WorldWideScience

Sample records for force flexible oxide

  1. Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Devices on Flexible Conducting Graphene Substrates

    OpenAIRE

    Wan, Chang Jin; Wang, Wei; Zhu, Li Qiang; Liu, Yang Hui; Feng, Ping; Liu, Zhao Ping; Shi, Yi; Wan, Qing

    2016-01-01

    Flexible metal oxide/graphene oxide hybrid multi-gate neuron transistors were fabricated on flexible graphene substrates. Dendritic integrations in both spatial and temporal modes were successfully emulated, and spatiotemporal correlated logics were obtained. A proof-of-principle visual system model for emulating lobula giant motion detector neuron was investigated. Our results are of great interest for flexible neuromorphic cognitive systems.

  2. Flexible Training Strategy (National Task Force on Medical Staffing)

    OpenAIRE

    Department of Health (Ireland)

    2003-01-01

    Flexible Training Strategy (National Task Force on Medical Staffing) The Flexible Training Strategy, while endorsing flexible/part-time options recognises that the preferred option for the majority of doctors-in-training and consultants is most likely to continue to be full-time training and work. Click here to download PDF

  3. Highly porous ceramic oxide aerogels having improved flexibility

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor); Guo, Haiquan (Inventor)

    2012-01-01

    Ceramic oxide aerogels having improved flexibility are disclosed. Preferred embodiments exhibit high modulus and other strength properties despite their improved flexibility. The gels may be polymer cross-linked via organic polymer chains to further improve strength properties, without substantially detracting from the improved flexibility. Methods of making such aerogels are also disclosed.

  4. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  5. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.

    Science.gov (United States)

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Li, Jia; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-08-14

    The cellulose nanofibers (CNFs) paper exhibit high visible light transmittance, high mechanical strength, and excellent flexibility. Therefore, CNFs paper may be an excellent substrate material for flexible transparent electronic devices. In this paper, we endeavor to prepare CNFs-based flexible transparent conductive paper by layer-by-layer (LbL) assembly using divalent copper ions (Cu(2+)) as the crosslinking agent. The thickness of the reduced graphene oxide (RGO) active layer in the CNFs paper can be controlled by the cycle times of the LbL assembly. CNFs/[RGO]20 paper has the sheet resistances of ∼2.5 kΩ/□, and the transmittance of about 76% at a wavelength of 550 nm. Furthermore, CNFs/[RGO]20 paper inherits the excellent mechanical properties of CNFs paper, and the ultimate strength is about 136 MPa. CNFs-based flexible transparent conductive paper also exhibits excellent electrical stability and flexibility. Copyright © 2013. Published by Elsevier Ltd.

  6. Metal oxide semiconductor thin-film transistors for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Luisa; Vogt, Christian; Büthe, Lars; Cantarella, Giuseppe; Tröster, Gerhard [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Münzenrieder, Niko [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Sensor Technology Research Centre, University of Sussex, Falmer (United Kingdom); Faber, Hendrik; Bottacchi, Francesca; Anthopoulos, Thomas D. [Department of Physics and Centre for Plastic Electronics, Imperial College London, London (United Kingdom)

    2016-06-15

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In

  7. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    Science.gov (United States)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  8. Graphene oxide overprints for flexible and transparent electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rogala, M., E-mail: rogala@uni.lodz.pl; Wlasny, I.; Kowalczyk, P. J.; Busiakiewicz, A.; Kozlowski, W.; Klusek, Z. [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236 Lodz (Poland); Dabrowski, P.; Lipinska, L.; Jagiello, J.; Aksienionek, M.; Strupinski, W.; Krajewska, A. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Sieradzki, Z. [Electrotechnological Company QWERTY Ltd., Siewna 21, 94-250 Lodz (Poland); Krucinska, I.; Puchalski, M.; Skrzetuska, E. [Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz (Poland)

    2015-01-26

    The overprints produced in inkjet technology with graphene oxide dispersion are presented. The graphene oxide ink is developed to be fully compatible with standard industrial printers and polyester substrates. Post-printing chemical reduction procedure is proposed, which leads to the restoration of electrical conductivity without destroying the substrate. The presented results show the outstanding potential of graphene oxide for rapid and cost efficient commercial implementation to production of flexible electronics. Properties of graphene-based electrodes are characterized on the macro- and nano-scale. The observed nano-scale inhomogeneity of overprints' conductivity is found to be essential in the field of future industrial applications.

  9. 3D printed flexible capacitive force sensor with a simple micro-controller based readout

    NARCIS (Netherlands)

    Schouten, Martijn G.; Sanders, Remco; Krijnen, Gijs

    2017-01-01

    This paper describes the development of a proof of principle of a flexible force sensor and the corresponding readout circuit. The flexible force sensor consists of a parallel plate capacitor that is 3D printed using regular and conductive thermoplastic poly-urethane (TPU). The capacitance change

  10. Flexible anodized aluminum oxide membranes with customizable back contact materials.

    Science.gov (United States)

    Nadimpally, B; Jarro, C A; Mangu, R; Rajaputra, S; Singh, V P

    2016-12-16

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe 2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  11. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors.

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-12-11

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption.

  12. Flexible Sensory Platform Based on Oxide-based Neuromorphic Transistors

    Science.gov (United States)

    Liu, Ning; Zhu, Li Qiang; Feng, Ping; Wan, Chang Jin; Liu, Yang Hui; Shi, Yi; Wan, Qing

    2015-01-01

    Inspired by the dendritic integration and spiking operation of a biological neuron, flexible oxide-based neuromorphic transistors with multiple input gates are fabricated on flexible plastic substrates for pH sensor applications. When such device is operated in a quasi-static dual-gate synergic sensing mode, it shows a high pH sensitivity of ~105 mV/pH. Our results also demonstrate that single-spike dynamic mode can remarkably improve pH sensitivity and reduce response/recover time and power consumption. Moreover, we find that an appropriate negative bias applied on the sensing gate electrode can further enhance the pH sensitivity and reduce the power consumption. Our flexible neuromorphic transistors provide a new-concept sensory platform for biochemical detection with high sensitivity, rapid response and ultralow power consumption. PMID:26656113

  13. Flexible anodized aluminum oxide membranes with customizable back contact materials

    Science.gov (United States)

    Nadimpally, B.; Jarro, C. A.; Mangu, R.; Rajaputra, S.; Singh, V. P.

    2016-12-01

    Anodized aluminum oxide (AAO) membranes were fabricated using flexible substrate/carrier material. This method facilitates the use of AAO templates with many different materials as substrates that are otherwise incompatible with most anodization techniques. Thin titanium (Ti) and tungsten (W) layers were employed as interlayer materials. Titanium enhances adhesion. Tungsten not only helps eliminate the barrier layer but also plays a critical role in enabling the use of flexible substrates. The resulting flexible templates provide new, exciting opportunities in photovoltaic and other device applications. CuInSe2 nanowires were electrochemically deposited into porous AAO templates with molybdenum (Mo) as the back contact material. The feasibility of using any material to form a contact with semiconductor nanowires has been demonstrated for the first time enabling new avenues in photovoltaic applications.

  14. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane.

    Science.gov (United States)

    Zhu, Li Qiang; Wan, Chang Jin; Gao, Ping Qi; Liu, Yang Hui; Xiao, Hui; Ye, Ji Chun; Wan, Qing

    2016-08-24

    Ion-conducting materials have received considerable attention for their applications in fuel cells, electrochemical devices, and sensors. Here, flexible indium zinc oxide (InZnO) synaptic transistors with multiple presynaptic inputs gated by proton-conducting phosphorosilicate glass-based electrolyte films are fabricated on ultrathin Si membranes. Transient characteristics of the proton gated InZnO synaptic transistors are investigated, indicating stable proton-gating behaviors. Short-term synaptic plasticities are mimicked on the proposed proton-gated synaptic transistors. Furthermore, synaptic integration regulations are mimicked on the proposed synaptic transistor networks. Spiking logic modulations are realized based on the transition between superlinear and sublinear synaptic integration. The multigates coupled flexible proton-gated oxide synaptic transistors may be interesting for neuroinspired platforms with sophisticated spatiotemporal information processing.

  15. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors

    Science.gov (United States)

    Gopalsamy, Karthikeyan; Xu, Zhen; Zheng, Bingna; Huang, Tieqi; Kou, Liang; Zhao, Xiaoli; Gao, Chao

    2014-07-01

    Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics.Graphene-bismuth oxide nanotube fiber as electrode material for constituting flexible supercapacitors using a PVA/H3PO4 gel electrolyte is reported with a high specific capacitance (Ca) of 69.3 mF cm-2 (for a single electrode) and 17.3 mF cm-2 (for the whole device) at 0.1 mA cm-2, respectively. Our approach opens the door to metal oxide-graphene hybrid fibers and high-performance flexible electronics. Electronic supplementary information (ESI) available: Equations and characterization. SEM images of GGO, XRD and XPS of Bi2O3 NTs, HRTEM images and EDX Spectra of Bi2O3 NT5-GF, CV curves of Bi2O3NT5-GF, Bi2O3 NTs and bismuth nitrate in three-electrode system (vs. Ag/AgCl). CV and GCD curves of Bi2O3 NT1-GF and Bi2O3 NT3-GF. See DOI: 10.1039/c4nr02615b

  16. Research of a Novel Three-dimensional Force Flexible Tactile Sensor Based on Conductive Rubber

    Directory of Open Access Journals (Sweden)

    Fei Xu

    2010-09-01

    Full Text Available A novel three-dimensional force flexible tactile sensor using conductive rubber with "overall injection molding" technique is presented. The sensor is based on conductive rubber’s force-sensitive property. The sensor is flexible and can measure 3-D force. The rubber’s characteristics, the sensor’s structure and its principle are described. The results of simulation will be also presented.

  17. Graphene oxide-based flexible metal–insulator–metal capacitors

    International Nuclear Information System (INIS)

    Bag, A; Hota, M K; Mallik, S; Maiti, C K

    2013-01-01

    This work explores the fabrication of graphene oxide (GO)-based metal–insulator–metal (MIM) capacitors on flexible polyethylene terephthalate (PET) substrates. Electrical properties are studied in detail. A high capacitance density of ∼4 fF µm −2 measured at 1 MHz and permittivity of ∼6 have been obtained. A low voltage coefficient of capacitance, VCC-α, and a low dielectric loss tangent indicate the potential of GO-based MIM capacitors for RF applications. The constant voltage stressing study has shown a high reliability against degradation up to a projected period of 10 years. Degradation in capacitance of the devices on flexible substrates has been studied by bending radius down to 1 cm even up to 6000 times of repeated bending. (paper)

  18. Manganese Oxide on Carbon Fabric for Flexible Supercapacitors

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2016-01-01

    Full Text Available We report the fabrication of uniform large-area manganese oxide (MnO2 nanosheets on carbon fabric which oxidized using O2 plasma treatment (MnO2/O2-carbon fabric via electrodeposition process and their implementation as supercapacitor electrodes. Electrochemical measurements demonstrated that MnO2/O2-carbon fabric exhibited capacitance as high as 275 F/g at a scan rate of 5 mV/s; in addition, it showed an excellent cycling performance (less than 20% capacitance loss after 10,000 cycles. All the results suggest that MnO2/O2-carbon fabric is a promising electrode material which has great potential for application on flexible supercapacitors.

  19. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    Science.gov (United States)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  20. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor

    KAUST Repository

    Couly, Cedric

    2017-11-27

    Current microfabrication of micro-supercapacitors often involves multistep processing and delicate lithography protocols. In this study, simple fabrication of an asymmetric MXene-based micro-supercapacitor that is flexible, binder-free, and current-collector-free is reported. The interdigitated device architecture is fabricated using a custom-made mask and a scalable spray coating technique onto a flexible, transparent substrate. The electrode materials are comprised of titanium carbide MXene (Ti3C2Tx) and reduced graphene oxide (rGO), which are both 2D layered materials that contribute to the fast ion diffusion in the interdigitated electrode architecture. This MXene-based asymmetric micro-supercapacitor operates at a 1 V voltage window, while retaining 97% of the initial capacitance after ten thousand cycles, and exhibits an energy density of 8.6 mW h cm−3 at a power density of 0.2 W cm−3. Further, these micro-supercapacitors show a high level of flexibility during mechanical bending. Utilizing the ability of Ti3C2Tx-MXene electrodes to operate at negative potentials in aqueous electrolytes, it is shown that using Ti3C2Tx as a negative electrode and rGO as a positive one in asymmetric architectures is a promising strategy for increasing both energy and power densities of micro-supercapacitors.

  1. Flexible Structural Design for Side-Sliding Force Reduction for a Caterpillar Climbing Robot

    Directory of Open Access Journals (Sweden)

    Weina Cui

    2012-11-01

    Full Text Available Due to sliding force arising from the closed chain mechanism among the adhering points of a climbing caterpillar robot (CCR, a sliding phenomenon will happen at the adhering points, e.g., the vacuum pads or claws holding the surface. This sliding force makes the attachment of the climbing robot unsteady and reducesthe motion efficiency. According to the new bionic research on the soft-body structure of caterpillars, some flexible structures made of natural rubber bars are applied in CCRs correspondingly as an improvement to the old rigid mechanical design of the robotic structure. This paper firstly establishes the static model of the sliding forces, the distortion of flexible bars and the driving torques of joints. Then, a method to reduce the sliding force by exerting a compensating angle to an active joint of the CCR is presented. The analyses and experimental results indicate that the flexible structure and the compensating angle method can reduce the sliding forces remarkably.

  2. High-Performance Flexible Force and Temperature Sensing Array with a Robust Structure

    Science.gov (United States)

    Kim, Min-Seok; Song, Han-Wook; Park, Yon-Kyu

    We have developed a flexible tactile sensor array capable of sensing physical quantities, e.g. force and temperature with high-performances and high spatial resolution. The fabricated tactile sensor consists of 8 × 8 force measuring array with 1 mm spacing and a thin metal (copper) temperature sensor. The flexible force sensing array consists of sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates benefits of both materials; the semi-conductor's high performance and the polymer's mechanical flexibility and robustness, while overcoming their drawbacks of those two materials. Special fabrication processes, so called “dry-transfer technique” have been used to fabricate the tactile sensor along with standard micro-fabrication processes.

  3. Adaptive Neuro-Fuzzy Inference System Models for Force Prediction of a Mechatronic Flexible Structure

    DEFF Research Database (Denmark)

    Achiche, S.; Shlechtingen, M.; Raison, M.

    2016-01-01

    This paper presents the results obtained from a research work investigating the performance of different Adaptive Neuro-Fuzzy Inference System (ANFIS) models developed to predict excitation forces on a dynamically loaded flexible structure. For this purpose, a flexible structure is equipped...... obtained from applying a random excitation force on the flexible structure. The performance of the developed models is evaluated by analyzing the prediction capabilities based on a normalized prediction error. The frequency domain is considered to analyze the similarity of the frequencies in the predicted...... of the sampling frequency and sensor location on the model performance is investigated. The results obtained in this paper show that ANFIS models can be used to set up reliable force predictors for dynamical loaded flexible structures, when a certain degree of inaccuracy is accepted. Furthermore, the comparison...

  4. Engaging environmental turbulence : Drivers of organizational flexibility in the armed forces

    NARCIS (Netherlands)

    de Waard, E.; Volberda, H.W.; Soeters, J.M.M.L.

    2013-01-01

    Since the transformation was set in motion to change Western armed forces from large-scale mechanized defensive organizations into smaller agile expeditionary crisis response forces, the call for organizational flexibility has rocketed. Yet, actual research into the key organizational drivers of

  5. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hanyung [Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Ve Cheah, Chang [Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Jeong, Namjo [Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon (Korea, Republic of); Lee, Junghoon, E-mail: jleenano@snu.ac.kr [Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-08-04

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm{sup 3} in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  6. Direct printing and reduction of graphite oxide for flexible supercapacitors

    Science.gov (United States)

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-08-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications.

  7. Direct printing and reduction of graphite oxide for flexible supercapacitors

    International Nuclear Information System (INIS)

    Jung, Hanyung; Ve Cheah, Chang; Jeong, Namjo; Lee, Junghoon

    2014-01-01

    We report direct printing and photo-thermal reduction of graphite oxide (GO) to obtain a highly porous pattern of interdigitated electrodes, leading to a supercapacitor on a flexible substrate. Key parameters optimized include the amount of GO delivered, the suitable photo-thermal energy level for effective flash reduction, and the substrate properties for appropriate adhesion after reduction. Tests with supercapacitors based on the printed-reduced GO showed performance comparable with commercial supercapacitors: the energy densities were 1.06 and 0.87 mWh/cm 3 in ionic and organic electrolytes, respectively. The versatility in the architecture and choice of substrate makes this material promising for smart power applications

  8. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  9. Flexibility.

    Science.gov (United States)

    Humphrey, L. Dennis

    1981-01-01

    Flexibility is an important aspect of all sports and recreational activities. Flexibility can be developed and maintained by stretching exercises. Exercises designed to develop flexibility in ankle joints, knees, hips, and the lower back are presented. (JN)

  10. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    Science.gov (United States)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  11. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.

    Science.gov (United States)

    Zhao, Liang; Deng, Xinyan; Sane, Sanjay P

    2011-09-01

    In diverse biological flight systems, the leading edge vortex has been implicated as a flow feature of key importance in the generation of flight forces. Unlike fixed wings, flapping wings can translate at higher angles of attack without stalling because their leading edge vorticity is more stable than the corresponding fixed wing case. Hence, the leading edge vorticity has often been suggested as the primary determinant of the high forces generated by flapping wings. To test this hypothesis, it is necessary to modulate the size and strength of the leading edge vorticity independently of the gross kinematics while simultaneously monitoring the forces generated by the wing. In a recent study, we observed that forces generated by wings with flexible trailing margins showed a direct dependence on the flexural stiffness of the wing. Based on that study, we hypothesized that trailing edge flexion directly influences leading edge vorticity, and thereby the magnitude of aerodynamic forces on the flexible flapping wings. To test this hypothesis, we visualized the flows on wings of varying flexural stiffness using a custom 2D digital particle image velocimetry system, while simultaneously monitoring the magnitude of the aerodynamic forces. Our data show that as flexion decreases, the magnitude of the leading edge vorticity increases and enhances aerodynamic forces, thus confirming that the leading edge vortex is indeed a key feature for aerodynamic force generation in flapping flight. The data shown here thus support the hypothesis that camber influences instantaneous aerodynamic forces through modulation of the leading edge vorticity.

  12. Force-controlled robotic assembly processes of rigid and flexible objects methodologies and applications

    CERN Document Server

    Ghalyan, Ibrahim Fahad Jasim

    2016-01-01

    This book provides comprehensive and integrated approaches for rigid and flexible object assembly. It presents comparison studies with the available force-guided robotic processes and covers contact-state modeling, scheme control strategies, and position searching algorithms. Further, it includes experimental validations for different assembly situations, including those for the assembly of industrial parts taken from the automotive industry. .

  13. Force measurements of flexible tandem wings in hovering and forward flights

    International Nuclear Information System (INIS)

    Zheng, Yingying; Wu, Yanhua; Tang, Hui

    2015-01-01

    Aerodynamic forces, power consumptions and efficiencies of flexible and rigid tandem wings undergoing combined plunging/pitching motion were measured in a hovering flight and two forward flights with Strouhal numbers of 0.6 and 0.3. Three flexible dragonfly-like tandem wing models termed Wing I, Wing II, and Wing III which are progressively less flexible, as well as a pair of rigid wings as the reference were operated at three phase differences of 0°, 90° and 180°. The results showed that both the flexibility and phase difference have significant effects on the aerodynamic performances. In both hovering and forward flights at a higher oscillation frequency of 1 Hz (St = 0.6), the Wing III model outperformed the other wing models with larger total horizontal force coefficient and efficiency. In forward flight at the lower frequency of 0.5 Hz (St = 0.3), Wing III, rigid wings and Wing II models performed best at 0°, 90° and 180° phase difference, respectively. From the time histories of force coefficients of fore- and hind-wings, different peak values, phase lags, and secondary peaks were found to be the important reasons to cause the differences in the average horizontal force coefficients. Particle image velocimetry and deformation measurements were performed to provide the insights into how the flexibility affects the aerodynamic performance of the tandem wings. The spanwise bending deformation was found to contribute to the horizontal force, by offering a more beneficial position to make LEV more attached to the wing model in both hovering and forward flights, and inducing a higher-velocity region in forward flight. (paper)

  14. Using Data Mining Approaches for Force Prediction of a Dynamically Loaded Flexible Structure

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Achiche, Sofiane; Lourenco Costa, Tiago

    2014-01-01

    -deterministic excitation forces with different excitation frequencies and amplitudes. Additionally, the influence of the sampling frequency and sensor location on the model performance is investigated. The results obtained in this paper show that most data mining approaches can be used, when a certain degree of inaccuracy...... of freedom and a force transducer for validation and training. The models are trained using data obtained from applying a random excitation force on the flexible structure. The performance of the developed models is evaluated by analyzing the prediction capabilities based on a normalized prediction error...

  15. Force-dominated non-equilibrium oxidation kinetics of tantalum

    International Nuclear Information System (INIS)

    Kar, Prasenjit; Wang, Ke; Liang, Hong

    2008-01-01

    Using a combined electrochemical and mechanical manipulation technique, we compared the equilibrium and non-equilibrium oxidation processes and states of tantalum. Experimentally, a setup was developed with an electrochemical system attached to a sliding mechanical configuration capable of friction force measurement. The surface chemistry of a sliding surface, i.e., tantalum, was modified through the electrolyte. The mechanically applied force was fixed and the dynamics of the surface was monitored in situ through a force sensor. The formation of non-equilibrium oxidation states of tantalum was found in oxidation limiting environment of acetic acid. An oxidative environment of deionized water saturated with KCl was used as comparison. We proposed a modified Arrhenius-Eyring equation in which the mechanical factor was considered. We found that the mechanical energy induced the non-stable-state reactions leading to metastable oxidation states of tantalum. This equation can be used to predict mechanochemical reactions that are important in many industrial applications

  16. Directed walk models of adsorbing semi-flexible polymers subject to an elongational force

    Energy Technology Data Exchange (ETDEWEB)

    Iliev, G K [Department of Mathematics and Statistics, University of Melbourne, Parkville (Australia); Orlandini, E [Dipartimento di Fisica, CNISM, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Whittington, S G [Department of Chemistry, University of Toronto, Toronto (Canada)

    2010-08-06

    We consider several directed path models of semi-flexible polymers. In each model we associate an energy parameter for every pair of adjacent collinear steps, allowing for a model of a polymer with tunable stiffness. We introduce weightings for vertices or edges in a distinguished plane to model the interaction of a semi-flexible polymer with an impenetrable surface. We also investigate the desorption of such a polymer under the influence of an elongational force and study the order of the associated phase transitions. Using a simple low-temperature theory, we approximate and study the ground state behaviour of the models.

  17. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    Science.gov (United States)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  18. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide.

    Science.gov (United States)

    Li, Yingru; Sheng, Kaixuan; Yuan, Wenjing; Shi, Gaoquan

    2013-01-11

    A fibre-shaped solid electrochemical capacitor based on electrochemically reduced graphene oxide has been fabricated, exhibiting high specific capacitance and rate capability, long cycling life and attractive flexibility.

  19. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  20. Highly flexible sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts.

    Science.gov (United States)

    He, Jie; Liu, Huiling; Xu, Biao; Wang, Xun

    2015-03-01

    Ultrathin tungsten oxide nanobelts are successfully synthesized via a facile solvothermal method. Sub-1 nm thickness and hydrophobic surface property endow the nanobelts with flexibility, viscosity, gelation, and good catalytic performance in oxidative desulfurization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor

    KAUST Repository

    Couly, Cedric; Alhabeb, Mohamed; Van Aken, Katherine L.; Kurra, Narendra; Gomes, Luisa; Navarro-Suá rez, Adriana M.; Anasori, Babak; Alshareef, Husam N.; Gogotsi, Yury

    2017-01-01

    -collector-free is reported. The interdigitated device architecture is fabricated using a custom-made mask and a scalable spray coating technique onto a flexible, transparent substrate. The electrode materials are comprised of titanium carbide MXene (Ti3C2Tx) and reduced

  2. Output Force Enhancement of Scratch Drive Actuator in Low-Voltage Region by Using Flexible Joint

    Directory of Open Access Journals (Sweden)

    Shawn CHEN

    2010-04-01

    Full Text Available Here a low-voltage scratch drive actuator (LVSDA is proposed by incorporating flexible joint into the conventional SDA to improve performance in low-voltage region. Experimental results show that, at the same total plate length of 80 mm and width of 65 mm, the proposed LVSDA can be actuated as low as 40 V, much lower than 80 V, the minimum required input voltage of the conventional SDA. From finite element analysis by CosmosWorks, yielding effect is found to be a critical factor. Before yielding, LVSDA can provide better performance than SDA at the same input voltage. However, the yielding stress in flexible joint would limit the achievable maximum output force in high-voltage region. By varying joint length, width, or location, LVSDA is shown to be operated in low-voltage region where the conventional SDA can not be operated, and can still provide comparable performance as SDA in high-voltage region.

  3. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    OpenAIRE

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-01-01

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object...

  4. Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays

    Science.gov (United States)

    Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg

    2018-02-01

    We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.

  5. Valence force fields and the lattice dynamics of beryllium oxide

    International Nuclear Information System (INIS)

    Ramani, R.; Mani, K.K.; Singh, R.P.

