core Materials (TF2) and Fuel Concepts (TF3) task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment task force is chaired by Shannon Bragg-Sitton (Idaho National Laboratory [INL], U.S.), the Cladding Task Force is chaired by Marie Moatti (Electricite de France [EdF], France), and the Fuels Task Force is chaired by a Masaki Kurata (Japan Atomic Energy Agency [JAEA], Japan). The original Expert Group mandate was established for June 2014 to June 2016. In April 2016 the Expert Group voted to extend the mandate one additional year to June 2017 in order to complete the task force deliverables; this request was subsequently approved by the Nuclear Science Committee. This

  14. Status Report on Activities of the Systems Assessment Task Force, OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs

    Bragg-Sitton, Shannon Michelle

    2016-01-01

    The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force (TF1) includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, and identification of fuel performance and system codes applicable to ATF evaluation. The Cladding and Core Materials (TF2) and Fuel Concepts (TF3) task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment task force is chaired by Shannon Bragg-Sitton (Idaho National Laboratory [INL], U.S.), the Cladding Task Force is chaired by Marie Moatti (Electricite de France [EdF], France), and the Fuels Task Force is chaired by a Masaki Kurata (Japan Atomic Energy Agency [JAEA], Japan). The original Expert Group mandate was established for June 2014 to June 2016. In April 2016 the Expert Group voted to extend the mandate one additional year to June 2017 in order to complete the task force deliverables; this request was subsequently approved by the Nuclear Science Committee. This

  15. Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis

    Liu Lancui; Fan Ying; Wu Gang; Wei Yiming

    2007-01-01

    Based on time series decomposition of the Log-Mean Divisia Index (LMDI), this paper analyzes the change of industrial carbon emissions from 36 industrial sectors in China over the period 1998-2005. The changes of industrial CO 2 emission are decomposed into carbon emissions coefficients of heat and electricity, energy intensity, industrial structural shift, industrial activity and final fuel shift. Our results clearly show that raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals account for 59.31% of total increased industrial CO 2 emissions. The overwhelming contributors to the change of China's industrial sectors' carbon emissions in the period 1998-2005 were the industrial activity and energy intensity; the impact of emission coefficients of heat and electricity, fuel shift and structural shift was relatively small. Over the year 1998-2002, the energy intensity change in some energy-intensive sectors decreased industrial emissions, but increased emissions over the period 2002-2005. The impact of structural shift on emissions have varied considerably over the years without showing any clear trend, and the final fuel shift increased industrial emissions because of the increase of electricity share and higher emissions coefficient. Therefore, raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals should be among the top priorities for enhancing energy efficiency and driving their energy intensity close to the international advanced level. To some degree, we should reduce the products waste of these sectors, mitigate the growth of demand for their products through avoiding the excessive investment highly related to these sectors, increasing imports or decreasing the export in order to avoid expanding their share in total industrial value added. However, all these should integrate economic growth to harmonize industrial development and CO 2

  16. A regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees: Final report

    McGuire, S.A.

    1988-01-01

    The question this Regulatory Analysis sought to answer is: should the NRC impose additional emergency preparedness requirements on certain fuel cycle and other radioactive material licensees for dealing with accidents that might have offsite releases of radioactive material. To answer the question, we analyzed potential accidents for 15 types of fuel cycle and other radioactive material licensees. An appropriate plan would: (1) identify accidents for which protective actions should be taken by people offsite; (2) list the licensee's responsibilities for each type of accident, including notification of local authorities (fire and police generally); and (3) give sample messages for local authorities including protective action recommendations. This approach more closely follows the approach used for research reactors than for power reactors. The low potential offsite doses (acute fatalities and injuries not possible except possibly for UF 6 releases), the small areas where actions would be warranted, the small number of people involved, and the fact that the local police and fire departments would be doing essentially the same things they normally do, are all factors that tend to make a simple plan adequate. This report discusses the potentially hazardous accidents, and the likely effects of these accidents in terms of personnel danger

  17. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  18. A regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees: Final report

    McGuire, S.A.

    1988-01-01

    The question this Regulatory Analysis sought to answer is: should the NRC impose additional emergency preparedness requirements on certain fuel cycle and other radioactive material licensees for dealing with accidents that might have offsite releases of radioactive material. To answer the question, we analyzed potential accidents for 15 types of fuel cycle and other radioactive material licensees. An appropriate plan would: (1) identify accidents for which protective actions should be taken by people offsite; (2) list the licensee's responsibilities for each type of accident, including notification of local authorities (fire and police generally); and (3) give sample messages for local authorities including protective action recommendations. This approach more closely follows the approach used for research reactors than for power reactors. The low potential offsite doses (acute fatalities and injuries not possible except possibly for UF/sub 6/ releases), the small areas where actions would be warranted, the small number of people involved, and the fact that the local police and fire departments would be doing essentially the same things they normally do, are all factors that tend to make a simple plan adequate. This report discusses the potentially hazardous accidents, and the likely effects of these accidents in terms of personnel danger.

  19. Full-sized plates irradiation with high UMo fuel loading. Final results of IRIS 1 experiment

    Huet, F.; Marelle, V.; Noirot, J.; Sacristan, P.; Lemoine, P.

    2003-01-01

    As a part of the French UMo Group qualification program, IRIS 1 experiment contained full-sized plates with high uranium loading in the meat of 8 g.cm -3 . The fuel particles consisted of 7 and 9 wt% Mo-uranium alloys ground powders. The plate were irradiated at OSIRIS reactor in IRIS device up to 67.5% peak burnup within the range of 136 W.cm - '2 for the heat flux and 72 deg. C for the cladding temperature. After each reactor cycle the plates thickness were measured. The results show no swelling behaviour differences versus burnup between UMo7 and UMo9 plates. The maximum plate swelling for peak burnup location remains lower than 6%. The wide set of PIE has shown that, within the studied irradiation conditions, the interaction product have a global formulation of '(U-Mo)Al -7 ' and that there is no aluminium dissolution in UMo particles. IRIS1 experiment, as the first step of the UMo fuel qualification for research reactor, has established the good behaviour of UMo7 and UMo9 high uranium loading full-sized plate within the tested conditions. (author)

  20. Final Report: Room Temperature Electrochemical Upgrading of Methane to Oxygenate Fuels

    Mustain, William

    2018-01-02

    The overall objective of this project is to discover the nature of the electrochemically active sites and to uncover the mechanisms for the electrocatalytic transformation of small organic molecules to oxygenate products such as methanol, formaldehyde, carbon monoxide and acetylene. Among the feedstocks of interest in this study are: methane, carbon dioxide, and acetic acid. Methane is an incredibly attractive potential feedstock because of the recent discovery of large shale deposits; carbon dioxide is potentially a very available feedstock from carbon capture technologies; acetic acid (as well as CH4 and CO2 and ethanol) has potential as a bio-derived feedstock. This report summarizes the major results to date regarding the electrochemical transformation of CH4, CO2 and acetic acid to chemicals and fuels – with a primary focus on methane. Finer details are available in each of the projects annual reports. In addition to the primary objective, the work in this project has led to synergistic discoveries that are advantageous to other fields including: catalyst layer deposition, anion exchange membrane fuel cells, CO2 capture and li-ion batteries. Those are very briefly discussed as well.

  1. Material Performance of Fully-Ceramic Micro-Encapsulated Fuel under Selected LWR Design Basis Scenarios: Final Report

    Boer, B.; Sen, R.S.; Pope, M.A.; Ougouag, A.M.

    2011-01-01

    % and a more modest burnup target level of 500 MWd/kg ,the failure probability drops below 2.0 x 10 -5 , the typical performance of TRISO fuel made under the German HTR research program. An optimization study on particle design shows improved performance if the buffer size is increased from 100 to 120 (micro)mm while reducing the OPyC layer. The presence of the latter layer does not provide much benefit at high burnup levels (and fast fluence levels). Normally the shrinkage of the OPyC would result in a beneficial compressive force on the SiC coating. However, at high fluence levels the shrinkage is expected to turn into swelling, resulting in the opposite effect. However, this situation is different when the SiC-matrix, in which the particles are embedded, is also considered: the OPyC swelling can result in a beneficial compressive force on the SiC coating since outward displacement of the OPyC outer surface is inhibited by the presence of the also-swelling SiC matrix. Taking some credit for this effect by adopting a 5 (micro)mm SiC-matrix layer, the optimized particle (100 (micro)mm buffer and 10 (micro)mm OPyC), gives a failure probability of 1.9 x 10 -4 for conservative conditions. During a LOCA transient, assuming core re-flood in 30 seconds, the temperature of the coated particle can be expected to be about 200K higher than nominal temperature (900K). For this event the particle failure fraction for a conservative case is 1.0 x 10 -2 , for the optimized particle design. For a FGR-fraction of 50% this value reduces to 6.4 x 10 -4 .

  2. Analysis of burnable poison in Ford Nuclear Reactor fuel to extend fuel lifetime. Final report, August 1, 1994--September 29, 1996

    Burn, R.R.; Lee, J.C.

    1996-12-01

    The objective of the project was to establish the feasibility of extending the lifetime of fuel elements for the Ford Nuclear Reactor (FNR) by replacing current aluminide fuel with silicide fuel comprising a heavier uranium loading but with the same fissile enrichment of 19.5 wt% {sup 235}U. The project has focused on fuel designs where burnable absorbers, in the form of B{sub 4}C, are admixed with uranium silicide in fuel plates so that increases in the control reactivity requirements and peak power density, due to the heavier fuel loading, may be minimized. The authors have developed equilibrium cycle models simulating current full-size aluminide core configurations with 43 {approximately} 45 fuel elements. Adequacy of the overall equilibrium cycle approach has been verified through comparison with recent FNR experience in spent fuel discharge rates and simulation of reactor physics characteristics for two representative cycles. Fuel cycle studies have been performed to compare equilibrium cycle characteristics of silicide fuel designs, including burnable absorbers, with current aluminide fuel. These equilibrium cycle studies have established the feasibility of doubling the fuel element lifetime, with minimal perturbations to the control reactivity requirements and peak power density, by judicious additions of burnable absorbers to silicide fuel. Further study will be required to investigate a more practical silicide fuel design, which incorporates burnable absorbers in side plates of each fuel element rather than uniformly mixes them in fuel plates.

  3. Melt-Dilute Spent Nuclear Fuel Form Criticality Summary Report; FINAL

    Vinson, D.W.

    2002-01-01

    Criticality analysis of the proposed Melt-Dilute (MD) form of aluminum-based spent nuclear fuel (SNF), under geologic repository conditions, was performed following the methodology, documented in the Disposal Criticality Analysis Methodology Topical Report. This methodology evaluates the potential for nuclear criticality as determined by the composition of the waste and its geometry, namely waste form configuration, including presence of moderator, reflecting structural material, and neutron absorbers. The initial emplaced configuration of the SNF form is a dry package placed in a mined repository passageway. Criticality calculations show that even with waste package failure, followed by degradation of material within the waste package and potential loss of neutron absorber materials, sub-critical conditions can be maintained

  4. Environmentally based siting assessment for synthetic-liquid-fuels facilities. Final report

    None

    1980-01-01

    A detailed assessment of the major environmental constraints to siting a synthetic fuels industry and the results of that assessment are used to determine on a regional basis the potential for development of such an industry with minimal environmental conflicts. Secondly, the ability to mitigate some of the constraining impacts through alternative institutional arrangements, especially in areas that are judged to have a low development potential is also assessed. Limitations of the study are delineated, but specifically, the study is limited geographically to well-defined boundaries that include the prime coal and oil shale resource areas. The critical factors used in developing the framework are air quality, water availability, socioeconomic capacity, ecological sensitivity, environmental health, and the management of Federally owned lands. (MCW)

  5. Final Report of Project Nanometer Structures for Fuel Cells and Displays, etc.

    Ji, Qing

    2011-12-15

    Low-energy ion beam bombardment induced self-assembly has been used to form various periodic nano-size wave-ordered structures (WOS). Such WOS can be used as hard etching masks to produce nanowire arrays, trenches etc., on other materials by means of traditional etching or ion sputtering. These periodic nano-size structures have a wide range of applications, including flat panel displays, optical electronics, and clean energy technologies (solar and fuel cells, lithium batteries). In order to achieve high throughput of the above processes, a large area RF-driven multicusp nitrogen ion source has been developed for the application of nitrogen ion beam induced surface modification. An integrated ion beam system, which can house either a large area RF-driven multicusp ion source or a commercially available microwave ion source (Roth & Rau AG Tamiris 400-f) have been designed, manufactured, assembled, and tested.

  6. Fast Response, Load-Matching Hybrid Fuel Cell: Final Technical Progress Report

    Key, T. S.; Sitzlar, H. E.; Geist, T. D.

    2003-06-01

    Hybrid DER technologies interconnected with the grid can provide improved performance capabilities compared to a single power source, and, add value, when matched to appropriate applications. For example, in a typical residence, the interconnected hybrid system could provide power during a utility outage, and also could compensate for voltage sags in the utility service. Such a hybrid system would then function as a premium power provider and eliminate the potential need for an uninterruptible power supply. In this research project, a proton exchange membrane (PEM) fuel cell is combined with an asymmetrical ultracapacitor to provide robust power response to changes in system loading. This project also considers the potential of hybrid DER technologies to improve overall power system compatibility and performance. This report includes base year accomplishments of a proposed 3-year-option project.

  7. Fuel Rod Consolidation Project: Phase 2, Final report: Volume 5, Operations and maintenance manual

    1988-01-01

    The purpose of this manual is to describe the function, installation, operation and maintenance of the Fuel Rod Consolidation System. This Document is preliminary and must be updated to incorporate any modifications to the mechanical and electrical systems that are performed during construction. Any changes and specific references related to the software requirements will be provided as the software is developed in Phase III. Setpoints related to equipment positions as a function of resolver and position transducer readings will also be provided in Phase III. References such as vendor supplied Operating and Maintenance Manuals for vendor components and assemblies are not available until a receipt of a purchase order. These references will become an integral part of this manual during the construction phase

  8. Final report: Seven-layer membrane electrode assembly - an innovative approach to PEM fuel cell design

    Chapman, A.

    2005-07-01

    Costs of materials and fabrication, rather than appropriateness of technology, are the major barriers to the sales of fuel cells. With the objective of reducing costs, potential alternative component materials for (a) the fluid flow plate (FFP) and (b) the gas diffusion layers were investigated. The concept of a 7-layer membrane electrode assembly (MEA), in which components are bonded into a unitised module, was also studied. The advantages of the bonded cell, and the flow field design, are expounded. Low-cost carbon particle composites were developed for the FFPs. The modular 7-layer MEA has an order of magnitude saving over current materials. Overall, the study has led to a greater volumetric power output, lower costs and greater reliability. The work was carried out by Morgan Group Technology Limited and funded by the DTI.

  9. Final Report: Investigation of Catalytic Pathways for Lignin Breakdown into Monomers and Fuels

    Gluckstein, Jeffrey A [ORNL; Hu, Michael Z. [ORNL; Kidder, Michelle [ORNL; McFarlane, Joanna [ORNL; Narula, Chaitanya Kumar [ORNL; Sturgeon, Matthew R [ORNL

    2010-12-01

    Lignin is a biopolymer that comprises up to 35% of woody biomass by dry weight. It is currently underutilized compared to cellulose and hemicellulose, the other two primary components of woody biomass. Lignin has an irregular structure of methoxylated aromatic groups linked by a suite of ether and alkyl bonds which makes it difficult to degrade selectively. However, the aromatic components of lignin also make it promising as a base material for the production of aromatic fuel additives and cyclic chemical feed stocks such as styrene, benzene, and cyclohexanol. Our laboratory research focused on three methods to selectively cleave and deoxygenate purified lignin under mild conditions: acidolysis, hydrogenation and electrocatalysis. (1) Acidolysis was undertaken in CH2Cl2 at room temperature. (2) Hydrogenation was carried out by dissolving lignin and a rhodium catalyst in 1:1 water:methoxyethanol under a 1 atm H2 environment. (3) Electrocatalysis of lignin involved reacting electrically generated hydrogen atoms at a catalytic palladium cathode with lignin dissolved in a solution of aqueous methanol. In all of the experiments, the lignin degradation products were identified and quantified by gas chromatography mass spectroscopy and flame ionization detection. Yields were low, but this may have reflected the difficulty in recovering the various fractions after conversion. The homogeneous hydrogenation of lignin showed fragmentation into monomers, while the electrocatalytic hydrogenation showed production of polyaromatic hydrocarbons and substituted benzenes. In addition to the experiments, promising pathways for the conversion of lignin were assessed. Three conversion methods were compared based on their material and energy inputs and proposed improvements using better catalyst and process technology. A variety of areas were noted as needing further experimental and theoretical effort to increase the feasibility of lignin conversion to fuels.

  10. Thermochemical Conversion of Woody Biomass to Fuels and Chemicals Final Report

    Pendse, Hemant P. [Univ. of Maine, Orono, ME (United States)

    2015-09-30

    Maine and its industries identified more efficient utilization of biomass as a critical economic development issue. In Phase I of this implementation project, a research team was assembled, research equipment was implemented and expertise was demonstrated in pyrolysis, hydrodeoxygenation of pyrolysis oils, catalyst synthesis and characterization, and reaction engineering. Phase II built upon the infrastructure to innovate reaction pathways and process engineering, and integrate new approaches for fuels and chemical production within pulp and paper and other industries within the state. This research cluster brought together chemists, engineers, physicists and students from the University of Maine, Bates College, and Bowdoin College. The project developed collaborations with Oak Ridge National Laboratory and Brookhaven National Laboratory. The specific research projects within this proposal were of critical interest to the DoE - in particular the biomass program within EERE and the catalysis/chemical transformations program within BES. Scientific and Technical Merit highlights of this project included: (1) synthesis and physical characterization of novel size-selective catalyst/supports using engineered mesoporous (1-10 nm diameter pores) materials, (2) advances in fundamental knowledge of novel support/ metal catalyst systems tailored for pyrolysis oil upgrading, (3) a microcalorimetric sensing technique, (4) improved methods for pyrolysis oil characterization, (5) production and characterization of woody biomass-derived pyrolysis oils, (6) development of two new patented bio oil pathways: thermal deoxygenation (TDO) and formate assisted pyrolysis (FASP), and (7) technoeconomics of pyrolysis of Maine forest biomass. This research cluster has provided fundamental knowledge to enable and assess pathways to thermally convert biomass to hydrocarbon fuels and chemicals.

  11. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10 -6 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10 -11 m 2 /s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Kivetty is classified as fresh water and

  12. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10 -7 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10 -12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically most evolved

  13. Final disposal of spent nuclear fuel in Finnish bedrock - Romuvaara site report

    Anttila, P. [Fortum Engineering Oy (Finland); Ahokas, H. [Fintact Oy (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Romuvaara. The bedrock of Romuvaara belongs to the Archean basement complex, whose oldest parts date back over 2800 million years. The bedrock consists mainly of migmatitic banded gneisses (tonalite, leucotonalite and mica gneiss), which are cut by granodiorite and metadiabase dykes. The rocks, excluding the metadiabase, have undergone a polyphase Archaean deformation. Altogether 31 bedrock structures (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.6 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval is 8 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found, for both the R-structures and the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of Romuvaara is classified as fresh water and the Total Dissolved Solids (TDS) and chloride contents increase with depth. The chemically

  14. TAO2000 V2 computer-assisted force feedback tele-manipulators used as maintenance and production tools at the AREVA NC-La Hague fuel recycling plant

    Geffard, Franck; Garrec, Philippe; Piolain, Gerard; Brudieu, Marie-Anne; Thro, Jean-Francois; Coudray, Alain; Lelann, Eric

    2012-01-01

    During a 15-year joint research program, French Atomic Energy Agency Interactive Robotics Laboratory (CEA LIST) and AREVA have developed several remote operation devices, also called tele-robots. Some of them are now commonly used for maintenance operations at the AREVA NC (Nuclear Cycle) La Hague reprocessing plant. Since the first maintenance operation in 2005, several other successful interventions have been realized using the industrial MA23/RX170 tele-manipulation system. Moreover, since 2010, the through-the-wall tele-robot named MT200 TAO based on the slave arm of the MSM MT200 (La Calhene TM ), has been evaluated in an active production cell at the AREVA NC La Hague fuel recycling plant. Although these evaluations are ongoing, the positive results obtained have led to an update and industrialization program. All these developments are based on the same generic control platform, called TAO2000 V2. TAO2000 V2 is the second release of the CEA LIST core software platform dedicated to computer aided force-feedback tele-operation (TAO is the French acronym for computer aided tele-operation). This paper presents all these developments resulting from the joint research program CEA LIST/AREVA. The TAO2000 V2 controller is first detailed, and then two maintenance operations using the industrial robot RX170 are presented: the removal of the nuclear fuel dissolver wheel rollers and the cleanup of the dissolver wheel inter-bucket spaces. Finally, the new MT200 TAO system and its evaluations at the AREVA NC La Hague facilities are discussed. (authors)

  15. Intrinsic bioremediation of jet fuel contamination at George Air Force Base

    Wilson, J.T.; Sewell, G.W.; Doyle, G.; Miller, R.N.