    1976-01-01

    The lattice dynamics of beryllium oxide have been studied using a rigid-ion model, with short-range forces represented by a valence force field. Various existing calculations on group-IV elements using such a field have been examined as a prelude to transference of force constants from diamond to beryllium oxide. The effects of ionicity on the force constants have been included in the form of scale factors. It is shown that no satisfactory fit to the long-wavelength data on BeO can be found with transferred force constants. However, adequate least-squares fits can be found both with four- and six-parameter valence force fields, the discrepancy with experiment being large only for one optical mode at the Brillouin-zone center. Dispersion curves along Δ and Σ are presented and are in fair agreement with experiment, deviations arising essentially from the quality of the fit to the long-wavelength data. The bond-bending interactions are found to play a significant role and arguments have been presented to show that the inclusion of further angle-angle interactions would yield a very satisfactory picture of the dynamics

  6. Epitaxial Lift-Off of Centimeter-Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics.

    Science.gov (United States)

    Shen, Lvkang; Wu, Liang; Sheng, Quan; Ma, Chunrui; Zhang, Yong; Lu, Lu; Ma, Ji; Ma, Jing; Bian, Jihong; Yang, Yaodong; Chen, Aiping; Lu, Xiaoli; Liu, Ming; Wang, Hong; Jia, Chun-Lin

    2017-09-01

    Mechanical flexibility of electronic devices has attracted much attention from research due to the great demand in practical applications and rich commercial value. Integration of functional oxide materials in flexible polymer materials has proven an effective way to achieve flexibility of functional electronic devices. However, the chemical and mechanical incompatibilities at the interfaces of dissimilar materials make it still a big challenge to synthesize high-quality single-crystalline oxide thin film directly on flexible polymer substrates. This study reports an improved method that is employed to successfully transfer a centimeter-scaled single-crystalline LiFe 5 O 8 thin film on polyimide substrate. Structural characterizations show that the transferred films have essentially no difference in comparison with the as-grown films with respect to the microstructure. In particular, the transferred LiFe 5 O 8 films exhibit excellent magnetic properties under various mechanical bending statuses and show excellent fatigue properties during the bending cycle tests. These results demonstrate that the improved transfer method provides an effective way to compose single-crystalline functional oxide thin films onto flexible substrates for applications in flexible and wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Flexible indium zinc oxide/Ag/indium zinc oxide multilayer electrode grown on polyethersulfone substrate by cost-efficient roll-to-roll sputtering for flexible organic photovoltaics

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki

    2010-01-01

    The authors describe the preparation and characteristics of flexible indium zinc oxide (IZO)-Ag-IZO multilayer electrodes grown on flexible polyethersulfone (PES) substrates using a roll-to-roll sputtering system for use in flexible organic photovoltaics. By the continuous roll-to-roll sputtering of the bottom IZO, Ag, and top IZO layers at room temperature, they were able to fabricate a high quality IZO-Ag-IZO multilayer electrode with a sheet resistance of 6.15 ε/square, optical transmittance of 87.4%, and figure of merit value of 42.03x10 -3 Ω -1 on the PES substrate. In addition, the IZO-Ag-IZO multilayer electrode exhibited superior flexibility to the roll-to-roll sputter grown single ITO electrode due to the existence of a ductile Ag layer between the IZO layers and stable amorphous structure of the IZO film. Furthermore, the flexible organic solar cells (OSCs) fabricated on the roll-to-roll sputter grown IZO-Ag-IZO electrode showed higher power efficiency (3.51%) than the OSCs fabricated on the roll-to-roll sputter grown single ITO electrode (2.67%).

  8. Characteristics of tungsten oxide thin films prepared on the flexible substrates using pulsed laser deposition

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyuu, Yoshihito

    2008-01-01

    Tungsten trioxide (WO 3 ) thin films have been prepared on the flexible indium tin oxide (ITO) substrates by pulsed laser deposition (PLD) using WO 3 targets in oxygen gas. Color of the WO 3 film on the flexible ITO substrates depends on the oxygen gas mixture. The plasma plume produced by PLD using a Nd:YAG laser and WO 3 target is investigated by temporal and spatial-resolved optical emission spectroscopy. WO 3 films prepared on the flexible ITO substrates show electrochromic properties, even when the substrates are bent. The film color changes from blue to transparent within 10-20 s after the applied DC voltage is turned off

  9. Evaluation of Flexible Force Sensors for Pressure Monitoring in Treatment of Chronic Venous Disorders.

    Science.gov (United States)

    Parmar, Suresh; Khodasevych, Iryna; Troynikov, Olga

    2017-08-21

    The recent use of graduated compression therapy for treatment of chronic venous disorders such as leg ulcers and oedema has led to considerable research interest in flexible and low-cost force sensors. Properly applied low pressure during compression therapy can substantially improve the treatment of chronic venous disorders. However, achievement of the recommended low pressure levels and its accurate determination in real-life conditions is still a challenge. Several thin and flexible force sensors, which can also function as pressure sensors, are commercially available, but their real-life sensing performance has not been evaluated. Moreover, no researchers have reported information on sensor performance during static and dynamic loading within the realistic test conditions required for compression therapy. This research investigated the sensing performance of five low-cost commercial pressure sensors on a human-leg-like test apparatus and presents quantitative results on the accuracy and drift behaviour of these sensors in both static and dynamic conditions required for compression therapy. Extensive experimental work on this new human-leg-like test setup demonstrated its utility for evaluating the sensors. Results showed variation in static and dynamic sensing performance, including accuracy and drift characteristics. Only one commercially available pressure sensor was found to reliably deliver accuracy of 95% and above for all three test pressure points of 30, 50 and 70 mmHg.

  10. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.; Kutbee, Arwa T.; Ghodsi Nasseri, Seyed Faizelldin; Bersuker, G.; Hussain, Muhammad Mustafa

    2014-01-01

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect

  11. Review of flexible and transparent thin-film transistors based on zinc oxide and related materials

    International Nuclear Information System (INIS)

    Zhang Yong-Hui; Mei Zeng-Xia; Liang Hui-Li; Du Xiao-Long

    2017-01-01

    Flexible and transparent electronics enters into a new era of electronic technologies. Ubiquitous applications involve wearable electronics, biosensors, flexible transparent displays, radio-frequency identifications (RFIDs), etc. Zinc oxide (ZnO) and relevant materials are the most commonly used inorganic semiconductors in flexible and transparent devices, owing to their high electrical performances, together with low processing temperatures and good optical transparencies. In this paper, we review recent advances in flexible and transparent thin-film transistors (TFTs) based on ZnO and relevant materials. After a brief introduction, the main progress of the preparation of each component (substrate, electrodes, channel and dielectrics) is summarized and discussed. Then, the effect of mechanical bending on electrical performance is highlighted. Finally, we suggest the challenges and opportunities in future investigations. (paper)

  12. Forced Flexibility and Exploitation: Experiences of Migrant Workers in the Cleaning Industry

    Directory of Open Access Journals (Sweden)

    Natalia Ollus

    2016-03-01

    Full Text Available Globalization has resulted in structural changes in the labor markets over the last decades. These changes have weakened some of the economic and social dimensions of work. At the same time, migration and especially labor migration have increased on the global level. This article looks at the situation of migrant workers in the cleaning industry in Finland. It is based on interviews with migrant workers who have experienced labor exploitation in the cleaning industry, representatives of cleaning industry employers, and representatives of labor unions. The primary aim is to give voice to the migrant workers themselves and to analyze how they experience their work and their position in working life. The findings suggest that there is a risk that migrant workers in the cleaning sector experience various forms of exploitation. This article argues that the demand and need for (employee flexibility may turn into forced flexibility that exploits the powerless and vulnerable migrant workers who have few other options than to agree to work on poor terms. The article suggests that the structural reasons that make the exploitation of migrant labor possible should be identified and addressed in order to prevent misuse of any workers, especially migrants.

  13. Highly transparent vanadium oxide-graded indium zinc oxide electrodes for flexible organic solar cells

    International Nuclear Information System (INIS)

    Ko, Eun-Hye; Kim, Han-Ki

    2016-01-01

    We investigated characteristics of amorphous V_2O_5-graded InZnO (IZO) films to use as a flexible anode for flexible organic solar cells (FOSCs). Graded sputtering of the V_2O_5 layer on the IZO layer produced V_2O_5-graded IZO anodes (VGIZO) with a sheet resistance of 42.14 Ω/square, a resistivity of 6.32 × 10"−"4 Ω cm, and an optical transmittance of 82.15%, as well as good mechanical flexibility. In addition, the VGIZO electrode showed a greater work function of 5.2 eV than that (4.9 eV) of an IZO anode, which is beneficial for hole extraction from an organic active layer. Due to the higher work function of the VGIZO electrodes, FOSCs fabricated on the flexible VGIZO anode exhibited a higher power conversion efficiency 2.753% than that of FOSCs on the IZO anode. This indicates that the V_2O_5 graded sputtering is a promising technique to increase the work function of the IZO anode without change in sheet resistance and transmittance. - Highlights: • Transparent and flexible V_2O_5 graded IZO (VGIZO) electrodes. • High work function of VGIZO electrodes • The VGIZO film is a promising flexible anode for flexible organic solar cells.

  14. Low Reflectivity and High Flexibility of Tin-Doped Indium Oxide Nanofiber Transparent Electrodes

    KAUST Repository

    Wu, Hui

    2011-01-12

    Tin-doped indium oxide (ITO) has found widespread use in solar cells, displays, and touch screens as a transparent electrode; however, two major problems with ITO remain: high reflectivity (up to 10%) and insufficient flexibility. Together, these problems severely limit the applications of ITO films for future optoelectronic devices. In this communication, we report the fabrication of ITO nanofiber network transparent electrodes. The nanofiber networks show optical reflectivity as low as 5% and high flexibility; the nanofiber networks can be bent to a radius of 2 mm with negligible changes in the sheet resistance. © 2010 American Chemical Society.

  15. All-Solution-Processed Metal-Oxide-Free Flexible Organic Solar Cells with Over 10% Efficiency.

    Science.gov (United States)

    Song, Wei; Fan, Xi; Xu, Bingang; Yan, Feng; Cui, Huiqin; Wei, Qiang; Peng, Ruixiang; Hong, Ling; Huang, Jiaming; Ge, Ziyi

    2018-05-16

    All-solution-processing at low temperatures is important and desirable for making printed photovoltaic devices and also offers the possibility of a safe and cost-effective fabrication environment for the devices. Herein, an all-solution-processed flexible organic solar cell (OSC) using poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) electrodes is reported. The all-solution-processed flexible devices yield the highest power conversion efficiency of 10.12% with high fill factor of over 70%, which is the highest value for metal-oxide-free flexible OSCs reported so far. The enhanced performance is attributed to the newly developed gentle acid treatment at room temperature that enables a high-performance PEDOT:PSS/plastic underlying substrate with a matched work function (≈4.91 eV), and the interface engineering that endows the devices with better interface contacts and improved hole mobility. Furthermore, the flexible devices exhibit an excellent mechanical flexibility, as indicated by a high retention (≈94%) of the initial efficiency after 1000 bending cycles. This work provides a simple route to fabricate high-performance all-solution-processed flexible OSCs, which is important for the development of printing, blading, and roll-to-roll technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  17. A flexible metallic actuator using reduced graphene oxide as a multifunctional component.

    Science.gov (United States)

    Meng, Junxing; Mu, Jiuke; Hou, Chengyi; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2017-09-14

    Flexible actuators are widely in demand for many real-life applications. Considering that existing actuators based on polymers, low-dimensional materials and pore-rich materials are mostly limited by slow response rate, high driving voltage and poor stability, we report here a novel metal based flexible actuator which is fabricated simply through partial oxidation and nano-function of copper foil with the assistance of reduced graphene oxide. The obtained asymmetric metallic actuator is (electric-)thermally driven and exhibits fast response rate (∼2 s) and large curvature (2.4 cm -1 ) under a low voltage (∼1 V) with a sustainable operation of up to ∼50 000 cycles. The actuator can also be triggered by infrared irradiation and direct-heating under various conditions including air, water, and vacuum.

  18. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance

    Science.gov (United States)

    Wang, Zhaohui; Tammela, Petter; Strømme, Maria; Nyholm, Leif

    2015-02-01

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes.A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07251k

  19. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    Science.gov (United States)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C. N.; Mihailescu, I. N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A. C.; Luculescu, C. R.; Craciun, V.

    2012-11-01

    The influence of target-substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10-4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  20. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    International Nuclear Information System (INIS)

    Wan, Wubo; Zhao, Zongbin; Hu, Han; Gogotsi, Yury; Qiu, Jieshan

    2013-01-01

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded

  1. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-06-09

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect to breakdown voltage and leakage current of the devices. We also report the effect of continuous mechanical stress on the breakdown voltage over extended periods of times.

  2. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens.

    Science.gov (United States)

    Cho, Seungse; Kang, Saewon; Pandya, Ashish; Shanker, Ravi; Khan, Ziyauddin; Lee, Youngsu; Park, Jonghwa; Craig, Stephen L; Ko, Hyunhyub

    2017-04-25

    Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm 2 ), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq -1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq -1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.

  3. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    Directory of Open Access Journals (Sweden)

    Umberto Cugini

    2013-10-01

    Full Text Available In this article, we present an approach that uses both two force sensitive handles (FSH and a flexible capacitive touch sensor (FCTS to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user’s fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape.

  4. Force sensitive handles and capacitive touch sensor for driving a flexible haptic-based immersive system.

    Science.gov (United States)

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-10-09

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user's fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape.

  5. Controlled manipulation of flexible carbon nanotubes through shape-dependent pushing by atomic force microscopy.

    Science.gov (United States)

    Yang, Seung-Cheol; Qian, Xiaoping

    2013-09-17

    A systematic approach to manipulating flexible carbon nanotubes (CNTs) has been developed on the basis of atomic force microscope (AFM) based pushing. Pushing CNTs enables efficient transport and precise location of individual CNTs. A key issue for pushing CNTs is preventing defective distortion in repetitive bending and unbending deformation. The approach presented here controls lateral movement of an AFM tip to bend CNTs without permanent distortion. The approach investigates possible defects caused by tensile strain of the outer tube under uniform bending and radial distortion by kinking. Using the continuum beam model and experimental bending tests, dependency of maximum bending strain on the length of bent CNTs and radial distortion on bending angles at a bent point have been demonstrated. Individual CNTs are manipulated by limiting the length of bent CNTs and the bending angle. In our approach, multiwalled CNTs with 5-15 nm diameter subjected to bending deformation produce no outer tube breakage under uniform bending and reversible radial deformation with bending angles less than 110°. The lateral tip movement is determined by a simple geometric model that relies on the shape of multiwalled CNTs. The model effectively controls deforming CNT length and bending angle for given CNT shape. Experimental results demonstrate successful manipulation of randomly dispersed CNTs without visual defects. This approach to pushing can be extended to develop a wide range of CNT based nanodevice applications.

  6. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2016-08-01

    Full Text Available Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications.

  7. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi

    2016-08-11

    Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications.

  8. The influence of simulated transversus abdominis muscle force on sacroiliac joint flexibility during asymmetric moment application to the pelvis.

    Science.gov (United States)

    Gnat, Rafael; Spoor, Kees; Pool-Goudzwaard, Annelies

    2015-10-01

    The role of so-called local muscle system in motor control of the lower back and pelvis is a subject of ongoing debate. Prevailing beliefs in stabilizing function of this system were recently challenged. This study investigated the impact of in vitro simulated force of transversely oriented fibres of the transversus abdominis muscle (a part of the local system) on flexibility of the sacroiliac joint during asymmetric moment application to the pelvis. In 8 embalmed specimens an incremental moment was applied in the sagittal plane to one innominate with respect to the fixed contralateral innominate. Ranges of motion of the sacroiliac joint were recorded using the Vicon Motion Capture System. Load-deformation curves were plotted and flexibility of the sacroiliac joint was calculated separately for anterior and posterior rotations of the innominate, with and without simulated muscle force. Flexibility of the sacroiliac joint was significantly bigger during anterior rotation of the innominate, as compared to posterior rotation (Anova Psacroiliac joint was demonstrated. Earlier hypotheses suggesting a stiffening influence of this muscle on the pelvis cannot be confirmed. Consistent with previous findings smaller flexibility of the joint recorded during posterior rotation of the innominate may be of clinical importance for physio- and manual therapists. However, major limitations of the study should be acknowledged: in vitro conditions and simulation of only solitary muscle force. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xing; Tang, Yao; Song, Junhua; Yang, Wei; Wang, Mingshan; Zhu, Chengzhou; Zhao, Wengao; Zheng, Jianming; Lin, Yuehe

    2018-04-30

    A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high- performance supercapacitor. The AC/CNT/RGO film is prepared by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrode for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. The AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g-1 at the current density of 0.2 A g-1, offering a maximum energy density of 30.0 W h kg-1 in organic electrolyte at the cut-off voltage range of 0.001~3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.

  10. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Science.gov (United States)

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  11. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens.

    Science.gov (United States)

    Wang, Jie; Liang, Minghui; Fang, Yan; Qiu, Tengfei; Zhang, Jin; Zhi, Linjie

    2012-06-05

    A novel strategy is developed for the large-scale fabrication of reduced graphene oxide films directly on flexible substrates in a controlled manner by the combination of a rod-coating technique and room-temperature reduction of graphene oxide. The as-prepared films display excellent uniformity, good transparency and conductivity, and great flexibility in a touch screen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Miniaturized Force Sensor Based on Hair-Like Flexible Magnetized Cylinders Deposited Over a Giant Magnetoresistive Sensor

    KAUST Repository

    Ribeiro, Pedro

    2017-06-13

    The detection of force with higher resolution than observed in humans (similar to 1 mN) is of great interest for emerging technologies, especially surgical robots, since this level of resolution could allow these devices to operate in extremely sensitive environments without harming these. In this paper, we present a force sensor fabricated with a miniaturized footprint (9 mm(2)), based on the detection of the magnetic field generated by magnetized flexible pillars over a giant magnetoresistive sensor. When these flexible pillars deflect due to external loads, the stray field emitted by these will change, thus varying the GMR sensor resistance. A sensor with an array of five pillars with 200 mu m diameter and 1 mm height was fabricated, achieving a 0 to 26 mN measurement range and capable of detecting a minimum force feature of 630 mu N. A simulation model to predict the distribution of magnetic field generated by the flexible pillars on the sensitive area of the GMR sensor in function of the applied force was developed and validated against the experimental results reported in this paper. The sensor was finally tested as a texture classification system, with the ability of differentiating between four distinct surfaces varying between 0 and 162 mu m root mean square surface roughness.

  13. A Miniaturized Force Sensor Based on Hair-Like Flexible Magnetized Cylinders Deposited Over a Giant Magnetoresistive Sensor

    KAUST Repository

    Ribeiro, Pedro; Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jü rgen; Franco, Fernando; Cardoso, Susana; Bernardino, Alexandre; Santos-Victor, Jose; Jamone, Lorenzo

    2017-01-01

    The detection of force with higher resolution than observed in humans (similar to 1 mN) is of great interest for emerging technologies, especially surgical robots, since this level of resolution could allow these devices to operate in extremely sensitive environments without harming these. In this paper, we present a force sensor fabricated with a miniaturized footprint (9 mm(2)), based on the detection of the magnetic field generated by magnetized flexible pillars over a giant magnetoresistive sensor. When these flexible pillars deflect due to external loads, the stray field emitted by these will change, thus varying the GMR sensor resistance. A sensor with an array of five pillars with 200 mu m diameter and 1 mm height was fabricated, achieving a 0 to 26 mN measurement range and capable of detecting a minimum force feature of 630 mu N. A simulation model to predict the distribution of magnetic field generated by the flexible pillars on the sensitive area of the GMR sensor in function of the applied force was developed and validated against the experimental results reported in this paper. The sensor was finally tested as a texture classification system, with the ability of differentiating between four distinct surfaces varying between 0 and 162 mu m root mean square surface roughness.

  14. Response prediction of long flexible risers subject to forced harmonic vibration

    OpenAIRE

    Riveros, Carlos Alberto; Utsunomiya, Tomoaki; Maeda, Katsuya; Itoh, Kazuaki

    2010-01-01

    Several research efforts have been directed toward the development of models for response prediction of flexible risers. The main difficulties arise from the fact that the dynamic response of flexible risers involves highly nonlinear behavior and a self-regulated process. This article presents a quasi-steady approach for response prediction of oscillating flexible risers. Amplitude-dependent lift coefficients are considered, as is an increased mean drag coefficient model during synchronizatio...

  15. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    International Nuclear Information System (INIS)

    Yeom, Seung-Won; Kim, Tan-Young; Ha, Hyeon Jun; Ju, Byeong-Kwon; Shin, Sang-Chul; Shim, Jae Won; Lee, Yun-Hi

    2016-01-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al 2 O 3 -based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400–800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al 2 O 3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole–Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al 2 O 3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices. (letter)

  16. Flexible indium-gallium-zinc-oxide Schottky diode operating beyond 2.45 GHz.

    Science.gov (United States)

    Zhang, Jiawei; Li, Yunpeng; Zhang, Binglei; Wang, Hanbin; Xin, Qian; Song, Aimin

    2015-07-03

    Mechanically flexible mobile phones have been long anticipated due to the rapid development of thin-film electronics in the last couple of decades. However, to date, no such phone has been developed, largely due to a lack of flexible electronic components that are fast enough for the required wireless communications, in particular the speed-demanding front-end rectifiers. Here Schottky diodes based on amorphous indium-gallium-zinc-oxide (IGZO) are fabricated on flexible plastic substrates. Using suitable radio-frequency mesa structures, a range of IGZO thicknesses and diode sizes have been studied. The results have revealed an unexpected dependence of the diode speed on the IGZO thickness. The findings enable the best optimized flexible diodes to reach 6.3 GHz at zero bias, which is beyond the critical benchmark speed of 2.45 GHz to satisfy the principal frequency bands of smart phones such as those for cellular communication, Bluetooth, Wi-Fi and global satellite positioning.

  17. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-02-29

    Thinned silicon based complementary metal oxide semiconductor(CMOS)electronics can be physically flexible. To overcome challenges of limited thinning and damaging of devices originated from back grinding process, we show sequential reactive ion etching of silicon with the assistance from soft polymeric materials to efficiently achieve thinned (40 μm) and flexible (1.5 cm bending radius) silicon based functional CMOSinverters with high-κ/metal gate transistors. Notable advances through this study shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using excimer laser. The impact of various mechanical bending and bending cycles show undeterred high performance of flexible siliconCMOSinverters. Future work will include transfer of diced silicon chips to destination site, interconnects, and packaging to obtain fully flexible electronic systems in CMOS compatible way.

  18. Transparent resistive switching memory using aluminum oxide on a flexible substrate

    Science.gov (United States)

    Yeom, Seung-Won; Shin, Sang-Chul; Kim, Tan-Young; Ha, Hyeon Jun; Lee, Yun-Hi; Shim, Jae Won; Ju, Byeong-Kwon

    2016-02-01

    Resistive switching memory (ReRAM) has attracted much attention in recent times owing to its fast switching, simple structure, and non-volatility. Flexible and transparent electronic devices have also attracted considerable attention. We therefore fabricated an Al2O3-based ReRAM with transparent indium-zinc-oxide (IZO) electrodes on a flexible substrate. The device transmittance was found to be higher than 80% in the visible region (400-800 nm). Bended states (radius = 10 mm) of the device also did not affect the memory performance because of the flexibility of the two transparent IZO electrodes and the thin Al2O3 layer. The conduction mechanism of the resistive switching of our device was explained by ohmic conduction and a Poole-Frenkel emission model. The conduction mechanism was proved by oxygen vacancies in the Al2O3 layer, as analyzed by x-ray photoelectron spectroscopy analysis. These results encourage the application of ReRAM in flexible and transparent electronic devices.

  19. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications.

    Science.gov (United States)

    Han, Kook In; Kim, Seungdu; Lee, In Gyu; Kim, Jong Pil; Kim, Jung-Ha; Hong, Suck Won; Cho, Byung Jin; Hwang, Wan Sik

    2017-02-19

    Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF's positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH) and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO's excellent sensing properties and SF's flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  20. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kook In Han

    2017-02-01

    Full Text Available Cylindrical silk fiber (SF was coated with Graphene oxide (GO for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF’s positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS, Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO’s excellent sensing properties and SF’s flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  1. A novel flexible capacitive touch pad based on graphene oxide film

    Science.gov (United States)

    Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Liu, Xuan; Zhang, Cang-Hai

    2013-01-01

    Recently, graphene oxide (GO) supercapacitors with ultra-high energy densities have received significant attention. In addition to energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as vibration and sound energy harvesting. Here, we experimentally create a macroscopic flexible capacitive touch pad based on GO film. An obvious touch ``ON'' to ``OFF'' voltage ratio up to ~60 has been observed. Moreover, we tested the capacitor structure on both flat and curved surfaces and it showed high response sensitivity under fast touch rates. Collectively, our results raise the exciting prospect that the realization of macroscopic flexible keyboards with large-area graphene based materials is technologically feasible, which may open up important applications in control and interface design for solar cells, speakers, supercapacitors, batteries and MEMS systems.

  2. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes.

    Science.gov (United States)

    Kim, Tae Gon; Park, Hye Jin; Woo, Kyoohee; Jeong, Sunho; Choi, Youngmin; Lee, Su Yeon

    2018-01-10

    In this work, the fabrication and application of highly conductive, robust, flexible, and oxidation-resistant Cu-Ni core-shell nanoparticle (NP)-based electrodes have been reported. Cu@Ni core-shell NPs with a tunable Ni shell thickness were synthesized by varying the Cu/Ni molar ratios in the precursor solution. Through continuous spray coating and flash photonic sintering without an inert atmosphere, large-area Cu@Ni NP-based conductors were fabricated on various polymer substrates. These NP-based electrodes demonstrate a low sheet resistance of 1.3 Ω sq -1 under an optical energy dose of 1.5 J cm -2 . In addition, they exhibit highly stable sheet resistances (ΔR/R 0 flexible heater fabricated from the Cu@Ni film is demonstrated, which shows uniform heat distribution and stable temperature compared to those of a pure Cu film.

  3. A novel flexible capacitive touch pad based on graphene oxide film.

    Science.gov (United States)

    Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Liu, Xuan; Zhang, Cang-Hai

    2013-02-07

    Recently, graphene oxide (GO) supercapacitors with ultra-high energy densities have received significant attention. In addition to energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as vibration and sound energy harvesting. Here, we experimentally create a macroscopic flexible capacitive touch pad based on GO film. An obvious touch "ON" to "OFF" voltage ratio up to ∼60 has been observed. Moreover, we tested the capacitor structure on both flat and curved surfaces and it showed high response sensitivity under fast touch rates. Collectively, our results raise the exciting prospect that the realization of macroscopic flexible keyboards with large-area graphene based materials is technologically feasible, which may open up important applications in control and interface design for solar cells, speakers, supercapacitors, batteries and MEMS systems.

  4. Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates

    Science.gov (United States)

    Banerjee, Indrani; Mahapatra, Santosh K.; Pal, Chandana; Sharma, Ashwani K.; Ray, Asim K.

    2018-05-01

    Room temperature hydrogen plasma treatment on solution processed 300 nm graphene oxide (GO) films on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates has been performed by varying the plasma power between 20 W and 60 W at a constant exposure time of 30 min with a view to examining the effect of plasma power on reduction of GO. X-ray powder diffraction (XRD) and Raman spectroscopic studies show that high energy hydrogen species generated in the plasma assist fast exfoliation of the oxygenated functional groups present in the GO samples. Significant decrease in the optical band gap is observed from 4.1 eV for untreated samples to 0.5 eV for 60 W plasma treated samples. The conductivity of the films treated with 60 W plasma power is estimated to be six orders of magnitude greater than untreated GO films and this enhancement of conductivity on plasma reduction has been interpreted in terms of UV-visible absorption spectra and density functional based first principle computational calculations. Plasma reduction of GO/ITO/PET structures can be used for efficiently tuning the electrical and optical properties of reduced graphene oxide (rGO) for flexible electronics applications.

  5. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes

    Science.gov (United States)

    Sheng, Jiazhen; Han, Ki-Lim; Hong, TaeHyun; Choi, Wan-Ho; Park, Jin-Seong

    2018-01-01

    The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors (TFTs), fabricating with atomic layer deposition (ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types (directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields. Project supported by the National Research Foundation of Korea (NRF) (No. NRF-2017R1D1A1B03034035), the Ministry of Trade, Industry & Energy (No. #10051403), and the Korea Semiconductor Research Consortium.

  6. Ultralight, Flexible, and Semi-Transparent Metal Oxide Papers for Photoelectrochemical Water Splitting

    DEFF Research Database (Denmark)

    Zhang, Minwei; Hou, Chengyi; Halder, Arnab

    2017-01-01

    nanostructure and macroscopic morphology of MOs that aims to enhance their performances, but the design and controlled synthesis of ultrafine nanostructured MOs in a cost-effective and facile way remains a challenge. In this work, we have exploited the advantages of intrinsic structures of graphene oxide (GO......) papers, serving as a sacrificial template, to design and synthesize two-dimensional (2D) layered and free-standing MO papers with ultrafine nanostructures. Physicochemical characterizations showed that these MO materials are nanostructured, porous, flexible, and ultralight. The as-synthesized materials...

  7. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wei, Yu-Hsuan; Chen, Chih-Sheng; Ma, Chen-Chi M.; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2014-01-01

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I 3 − to I − ) of redox electrolyte. In combination with a N719 dye-sensitized TiO 2 working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm −2 ). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%

  8. Hybrid ternary rice paper-manganese oxide-carbon nanotube nanocomposites for flexible supercapacitors

    Science.gov (United States)

    Jiang, Wenchao; Zhang, Kaixi; Wei, Li; Yu, Dingshan; Wei, Jun; Chen, Yuan

    2013-10-01

    Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two-electrode supercapacitors demonstrated high capacitance (260.2 F g-1), energy (9.0 W h kg-1), power (59.7 kW kg-1), and cycle stability (12% drop after 3000 cycles). In addition, the nanocomposites show good strength and excellent mechanical flexibility, and their capacitance shows negligible changes after bending more than 100 times. These findings suggest that opportunities exist to further explore the rich chemistry of cellulose fibers for innovative energy applications.Modern portable electronic devices create a strong demand for flexible energy storage devices. Paper based nanocomposites are attractive as sustainable materials for such applications. Here, we directly explored the hydroxyl chemistry of cellulose fibers to synthesize hybrid ternary nanocomposites, comprised of rice paper, single-walled carbon nanotubes (SWCNTs) and manganese oxide nanoparticles. The functional groups on cellulose fibers can react with adsorbed permanganate ions, resulting in uniform deposition of manganese oxide nanoparticles. SWCNTs coated on top of manganese oxide nanoparticles form a highly conductive network connecting individual manganese oxide particles. By using the hybrid ternary composites as electrodes, the assembled two

  9. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

    Science.gov (United States)

    Mönig, Harry; Amirjalayer, Saeed; Timmer, Alexander; Hu, Zhixin; Liu, Lacheng; Díaz Arado, Oscar; Cnudde, Marvin; Strassert, Cristian Alejandro; Ji, Wei; Rohlfing, Michael; Fuchs, Harald

    2018-05-01

    Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.

  10. Electrochemical characteristics of flexible micro supercapacitors with reduced graphene oxide-carbon nanotubes composite electrodes

    Science.gov (United States)

    Yang, Kyungwhan; Cho, Kyoungah; Kim, Sangsig

    2018-06-01

    In this study, we fabricate solid-state flexible micro-supercapacitors (MSCs) with reduced graphene oxide-carbon nanotube (rGO-CNT) composite electrodes and investigate the electrochemical characteristics by comparing with those of an MSC with rGO electrodes. Regarding the resistance-capacitance time constant and IR drop, the addition of CNTs into the rGO electrodes shows a significant effect owing to both the decrease in the resistance and the increase in the permeability of the electrolytes. Compared to the rGO MSCs, the rGO-CNT MSCs show an excellent areal capacitance of 2.6 mF/cm2, a smaller IR drop of 11 mV, a lower RC time constant of 6 ms, and faster charging/discharging rates with a high scan rate ability up to 100 V/s. The mechanical stability of the flexible rGO-CNT MSCs is verified by 1000 bending cycles. In addition, the electrochemical characteristics of the flexible rGO-CNT MSCs are maintained regardless of the MSC array type.

  11. Flexible bactericidal graphene oxide-chitosan layers for stem cell proliferation

    Science.gov (United States)

    Mazaheri, M.; Akhavan, O.; Simchi, A.

    2014-05-01

    Graphene oxide (GO)-chitosan composite layers with stacked layer structures were synthesized using chemically exfoliated GO sheets (with lateral dimensions of ˜1 μm and thickness of ˜1 nm), and applied as antibacterial and flexible nanostructured templates for stem cell proliferation. By increasing the GO content from zero to 6 wt%, the strength and elastic modulus of the layers increased ˜80% and 45%, respectively. Similar to the chitosan layer, the GO-chitosan composite layers showed significant antibacterial activity (>77% inactivation after only 3 h) against Staphylococcus aureus bacteria. Surface density of the actin cytoskeleton fibers of human mesenchymal stem cells (hMSCs) cultured on the chitosan and GO(1.5 wt%)-chitosan composite layers was found nearly the same, while it significantly decreased by increasing the GO content to 3 and 6 wt%. Our results indicated that although a high concentration of GO in the chitosan layer (here, 6 wt%) could decelerate the proliferation of the hMSCs on the flexible layer, a low concentration of GO (i.e., 1.5 wt%) not only resulted in biocompatibility but also kept the mechanical flexibility of the self-sterilized layers for high proliferation of hMSCs.

  12. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate

    Science.gov (United States)

    Ghoniem, Engy; Mori, Shinsuke; Abdel-Moniem, Ahmed

    2016-08-01

    A controlled high powered CO2 laser system is used to reduce and pattern graphene oxide (GO) film supported onto a flexible polyethylene terephthalate (PET) substrate. The laser reduced graphene oxide (rGO) film is characterized and evaluated electrochemically in the absence and presence of an overlying anodicaly deposited thin film of pseuodcapactive MnO2 as electrodes for supercapacitor applications using aqueous electrolyte. The laser treatment of the GO film leads to an overlapped structure of defective multi-layer rGO sheets with an electrical conductivity of 273 S m-1. The rGO and MnO2/rGO electrodes exhibit specific capacitance in the range of 82-107 and 172-368 Fg-1 at applied current range of 0.1-1.0 mA cm-2 and retain 98 and 95% of their initial capacitances after 2000 cycles at a current density of 1.0 mA cm-2, respectively. Also, the rGO is assigned as an electrode material for flexible conventionally stacked and interdigitated in-plane supercapacitor structures using gel electrolyte. Three electrode architectures of 2, 4, and 6 sub-electrodes are studied for the interdigital in-plane design. The device with interdigital 6 sub-electrodes architecture I-PS(6) delivers power density of 537.1 Wcm-3 and an energy density of 0.45 mWh cm-3.

  13. Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

    International Nuclear Information System (INIS)

    Sarker, Ashis K.; Hong, Jongdal

    2014-01-01

    In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layerby-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at 100 .deg. C, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-RGO 30 /PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-RGO 30 /PET electrode was found to be 529 F/cm 3 at a current density of 3 A/cm 3 , which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-RGO 30 /PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode

  14. Pulsed laser deposition of transparent conductive oxide thin films on flexible substrates

    International Nuclear Information System (INIS)

    Socol, G.; Socol, M.; Stefan, N.; Axente, E.; Popescu-Pelin, G.; Craciun, D.; Duta, L.; Mihailescu, C.N.; Mihailescu, I.N.; Stanculescu, A.; Visan, D.; Sava, V.; Galca, A.C.; Luculescu, C.R.; Craciun, V.

    2012-01-01

    Highlights: ► TCO thin films were grown by PLD on PET substrate at low temperature. ► We found that the quality of TCO on PET substrate depends on the target–substrate distance. ► TCO with high transparency (>95%) and reduced electrical resistivity (∼5 × 10 −4 Ω cm) were obtained. ► Optimized TCO films deposited on PET were free of any cracks. - Abstract: The influence of target–substrate distance during pulsed laser deposition of indium zinc oxide (IZO), indium tin oxide (ITO) and aluminium-doped zinc oxide (AZO) thin films grown on polyethylene terephthalate (PET) substrates was investigated. It was found that the properties of such flexible transparent conductive oxide (TCO)/PET electrodes critically depend on this parameter. The TCO films that were deposited at distances of 6 and 8 cm exhibited an optical transmittance higher than 90% in the visible range and electrical resistivities around 5 × 10 −4 Ω cm. In addition to these excellent electrical and optical characteristics the films grown at 8 cm distance were homogenous, smooth, adherent, and without cracks or any other extended defects, being suitable for opto-electronic device applications.

  15. Improvement of mechanical reliability by patterned silver/Indium-Tin-Oxide structure for flexible electronic devices

    International Nuclear Information System (INIS)

    Baek, Kyunghyun; Jang, Kyungsoo; Lee, Youn-Jung; Ryu, Kyungyul; Choi, Woojin; Kim, Doyoung; Yi, Junsin

    2013-01-01

    We report the effect of silver (Ag)-buffer layer Indium-Tin-Oxide (ITO) film on a polyethylene terephthalate substrate on the electrical, optical and reliable properties for transparent–flexible displays. The electrical and optical characteristics of an ITO-only film and an Ag-layer-inserted ITO film are measured and compared to assess the applicability of the triple layered structure in flexible displays. The sheet resistance, the resistivity and the light transmittance of the ITO-only film were 400 Ω/sq, 1.33 × 10 −3 Ω-cm and 99.2%, while those of the ITO film inserted with a 10 nm thick Ag layer were 165 Ω/sq, 4.78 × 10 −4 Ω-cm and about 97%, respectively. To evaluate the mechanical reliability of the different ITO films, bending tests were carried out. After the dynamic bending test of 900 cycles, the sheet resistance of the ITO film inserted with the Ag layer changed from 154 Ω/sq to 475 Ω/sq, about a 3-time increase but that of the ITO-only film changed from 400 Ω/sq to 61,986 Ω/sq, about 150-time increase. When the radius is changed from 25 mm to 20 mm in the static bending test, the sheet resistance of the ITO-only film changed from 400 to 678.3 linearly whereas that of the Ag-layer inserted ITO film changed a little from 154.4 to 154.9. These results show that Ag-layer inserted ITO film had better mechanical characteristics than the ITO-only film. - Highlights: ► Transparent flexible electrode fabricated on glass substrate. ► Electrode fabricated using vertically-patterned design on glass substrate. ► Optimization of the vertical patterns ► Application of the vertically-patterned electrode in transparent–flexible electronics

  16. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  17. The Influence of Chordwise Flexibility on the Flow Structure and Streamwise Force of a Sinusoidally Pitching Airfoil

    Science.gov (United States)

    Olson, David Arthur

    Many natural flyers and swimmers need to exploit unsteady mechanisms in order to generate sufficient aerodynamic forces for sustained flight and propulsion. This is, in part, due to the low speed and length scales at which they typically operate. In this low Reynolds number regime, there are many unanswered questions on how existing aerodynamic theory for both steady and unsteady flows can be applied. Additionally, most of these natural flyers and swimmers have deformable wing/fin structures, three dimensional wing planforms, and exhibit complex kinematics during motion. While some biologically-inspired studies seek to replicate these complex structures and kinematics in the laboratory or in numerical simulations, it becomes difficult to draw explicit connections to the existing knowledge base of classical unsteady aerodynamic theory due to the complexity of the problems. In this experimental study, wing kinematics, structure, and planform are greatly simplified to investigate the effect of chordwise flexibility on the streamwise force (thrust) and wake behavior of a sinusoidally pitching airfoil. The study of flexibility in the literature has typically utilized flat plates with varying thicknesses or lengths to change their chordwise flexibility. This choice introduces additional complexities when comparing to the wealth of knowledge originally developed on streamlined aerodynamic shapes. The current study capitalizes on the recent developments in 3D printer technology to create accurate shapes out of materials with varying degrees of flexibility by creating two standard NACA 0009 airfoils: one rigid and one flexible. Each of the two airfoils are sinusoidally pitched about the quarter chord over a range of oscillation amplitudes and frequencies while monitoring the deformation of the airfoil. The oscillation amplitude is selected to be small enough such that leading edge vortices do not form, and the vortical structures in the wake are formed from the trailing

  18. Expanded Air Force Physical Fitness Battery: Muscle Strength, Muscle Endurance, and Flexibility Considered. Workshop Proceedings

    National Research Council Canada - National Science Library

    Palmer, Barbara

    1997-01-01

    This Proceedings document summarizes the discussion that took place during the Expanded Physical Fitness Workshop, sponsored by the US Air Force Office for Prevention and Health Services Assessment...

  19. Finite Element Analysis for Active-force Control on Vibration of a Flexible Single-link Manipulator

    Directory of Open Access Journals (Sweden)

    Abdul Kadir Muhammad

    2015-10-01

    Full Text Available The purposes of this research are to formulate the equations of motion of the system, to develop computational codes by a finite element analysis in order to perform dynamics simulation with vibration control, to propose an effective control scheme using active-force (AF control a flexible single-link manipulator. The system used in this paper consists of an aluminum beam as a flexible link, a clamp-part, a servo motor to rotate the link and a piezoelectric actuator to control vibration. Computational codes on time history responses, FFT (Fast Fourier Transform processing and eigenvalues-eigenvectors analysis were developed to calculate dynamic behavior of the link. Furthermore, the AF control was designed to drive the piezoelectric actuator. Calculated results have revealed that the vibration of the system can be suppressed effectively.

  20. Finite Element Analysis for Active-force Control on Vibration of a Flexible Single-link Manipulator

    Directory of Open Access Journals (Sweden)

    Abdul Kadir Muhammad

    2017-03-01

    Full Text Available The purposes of this research are to formulate theequations of motion of the system, to develop computationalcodes by a finite element analysis in order to perform dynamicssimulation with vibration control, to propose an effective controlscheme using active-force (AF control a flexible single-linkmanipulator. The system used in this paper consists of analuminum beam as a flexible link, a clamp-part, a servo motor torotate the link and a piezoelectric actuator to control vibration.Computational codes on time history responses, FFT (FastFourier Transform processing and eigenvalues-eigenvectorsanalysis were developed to calculate dynamic behavior of thelink. Furthermore, the AF control was designed to drive thepiezoelectric actuator. Calculated results have revealed that thevibration of the system can be suppressed effectively

  1. The Air Force Air Program and Information Management System (APIMS): A flexible tool for managing your Title V Operating Permits

    Energy Technology Data Exchange (ETDEWEB)

    Weston, A.A.; Gordon, S.R.

    1999-07-01

    The Air Force Command Core System (CCS) is an integrated, activity-based risk management system designed to support the information needs of Environment, Safety, and Occupational Health (ESOH) professionals. These professionals are responsible for managing a complex and often dynamic set of requirements, and therefore, have a need for an information system that can readily be customized to meet their specific needs. This dynamic environment also drives the need for flexibility in the system. The Air Program Information Management System (APIMS) is a module within CCS designed to not only manage permit compliance and emission inventories, but also support the monitoring, recordkeeping, and reporting requirements related to air quality issues. This paper will describe the underlying foundation of CCS, the information linkages within the database, and then summarize the functionality available within the APIMS module to support the Air Quality Managers' information needs, placing emphasis on the flexibility the system provides to manage Title V Operating Permits.

  2. High performance flexible metal oxide/silver nanowire based transparent conductive films by a scalable lamination-assisted solution method

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2017-03-01

    Full Text Available Flexible MoO3/silver nanowire (AgNW/MoO3/TiO2/Epoxy electrodes with comparable performance to ITO were fabricated by a scalable solution-processed method with lamination assistance for transparent and conductive applications. Silver nanoparticle-based electrodes were also prepared for comparison. Using a simple spin-coating and lamination-assisted planarization method, a full solution-based approach allows preparation of AgNW-based composite electrodes at temperatures as low as 140 °C. The resulting flexible AgNW-based electrodes exhibit higher transmittance of 82% at 550 nm and lower sheet resistance about 12–15 Ω sq−1, in comparison with the values of 68% and 22–25 Ω sq−1 separately for AgNP based electrodes. Scanning electron microscopy (SEM and Atomic force microscopy (AFM reveals that the multi-stacked metal-oxide layers embedded with the AgNWs possess lower surface roughness (<15 nm. The AgNW/MoO3 composite network could enhance the charge transport and collection efficiency by broadening the lateral conduction range due to the built of an efficient charge transport network with long-sized nanowire. In consideration of the manufacturing cost, the lamination-assisted solution-processed method is cost-effective and scalable, which is desire for large-area fabrication. While in view of the materials cost and comparable performance, this AgNW-based transparent and conductive electrodes is potential as an alternative to ITO for various optoelectronic applications.

  3. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie

    2017-09-29

    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  4. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor

    Directory of Open Access Journals (Sweden)

    Yanzhi Zhao

    2017-09-01

    Full Text Available By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  5. Effects of torus wall flexibility on forces in the Mark I Boiling Water Reactor Pressure Suppression System. Part I

    International Nuclear Information System (INIS)

    Martin, R.W.; McCauley, E.W.

    1977-09-01

    The authors investigated the effects of torus wall flexibility in the pressure suppression system of a Mark I boiling water reactor (BWR) when the torus wall is subjected to hydrodynamic loadings. Using hypothetical models, they examined these flexibility effects under two hydrodynamic loading conditions: (1) a steam relief valve (SRV) discharge pulse, and (2) a loss-of-coolant accident (LOCA) chugging pulse. In the analyses of these events they used a recently developed two-dimensional finite element computer code. Taking the basic geometry and dimensions of the Monticello Mark I BWR nuclear power plant (in Monticello, Minnesota, U.S.A.), they assessed the effects of flexibility in the torus wall by changing values of the inside-diameter-to-wall-thickness ratio. Varying the torus wall thickness (t) with respect to the inside diameter (D) of the torus, they assigned values to the ratio D/t ranging from 0 (infinitely rigid) to 600 (highly flexible). In the case of a modeled steam relief valve (SRV) discharge pulse, they found the peak vertical reaction force on the torus was reduced from that of a rigid wall response by a factor of 3 for the most highly flexible, plant-simulated wall (D/t = 600). The reduction factor for a modeled loss-of-coolant accident (LOCA) chugging pulse was shown to be 1.5. The two-dimensional analyses employed overestimate these reduction factors but have provided, as intended, definition of the effect of torus boundary stiffness. In the work planned for FY79, improved modeling of the structure and of the source is expected to result in factors more directly applicable to actual pressure suppression systems

  6. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well.

  7. Flexible organic light-emitting diodes consisting of a platinum doped indium tin oxide anode

    International Nuclear Information System (INIS)

    Hsu, C-M; Huang, C-Y; Cheng, H-E; Wu, W-T

    2009-01-01

    This paper demonstrates that a flexible organic light-emitting diode (OLED) with a platinum (Pt)-doped indium tin oxide (ITO) anode could show superior electro-optical characteristics to those of a conventional device. The threshold voltage and turn-on voltage of an OLED device consisting of an aluminium/lithium fluoride/tris(8-hydroxyquinoline) aluminium/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4, 4'-diamine/Pt-doped ITO/ITO structure were reduced by 1.2 V and 0.8 V, respectively. Current efficiency was found improved for a driving voltage of less than 6.5 V as a result of the enhanced hole-injection rate, attributed mainly to the elevated surface work function and partly reduced surface roughness of ITO by the incorporated Pt atoms in the ITO matrix.

  8. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Directory of Open Access Journals (Sweden)

    Yi-Man Lo

    2011-02-01

    Full Text Available Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM, with the relevant parameters optimized as well.

  9. Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide

    International Nuclear Information System (INIS)

    Fan Xing; Chu Zengze; Chen Lin; Zhang Chao; Wang Fuzhi; Tang Yanwei; Sun Jianliang; Zou Dechun

    2008-01-01

    We have explored a type of all-solid fibrous flexible dye-sensitized solar cells without transparent conducting oxide based on a CuI electrolyte. The working electrode's substrate is a metal wire. Cu wire counterelectrode is twisted with the dye-sensitized and CuI-coated working electrode. The cell's apparent diameter is about 150 μm. The cell's current-voltage output depends little on the incident angle of light. A 4-cm-long fibrous cell's open-circuit voltage and short-circuit current generate 304 mV and 0.032 mA, respectively. The interfacial interaction between the two electrodes has a significant influence on the inner charge transfer of the cell

  10. Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices

    International Nuclear Information System (INIS)

    Sierros, Konstantinos A.; Morris, Nicholas J.; Ramji, Karpagavalli; Cairns, Darran R.

    2009-01-01

    Stress corrosion cracking of transparent conductive layers of indium tin oxide (ITO), sputtered on polyethylene terephthalate (PET) substrates, is an issue of paramount importance in flexible optoelectronic devices. These components, when used in flexible device stacks, can be in contact with acid containing pressure-sensitive adhesives or with conductive polymers doped in acids. Acids can corrode the brittle ITO layer, stress can cause cracking and delamination, and stress-corrosion cracking can cause more rapid failure than corrosion alone. The combined effect of an externally-applied mechanical stress to bend the device and the corrosive environment provided by the acid is investigated in this work. We show that acrylic acid which is contained in many pressure-sensitive adhesives can cause corrosion of ITO coatings on PET. We also investigate and report on the combined effect of external mechanical stress and corrosion on ITO-coated PET composite films. Also, it is shown that the combination of stress and corrosion by acrylic acid can cause ITO cracking to occur at stresses less than a quarter of those needed for failure with no corrosion. In addition, the time to failure, under ∼ 1% tensile strain can reduce the total time to failure by as much as a third

  11. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures

    Science.gov (United States)

    Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun

    2012-03-01

    A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ~1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.

  12. Probing the interactions between lignin and inorganic oxides using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyu; Qian, Yong, E-mail: qianyong86@163.com; Deng, Yonghong; Liu, Di; Li, Hao; Qiu, Xueqing, E-mail: xueqingqiu66@163.com

    2016-12-30

    Graphical abstract: The interactions between lignin and inorganic oxides are quantitatively probed by atomic force microscopy, which is fundamental but beneficial for understanding and optimizing the absorption-dispersion and catalytic degradation processes of lignin. - Highlights: • The interactions between lignin and inorganic oxides are measured using AFM. • The adhesion forces between lignin and metal oxides are larger than that in nonmetal systems. • Hydrogen bond plays an important role in lignin-inorganic oxides system. - Abstract: Understanding the interactions between lignin and inorganic oxides has both fundamental and practical importance in industrial and energy fields. In this work, the specific interactions between alkali lignin (AL) and three inorganic oxide substrates in aqueous environment are quantitatively measured using atomic force microscopy (AFM). The results show that the average adhesion force between AL and metal oxide such as Al{sub 2}O{sub 3} or MgO is nearly two times bigger than that between AL and nonmetal oxide such as SiO{sub 2} due to the electrostatic difference and cation-π interaction. When 83% hydroxyl groups of AL is blocked by acetylation, the adhesion forces between AL and Al{sub 2}O{sub 3}, MgO and SiO{sub 2} decrease 43, 35 and 75% respectively, which indicate hydrogen bonds play an important role between AL and inorganic oxides, especially in AL-silica system.