    1995-01-01

    The rate of intrinsic bioremediation of BTEX compounds in groundwater from a spill of JP-4 jet fuel was estimated by comparing attenuation of the concentrations of the compounds along a flow path. Concentrations of the trimethylbenzenes (TMB) were used to correct for attenuation due to dilution. Analysis of core samples identified the depth interval in the aquifer that was occupied by the groundwater plume. A downhole flowmeter test identified the local hydraulic conductivity of the depth interval occupied by the plume. Time of travel between wells along the flowpath was calculated from the hydraulic gradient and hydraulic conductivity, assuming an effective porosity of 0.3. First-order rate constants were calculated from attenuation (corrected for dilution or dispersion) and the estimated residence time of groundwater between the wells

  16. Prediction of requirements on labor force in the fuel and power generation sector

    Kaveckova, R.

    1990-01-01

    One of the aspects of socio-economic assessment of development is quantification of the expected requirements on the number of personnel. Predictions are discussed for the period before the year 2005 for solid fuel mining and treatment, gas production and bitumen mining, power and heat generation and also for the production of electricity and heat by nuclear power plants. They are based on an analysis of past development and the present state, on presumed implementation of various concept variants, on the type structure of nuclear power plants, on the rules of the electric power supply system, and also on foreign materials. It is expected that in 2005, nuclear power will employ 15,654 personnel. (M.D.). 4 tabs., 16 refs

  17. Corrosion resistance of canisters for final disposal of spent nuclear fuel

    Mattsson, E.

    1979-01-01

    A group of Swedish scientists has evaluated from the corrosion point of view three alternative canister types for final disposal of waste from nuclear reactors in boreholes in rock 500 m below ground. Titanium canisters with a wall-thickness of 6 mm and 100 mm thick lead lining have been estimated to have a life of at least thousands of years, and probably tens of thousands of years. Copper canisters with 200-mm-thick walls would last for hundreds of thousands of years. The third type, α-alumina sintered under isostatic pressure, is a very promising canister material

  18. Multi-fuel furnace. Demonstration project. Final rapport; Multibraendselsovn - Demonstrationsprojekt. Slutrapport

    Dall Bentzen, J.

    2012-06-15

    It has been verified that the Dall Energy Furnace have unique features: - The furnace will accept biomass fuel with moisture content in range 20% to 60% and still keep the flue gas temperature within +-10 deg. Celsius (for pre-set temperature 900 to 975 deg. Celsius); - The ash quality from the furnace is very good with no excessive sintering and without carbon in the ash; - Flue gas dust content at the furnace exit is below 50 mg/Nm3, while the content of NO{sub x} and CO is below 175 mg/Nm3 and 20 mg/Nm3, respectively. The Dall Energy biomass furnace consists of two separate stages which are combined in a single aggregate: an updraft gasification process and a gas combustion process. As the furnace is refractory lined and as the furnace can operate at low excess air it is possible to burn biomass with water content above 60%. No mechanical parts are used at temperatures above 200 deg. Celsius. This provides a very rugged system. In the gasifier section a combustible gas is produced with a low velocity at the top of the gasifier bed. This gas is combusted to a flue gas with extremely low dust content. Also, the NO{sub x} and CO content is very low. The temperature of the flue gas at the exit is kept low by injecting water spray together with the secondary air. (Author)

  19. Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report

    Cai, Xiao-Chuan; Yang, Chao; Pernice, Michael

    2014-01-01

    The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementation since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.

  20. Corrosion of aluminium-clad spent fuel in LVR-15 research reactor storage facilities. Final report

    Splichal, K.; Berka, J.; Keilova, E.

    2006-03-01

    The corrosion of the research reactor aluminium clad spent fuel in water was investigated in two storage facilities. The standard racks were delivered by the IAEA and consisted of two aluminium alloys AA 6061 and Szav-1 coupons. Bimetallic couples create aluminium alloy and stainless steel 304 coupons. Rolled and extruded AA 6061 material was also tested. Single coupons, bimetallic and crevice couples were exposed in the at-reactor basin (ARB) and the high-level wastage pool (HLW). The water chemistry parameters were monitored and sedimentation of impurities was measured. The content of impurities of mainly Cl and SO 4 was in the range of 2 to 15 μg/l in the HLW pool; it was about one order higher in ARB. The Fe content was below 2 μg/l for both facilities. After two years of exposure the pitting was evaluated as local corrosion damage. The occurrence of pits was evaluated predominantly on the surfaces of single coupons and on the outer and inner surfaces of bimetallic and crevices coupons. No correlation was found between the pitting initiation and the type of aluminium alloys and rolled and extruded materials. In bimetallic couples the presence of stainless coupons did not have any effect on local corrosion. The depth of pits was lower than 50 μm for considerable areas of coupons and should be compared with the results of other participating institutes. (author)

  1. Final Environmental Assessment for the Runway Extension and New Parking Apron at Tyndall Air Force Base, Florida

    2004-01-01

    The Air Force prepared an Environmental Assessment (EA) of the potential environmental consequences of constructing a new heavy parking apron and runway extension at Tyndall Air Force Base (AFB), Florida...

  2. SKI's and SSI's experiences from their participation in the siting of a final repository for spent nuclear fuel

    Westerlind, M.; Hedberg, B.

    2000-01-01

    This paper summarises some experiences gained by the SKI and SSI during the ongoing process for siting a final repository for spent nuclear fuel. The focus is on activities in the municipalities involved in the siting process. In order to give the proper context some basic elements in the legislation, which are important for public participation and confidence in the siting process, are outlined. The importance of clearly defined responsibilities and early participation of the regulators in the siting process are emphasised. It should be pointed out that this paper is not a comprehensive review of the Swedish situation but only contains a few selected issues and personal remarks from the authors. Thus, the views and opinions do not necessarily coincide with those of SKI and SSI. (authors)

  3. New highly active oxygen reduction electrode for PEM fuel cell and Zn/air battery applications (NORA). Final report

    Thiele, D.; Zuettel, A.

    2008-04-15

    This illustrated final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning a new, highly active oxygen reduction electrode for PEM fuel cell and zinc/air battery applications. The goal of this project was, according to the authors, to increase the efficiency of the oxygen reduction reaction by lowering the activation polarisation through the right choice of catalyst and by lowering the concentration polarisation. In this work, carbon nanotubes are used as support material. The use of these nanotubes grown on perovskites is discussed. Theoretical considerations regarding activation polarisation are discussed and alternatives to the use of platinum are examined. The results of experiments carried out are presented in graphical and tabular form. The paper is completed with a comprehensive list of references.

  4. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel

    1988-07-01

    This paper is primarily concerned with Section 11 of INFCIRC/153 which provides for the possible termination of safeguards based on a determination that the nuclear material in question has been consumed, has been diluted, or has become practicably irrecoverable. Two distinctly different categories of nuclear material have been suggested for possible termination of safeguards based on a determination that the nuclear material has become practicably irrecoverable: One relates to a variety of low concentration waste materials, meaning thereby materials which the State or plant operator considers to be of questionable economic recoverability and the other relates to the spent fuel placed in facilities described as ''permanent repositories'' which are at least claimed to represent ''final disposal'' facilities and are candidates for a possible determination of practicably irrecoverable. 26 refs, tabs

  5. Development of TRU transmuters for optimization of the global fuel cycle. Final Report for the NERI Project

    Lee, John C.

    2009-01-01

    This final report summarizes the research activities during the entire performance period of the NERI grant, including the extra 9 months granted under a no-cost time extension. Building up on the 14 quarterly reports submitted through October 2008, we present here an overview of the research accomplishments under the five tasks originally proposed in July 2004, together with citations for publications resulting from the project. The AFCI-NERI project provided excellent support for two undergraduate and 10 graduates students at the University of Michigan during a period of three years and nine months. Significant developments were achieved in three areas: (1) Efficient deterministic fuel cycle optimization algorithms both for PWR and SFR configurations, (2) Efficient search algorithm for PWR equilibrium cycles, and (3) Simplified Excel-based script for dynamic fuel cycle analysis of diverse cycles. The project resulted in a total of 8 conference papers and three journal papers, including two that will be submitted shortly. Three pending publications are attached to the report

  6. Review and evaluation of immobilized algae systems for the production of fuels from microalgae. Final subcontract report

    1985-11-01

    The purpose of this paper is to review and evaluate the use of immobilized algae systems. It was the finding that commercial immobilized algae systems are not in operation at this time but, with research, could certainly become so. The use of immobilized algae will depend on, as in all commercial systems, the economic value of the product. This paper reviews the technical feasibility of immobilization as it applies to algae. Finally, the economics of possible immobilized algal systems that would produce liquid fuels were investigated. It was calculated that an immobilized system would have 8.5 times the capital costs of a conventional microalgae culture system. Operational costs would be about equal, although there would be substantial savings of water with the immobilized system. A major problem with immobilizing algae is the fact that sunlight drives the system. At present, an immobilized algal system to mass produce lipids for use as a liquid fuel does not appear to be economically feasible. The major drawback is developing a low-cost system that obtains the same amount of solar energy as provided to a shallow 3 square mile pond while increasing the culture density by an order of magnitude. R and D to increase light availability and to develop low cost transparent tanks could increase the competitiveness of immobilized algal systems. 44 refs., 2 figs., 7 tabs.

  7. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10 -7 m 2 /s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10 -13 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the postglacial

  8. Dissolution of unirradiated UO{sub 2} fuel in synthetic groundwater. Final report (1996-1998)

    Ollila, K. [VTT Chemical Technology, Espoo (Finland)

    1999-05-01

    This study was a part of the EU R and D programme 1994-1998: Nuclear Fission Safety, entitled `Source term for performance assessment of spent fuel as a waste form`. The research carried out at VTT Chemical Technology was focused on the effects of granitic groundwater composition and redox conditions on UO{sub 2} solubility and dissolution mechanisms. The synthetic groundwater compositions simulated deep granitic fresh and saline groundwaters, and the effects of the near-field material, bentonite, on very saline groundwater. Additionally, the Spanish granite/bentonite water was used. The redox conditions (Eh), which are obviously the most important factors that influence on UO{sub 2} solubility under the disposal conditions of spent fuel, varied from strongly oxidising (air-saturated), anaerobic (N{sub 2}, O{sub 2} < l ppm) to reducing (N{sub 2}, low Eh). The objective of the air-saturated dissolution experiments was to yield the maximum solution concentrations of U, and information on the formation of secondary phases that control the concentrations, with different groundwater compositions. The static batch solubility experiments of long duration (up to 1-2 years) were performed using unirradiated UO{sub 2} pellets and powder. Under anaerobic and reducing conditions, the solubilities were also approached from oversaturation. The results of the oxic, air-saturated dissolution experiments with UO{sub 2} powder showed that the increase in the salinity (< 1.7 M) had a minor effect on the measured steady-state concentrations of U. The concentrations, (1.2 ...2.5) x 10{sup -5} M, were at the level of the theoretical solubility of schoepite or another uranyl oxide hydrate, e.g. becquerelite (possibly Na-polyuranate). The higher alkalinity of the fresh (Allard) composition increased the aqueous U concentration. Only some kind of oxidised U-phase (U{sub 3}O{sub 8}-UO{sub 3}) was identified with XRD when studying possible secondary phases after the contact time of one year

  9. Final disposal of spent nuclear fuel in Finnish bedrock - Kivetty site report

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H.; Front, K. [Fintact Oy (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Kivetty. The bedrock of Kivetty belongs to the large Svecofennian granitoid complex of central Finland, about 1880 million years in age. The most common rock type is porphyritic granodiorite, which is cut by younger medium-grained granodiorite and porphyritic or even-grained granite. Minor bodies of gabbro, older than the porphyritic granodiorite, are also present. The granitoids show evidence of two deformation phases. Altogether 29 bedrock 'structures' (R-structures) have been modelled at the investigation site, most of them representing steeply dipping fracture zones. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 1.3-10{sup -6} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock, measured using a 2 m packer interval is 4*10{sup -11} m{sup 2}/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater of

  10. Final disposal of spent nuclear fuel in Finnish bedrock. Olkiluoto site report

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communication and Infrastructure, Espoo (Finland)] [and others

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Olkiluoto. The bedrock of the Olkiluoto site consists of Svecofennian metasediments and platonic rocks, 1800-1900 million years in age. Migmatitic mica gneiss is the most abundant rock type, and is intruded by foliated tonalites and granodiorites and massive coarse-grained granites and pegmatites. Five successive plastic deformation phases have been defined. In total, 30 bedrock structures (R-structures) have been modelled at the site. Most of these represent steeply dipping fracture zones, but several sub-horizontal zones, gently dipping to the SE, have also been identified. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The R-structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 3 x 10{sup -7} m{sup 2}/s. The corresponding mean of the hydraulic conductivity values for the intact rock measured using a 2 m packer interval, is 8 x 10{sup -13} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found for the intact rock, and there seems to be a parallel decrease in the transmissivity of structures. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100 - 200 m of the bedrock than at greater depths. The groundwater chemistry reflects the

  11. Dissolution of unirradiated UO2 fuel in synthetic groundwater. Final report (1996-1998)

    Ollila, K.

    1999-05-01

    This study was a part of the EU R and D programme 1994-1998: Nuclear Fission Safety, entitled 'Source term for performance assessment of spent fuel as a waste form'. The research carried out at VTT Chemical Technology was focused on the effects of granitic groundwater composition and redox conditions on UO 2 solubility and dissolution mechanisms. The synthetic groundwater compositions simulated deep granitic fresh and saline groundwaters, and the effects of the near-field material, bentonite, on very saline groundwater. Additionally, the Spanish granite/bentonite water was used. The redox conditions (Eh), which are obviously the most important factors that influence on UO 2 solubility under the disposal conditions of spent fuel, varied from strongly oxidising (air-saturated), anaerobic (N 2 , O 2 2 , low Eh). The objective of the air-saturated dissolution experiments was to yield the maximum solution concentrations of U, and information on the formation of secondary phases that control the concentrations, with different groundwater compositions. The static batch solubility experiments of long duration (up to 1-2 years) were performed using unirradiated UO 2 pellets and powder. Under anaerobic and reducing conditions, the solubilities were also approached from oversaturation. The results of the oxic, air-saturated dissolution experiments with UO 2 powder showed that the increase in the salinity ( -5 M, were at the level of the theoretical solubility of schoepite or another uranyl oxide hydrate, e.g. becquerelite (possibly Na-polyuranate). The higher alkalinity of the fresh (Allard) composition increased the aqueous U concentration. Only some kind of oxidised U-phase (U 3 O 8 -UO 3 ) was identified with XRD when studying possible secondary phases after the contact time of one year with all groundwater compositions. Longer contact times are needed to identify secondary phases predicted by modelling (EQ3/6). In the anoxic dissolution experiments with UO 2 pellets, the

  12. Fuel demand and fuel efficiency in the US commercial-airline industry and the trucking industry: an analysis of trends and implications. Final report

    1982-03-31

    A study of trends in fuel use and efficiency in the US commercial airlines industry is extended back to 1967 in order to compare the relative contributions of the factors influencing efficiency during a period of stable fuel prices (1967 to 1972) versus a period of fuel price growth (1973 to 1980). A similar analysis disaggregates the components of truck efficiency and evaluates their relative impact on fuel consumption in the trucking industry. (LEW)

  13. Status Report on Activities of the Systems Assessment Task Force, OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs

    Bragg-Sitton, Shannon Michelle [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Organization for Economic Cooperation and Development /Nuclear Energy Agency (OECD/NEA) Nuclear Science Committee approved the formation of an Expert Group on Accident Tolerant Fuel (ATF) for LWRs (EGATFL) in 2014. Chaired by Kemal Pasamehmetoglu, INL Associate Laboratory Director for Nuclear Science and Technology, the mandate for the EGATFL defines work under three task forces: (1) Systems Assessment, (2) Cladding and Core Materials, and (3) Fuel Concepts. Scope for the Systems Assessment task force includes definition of evaluation metrics for ATF, technology readiness level definition, definition of illustrative scenarios for ATF evaluation, parametric studies, and selection of system codes. The Cladding and Core Materials and Fuel Concepts task forces will identify gaps and needs for modeling and experimental demonstration; define key properties of interest; identify the data necessary to perform concept evaluation under normal conditions and illustrative scenarios; identify available infrastructure (internationally) to support experimental needs; and make recommendations on priorities. Where possible, considering proprietary and other export restrictions (e.g., International Traffic in Arms Regulations), the Expert Group will facilitate the sharing of data and lessons learned across the international group membership. The Systems Assessment Task Force is chaired by Shannon Bragg-Sitton (INL), while the Cladding Task Force will be chaired by a representative from France (Marie Moatti, Electricite de France [EdF]) and the Fuels Task Force will be chaired by a representative from Japan (Masaki Kurata, Japan Atomic Energy Agency [JAEA]). This report provides an overview of the Systems Assessment Task Force charter and status of work accomplishment.

  14. Radiation doses due to natural radon gas releases from the final disposal facility of spent fuel

    Vesterbacka, K.; Arvela, H.

    1998-03-01

    Building an underground repository for the spent nuclear fuel increases releases of natural radon gas. In the report the radon releases, the resulting doses as well as the radon concentration in the repository air are investigated. There are four optional building locations for the underground repository and three different strategies of construction. Optional sites are Olkiluoto of Eurajoki, Romuvaara of Kuhmo, Haestholmen of Loviisa and Kivetty of Aeaenekoski. The most significant radon sources in the underground repository are the rockwalls and the groundwater leaking to the repository. High groundwater radon concentrations can increase significantly radon concentration in the repository air despite the groundwater leak rate is low. The radon source strength from the rockwalls, groundwater and macadam spreaded on the floor of the repository is estimated in this report. Using these results the radon concentration in the repository is calculated for several air exchange rates. Data from petrological studies performed at the optional building sites as well as the measurement data of the Radiation and Nuclear Safety Authority has been utilized. Rough approximations were needed when estimating the radon source strength. The estimated total radon source strength varies between 1 - 600 MBq/h depending on the repository construction strategy. Repository indoor air radon concentration with no air exchange varies between 0,7 - 120 kBq/m 3 . Using the most probable estimates on radon source strength, the allowed indoor radon concentration of 400 Bq/m 3 at workplaces is achieved by using the air exchange rate of 0,5 l/h in every optional repository. Repository exhaust air and the pile of macadam increases the radon levels in the environment. The radiation dose to the critical person depends on the open volume of the repository. The annual radiation dose calculated from the most probable radon source strength at the distance of 500 metres is below 0,005 mSv at all sites

  15. Final Technical Report: Affordable, High-Performance, Intermediate Temperature Solid Oxide Fuel Cells

    Blackburn, Bryan M. [Redox Power Systems, LLC, College Park, MD (United States); Bishop, Sean [Redox Power Systems, LLC, College Park, MD (United States); Gore, Colin [Redox Power Systems, LLC, College Park, MD (United States); Wang, Lei [Redox Power Systems, LLC, College Park, MD (United States); Correa, Luis [Redox Power Systems, LLC, College Park, MD (United States); Langdo, Thomas [Redox Power Systems, LLC, College Park, MD (United States); Deaconu, Stelu [Redox Power Systems, LLC, College Park, MD (United States); Pan, Keji [Redox Power Systems, LLC, College Park, MD (United States)

    2018-02-15

    In this project, we improved the power output and voltage efficiency of our intermediate temperature solid oxide fuel cells (IT-SOFCs) with a focus on ~600 °C operation. At these temperatures and with the increased power density (i.e., fewer cells for same power output), the stack cost should be greatly reduced while extending durability. Most SOFC stacks operate at temperatures greater than 800 °C. This can greatly increase the cost of the system (stacks and BOP) as well as maintenance costs since the most common degradation mechanisms are thermally driven. Our approach uses no platinum group metal (PGM) materials and the lower operating temperature allows use of simple stainless steel interconnects and commercial off-the-shelf gaskets in the stack. Furthermore, for combined heating and power (CHP) applications the stack exhaust still provides “high quality” waste heat that can be recovered and used in a chiller or boiler. The anticipated performance, durability, and resulting cost improvements (< $700/kWe) will also move us closer to reaching the full potential of this technology for distributed generation (DG) and residential/commercial CHP. This includes eventual extension to cleaner, more efficient portable generators, auxiliary power units (APUs), and range extenders for transportation. The research added to the understanding of the area investigated by exploring various methods for increasing power density (Watts/square centimeter of active area in each cell) and increasing cell efficiency (increasing the open circuit voltage, or cell voltage with zero external electrical current). The results from this work demonstrated an optimized cell that had greater than 1 W/cm2 at 600 °C and greater than 1.6 W/cm2 at 650 °C. This was demonstrated in large format sizes using both 5 cm by 5 cm and 10 cm by 10 cm cells. Furthermore, this work demonstrated that high stability (no degradation over > 500 hours) can be achieved together with high performance in large

  16. Responses to comments received on the draft final report of the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management

    1994-10-01

    The Task Force solicited comments on its Draft Final Report from a variety of sources. Letters were sent to over 400 individuals who had expressed interest in the interest in the Department`s radioactive waste, management programs, a notice was placed in the Federal Register, the morning session of the January 1993 meeting of the full Secretary of Energy Advisory Board was given over to discussion of the draft, and Task Force members and staff presented the effort at several professional meetings. Altogether 32 written comments were received. They are reproduced here, followed in each case by the Task Force`s response to specific suggestions made to improve the draft. (The panel did not respond to comments that simply reflected policy preferences or that praised the group`s effort.) With one exception, those specific suggestions are highlighted and given a letter designation from {open_quotes}A{close_quotes} to {open_quotes}Z{close_quotes}. The Task Force`s responses, written in the Fall 1993, are labeled in a like manner. For the one exception, a comments submitted by Judy Treichel, the Task Force`s response is printed on copies of her annotated pages.

  17. Systems study of fuels from grains and grasses. Phase I. Final report

    Benson, W.; Allen, A.; Athey, R.; McElroy, A.; Davis, M.; Bennett, M.

    1978-02-24

    The program reported on herein consists of a first phase analysis of the potential for significant and economically viable contributions to U.S. energy needs from grasses and grains by the photosynthetic production of biomass. The study does not include other cultivated crops such as sugar cane, sugar beets, cotton, tobacco, vegetables, fruits, etc. The scope of the study encompasses grain crop residues, whole plant biomass from grain crops and nongrain crops on cropland, and whole plant biomass from grasses on pasture, rangeland, and federal range. The basic approach to the study involves first an assessment of current total biomass generation from the various grasses and grains on cropland, pasture, range, and federal range, and aggregating the production by combinations of crop residues and whole plant biomass; second, evaluation of possibilities for introduction of new crops and expanding production to marginal or presently idle land; third, development of proposed reasonable scenarios for actually harvesting biomass from selected combinations of crop residues, forages and hays, and new crops from land now in production, plus additional marginal or underutilized land brought into production; and finally, assessment on national and regional or local scales of the production that might be affected by reasonable scenarios. This latter effort includes analysis of tentative possibilities for reallocating priorities and needs with regard to production of grain for export or for livestock production. The overall program includes a case study analysis of production economics for a representative farm of about 1,000 acres (405 ha) located in Iowa.

  18. Wet and dry deposition and resuspension of AFCT/TFCT fuel processing radionuclides. Final report

    Slinn, W.G.N.; Katen, P.C.; Wolf, M.A.; Loveland, W.D.; Radke, L.F.; Miller, E.L.; Ghannam, L.J.; Reynolds, B.W.; Vickers, D.

    1979-09-01

    After short summary and introductory chapters, Chapter IV contains a critical analysis of available parameterizations for resuspension and for wet and dry removal processes and recommends interim parameterizations for use in radiation dose calculations. Chapter V describes methods and experimental results from field studies of in-cloud vs below-cloud scavenging, precipitation efficiency, and modifications of aerosols by clouds. In Chapter VI are contained descriptions of methods and results from four different approaches to the problem of measuring the dry deposition velocities of submicron aerosol particles depositing on vegetation. Chapter VII describes experimental results from a study of resuspension and weathering of tracer aerosol particles deposited on soil, grass and gravel; typical resuspension rates were found to be of the order of 10 -8 s -1 and it is recommended that the concept of weathering be reassessed. In Chapter VIII, National Weather Service data are used to obtain Lagrangian statistics for use in a regional-scale study of wet and dry removal. Chapter IX develops new concepts in reservoir models for application at regional to global scales. In the final chapter are some comments about the results found in this study and recommendations for future research

  19. Review and Response to the Final Report of the National Black Health Providers Task Force on High Blood Pressure Education and Control.

    Public Health Service (DHHS), Rockville, MD.

    This report presents the National Heart, Lung, and Blood Institute's (NHLBI) review of and response to the final report of the National Black Health Providers Task Force on High Blood Pressure Education and Control. The response includes a statement of NHLBI's involvement in health research, and descriptions of what steps can be taken to solve the…

  20. The dynamics of lake, bog, and bay - Consequences of exposure to man related to final storage of spent nuclear fuel

    Agnedal, P.O.; Andersson, K.; Evans, S.; Sundblad, B.; Tham, G.; Wilkens, A.B.

    1984-12-01

    The natural aging of the environment, much shorter than a possible continuous release from a repository, results in uncertainties as regards to consequences of exposure to man related to final storage of spent fuel. The Phase I project summarizes the identification of such factors and parameters of predominant importance for an assessment of possible radiological consequences in a normally revolving biosphere. Three major areas are described: geomorphology and residence time such as phenomena associated with the formation of lakes in Sweden formed by the latest inland ice, lake development in terms of uptake of different elements and radionuclides as a function of the chemical composition of the water in a recipient and some aspects of sedimentation in lakes and coastal waters. The chemical environment is also studied in the evolution of a lake or a Baltic bay into farming land or peat land. The most important parameters to the behaviour of trace metal ions seem to be pH, Eh, ionic strength and content of complex formers. Finally, the human impact during the evolution of a lake or a bay is discussed. The study also includes recommendation for a reference field test area and for laboratory studies of the chemical properties of radionuclides in sediments in a Phase 2 project. (Author)

  1. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Anttila, P.; Ahokas, H.; Front, K.

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed 'intact rock', which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10 -6 m 2 /s or 1.3 x 10 -6 m 2 /s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10 -12 m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose from the Baltic Sea some

  2. Final disposal of spent nuclear fuel in Finnish bedrock. Haestholmen site report

    Anttila, P. [Fortum Engineering Oy, Vantaa (Finland); Ahokas, H. [Fintact Oy, Helsinki (Finland); Front, K. [VTT Communities and Infrastructure, Espoo (Finland)

    1999-06-01

    Posiva Oy is studying the Finnish bedrock for the geological disposal of spent nuclear fuel. The study is based on the site selection research programme started originally in 1983. The programme is in accordance with the decision in principle by the Council of State in 1983 and aims at the selection of one site in 2000. Four sites, Haestholmen in Loviisa, Kivetty in Aeaenekoski, Olkiluoto in Eurajoki and Romuvaara in Kuhmo, have been studied in detail. This report summarises the results of the site investigations carried out at Haestholmen. The Haestholmen area is located within the anorogenic Wiborg rapakivi granite batholith, about 1630 million years in age, representing one of the youngest rock formations in Finland. Wiborgite, pyterlite, porphyritic rapakivi granite and even-grained rapakivi granite are the rock types present. 25 bedrock structures have been modelled at the site. Most of them are steeply-dipping fracture zones trending NW-SE and NE-SW, but several sub-horizontal zones, mainly dipping to the N-NE and the SW, are also present. The rock mass between the fracture zones represents what is termed `intact rock`, which is typically hard, unweathered and sparsely fractured. The bedrock structures are generally hydraulically more conductive than the intact rock and their mean transmissivity is 8 x 10{sup -6} m{sup 2}/s or 1.3 x 10{sup -6} m{sup 2}/s, depending on how structures are defined. The corresponding mean of the hydraulic conductivity values measured for the intact rock using a 2 m packer interval is 1 x 10{sup -12} m/s, if a lognormal distribution for all measured values is assumed. A clear decrease in hydraulic conductivity with depth has been found in the intact rock. In addition, the hydraulically conductive fractures seem to be more frequent and their transmissivities higher in the uppermost 100-200 m of the bedrock than at greater depths. The groundwater chemistry reflects the post-glacial history of the island of Haestholmen, which rose

  3. Final repository for spent nuclear fuel. Underground design Simpevarp, Layout D1

    NONE

    2006-04-15

    This report is a compilation of the results of the underground design work carried out in design phase D1 of the Repository Design Project within the Deep Repository Project for the Simpevarp site. Similar reports are also being produced for the Laxemar and Forsmark sites. The design phase coincides with the initial site investigation phase. The main purpose of phase D1 is to answer the question 'Can a final repository be accommodated within the designated site', but also to test the design methodology and provide feedback to the modelling project. Design was carried out in accordance with the methodology described in UDP (Underground Design Premises), SKB R-04-60, and was based on preliminary data from various disciplines in the site modelling project. The preliminary input data used were then cross-checked against data in the final Site Descriptive Model SDM v 1.2 and significant differences were integrated in the design work. The design results from each design topic were presented by the designer at presentation meetings for SKB's design management and the reviewers engaged by SKB for the specific topic. After the presentation meeting the designer wrote up the work reports for the topic in question. The work reports were then reviewed by SKB's review team. The results of the review were compiled in a statement that was submitted to the designer to be dealt with. In the statement the designer documented which comments were dealt with and how. This report is a compilation of the entire design phase D1 for Simpevarp. The 3D layout with coordinate lists for deposition holes and tunnels that was drawn to illustrate a possible layout was used in the Preliminary safety evaluation of the Simpevarp subarea and the hydro modelling of the Open Repository, both activities within the Deep Repository Project. According to current plans for the Swedish nuclear programme, the minimum required number of canister positions in the repository is estimated to be

  4. Final disposal of spent nuclear fuel-geological, hydrogeological and geophysical methods for site characterization

    Ahlbom, K.; Carlsson, L.; Olsson, O.

    1983-05-01

    Investigations for the siting of a final repository for high-level radioactive waste are currently being conducted in crystalline rock formations in Sweden. A repository will be located at a depth of about 500 m, and investigations are being carried out in drill holes to below that level. A standard program has been established for the site investigations, comprising a number of phases: 1. General reconnaissance for selection of study site 2. Detailed investigation on the ground surface 3. Depth investigation in drill holes 4. Evaluation and modelling 1. Includes geological and geophysical reconnaissance measurements and drilling of one deep drill hole 2. includes surface and depth investigation within an area of approximately 4-8 km 2 . The surface investigations consist of geophysical measurements including electrical resistivity, magnetization, induced polarization and seismic measurements, and yeild informatin on the composition and fracturing of the bedrock in the superficial parts of the study sites. Mapping of the superficial parts of the bedrock are concluded with short percussion and core drillholes down to 150-250 metres in order to determine the dip and character of fracture zones and rock boundaries. 3. Comprises core drilling to vertical depths of about 600 m, core mapping geophysical well-logging and different hydraulic downhole measurements. In core mapping, the emphasis is placed on fracture characterization of the core. The geophysical logging includes three resistivity methods, natural gamma, induced polarization, spontaneous potential and temperature, salinity, pH and Eh of the drill hole fluid. The hydraulic measurements include: measurements of hydraulic conductivity by single-hole and cross-hole testing, determination of the hydraulic fracture frequency and determination of groundwater head at different levels in the bedrock. (G.B.)

  5. Geological site selection studies for the final disposal of spent nuclear fuel in Finland

    Salmi, M.; Vuorela, P.; Kuivamaeki, A.

    1985-10-01

    have been met with that should be avoided in the sites to be selected for the final disposal of nuclear waste

  6. Characterization of long-term geological changes for final disposal of spent fuel in Finland

    Vuorela, P.; Blomqvist, R.; Aikaes, T.

    1996-01-01

    The bedrock of Finland is very old and major crustal deformation processes ceased long ago. At present continuous slow processes prevail and geological changes taking place today are very difficult to observe. Anticipated future geological changes are dominated by the renewed development of the continental ice sheet in northern Europe. The present climate will deteriorate to a state amenable to glacier formation. Continuous processes such as groundwater flow and interrelated hydrogeochemical phenomena will be influenced by changes in the climate as well as by developing permafrost. The crust itself will be loaded by the weight of the ice sheet, and will will warp down. The final disposal programme has been devised with even more exceptional future changes in mind. The process of site identification in the site selection research programme has been developed to consider the eventuality of the future bedrock movements. Analysis of bedrock geometry and block patterns, together with related fracture zones assists in selecting a repository site where the risks of accumulation of large stresses, and their subsequent release as shear movements, can be minimized. By studying the prevailing conditions and tracing the record of earlier events an understanding of the relevant processes in general is developed. Paleo-hydrogeology is one of the areas which can provide information relating to 'why the conditions at the site today are as they are'. Although it is not possible to predict the future behavior of a site in a detailed manner, it is possible to constrain the scenarios needed in the safety assessment by establishing and documenting real events that have sometimes occurred, and that will most probably be repeated. (authors). 31 refs., 8 figs

  7. Changes in quality management for light water reactor fuel manufacturing: A utility's view of driving forces and status

    Huettmann, A.; Skusa, J.; Ketteler, M.

    2000-01-01

    Quality management in LWR fuel manufacturing for the use in German reactors is based on international guidelines and national/local authority requirements defined in operational licenses. The quality management is twofold and comprises a quality assurance system and the check of manufacturing documents including witnessing of fabrication processes and inspections. Utility and authority appointed technical expert witness manufacturing and take part in inspections performed by the manufacturer where the scope is strictly defined and does not provide possibilities of flexible responses to manufacturing occurrences. For future developments in quality management HEW supports strengthening the ideas of quality planning. Analysis of all factors influencing fuel reliability shall be performed prior to manufacturing. This will increase the efforts in reviewing of drawings and specifications. Included here shall be a review of processes that will be used in manufacturing. The qualification and robustness of processes shall be demonstrated with special qualification programs and analysis of manufacturing statistics. Instead of product/project related inspections the use of all manufacturing data will provide a complete picture of the manufacturing quality. By applying statistical methods it will be possible to identify trends in manufacturing before deviations occur. So the basic driving force to implement statistical process control for the utilities is the wish to get comprehensive information of delivered quality, whereas for manufacturers it might be to increase production yields and thus to lower costs. The introduction and full use of statistical process control requires open information about manufacturing processes and inspection results by the manufacturers. This might include data judged to be economically sensitive. It also requires changes in attitude at the utilities and appointed experts. HEW has started to review and change internal guidelines to allow

  8. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    Brantberger, Martin; Zetterqvist, Anders; Arnbjerg-Nielsen, Torben; Olsson, Tommy; Outters, Nils; Syrjaenen, Pauli

    2006-04-01

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due to the applied

  9. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    Brantberger, Martin; Zetterqvist, Anders [Ramboell Sweden AB, Stockholm (Sweden); Arnbjerg-Nielsen, Torben [Ramboell Denmark A/S, Virum (Denmark); Olsson, Tommy [IandT Olsson AB, Uppsala (Sweden); Outters, Nils [Golder Associates AB, Uppsala (Sweden); Syrjaenen, Pauli [Gridpoint Oy, Helsinki (Sweden)

    2006-04-15

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due

  10. Prototypical spent nuclear fuel rod consolidation equipment: Phase 2, Final design report: Volume 4, Appendices: Part 3

    Ciez, A.P.

    1987-01-01

    The purpose of this manual is to provide assembly, installation, operation, maintenance, and off-normal recovery procedures for the Consolidation Equipment. The Consolidation System is a horizontal, dry system capable of processing one Pressurized Water Reactor (PWR) fuel assembly or one Boiling Water Reactor (BWR) fuel assembly at a time. The system will process all spent PWR and BWR fuels from the commercial US nuclear power reactor industry. Component changeouts for various fuel types have been minimized to reduce costs, required in-cell module storage space, and to increase efficiency by decreasing set-up time between fuel consolidation campaigns. The most important feature of the Westinghouse system is the ability to control the fuel rods at all times during the consolidation process from rod extraction, through canister loading. This features assures that the rods from two PWR fuel assemblies or four BWR fuel assemblies (minimum) can be loaded into one consolidated rods canister

  11. The Swedish Radiation Protection Institute's regulations concerning the final management of spent nuclear fuel and nuclear waste - with background and comments

    NONE

    2000-11-01

    This report presents and comments on the Swedish Radiation Protection Institute's Regulations concerning the Protection of Human Health and the Environment in connection with the Final Management of Spent Nuclear Fuel or Nuclear Waste, SSI FS 1998: 1.

  12. Spent Fuel Performance Assessment and Research. Final Report of a Coordinated Research Project on Spent Fuel Performance Assessment and Research (SPAR-III) 2009–2014

    2015-10-01

    At the beginning of 2014, there were 437 nuclear power reactors in operation and 72 reactors under construction. To date, around 370 500 t (HM) (tonnes of heavy metal) of spent fuel have been discharged from reactors, and approximately 253 700 t (HM) are stored at various storage facilities. Although wet storage at reactor sites still dominates, the amount of spent fuel being transferred to dry storage technologies has increased significantly since 2005. For example, around 28% of the total fuel inventory in the United States of America is now in dry storage. Although the licensing for the construction of geological disposal facilities is under way in Finland, France and Sweden, the first facility is not expected to be available until 2025 and for most States with major nuclear programmes not for several decades afterwards. Spent fuel is currently accumulating at around 7000 t (HM) per year worldwide. The net result is that the duration of spent fuel storage has increased beyond what was originally foreseen. In order to demonstrate the safety of both spent fuel and the storage system, a good understanding of the processes that might cause deterioration is required. To address this, the IAEA continued the Coordinated Research Project (CRP) on Spent Fuel Performance Assessment and Research (SPAR-III) in 2009 to evaluate fuel and materials performance under wet and dry storage and to assess the impact of interim storage on associated spent fuel management activities (such as handling and transport). This has been achieved through: evaluating surveillance and monitoring programmes of spent fuel and storage facilities; collecting and exchanging relevant experience of spent fuel storage and the impact on associated spent fuel management activities; facilitating the transfer of knowledge by documenting the technical basis for spent fuel storage; creating synergy among research projects of the participating Member States; and developing the capability to assess the impact

  13. Expanded Air Force Physical Fitness Battery: Muscle Strength, Muscle Endurance, and Flexibility Considered. Volume I, Final Report

    Palmer, Barbara

    1997-01-01

    .... It was concluded that of the benefits of strength training, improved deployment preparedness, safe and efficient everyday work performance, and safer aerobic and team activity are most important to the Air Force...

  14. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  15. Final disposal of spent fuel in the Finnish bedrock. Scope and requirements for site-specific safety analysis

    1996-12-01

    The report is a summary of the research conducted in the period 1993 to 1996 into safety of spent fuel final disposal. The principal goal of the research in this period, as set in 1993, was to develop a strategy for site-specific safety analysis. At the same time efforts were to be continued to gather data and validate the technical approach for the analysis. The work aimed at having the data needed for the analysis available at the end of year 1998. A safety assessment update, TILA-96, prepared by VTT Energy, is published as a separate report. The assessment is based on the TVO-92 safety analysis, but takes into account the knowledge acquired after 1992 on safety aspects of the disposal system and the data gathered from the site investigations made by TVO and from the beginning of 1996, by Posiva. Since the site investigations are still ongoing and much of the data gathered still pending interpretation, only limited amount of new site-specific information has been available for the present assessment. (172 refs.)

  16. Seismic VSP and HSP surveys on preliminary investigation areas in Finland for final disposal of spent nuclear fuel

    Keskinen, J.; Cosma, C.; Heikkinen, P.

    1992-10-01

    Seismic reflection surveys in boreholes were carried out for Teollisuuden Voima Oy at five sites in Finland (Eurajoki Olkiluoto, Hyrynsalmi Veitsivaara, Konginkangas Kivetty, Kuhmo Romuvaara and Sievi Syyry). The vertical Seismic Profiling (VSP) surveys were a part of the investigation programme for the final disposal of spent nuclear fuel. The purpose was to detect fractured zones, lithological contacts and other anomalies in the structure of the rockmass and to determine their position and orientation. Horizontal Seismic Profiling (HSP) was used at the Olkiluoto site, additionally to VSP. The data has been organized in profiles containing seismograms recorded from the same shotpoint (shot gathers). One of the most powerful processing methods used with this project has been the Image Space Filtering, a new technique, which has been developed (in the project) for seismic reflection studies in crystalline rock. The method can be applied with other rock types where steeply inclined or vertical anomalies are of interest. It acts like a multichannel filter, enhancing the reflected events and also as an interpretation tool, to estimate the strength and position of the reflectors. This approach has been of great help in emphasizing the weak reflections from uneven and sometimes vanishing interfaces encountered in crystalline

  17. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  18. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    None

    1982-01-01

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  19. Final Environmental Assessment for the Disposal of the Former Lynn Haven Fuel Depot, Tyndall Air Force Base, Florida

    2015-12-01

    use controls (LUCs), to prevent consumption and use, following issuance of the Site Rehabilitation Completion Order by FDEP. The LUCs will be...This service includes residential applications, such as household and yard waste collection. According to landfill capacity reports by Bay County Solid...Waste Department, the existing landfill resources are estimated to serve the known populations and proposed projects until 2025. Future landfill

  20. Formation of secondary phases during deep geological final disposal of research reactor fuel elements. Structure and phase analysis

    Neumann, Andreas

    2012-01-01

    For the assessment of a confident und sustainable final disposal of high level radioactive waste - fuel elements of german research reactors also account for such waste - in suitable, deep geological facilities, processes of the alteration of the disposed of waste and therefore the formation of the corrosion products, i. e. secondary phases must be well understood considering an accident scenario of a potential water inflow. In order to obtain secondary phases non-irradiated research reactor fuel elements (FR-BE) consisting of UAl x -Al were subjected to magnesium chloride rich brine (brine 2, salt repository) and to clay pore solution, respectively and furthermore of the type U 3 Si 2 -Al were solely subjected to magnesium chloride rich brine. Considering environmental aspects of final repositories the test conditions of the corrosion experiments were adjusted in a way that the temperature was kept constant at 90 C and a reducing anaerobic environment was ensured. As major objective of this research secondary phases, obtained from the autoclave experiments after appropriate processing and grain size separation have been identified and quantified. Powder X-ray diffraction (PXRD) and the application of Rietveld refinement methods allowed the identification of the corrosion products and a quantitative assessment of crystalline and amorphous contents. Scanning and transmission electron microscopy were additionally applied as a complementary method for the characterisation of the secondary phases. The qualitative phase analysis of the preprocessed secondary phases of the systems UAl x -Al and U 3 Si 2 -Al in brine 2 shows many similarities. Lesukite - an aluminium chloro hydrate - was observed for the first time considering the given experimental conditions. Further on different layered structures of the LDH type, iron oxyhydroxide and possibly iron chlorides, uncorroded residues of nuclear fuel and elementary iron were identified as well. Depending on preceding

  1. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    Pope, Michael A.; Sen, R. Sonat; Boer, Brian; Ougouag, Abderrafi M.; Youinou, Gilles

    2011-01-01

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

  2. Basis for applying for exemption according to species protection regulation. Final repository for spent nuclear fuel at Forsmark

    2011-02-01

    SKB will submit applications for permits and admissibility under the Environmental Act and under the Nuclear Activities Act to construct and operate a disposal facility for spent nuclear fuel at Forsmark. In the final repository the spent nuclear fuel from Swedish nuclear power plants is placed in order to protect human health and the environment against harmful effects of ionizing radiation. Construction and operation of the disposal facility in Forsmark will make an impact, give effects and consequences for the natural environment. Utilization of land for the construction of the facility and the impact on ground water as a result of groundwater drainage is expected to have negative consequences for the species included in species protection regulation. Thus, the planned activity require exemption from species protection regulation (SFS 2007:845). The purpose of this document is to provide a basis for an application for exemption under 14 paragraph species protection regulation from the prohibitions of 4, 6, 7 and 8 paragraph species protection regulation. A basis for the exemption application is that the proposed activity is considered to have an 'overriding public interest' prescribed in 14 paragraph species protection regulation. The document reports the impact, effects and consequences of the planned activities on species covered in the species protection regulation. The impact on protected species can be divided into two categories: - Direct effects on protected species and their habitats by utilization of the land. - Indirect effects on protected species and their habitats in the drainage of groundwater and the effect on groundwater levels. The document also includes a description of planned actions to prevent, restrict and compensate for the effects and consequences that the activity may cause. By applying for an exemption under 14 paragraph species protection regulation in a separate order from the application for permit according to chapters 9 and 11

  3. Spent fuel performance assessment and research. Final report of a co-ordinated research project on Spent Fuel Performance Assessment and Research (SPAR) 1997-2001

    2003-03-01

    The report provides an overview of technical issues related to spent fuel wet and dry storage and summarizes the objectives and major findings of research, carried out within the framework of the Coordinated Research Program. Included are the fuel integrity aspects, fuel degradation mechanisms in dry and wet storage, behaviour of storage facility components (metallic components, reinforced concrete). Also included are issues related to long-term storage and monitoring technologies and techniques. Country reports on research projects within the SPAR Coordinated Research Program is presented. A brief history is given on the history of the BEFAST and SPAR Coordinated Research Projects

  4. Spent fuel performance assessment and research. Final report of a co-ordinated research project on Spent Fuel Performance Assessment and Research (SPAR) 1997-2001

    NONE

    2003-03-01

    The report provides an overview of technical issues related to spent fuel wet and dry storage and summarizes the objectives and major findings of research, carried out within the framework of the Coordinated Research Program. Included are the fuel integrity aspects, fuel degradation mechanisms in dry and wet storage, behaviour of storage facility components (metallic components, reinforced concrete). Also included are issues related to long-term storage and monitoring technologies and techniques. Country reports on research projects within the SPAR Coordinated Research Program is presented. A brief history is given on the history of the BEFAST and SPAR Coordinated Research Projects.