  13. Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jie; Minh, Nguyen

    2007-02-21

    This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.

  14. The Influence of Flexibility Coefficient on the Size of Internal Forces and Deformations in Circular Plates on Elastic Medium

    Directory of Open Access Journals (Sweden)

    Şandru Mirela

    2016-09-01

    Full Text Available This paper presents an analytical study which deals with the behavior of the circular plates in bending theory, considering the soil-structure interaction under Winkler's hypothesis. It was intended to illustrate the variation of internal forces and deformations according to the flexibility coefficient of plates considering three models: a fixed solid circular plate subjected to a uniformly distributed load, a fixed solid circular plate acted by a displacement applied on the exterior contour and a solid plate subjected to a temperature gradient. For this study the computation relations were written as a product between a dimensional and a non-dimensional factor, the last one indicating the variation of internal forces and deformations. For each type of action there are presented results obtained using the finite element method to illustrate the differences between this method and the analytical computation.

  15. Synthesis of reduced graphene oxide/ZnO nanorods composites on graphene coated PET flexible substrates

    International Nuclear Information System (INIS)

    Huang, Lei; Guo, Guilue; Liu, Yang; Chang, Quanhong; Shi, Wangzhou

    2013-01-01

    Graphical abstract: - Highlights: • ZnO nanorods synthesized on CVD-graphene and rGO surfaces, respectively. • ZnO/CVD-graphene and ZnO/rGO form a distinctive porous 3D structure. • rGO/ZnO nanostructures possibility in energy storage devices. - Abstract: In this work, reduced graphene oxide (rGO)/ZnO nanorods composites were synthesized on graphene coated PET flexible substrates. Both chemical vapor deposition (CVD) graphene and reduced graphene oxide (rGO) films were prepared following by hydrothermal growth of vertical aligned ZnO nanorods. Reduced graphene sheets were then spun coated on the ZnO materials to form a three dimensional (3D) porous nanostructure. The morphologies of the ZnO/CVD graphene and ZnO/rGO were investigated by SEM, which shows that the ZnO nanorods grown on rGO are larger in diameters and have lower density compared with those grown on CVD graphene substrate. As a result of fact, the rough surface of nano-scale ZnO on rGO film allows rGO droplets to seep into the large voids of ZnO nanorods, then to form the rGO/ZnO hierarchical structure. By comparison of the different results, we conclude that rGO/ZnO 3D nanostructure is more desirable for the application of energy storage devices

  16. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K

    Science.gov (United States)

    Li, Tian; Pickel, Andrea D.; Yao, Yonggang; Chen, Yanan; Zeng, Yuqiang; Lacey, Steven D.; Li, Yiju; Wang, Yilin; Dai, Jiaqi; Wang, Yanbin; Yang, Bao; Fuhrer, Michael S.; Marconnet, Amy; Dames, Chris; Drew, Dennis H.; Hu, Liangbing

    2018-02-01

    The development of ultrahigh-temperature thermoelectric materials could enable thermoelectric topping of combustion power cycles as well as extending the range of direct thermoelectric power generation in concentrated solar power. However, thermoelectric operation temperatures have been restricted to under 1,500 K due to the lack of suitable materials. Here, we demonstrate a thermoelectric conversion material based on high-temperature reduced graphene oxide nanosheets that can perform reliably up to 3,000 K. After a reduction treatment at 3,300 K, the nanosheet film exhibits an increased conductivity to 4,000 S cm-1 at 3,000 K and a high power factor S2σ = 54.5 µW cm-1 K-2. We report measurements characterizing the film's thermoelectric properties up to 3,000 K. The reduced graphene oxide film also exhibits a high broadband radiation absorbance and can act as both a radiative receiver and a thermoelectric generator. The printable, lightweight and flexible film is attractive for system integration and scalable manufacturing.

  17. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    Science.gov (United States)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  18. Flexible Pressure Sensor Based on PVDF Nanocomposites Containing Reduced Graphene Oxide-Titania Hybrid Nanolayers

    Directory of Open Access Journals (Sweden)

    Aisha Al-Saygh

    2017-01-01

    Full Text Available A novel flexible nanocomposite pressure sensor with a tensile strength of about 47 MPa is fabricated in this work. Nanolayers of titanium dioxide (titania nanolayers, TNL synthesized by hydrothermal method are used to reinforce the polyvinylidene fluoride (PVDF by simple solution mixing. A hybrid composite is prepared by incorporating the TNL (2.5 wt % with reduced graphene oxide (rGO (2.5 wt % synthesized by improved graphene oxide synthesis to form a PVDF/rGO-TNL composite. A comparison between PVDF, PVDF/rGO (5 wt %, PVDF/TNL (5 wt % and PVDF/rGO-TNL (total additives 5 wt % samples are analyzed for their sensing, thermal and dielectric characteristics. The new shape of additives (with sharp morphology, good interaction and well distributed hybrid additives in the matrix increased the sensitivity by 333.46% at 5 kPa, 200.7% at 10.7 kPa and 246.7% at 17.6 kPa compared to the individual PVDF composite of TNL, confirming its possible application in fabricating low cost and light weight pressure sensing devices and electronic devices with reduced quantity of metal oxides. Increase in the β crystallinity percentage and removal of α phase for PVDF was detected for the hybrid composite and linked to the improvement in the mechanical properties. Tensile strength for the hybrid composite (46.91 MPa was 115% higher than that of the neat polymer matrix. Improvement in the wettability and less roughness in the hybrid composites were observed, which can prevent fouling, a major disadvantage in many sensor applications.

  19. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide

    NARCIS (Netherlands)

    Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C.

    2016-01-01

    Flexible large-area organic light-emitting diodes (OLEDs) require highly conductive and transparent anodes for efficient and uniform light emission. Tin-doped indium oxide (ITO) is the standard anode in industry. However, due to the scarcity of indium, alternative anodes that eliminate its use are

  20. Coordinated balancing of muscle oxidative metabolism through PGC-1{alpha} increases metabolic flexibility and preserves insulin sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Summermatter, Serge [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Troxler, Heinz [Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University Children' s Hospital, University of Zurich, Steinwiesstrasse 75, CH-8032 Zurich (Switzerland); Santos, Gesa [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland); Handschin, Christoph, E-mail: christoph.handschin@unibas.ch [Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel (Switzerland)

    2011-04-29

    Highlights: {yields} PGC-1{alpha} enhances muscle oxidative capacity. {yields} PGC-1{alpha} promotes concomitantly positive and negative regulators of lipid oxidation. {yields} Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. {yields} Balanced oxidation prevents detrimental acylcarnitine and ROS generation. {yields} Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1{alpha} on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1{alpha} in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1{alpha} induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1{alpha} enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1{alpha} boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1{alpha} coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1{alpha} does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1{alpha} mimic the beneficial effects of endurance training

  1. Coordinated balancing of muscle oxidative metabolism through PGC-1α increases metabolic flexibility and preserves insulin sensitivity

    International Nuclear Information System (INIS)

    Summermatter, Serge; Troxler, Heinz; Santos, Gesa; Handschin, Christoph

    2011-01-01

    Highlights: → PGC-1α enhances muscle oxidative capacity. → PGC-1α promotes concomitantly positive and negative regulators of lipid oxidation. → Regulator abundance enhances metabolic flexibility and balances oxidative metabolism. → Balanced oxidation prevents detrimental acylcarnitine and ROS generation. → Absence of detrimental metabolites preserves insulin sensitivity -- Abstract: The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) enhances oxidative metabolism in skeletal muscle. Excessive lipid oxidation and electron transport chain activity can, however, lead to the accumulation of harmful metabolites and impair glucose homeostasis. Here, we investigated the effect of over-expression of PGC-1α on metabolic control and generation of insulin desensitizing agents in extensor digitorum longus (EDL), a muscle that exhibits low levels of PGC-1α in the untrained state and minimally relies on oxidative metabolism. We demonstrate that PGC-1α induces a strictly balanced substrate oxidation in EDL by concomitantly promoting the transcription of activators and inhibitors of lipid oxidation. Moreover, we show that PGC-1α enhances the potential to uncouple oxidative phosphorylation. Thereby, PGC-1α boosts elevated, yet tightly regulated oxidative metabolism devoid of side products that are detrimental for glucose homeostasis. Accordingly, PI3K activity, an early phase marker for insulin resistance, is preserved in EDL muscle. Our findings suggest that PGC-1α coordinately coactivates the simultaneous transcription of gene clusters implicated in the positive and negative regulation of oxidative metabolism and thereby increases metabolic flexibility. Thus, in mice fed a normal chow diet, over-expression of PGC-1α does not alter insulin sensitivity and the metabolic adaptations elicited by PGC-1α mimic the beneficial effects of endurance training on muscle metabolism in this context.

  2. Highly flexible indium zinc oxide electrode grown on PET substrate by cost efficient roll-to-roll sputtering process

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki; Jeong, Soon-Wook; Cho, Woon-Jo

    2010-01-01

    We have investigated the characteristics of flexible indium zinc oxide (IZO) electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll (RTR) sputtering system for use in flexible optoelectronics. It was found that both electrical and optical properties of the flexible IZO electrode were critically dependent on the DC power and Ar/O 2 flow ratio during the roll-to-roll sputtering process. At optimized conditions (constant working pressure of 3 mTorr, Ar/O 2 flow ratio of Ar at only 30 sccm, DC power 800 W and rolling speed at 0.1 cm/s) the flexible IZO electrode exhibits a sheet resistance of 17.25 Ω/sq and an optical transmittance of 89.45% at 550 nm wavelength. Due to the low PET substrate temperature, which is effectively maintained by cooling drum system, all IZO electrodes showed an amorphous structure regardless of the DC power and Ar/O 2 flow ratio. Furthermore, the IZO electrodes grown at optimized condition exhibited superior flexibility than the conventional amorphous ITO electrodes due to its stable amorphous structure. This indicates that the RTR sputter grown IZO electrode is a promising flexible electrode that can substitute for the conventional ITO electrode, due to its low resistance, high transparency, superior flexibility and fast preparation by the RTR process.

  3. Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

    Science.gov (United States)

    Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.

    2018-04-01

    The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.

  4. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks.

    Science.gov (United States)

    Purkait, Taniya; Singh, Guneet; Kumar, Dinesh; Singh, Mandeep; Dey, Ramendra Sundar

    2018-01-12

    A simple approach for growing porous electrochemically reduced graphene oxide (pErGO) networks on copper wire, modified with galvanostatically deposited copper foam is demonstrated. The as-prepared pErGO networks on the copper wire are directly used to fabricate solid-state supercapacitor. The pErGO-based supercapacitor can deliver a specific capacitance (C sp ) as high as 81±3 F g -1 at 0.5 A g -1 with polyvinyl alcohol/H 3 PO 4 gel electrolyte. The C sp per unit length and area are calculated as 40.5 mF cm -1 and 283.5 mF cm -2 , respectively. The shape of the voltammogram retained up to high scan rate of 100 V s -1 . The pErGO-based supercapacitor device exhibits noticeably high charge-discharge cycling stability, with 94.5% C sp retained even after 5000 cycles at 5 A g -1 . Nominal change in the specific capacitance, as well as the shape of the voltammogram, is observed at different bending angles of the device even after 5000 cycles. The highest energy density of 11.25 W h kg -1 and the highest power density of 5 kW kg -1 are also achieved with this device. The wire-based supercapacitor is scalable and highly flexible, which can be assembled with/without a flexible substrate in different geometries and bending angles for illustrating promising use in smart textile and wearable device.

  5. Highly flexible transparent thin film heaters based on silver nanowires and aluminum zinc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hahn-Gil; Kim, Jin-Hoon; Song, Jun-Hyuk; Jeong, Unyong; Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr

    2015-08-31

    In this work, we developed highly flexible transparent film heaters (f-TFHs) composed of Ag nanowire networks (AgNWs) and aluminum zinc oxide (AZO). Uniform AgNWs were roll-to-roll coated on polyethylene terephthalate (PET) substrates using the Mayer rod method, and AZO was sputter-deposited atop the AgNWs at room temperature. The sheet resistance (R{sub s}) and transparency (T{sub opt}) of the AZO-coated AgNWs changed only slightly compared with the uncoated AgNWs. AZO is thermally less conductive than the heat pipes, but increases the thermal efficiency of the heaters blocking the heat convection through the air. Based on Joule heating, a higher average film temperature (T{sub ave}) is attained at a fixed electric potential drop between electrodes (ϕ) as the R{sub s} of the film decreases. Our experimental results revealed that T{sub ave} of the hybrid f-TFH is higher than AgNWs when the ratio of the area coverage of AgNWs to AZO is over a certain value. When a ϕ as low as 3 V/cm was applied to 5 cm × 5 cm f-TFHs, the maximum temperature of the hybrid film was over 100 °C, which is greater than that of AgNWs by more than 30 °C. Furthermore, uniform heating throughout the surfaces is achieved in the hybrid films while heating begins in small areas where densities of the nanowires (NWs) are the highest in the bare network. The non-uniform heating decreases the lifetime of f-TFHs by forming hot spots. Cyclic bending test results indicated that the hybrid films were as flexible as the AgNWs, and the R{sub s} of the hybrid films changes only slightly until 5000 cycles. Combined with the high-throughput coating technology presented here, the hybrid films will provide a robust and scalable strategy for large-area f-TFHs with highly enhanced performance. - Highlights: • We developed highly efficient flexible thin film heaters based on Ag nanowires and AZO composites. • In the composite, AZO plays an important role as an insulation blanket to block heat loss to

  6. Vortexlet models of flapping flexible wings show tuning for force production and control

    International Nuclear Information System (INIS)

    Mountcastle, A M; Daniel, T L

    2010-01-01

    Insect wings are compliant structures that experience deformations during flight. Such deformations have recently been shown to substantially affect induced flows, with appreciable consequences to flight forces. However, there are open questions related to the aerodynamic mechanisms underlying the performance benefits of wing deformation, as well as the extent to which such deformations are determined by the boundary conditions governing wing actuation together with mechanical properties of the wing itself. Here we explore aerodynamic performance parameters of compliant wings under periodic oscillations, subject to changes in phase between wing elevation and pitch, and magnitude and spatial pattern of wing flexural stiffness. We use a combination of computational structural mechanics models and a 2D computational fluid dynamics approach to ask how aerodynamic force production and control potential are affected by pitch/elevation phase and variations in wing flexural stiffness. Our results show that lift and thrust forces are highly sensitive to flexural stiffness distributions, with performance optima that lie in different phase regions. These results suggest a control strategy for both flying animals and engineering applications of micro-air vehicles.

  7. Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2013-01-01

    Full Text Available Electrostatic adhesion technology has broad application prospects on wall climbing robots because of its unique characteristics compared with other types of adhesion technologies. A double tracked wall climbing robot based on electrostatic adhesion technology is presented including electrode panel design, mechanical structure design, power supply system design and control system design. A theoretical adhesion model was established and the electrostatic potential and field were expressed by series expansions in terms of solutions of the Laplace function. Based on this model, the electrostatic adhesion force was calculated using the Maxwell stress tensor formulation. Several important factors which may influence the electrostatic adhesion force were analysed and discussed by both FEM simulation and theoretical calculation. In addition, experiments on the adhesion performance of the electrode panel and the climbing performance of the robot on various wall materials were carried out. Both the simulation and experiment results verify the feasibility of electrostatic adhesion technology being applied on wall climbing robots. The theoretical model and calculation method for the electrostatic adhesion force proposed in this paper are also justified.

  8. Using an effective dimensionality to map the force-extension relation for a semi-flexible polymer in a nanoslit

    Science.gov (United States)

    de Haan, Hendrick

    2015-03-01

    The force-extension relation for a semi-flexible polymer is well described by the Marko-Siggia equation in both two and three dimensions. However, while of interest for experimental systems such as DNA in nanopits, the behaviour between these limiting dimensionalities is less understood. I will present results from simulations of a polymer subject to a stretching force F confined in nanoslits of varying heights h. Going from the 3D case to the 2D case, both the coefficients of the equation and the relevant persistence length are shown to change. This observation leads to the definition of an effective dimensionality, deff, to characterize the system. At low F, using deff in a generalized form of the Marko-Siggia relation provides good agreement with the simulation curves. However, at high F, deff drifts back towards d = 3 . 0 . The reason behind this F dependence is discussed. Semi-empirical forms for strong and weak confinement regimes will be presented and shown to give good agreement across all slit heights and stretching forces. deff is thus dependent on h and F and provides a cohesive physical picture for all regimes.

  9. Flexibility of the Indium Tin Oxide Transparent Conductive Film Deposited Onto the Plastic Substrate

    Directory of Open Access Journals (Sweden)

    Shao-Kai Lu

    2014-03-01

    Full Text Available In this study, we utilize the RF magnetron sputtering system to deposit the indium tin oxide (ITO conductive transparent film with low resistivity and high light transmittance to the polyethylene tetephthalate (PET plastic substrate and measure the film’s bending property and reliability at different tensile/compressive strain bending curvatures as well as the flexibility after cycling bending. The results show that the critical curvatures corresponded to the significant increase in the resistance of the 150 nm-thick ITO film deposited onto the PET substrate under tensile and compressive stress areO 14.1 mm and 5.4 mm, respectively. By observing the film’s surface crack and morphology, we can further discover that the critical curvature of the crack generated when the film is bent is quite consistent with the critical curvature at which the conductivity property degrades, and the film can withstand a higher compressive strain bending. In addition, the resistance and adhesion behavior of the film almost is unchanged after cycling bent for 1000 times with the curvature below the critical curvature.

  10. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Sanjaya D.; Patel, Bijal; Seitz, Oliver; Ferraris, John P.; Balkus, Kenneth J. Jr. [Department of Chemistry and the Alan G. MacDiarmid Nanotech Institute, 800 West Campbell Rd, University of Texas at Dallas, Richardson, TX 75080 (United States); Nijem, Nour; Roodenko, Katy; Chabal, Yves J. [Laboratory for Surface and Nanostructure Modification, Department of Material Science and Engineering, 800 West Campbell Rd, University of Texas Dallas, Richardson, TX 75080 (United States)

    2011-10-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) layered nanostructures are known to have very stable crystal structures and high faradaic activity. The low electronic conductivity of V{sub 2}O{sub 5} greatly limits the application of vanadium oxide as electrode materials and requires combining with conducting materials using binders. It is well known that the organic binders can degrade the overall performance of electrode materials and need carefully controlled compositions. In this study, we develop a simple method for preparing freestanding carbon nanotube (CNT)-V{sub 2}O{sub 5} nanowire (VNW) composite paper electrodes without using binders. Coin cell type (CR2032) supercapacitors are assembled using the nanocomposite paper electrode as the anode and high surface area carbon fiber electrode (Spectracarb 2225) as the cathode. The supercapacitor with CNT-VNW composite paper electrode exhibits a power density of 5.26 kW Kg{sup -1} and an energy density of 46.3 Wh Kg{sup -1}. (Li)VNWs and CNT composite paper electrodes can be fabricated in similar manner and show improved overall performance with a power density of 8.32 kW Kg{sup -1} and an energy density of 65.9 Wh Kg{sup -1}. The power and energy density values suggest that such flexible hybrid nanocomposite paper electrodes may be useful for high performance electrochemical supercapacitors. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.

    Science.gov (United States)

    Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang

    2014-10-22

    Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.

  12. Water based, solution-processable, transparent and flexible graphene oxide composite as electrodes in organic solar cell application

    International Nuclear Information System (INIS)

    Lima, L F; Matos, C F; Gonçalves, L C; Roman, L S; Salvatierra, R V; Zarbin, A J G; Cava, C E

    2016-01-01

    In this work we propose an easy method to achieve a conductive, transparent and flexible graphene oxide (GO)-based composite thin film from an aqueous dispersion. We investigated the blend ratio between GO and the conjugated polymer poly(3,4–ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by comparing the thin film optical transmittance, sheet resistance, morphology and mechanical stability. It was found that reasonable values of transmittance and resistivity coupled with its excellent flexibility – the conductivity remains almost the same even after 1000 bends cycles – make this composite very attracting for flexible optoelectronic applications. Thus, these films were used as transparent electrodes in a bilayer structured organic solar cell and the device architecture PET/GO:PEDOT/F8T2/C 60 /Al could reach a power conversion efficiency around 1.10%. This result presents a better performance compared with pristine PEDOT produced with similar parameters. (paper)

  13. Characteristics of Reduced Graphene Oxide Quantum Dots for a Flexible Memory Thin Film Transistor.

    Science.gov (United States)

    Kim, Yo-Han; Lee, Eun Yeol; Lee, Hyun Ho; Seo, Tae Seok

    2017-05-17

    Reduced graphene oxide quantum dot (rGOQD) devices in formats of capacitor and thin film transistor (TFT) were demonstrated and examined as the first trial to achieve nonambipolar channel property. In addition, through a gold nanoparticle (Au NP) layer embedded between the rGOQD active channel and dielectric layer, memory capacitor and TFT performances were realized by capacitance-voltage (C-V) hysteresis and gate program, erase, and reprogram biases. First, capacitor structure of the rGOQD memory device was constructed to examine memory charging effect featured in hysteretic C-V behavior with a 30 nm dielectric layer of cross-linked poly(vinyl alcohol). For the intervening Au NP charging layer, self-assembled monolayer (SAM) formation of the Au NP was executed to utilize electrostatic interaction by a dip-coating process under ambient environments with a conformal fabrication uniformity. Second, the rGOQD memory TFT device was also constructed in the same format of the Au NPs SAMs on a flexible substrate. Characteristics of the rGOQD TFT output showed novel saturation curves unlike typical graphene-based TFTs. However, The rGOQD TFT device reveals relatively low on/off ratio of 10 1 and mobility of 5.005 cm 2 /V·s. For the memory capacitor, the flat-band voltage shift (ΔV FB ) was measured as 3.74 V for ±10 V sweep, and for the memory TFT, the threshold voltage shift (ΔV th ) by the Au NP charging was detected as 7.84 V. In summary, it was concluded that the rGOQD memory device could accomplish an ideal graphene-based memory performance, which could have provided a wide memory window and saturated output characteristics.

  14. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  15. Oxygen effect of transparent conducting amorphous Indium Zinc Tin Oxide films on Polyimide substrate for flexible electrode

    International Nuclear Information System (INIS)

    Ko, Yoon Duk; Lee, Chang Hun; Moon, Doo Kyung; Kim, Young Sung

    2013-01-01

    This paper discusses the effect of oxygen on the transparent conducting properties and mechanical durability of the amorphous indium zinc tin oxide (IZTO) films. IZTO films deposited on flexible clear polyimide (PI) substrate using pulsed direct current (DC) magnetron sputtering at room temperature under various oxygen partial pressures. All IZTO films deposited at room temperature exhibit an amorphous structure. The electrical and optical properties of the IZTO films were sensitively influenced by oxygen partial pressures. At optimized deposition condition of 3.0% oxygen partial pressure, the IZTO film shows the lowest resistivity of 6.4 × 10 −4 Ωcm, high transmittance of over 80% in the visible range, and figure of merit value of 3.6 × 10 −3 Ω −1 without any heat controls. In addition, high work function and good mechanical flexibility of amorphous IZTO films are beneficial to flexible applications. It is proven that the proper oxygen partial pressure is important parameter to enhance the transparent conducting properties of IZTO films on PI substrate deposited at room temperature. - Highlights: • Indium zinc tin oxide (IZTO) films were deposited on polyimide at room temperature. • Transparent conducting properties of IZTO were influenced with oxygen partial pressure. • The smooth surface and high work function of IZTO were beneficial to anode layer. • The mechanical reliability of IZTO shows better performance to indium tin oxide film

  16. Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors

    Science.gov (United States)

    Li, Bo; Cheng, Jianli; Wang, Zhuanpei; Li, Yinchuan; Ni, Wei; Wang, Bin

    2018-02-01

    Flexible supercapacitors have attracted great interest due to outstanding flexibility and light weight. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) fibers have the great potential in using as electrodes for flexible supercapacitors due to the good flexibility. However, the reported conductivity and specific capacitance of these PEDOT: PSS fibers are not very high, which limit their electrochemical performances. In this work, composite fibers of reduced graphene oxide(rGO)-PEDOT: PSS with a highly-wrinkled structure on the surface and pores inside are prepared by wet spinning. The fibers with different ratios of graphene to PEDOT:PSS show a distinctly enhanced conductivity up to ca. 590 S·cm-1 and high strength up to ca. 18.4 MPa. Meanwhile, the composite fibers show an improved electrochemical performances, including a high specific areal capacitance of 131 mF cm-2 and high specific areal energy density of 4.55 μWh·cm-2. The flexible supercapacitors including fiber-shaped supercapacitors and interdigital designed supercapacitors not only could work in different bending states without obvious capacitance decay, but also have small leakage current. The interdigital design can further improve the performances of composite fibers with high capacitance and high utilization compared with traditional parallel connected structure.