  5. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  6. Final Project Report: Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches

    Wessel, Silvia [Ballard Materials Products; Harvey, David [Ballard Materials Products

    2013-06-28

    The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications that target operational lifetimes of 5,000 hours and 40,000 hours by 2015, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifying the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different structural compositions and under different fuel cell conditions remains an area not well understood. The focus of this project was to address catalyst durability by using a dual path approach that coupled an extensive range of experimental analysis and testing with a multi-scale modeling approach. With this, the major technical areas/issues of catalyst and catalyst layer performance and durability that were addressed are: 1. Catalyst and catalyst layer degradation mechanisms (Pt dissolution, agglomeration, Pt loss, e.g. Pt in the membrane, carbon oxidation and/or corrosion). a. Driving force for the different degradation mechanisms. b. Relationships between MEA performance, catalyst and catalyst layer degradation and operational conditions, catalyst layer composition, and structure. 2. Materials properties a. Changes in catalyst, catalyst layer, and MEA materials properties due to degradation. 3. Catalyst performance a. Relationships between catalyst structural changes and performance. b. Stability of the three-phase boundary and its effect on

  7. Public comments and Task Force responses regarding the environmental survey of the reprocessing and waste management portions of the LWR fuel cycle

    1977-03-01

    This document contains responses by the NRC Task Force to comments received on the report ''Environmental Survey of the Reprocessing and Waste Management Portions of the LWR Fuel Cycle'' (NUREG-0116). These responses are directed at all comments, inclding those received after the close of the comment period. Additional information on the environmental impacts of reprocessing and waste management which has either become available since the publication of NUREG-0116 or which adds requested clarification to the information in that document

  8. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumntation, and measurement techniques in fuel fabrication facilities, P.O.1236909. Final report

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-12-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. Some of the material included has appeared elswhere and it has been summarized. An extensive bibliography is included. A spcific example of application of the accountability methods to a model fuel fabrication facility which is based on the Westinghouse Anderson design

  9. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumntation, and measurement techniques in fuel fabrication facilities, P. O. 1236909. Final report

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-12-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. Some of the material included has appeared elswhere and it has been summarized. An extensive bibliography is included. A spcific example of application of the accountability methods to a model fuel fabrication facility which is based on the Westinghouse Anderson design.

  10. EUBIONET II. Efficient trading of biomass fuels and analysis of fuel supply chains and business models for market actors by networking. Final result-oriented report

    Alakangas, E.; Wiik, C.; Vesterinen, P. (and others)

    2008-02-15

    The project aimed to increase deployment of biomass fuels into European market and match technology uptake by means of market and policy analysis and other well-defined tasks to meet European policy targets in renewable energy sector. The project is to result as increased use of biomass fuels and market uptake of innovative bioenergy technologies. The objectives of the project were the following: 1) To give a clear outlook on current and future biomass fuel market trends. 2) To give feedback on the suitability of CEN 335 biofuel standard for trading of solid biofuels. 3) To provide well-analysed estimation on techno-economic potential of the biomass fuel volumes until 2010 based on the existing studies and experts opinions. Regarding the forest biomass sector, co-operation will be done with forest industry stakeholders to find proper balance between forest industry raw material and bioenergy usage. 4) To enhance biomass fuel trade and technology transfer by networking among different actors. 5) To analyse, select and describe the most suitable trading and business models for small- and largescale biofuel supply chains for heat and power production by taking into account the environmental aspects and sustainability. 6) To enhance biomass usage by the means of co-operation and information dissemination among different market actors in the fuel-utilisation chain. Target groups were biomass fuel traders and users, fuel producers and suppliers of different scales, policy makers in both current and new member states. Key associations, i.e. AEBIOM and CEPI, were participating in the project and disseminating information to various groups. The project has been structured in 5 workpackages. Project was carried out by 16 partners, which are the key national bioenergy organisations in the European countries and have a long co-operation relationship in previous bioenergy networks. The project has published summary reports and national report of each WP and this report is

  11. Final Finding of No Significant Impact: Maintenance, Repair, and Overhaul Technology Center Acquisition Tinker Air Force Base Oklahoma City, Oklahoma

    2013-04-18

    result in short-term health problems. Airborne Lead. Airborne lead can be inhaled directly or ingested indirectly by consuming lead- contaminated...reduction of lead in gasoline and paint, and the elimination of lead from soldered cans. 3.1.1.2 Greenhouse Gases GHGs are measured by the global...at Tinker AFB: • Stationary combustion sources (e.g., boilers, water heaters, furnaces, gasoline and diesel- fuel generators, engine test cells

  12. Responses to comments received on the draft final report of the Secretary of Energy Advisory Board Task Force on Radioactive Waste Management

    1994-01-01

    The Task Force solicited comments on its Draft Final Report from a variety of sources. Letters were sent to over 400 individuals who had expressed interest in the interest in the Department's radioactive waste, management programs, a notice was placed in the Federal Register, the morning session of the January 1993 meeting of the full Secretary of Energy Advisory Board was given over to discussion of the draft, and Task Force members and staff presented the effort at several professional meetings. Altogether 32 written comments were received. They are reproduced here, followed in each case by the Task Force's response to specific suggestions made to improve the draft. (The panel did not respond to comments that simply reflected policy preferences or that praised the group's effort.) With one exception, those specific suggestions are highlighted and given a letter designation from open-quotes Aclose quotes to open-quotes Zclose quotes. The Task Force's responses, written in the Fall 1993, are labeled in a like manner. For the one exception, a comments submitted by Judy Treichel, the Task Force's response is printed on copies of her annotated pages

  13. Final repository for spent nuclear fuel in granite - the KBS-3V concept in Sweden and Finland

    Pettersson, Stig; Loennerberg, Bengt

    2008-01-01

    Both Sweden and Finland has advanced plans for design, construction and operation of the final repositories for direct disposal of spent nuclear fuel. Both countries have the same type of host rock - granite. They are also investigating alternative concept for disposal, vertical or horizontal disposal of the canisters with encapsulated spent nuclear fuel, normally called KBS-3V or the KBS-3H disposal concept. The development of the KBS-3V concept started around 1980 and is the reference method for both SKB in Sweden and Posiva in Finland. However, extensive development work is ongoing since 2001 with KBS-3H in order to bring that concept to the same maturity as KBS-3V. This presentation deals with the design and operation of the KBS-3V based on the work done within Sweden and SKB but the development is Finland is identical and it is a close cooperation between SKB in Sweden and Posiva in Finland. In Sweden, the site investigation for location of the repository has been concentrated on two sites, in the Oskarshamn area, about 350 km south of Stockholm, and the Forsmark area, about 180 km north of Stockholm. For information it can be mentioned that Finland plans to locate their repository in the vicinity of the Olkiluoto nuclear power plant site, about 300 km north of Helsinki. The site investigation is completed and the selection of site is scheduled to mid 2009 and sending in the application for location and construction of the repository is scheduled to end 2009. After receiving all necessary permits, construction time and commissioning will take about 7 to 8 years and operation is expected to start about 2020. The KBS-3 system is based on a multi barrier concept and the work with compiling the design requirements for the underground part of the deep repository has been ongoing for some time within the SKB organisation. Today the design requirements for the underground part are documented in a big number of reports that has been produced by specialists and working

  14. Final Environmental Assessment for Implementation of Proposed Actions in the Moody Air Force Base Integrated Natural Resources Management Plan (INRMP)

    2015-09-01

    systems, wind turbines , green roofs, and habitat-oriented storm water management) would be incorporated where practicable. A-12 THIS PAGE INTENTIONALLY...requirements. There are numerous projects that would have a beneficial impact on Bird /Wildlife Aircraft Strike Hazard including prescribed burning...Force Instruction BASH Bird /Wildlife Aircraft Strike Hazard BMP best management practice CEQ Council on Environmental Quality CFR Code of

  15. Final Environmental Assessment for a Proposed Pararescue and Combat Rescue Officer Training Campus at Kirtland Air Force Base

    2006-09-01

    beginning of 2005 within the ROI was 5.2 percent (New Mexico Department of Labor 2005). 3.3.2.3 Kirtland Air Force Base Kirtland AFB had...International Sunport, New Mexico. Accessed 5/2005 from http://www. wrcc.dri.edu/ CLIMA TEDA T A.html. AETC P J/CRO Campus at Kirtland AFB Preliminary

  16. Framework programme for detailed characterisation in connection with construction and operation of a final repository for spent nuclear fuel

    2010-10-15

    This report presents a programme for the detailed investigations planned to be applied during construction and operation of the repository for spent nuclear fuel at Forsmark. The report is part of SKB's application according to the Nuclear Activities Act. The detailed investigations shall provide relevant data on and site-descriptive models for the bedrock, soil deposits and eco-system of the site in order to facilitate a step-wise design and construction of the final repository. This shall be implemented in a manner that all demands on long-term safety are fulfilled, including accurate documentation of the construction work, and so that assessments of the environmental impact of the repository can be made. For the operational phase, the detailed investigations should also provide support to the deposition process with related decisions, thereby enabling fulfilment of the design premises for the siting and construction of deposition tunnels and deposition holes, as well as for deposition of canisters, and for the subsequent backfilling and closure of the repository. The Observational Method will be applied during the construction of the repository. This method entails establishing in advance acceptable limits of behaviour regarding selected geoscientific parameters and preparing a plan with measures to keep the outcome within these limits. Predictions of expected rock properties are established for each tunnel section. The outcome after excavation is compared with the acceptable range of outcomes. Information from detailed characterization will be of essential importance for application of the Observational Method and for adapting the repository to the prevailing rock properties. SKB has for the past several decades developed methods for site characterisation, applying both above- and underground investigation techniques. Experiences from this work, put into practice during the site investigations, has resulted in a solid knowledge and understanding of the

  17. The environmental factors to be considered in the site selection studies of the spent fuel final disposal

    Aeikaes, Timo

    1985-10-01

    The ojective of the work has been to elucidate environmental factors, which could have an influence on the selection of areas. The factors were identified and their significance evaluated by going through the present plan for the final disposal of spent fuel. Population density and transport conditions were the most important factors. Protected areas, groundwater reservoirs and restrictions presented in regional land-use plans were also noted. The potential areas have been identified by the Geological Survey of Finland. First 327 large bedrock blocks were identified. The extent of the block areas was between 100-200 km 2 . The environmental factors of these areas were mapped and the areas were classified. The study was based on maps, published regional plans and inventory of groundwater reservoirs. The Geological Survey of Finland selected 162 block areas for preliminary characterization and geological classification. 61 block areas were chosen for further geological studies. By interpretation of aerial photographs and field reconnaissance trip the Geological Survey identified 134 potential investigation areas. A large block area typically contained two possible investigation areas. The extent of these areas varied between 5-10 km 2 . The environmental factors of 134 possible investigation areas were studied in detail. Due to the classification made earlier, the areas were typically sparsely populated forest areas. In the detailed study the main emphasis was but on evaluation of population density, transport and inventory of land ownership. The land-ownership is important for practical reasons. Land-owner's permission is needed for the operations in the field. Areas were classified separately according to population density, transport and land-ownership. In classification the most suitable areas were uninhabited regions with few landowners and locating close (less than 10 km) to the railroad. Only a minority of the areas fell in this category with the requirement

  18. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    Bishop, W.P.; Miraglia, F.J. Jr.

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts

  19. Environmental survey of the reprocessing and waste management portions of the LWR fuel cycle: a task force report

    Bishop, W.P.; Miraglia, F.J. Jr. (eds.)

    1976-10-01

    This Supplement deals with the reprocessing and waste management portions of the nuclear fuel cycle for uranium-fueled reactors. The scope of the report is limited to the illumination of fuel reprocessing and waste management activities, and examination of the environmental impacts caused by these activities on a per-reactor basis. The approach is to select one realistic reprocessing and waste management system and to treat it in enough depth to illuminate the issues involved, the technology available, and the relationships of these to the nuclear fuel cycle in general and its environmental impacts.

  20. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  1. Near-frictionless carbon coatings for spark-ignited direct-injected fuel systems. Final report, January 2002.; TOPICAL

    Hershberger, J.; Ozturk, O.; Ajayi, O. O.; Woodford, J. B.; Erdemir, A.; Fenske, G. R.

    2002-01-01

    This report describes an investigation by the Tribology Section of Argonne National Laboratory (ANL) into the use of near-frictionless carbon (NFC) coatings for spark-ignited, direct-injected (SIDI) engine fuel systems. Direct injection is being pursued in order to improve fuel efficiency and enhance control over, and flexibility of, spark-ignited engines. SIDI technology is being investigated by the Partnership for a New Generation of Vehicles (PNGV) as one route towards meeting both efficiency goals and more stringent emissions standards. Friction and wear of fuel injector and pump parts were identified as issues impeding adoption of SIDI by the OTT workshop on ''Research Needs Related to CIDI and SIDI Fuel Systems'' and the resulting report, Research Needs Related to Fuel Injection Systems in CIDI and SIDI Engines. The following conclusions were reached: (1) Argonne's NFC coatings consistently reduced friction and wear in existing and reformulated gasolines. (2) Compared to three commercial DLC coatings, NFC provided the best friction reduction and protection from wear in gasoline and alternative fuels. (3) NFC was successfully deposited on production fuel injectors. (4) Customized wear tests were performed to simulate the operating environment of fuel injectors. (5) Industry standard lubricity test results were consistent with customized wear tests in showing the friction and wear reduction of NFC and the lubricity of fuels. (6) Failure of NFC coatings by tensile crack opening or spallation did not occur, and issues with adhesion to steel substrates were eliminated. (7) This work addressed several of the current research needs of the OAAT SIDI program, as defined by the OTT report Research Needs Related to Fuel Injection Systems in CIDI and SIDI Engines

  2. United States Air Force Summer Research Program -- 1993 Summer Research Program Final Reports. Volume 12. Armstrong Laboratory

    1993-01-01

    driving force of this experiment was to observe the photoelectric effect in biological substances (amino acids, proteins , or spores), a conducting metal...exercise before a flight, and maintaining a high protein , low bulk diet. Some leave alcohol out of their daily routine to help in the process of...report is going to give you ideas about how the R-WISE program works and looks. R-WISE has eight tools: Freewriting ( Dinosaur Drag), Sticky Notes

  3. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    Brian Boer; Abderrafi M. Ougouag

    2011-03-01

    The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no

  4. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    Boer, Brian; Ougouag, Abderrafi M.

    2011-01-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no significant

  5. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision; FINAL

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-01-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated

  6. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    Bunting, Bruce G [ORNL

    2012-10-01

    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  7. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    1998-03-01

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC's NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency's statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE's environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS

  8. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allen [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-01

    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  9. Long-term safety of radioactive waste disposal: Chemical reaction of fabricated and high burnup spent UO2 fuel with saline brines. Final report

    Grambow, B.; Casas, I.; Pablo, J. de; Gimenez, J.; Torrero, M.E.

    1996-03-01

    This is the final report of a large EU-research project on spent fuel stability in saline repository environments. Static dissolution experiments with high burnup spent fuel samples and unirradiated UO 2 were performed for about two years in anaerobic NaCl solutions and deionized water with and without container material (iron) being present. Experiments performed at 25 and 150 C gave similar results. Dissolution rates were similar to those measured in the Swedish, or Canadian program for granite media. Rates are strongly influenced by the specific sample surface area, probably related to the mass balance of consumption and production of radiolytic oxidants. In the competition between the oxidizing effect of radiolysis and the reducing effect of iron, the metal corrosion process dominates. Processes controlling radionuclide release are matrix dissolution, solubility, coprecipitation sorption phenomena and colloid formation. In the absence of iron release rates of Sr90, Tc99, Np237, Sb125 and at low reaction progress Ru106 were controlled by matrix dissolution whereas concentrations of tetra-, hexa-, and trivalent actinides (U, Pu, Am, Cm) were controlled by solubility or coprecipitation. The presence of iron did effectively reduce the rates of fuel dissolution and the concentration of many, though not all radionuclides. Solubilities of U were similar for uniradiated UO 2 and for spent fuel both in the case of oxidizing and reducing conditions. In contrast, due to the effect of radiolysis, reaction rates of spent fuel were higher than UO 2 dissolution rates. (orig.) [de

  10. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    Patrick, W.C.

    1986-01-01

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs

  11. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    Patrick, W.C. (comp.)

    1986-03-30

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs.

  12. Final Environmental Assessment: Installation of Digital Airport Surveillance Radar at Grand Forks Air Force Base, North Dakota

    2011-05-11

    Grand Forks AFB public web site. Notices of Availability were published in the Grand Forks Herald on 10 Mar 2011 and on the Grand Forks AFB web site from...Squadron (319th) FTA Fire Training Area GATR Ground-Air Transmit Receive GFAFB Grand Forks Air Force Base GHG Greenhouse Gas Hz Hertz IEEE Institute of...feet west of the closed/capped ERP Site FT-02, the Fire Training Area/Old Sanitary Landfill Area ( FTA /OSLA), which encompasses 28 acres, five of

  13. Final disposal of spent nuclear fuel in Sweden: The evolving role for KASAM when society is preparing for important decisions

    Glimelius, Kristina; Hedberg, Bjoern; Norrby, Soeren; Soederberg, Olof

    2006-01-01

    KASAM, the Swedish National Council for Nuclear Waste, is an independent scientific council attached to the Ministry of Sustainable Development. The members of KASAM are independent scientists within a wide range of areas of importance for the final disposal of radioactive waste, not only within technology and natural sciences but also within areas such as ethics and social sciences. Swedish nuclear waste management policy and implementation is currently in a protracted phase of planning and decisions. Starting in 2006 , the Swedish Nuclear Waste Management Co (SKB) is expected to submit the necessary applications for permits to construct an encapsulation facility and a disposal facility for spent nuclear fuel (in crystalline bedrock about 500 meters below the ground). According to Swedish legislation, basic permits have to be granted by the Government, but the Government will not grant such permits unless the concerned host municipality accepts the proposal. The Government decision will form the basis for detailed licensing decisions by the regulatory authorities. KASAM has an important role as an independent advisory body to the Ministry of Sustainable Development. Also, KASAM will continue its function of creating forums for dialogue that could contribute to increase knowledge and understanding and improve the knowledge base for decision-making. There are a number of questions that are relevant. Examples are: Will society have a satisfactory basis for decision-making? What happens if society is not capable of making necessary decisions? Does the decision-making process enable society to postpone important decisions if more time is needed, to avoid obstacles if they appear, and - if needed - reverse decisions? Considering issues like this, KASAM has set up a plan for its activities in the next few years. These activities are meant to contribute to the ability of society as a whole to arrive at a well-founded decision that is widely accepted. Based on facts

  14. Design, Fabrication, and Operation of Innovative Microalgae Culture Experiments for the Purpose of Producing Fuels: Final Report, Phase I

    1985-01-01

    A conceptual design was developed for a 1000-acre (water surface) algae culture facility for the production of fuels. The system is modeled after the shallow raceway system with mixing foils that is now being operated at the University of Hawaii. A computer economic model was created to calculate the discounted breakeven price of algae or fuels produced by the culture facility. A sensitivity analysis was done to estimate the impact of changes in important biological, engineering, and financial parameters on product price.