  17. Platinum-decorated reduced graphene oxide/polyaniline:poly(4-styrenesulfonate) hybrid paste for flexible dipole tag-antenna applications

    Science.gov (United States)

    Lee, Jun Seop; Kim, Minkyu; Lee, Choonghyeon; Cho, Sunghun; Oh, Jungkyun; Jang, Jyongsik

    2015-02-01

    With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt_rGO/PANI:PSS was printed as a micropattern and exhibited high electrical conductivity (245.3 S cm-1) with flexible stability. Moreover, it was used in a dipole tag antenna application, where it displayed 0.15 GHz bandwidth and high transmitted power efficiency (99.6%).With recent developments in technology, tremendous effort has been devoted to producing materials for flexible device systems. As a promising approach, solution-processed conducting polymers (CPs) have been extensively studied owing to their facile synthesis, high electrical conductivity, and various morphologies with diverse substrates. Here, we report the demonstration of platinum decorated reduced graphene oxide intercalated polyanililne:poly(4-styrenesulfonate) (Pt_rGO/PANI:PSS) hybrid paste for flexible electric devices. First, platinum decorated reduced graphene oxide (Pt_rGO) was fabricated through the chemical reduction of platinum cations and subsequent heat reduction of GO sheets. Then, the Pt_rGO was mixed with PANI:PSS solution dispersed in diethylene glycol (DEG) using sonication to form a hybrid PANI-based paste (Pt_rGO/PANI:PSS). The Pt

  18. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seetha, M., E-mail: seetha.phy@gmail.com [Department of Physics, SRM University, Kattankulathur, Kancheepuram Dt 603 203 (India); Meena, P. [Department of Physics, PSGR Krishnammal College for Women, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore (India); Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 014 (India); Masuda, Yoshitake [National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Senthil, K. [School of Advanced Materials Science and Engineering, Sungkyunkwan University (Suwon Campus), Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer For the first time HMT is used in the preparation of indium oxide. Black-Right-Pointing-Pointer HMT itself acts as base for the precursor and results in cubic indium hydroxide. Black-Right-Pointing-Pointer Modified hydrothermal route used for the preparation of cubic indium oxide crystals. Black-Right-Pointing-Pointer As a new approach a composite film synthesized with prepared indium oxide. Black-Right-Pointing-Pointer Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  19. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    International Nuclear Information System (INIS)

    Seetha, M.; Meena, P.; Mangalaraj, D.; Masuda, Yoshitake; Senthil, K.

    2012-01-01

    Highlights: ► For the first time HMT is used in the preparation of indium oxide. ► HMT itself acts as base for the precursor and results in cubic indium hydroxide. ► Modified hydrothermal route used for the preparation of cubic indium oxide crystals. ► As a new approach a composite film synthesized with prepared indium oxide. ► Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  20. Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.Q., E-mail: wangzhiqian@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Jiao, N.D. [State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016 (China); Tung, S. [Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Dong, Z.L. [State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang 110016 (China)

    2011-02-01

    The atomic force microscopy (AFM)-based repeated nanomachining of nanochannels on silicon oxide surfaces is investigated both theoretically and experimentally. The relationships of the initial nanochannel depth vs. final nanochannel depth at a normal force are systematically studied. Using the derived theory and simulation results, the final nanochannel depth can be predicted easily. Meanwhile, if a nanochannel with an expected depth needs to be machined, a right normal force can be selected simply and easily in order to decrease the wear of the AFM tip. The theoretical analysis and simulation results can be effectively used for AFM-based fabrication of nanochannels.

  1. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes

    Science.gov (United States)

    Mao, Xiling; Xu, Jianhua; He, Xin; Yang, Wenyao; Yang, Yajie; Xu, Lu; Zhao, Yuetao; Zhou, Yujiu

    2018-03-01

    All-solid-state flexible microsupercapacitors have been intensely investigated in order to meet the rapidly growing demands for portable microelectronic devices. Herein, we demonstrate a facile, readily scalable and cost-effective laser induction process for preparing reduced graphene oxide/multi-walled carbon nanotube composite, which can be used as the interdigital electrodes in microsupercapacitors. The obtained composite exhibits high volumetric capacitance about 49.35 F cm-3, which is nearly 5 times higher than that of the pristine reduced graphene oxide film in aqueous 1.0 M H2SO4 solution (measured at a current density of 5 A cm-3 in a three-electrode testing). Additionally, an all-solid-state flexible microsupercapacitor employing these composite electrodes with PVA/H3PO4 gel electrolyte delivers high volumetric energy density of 6.47 mWh cm-3 at 10 mW cm-3 under the current density of 20 mA cm-3 as well as achieve excellent cycling stability retaining 88.6% of its initial value and outstanding coulombic efficiency after 10,000 cycles. Furthermore, the microsupercapacitors array connected in series/parallel can be easily adjusted to achieve the demands in practical applications. Therefore, this work brings a promising new candidate of prepare technologies for all-solid-state flexible microsupercapacitors as miniaturized power sources used in the portable and wearable electronics.

  2. Enhancing light emission in flexible AC electroluminescent devices by tetrapod-like zinc oxide whiskers.

    Science.gov (United States)

    Wen, Li; Liu, Nishuang; Wang, Siliang; Zhang, Hui; Zhao, Wanqiu; Yang, Zhichun; Wang, Yumei; Su, Jun; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-10-03

    Flexible alternating current electroluminescent devices (ACEL) are more and more popular and widely used in liquid-crystal display back-lighting, large-scale architectural and decorative lighting due to their uniform light emission, low power consumption and high resolution. However, presently how to acquire high brightness under a certain voltage are confronted with challenges. Here, we demonstrate an electroluminescence (EL) enhancing strategy that tetrapod-like ZnO whiskers (T-ZnOw) are added into the bottom electrode of carbon nanotubes (CNTs) instead of phosphor layer in flexible ACEL devices emitting blue, green and orange lights, and the brightness is greatly enhanced due to the coupling between the T-ZnOw and ZnS phosphor dispersed in the flexible polydimethylsiloxane (PDMS) layer. This strategy provides a new routine for the development of high performance, flexible and large-area ACEL devices.

  3. Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices.

    Science.gov (United States)

    Ke, Shanming; Chen, Chang; Fu, Nianqing; Zhou, Hua; Ye, Mao; Lin, Peng; Yuan, Wenxiang; Zeng, Xierong; Chen, Lang; Huang, Haitao

    2016-10-26

    Sn-doped In 2 O 3 (ITO) electrodes were deposited on transparent and flexible muscovite mica. The use of mica substrate makes a high-temperature annealing process (up to 500 °C) possible. ITO/mica retains its low electric resistivity even after continuous bending of 1000 times on account of the unique layered structure of mica. When used as a transparent flexible heater, ITO/mica shows an extremely fast ramping (solar cells (PSCs) with high efficiency.

  4. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites

    Science.gov (United States)

    He, Shuijian; Chen, Wei

    2014-09-01

    The syntheses and capacitance performances of ultralight and flexible MnO2/carbon foam (MnO2/CF) hybrids are systematically studied. Flexible carbon foam with a low mass density of 6.2 mg cm-3 and high porosity of 99.66% is simply obtained by carbonization of commercially available and low-cost melamine resin foam. With the high porous carbon foam as framework, ultrathin MnO2 nanosheets are grown through in situ redox reaction between KMnO4 and carbon foam. The three-dimensional (3D) MnO2/CF networks exhibit highly ordered hierarchical pore structure. Attributed to the good flexibility and ultralight weight, the MnO2/CF nanomaterials can be directly fabricated into supercapacitor electrodes without any binder and conductive agents. Moreover, the pseudocapacitance of the MnO2 nanosheets is enhanced by the fast ion diffusion in the three-dimensional porous architecture and by the conductive carbon foam skeleton as well as good contact of carbon/oxide interfaces. Supercapacitor based on the MnO2/CF composite with 3.4% weight percent of MnO2 shows a high specific capacitance of 1270.5 F g-1 (92.7% of the theoretical specific capacitance of MnO2) and high energy density of 86.2 Wh kg-1. The excellent capacitance performance of the present 3D ultralight and flexible nanomaterials make them promising candidates as electrode materials for supercapacitors.

  5. The Pine-Needle-Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Sami, Syed Kamran; Siddiqui, Saqib; Shrivastava, Sajal; Lee, Nae-Eung; Chung, Chan-Hwa

    2017-12-01

    Flexible supercapacitors with high electrochemical performance and stability along with mechanical robustness have gained immense attraction due to the substantial advancements and rampant requirements of storage devices. To meet the exponentially growing demand of microsized energy storage device, a cost-effective and durable supercapacitor is mandatory to realize their practical applications. Here, in this work, the fabrication route of novel electrode materials with high flexibility and charge-storage capability is reported using the hybrid structure of 1D zinc oxide (ZnO) nanorods and conductive polyvinylidene fluoride-tetrafluoroethylene (P(VDF-TrFE)) electrospun nanofibers. The ZnO nanorods are conformably grown on conductive P(VDF-TrFE) nanofibers to fabricate the light-weighted porous electrodes for supercapacitors. The conductive nanofibers acts as a high surface area scaffold with significant electrochemical performance, while the addition of ZnO nanorods further enhances the specific capacitance by 59%. The symmetric cell with the fabricated electrodes presents high areal capacitance of 1.22 mF cm -2 at a current density of 0.1 mA cm -2 with a power density of more than 1600 W kg -1 . Furthermore, these electrodes show outstanding flexibility and high stability with 96% and 78% retention in specific capacitance after 1000 and 5000 cycles, respectively. The notable mechanical durability and robustness of the cell acquire both good flexibility and high performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.

    Science.gov (United States)

    Zheng, Qifeng; Cai, Zhiyong; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-11

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4/poly(vinyl alcohol) (PVA) gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors were fabricated without any binders, current collectors, or electroactive additives. Because of the porous structure of the CNF/RGO/CNT aerogel electrodes and the excellent electrolyte absorption properties of the CNFs present in the aerogel electrodes, the resulting flexible supercapacitors exhibited a high specific capacitance (i.e., 252 F g(-1) at a discharge current density of 0.5 A g(-1)) and a remarkable cycle stability (i.e., more than 99.5% of the capacitance was retained after 1000 charge-discharge cycles at a current density of 1 A g(-1)). Furthermore, the supercapacitors also showed extremely high areal capacitance, areal power density, and energy density (i.e., 216 mF cm(-2), 9.5 mW cm(-2), and 28.4 μWh cm(-2), respectively). In light of its excellent electrical performance, low cost, ease of large-scale manufacturing, and environmental friendliness, the CNF/RGO/CNT aerogel electrodes may have a promising application in the development of flexible energy-storage devices.

  7. Eco-friendly wood-based solid-state flexible supercapacitors from wood transverse section slice and reduced graphene oxide

    Science.gov (United States)

    Lv, Shaoyi; Fu, Feng; Wang, Siqun; Huang, Jingda; Hu, La

    2015-07-01

    An interesting wood-based all-solid-state supercapacitor is produced using reduced graphene oxide (RGO) coated on wood transverse section slice (WTSS) as electrode material by means of a low-cost, eco-friendly, and simple method for the first time. The RGO-coated WTSS electrode has a porous 3D honeycomb framework due to the hierarchical cellular structure of the WTSS substrate and can function as an electrolyte reservoir. This special construction endows this novel electrode with good areal capacitance (102 mF cm-2) and excellent cyclic stability (capacitance retention of 98.9% after 5000 cycles). In addition, the supercapacitors exhibit good mechanical flexibility and preserve almost constant capacitive behavior under different bending conditions. Our study introduces a new and eco-friendly material design for electrodes in future flexible energy storage devices that closely resemble natural materials. [Figure not available: see fulltext.

  8. Flexible Lithium-Ion Fiber Battery by the Regular Stacking of Two-Dimensional Titanium Oxide Nanosheets Hybridized with Reduced Graphene Oxide.

    Science.gov (United States)

    Hoshide, Tatsumasa; Zheng, Yuanchuan; Hou, Junyu; Wang, Zhiqiang; Li, Qingwen; Zhao, Zhigang; Ma, Renzhi; Sasaki, Takayoshi; Geng, Fengxia

    2017-06-14

    Increasing interest has recently been devoted to developing small, rapid, and portable electronic devices; thus, it is becoming critically important to provide matching light and flexible energy-storage systems to power them. To this end, compared with the inevitable drawbacks of being bulky, heavy, and rigid for traditional planar sandwiched structures, linear fiber-shaped lithium-ion batteries (LIB) have become increasingly important owing to their combined superiorities of miniaturization, adaptability, and weavability, the progress of which being heavily dependent on the development of new fiber-shaped electrodes. Here, we report a novel fiber battery electrode based on the most widely used LIB material, titanium oxide, which is processed into two-dimensional nanosheets and assembled into a macroscopic fiber by a scalable wet-spinning process. The titania sheets are regularly stacked and conformally hybridized in situ with reduced graphene oxide (rGO), thereby serving as efficient current collectors, which endows the novel fiber electrode with excellent integrated mechanical properties combined with superior battery performances in terms of linear densities, rate capabilities, and cyclic behaviors. The present study clearly demonstrates a new material-design paradigm toward novel fiber electrodes by assembling metal oxide nanosheets into an ordered macroscopic structure, which would represent the most-promising solution to advanced flexible energy-storage systems.

  9. Ferroelectric Zinc Oxide Nanowire Embedded Flexible Sensor for Motion and Temperature Sensing.

    Science.gov (United States)

    Shin, Sung-Ho; Park, Dae Hoon; Jung, Joo-Yun; Lee, Min Hyung; Nah, Junghyo

    2017-03-22

    We report a simple method to realize multifunctional flexible motion sensor using ferroelectric lithium-doped ZnO-PDMS. The ferroelectric layer enables piezoelectric dynamic sensing and provides additional motion information to more precisely discriminate different motions. The PEDOT:PSS-functionalized AgNWs, working as electrode layers for the piezoelectric sensing layer, resistively detect a change of both movement or temperature. Thus, through the optimal integration of both elements, the sensing limit, accuracy, and functionality can be further expanded. The method introduced here is a simple and effective route to realize a high-performance flexible motion sensor with integrated multifunctionalities.

  10. Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules.

    Science.gov (United States)

    Bu, Tongle; Shi, Shengwei; Li, Jing; Liu, Yifan; Shi, Jielin; Chen, Li; Liu, Xueping; Qiu, Junhao; Ku, Zhiliang; Peng, Yong; Zhong, Jie; Cheng, Yi-Bing; Huang, Fuzhi

    2018-05-02

    Organic-inorganic metal halide perovskite solar cells (PSCs) have been emerging as one of the most promising next generation photovoltaic technologies with a breakthrough power conversion efficiency (PCE) over 22%. However, aiming for commercialization, it still encounters challenges for the large-scale module fabrication, especially for flexible devices which have attracted intensive attention recently. Low-temperature processed high-performance electron-transporting layers (ETLs) are still difficult. Herein, we present a facile low-temperature synthesis of crystalline SnO 2 nanocrystals (NCs) as efficient ETLs for flexible PSCs including modules. Through thermal and UV-ozone treatments of the SnO 2 ETLs, the electron transporting resistance of the ETLs and the charge recombination at the interface of ETL/perovskite were decreased. Thus, the hysteresis-free highly efficient rigid and flexible PSCs were obtained with PCEs of 19.20 and 16.47%, respectively. Finally, a 5 × 5 cm 2 flexible PSC module with a PCE of 12.31% (12.22% for forward scan and 12.40% for reverse scan) was fabricated with the optimized perovskite/ETL interface. Thus, employing presynthesized SnO 2 NCs to fabricate ETLs has showed promising for future manufacturing.

  11. Interactions of benzoic acid and phosphates with iron oxide colloids using chemical force titration.

    Science.gov (United States)

    Liang, Jana; Horton, J Hugh

    2005-11-08

    Colloidal iron oxides are an important component in soil systems and in water treatment processes. Humic-based organic compounds, containing both phenol and benzoate functional groups, are often present in these systems and compete strongly with phosphate species for binding sites on the iron oxide surfaces. Here, we examine the interaction of benzoate and phenolic groups with various iron oxide colloids using atomic force microscopy (AFM) chemical force titration measurements. Self-assembled monolayers (SAMs) of 4-(12-mercaptododecyloxy)benzoic acid and 4-(12-mercaptododecyloxy)phenol were used to prepare chemically modified Au-coated AFM tips, and these were used to probe the surface chemistry of a series of iron oxide colloids. The SAMs formed were also characterized using scanning tunneling microscopy, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. The surface pK(a) of 4-(12- mercaptododecyloxy)benzoic acid has been determined to be 4.0 +/- 0.5, and the interaction between the tip and the sample coated with a SAM of this species is dominated by hydrogen bonding. The chemical force titraton profile for an AFM probe coated with 4-(12- mercaptododecyloxy)benzoic acid and a bare iron oxide colloid demonstrates that the benzoic acid function group interacts with all three types of iron oxide sites present on the colloid surface over a wide pH range. Similar experiments were carried out on colloids precipitated in the presence of phosphoric, gallic, and tannic acids. The results are discussed in the context of the competitive binding interactions of solution species present in soils or in water treatment processes.

  12. Analysis of the forced vibration test of the Hualien large scale soil-structure interaction model using a flexible volume substructuring method

    International Nuclear Information System (INIS)

    Tang, H.T.; Nakamura, N.

    1995-01-01

    A 1/4-scale cylindrical reactor containment model was constructed in Hualien, Taiwan for foil-structure interaction (SSI) effect evaluation and SSI analysis procedure verification. Forced vibration tests were executed before backfill (FVT-1) and after backfill (FVT-2) to characterize soil-structure system characteristics under low excitations. A number of organizations participated in the pre-test blind prediction and post-test correlation analyses of the forced vibration test using various industry familiar methods. In the current study, correlation analyses were performed using a three-dimensional flexible volume substructuring method. The results are reported and soil property sensitivities are evaluated in the paper. (J.P.N.)

  13. Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene-gold oxide heterojunction.

    Science.gov (United States)

    Liu, Yu-Lun; Yu, Chen-Chieh; Lin, Keng-Te; Yang, Tai-Chi; Wang, En-Yun; Chen, Hsuen-Li; Chen, Li-Chyong; Chen, Kuei-Hsien

    2015-05-26

    In this study, we combine graphene with gold oxide (AuOx), a transparent and high-work-function electrode material, to achieve a high-efficient, low-bias, large-area, flexible, transparent, broadband, and bifacial-operable photodetector. The photodetector operates through hot electrons being generated in the graphene and charge separation occurring at the AuOx-graphene heterojunction. The large-area graphene covering the AuOx electrode efficiently prevented reduction of its surface; it also acted as a square-centimeter-scale active area for light harvesting and photodetection. Our graphene/AuOx photodetector displays high responsivity under low-intensity light illumination, demonstrating picowatt sensitivity in the ultraviolet regime and nanowatt sensitivity in the infrared regime for optical telecommunication. In addition, this photodetector not only exhibited broadband (from UV to IR) high responsivity-3300 A W(-1) at 310 nm (UV), 58 A W(-1) at 500 nm (visible), and 9 A W(-1) at 1550 nm (IR)-but also required only a low applied bias (0.1 V). The hot-carrier-assisted photoresponse was excellent, especially in the short-wavelength regime. In addition, the graphene/AuOx photodetector exhibited great flexibility and stability. Moreover, such vertical heterojunction-based graphene/AuOx photodetectors should be compatible with other transparent optoelectronic devices, suggesting applications in flexible and wearable optoelectronic technologies.

  14. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things.

    Science.gov (United States)

    Liu, Guanyu; Tan, Qiulin; Kou, Hairong; Zhang, Lei; Wang, Jinqi; Lv, Wen; Dong, Helei; Xiong, Jijun

    2018-05-02

    Flexible electronics, which can be distributed on any surface we need, are highly demanded in the development of Internet of Things (IoT), robot technology and electronic skins. Temperature is a fundamental physical parameter, and it is an important indicator in many applications. Therefore, a flexible temperature sensor is required. Here, we report a simple method to fabricate three lightweight, low-cost and flexible temperature sensors, whose sensitive materials are reduced graphene oxide (r-GO), single-walled carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs). By comparing linearity, sensitive and repeatability, we found that the r-GO temperature sensor had the most balanced performance. Furthermore, the r-GO temperature sensor showed good mechanical properties and it could be bent in different angles with negligible resistance change. In addition, the performance of the r-GO temperature sensor remained stable under different kinds of pressure and was unaffected by surrounding environments, like humidity or other gases, because of the insulating layer on its sensitive layer. The easy-fabricated process and economy, together with the remarkable performance of the r-GO temperature sensor, suggest that it is suitable for use as a robot skin or used in the environment of IoT.

  15. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things

    Directory of Open Access Journals (Sweden)

    Guanyu Liu

    2018-05-01

    Full Text Available Flexible electronics, which can be distributed on any surface we need, are highly demanded in the development of Internet of Things (IoT, robot technology and electronic skins. Temperature is a fundamental physical parameter, and it is an important indicator in many applications. Therefore, a flexible temperature sensor is required. Here, we report a simple method to fabricate three lightweight, low-cost and flexible temperature sensors, whose sensitive materials are reduced graphene oxide (r-GO, single-walled carbon nanotubes (SWCNTs and multi-wall carbon nanotubes (MWCNTs. By comparing linearity, sensitive and repeatability, we found that the r-GO temperature sensor had the most balanced performance. Furthermore, the r-GO temperature sensor showed good mechanical properties and it could be bent in different angles with negligible resistance change. In addition, the performance of the r-GO temperature sensor remained stable under different kinds of pressure and was unaffected by surrounding environments, like humidity or other gases, because of the insulating layer on its sensitive layer. The easy-fabricated process and economy, together with the remarkable performance of the r-GO temperature sensor, suggest that it is suitable for use as a robot skin or used in the environment of IoT.

  16. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    International Nuclear Information System (INIS)

    Park, Taesoon; Kim, Dongsik

    2015-01-01

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10 −4 Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively

  17. Mechanical properties of amorphous indium–gallium–zinc oxide thin films on compliant substrates for flexible optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, D.W., E-mail: DWM172@bham.ac.uk [University of Birmingham, School of Metallurgy and Materials, Edgbaston, Birmingham, B15 2TT (United Kingdom); Waddingham, R.; Flewitt, A.J. [University of Cambridge, Electrical Engineering Division, Department of Engineering, J J Thomson Avenue, Cambridge CB3 0FA,United Kingdom (United Kingdom); Sierros, K.A. [West Virginia University, Mechanical & Aerospace Engineering, Morgantown, WV 26506 (United States); Bowen, J. [Open University, Department of Engineering and Innovation, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Kukureka, S.N. [University of Birmingham, School of Metallurgy and Materials, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2015-11-02

    Amorphous indium–gallium–zinc-oxide (a-IGZO) thin films were deposited using RF magnetron sputtering on polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) flexible substrates and their mechanical flexibility investigated using uniaxial tensile and buckling tests coupled with in situ optical microscopy. The uniaxial fragmentation test demonstrated that the crack onset strain of the IGZO/PEN was ~ 2.9%, which is slightly higher than that of IGZO/PET. Also, uniaxial tensile crack density analysis suggests that the saturated crack spacing of the film is strongly dependent on the mechanical properties of the underlying polymer substrate. Buckling test results suggest that the crack onset strain (equal to ~ 1.2%, of the IGZO/polymer samples flexed in compression to ~ 5.7 mm concave radius of curvature) is higher than that of the samples flexed with the film being in tension (convex bending) regardless whether the substrate is PEN or PET. The saturated crack density of a-IGZO film under the compression buckling mode is smaller than that of the film under the tensile buckling mode. This could be attributed to the fact that the tensile stress encouraged this crack formation originating from surface defects in the coating. It could also be due to the buckling delamination of the thin coating from the substrate at a lower strain than that at which a crack initiates during flexing in compression. These results provide useful information on the mechanical reliability of a-IGZO films for the development of flexible electronics. - Highlights: • Mechanical flexibility of IGZO thin films investigated by uniaxial tensile and buckling tests • Uniaxial fragmentation gives crack onset strain for IGZO/PEN of 2.9% (higher than for IGZO/PET.) • Saturated crack spacing strongly dependent on mechanical properties of polymer substrate • Crack onset strain in concave bending higher than in convex bending for both substrates.

  18. Mechanical properties of amorphous indium–gallium–zinc oxide thin films on compliant substrates for flexible optoelectronic devices

    International Nuclear Information System (INIS)

    Mohammed, D.W.; Waddingham, R.; Flewitt, A.J.; Sierros, K.A.; Bowen, J.; Kukureka, S.N.

    2015-01-01

    Amorphous indium–gallium–zinc-oxide (a-IGZO) thin films were deposited using RF magnetron sputtering on polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) flexible substrates and their mechanical flexibility investigated using uniaxial tensile and buckling tests coupled with in situ optical microscopy. The uniaxial fragmentation test demonstrated that the crack onset strain of the IGZO/PEN was ~ 2.9%, which is slightly higher than that of IGZO/PET. Also, uniaxial tensile crack density analysis suggests that the saturated crack spacing of the film is strongly dependent on the mechanical properties of the underlying polymer substrate. Buckling test results suggest that the crack onset strain (equal to ~ 1.2%, of the IGZO/polymer samples flexed in compression to ~ 5.7 mm concave radius of curvature) is higher than that of the samples flexed with the film being in tension (convex bending) regardless whether the substrate is PEN or PET. The saturated crack density of a-IGZO film under the compression buckling mode is smaller than that of the film under the tensile buckling mode. This could be attributed to the fact that the tensile stress encouraged this crack formation originating from surface defects in the coating. It could also be due to the buckling delamination of the thin coating from the substrate at a lower strain than that at which a crack initiates during flexing in compression. These results provide useful information on the mechanical reliability of a-IGZO films for the development of flexible electronics. - Highlights: • Mechanical flexibility of IGZO thin films investigated by uniaxial tensile and buckling tests • Uniaxial fragmentation gives crack onset strain for IGZO/PEN of 2.9% (higher than for IGZO/PET.) • Saturated crack spacing strongly dependent on mechanical properties of polymer substrate • Crack onset strain in concave bending higher than in convex bending for both substrates

  19. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Taesoon; Kim, Dongsik, E-mail: dskim87@postech.ac.kr

    2015-03-02

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10{sup −4} Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively.

  20. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  1. Photo-assisted local oxidation of GaN using an atomic force microscope

    International Nuclear Information System (INIS)

    Hwang, J S; Hu, Z S; Lu, T Y; Chen, L W; Chen, S W; Lin, T Y; Hsiao, C-L; Chen, K-H; Chen, L-C

    2006-01-01

    This paper introduces a photo-assisted atomic force microscope (AFM) local oxidation technique which is capable of producing highly smooth oxide patterns with heights reaching several tens of nanometres on both n- and p-types of GaN (and in principle on most semiconductors) without the use of chemicals. The novel methodology relies on UV illumination of the surface of the substrate during conventional AFM local oxidation. A low 1.2 V threshold voltage for n-type GaN was obtained, which can be explained by UV photo-generation of excess electron-hole pairs in the substrate near the junction, thereby reducing the electric field required to drive carrier flow through the tip-sample Schottky barrier. It was demonstrated that the presence or absence of light alone was sufficient to switch the growth of the oxide on or off. The photo-assisted AFM oxidation technique is of immediate interest to the semiconductor industry for the fabrication of GaN-based complementary metal-oxide-semiconductor devices and nanodevices, improves chances for AFM-type data storage, and presents new degrees of freedom for process control technique

  2. Development of a classical force field for the oxidized Si surface: application to hydrophilic wafer bonding.

    Science.gov (United States)

    Cole, Daniel J; Payne, Mike C; Csányi, Gábor; Spearing, S Mark; Colombi Ciacchi, Lucio

    2007-11-28

    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.

  3. Electrochromic Ni–Fe oxide thin films synthesized by an atmospheric pressure plasma jet for flexible electrochromic application

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yun-Sen, E-mail: yslin@fcu.edu.tw; Chuang, Pei-Ying; Shie, Ping-Shiun

    2014-11-03

    Flexible-electrochromic organo-nickel-iron oxide (NiFe{sub x}O{sub y}C{sub z}) films deposited onto flexible polyethylene terephthalate (PET)/indium tin oxide (ITO) substrates using atmospheric-pressure plasma-enhanced chemical vapor deposition with an atmospheric pressure plasma jet under various flow rates of oxygen gases are investigated. Precursors [nickelocence, Ni(C{sub 5}H{sub 5}){sub 2}] and [ferrocence, Fe(C{sub 5}H{sub 5}){sub 2}] vapors are carried by argon gas, mixed by oxygen gas and injected into air plasma torch for a rapid synthesis of NiFe{sub x}O{sub y}C{sub z} films by a short duration of the substrate, 32 s, in the plasmas. Uniform light modulation on PET/ITO/NiFe{sub x}O{sub y}C{sub z} is produced while the moving PET/ITO substrate is exposed to plasma torch at room temperature (∼ 23 °C) and atmospheric pressure. Light modulation with up to a 43.2% transmittance variation at a wavelength of 708 nm even after 200 cycles of Li{sup +} intercalation and de-intercalation in a 1 M LiClO{sub 4}-propylene carbonate electrolyte is accomplished. - Highlights: • Rapid deposition of electrochromic organo-nickel–iron oxide (NiFe{sub x}O{sub y}C{sub z}) films • Enhanced electrochromic performance of NiFe{sub x}O{sub y}C{sub z} films by oxygen gas addition • Uniform light modulation on NiFe{sub x}O{sub y}C{sub z} films produced by air plasma jet • Porous surfaces allow reversible Li{sup +} intercalation and deintercalation.

  4. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  5. A transparent conductive oxide electrode with highly enhanced flexibility achieved by controlled crystallinity by incorporating Ag nanoparticles on substrates

    International Nuclear Information System (INIS)

    Triambulo, Ross E.; Cheong, Hahn-Gil; Lee, Gun-Hwan; Yi, In-Sook; Park, Jin-Woo

    2015-01-01

    Highlights: • We developed a composite transparent electrode with Ag nanoparticles and indium-tin-oxide. • Transmittance of AgNPs was improved by formation of oxide layers by O 2 plasma treatment. • Ag nanoparticles became crystalline seeds to grow strong ITO with a uniform growth orientation. • The hybrid electrode is highly more conductive and stable under bending than ITO. - Abstract: We report the synthesis of highly flexible indium tin oxide (ITO) on a polymer substrate whose surface was engineered by oxide-coated Ag nanoparticles (AgNPs) smaller than 20 nm in diameter. Polyimide (PI) substrates were spin coated with Ag ion ink and were subsequently heat treated to form AgNP coatings. The Ag oxide was formed by O 2 plasma treatment to reduce the light absorbance by AgNPs. ITO was dc magnetron sputter-deposited atop the AgNPs. The ITO on the AgNPs was crystalline grown primarily with (2 2 2) growth orientation. This contrasts to the typical microstructure of ITO grown on the polymer, which is that growing c-ITO nucleates are embedded in an amorphous ITO (a-ITO) matrix like a particulate composite. The surface roughness of ITO on AgNPs was as small as the ITO on PI without AgNPs. The crystalline nature of the ITO on the AgNP-coated polymer resulted in the decrease of electric resistivity (ρ) by 65% compared to that of ITO on the bare PI. Furthermore, an electric resistivity change (Δρ) of the ITO on the AgNPs was only 8% at a bending radius (r b ) down to 4 mm, whereas the ITO on the non-coated polymer became almost insulating at an r b of 10 mm, owing to a drastic increase in the number of cracks. To validate the potential application in the displays, flexible organic light emitting diodes (f-OLEDs) were fabricated on the ITO on AgNPs and the performances was compared with the f-OLED on ITO on the bare PI

  6. A transparent conductive oxide electrode with highly enhanced flexibility achieved by controlled crystallinity by incorporating Ag nanoparticles on substrates

    Energy Technology Data Exchange (ETDEWEB)

    Triambulo, Ross E.; Cheong, Hahn-Gil [Department of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of); Lee, Gun-Hwan [Advanced Thin Film Research Group, Korea Institute of Materials Science (KIMS), Changwon (Korea, Republic of); Yi, In-Sook [R and D Center, InkTec Co., Ltd., Ansan (Korea, Republic of); Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of)

    2015-01-25

    Highlights: • We developed a composite transparent electrode with Ag nanoparticles and indium-tin-oxide. • Transmittance of AgNPs was improved by formation of oxide layers by O{sub 2} plasma treatment. • Ag nanoparticles became crystalline seeds to grow strong ITO with a uniform growth orientation. • The hybrid electrode is highly more conductive and stable under bending than ITO. - Abstract: We report the synthesis of highly flexible indium tin oxide (ITO) on a polymer substrate whose surface was engineered by oxide-coated Ag nanoparticles (AgNPs) smaller than 20 nm in diameter. Polyimide (PI) substrates were spin coated with Ag ion ink and were subsequently heat treated to form AgNP coatings. The Ag oxide was formed by O{sub 2} plasma treatment to reduce the light absorbance by AgNPs. ITO was dc magnetron sputter-deposited atop the AgNPs. The ITO on the AgNPs was crystalline grown primarily with (2 2 2) growth orientation. This contrasts to the typical microstructure of ITO grown on the polymer, which is that growing c-ITO nucleates are embedded in an amorphous ITO (a-ITO) matrix like a particulate composite. The surface roughness of ITO on AgNPs was as small as the ITO on PI without AgNPs. The crystalline nature of the ITO on the AgNP-coated polymer resulted in the decrease of electric resistivity (ρ) by 65% compared to that of ITO on the bare PI. Furthermore, an electric resistivity change (Δρ) of the ITO on the AgNPs was only 8% at a bending radius (r{sub b}) down to 4 mm, whereas the ITO on the non-coated polymer became almost insulating at an r{sub b} of 10 mm, owing to a drastic increase in the number of cracks. To validate the potential application in the displays, flexible organic light emitting diodes (f-OLEDs) were fabricated on the ITO on AgNPs and the performances was compared with the f-OLED on ITO on the bare PI.

  7. Thin, Flexible Supercapacitors Made from Carbon Nanofiber Electrodes Decorated at Room Temperature with Manganese Oxide Nanosheets

    OpenAIRE

    Nataraj, S. K.; Song, Q.; Al-Muhtaseb, S. A.; Dutton, S. E.; Zhang, Q.; Sivaniah, E.

    2013-01-01

    We report the fabrication and electrochemical performance of a flexible thin film supercapacitor with a novel nanostructured composite electrode. The electrode was prepared by in situ coprecipitation of two-dimensional (2D) MnO2 nanosheets at room temperature in the presence of carbon nanofibers (CNFs). The highest specific capacitance of 142 F/g was achieved for CNFs-MnO2 electrodes in sandwiched assembly with PVA-H4SiW12O40nH2O polyelectrolyte separator. Peer Reviewed

  8. Thin, Flexible Supercapacitors Made from Carbon Nanofiber Electrodes Decorated at Room Temperature with Manganese Oxide Nanosheets

    Directory of Open Access Journals (Sweden)

    S. K. Nataraj

    2013-01-01

    Full Text Available We report the fabrication and electrochemical performance of a flexible thin film supercapacitor with a novel nanostructured composite electrode. The electrode was prepared by in situ coprecipitation of two-dimensional (2D MnO2 nanosheets at room temperature in the presence of carbon nanofibers (CNFs. The highest specific capacitance of 142 F/g was achieved for CNFs-MnO2 electrodes in sandwiched assembly with PVA-H4SiW12O40·nH2O polyelectrolyte separator.

  9. Flexible AMOLED display on polyethylene napthalate (PEN) foil with metal-oxide TFT backplane

    NARCIS (Netherlands)

    Tripathi, A.K.; Putten, B. van der; Steen, J.L. van der; Tempelaars, K.; Cobb, B.; Ameys, M.; Ke, T.H.; Myny, K.; Steudel, S.; Nag, M.; Schols, S.; Vicca, P.; Smout, S.; Genoe, J.; Heremans, P.; Yakimets, I.; Gelinck, G.H.

    2012-01-01

    We present a top emitting monochrome AMOLED display with 85dpi resolution using an amorphous Indium-Gallium-Zinc-Oxide (IGZO) TFT backplane on PEN-foil. Maximum processing temperature was limited to 150 °C in order to ensure an overlay accuracy < 3μm on PEN foil. The backplane process flow is based

  10. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Paola eGamba

    2015-06-01

    Full Text Available Alzheimer’s disease (AD, the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid β peptides and neurofibrillary tangles within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism.The brain’s high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier. The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death.This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.

  11. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology.

    Science.gov (United States)

    Tian, He; Chen, Hong-Yu; Ren, Tian-Ling; Li, Cheng; Xue, Qing-Tang; Mohammad, Mohammad Ali; Wu, Can; Yang, Yi; Wong, H-S Philip

    2014-06-11

    Laser scribing is an attractive reduced graphene oxide (rGO) growth and patterning technology because the process is low-cost, time-efficient, transfer-free, and flexible. Various laser-scribed rGO (LSG) components such as capacitors, gas sensors, and strain sensors have been demonstrated. However, obstacles remain toward practical application of the technology where all the components of a system are fabricated using laser scribing. Memory components, if developed, will substantially broaden the application space of low-cost, flexible electronic systems. For the first time, a low-cost approach to fabricate resistive random access memory (ReRAM) using laser-scribed rGO as the bottom electrode is experimentally demonstrated. The one-step laser scribing technology allows transfer-free rGO synthesis directly on flexible substrates or non-flat substrates. Using this time-efficient laser-scribing technology, the patterning of a memory-array area up to 100 cm(2) can be completed in 25 min. Without requiring the photoresist coating for lithography, the surface of patterned rGO remains as clean as its pristine state. Ag/HfOx/LSG ReRAM using laser-scribing technology is fabricated in this work. Comprehensive electrical characteristics are presented including forming-free behavior, stable switching, reasonable reliability performance and potential for 2-bit storage per memory cell. The results suggest that laser-scribing technology can potentially produce more cost-effective and time-effective rGO-based circuits and systems for practical applications.

  12. Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate

    International Nuclear Information System (INIS)

    Wong, F.L.; Fung, M.K.; Tong, S.W.; Lee, C.S.; Lee, S.T.

    2004-01-01

    A radio-frequency sputtering deposition method was applied to prepare indium tin oxide (ITO) on a plastic substrate, polyethylene terephthalate (PET). The correlation of deposition conditions and ITO film properties was systematically investigated and characterized. The optimal ITO films had a transmittance of over 90% in the visible range (400-700 nm) and a resistivity of 5.0x10 -4 Ω-cm. Sequentially α-napthylphenylbiphenyl diamine, tris-(8-hydroxyquinoline) aluminium, and magnesium-silver were thermally deposited on the ITO-coated PET substrate to fabricate flexible organic light-emitting diodes (FOLEDs). The fabricated devices had a maximum current efficiency of ∼4.1 cd/A and a luminance of nearly 4100 cd/m 2 at 100 mA/cm 2 . These values showed that the FOLEDs had comparable performance characteristics with the conventional organic light-emitting diodes made on ITO-coated glasses with the same device configuration

  13. Highly efficient fully flexible indium tin oxide free organic light emitting diodes fabricated directly on barrier-foil

    International Nuclear Information System (INIS)

    Bocksrocker, Tobias; Hülsmann, Neele; Eschenbaum, Carsten; Pargner, Andreas; Höfle, Stefan; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    We present a simple method for the fabrication of highly conductive and fully flexible metal/polymer hybrid anodes for efficient organic light emitting diodes (OLEDs). By incorporating ultra-thin metal grids into a conductive polymer, we fabricated anodes with very low sheet resistances and high transparency. After optimizing the metallic grid, OLEDs with these hybrid anodes are superior to OLEDs with standard indium tin oxide (ITO) anodes in luminous efficacy by a factor of ∼ 2. Furthermore, the sheet resistance can be reduced by up to an order of magnitude compared to ITO on polyethylene terephthalate (PET). The devices show a very low turn-on voltage and the hybrid anodes do not change the emissive spectra of the OLEDs. In addition, we fabricated the anodes directly on a barrier foil, making the double sided encapsulation of a typically used PET-substrate unnecessary

  14. Relationship between respiratory quotient, nitrification, and nitrous oxide emissions in a forced aerated composting process

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hirofumi, E-mail: jm-tsutsuih@kochi-u.ac.jp [Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Fujiwara, Taku [Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Inoue, Daisuke [Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa (Japan); Japan Science and Technology Agency, CREST (Japan); Ito, Ryusei [Department of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido (Japan); Japan Science and Technology Agency, CREST (Japan); Matsukawa, Kazutsugu [Research and Education Faculty, Multidisciplinary Science Cluster, Life and Environmental Medicine Science Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Funamizu, Naoyuki [Department of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido (Japan); Japan Science and Technology Agency, CREST (Japan)

    2015-08-15

    Highlights: • RQ can be an indicator of N{sub 2}O emission in forced aerated composting process. • Emission of N{sub 2}O with nitrification was observed with RQ decrease. • Mass balances demonstrated the RQ decrease was caused by nitrification. • Conversion ratio of oxidized ammonia and total N to N{sub 2}O were ∼2.7%. - Abstract: We assessed the relationship between respiratory quotient (RQ) and nitrification and nitrous oxide (N{sub 2}O) emission in forced aerated composting using lab-scale reactors. Relatively high RQ values from degradation of readily degradable organics initially occurred. RQ then stabilized at slightly lower values, then decreased. Continuous emission of N{sub 2}O was observed during the RQ decrease. Correlation between nitrification and N{sub 2}O emission shows that the latter was triggered by nitrification. Mass balances demonstrated that the O{sub 2} consumption of nitrification (∼24.8 mmol) was slightly higher than that of CO{sub 2} emission (∼20.0 mmol), indicating that the RQ decrease was caused by the occurrence of nitrification. Results indicate that RQ is a useful index, which not only reflects the bioavailability of organics but also predicts the occurrence of nitrification and N{sub 2}O emission in forced aerated composting.

  15. Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries.

    Science.gov (United States)

    Liu, Yihang; Zhang, Anyi; Shen, Chenfei; Liu, Qingzhou; Cao, Xuan; Ma, Yuqiang; Chen, Liang; Lau, Christian; Chen, Tian-Chi; Wei, Fei; Zhou, Chongwu

    2017-06-27

    Sodium-ion batteries offer an attractive option for potential low cost and large scale energy storage due to the earth abundance of sodium. Red phosphorus is considered as a high capacity anode for sodium-ion batteries with a theoretical capacity of 2596 mAh/g. However, similar to silicon in lithium-ion batteries, several limitations, such as large volume expansion upon sodiation/desodiation and low electronic conductance, have severely limited the performance of red phosphorus anodes. In order to address the above challenges, we have developed a method to deposit red phosphorus nanodots densely and uniformly onto reduced graphene oxide sheets (P@RGO) to minimize the sodium ion diffusion length and the sodiation/desodiation stresses, and the RGO network also serves as electron pathway and creates free space to accommodate the volume variation of phosphorus particles. The resulted P@RGO flexible anode achieved 1165.4, 510.6, and 135.3 mAh/g specific charge capacity at 159.4, 31878.9, and 47818.3 mA/g charge/discharge current density in rate capability test, and a 914 mAh/g capacity after 300 deep cycles in cycling stability test at 1593.9 mA/g current density, which marks a significant performance improvement for red phosphorus anodes for sodium-ion chemistry and flexible power sources for wearable electronics.

  16. A direct method to measure the fracture toughness of indium tin oxide thin films on flexible polymer substrates

    International Nuclear Information System (INIS)

    Chang, Rwei-Ching; Tsai, Fa-Ta; Tu, Chin-Hsiang

    2013-01-01

    This work presents a straightforward method to measure the fracture toughness of thin films deposited on flexible substrates. A 200 nm thick indium tin oxide (ITO) thin film is deposited on a 188 μm thick terephthalate (PET) substrate by a radio frequency magnetron sputtering machine. Using nanoindentation to induce brittle fracture on the ITO thin films, the energy release is calculated from integrating the resulting load–depth curve. An approach that directly measures the fracture toughness of thin films deposited on flexible substrates is proposed. A comparison shows that the results of the proposed method agree well with those of other reports. Furthermore, in order to improve the toughness of the ITO thin films, a copper interlayer is added between the ITO thin film and PET substrate. It shows that the fracture toughness of the ITO thin film deposited on the copper interlayer is higher than that of the one without the interlayer, which agrees well with the critical load tested by micro scratch. Further observations on optical and electric performances are also discussed in this work. - Highlights: • A straightforward method to measure the film's toughness • Directly using the load-depth curve of nanoindentation • The toughness is consistent with the critical load tested by micro scratch. • Interlayers can improve the film's toughness. • Optical and electric performances are also discussed

  17. Top-down Fabrication and Enhanced Active Area Electronic Characteristics of Amorphous Oxide Nanoribbons for Flexible Electronics.

    Science.gov (United States)

    Jang, Hyun-June; Joong Lee, Ki; Jo, Kwang-Won; Katz, Howard E; Cho, Won-Ju; Shin, Yong-Beom

    2017-07-18

    Inorganic amorphous oxide semiconductor (AOS) materials such as amorphous InGaZnO (a-IGZO) possess mechanical flexibility and outstanding electrical properties, and have generated great interest for use in flexible and transparent electronic devices. In the past, however, AOS devices required higher activation energies, and hence higher processing temperatures, than organic ones to neutralize defects. It is well known that one-dimensional nanowires tend to have better carrier mobility and mechanical strength along with fewer defects than the corresponding two-dimensional films, but until now it has been difficult, costly, and impractical to fabricate such nanowires in proper alignments by either "bottom-up" growth techniques or by "top-down" e-beam lithography. Here we show a top-down, cost-effective, and scalable approach for the fabrication of parallel, laterally oriented AOS nanoribbons based on lift-off and nano-imprinting. High mobility (132 cm 2 /Vs), electrical stability, and transparency are obtained in a-IGZO nanoribbons, compared to the planar films of the same a-IGZO semiconductor.

  18. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    Science.gov (United States)

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  19. Effects of Laminaria japonica polysaccharides on exercise endurance and oxidative stress in forced swimming mouse model.

    Science.gov (United States)

    Yan, Feiwei; Hao, Haitao

    2016-12-01

    Polysaccharides are the major active ingredients responsible for the bioactivities of Laminaria japonica. However, the effects of L. japonica polysaccharides (LJP) on exercise endurance and oxidative stress have never been investigated. Therefore, this study was conducted to investigate the effects of LJP on exercise endurance and oxidative stress in a forced swimming mouse model. The animals were divided into four groups, namely the control (C), LJP-75, LJP-150, and LJP-300 groups, which received physiological saline and 75, 150, and 300 mg kg(-1) LJP, respectively, by gavage once a day for 28 days. This was followed by a forced swimming test and measurements of various biochemical parameters. LJP increased swimming time to exhaustion, the liver and muscle glycogen content, and levels of superoxide dismutase, glutathione peroxidase, and catalase in the serum, liver, and muscle, which were accompanied by corresponding decreases in the malondialdehyde (MDA) content of the same tissues. Furthermore, decreases in blood lactic acid and serum myeloperoxidase (MPO) levels were observed. LJP enhanced exercise endurance and protected mice against exhaustive exercise-induced oxidative stress.

  20. Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Kalim, E-mail: deshmukh.kalim@gmail.com [Department of Physics, B.S. Abdur Rahman University, Chennai, 600048, TN (India); Ahamed, M. Basheer [Department of Physics, B.S. Abdur Rahman University, Chennai, 600048, TN (India); Sadasivuni, Kishor Kumar [Mechanical and Industrial Engineering Department, Qatar University, P.O. Box 2713, Doha (Qatar); Ponnamma, Deepalekshmi; AlMaadeed, Mariam Al-Ali [Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar); Khadheer Pasha, S.K. [Department of Physics, School of Advanced Sciences, VIT University, Vellore, 632014, TN (India); Deshmukh, Rajendra R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai, 400019 (India); Chidambaram, K. [Department of Physics, School of Advanced Sciences, VIT University, Vellore, 632014, TN (India)

    2017-01-15

    In this work, Graphene Oxide (GO) reinforced novel polymer composites comprising of poly (4-styrenesulfonic acid) (PSSA) and polyvinyl alcohol (PVA) blend matrix have been developed using colloidal processing technique. The properties and the structure of prepared composites were investigated using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), UV–vis spectroscopy (UV), Thermogravimetric analysis (TGA), Polarized optical microscopy (POM), Scanning electron microscopy (SEM) and Atomic force microscopy (AFM). The FTIR and Raman spectroscopy analysis indicate the strong interfacial interaction between GO and PSSA/PVA blend matrix. The XRD and SEM analysis confirm that GO was fully exfoliated into individual graphene sheets and dispersed homogeneously within the polymer matrix. The effective reinforcement of GO into PSSA/PVA blend matrix has resulted in the enhancement of dielectric constant. The dielectric constant has increased from 82.67 (50 Hz, 150 °C) for PSSA/PVA (50/50) blend to 297.91 (50 Hz, 150 °C) for PSSA/PVA/GO composites with 3 wt % GO loading. The dielectric loss (tan δ) has increased from 1.56 (50 KHz, 140 °C) for PSSA/PVA (50/50) blend to 2.64 (50 KHz, 140 °C) for PSSA/PVA/GO composites with 3 wt % GO loading. These findings provide a new insight to fabricate flexible, high-k dielectric composite as a promising material for energy storage applications. - Highlights: • Graphene Oxide was prepared from natural graphite using modified Hummers method. • Novel PSSA/PVA/GO composites were prepared by reinforcing GO into PSSA/PVA blend matrix. • Molecular level dispersion of GO in PSSA/PVA blend matrix was successfully achieved. • Enhancement in the dielectric constant was observed due to effective reinforcement of GO in PSSA/PVA blend matrix. • PSSA/PVA/GO composites with high dielectric performances can be considered for energy storage applications.

  1. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    International Nuclear Information System (INIS)

    Han, Wentuo; Kimura, Akihiko; Tsuda, Naoto; Serizawa, Hisashi; Chen, Dongsheng; Je, Hwanil; Fujii, Hidetoshi; Ha, Yoosung; Morisada, Yoshiaki; Noto, Hiroyuki

    2014-01-01

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  2. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wentuo, E-mail: hanwentuo@hotmail.com [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tsuda, Naoto [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Chen, Dongsheng [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ha, Yoosung [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Noto, Hiroyuki [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-12-15

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  3. [Nitrous oxide production by the German Armed Forces in the 20th century : History of medicine and pharmacy in the Armed Forces].

    Science.gov (United States)

    Kronabel, D B J

    2010-03-01

    The nitrous oxide production unit of the German Armed Forces was a worldwide unique facility which was only employed in the former main medical depot at Euskirchen (nitrous oxide: medical gas which is now obsolete). The last unit was phased out in 2002 and brought to the main medical depot at Blankenburg. Unfortunately the unit is now no longer in the depot and seems to have disappeared. This article describes the nitrous oxide production process and the use of the production unit which was designed by the Socsil company of Switzerland.

  4. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    Science.gov (United States)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  5. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing.