  15. Further analysis of extended storage of spent fuel. Final report of a co-ordinated research programme on the behaviour of spent fuel assemblies during extended storage (BEFAST-III) 1991-1996

    1997-05-01

    Considerable quantities of spent fuel continue to be produced and to accumulate in a number of countries. Although some new reprocessing facilities have been constructed, many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology. However, dry storage is becoming increasingly used with many countries considering dry storage for the longer term. This Technical Document is the final report of the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel Assemblies During Extended Storage (BEFAST-III, 1991-1996). It contains analyses of wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries (Canada, Finland, France, Germany, Hungary, the Republic of Korea, Japan, the Russian Federation, Slovakia, Spain, Sweden, the United Kingdom and the USA) which participated in the co-ordinated research programme as participants or observers. The report contains information presented during the three Research Co-ordination meetings and also data which were submitted by the participants in response to request by the Scientific Secretary. 48 refs, 4 tabs

  16. Final Environmental Assessment Addressing Construction, Operation, and Maintenance of a Hot Cargo Pad at Kirtland Air Force Base, New Mexico

    2011-01-01

    brachyrhynchos), northern mockingbird (Mimus polyglottos), curved-billed thrasher (Toxostoma curvirostre), lark sparrow (Chordestes grammacus), black...cloud ceiling, fog, rain, or poor visibility, lighted structures might not be visible to migrating birds and can cause bird kills because Final EA...regulations, the MBTA makes it unlawful to pursue, hunt, take, capture, or kill ; attempt to take, capture or kill ; possess, offer to or sell, barter, purchase

  17. Device for absorbing the axial forces occurring on the fuel assemblies during operation of a nuclear reactor

    Sankovich, M.F.

    1978-01-01

    The fuel assemblies consisting of rod-shaped fuel rods stand on a grid plate. Opposite the projections of the upper grid plate mounted on a support barrel the fuel assemblies are elastically supported in order to compensate the mechanical vibrations and thermal expansions occurring during operation. This is achieved by combined bending and torsion springs bridging the distance between projections and fuel assembly end pieces. The bending and torsion springs consist of a bending arm, a torsion piece, and another bending arm being deflected by 90 0 and provided at the end with an upsetting. Each spring consists of round stock. In order to increase the flexibility one of the bending arms is designed conically or stepped. (DG) [de

  18. The Challenge and the Promise: Strengthening the Force, Preventing Suicide and Saving Lives. Final Report of the Department of Defense Task Force on the Prevention of Suicide by Members of the Armed Forces

    2010-08-01

    States Army, and Senior Marketing Executive for TRICARE Puget Sound. He also serves as the military Co-Chair of the Department of Defense Task Force on...References M-1 APPENDIX M. REFERENCES Apter, A., King, R.A., Bleich, A., Fluck, A., Kotler , M., & Kron, S. (2008). Fatal and non-fatal

  19. Logistic Fuel Processor Development

    Salavani, Reza

    2004-01-01

    The Air Base Technologies Division of the Air Force Research Laboratory has developed a logistic fuel processor that removes the sulfur content of the fuel and in the process converts logistic fuel...

  20. Concept study for interim storage of research reactor fuel elements in transport and storage casks. Transport and storage licensing procedure for the CASTOR MTR 2 cask. Final report

    Weiss, M.

    2001-01-01

    As a result of the project, a concept was to be developed for managing spent fuel elements from research reactors on the basis of the interim storage technology existing in Germany, in order to make the transition to direct disposal possible in the long term. This final report describes the studies for the spent fuel management concept as well as the development of a transport and storage cask for spent fuel elements from research reactors. The concept analyses were based on data of the fuel to be disposed of, as well as the handling conditions for casks at the German research reactors. Due to the quite different conditions for handling of casks at the individual reactors, it was necessary to examine different cask concepts as well as special solutions for loading the casks outside of the spent fuel pools. As a result of these analyses, a concept was elaborated on the basis of a newly developed transport and storage cask as well as a mobile fuel transfer system for the reactor stations, at which a direct loading of the cask is not possible, as the optimal variant. The cask necessary for this concept with the designation CASTOR trademark MTR 2 follows in ist design the tried and tested principles of the CASTOR trademark casks for transport and interim storage of spent LWR fuel. With the CASTOR trademark MTR 2, it is possible to transport and to place into long term interim storage various fuel element types, which have been and are currently used in German research reactors. The technical development of the cask has been completed, the documents for the transport license as type B(U)F package design and for obtaining the storage license at the interim storage facility of Ahaus have been prepared, submitted to the licensing authorities and to a large degree already evaluated positively. The transport license of the CASTOR trademark MTR 2 has been issued for the shipment of VKTA-contents and FRM II compact fuel elements. (orig.)

  1. The local implementation of clean(er) fuels policies in Europe. A Handbook with guidelines. Final version

    Mulder, F.; Amara, Sliman Abu; Uustal, M.; Pelkmans, L.; Devriendt, N.; Rogulska, M.; Defranceschi, P.

    2009-05-01

    This handbook aims to guide the local/regional governments all over Europe who are involved in implementing clean(er) fuel policies in transport. The general challenge these governments are facing is how local policies on clean(er) fuels and vehicles can be made operational. Hence, how can the step be made from a vision on the strategic policy level, to a vision on the implementation of these policies. A local/regional policy on clean(er) fuels and vehicles is commonly part of the larger category 'sustainable transport policy', which in itself is part of a broader local environmental policy. The encompassing local/regional sustainable mobility policy will in most cases be based on the three well known main policy aims in this area: CO2 reduction; Improving the local air quality; and Improving the security of supply (locally often less stressed). This handbook will focus on the actual implementation of a clean(er) fuels and vehicles policy. It will describe the main challenges and how these can be overcome. It will describe how the market conditions for clean(er) fuels and vehicles can be created by establishing the vital market elements and which process is required to do so. And it will show how local enterprises can be involved and what the role of the local governments in this process can be. In order to identify the local success factors in overcoming the main challenges for implementation, case studies have been carried out in three European cities, namely Stockholm (Sweden), Graz (Austria) and Lille (France). The choice of these cities was based on their successes in implementing clean(er) fuel policies (although they followed different paths) and the fact that they managed to achieve ambitious clean(er) fuel/ clean(er) vehicle targets. These cities may thus be considered as ?good practice examples?. The case studies are based on existing literature, on multiple stakeholders? interviews in all three cities, and on two small surveys. The objectives of this

  2. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    Sinskey, Anthony J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Worden, Robert Mark [Michigan State Univ., East Lansing, MI (United States); Brigham, Christopher [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lu, Jingnan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Quimby, John Westlake [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Gai, Claudia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Speth, Daan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Elliott, Sean [Boston Univ., MA (United States); Fei, John Qiang [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bernardi, Amanda [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Li, Sophia [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grunwald, Stephan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Grousseau, Estelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Maiti, Soumen [Michigan State Univ., East Lansing, MI (United States); Liu, Chole [Michigan State Univ., East Lansing, MI (United States)

    2013-12-16

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide

  3. Fuel cell processor with low-temperature PEM fuel cell - testing. Final report; Naturgasreformersystem med lavtgemperatur-PEM braendselsceller - TEST. Slutrapport

    Bech-Madsen, J.

    2006-11-03

    The purpose of the project is to further develop a Danish natural gas reformer system including optimisation of subsystems and the overall system consisting of a natural gas reformer and fuel cell CHP generator. This will contribute to the evaluation of to what extend Denmark shall develop small reformer units for PEM fuel Cells. In the project a reformer system with a high degree of automatic control has been build that fulfils the CHP requirements to operation time, dynamics etc. This work, with a FP05 reformer unit, has given valuable results concerning the possibilities and limitations of the reformer technology for CHP usage. It is important that the reformer and fuel cell units are designed with matching yields to optimise efficiency, turn-down start-up time etc. The burner that delivers heat for the steam reaction shall be able to use natural gas as fuel. This gives the possibility of using existing burner technology. In addition this will improve the efficiency since it will not be necessary to reform natural gas to feed the burner. The large number of BoP components in the FP05 unit is primarily used for achieving good regulation dynamics and accuracy. To reduce the number of components, a CHP unit with few or only one operational point should be considered. A single point of operation will reduce the number of valves as well as the requirements to the control and regulation of the system. A large part of the reformer size is needed to meet the high demands for CO purification of the reformat. This purification results in a very narrow window of operation for the reformer system. By using more CO tolerant fuel cells this part of the system can be reduced or even eliminated. To test the developed automatic control it was planned to integrate the FP05 reformer with a 10kW CHP unit that was being build by IRD in a separate project. This unit was perfect in size for testing with the reformer. However due to a number of reasons it was not possible during the

  4. Summary of the spent nuclear fuel transportation workshop for state officials, October 22, 1985, Springfield, Illinois. Final report

    1985-01-01

    On October 22, 1985, thirty-two state officials representing eighteen states attended a workshop on the transportation of spent nuclear fuel hosted by the Illinois Department of Nuclear Safety and co-sponsored by the US Department of Energy. The letter of invitation is attached to this report along with the agenda for the workshop. Also attached is the attendance list. The purposes of the workshop were to explain Illinois' inspection, escort and emergency preparedness program for spent nuclear fuel to officials from other states and to discuss the needs of the future national system when DOE begins shipping spent fuel to either a repository or a monitored retrievable storage facility. Summaries of the presentations and the reports from the discussion groups are presented

  5. Final disposal of spent nuclear fuel - regulatory system and roles of different actors during the decision process

    2009-03-01

    In November 2006 Swedish Nuclear Fuels Co. applied for a license to build a plant for encapsulation of spent nuclear fuels at Oskarshamn, Sweden. The company also have plans to apply, in 2009, for a license to construct a underground repository for spent nuclear fuels. KASAM arranged a seminar in November 2006 in order to describe and discuss the licensing rules and regulations and the roles of different parties in the decision making. Another objective of the seminar was to point out possible ambiguities in this process. Another interesting question under discussion was in what ways the basic data for the decision should be produced. The seminar covered the part of the process beginning with the application for a license and ending with the government approval/rejection of the application. Most time was spent on the legal aspects of the process

  6. Final disposal of spent nuclear fuel - regulatory system and roles of different actors during the decision process

    2009-03-15

    In November 2006 Swedish Nuclear Fuels Co. applied for a license to build a plant for encapsulation of spent nuclear fuels at Oskarshamn, Sweden. The company also have plans to apply, in 2009, for a license to construct a underground repository for spent nuclear fuels. KASAM arranged a seminar in November 2006 in order to describe and discuss the licensing rules and regulations and the roles of different parties in the decision making. Another objective of the seminar was to point out possible ambiguities in this process. Another interesting question under discussion was in what ways the basic data for the decision should be produced. The seminar covered the part of the process beginning with the application for a license and ending with the government approval/rejection of the application. Most time was spent on the legal aspects of the process

  7. Final Project Closeout Report for Sprint Hydrogen Fuel Cell (HFC) Deployment Project in California, Gulf Coast and Eastern Seaboard Markets

    Kenny, Kevin [Sprint, Reston, VA (United States); Bradley, Dwayne [Burns & McDonnell, Kansas City, MO (United States)

    2015-09-01

    Sprint is one of the telecommunications industry leaders in the deployment of hydrogen fuel cell (HFC) systems to provide backup power for their mission critical wireless network facilities. With several hundred fuel cells commissioned in California, states in the gulf coast region, and along the upper eastern seaboard. A strong incentive for advancing the integration of fuel cells into the Sprint network came through the award of a Department of Energy (DOE) grant focused on Market Transformation activities for project (EE0000486). This grant was funded by the 2009 American Recovery and Reinvestment Act (ARRA). The funding provided by DOE ($7.295M) was allocated to support the installation of 260 new HFC systems, equipped with an on-site refillable Medium Pressure Hydrogen Storage Solution (MPHSS), as well as for the conversion of 21 low pressure hydrogen systems to the MPHSS, in hopes of reducing barriers to market acceptance.

  8. Final disposal of spent nuclear fuels - regulations and the roles of different stakeholders during the decision making process

    2007-05-01

    In November 2006 Swedish Nuclear Fuels Co. applied for a license to build a plant for encapsulation of spent nuclear fuels at Oskarshamn, Sweden. The company also have plans to apply, in 2009, for a license to construct a underground repository for spent nuclear fuels. KASAM arranged a seminar in November 2006 in order to describe and discuss the licensing rules and regulations and the roles of different parties in the decision making. Another objective of the seminar was to point out possible ambiguities in this process. Another interesting question under discussion was in what ways the basic data for the decision should be produced. The seminar covered the part of the process beginning with the application for a license and ending with the government approval/rejection of the application. Most time was spent on the legal aspects of the process

  9. Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes; Calculo de fuerzas laterales hidraulicas en elementos combustibles tipo PWR con codigos de dinamica de fluidos coputacional

    Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.

    2016-08-01

    To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)

  10. Final environmental statement related to the operation of the Barnwell Fuel Receiving and Storage Station (Docket No. 70-1729)

    1976-01-01

    The proposed action is to issue a materials license, pursuant to 10 CFR Parts 30, 40 and 70 of the Commission's regulations, authorizing Allied-General Nuclear Services to receive and handle fuel casks containing spent reactor fuel elements and to store spent reactor fuel at the Barnwell Nuclear Fuel Plant (BNFP), in the Barnwell Fuel Receiving and Storage Station (BFRSS). The BFRSS is a part of, and contiguous to, the BNFP-Separations Facility which is being constructed on a small portion of a 1700 acre site about six miles west of the city of Barnwell in Barnwell County, South Carolina. Construction of the BFRSS facility has been completed and the BNFP Separations Facility is more than 90% complete. A uranium Hexafluoride Facility is being constructed on the same site, and a Plutonium Product Facility is proposed to be constructed adjacent to the Separations Facility. The license that is the subject of this action will, if issued, allow lthe use of the BFRSS separate4 from the operation of the Separations Facility. Impacts resulting from the construction of the BFRSS have already occurred and mitigating measures have been and are being implemented to offset any adverse impacts. Operation of the BFRSS will not interfere with water sources, and should cause no noticeable damage to the terrestrial or aquatic environments. Operating experience at other fuel receiving and storage facilities has shown that radioactive concentrations discharged to the environs (the more significant process effluents) have been well below applicabhle state and federal limits. The small quantities to be released during operation of the BFRSS will result in negligible environmental impact. 20 figs

  11. Public comments and Task Force responses regarding the environmental survey of the reprocessing and waste management portions of the LWR fuel cycle

    1977-03-01

    This document contains responses by the NRC Task Force to comments received on the report ''Environmental Survey of the Reprocessing and Waste Management Portions of the LWR Fuel Cycle'' (NUREG-0116). These responses are directed at all comments, inclding those received after the close of the comment period. Additional information on the environmental impacts of reprocessing and waste management which has either become available since the publication of NUREG-0116 or which adds requested clarification to the information in that document.

  12. The effects of the final disposal facility for spent nuclear fuel on regional economy; Kaeytetyn ydinpolttoaineen loppusijoituslaitoksen aluetaloudelliset vaikutukset

    Laakso, S. [Seppo Laakso Urban Research (Finland)

    1999-03-01

    The study deals with the economic effects of the final disposal facility for spent nuclear fuel on the alternative location municipalities - Eurajoki, Kuhmo, Loviisa and Aeaenekoski - and their neighbouring areas (in Finland). The economic influence of the facility on industrials, employment, population, property markets, community structure and local public economics are analysed applying the approach of regional economics. The evaluation of the facility`s effects on employment is based on the input-output analysis. Both the direct and indirect effects of the construction and the functioning of the facility are taken into account in the analysis. According to the results the total increase in employment caused by the construction of the facility is about 350 persons annually, at national level. Some 150 persons of this are estimated to live in the wider region and 100-150 persons in the facility`s influence area consisting of the location municipality and neighbouring municipalities. This amount is reached at the top stage of construction (around the year 2018). At the production stage - after the year 2020 - the facility`s effects on employment will be concentrated significantly more on the location municipality and the rest of the influence area than on the rest of the country, compared with the construction stage. The estimated employment growth in the production stage is approximately 160 persons at national level of which 100-120 persons live in the candidate municipality and in the rest of the influence area. There is a direct link between local employment and population development. The growth of jobs attracts immigrants affecting the development of both the number and the structure of population. The facility`s effects on population development in the alternative location municipalities are analysed using comparative population forecasts based on demographic population projection methods. According to the results the job growth caused by the facility will

  13. Final disposal of spent nuclear fuel in Sweden. Some unresolved issues and challenges in the design and implementation of the forthcoming planning and EIA processes

    Bjarnadottir, H.; Hilding-Rydevik, T.

    2001-06-01

    The aim of the study is to highlight some unresolved and challenging issues in the forthcoming approximately six year long Environmental Impact Assessment (EIA) and planning process of the long-term disposal of spent nuclear fuel in Sweden. Different international and Nordic experiences of the processes for final disposal as well as from other development of similar scope, where experiences assumed to be of importance for final disposal of nuclear waste, have been described. Furthermore, issues relating to 'good EIA practice' as well as certain aspects of planning theory have also been presented. The current Swedish situation for the planning and EIA process of the final disposal of spent nuclear fuel was also been summarized. These different 'knowledge areas' have been compared and measured against our perception of the expectations towards the forthcoming process, put forward by different Swedish actors in the field. The result is a presentation of a number of questions and identification issues that the authors consider need special attention in the design and conduction of the planning and EIA process. The study has been realized through a literature survey and followed by reading and analysis of the written material. The main focus of the literature search was on material describing planning processes, actor perspectives and EIA. Material and literature on the technical and scientific aspects of spent nuclear fuel disposal was however deliberately avoided. There is a wealth of international and Swedish literature concerning final disposal of spent nuclear fuel - concerning both technical issues and issues concerning for example public participation and risk perception. But material of a more systematic and comparative nature (relating to both empirical and theoretical issues, and to practical experiences) in relation to EIA processes and communicative planning for final disposal of spent nuclear fuel seems to be more sparsely represented. Our perception of

  14. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  15. Assessment of technical risks and R and D requirements for a magnetic confinement fusion fuel system. Final report

    DeFreece, D.A.

    1983-11-01

    This report documents a specific use and results of a novel technique for assessing the technical risks associated with the hardware development of a possible future commercial fusion power plant fuel system. Technical risk is defined as the risk that a particular technology or component which is currently under development will not achieve a set of required technical specifications. A technical risk assessment is the quantification of this risk. This Technical Risk Assessment (TRA) methodology was applied to a deuterium-tritium fuel system for a magnetic-confinement fusion power plant. The fuel system is defined to support a generic commercial reactor with at least two viable options for each critical subsystem. Each subsystem option is defined in detail including nominal performance requirements and subsystem interfaces. Subsystem experts were canvassed to obtain values for past, present and future technical performance parameters for each of the subsystem options. These forecasts are presented as probabilities of achieving given levels of performance in specific time periods for assumed funding scenarios. Several funding scenarios were examined to discern whether performance limitations are caused by funding or technology. A computerized Fuel System simulation is described which uses these subsystem performance parameter forecasts as inputs

  16. Developing statistical wildlife habitat relationships for assessing cumulative effects of fuels treatments: Final Report for Joint Fire Science Program Project

    Samuel A. Cushman; Kevin S. McKelvey

    2006-01-01

    The primary weakness in our current ability to evaluate future landscapes in terms of wildlife lies in the lack of quantitative models linking wildlife to forest stand conditions, including fuels treatments. This project focuses on 1) developing statistical wildlife habitat relationships models (WHR) utilizing Forest Inventory and Analysis (FIA) and National Vegetation...

  17. Performance evaluation of alternative fuel/engine concepts 1990- 1995. Final report including addendum of diesel vehicles

    Nylund, N.O.; Ikonen, M.; Kytoe, M.; Lappi, M.; Westerholm, M.; Laurikko, J. [VTT Energy, Espoo (Finland). Energy Use

    1996-12-31

    Annex V within the IEA Agreement on Alternative Motor Fuels is the first subtask to generate new experimental data. The objective of the task is to generate information on the emission potential of alternative fuels in severe operating conditions and to evaluate new emission measurement methods. The work was carried out in three phases, Engine Tests, Vehicle Tests and Addendum of Diesel Vehicles. The work was carried out at VTT (Technical Research Centre of Finland) as a cost shared operation. Participants were Belgium (Parts Two and Three), Canada (Parts One and Two), Finland, Italy (Part One), Japan, the Netherlands Sweden and USA. The United Kingdom also joined at the end of the Annex. The work included 143 different vehicle/fuel/temperature combinations. FTP type emission tests were run on 14 vehicles powered with different gasoline compositions, methanol (M50 and M85), ethanol (E85), LPG, CNG and diesel. Both regulated and unregulated emission components were measured using the most up-to-date emissions measurement technology. The results indicated, that today`s advanced gasoline vehicles must be considered rather clean. Diesel is comparable with gasoline in the case of CO and HC. M85 gives low emissions in warm conditions, but unburned methanol must be controlled. Natural gas and LPG are inherently clean fuels which, using up-to-date engine technology, give low emissions in all conditions. (orig.) (29 refs.)