    Science.gov (United States)

    Sadasivuni, Kishor Kumar; Kafy, Abdullahil; Zhai, Lindong; Ko, Hyun-U; Mun, Seongcheol; Kim, Jaehwan

    2015-02-25

    The rapid development of touch screens as well as photoelectric sensors has stimulated the fabrication of reliable, convenient, and human-friendly devices. Other than sensors that detect physical touch or are based on pressure sensing, proximity sensors offer controlled sensibility without physical contact. In this work we present a transparent and eco-friendly sensor made through layer-by-layer spraying of modified graphene oxide filled cellulose nanocrystals on lithographic patterns of interdigitated electrodes on polymer substrates, which help to realize the precise location of approaching objects. Stable and reproducible signals generated by keeping the finger in close proximity to the sensor can be controlled by humidity, temperature, and the distance and number of sprayed layers. The chemical modification and reduction of the graphene oxide/cellulose crystal composite and its excellent nanostructure enable the development of proximity sensors with faster response and higher sensitivity, the integration of which resolves nearly all of the technological issues imposed on optoelectronic sensing devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Generation of an electromotive force by hydrogen-to-water oxidation with Pt-coated oxidized titanium foils

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, Klaus; El Achhab, Mhamed [Department of Materials Science, Institute for Experimental Condensed Matter Physics, Heinrich-Heine University, 40225 Duesseldorf, Universitaetsstrasse 1 (Germany)

    2011-12-15

    We show that chemically induced current densities up to 20 mA cm{sup -2} and an electromotive force (EMF) up to 465 mV are generated during the hydrogen-to-water-oxidation over Pt/TiO{sub 2}/Ti devices. We prepare the samples by plasma electrolytic oxidation (PEO) of titanium foils and deposition of Pt contact paste. This process yields porous structures and, depending on the anodization voltage, Schottky diode-type current-voltage curves of various ideality parameters. Our experiments demonstrate that Pt coated anodized titanium can also be utilized as hydrogen sensor; the system offers a number of advantages such as a wide temperature range of operation from -40 to 80 C, quick response and decay times of signals, and good electrical stability. Idealized sketch of the Pt coated anodized Ti foil and application as hydrogen sensor and electric generator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Expanded Air Force Physical Fitness Battery: Muscle Strength, Muscle Endurance, and Flexibility Considered. Volume I, Final Report

    National Research Council Canada - National Science Library

    Palmer, Barbara

    1997-01-01

    .... It was concluded that of the benefits of strength training, improved deployment preparedness, safe and efficient everyday work performance, and safer aerobic and team activity are most important to the Air Force...

  8. Synthesis of a Flexible Freestanding Sulfur/Polyacrylonitrile/Graphene Oxide as the Cathode for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Huifen Peng

    2018-04-01

    Full Text Available Rechargeable lithium/sulfur (Li/S batteries have received quite significant attention over the years because of their high theoretical specific capacity (1672 mAh·g−1 and energy density (2600 mAh·g−1 which has led to more efforts for improvement in their electrochemical performance. Herein, the synthesis of a flexible freestanding sulfur/polyacrylonitrile/graphene oxide (S/PAN/GO as the cathode for Li/S batteries by simple method via vacuum filtration is reported. The S/PAN/GO hybrid binder-free electrode is considered as one of the most promising cathodes for Li/S batteries. Graphene oxide (GO slice structure provides effective ion conductivity channels and increases structural stability of the ternary system, resulting in excellent electrochemical properties of the freestanding S/PAN/GO cathode. Additionally, graphene oxide (GO membrane was able to minimize the polysulfides’ dissolution and their shuttle, which was attributed to the electrostatic interactions between the negatively-charged species and the oxygen functional groups on GO. Furthermore, these oxygen-containing functional groups including carboxyl, epoxide and hydroxyl groups provide active sites for coordination with inorganic materials (such as sulfur. It exhibits the initial reversible specific capacity of 1379 mAh·g−1 at a constant current rate of 0.2 C and maintains 1205 mAh·g−1 over 100 cycles (~87% retention. In addition, the freestanding S/PAN/GO cathode displays excellent coulombic efficiency (~100% and rate capability, delivering up to 685 mAh·g−1 capacity at 2 C.

  9. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Young, Chadwin D.; Bersuker, Gennadi; Hussain, Muhammad Mustafa

    2015-01-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard

  10. Dynamic Structural Flexible-Beam Response to a Moving Barge Train Impact Force Time-History Using Impact_Beam

    Science.gov (United States)

    2011-08-01

    White, Mohamed and Barker, 2010). The engineering formulation for Impact_Force uses the impulse momentum principle to convert the linear momentum of a...flexure the plane cross-section of a beam remains plane, i.e., the Bernoulli -Euler theory. That is, shear deformations are negligible for a slender...observation that the magnitude of the impulse is equal to the change in momentum . This allows for the introduc- tion of the force time-history into the

  11. A new orthodontic force system for moment control utilizing the flexibility of common wires: Evaluation of the effect of contractile force and hook length

    Directory of Open Access Journals (Sweden)

    Wei-Jen Lai

    2018-01-01

    Conclusion: The system acted similar to an off-center V-bend and can be applied in clinical practice as an unconventional loop design. We suggest that this force system has the potential for second-order moment control in clinical applications.

  12. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip-induced local oxidation for thin film device applications

    International Nuclear Information System (INIS)

    Pichon, L; Rogel, R; Demami, F

    2010-01-01

    We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as a mask for the elaboration of a thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as a mask during plasma etching of the amorphous layer leading to the formation of a nanoribbon. Such an amorphous silicon nanoribbon is used for the fabrication of the resistor

  13. Electromechanical properties of indium–tin–oxide/poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) hybrid electrodes for flexible transparent electrodes

    International Nuclear Information System (INIS)

    Jung, Sunghoon; Lim, Kyounga; Kang, Jae-Wook; Kim, Jong-Kuk; Oh, Se-In; Eun, Kyoungtae; Kim, Do-Geun; Choa, Sung-Hoon

    2014-01-01

    We investigated an indium–tin–oxide (ITO)/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) hybrid electrode as a potential flexible and transparent electrode. In particular, the mechanical integrity of an ITO/PEDOT:PSS hybrid electrode deposited onto a polyethylene terephthalate (PET) substrate was investigated via outer/inner bending, twisting, stretching, and adhesion tests. A PEDOT:PSS layer was inserted between ITO and PET substrate as a buffer layer to improve the flexibility and electrical properties. When a PEDOT:PSS layer was inserted, the sheet resistance of the 20 nm-thick ITO film decreased from 270 Ω/square to 57 Ω/square. Notably, the ITO/PEDOT:PSS hybrid electrode had a constant resistance change (ΔR/R 0 ) within an outer and inner bending radius of 3 mm. The bending fatigue test showed that the ITO/PEDOT:PSS hybrid electrode can withstand 10,000 bending cycles. Furthermore, the stretched ITO/PEDOT:PSS hybrid electrode showed a fairly constant resistance change up to 4%, which is more stable than the resistance change of the ITO electrode. The ITO/PEDOT:PSS electrode also shows good adhesion strength. The superior flexibility of the ITO/PEDOT:PSS hybrid electrode is attributed to the existence of a flexible PEDOT:PSS layer. This indicates that the hybridization of an ITO and PEDOT:PSS layer is a promising electrode scheme for next-generation flexible transparent electrodes. - Highlights: • We propose a hybrid electrode for flexible electronics. • Electrode made from In 2 O 3 :SnO 2 /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) • PEDOT:PSS as a buffer layer increases flexibility and electrical conductivity. • Hybrid electrode has a superior flexibility. • Hybrid electrode can be a promising flexible transparent electrode scheme

  14. Amorphous indium tin oxide films deposited on flexible substrates by facing target sputtering at room temperature

    International Nuclear Information System (INIS)

    Xiao, Yu; Gao, Fangyuan; Dong, Guobo; Guo, Tingting; Liu, Qirong; Ye, Di; Diao, Xungang

    2014-01-01

    Indium tin oxide (ITO) thin films were deposited on polyethylene terephthalate substrates using a DC facing target sputtering (DC-FTS) system at room temperature. The sputtering conditions including oxygen partial pressure and discharge current were varied from 0% to 4% and 0.5 A to 1.3 A, respectively. X-ray diffraction and scanning electron microscopy were used to study the structure and surface morphology of as-prepared films. All the films exhibited amorphous structures and smooth surfaces. The dependence of electrical and optical properties on various deposition parameters was investigated by a linear array four-point probe, Hall-effect measurements, and ultraviolet/visible spectrophotometry. A lowest sheet resistance of 17.4 Ω/square, a lowest resistivity of 3.61 × 10 −4 Ω cm, and an average relative transmittance over 88% in the visible range were obtained under the optimal deposition conditions. The relationship between the Hall mobility (μ) and carrier concentration (n) was interpreted by a functional relation of μ ∼ n −0.127 , which indicated that ionized donor scattering was the dominant electron scattering mechanism. It is also confirmed that the carrier concentration in ITO films prepared by the DC-FTS system is mainly controlled by the number of activated Sn donors rather than oxygen vacancies. - Highlights: • ITO thin films were grown on PET substrates by DC facing target sputtering system. • All the films were prepared at room temperature and exhibited amorphous structure. • Highly conductive and transparent ITO thin films were obtained. • The dominant ionized donor scattering mechanism was suggested

  15. Remote plasma sputtering of indium tin oxide thin films for large area flexible electronics

    International Nuclear Information System (INIS)

    Yeadon, A.D.; Wakeham, S.J.; Brown, H.L.; Thwaites, M.J.; Whiting, M.J.; Baker, M.A.

    2011-01-01

    Indium tin oxide (ITO) thin films with a specific resistivity of 3.5 × 10 −4 Ω cm and average visible light transmission (VLT) of 90% have been reactively sputtered onto A4 Polyethylene terephthalate (PET), glass and silicon substrates using a remote plasma sputtering system. This system offers independent control of the plasma density and the target power enabling the effect of the plasma on ITO properties to be studied. Characterization of ITO on glass and silicon has shown that increasing the plasma density gives rise to a decrease in the specific resistivity and an increase in the optical band gap of the ITO films. Samples deposited at plasma powers of 1.5 kW, 2.0 kW and 2.5 kW and optimized oxygen flow rates exhibited specific resistivity values of 3.8 × 10 −4 Ω cm, 3.7 × 10 −4 Ω cm and 3.5 × 10 −4 Ω cm and optical gaps of 3.48 eV, 3.51 eV and 3.78 eV respectively. The increase in plasma density also influenced the crystalline texture and the VLT increased from 70 to 95%, indicating that more oxygen is being incorporated into the growing film. It has been shown that the remote plasma sputter technique can be used in an in-line process to produce uniform ITO coatings on PET with specific resistivities of between 3.5 × 10 −4 and 4.5 × 10 −4 Ω cm and optical transmission of greater than 85% over substrate widths of up to 30 cm.

  16. Amorphous indium tin oxide films deposited on flexible substrates by facing target sputtering at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yu [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Gao, Fangyuan, E-mail: gaofangyuan@buaa.edu.cn [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Dong, Guobo; Guo, Tingting; Liu, Qirong [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Ye, Di [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100191 (China); Diao, Xungang [Solar Film Laboratory, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2014-04-01

    Indium tin oxide (ITO) thin films were deposited on polyethylene terephthalate substrates using a DC facing target sputtering (DC-FTS) system at room temperature. The sputtering conditions including oxygen partial pressure and discharge current were varied from 0% to 4% and 0.5 A to 1.3 A, respectively. X-ray diffraction and scanning electron microscopy were used to study the structure and surface morphology of as-prepared films. All the films exhibited amorphous structures and smooth surfaces. The dependence of electrical and optical properties on various deposition parameters was investigated by a linear array four-point probe, Hall-effect measurements, and ultraviolet/visible spectrophotometry. A lowest sheet resistance of 17.4 Ω/square, a lowest resistivity of 3.61 × 10{sup −4} Ω cm, and an average relative transmittance over 88% in the visible range were obtained under the optimal deposition conditions. The relationship between the Hall mobility (μ) and carrier concentration (n) was interpreted by a functional relation of μ ∼ n{sup −0.127}, which indicated that ionized donor scattering was the dominant electron scattering mechanism. It is also confirmed that the carrier concentration in ITO films prepared by the DC-FTS system is mainly controlled by the number of activated Sn donors rather than oxygen vacancies. - Highlights: • ITO thin films were grown on PET substrates by DC facing target sputtering system. • All the films were prepared at room temperature and exhibited amorphous structure. • Highly conductive and transparent ITO thin films were obtained. • The dominant ionized donor scattering mechanism was suggested.

  17. The influence of simulated transversus abdominis muscle force on sacroiliac joint flexibility during asymmetric moment application to the pelvis

    NARCIS (Netherlands)

    Gnat, R; Spoor, K; Pool-Goudzwaard, A.L.

    2015-01-01

    Background The role of so-called local muscle system in motor control of the lower back and pelvis is a subject of ongoing debate. Prevailing beliefs in stabilizing function of this system were recently challenged. This study investigated the impact of in vitro simulated force of transversely

  18. Modifying the Casimir force between indium tin oxide film and Au sphere

    Science.gov (United States)

    Banishev, A. A.; Chang, C.-C.; Castillo-Garza, R.; Klimchitskaya, G. L.; Mostepanenko, V. M.; Mohideen, U.

    2012-01-01

    We present complete results of the experiment on measuring the Casimir force between an Au-coated sphere and an untreated or, alternatively, UV-treated indium tin oxide (ITO) film deposited on a quartz substrate. Measurements were performed using an atomic force microscope in a high vacuum chamber. The measurement system was calibrated electrostatically. Special analysis of the systematic deviations is performed, and respective corrections in the calibration parameters are introduced. The corrected parameters are free from anomalies discussed in the literature. The experimental data for the Casimir force from two measurement sets for both untreated and UV-treated samples are presented. The random, systematic, and total experimental errors are determined at a 95% confidence level. It is demonstrated that the UV treatment of an ITO plate results in a significant decrease in the magnitude of the Casimir force (from 21% to 35% depending on separation). However, ellipsometry measurements of the imaginary parts of dielectric permittivities of the untreated and UV-treated samples did not reveal any significant differences. The experimental data are compared with computations in the framework of the Lifshitz theory. It is found that the data for the untreated sample are in a very good agreement with theoretical results taking into account the free charge carriers in an ITO film. For the UV-treated sample the data exclude the theoretical results obtained with account of free charge carriers. These data are in very good agreement with computations disregarding the contribution of free carriers in the dielectric permittivity. According to the hypothetical explanation provided, this is caused by the phase transition of the ITO film from metallic to dielectric state caused by the UV treatment. Possible applications of the discovered phenomenon in nanotechnology are discussed.

  19. Electrical analysis of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors on flexible bulk mono-crystalline silicon

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-06-01

    We report on the electrical study of high dielectric constant insulator and metal gate metal oxide semiconductor capacitors (MOSCAPs) on a flexible ultra-thin (25 μm) silicon fabric which is peeled off using a CMOS compatible process from a standard bulk mono-crystalline silicon substrate. A lifetime projection is extracted using statistical analysis of the ramping voltage (Vramp) breakdown and time dependent dielectric breakdown data. The obtained flexible MOSCAPs operational voltages satisfying the 10 years lifetime benchmark are compared to those of the control MOSCAPs, which are not peeled off from the silicon wafer. © 2014 IEEE.

  20. Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors.

    Science.gov (United States)

    Kim, Yeong-Gyu; Tak, Young Jun; Kim, Hee Jun; Kim, Won-Gi; Yoo, Hyukjoon; Kim, Hyun Jae

    2018-04-03

    We fabricated wire-type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) using a self-formed cracked template based on a lift-off process. The electrical characteristics of wire-type IGZO TFTs could be controlled by changing the width and density of IGZO wires through varying the coating conditions of template solution or multi-stacking additional layers. The fabricated wire-type devices were applied to sensors after functionalizing the surface. The wire-type pH sensor showed a sensitivity of 45.4 mV/pH, and this value was an improved sensitivity compared with that of the film-type device (27.6 mV/pH). Similarly, when the wire-type device was used as a glucose sensor, it showed more variation in electrical characteristics than the film-type device. The improved sensing properties resulted from the large surface area of the wire-type device compared with that of the film-type device. In addition, we fabricated wire-type IGZO TFTs on flexible substrates and confirmed that such structures were very resistant to mechanical stresses at a bending radius of 10 mm.

  1. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air

    Science.gov (United States)

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g-1. To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition--from solution at low temperature--of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles--from airplanes to quadcopters and weather balloons--for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  2. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho

    2017-10-04

    We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

  3. A comparative reliability and performance study of different stent designs in terms of mechanical properties: foreshortening, recoil, radial force, and flexibility.

    Science.gov (United States)

    Kim, Dong Bin; Choi, Hyuk; Joo, Sang Min; Kim, Han Ki; Shin, Jae Hee; Hwang, Min Ho; Choi, Jaesoon; Kim, Dong-Gon; Lee, Kwang Ho; Lim, Chun Hak; Yoo, Sun Kook; Lee, Heung-Man; Sun, Kyung

    2013-04-01

    This study seeks to improve the mechanical performance of stents by conducting reliability performance testing and finite element method (FEM)-based simulations for coronary stents. Three commercially available stent designs and our own new design were tested to measure the factors affecting performance, specifically foreshortening, recoil, radial force, and flexibility. The stents used in the present experiments were 3 mm in working diameter and 18 mm of working length. The results of the experiments indicate that the foreshortening of stents A, B, C, and our new design, D, was equivalent to 2.25, 0.67, 0.46, and 0.41%, respectively. The recoil of stents A, B, C, and D was 6.00, 4.35, 3.50, and 4.36%, respectively. Parallel plate radial force measurements were A, 3.72 ± 0.28 N; B, 3.81 ± 0.32 N; C, 4.35 ± 0.18 N; and D, 4.02 ± 0.24 N. Radial forces determined by applying uniform pressure in the circumferential direction were A, 28.749 ± 0.81 N; B, 32.231 ± 1.80 N; C, 34.522 ± 3.06 N; and D, 42.183 ± 2.84 N. The maximum force of crimped stent at 2.2-mm deflection was 1.01 ± 0.08 N, 0.82 ± 0.08 N, 0.92 ± 0.12 N, and 0.68 ± 0.07 N for each of stents A, B, C and D. The results of this study enabled us to identify several factors to enhance the performance of stents. In comparing these stents, we found that our design, stent D, which was designed by a collaborative team from seven universities, performed better than the commercial stents across all parameter of foreshortening, recoil, radial force, and flexibility. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Investigation of surface potentials in reduced graphene oxide flake by Kelvin probe force microscopy

    Science.gov (United States)

    Negishi, Ryota; Takashima, Kai; Kobayashi, Yoshihiro

    2018-06-01

    The surface potential (SP) of reduced graphene oxide (rGO) flakes prepared by thermal treatments of GO under several conditions was analyzed by Kelvin probe force microscopy. The low-crystalline rGO flakes in which a significant amount of oxygen functional groups and structural defects remain have a much lower SP than mechanically exfoliated graphene free from oxygen and defects. On the other hand, the highly crystalline rGO flake after a thermal treatment for the efficient removal of oxygen functional groups and healing of structural defects except for domain boundary shows SP equivalent to that of the mechanically exfoliated graphene. These results indicate that the work function of rGO is sensitively modulated by oxygen functional groups and structural defects remaining after the thermal reduction process, but is not affected significantly by the domain boundary remaining after the healing of structural defects through the thermal treatment at high temperature.

  5. Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy

    Science.gov (United States)

    Slobodian, Oleksandr M.; Lytvyn, Peter M.; Nikolenko, Andrii S.; Naseka, Victor M.; Khyzhun, Oleg Yu.; Vasin, Andrey V.; Sevostianov, Stanislav V.; Nazarov, Alexei N.

    2018-05-01

    Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.

  6. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Hsin-Cheng [Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Pei, Zingway, E-mail: zingway@dragon.nchu.edu.tw [Department of Electrical Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung 40227, Taiwan (China); Jian, Jyun-Ruri; Tzeng, Bo-Jie [Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2014-07-21

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  7. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-02-12

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry\\'s most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  8. Structural and electrical characteristics of high-k/metal gate metal oxide semiconductor capacitors fabricated on flexible, semi-transparent silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa; Sevilla, Galo T.

    2013-01-01

    In pursuit of flexible computers with high performance devices, we demonstrate a generic process to fabricate 10 000 metal-oxide-semiconductor capacitors (MOSCAPs) with semiconductor industry's most advanced high-k/metal gate stacks on widely used, inexpensive bulk silicon (100) wafers and then using a combination of iso-/anisotropic etching to release the top portion of the silicon with the already fabricated devices as a mechanically flexible (bending curvature of 133 m−1), optically semi-transparent silicon fabric (1.5 cm × 3 cm × 25 μm). The electrical characteristics show 3.7 nm effective oxide thickness, −0.2 V flat band voltage, and no hysteresis from the fabricated MOSCAPs.

  9. Electro-Mechanical Coupling of Indium Tin Oxide Coated Polyethylene Terephthalate ITO/PET for Flexible Solar Cells

    KAUST Repository

    Saleh, Mohamed A.

    2013-05-15

    Indium tin oxide (ITO) is the most widely used transparent electrode in flexible solar cells because of its high transparency and conductivity. But still, cracking of ITO on PET substrates due to tensile loading is not fully understood and it affects the functionality of the solar cell tremendously as ITO loses its conductivity. Here, we investigate the cracking evolution in ITO/PET exposed to two categories of tests. Monotonous tensile testing is done in order to trace the crack propagation in ITO coating as well as determining a loading range to focus on during our study. Five cycles test is also conducted to check the crack closure effect on the resistance variation of ITO. Analytical model for the damage in ITO layer is implemented using the homogenization concept as in laminated composites for transverse cracking. The homogenization technique is done twice on COMSOL to determine the mechanical and electrical degradation of ITO due to applied loading. Finally, this damage evolution is used for a simulation to predict the degradation of ITO as function in the applied load and correlate this degradation with the resistance variation. Experimental results showed that during unloading, crack closure results in recovery of conductivity and decrease in the overall resistance of the cracked ITO. Also, statistics about the crack spacing showed that the cracking pattern is not perfectly periodical however it has a positively skewed distribution. The higher the applied load, the less the discrepancy in the crack spacing data. It was found that the cracking mechanism of ITO starts with transverse cracking with local delamination at the crack tip unlike the mechanism proposed in the literature of having only cracking pattern without any local delamination. This is the actual mechanism that leads to the high increase in ITO resistance. The analytical code simulates the damage evolution in the ITO layer as function in the applied strain. This will be extended further to

  10. A semi-flexible model prediction for the polymerization force exerted by a living F-actin filament on a fixed wall

    Science.gov (United States)

    Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul

    2015-10-01

    We consider a single living semi-flexible filament with persistence length ℓp in chemical equilibrium with a solution of free monomers at fixed monomer chemical potential μ1 and fixed temperature T. While one end of the filament is chemically active with single monomer (de)polymerization steps, the other end is grafted normally to a rigid wall to mimic a rigid network from which the filament under consideration emerges. A second rigid wall, parallel to the grafting wall, is fixed at distance L chain model with step size d and persistence length ℓp, hitting a hard wall. Explicit properties require the computation of the mean force f ¯ i ( L ) exerted by the wall at L and associated potential f ¯ i ( L ) = - d W i ( L ) / d L on a filament of fixed size i. By original Monte-Carlo calculations for few filament lengths in a wide range of compression, we justify the use of the weak bending universal expressions of Gholami et al. [Phys. Rev. E 74, 041803 (2006)] over the whole non-escaping filament regime. For a filament of size i with contour length Lc = (i - 1) d, this universal form is rapidly growing from zero (non-compression state) to the buckling value f b ( L c , ℓ p ) = /π 2 k B T ℓ p 4 Lc 2 over a compression range much narrower than the size d of a monomer. Employing this universal form for living filaments, we find that the average force exerted by a living filament on a wall at distance L is in practice L independent and very close to the value of the stalling force Fs H = ( k B T / d ) ln ( ρ ˆ 1 ) predicted by Hill, this expression being strictly valid in the rigid filament limit. The average filament force results from the product of the cumulative size fraction x = x ( L , ℓ p , ρ ˆ 1 ) , where the filament is in contact with the wall, times the buckling force on a filament of size Lc ≈ L, namely, Fs H = x f b ( L ; ℓ p ) . The observed L independence of Fs H implies that x ∝ L-2 for given ( ℓ p , ρ ˆ 1 ) and x ∝ ln ρ ˆ 1

  11. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    Science.gov (United States)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self

  12. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja

    2018-04-04

    Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.

  13. Study on Optoelectronic Characteristics of Sn-Doped ZnO Thin Films on Poly(ethylene terephthalate) and Indium Tin Oxide/Poly(ethylene terephthalate) Flexible Substrates

    Science.gov (United States)

    Cheng, Chi-Hwa; Chen, Mi; Chiou, Chin-Lung; Liu, Xing-Yang; Weng, Lin-Song; Koo, Horng-Show

    2013-05-01

    Transparent conductive oxides of Sn-doped ZnO (SZO) films with doping weight ratios of 2.0, 3.0, 4.0, and 5.0 wt % have been deposited on indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) and PET flexible substrates at room temperature by pulsed laser deposition (PLD). Resultant films of SZO on ITO/PET and PET flexible substrates are amorphous in phase. It is found that undoped and SZO films on ITO/PET is anomalously better than films on PET in optical transmittance in the range of longer wavelength, possibly due to the refraction index difference between SZO, ITO films, and PET substrates, Burstein-Moss effect and optical interference of SZO/ITO bilayer films and substrate materials, and furthermore resulting in the decrement of reflection. The lowest electrical resistivity (ρ) of 4.0 wt % SZO films on flexible substrates of PET and ITO/PET are 3.8×10-2 and ρ= 1.2×10-2 Ω.cm, respectively. It is found that electrical and optical properties of the resultant films are greatly dependent on various amount of Sn element doping effect and substrate material characteristics.

  14. One-Step Laser Patterned Highly Uniform Reduced Graphene Oxide Thin Films for Circuit-Enabled Tattoo and Flexible Humidity Sensor Application

    Directory of Open Access Journals (Sweden)

    Rowoon Park

    2018-06-01

    Full Text Available The conversion of graphene oxide (GO into reduced graphene oxide (rGO is imperative for the electronic device applications of graphene-based materials. Efficient and cost-effective fabrication of highly uniform GO films and the successive reduction into rGO on a large area is still a cumbersome task through conventional protocols. Improved film casting of GO sheets on a polymeric substrate with quick and green reduction processes has a potential that may establish a path to the practical flexible electronics. Herein, we report a facile deposition process of GO on flexible polymer substrates to create highly uniform thin films over a large area by a flow-enabled self-assembly approach. The self-assembly of GO sheets was successfully performed by dragging the trapped solution of GO in confined geometry, which consisted of an upper stationary blade and a lower moving substrate on a motorized translational stage. The prepared GO thin films could be selectively reduced and facilitated from the simple laser direct writing process for programmable circuit printing with the desired configuration and less sample damage due to the non-contact mode operation without the use of photolithography, toxic chemistry, or high-temperature reduction methods. Furthermore, two different modes of the laser operating system for the reduction of GO films turned out to be valuable for the construction of novel graphene-based high-throughput electrical circuit boards compatible with integrating electronic module chips and flexible humidity sensors.

  15. Efficiency increase in flexible bulk heterojunction solar cells with a nano-patterned indium zinc oxide anode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong Hwan; Seifter, Jason; Heeger, Alan J. [Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106-5090 (United States); Park, Jong Hyeok [School of Chemical Engineering and SAINT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Dae-Geun [Nano-Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 171 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2012-11-15

    Efficient flexible bulk-heterojunction polymer solar cells based on PCDTBT/PC{sub 70}BM were successfully fabricated by a simple nano-imprint technique. The flexible nano-patterned IZO anode with ordered periodic dot structures led to improved light absorption and increased interfacial contact area between the anode and polymer as well as between the polymer and cathode. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes.

    Science.gov (United States)

    Chen, Po-Chiang; Shen, Guozhen; Shi, Yi; Chen, Haitian; Zhou, Chongwu

    2010-08-24

    In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 25.5 Wh/kg, and columbic efficiency of approximately 90%. In addition, our ASCs exhibited a power density of 50.3 kW/kg, which is 10-fold higher than obtained in early reported ASC work. The high-performance hybrid nanostructured ASCs can find applications in conformal electrics, portable electronics, and electrical vehicles.

  17. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation

    Energy Technology Data Exchange (ETDEWEB)

    Münzenrieder, Niko, E-mail: muenzenrieder@ife.ee.ethz.ch; Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard [Electronics Laboratory Swiss Federal Institute of Technology (ETH) Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland)

    2014-12-29

    In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (L{sub OV}) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on L{sub OV}. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.

  18. Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors.

    Science.gov (United States)

    Cao, Xiehong; Zheng, Bing; Shi, Wenhui; Yang, Jian; Fan, Zhanxi; Luo, Zhimin; Rui, Xianhong; Chen, Bo; Yan, Qingyu; Zhang, Hua

    2015-08-26

    Reduced graphene oxide-wrapped MoO3M (rGO/MoO3 ) is prepared by a novel and simple method that is developed by using a metal-organic framework as the precursor. After a two-step annealing process, the obtained rGO/MoO3 composite is used for a high-performance supercapacitor electrode. Moreover, an all-solid-state flexible supercapacitor is fabricated based on the rGO/MoO3 composite, which shows stable performance under different bending states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Producer flexibility answers market forces

    International Nuclear Information System (INIS)

    Von Flatern, R.

    1996-01-01

    The petroleum industry was revolutionized in the 1980s when oil became a commodity and rising prices no longer ensured profits. Alliancing, partnering, integration and operator cooperation became economic responses to the 1990s market reality. The industry has long been a bastion of free-marketeering; competition among producers and service providers continues to control prices. But new, more efficient ways of doing business control costs in an industry buffeted by stagnant prices, a prolonged period of downsizing and increasingly difficult and remote operating environments. How long the new business atmosphere will last depends on industry needs and how well things work out. But based on the successes of the immediate past and the foreseeable future, the new cross-company business practices seem destined only to multiply

  20. Simplified tunnelling current calculation for MOS structures with ultra-thin oxides for conductive atomic force microscopy investigations

    International Nuclear Information System (INIS)

    Frammelsberger, Werner; Benstetter, Guenther; Stamp, Richard; Kiely, Janice; Schweinboeck, Thomas

    2005-01-01

    As charge tunnelling through thin and ultra-thin silicon dioxide layers is regarded as the driving force for MOS device degradation the determination and characterisation of electrically week spots is of paramount importance for device reliability and failure analysis. Conductive atomic force microscopy (C-AFM) is able to address this issue with a spatial resolution smaller than the expected breakdown spot. For the determination of the electrically active oxide thickness in practice an easy to use model with sufficient accuracy and which is largely independent of the oxide thickness is required. In this work a simplified method is presented that meets these demands. The electrically active oxide thickness is determined by matching of C-AFM voltage-current curves and a tunnelling current model, which is based on an analytical tunnelling current approximation. The model holds for both the Fowler-Nordheim tunnelling and the direct tunnelling regime with one single tunnelling parameter set. The results show good agreement with macroscopic measurements for gate voltages larger than approximately 0.5-1 V, and with microscopic C-AFM measurements. For this reason arbitrary oxides in the DT and the FNT regime may be analysed with high lateral resolution by C-AFM, without the need of a preselection of the tunnelling regime to be addressed

  1. Effects of Different Manufacturing Processes on TEMPO-Oxidized Carboxylated Cellulose Nanofiber Performance as Binder for Flexible Lithium-Ion Batteries.

    Science.gov (United States)

    Lu, Huiran; Guccini, Valentina; Kim, Hyeyun; Salazar-Alvarez, German; Lindbergh, Göran; Cornell, Ann

    2017-11-01

    Carboxylated cellulose nanofibers (CNF) prepared using the TEMPO-route are good binders of electrode components in flexible lithium-ion batteries (LIB). However, the different parameters employed for the defibrillation of CNF such as charge density and degree of homogenization affect its properties when used as binder. This work presents a systematic study of CNF prepared with different surface charge densities and varying degrees of homogenization and their performance as binder for flexible LiFePO 4 electrodes. The results show that the CNF with high charge density had shorter fiber lengths compared with those of CNF with low charge density, as observed with atomic force microscopy. Also, CNF processed with a large number of passes in the homogenizer showed a better fiber dispersibility, as observed from rheological measurements. The electrodes fabricated with highly charged CNF exhibited the best mechanical and electrochemical properties. The CNF at the highest charge density (1550 μmol g -1 ) and lowest degree of homogenization (3 + 3 passes in the homogenizer) achieved the overall best performance, including a high Young's modulus of approximately 311 MPa and a good rate capability with a stable specific capacity of 116 mAh g -1 even up to 1 C. This work allows a better understanding of the influence of the processing parameters of CNF on their performance as binder for flexible electrodes. The results also contribute to the understanding of the optimal processing parameters of CNF to fabricate other materials, e.g., membranes or separators.

  2. Flexible Transparent Electrode of Hybrid Ag-Nanowire/Reduced-Graphene-Oxide Thin Film on PET Substrate Prepared Using H2/Ar Low-Damage Plasma

    Directory of Open Access Journals (Sweden)

    Chi-Hsien Huang

    2017-01-01

    Full Text Available We employ H2/Ar low-damage plasma treatment (H2/Ar-LDPT to reduce graphene oxide (GO coating on a polymer substrate—polyethylene terephthalate (PET—with the assistance of atomic hydrogen (Hα at low temperature of 70 °C. Four-point probing and ultraviolet-visible (UV-Vis spectroscopy demonstrate that the conductivity and transmittance can be controlled by varying the H2/Ar flow rate, treatment time, and radio-frequency (RF power. Optical emission spectroscopy reveals that the Hα intensity depends on these processing parameters, which influence the removal of oxidative functional groups (confirmed via X-ray photoelectron spectroscopy to yield reduced GO (rGO. To further improve the conductivity while maintaining high transmittance, we introduce silver nanowires (AgNWs between rGO and a PET substrate to obtain a hybrid rGO/AgNWs/PET with a sheet resistance of ~100 Ω/sq and 81% transmittance. In addition, the hybrid rGO/AgNWs thin film also shows high flexibility and durability and is suitable for flexible and wearable electronics applications.

  3. Flexible nanovectors

    International Nuclear Information System (INIS)

    Pugno, Nicola M

    2008-01-01

    In this paper we show that the control of adhesion in highly flexible (a property that could be crucial for smart drug delivery but which is still ignored in the literature) nanovectors can help in smartly targeting and delivering the drug. The existence of and the conditions for activating and controlling a super-adhesive state are addressed. Even if such a state has never been observed in nanovectors, our calculations, as well as observations in spiders and geckos, suggest its existence and feasible control. Control of the competition between the drag and the adhesive force is exploited to improve the targeting ability and a hierarchical model is applied to describe a real vasculature. The high flexibility of the nanovector is used to smartly deliver the drug only during adhesion by nanopumping or, as a limiting case, by the new concept of 'adhesion induced nanovector implosion'; a liquid drop analogy is utilized for the calculations. Fast (pumping) and slow (diffusion) drug deliveries can thus be separately controlled by controlling the size and shape of the nanovector. Multiple stage nanovectors are also briefly discussed, mimicking aerospace vector strategies.

  4. Flexible nanovectors

    Science.gov (United States)

    Pugno, Nicola M.

    2008-11-01

    In this paper we show that the control of adhesion in highly flexible (a property that could be crucial for smart drug delivery but which is still ignored in the literature) nanovectors can help in smartly targeting and delivering the drug. The existence of and the conditions for activating and controlling a super-adhesive state are addressed. Even if such a state has never been observed in nanovectors, our calculations, as well as observations in spiders and geckos, suggest its existence and feasible control. Control of the competition between the drag and the adhesive force is exploited to improve the targeting ability and a hierarchical model is applied to describe a real vasculature. The high flexibility of the nanovector is used to smartly deliver the drug only during adhesion by nanopumping or, as a limiting case, by the new concept of 'adhesion induced nanovector implosion'; a liquid drop analogy is utilized for the calculations. Fast (pumping) and slow (diffusion) drug deliveries can thus be separately controlled by controlling the size and shape of the nanovector. Multiple stage nanovectors are also briefly discussed, mimicking aerospace vector strategies.

  5. Synthesis of layered birnessite-type manganese oxide thin films on plastic substrates by chemical bath deposition for flexible transparent supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yu; Zhu Hongwei; Wang Jun [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Chen Zhenxing, E-mail: chenzx65@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2011-10-20

    Highlights: > Layered birnessite-type MnO{sub 2} thin films are fabricated on ITO/PET substrates through a facile chemical bath deposition at room temperature. > The transmittance of the MnO{sub 2} thin films at 550 nm is up to 77.4%. > MnO{sub 2} thin films exhibit a special capacitance of 229.2 F g{sup -1} and 9.2 mF cm{sup -2}. > MnO{sub 2} thin films show a capacitance retention ratio of 83% after 1000 CV cycles. > MnO{sub 2} thin film electrodes show great mechanical flexibility and electrochemical stability even after 200 tensile and compressive bending cycles. - Abstract: Layered birnessite-type manganese oxide thin films are successfully fabricated on indium tin oxide coated polyethylene terephthalate substrates for flexible transparent supercapacitors by a facile, effective and inexpensive chemical bath deposition technology from an alkaline KMnO{sub 4} aqueous solution at room temperature. The effects of deposition conditions, including KMnO{sub 4} concentration, initial molar ratio of NH{sub 3}.H{sub 2}O and KMnO{sub 4}, bath temperature, and reaction time, on the electrochemical properties of MnO{sub 2} thin films are investigated. Layered birnessite-type MnO{sub 2} thin films deposited under optimum conditions display three-dimensional porous morphology, high hydrophilicity, and a transmittance of 77.4% at 550 nm. A special capacitance of 229.2 F g{sup -1} and a capacitance retention ratio of 83% are obtained from the films after 1000 cycles at 10 mV s{sup -1} in 1 M Na{sub 2}SO{sub 4}. Compressive and tensile bending tests show that as-prepared MnO{sub 2} thin film electrodes possess excellent mechanical flexibility and electrochemical stability.

  6. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    International Nuclear Information System (INIS)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yousefi, Ali Akbar; Yazdanshenas, Mohammad Esmail

    2016-01-01

    Graphical abstract: - Highlights: • Discontinuity of reduced graphene oxide (RGO) coated polyester fabric (PET) substrate was overcome by filling the gaps by in situ chemical oxidative polymerization of polypyrrole (PPy). • The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values (5 Ω/sq) than samples coated only with PPy (12 Ω/sq) and RGO (1300 Ω/sq), respectively. • The RGO–PPy coated fabric displayed other properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric. - Abstract: A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO–PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  7. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Berendjchi, Amirhosein [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khajavi, Ramin, E-mail: khajavi@azad.ac.ir [Nano Technology Research Center, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Yousefi, Ali Akbar [Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohammad Esmail [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2016-02-15

    Graphical abstract: - Highlights: • Discontinuity of reduced graphene oxide (RGO) coated polyester fabric (PET) substrate was overcome by filling the gaps by in situ chemical oxidative polymerization of polypyrrole (PPy). • The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values (5 Ω/sq) than samples coated only with PPy (12 Ω/sq) and RGO (1300 Ω/sq), respectively. • The RGO–PPy coated fabric displayed other properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric. - Abstract: A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO–PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  8. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability.

    Science.gov (United States)

    Tsai, Mei-Hui; Tseng, I-Hsiang; Chiang, Jen-Chi; Li, Jheng-Jia

    2014-06-11

    Coupling agent-functionalized boron nitride (f-BN) and glycidyl methacrylate-grafted graphene (g-TrG) are simultaneously blended with polyimide (PI) to fabricate a flexible, electrically insulating and thermally conductive PI composite film. The silk-like g-TrG successfully fills in the gap between PI and f-BN to complete the thermal conduction network. In addition, the strong interaction between surface functional groups on f-BN and g-TrG contributes to the effective phonon transfer in the PI matrix. The thermal conductivity (TC) of the PI/f-BN composite films containing additional 1 wt % of g-TrG is at least doubled to the value of PI/f-BN and as high as 16 times to that of the pure PI. The hybrid film PI/f-BN-50/g-TrG-1 exhibits excellent flexibility, sufficient insulating property, the highest TC of 2.11 W/mK, and ultralow coefficient of thermal expansion of 11 ppm/K, which are perfect conditions for future flexible substrate materials requiring efficient heat dissipation.

  9. Flexible Bronchoscopy.

    Science.gov (United States)

    Miller, Russell J; Casal, Roberto F; Lazarus, Donald R; Ost, David E; Eapen, George A

    2018-03-01

    Flexible bronchoscopy has changed the course of pulmonary medicine. As technology advances, the role of the flexible bronchoscope for both diagnostic and therapeutic indications is continually expanding. This article reviews the historical development of the flexible bronchoscopy, fundamental uses of the flexible bronchoscope as a tool to examine the central airways and obtain diagnostic tissue, and the indications, complications, and contraindications to flexible bronchoscopy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Role of the tip induced local anodic oxidation in the conductive atomic force microscopy of mixed phase silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Vetushka, Aliaksi; Fejfar, Antonín; Ledinský, Martin; Rezek, Bohuslav; Stuchlík, Jiří; Kočka, Jan

    2010-01-01

    Roč. 7, 3-4 (2010), s. 728-731 ISSN 1862-6351 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510; GA AV ČR(CZ) IAA100100902 Institutional research plan: CEZ:AV0Z10100521 Keywords : local anodic oxidation (LAO) * conductive atomic force microscopy (C-AFM) Subject RIV: BM - Solid Matter Physics ; Magnetism http://www3.interscience.wiley.com/journal/123289759/abstract

  11. Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy - Functional significance for bacterial photosynthesis

    NARCIS (Netherlands)

    Bahatyrova, S.; Frese, R.N.; van der Werf, K.O.; Otto, C.; Hunter, C.N.; Olsen, J.D.

    2004-01-01

    Previous electron microscopic studies of bacterial RC-LH1 complexes demonstrated both circular and elliptical conformations of the LH1 ring, and this implied flexibility has been suggested to allow passage of quinol from the Q

  12. Stability Study of Flexible 6,13-Bis(triisopropylsilylethynylpentacene Thin-Film Transistors with a Cross-Linked Poly(4-vinylphenol/Yttrium Oxide Nanocomposite Gate Insulator

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Kwon

    2016-03-01

    Full Text Available We investigated the electrical and mechanical stability of flexible 6,13-bis(triisopropylsilylehtynylpentacene (TIPS-pentacene thin-film transistors (TFTs that were fabricated on polyimide (PI substrates using cross-linked poly(4-vinylphenol (c-PVP and c-PVP/yttrium oxide (Y2O3 nanocomposite films as gate insulators. Compared with the electrical characteristics of TIPS-pentacene TFTs with c-PVP insulators, the TFTs with c-PVP/Y2O3 nanocomposite insulators exhibited enhancements in the drain current and the threshold voltage due to an increase in the dielectric capacitance. In electrical stability experiments, a gradual decrease in the drain current and a negative shift in the threshold voltage occurred during prolonged bias stress tests, but these characteristic variations were comparable for both types of TFT. On the other hand, the results of mechanical bending tests showed that the characteristic degradation of the TIPS-pentacene TFTs with c-PVP/Y2O3 nanocomposite insulators was more critical than that of the TFTs with c-PVP insulators. In this study, the detrimental effect of the nanocomposite insulator on the mechanical stability of flexible TIPS-pentacene TFTs was found to be caused by physical adhesion of TIPS-pentacene molecules onto the rough surfaces of the c-PVP/Y2O3 nanocomposite insulator. These results indicate that the dielectric and morphological properties of polymeric nanocomposite insulators are significant when considering practical applications of flexible electronics operated at low voltages.

  13. One-Step Process for High-Performance, Adhesive, Flexible Transparent Conductive Films Based on p-Type Reduced Graphene Oxides and Silver Nanowires.

    Science.gov (United States)

    Lai, Yi-Ting; Tai, Nyan-Hwa

    2015-08-26

    This work demonstrates a one-step process to synthesize uniformly dispersed hybrid nanomaterial containing silver nanowires (AgNWs) and p-type reduced graphene (p-rGO). The hybrid nanomaterial was coated onto a polyethylene terephthalate (PET) substrate for preparing high-performance flexible transparent conductive films (TCFs). The p-rGO plays the role of bridging discrete AgNWs, providing more electron holes and lowering the resistance of the contacted AgNWs; therefore, enhancing the electrical conductivity without sacrificing too much transparence of the TCFs. Additionally, the p-rGO also improves the adhesion between AgNWs and substrate by covering the AgNWs on the substrate tightly. The study shows that coating of the hybrid nanomaterials on the PET substrate demonstrates exceptional optoelectronic properties with a transmittance of 94.68% (at a wavelength of 550 nm) and a sheet resistance of 25.0 ± 0.8 Ω/sq. No significant variation in electric resistance can be detected even when the film was subjected to a bend loading with a radius of curvature of 5.0 mm or the film was loaded with a reciprocal tension or compression for 1000 cycles. Furthermore, both chemical corrosion resistance and haze effect were improved when p-rGO was introduced. The study shows that the fabricated flexible TCFs have the potential to replace indium tin oxide film in the optoelectronic industry.

  14. Self-Stacked Reduced Graphene Oxide Nanosheets Coated with Cobalt-Nickel Hydroxide by One-Step Electrochemical Deposition toward Flexible Electrochromic Supercapacitors.

    Science.gov (United States)

    Grote, Fabian; Yu, Zi-You; Wang, Jin-Long; Yu, Shu-Hong; Lei, Yong

    2015-09-01

    The implementation of an optical function into supercapacitors is an innovative approach to make energy storage devices smarter and to meet the requirements of smart electronics. Here, it is reported for the first time that nickel-cobalt hydroxide on reduced graphene oxide can be utilized for flexible electrochromic supercapacitors. A new and straightforward one-step electrochemical deposition process is introduced that is capable of simultaneously reducing GO and depositing amorphous Co(1-x)Ni(x)(OH)2 on the rGO. It is shown that the rGO nanosheets are homogeneously coated with metal hydroxide and are vertically stacked. No high temperature processes are used so that flexible polymer-based substrates can be coated. The synthesized self-stacked rGO-Co(1-x)Ni(x)(OH)2 nanosheet material exhibits pseudocapacitive charge storage behavior with excellent rate capability, high Columbic efficiency, and nondiffusion limited behavior. It is shown that the electrochemical behavior of the Ni(OH)2 can be modulated, by simultaneously depositing nickel and cobalt hydroxide, into broad oxidization and reduction bands. Further, the material exhibits electrochromic property and can switch between a bleached and transparent state. Literature comparison reveals that the performance characteristics of the rGO-Co(1-x)Ni(x)(OH)2 nanosheet material, in terms of gravimetric capacitance, areal capacitance, and long-term cycling stability, are among the highest reported values of supercapacitors with electrochromic property. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spatial atomic layer deposition on flexible porous substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes

    International Nuclear Information System (INIS)

    Sharma, Kashish; Routkevitch, Dmitri; Varaksa, Natalia; George, Steven M.

    2016-01-01

    Spatial atomic layer deposition (S-ALD) was examined on flexible porous substrates utilizing a rotating cylinder reactor to perform the S-ALD. S-ALD was first explored on flexible polyethylene terephthalate polymer substrates to obtain S-ALD growth rates on flat surfaces. ZnO ALD with diethylzinc and ozone as the reactants at 50 °C was the model S-ALD system. ZnO S-ALD was then performed on nanoporous flexible anodic aluminum oxide (AAO) films. ZnO S-ALD in porous substrates depends on the pore diameter, pore aspect ratio, and reactant exposure time that define the gas transport. To evaluate these parameters, the Zn coverage profiles in the pores of the AAO films were measured using energy dispersive spectroscopy (EDS). EDS measurements were conducted for different reaction conditions and AAO pore geometries. Substrate speeds and reactant pulse durations were defined by rotating cylinder rates of 10, 100, and 200 revolutions per minute (RPM). AAO pore diameters of 10, 25, 50, and 100 nm were utilized with a pore length of 25 μm. Uniform Zn coverage profiles were obtained at 10 RPM and pore diameters of 100 nm. The Zn coverage was less uniform at higher RPM values and smaller pore diameters. These results indicate that S-ALD into porous substrates is feasible under certain reaction conditions. S-ALD was then performed on porous Li ion battery electrodes to test S-ALD on a technologically important porous substrate. Li 0.20 Mn 0.54 Ni 0.13 Co 0.13 O 2 electrodes on flexible metal foil were coated with Al 2 O 3 using 2–5 Al 2 O 3 ALD cycles. The Al 2 O 3 ALD was performed in the S-ALD reactor at a rotating cylinder rate of 10 RPM using trimethylaluminum and ozone as the reactants at 50 °C. The capacity of the electrodes was then tested versus number of charge–discharge cycles. These measurements revealed that the Al 2 O 3 S-ALD coating on the electrodes enhanced the capacity stability. This S-ALD process could be extended to roll-to-roll operation for

  16. The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture

    Energy Technology Data Exchange (ETDEWEB)

    John Kramlich; Linda Castiglone

    2007-06-30

    Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting

  17. On flexibility

    OpenAIRE

    Weiss, Christoph R.; Briglauer, Wolfgang

    2000-01-01

    By building on theoretical work by Mills and Schumann (1985) and Ungern-Sternberg (1990) this paper provides evidence on the determinants of two dimensions of flexibility, the flexibility in adjusting aggregate output over time (tactical flexibility) as well as the ability to switch quickly between products (operational flexibility). Econometric analysis of a sample of 40.000 farms in Upper-Austria for the period 1980 to 1990 suggests that larger full-time farms operated by younger, better ed...

  18. Investigation of the structure of nanocrystalline refractory oxides by X-ray diffraction, electron microscopy, and atomic force microscopy

    International Nuclear Information System (INIS)

    Ulyanova, T. M.; Titova, L. V.; Medichenko, S. V.; Zonov, Yu. G.; Konstantinova, T. E.; Glazunova, V. A.; Doroshkevich, A. S.; Kuznetsova, T. A.

    2006-01-01

    The structures of nanocrystalline fibrous powders of refractory oxides have been investigated by different methods: determination of coherent-scattering regions, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic-force microscopy (AFM). The sizes of nanograins of different crystalline phases of refractory metal oxides have been determined during the formation of these nanograins and the dynamics of their growth during heat treatment in the temperature range 600-1600 deg. C has been studied. The data on the structure of nanocrystalline refractory oxide powders, obtained by different methods, are in good agreement. According to the data on coherent-scattering regions, the sizes of the ZrO 2 (Y 2 O 3 ) and Al 2 O 3 grains formed are in the range 4-6 nm, and the particle sizes determined according to the TEM and AFM data are in the ranges 5-7 and 2-10 nm, respectively. SEM analysis made it possible to investigate the dynamics of nanoparticle growth at temperatures above 1000 deg. C and establish the limiting temperatures of their consolidation in fibers

  19. Effect of a PEDOT:PSS modified layer on the electrical characteristics of flexible memristive devices based on graphene oxide:polyvinylpyrrolidone nanocomposites

    Science