  18. Water activities in Forsmark (Part II). The final disposal facility for spent fuel: water activities above ground

    Werner, Kent; Hamren, Ulrika; Collinder, Per; Ridderstolpe, Peter

    2010-09-01

    The construction of the repository for spent nuclear fuel in Forsmark is associated with a number of measures above ground that constitute water operations according to Chapter 11 in the Swedish Environmental Code. This report, which is an appendix to the Environmental Impact Assessment, describes these water operations, their effects and consequences, and planned measures

  19. Research and Development of Zinc Air Fuel Cell To Achieve Commercialization Final Report CRADA No. TC-1544-98

    Cooper, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haley, H. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    The specific goal of this project was to advance the development of the zinc air fuel cell (ZAFC) towards commercial readiness in different mobile applications, including motor bikes, passenger cars, vans, buses and off-road vehicles (golf carts, factory equipment), and different stationary applications including generator sets, uninterruptible power systems and electric utility loading leveling and distributive power.

  20. Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report

    Tentner, A.

    2009-01-01

    A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

  1. The relevance of axial burn-up profiles for the criticality safety analysis of spent nuclear fuel in a final repository

    Kilger, R.; Gmal, B.; Moser, E.F.

    2008-01-01

    Due to inhomogeneous neutron flux and moderator density distributions in the reactor core, the burn-up of a nuclear fuel assembly is not homogeneous but shows an axial distribution, typically with lower partial burn-up and thus higher remaining reactivity at the fuel ends in particular at the assembly top end. Beyond a burn-up of about 15 to 20 GWd/tHM, the multiplication factor K of the whole assembly is dominated by this lower-burnt end regions, and is usually higher than for assuming a homogeneous uniform distribution of the averaged burn-up. This behaviour commonly referred to as positive ''end effect'' is well known in burn-up credit considerations for transportation and storage casks and is being investigated also in the context of criticality analyses for final disposition of spent nuclear fuel. Sign and value of the end effect depend on several parameters. Based on a generic model one may not conclude that criticality in a final repository is a likely or expected event, but nevertheless it draws the attention to the fact that criticality is not excluded per se but has to be considered in the analysis and probably has to be encountered by certain appropriate measures, maybe e.g. by limitation of the amount of fissile material inside one single cask, or a rigorous prove for prevention of water ingress. The authors also conclude that the higher partial reactivity of the fuel ends has to be accounted for carefully in more realistic analyses of post-closure scenarios with respect to criticality safety.

  2. Final Technical Report for Award DESC0011912, "Trimodal Tapping Mode Atomic Force Microscopy: Simultaneous 4D Mapping of Conservative and Dissipative Probe-Sample Interactions of Energy-Relevant Materials”

    Solares, Santiago D. [George Washington Univ., Washington, DC (United States)

    2017-09-22

    The final project report covering the period 7/1/14-6/30/17 provides an overview of the technical accomplishments in the areas of (i) fundamental viscoelasticity, (ii) multifrequency atomic force microscopy, and (iii) characterization of energy-relevant materials with atomic force microscopy. A list of publications supported by the project is also provided.

  3. Fluid elastic vibration of nuclear fuel assemblies

    Kim, S. N.; Jung, S. Y.

    1998-01-01

    Since utilities and fuel venders have adopted the fuel design of high burn-up and improved thermal margin flow mixing vane, several PWR nuclear power plants have in recent years experienced fretting wear fuel rod failure due to flow induced vibration. Flow induced vibration can be resulted from fluidelastic instability, periodic shedding, turbulence-induced excitation, and acoustic resonance (1). Among these mechanisms found in the core of nuclear power plant, the governing mechanism that is fluidelastic instability, could be inferred from the analysis of fuel failure patterns. Therefore, to simulate the fuel failure in nuclear power plants, Tanaka's model (2) was chosen as most suitable one, which is well explaining the damage pattern, in particular it's second row damage characteristics. In the model, unsteady fluid dynamic forces acting on the vibrating cyclinders were included which consists of the inertia forces due to the added mass of fluid, damping forces of fluid in phase to the cylinder vibrating velocity, and stiffness forces proportional to cylinder displacements. However, the model did not account for radiation effect-spring forces deflection. So, the model was modified to account for the spring force relaxation due to radiation exposure. The stiffness of spring was fitted with experimental data. Finally the critical velocities were calculated with the modified spring force at beginning and end of cycle

  4. Comparison of the intermediate storage periods and areas required for final storage of high-level radioactive waste and spent fuel in various types of host rock

    Mueller-Hoeppe, N.; Lerch, C.; Jobmann, M.; Filbert, W.

    2005-01-01

    The present new version of the German concept for radioactive waste and spent fuel management is based on the assumption that a repository for high-level waste and spent fuel will not be required until 2030. One reason frequently given for this date is the intermediate storage period of at least forty years to allow the very high initial heat generation to decay. However, calculations performed by the authors have shown that the minimum intermediate storage period for a repository in rock salt is only between four and nineteen years, depending on the final storage concept and the load of the waste package. In clay as a host rock, the minimum intermediate storage times were calculated to be between 31 and 142 years; the same time spans are expected to apply to final storage in magmatic rock, such as granite. The maximum permissible loads of a container holding spent fuel in salt are many times those in clay and granite, respectively. It was also seen that the area requirement for final storage of the same waste structures is roughly a factor of ten higher in clay than in salt. The differences between granite and salt are similar. The reasons for these grave differences, on the one hand, are the better thermal conductivity of salt and, on the other hand, the better heat tolerance of the crushed salt used as backfill material compared to that of bentonite used in the clay and granite concepts. While salt will allow temperatures of up to 200 C, the maximum temperature in bentonite is limited to 100 C. (orig.)

  5. Comparison between the KBS-3 method and the deep borehole for final disposal of spent nuclear fuel

    Grundfelt, Bertil

    2010-09-01

    In this report a comparison is made between disposal of spent nuclear fuel according to the KBS-3 method with disposal in very deep boreholes. The objective has been to make a broad comparison between the two methods, and by doing so to pinpoint factors that distinguish them from each other. The ambition has been to make an as fair comparison as possible despite that the quality of the data of relevance is very different between the methods

  6. Final report, Task 3: possible uses of the Nuclear Fuel Services, Inc. reprocessing plant at West Valley, New York

    1978-01-01

    The West Valley Plant could readily be used for work on reprocessing of alternative fuels, spiking, coprocessing (including CIVEX), waste solidification, and the recovery of radioactive gases. The plant could be easily modified for any scale between small-scale experimental work to production-scale demonstration, involving virtually any combination of fissile/fertile fuel materials that might be used in the future. The use of this plant for the contemplated experimental work would involve lower capital costs than the use of other facilities at DOE sites, except possibly for spiking of recovered products; the operating costs would be no greater than at other sites. The work on reprocessing of alternative fuels and coprocessing could commence within about one year; on recovery of radioactive gases, in 3 to 5 years; on spiking, in 4 years; and on waste solidification demonstration, in about 5 years. The contemplated work could be begun at this plant at least as early as at Barnwell, although work on spiking of recovered products could probably be started in existing hot cells earlier than at West Valley

  7. Final disposal of spent fuels and high activity waste: the European model for a shared regional repository. Part 3

    Herscovich de Pahissa, Marta

    2009-01-01

    Geological disposal is a essential element and the only available approach to the management strategy for spent nuclear fuel and high level radioactive waste from reprocessing and also for other long-lived waste from nuclear technology applications. It is technically feasible and offers the required long term safety. The growth of existing nuclear programmes and the expansion of nuclear technology to new countries will have effects on the fuel cycle because of the increased concern on proliferation and waste management. The crucial task is to ensure that all countries that use nuclear energy now or will do it in the future, have defined and agreed safety and security standards for all facilities and a credible waste disposal strategy , accepted by the community, when this become necessary. Multinational cooperation on essential aspects of fuel cycle, particularly the geological disposal, is required for several countries with relatively small nuclear energy programmes or small quantities of radioactive waste. For these countries, that can be in different stages of development, the possibility to share a deep geological repository could be convenient. The European Union SAPIERR project is described in this paper as an example of a regional multinational cooperation. (author) [es

  8. Evaluation of different fuel cycle options in accordance with nuclear energy production planning in Turkey. Final report for the period 15 December 1995 - 1 July 1998

    Uzmen, R.

    1998-08-01

    For two decades, Turkey has been considering the implementation of a nuclear power program in order to ensure a secure and ecologically non-pollutant electricity supply, and a site was selected at Akkuyu on the Mediterranean coaast. The energy gap predicted in recent projections could be partly filled by nuclear power. The present plan of the Ministry of Energy schedules the commissioning of at least 2,000 MWe nuclear capacity by 2010. In this report, firstly reference reactors were selected and then requirements of fuel material and services for these reactors were discussed according to Turkey's energy generation scenarios. For this study the reactor selection criteria are: 1) Provenness by operation, 2) Plant power rating, 3) Generic safety, and 4) Licensability. In this study, two types of reactors (PWR and PHWR) that meet the safety and selection criteria were taken into consideration. For Turkey's case, fuel demand and options were discussed according to these reactor types. Status and trends in the world in nuclear electricity generation, nuclear power projection, uranium production, uranium supply and demand relationships, future trends in supply and demand and supply projection were investigated. World uranium market, uranium prices analysis, refining and conversion, enrichment, fuel fabrication, fuel burnup and back-end options were thoroughly discussed. The economics of the nuclear fuel cycle was investigated, fuel costs for PWR and PHWR were calculated. As a result of the obtained reference data a table was prepared for fuel material and services requirements according to reactor type and size. The need for nuclear power in Turkey was discussed in detail, focussing on primary resources in Turkey, demand predictions, usage ratios of domestic and imported resources. Electricity generation scenarios for Turkey were discussed and final conclusions were drawn for Turkey's case. Comparisons of the domestic and imported resources in accordance with the

  9. The influence of design and fuel parameters on the particle emissions from wood pellets combustion. Final report

    Wiinikka, Henrik; Gebart, Rikard [Energy Technology Centre, Piteaa (Sweden)

    2005-02-01

    Combustion of solid biomass under fixed bed conditions is a common technique to generate heat and power in both small and large scale grate furnaces (domestic boilers, stoves, district heating plants). Unfortunately, combustion of biomass will generate particle emissions containing both large fly ash particles and fine particles that consist of fly ash and soot. The large fly ash particles have been produced from fusion of non-volatile ash-forming species in burning char particle. The inorganic fine particles have been produced from nucleation of volatilised ash elements (K, Na, S, Cl and Zn). If the combustion is incomplete, soot particles are also produced from secondary reaction of tar. The particles in the fine fraction grows by coagulation and coalescence to a particle diameter around 0.1 pm. Since the smallest particles are very hard to collect in ordinary cleaning devices they contribute to the ambient air pollution. Furthermore, fine airborne particles have been correlated to adverse effects on the human health. It is therefore essential to minimize particle formation from the combustion process and thereby reduce the emissions of particulates to the ambient air. The aim with this project is to study particle emissions from small scale combustion of wood pellets and to investigate the impact of different operating, construction and fuel parameters on the amount and characteristic of the combustion generated particles. To address these issues, experiments were carried out in a 10 kW updraft fired wood pellets reactor that has been custom designed for systematic investigations of particle emissions. In the flue gas stack, particle emissions were sampled on a filter. The particle mass and number size distributions were analysed by a low pressure cascade impactor and a SMPS (Scanning Electron Mobility Particle Sizer). The results showed that the temperature and the flow pattern in the combustion zone affect the particle emissions. Increasing combustion

  10. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  11. Inhalation toxicology of diesel fuel obscurant aerosol in Sprague-Dawley rats. Final report, Phase 3, subchronic exposures

    Lock, S.; Dalbey, W.; Schmoyer, R.; Griesemer, R.

    1984-12-01

    Inhalation exposures were performed twice per week, for 13 weeks, to determine whether there was any potential toxicity to rats of comparatively low concentrations of a condensation aerosol from diesel fuel. Changes in breathing frequency and the response of animals to a loud sharp sound (startle response) were measured in selected animals prior to the start of the exposures, at various time points during the thirteen week exposure period, and at monthly intervals during the recovery period. Assays were performed on selected animals at the end of the exposure period, and again after the two month recovery period. Endpoints included pulmonary function tests, numbers of alveolar free cells, clinical chemistry, hematology, organ weights and histopathology. No mortalities were recorded during the exposure or recovery periods. Slight toxicity occurred at these low aerosol concentrations with the loss in body weight of all treated animals during the exposure period. During the exposure period there were also some slight changes in startle reflex, however, these were apparently acute effects, and there appeared to be no permanent CNS involvement as measured by this endpoint. Immediately post-exposure, the numbers of lavaged alveolar macrophages were slightly elevated in all aerosol exposed animals. Pulmonary function tests, pulmonary gas exchange and dynamic lung tests were all apparently unaffected by these low diesel fuel aerosol exposures. Changes in tissue weights in aerosol exposed animals were minor and the few histopathological lesions were randomly scattered amongst all groups included in this study and were more attributable to the age of the animals than any specific treatment group. No significant cumulative toxicity may be attributed to these diesel fuel aerosol exposures. 14 references, 1 figure, 42 tables.

  12. Status Report on Spent Fuel Pools under Loss-of-Cooling and Loss-of-Coolant Accident Conditions - Final Report

    Adorni, M.; Esmaili, H.; Grant, W.; Hollands, T.; Hozer, Z.; Jaeckel, B.; Munoz, M.; Nakajima, T.; Rocchi, F.; Strucic, M.; ); Tregoures, N.; Vokac, P.; Ahn, K.I.; Bourgue, L.; Dickson, R.; Douxchamps, P.A.; Herranz, L.E.; Jernkvist, L.O.; Amri, A.; Kissane, M.P.; )

    2015-01-01

    Following the 2011 accident at the Fukushima Daiichi Nuclear Power Station, the Nuclear Energy Agency Committee on the Safety of Nuclear Installations decided to launch several high-priority activities to address certain technical issues. Among other things, it was decided to prepare a status report on spent fuel pools (SFPs) under loss of cooling accident conditions. This activity was proposed jointly by the CSNI Working Group on Analysis and Management of Accidents (WGAMA) and the Working Group on Fuel Safety (WGFS). The main objectives, as defined by these working groups, were to: - Produce a brief summary of the status of SFP accident and mitigation strategies, to better contribute to the post-Fukushima accident decision making process; - Provide a brief assessment of current experimental and analytical knowledge about loss of cooling accidents in SFPs and their associated mitigation strategies; - Briefly describe the strengths and weaknesses of analytical methods used in codes to predict SFP accident evolution and assess the efficiency of different cooling mechanisms for mitigation of such accidents; - Identify and list additional research activities required to address gaps in the understanding of relevant phenomenological processes, to identify where analytical tool deficiencies exist, and to reduce the uncertainties in this understanding. The proposed activity was agreed and approved by CSNI in December 2012, and the first of four meetings of the appointed writing group was held in March 2013. The writing group consisted of members of the WGAMA and the WGFS, representing the European Commission and the following countries: Belgium, Canada, Czech Republic, France, Germany, Hungary, Italy, Japan, Korea, Spain, Sweden, Switzerland and the USA. This report mostly covers the information provided by these countries. The report is organised into 8 Chapters and 4 Appendices: Chapter 1: Introduction; Chapter 2: Spent fuel pools; Chapter 3: Possible accident

  13. Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report

    1986-06-01

    As part of the Solar Central Receiver Fuels and Chemicals Program, Foster Wheeler Solar Development Corporation (FWSDC), under contract to Sandia National Laboratories-Livermore (SNLL), developed a conceptual design of a facility to produce ammonia and nitric acid using solar energy as the principal external source of process heat. In the selected process, ammonia is produced in an endothermic reaction within a steam methane (natural gas) reformer. The heat of reaction is provided by molten carbonate salt heated by both a solar central receiver and an exothermic ammonia-fired heater. After absorption by water, the product of the latter reaction is nitric acid.

  14. On regulation of environmental responsibility in the final stage of the nuclear fuel cycle. - Parallel regulation within the framework of Euratom and the Lisbon-treaty

    Erhag, Thomas

    2010-09-01

    In Sweden, the responsibility for the disposal of spent nuclear fuel is regulated in various laws and regulations. This means that there is an overlap between laws providing a sometimes vague and weak legal situation. Although attempts have been made to coordinate environmental and nuclear law these attempts have not succeeded. Recently, several Swedish reports have again described the fact that we have a parallel system of legal rules for the handling of spent nuclear fuel and the consequences of this. Foremost attention has been drawn to the fact that the licensing of a repository must be made both under the Nuclear Safety Act and the Environmental Code. The regulation referred to above is Swedish, and both the parallel regulation of nuclear safety-, radiation protection- and environmental- responsibility, and the relationship between such legislation, has its own Swedish history. However, Swedish legislation in all these areas is also under the influence of international regulations. This article describes the parallel regulation of nuclear safety and radiation protection issues on a European level. It shows that the division and logic found in the relationship between the Swedish laws is only partially reflected at European level. First treated is the relationship between the EC-treaty and Euratom. The article then turns to examples of regulatory responsibility for waste management and communication of information relating to license applications (environmental impact assessments) for the final disposal of spent nuclear fuel within the framework of Euratom and the EC-treaty. Finally, it discusses the implications of this type of parallel regulation for the Swedish licensing procedure

  15. On regulation of environmental responsibility in the final stage of the nuclear fuel cycle. - Parallel regulation within the framework of Euratom and the Lisbon-treaty

    Erhag, Thomas (Dept. of Law, Univ. of Goeteborg, Goeteborg (Sweden)), e-mail: thomas.erhag@law.gu.se

    2010-09-15

    In Sweden, the responsibility for the disposal of spent nuclear fuel is regulated in various laws and regulations. This means that there is an overlap between laws providing a sometimes vague and weak legal situation. Although attempts have been made to coordinate environmental and nuclear law these attempts have not succeeded. Recently, several Swedish reports have again described the fact that we have a parallel system of legal rules for the handling of spent nuclear fuel and the consequences of this. Foremost attention has been drawn to the fact that the licensing of a repository must be made both under the Nuclear Safety Act and the Environmental Code. The regulation referred to above is Swedish, and both the parallel regulation of nuclear safety-, radiation protection- and environmental- responsibility, and the relationship between such legislation, has its own Swedish history. However, Swedish legislation in all these areas is also under the influence of international regulations. This article describes the parallel regulation of nuclear safety and radiation protection issues on a European level. It shows that the division and logic found in the relationship between the Swedish laws is only partially reflected at European level. First treated is the relationship between the EC-treaty and Euratom. The article then turns to examples of regulatory responsibility for waste management and communication of information relating to license applications (environmental impact assessments) for the final disposal of spent nuclear fuel within the framework of Euratom and the EC-treaty. Finally, it discusses the implications of this type of parallel regulation for the Swedish licensing procedure

  16. Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization. Final technical report

    2011-07-01

    The objective of the project ''Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization'' was to combine the Danish experiences with the Stirling engine and updraft gasification with the application of the FLOX gas burner technology for developing and demonstrating a flexible biomass-based small scale CHP plant with 75 kW electrical output, high power efficiency and low emissions. Further, the project has aimed at increasing the technology's reliability and decreasing the need for service. Also, the project has included the development of a control and communication system for unmanned start-up and operation of the plant. During the project the objective was altered and so the development of a new Stirling engine design was done on the 4-cylindred 35 kWe Stirling engine instead of the 8-cylindred 75 kWe Stirling engine. Focus has been on designing a more durable engine designed for easy and fast service. Cold test of the engine has been successful and now full-scale hot tests are to be performed. In the project Stirling DK has also in cooperation with project partner Danish gas Technology Centre developed the Stirling Engine with Diluted Oxidation (SEDIOX) concept which is a combustion technology based on the diluted oxidation principle. A trademark is obtained and also a patent application is filed and pending regarding the SEDIOX combustion chamber concept. All components for the Stirling gasification plant were produced and installed at Svanholm Estate. The plant consisted of one conventional combustion chamber and one SD3E-type Stirling engine. The plant was commissioned in June 2009 and 1,472 hours of operation and 43 MWh of electricity production was achieved before the plant was de-commissioned in February 2010 due to divergences between Svanholm Estate and Stirling DK. During operation the control system including remote access was tested thoroughly and with great success. The new overall

  17. DanDan. Final report. [PEM fuel cells for back-up power and UPS]; DanDan. Slutrapport

    NONE

    2012-08-15

    The project has provided valuable results for the partners involved, and has resulted in the construction and demonstration of a modular UPS system that can be used with fuel cells. Dantherm Power has provided a 5 kW fuel cell module, based on LT-pem technology, for use in the demonstration and testing facility. The function of the unit is verified by both internal testing and demonstrations from at third parties were it currently is set up to perform tests regarding lifetime. The development of a DC / DC converter, was made. The module has been tested under various conditions, and the development process has resulted in detailed specs of both technique and test process. The module has been tested both in laboratory environment and demonstrated at third parties. The module is part of the systems described in connection with initial test runs - performed at strategic partners - and in connection with the demonstration of the systems both in Japan and in South Africa. The modules are presently in a stage of demonstration, while subjected to substantial service life tests. The purchased reformers are part of the systems used for demonstration in the project and as such they will supply valuable data trough the comprehensive test and verification program initiated. (LN)

  18. Fuel efficient hydrodynamic containment for gas core fission reactor rocket propulsion. Final report, September 30, 1992--May 31, 1995

    Sforza, P.M.; Cresci, R.J.

    1997-01-01

    Gas core reactors can form the basis for advanced nuclear thermal propulsion (NTP) systems capable of providing specific impulse levels of more than 2,000 sec., but containment of the hot uranium plasma is a major problem. The initial phase of an experimental study of hydrodynamic confinement of the fuel cloud in a gas core fission reactor by means of an innovative application of a base injection stabilized recirculation bubble is presented. The development of the experimental facility, a simulated thrust chamber approximately 0.4 m in diameter and 1 m long, is described. The flow rate of propellant simulant (air) can be varied up to about 2 kg/sec and that of fuel simulant (air, air-sulfur hexafluoride) up to about 0.2 kg/sec. This scale leads to chamber Reynolds numbers on the same order of magnitude as those anticipated in a full-scale nuclear rocket engine. The experimental program introduced here is focused on determining the size, geometry, and stability of the recirculation region as a function of the bleed ratio, i.e. the ratio of the injected mass flux to the free stream mass flux. A concurrent CFD study is being carried out to aid in demonstrating that the proposed technique is practical

  19. Final report on development and operation of instrumented irradiation capsules for creep experiments on nuclear fuels at FR2

    Haefner, H.E.; Philipp, K.; Blumhofer, M.

    1980-02-01

    The capsule test rig No. 154 removed from FR2 in April 1979 was the last irradiation rig in a long series of creep experiments. The target of the irradiation tests, started exactly ten years ago, was to investigate the creep behaviour of various ceramic nuclear fuels under different in-pile irradiation conditions. An irradiation test rig had been developed for this purpose which allowed the continuous measurement of changes in length of fuel specimens. A total of 28 capsule test rigs each containing two packages of creep specimens have been irradiated in FR2 during this decade. They included 23 specimen stacks of UO 2 , 16 specimen stacks of UO 2 -PuO 2 , 4 specimen stacks of UN, 10 specimen stacks of (U,Pu) C, and 13 reference specimens of molybdenum. Besides the description of the test facility, the report provides above all a survey of the operation data applicable to the specimens and of the operating experience gathered as well as of the findings obtained in post-irradiation examinations. (orig.) [de

  20. Urban transportation energy conservation: analytic procedures for estimating changes in travel demand and fuel consumption. Final report

    Atherton, T.J.; Suhrbier, J.H.

    1979-10-01

    This series of reports provides metropolitan planning organizations with analytical tools that can be used to evaluate the effectiveness of alternative transportation policies in achieving reductions in overall fuel consumption. To ensure a high measure of accuracy, the analysis goes beyond the first order effects, i.e., the shift from single occupant autos as the mode chosen for the work trip to more fuel efficient means of travel. Questions treated include what will happen with the autos left at home as a result of increased carpooling for work trips. Will certain policies, such as gasoline price increases, directly impact non-work tripmaking. Will a particular transportation policy affect all segments of the population, or will certain groups be impacted significantly more than others. The methodology developed links together several disaggregate travel demand models to predict auto ownership, work trip mode choice, and non-work travel demands. This report introduces the theoretical basis for the travel demand models used, describes these models and their linkages both with each other and with the various submodels, and documents the assumptions made in developing the model system and using it to forecast responses to alternative transportation policies. Emphasis is placed on the conceptual framework of the model system and specification of the individual models and submodels.

  1. Measurements on spent-fuel assemblies at Arkansas Nuclear One using the Fork system. Final report, January 1995

    Ewing, R.I.; Bronowski, D.R.; Bosler, G.E.; Siebelist, R.; Priore, J.; Hansford, C.H.; Sullivan, S.

    1997-03-01

    The Fork measurement system has been used to examine spent-fuel assemblies at the two reactors of Arkansas Nuclear One, operated by Entergy Operations, Inc. The Unit 1 reactor is a Babcock and Wilcox (B and W) design, and the Unit 2 reactor is a Combustion Engineering (CE) design. The neutron and gamma-ray emissions from individual spent-fuel assemblies were measured in the storage pools by raising each assembly pathway out of the storage rack and performing a measurement near the center of the assembly. The overall accuracy of the measurements after corrections is about 2%. Thirty-four assemblies were examined at Unit 1, and forty-one assemblies at Unit 2. The average deviation of the burnup measurements from the calibration was 3.0% at Unit 1 and 3.5% at Unit 2, indicating 2 to 3% random variation among the reactor records. There was no indication of clearly anomalous assemblies. Axial Scans of the variation in neutron and gamma ray emission were obtained by collecting data at several locations along the length of three assemblies at Unit 2. Two of these assemblies were nonstandard in that each contained a small neutron source. The sources were detected by the axial scans. The test program was a cooperative effort involving Sandia National Laboratories, Los Alamos National Laboratory, Entergy Operations, Inc., the Electric Power Research Institute, and the Office of Civilian Radioactive Waste Management of the US Department of Energy

  2. Use of pyrolysis gas from coal as reburn fuel. Final report; Einsatz von kohlestaemmigem Pyrolysegas als Reduktionsbrennstoff. Schlussbericht

    Greul, U.; Magel, C.; Moersch, O.; Ruediger, H.; Storm, C.; Schnell, U.; Spliethoff, H.; Hein, K.R.G.

    1996-12-31

    The research project`s aim was to reduce nitrogen emissions from pulverized-coal furnaces by fuel staging with pyrolysis gas from coal. The test fuels were 6 German and Australian coals. The aim achieved has been the statement that the described method is an adequate means to attain to and remain below emission values of 200 mg/m{sup 3}. The method of fuel staging using coal-original gases was investigated with tests focussing the most important process parameters such as coal type, devolatilization ratio, temperature, residence time, and stoichiometry. The relevant features determined with an entrained flow reactor and with a fluidized-bed reactor were the impact of devolatilization temperatures on carbonized residue and pyrolysis products, the distribution of fuel nitrogen, and the quality of gas and tar, including the respective effects on NO{sub x} formation and reduction in staged combustion. The validation of the mathematical model was done with the experimentally obtained data. The criteria considered fundamental for achieving the NO{sub x} reduction level are temperature, air ratio, and residence time in the reduction zone of the furnace. The pyrolysis tests manifested the strong influence of the coal type and the devolatilization conditions on the composition of the gases and the attainable NO{sub x} reduction. The tars in the pyrolysis gases, with their nitrogen compounds, improve the reducing effect of available nitrogen oxides. By using pyrolysis gases from coal as reburning fuel, NO{sub x} emissions of less than 200 mg/m{sup 3} can be obtained at air ratios around 0.95. (orig./SR) [Deutsch] Das Forschungsprojekt verfolgte das Ziel mit 6 deutschen und australischen Kohlen die Stickoxidemissionen aus Kohlestaubfeuerungen durch Brennstoffstufung mit Pyrolysegas als Reduktionsbrennstoff zu verringern. Das erreichte Ziel war der Nachweis, dass mit dem beschriebenen Verfahren NO{sub x}-Emissionswerte von 200 mg/m{sup 3} erreicht und unterschritten werden

  3. Studies of wood fuel systems with raw material from young forest stands. Final report; Systemstudier ungskogsbraensle. Slutrapport

    Liss, J.E. [Dalarna Univ., Falun (Sweden)

    2001-12-01

    The three-year project 'Studies of wood fuel systems with raw material from young forest stands' has been carried out during the period March 1998 to February 2001. New technology for harvesting small trees has created a possibility to develop efficient wood fuel systems using raw material from young forest stands. This possibility coincides with a great demand for tending of young stands from a silvicultural point of view. The main aim of the project has been to analyse and assess wood fuel systems based on this concept. The spectrum of criteria for assessment has been broad, including productivity, profitability, safety and health aspects, employment and environmental impact. As an example of a new technology which has been developed and studied during the project period can be mentioned a new felling head which can be used for cutting and handling several trees at the same time. The weight of the felling head is only about 270 kg, which has done it possible to use it on smaller base-machines as well as larger machines. The productivity has shown to be about 150-250 trees/hour in stands with a diameter of 5-10 cm. The productivity, expressed as biomass, is about 2-3 tonnes dry substance/hour. In the design of production system, bundling of trees early in the process is considered to be especially promising. The development of such a system is ongoing, but is not at the market yet. Some experimental studies have been done on transportation, storing and chipping of such bundles with varying size and varying tree-species. The calculated cost of this system will be lower then for traditional chipping-systems, because of the higher density for the handle units. It is much easier to handle bundles than small non-bundled trees, the chipping-productivity will be high and the transportation can be done with regular timber trucks. The calculation cost for the bundle-system will be about 120-130 SEK/MWh in stands with a diameter of some 7-10 cm, which can be

  4. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    An assessment was conducted of educational needs among engineers working in nuclear fuel cycle-related areas, focusing on the nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. As a result of the study, a list of subject areas has been compiled as best representing the current content of an educational program. In addition to identifying subject areas, a set of course descriptions and reference materials has been developed around each subject. Each course description contains information regarding objectives, anticipated audience, and prerequisites and offers a suggested course outline. An initial modest program of implementation is recommended which would continue to concentrate on the Southeast as a target area

  5. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    Under contract with the U.S. Department of Energy, the College of Engineering at the University of South Carolina has conducted an assessment of educational needs among engineers working in nuclear fuel cycle related areas. The study was initiated as a regional effort focusing on the concentration of nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. The project was envisioned as providing base line information for the eventual implementation of a program in line with the needs of the Southeast's nuclear community. Specific objectives were to establish the content of such a program and to determine those specialized features which would make the program most attractive and useful.

  6. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    An assessment was conducted of educational needs among engineers working in nuclear fuel cycle-related areas, focusing on the nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. As a result of the study, a list of subject areas has been compiled as best representing the current content of an educational program. In addition to identifying subject areas, a set of course descriptions and reference materials has been developed around each subject. Each course description contains information regarding objectives, anticipated audience, and prerequisites and offers a suggested course outline. An initial modest program of implementation is recommended which would continue to concentrate on the Southeast as a target area.

  7. Study of advanced professional educational requirements relative to nuclear fuel cycle engineering in industry and government. Final report

    Jur, T.A.; Huhns, M.N.; Keating, D.A.; Orloff, D.I.; Rhodes, C.A.; Stanford, T.G.; Stephens, L.M.; Tatterson, G.B.; Van Brunt, V.

    1978-12-01

    Under contract with the U.S. Department of Energy, the College of Engineering at the University of South Carolina has conducted an assessment of educational needs among engineers working in nuclear fuel cycle related areas. The study was initiated as a regional effort focusing on the concentration of nuclear industry in the Southeast. Educational needs addressed were those at the post-baccalaureate professional level. The project was envisioned as providing base line information for the eventual implementation of a program in line with the needs of the Southeast's nuclear community. Specific objectives were to establish the content of such a program and to determine those specialized features which would make the program most attractive and useful

  8. Advisory group meeting on safeguards related to final disposal of nuclear material in waste and spent fuel (AGM-660)

    1988-12-01

    The Advisory Group was asked to advise the Agency on the circumstances under which the Agency might logically implement Section 11 of INFCIRC/153, or the comparable Section 26c of INFCIRC/66/rev2, which provides for a determination that nuclear material is 'practicably irrecoverable', and that therefore safeguards could be terminated. This advice was sought, and in the paragraphs that follow is given, in two areas. One relates to 'waste', which the Group understands as referring to material which contains nuclear material that the State/facility operator believes has no economically recoverable value and for which no further use is foreseen. The other relates to spent fuel, which in some cases may be placed in geological 'permanent repositories'

  9. Uranium Task Force final report

    1991-03-01

    Site-specific data on the management of uranium of 17 facilities have been assembled and analyzed to develop a comprehensive report on uranium processes, treatment, storage, and disposal on a Department of Energy-wide basis. By integrating a variety of waste generation sources, treatment processes, storage facilities, and disposal options, this waste management system study aims to effectively characterize and evaluate the performance and effectiveness of the total Department of Energy system for the management of uranium, as well as the individual sites. 7 refs., 7 figs., 2 tabs

  10. Development of integrated DMFC and PEM fuel cell units. Final report; Udvikling af integrerede DMFC og PEM braendselscelle enheder. Slutrapport

    Odgaard, M. (IRD Fuel Cell Technology, Svendborg (DK))

    2007-06-15

    The 36-month long project 'Development of integrated DMFC and PEM fuel cell units' has been completed. The project goal was to develop a completely new MEA concept for integrated PEM and DMFC unit cells with enhanced power density and in this way obtain a price reduction. The integrated unit cell consists of a MEA, a gas diffusion layer with flow fields completed with bipolar plates and seals. The main focus of the present project was to: 1) Develop new catalyst materials fabricated by the use of FSD (flame spray deposition method). 2) Optimisation of the state-of-the-art MEA materials and electrode structure. 3) Implementation of a model to account for the CO poisoning of PEM fuel cells. Results and progress obtained in the project established that the individual unit cell components were able to meet and follow the road map of LT-PEM FC regarding electrode catalyst loading and fulfilled the targets for Year 2006. The project has resulted in some important successes. The highlights are as follows: The project has resulted in some important successes. The highlights are as follows: 1) MEA structure knowledge acquired in the project provide a sound basis for further progress. 2) A novel method for the synthesis of electrode by using flame spray synthesis was explored. 3) Electrochemical and catalytic behaviours of catalysts activity for CH{sub 3}OH explored. 4) Implementation of a sub model to account for the CO poisoning of PEM FC has been developed. 5) Numerical study of the flow distribution in FC manifolds was developed and completed with experimental data. 6) The electrode catalyst loading targets for year 2006 achieved. 7) The DMFC MEA performance has been improved by 35%. 8) Optimisation of the MEAs fabrication process has been successfully developed. 9) A new simple flow field design has been designed. 10) A procedure for integrated seals has been developed (au)

  11. UPS Project for GSM base stations with a fuel cell (PEM fuel cell back-up system) - Final report; Projekt USV fuer GSM-Basisstationen mit BZ (PEM fuel cell back-up system) - Abschlussbericht

    Trachte, U.

    2007-07-01

    The University of applied sciences HTA Lucerne designed a prototype of an uninterruptible power supply (UPS) with Fuel Cell technology instead of lead-acid batteries and put it into operation. The delayed start-up of the Fuel Cell was bridged with ultra capacitor technology. In a first project stage the system was designed, assembled and tested in laboratory. In a second stage the installation was connected to a real base station of a telecommunication antenna and put to field tests for one year. The field test included monthly simulations of power failure with antenna load of about 2.4 kW as well as tests with external load up to 8.5 kW to establish the characteristic diagram. Hydrogen was provided by two 50 l pressure tanks. The full quantity of hydrogen secured a stand-alone operation of the Fuel Cell system for about 6 hours under antenna load. The results of the 101 grid-failure simulations demonstrate a very reliable start-up behaviour of the Fuel Cell System. Also during a real power failure due to a thunderstorm the installation provided the demanded power without any problem. The total duration of operation of the Fuel Cell during the field tests was 39 hours. No degradation could be noticed. The project takes place in collaboration with the industrial partners APC Industrial Systems, as a producer and market leader of UPS-Systems, and Swisscom Mobile AG, as a user of UPS-systems in telecommunications. Following the good results and in order to get more experience in long-term operation of the Fuel Cell system the tests will go on for two more years. (author)

  12. Scanning force microscopy study of phase segregation in fuel cell membrane materials as a function of solvent polarity and relative humidity

    Hawley, Marilyn Emily [Los Alamos National Laboratory; Kim, Yu S [Los Alamos National Laboratory; Hjelm, Rex P [Los Alamos National Laboratory

    2010-01-01

    Scanning force microscopy (SFM) phase imaging provides a powerful method for directly studying and comparing phase segregation in fuel cell membrane materials due to different preparation and under different temperature and hwnidity exposures. In this work, we explored two parameters that can influence phase segregation: the properties of the solvents used in casting membrane films and how these solvents alter phase segregation after exposure to boiling water as a function of time. SFM was used under ambient conditions to image phase segregation in Nafion samples prepared using five different solvents. Samples were then subjected to water vapor maintained at 100C for periods ranging from 30 minutes to three hours and re-imaged using the same phase imaging conditions. SFM shows what appears to be an increase in phase segregation as a function of solvent polarity that changes as a function of water exposure.

  13. Urinary polycyclic aromatic hydrocarbon (OH-PAH) metabolite concentrations and the effect of GST polymorphisms among US Air Force personnel exposed to jet fuel.

    Rodrigues, Ema G; Smith, Kristen; Maule, Alexis L; Sjodin, Andreas; Li, Zheng; Romanoff, Lovisa; Kelsey, Karl; Proctor, Susan; McClean, Michael D

    2014-05-01

    To evaluate the association between inhalation exposure to jet propulsion fuel 8 (JP-8) and urinary metabolites among US Air Force (USAF) personnel, and investigate the role of glutathione S-transferase polymorphisms. Personal air samples were collected from 37 full-time USAF personnel during 4 consecutive workdays and analyzed for JP-8 constituents and total hydrocarbons. Pre- and postshift urine samples were collected each day and analyzed for polycyclic aromatic hydrocarbon urinary metabolites. Work shift exposure to total hydrocarbons was significantly associated with postshift urinary 1-naphthol (β = 0.17; P = inhalation exposure to JP-8, which is associated with absorption of JP-8 constituents while performing typical job-related tasks, and in our data the glutathione S-transferase mu-1 polymorphism was associated with differential metabolism of naphthalene.

  14. 78 FR 22788 - Supplemental Determination for Renewable Fuels Produced Under the Final RFS2 Program From Grain...

    2013-04-17

    ... Procedure Act (APA), 5 U.S.C. 553(b)(B), provides that, when an agency for good cause finds that notice and... (A) or (B) of section 553(b) of the APA. Specifically, EPA is correcting the final rule to indicate... Section 80.1454(k)(1) should reference 40 CFR 80.1454 (f)(10) rather than (f)(1). See 77 FR 74592. In...

  15. An analytical model for the prediction of fluid-elastic forces in a rod bundle subjected to axial flow: theory, experimental validation and application to PWR fuel assemblies

    Beaud, F.

    1997-01-01

    A model predicting the fluid-elastic forces in a bundle of circular cylinders subjected to axial flow is presented in this paper. Whereas previously published models were limited to circular flow channel, the present one allows to take a rectangular flow external boundary into account. For that purpose, an original approach is derived from the standard method of images. This model will eventually be used to predict the fluid-structure coupling between the flow of primary coolant and a fuel assemblies in PWR nuclear reactors. It is indeed of major importance since the flow is shown to induce quite high damping and could therefore mitigate the incidence of an external load like a seismic excitation on the dynamics of the assemblies. The proposed model is validated on two cases from the literature but still needs further comparisons with the experiments being currently carried out on the EDF set-up. The flow has been shown to induce an approximate 12% damping on a PWR fuel assembly, at nominal reactor conditions. The possible grid effect on the fluid-structure coupling has been neglected so far but will soon be investigated at EDF. (author)

  16. LMFBR fuel analysis. Task C: Reliability aspects of LMFBRs. Final report, October 1, 1976--September 30, 1977

    Bastl, W.; Kastenberg, W.E.

    1977-10-01

    An analysis is presented for the availability of the electrical power supplies upon reactor shutdown. Successful power supply is defined in terms of the ability of the associated pumps (pump motors) to provide forced circulation and to deliver sufficient feedwater for proper cooldown of the core. Previous investigations of the reliability of the CRBR shutdown heat removal system concentrated on the mechanical systems and/or did not yet consider the diverse power supply. The shutdown heat removal system (SHRS) is discussed in the light of the availability of the electrical power systems, depending upon various types of initiating events. The unavailabilities of the essential power distribution and power supply buses are estimated, so that they can easily be used in connection with analyses of the entire SHRS. Further estimates include mechanical failure of the pumps

  17. Natural biogenic solid fuels - environmentally relevant characteristics and possible influences. Final report; Naturbelassene biogene Festbrennstoffe - umweltrelevante Eigenschaften und Einflussmoeglichkeiten. Abschlussbericht

    Hartmann, H; Boehm, T; Maier, L [Bayerische Landesanstalt fuer Landtechnik, Friesing-Weihenstephan (Germany). Arbeitsgruppe Festbrennstoffe

    2000-09-01

    The focus of the research, however, lies in the analysis of biofuels which were collected under certain aspects from different field trials. Several influences were regarded: - The kind and level of potassium fertilisation (in collaboration with the University of Hohenheim) - the date of harvesting, tested for triticale (whole plants), festuca grass, set aside hay, and short rotation forestry (poplar and willow) - the rainfall induced leaching of pollutants from the fuel after cutting, tested for set aside hay, wheat straw and grain (whole plants). A structure for an SQL-database was designed, which allows to record a large range of information on each regarded fuel sample. Along with the actual analyses results, many additional characteristics can be regarded, in order to gain a precise specification of the respective biomass type and origin, the analysis method and the data source, including also the geographical location, special treatments and other criteria. An initial series of 1,238 data sets were entered until April 1999. This data were either generated during research projects or they were found in other primary sources from Germany and Austria. Additionally, the data base was broadened by a questioning among 200 relevant institutions or companies. From these sources the most reliable data were selected and applied. (orig.) [German] Den Schwerpunkt der vorliegenden Arbeit bildet jedoch die Analyse von biogenen Brennstoffen, die unter verschiedenen Gesichtspunkten aus verschiedenen Versuchsserien gewonnen wurden. Hierbei wurden unterschiedliche Einfluesse betrachtet bzw. gezielt abgestuft: - Art und Hoehe der Kaliumduengung bei Triticale und Feldgras (in Zusammenarbeit mit dem Institut fuer Pflanzenbau und Gruenlandwirtschaft der Universitaet Hohenheim) - Erntezeitpunkte bei Triticaleganzpflanzen, Rohrschwingel, Landschaftspflegeheu, Pappeln und Weiden - niederschlagsbedingte Auswaschung von Schadelementen nach der Ernte bei Landschaftspflegeheu

  18. Prototypical spent nuclear fuel rod consolidation equipment: Phase 2, Final design report: Volume 3, Appendices: Part 2

    1987-01-01

    The purpose of this report is to identify and analyze a range of credible events and accident occurrences (from minor to the design basis accidents) and their causes and consequences. For each situation, the considerations to prevent or mitigate the event or accident are to be addressed. The report includes a description of the approach used to identify the potential events or accidents (Section 3.0), a discussion of Off-Normal Events (Section 4.0), and finally a discussion of Accidents (Section 5.0)

  19. Final disposal of spent nuclear fuel in Sweden. Some unresolved issues and challenges in the design and implementation of the forthcoming planning and EIA processes

    Bjarnadottir, H.; Hilding-Rydevik, T. [Nordregio, Stockholm (Sweden)

    2001-06-01

    The aim of the study is to highlight some unresolved and challenging issues in the forthcoming approximately six year long Environmental Impact Assessment (EIA) and planning process of the long-term disposal of spent nuclear fuel in Sweden. Different international and Nordic experiences of the processes for final disposal as well as from other development of similar scope, where experiences assumed to be of importance for final disposal of nuclear waste, have been described. Furthermore, issues relating to 'good EIA practice' as well as certain aspects of planning theory have also been presented. The current Swedish situation for the planning and EIA process of the final disposal of spent nuclear fuel was also been summarized. These different 'knowledge areas' have been compared and measured against our perception of the expectations towards the forthcoming process, put forward by different Swedish actors in the field. The result is a presentation of a number of questions and identification issues that the authors consider need special attention in the design and conduction of the planning and EIA process. The study has been realized through a literature survey and followed by reading and analysis of the written material. The main focus of the literature search was on material describing planning processes, actor perspectives and EIA. Material and literature on the technical and scientific aspects of spent nuclear fuel disposal was however deliberately avoided. There is a wealth of international and Swedish literature concerning final disposal of spent nuclear fuel - concerning both technical issues and issues concerning for example public participation and risk perception. But material of a more systematic and comparative nature (relating to both empirical and theoretical issues, and to practical experiences) in relation to EIA processes and communicative planning for final disposal of spent nuclear fuel seems to be more sparsely represented

  20. Accident analysis for new reactor concepts and VVER type reactor design with advanced fuel. STC with Russia. Final report

    Grundmann, U.; Kliem, S.; Mittag, S.; Rohde, U.; Seidel, A.

    2000-10-01

    In the frame of a project on scientific-technical cooperation funded by BMBF/BMWi, the 3D reactor dynamics code DYN3D developed at Forschungszentrum Rossendorf (FZR), has been transferred to the Institute of Physics and Power Engineering (IPPE) Obninsk in Russia and integrated into the software package of IPPE. DYN3D has been coupled to a thermohydraulic system code used in IPPE making available 3D neutron kinetics within this software package. A new macroscopic cross section library has been created using a modified version of the WIMS/D4 code. This library includes data for modernized fuel design containing burnable absorbers in different concentrations, which is tested in VVER-1000 type reactors. The cross section library has been connected to DYN3D. Calculations were performed to check the library in comparison with other data libraries and codes. The code DYN3D and the coupled 3D neutron kinetics/thermal hydraulics code system were used to perform analyses of Anticipated Transients Without Scram (ATWS) for the reactor design ABV-67, an integral reactor concept with small power developed under participation of IPPE. The fluid dynamics code DINCOR developed at IPPE was transferred to FZR. It was used in validation calculations on test problems for the short-term core melt behaviour (CORVIS experiments). (orig.) [de

  1. Guide to improving the performance of a manipulator system for nuclear fuel handling through computer controls. Final report

    Evans, J.M. Jr.; Albus, J.S.; Barbera, A.J.; Rosenthal, R.; Truitt, W.B.

    1975-11-01

    The Office of Developmental Automation and Control Technology of the Institute for Computer Sciences and Technology of the National Bureau of Standards provides advising services, standards and guidelines on interface and computer control systems, and performance specifications for the procurement and use of computer controlled manipulators and other computer based automation systems. These outputs help other agencies and industry apply this technology to increase productivity and improve work quality by removing men from hazardous environments. In FY 74 personnel from the Oak Ridge National Laboratory visited NBS to discuss the feasibility of using computer control techniques to improve the operation of remote control manipulators in nuclear fuel reprocessing. Subsequent discussions led to an agreement for NBS to develop a conceptual design for such a computer control system for the PaR Model 3000 manipulator in the Thorium Uranium Recycle Facility (TURF) at ORNL. This report provides the required analysis and conceptual design. Complete computer programs are included for testing of computer interfaces and for actual robot control in both point-to-point and continuous path modes

  2. Legal aspects of the nuclear fuel cycle and the final storage in the Federal Republic of Germany

    Strassburg, W.

    1983-01-01

    The public discussion on ''the waste disposal of German nuclear power plants'', is, in contrast to former political arguments, more and more determined by legal questions, as for instance the suitability for licensing compact storage and central intermediate storage for spent fuel elements. A quick and partly already occurred clarification of these legal questions by the courts guarantees that the storage facilities, which are planned or are under construction, are available in time. The implementation of the technical-scientific management and disposal concept of nuclear waste in the Atomic Energy Act according to the fourth amendment of 1976 has, on principle, been successful, even if hereby partly open legal questions arose. The clarification of these questions is among other things provided in the framework of the legal regulations, still to be expected, by means of the legal authorization in paragraph 12, paragraph 1, No. 8 and 9 of the Atomic Energy Act, which have the aim ''to regulate the disposal and radioactive wastes comprehensively. (orig./HP) [de

  3. Assessing photocatalytic power of g-C3N4 for solar fuel production: A first-principles study involving quasi-particle theory and dispersive forces.

    Osorio-Guillén, J M; Espinosa-García, W F; Moyses Araujo, C

    2015-09-07

    First-principles quasi-particle theory has been employed to assess catalytic power of graphitic carbon nitride, g-C3N4, for solar fuel production. A comparative study between g-h-triazine and g-h-heptazine has been carried out taking also into account van der Waals dispersive forces. The band edge potentials have been calculated using a recently developed approach where quasi-particle effects are taken into account through the GW approximation. First, it was found that the description of ground state properties such as cohesive and surface formation energies requires the proper treatment of dispersive interaction. Furthermore, through the analysis of calculated band-edge potentials, it is shown that g-h-triazine has high reductive power reaching the potential to reduce CO2 to formic acid, coplanar g-h-heptazine displays the highest thermodynamics force toward H2O/O2 oxidation reaction, and corrugated g-h-heptazine exhibits a good capacity for both reactions. This rigorous theoretical study shows a route to further improve the catalytic performance of g-C3N4.

  4. Comparative assessment of hydrogen storage and international electricity trade for a Danish energy system with wind power and hydrogen/fuel cell technologies. Final project report

    Soerensen, Bent (Roskilde University, Energy, Environment and Climate Group, Dept. of Environmental, Social and Spatial Change (ENSPAC) (DK)); Meibom, P.; Nielsen, Lars Henrik; Karlsson, K. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Systems Analysis Dept., Roskilde (DK)); Hauge Pedersen, A. (DONG Energy, Copenhagen (DK)); Lindboe, H.H.; Bregnebaek, L. (ea Energy Analysis, Copenhagen (DK))

    2008-02-15

    This report is the final outcome of a project carried out under the Danish Energy Agency's Energy Research Programme. The aims of the project can be summarized as follows: 1) Simulation of an energy system with a large share of wind power and possibly hydrogen, including economic optimization through trade at the Nordic power pool (exchange market) and/or use of hydrogen storage. The time horizon is 50 years. 2) Formulating new scenarios for situations with and without development of viable fuel cell technologies. 3) Updating software to solve the abovementioned problems. The project has identified a range of scenarios for all parts of the energy system, including most visions of possible future developments. (BA)

  5. The impact of a final disposal facility for spent nuclear fuel on a municipality`s image; Tutkimus loppusijoituslaitoksen vaikutuksista kuntien imagoon

    Kankaanpaeae, H; Haapavaara, L; Lampinen, T

    1999-02-01

    The study comprised on one hand a nationwide telephone interview (totally 800 interviews) aimed at mapping out the current image of possible host municipalities to a final disposal facility for spent nuclear fuel, and on the other hand some group interviews of people of another parish but of interest from the municipalities` point of view. The purpose of these group interviews was the same as that of the telephone interview, i.e. to find out what kind of an impact locating a final disposal facility of spent nuclear fuel in a certain municipality would have on the host municipality`s image. Because the groups interviewed were selected on different grounds the results of the interviews are not fully comparable. The most important result of the study is that the current attitude towards a final disposal facility for spent nuclear fuel is calm and collected and that the matter is often considered from the standpoint of an outsider. The issue is easily ignored, classified as a matter `which does not concern me`, provided that the facility will not be placed too near one`s own home. Among those interviewed the subject seemed not to be of any `great interest and did not arouse spontaneous feelings for or against`. There are, however, deeply rooted beliefs concerning the facility and quite strong negative and positive attitudes towards it. The facility itself and the associated decision-making procedure arouse many questions, which at present to a large extent are still unexpressed because the subject is considered so remote. It is, however, necessary to give concrete answers to the questions because this makes it possible for people to relate the issue to daily life. It is further important that things arousing fear and doubts also can be discussed because a silence in this respect only emphasizes their importance. The attitude towards the facility is varying. On one hand there are economic and technical factors: the probable economic benefit from it, the obligation to

  6. Fuel Cells

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  7. Medical screening reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials

    Arzino, P.A.; Brown, C.H.

    1991-09-01

    The recommendations contained throughout this NUREG were provided to the Nuclear Regulatory Commission (NRC) as medical screening information that could be used by physicians who are evaluating the parameters of the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The medical recommendations in this NUREG are similar in content to the medical standards contained in 10 CFR Part 1046 which, in part, specifies medical standards for the protective force personnel regulated by the Department of Energy. The guidelines contained in this NUREG are not requirements, and compliance is not required. 3 refs

  8. Medical screening reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials

    Arzino, P.A.; Brown, C.H. (California State Univ., Hayward, CA (United States). Foundation)

    1991-09-01

    The recommendations contained throughout this NUREG were provided to the Nuclear Regulatory Commission (NRC) as medical screening information that could be used by physicians who are evaluating the parameters of the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The medical recommendations in this NUREG are similar in content to the medical standards contained in 10 CFR Part 1046 which, in part, specifies medical standards for the protective force personnel regulated by the Department of Energy. The guidelines contained in this NUREG are not requirements, and compliance is not required. 3 refs.

  9. LOT A2 Test, THC-modelling of bentonite buffer in a final repository of spent nuclear fuel

    Itaelae, A.; Olin, M.; Rasilainen, K.; Pulkkanen, V.M.

    2010-01-01

    Document available in extended abstract form only. The Finnish spent nuclear fuel disposal is planned to be based on the KBS-3V repository concept. Within this concept, the role of the bentonite buffer is considered to be central. The aim of this study was to model the evolution of the buffer during the thermal phase (heat-generating period of spent fuel), when the bentonite is only partially saturated initially, and the surrounding rock matrix is assumed to be fully saturated. It is essential to study how temperature will affect saturation and also how both of these affect the chemistry of bentonite. In order to make the modeling more concrete, an example experimental case was considered: Long Term Test of Buffer Materials (LOT) A2-parcel test at the Aespoe Hard Rock Laboratory (HRL) in Sweden. In the A2-parcel the MX-80 bentonite was exposed to adverse (120-150 deg. C) temperature conditions and high temperature gradients. The test parcel diameter was smaller than in the actual KBS-3V deposition hole to speed up the saturation. The chemical behaviour of minerals causes their redistribution inside the bentonite. For example, according to the laboratory tests, gypsum dissolves and anhydrite precipitates near the heater-bentonite interface. Also, incoming groundwater affects the bentonite pore water and its properties. These changes may, in turn, influence the mechanical properties of the bentonite. A coupled Thermo-Hydro-Chemical (THC) model was applied, which means that all mechanical effects were ignored. The purpose of the model was first to achieve a satisfactory match between the model and experimental results, and, therefore, the time frame was limited to ten years (LOT A-2 parcel test lasted approximately 6 years). The system was simplified to 1-D in order to reduce the computational work, which can be very significant due to complex chemical calculations. The 1-D model results are reported in Itaelae (2009). The aim is to extend the calculations to 2-D

  10. Conversion of potash soap and lignin into liquid fuels. Final report; Suovan ja ligniinin jalostaminen polttonesteiksi. Loppuraportti

    McKeough, P.; Oasmaa, A.

    1994-12-31

    The main task of the research is to estimate the suitability of catalytic hydration for refining of following rawmaterials into liquid fuels: concentrated black liquor, raw potash soap (especially birch containing mixed potash soap) and organosolv (Milox) lignin. When hydrating the concentrated black liquor catalytically (ammonium heptamolybdate/420 deg C or NiMo-Cr{sub 2}O{sub 3}/450 deg C) it is possible to convert about 30 wt-% of the original organic matter of the black liquor into hexane soluble oils. It is possible to remove the inorganic matter from the product oil by water extraction without reducing the amount of hexane suluble oil. The energy content of the hexane soluble oil is about 60 % of the energy content of the black liquor. The raw potash soap is cracked into oils and gases at 435- 450 deg C. The yield of the hexane soluble oil in nitrogen atmosphere without a catalyst is about 40 % of the organic matter of the potash soap. The calorific value of the oil is 42 MJ/kg, which corresponds to about 45 % energy yield. The presence of a catalyst and hydrogen gas increases the yield of hexane soluble oil (45 wt-%) and effects on the chemical composition of the product by increasing the portion of aliphatic hydrocarbons. It is possible to obtain oil of good quality from Milox lignin by using the catalytic hydration. At 420 deg C with 60 min retention time, at presence of the NiMo- Cr{sub 2}O{sub 3} catalyst and hydrogen gas, oil yield of 53 % and hexane soluble oil yield of 41 % (of organic matter of lignin) are obtained. The calorific value of the oil is 40 MJ/kg (Milox lignin 25 MJ/kg). (3 refs., 3 tabs., 1 fig.)

  11. Alternative approaches to assessing the performance and suitability of Yucca Mountain for spent fuel disposal. Final report

    McGuire, R.; Smith, G.; Klos, R.

    1998-11-01

    Significant resources and effort have been expended by EPRI over the past few years in modeling and understanding issues related to high-level radioactive waste disposal. Previous reports have documented the general model used in the EPRI work and specific inputs to that model for examination of the potential repository at Yucca Mountain, Nevada. Modeling of the potential Yucca Mountain site is an on-going process, and new data are being collected with which to evaluate and modify models of physical processes. This report is divided into two parts. The first part presents results from specific calculational cases of repository performance, updated for the most recent data and conceptual models. The second part discusses possible alternatives for the components of the assessment context for a repository at Yucca Mountain. Part 2 also presents additional information on time frames and a interaction matrix method of documenting TSPA model interactions. The main purposes of Part of this report is to describe the subsystem and total system performance models and present results and analysis of the results. Part 1 includes presentation of new models of waste container failure that accounts for new container material, a new model of the effect of hydrothermal activity and heterogeneous groundwater flow in the unsaturated zone on temperatures and the distribution of groundwater capable of dripping into the repository drifts. Part 1 also: identifies the key technical components of the candidate spent fuel and HLW disposal facility at Yucca Mountain using IMARC Phase 4; makes recommendations regarding the prioritization of the technical development work remaining; and provides an assessment of the overall technical suitability of the candidate HLW disposal facility at Yucca Mountain

  12. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant.

    Akata, Naofumi; Kakiuchi, Hideki; Shima, Nagayoshi; Iyogi, Takashi; Momoshima, Noriyuki; Hisamatsu, Shun'ichi

    2011-09-01

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuclear fuel reprocessing plant in Japan has been under construction. Tritium concentration in monthly precipitation during fiscal years 2001-2005 had a seasonal variation pattern which was high in spring and low in summer. The tritium concentration was higher than that observed at Chiba City as a whole. The seasonal peak concentration at Rokkasho was generally higher than that at Chiba City, while the baseline concentrations of both were similar. The reason for the difference may be the effect of air mass from the Asian continent which is considered to have high tritium concentration. Atmospheric tritium was operationally separated into HTO, HT and hydrocarbon (CH(3)T) fractions, and the samples collected every 3 d-14 d during fiscal year 2005 were analyzed for these fractions. The HTO concentration as radioactivity in water correlated well with that in the precipitation samples. The HT concentration was the highest among the chemical forms analyzed, followed by the HTO and CH(3)T concentrations. The HT and CH(3)T concentrations did not have clear seasonal variation patterns. The HT concentration followed the decline previously reported by Mason and Östlund with an apparent half-life of 4.8 y. The apparent and environmental half-lives of CH(3)T were estimated as 9.2 y and 36.5 y, respectively, by combining the present data with literature data. The Intergovernmental Panel on Climate Change used the atmospheric lifetime of 12 y for CH(4) to estimate global warming in its 2007 report. The longer environmental half-life of CH(3)T suggested its supply from other sources than past nuclear weapon testing in the atmosphere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  14. The role of the canister in a system for the final disposal of spent fuel or high-level waste

    Papp, T.

    1986-01-01

    A final repository for radioactive waste must isolate the toxic substances or distribute their release over time or space to avoid causing harmful concentrations of radionuclides in the biosphere. The Swedish research has focused on a repository 500 m down in crystalline rock where the geochemical environment can give canisters a service life of the order of a million years. These evaluations are discussed and the safety effect of the canister is compared with that of other barriers available in a repository system. Our conclusions are that a combined protection effect of natural and man-made barriers can be achieved that substantially exceeds what could reasonably be required by society. An actual repository design can then be based on an optimization of the cost to reach a level of accepted safety with due regard for the safety margins and redundancy necessary for achieving public confidence. (author)

  15. Fuel assembly

    Watanabe, Shoichi; Hirano, Yasushi.

    1998-01-01

    A one-half or more of entire fuel rods in a fuel assembly comprises MOX fuel rods containing less than 1wt% of burnable poisons, and at least a portion of the burnable poisons comprises gadolinium. Then, surplus reactivity at an initial stage of operation cycle is controlled to eliminate burnable poisons remained unburnt at a final stage, as well as increase thermal reactivity. In addition, the content of fission plutonium is determined to greater than the content of uranium 235, and fuel rods at corner portions are made not to incorporate burnable poisons. Fuel rods not containing burnable poisons are disposed at positions in adjacent with fuel rods facing to a water rod at one or two directions. Local power at radial center of the fuel assembly is increased to flatten the distortion of radial power distribution. (N.H.)

  16. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant

    Akata, Naofumi; Kakiuchi, Hideki; Shima, Nagayoshi; Iyogi, Takashi; Momoshima, Noriyuki; Hisamatsu, Shun'ichi

    2011-01-01

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuclear fuel reprocessing plant in Japan has been under construction. Tritium concentration in monthly precipitation during fiscal years 2001-2005 had a seasonal variation pattern which was high in spring and low in summer. The tritium concentration was higher than that observed at Chiba City as a whole. The seasonal peak concentration at Rokkasho was generally higher than that at Chiba City, while the baseline concentrations of both were similar. The reason for the difference may be the effect of air mass from the Asian continent which is considered to have high tritium concentration. Atmospheric tritium was operationally separated into HTO, HT and hydrocarbon (CH 3 T) fractions, and the samples collected every 3 d-14 d during fiscal year 2005 were analyzed for these fractions. The HTO concentration as radioactivity in water correlated well with that in the precipitation samples. The HT concentration was the highest among the chemical forms analyzed, followed by the HTO and CH 3 T concentrations. The HT and CH 3 T concentrations did not have clear seasonal variation patterns. The HT concentration followed the decline previously reported by Mason and Ostlund with an apparent half-life of 4.8 y. The apparent and environmental half-lives of CH 3 T were estimated as 9.2 y and 36.5 y, respectively, by combining the present data with literature data. The Intergovernmental Panel on Climate Change used the atmospheric lifetime of 12 y for CH 4 to estimate global warming in its 2007 report. The longer environmental half-life of CH 3 T suggested its supply from other sources than past nuclear weapon testing in the atmosphere. - Highlights: → We observed background tritium concentrations in atmospheric environment at Rokkasho, Japan. → Tritium concentration in precipitation was high in spring and low in summer. → The atmospheric HT

  17. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant

    Akata, Naofumi, E-mail: nao@ies.or.jp [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Kakiuchi, Hideki [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Shima, Nagayoshi [Entex Inc., 1-2-8 Asahi, Kashiwa, Chiba 277-0852 (Japan); Iyogi, Takashi [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Momoshima, Noriyuki [Radioisotope Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Hisamatsu, Shun' ichi [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2011-09-15

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuc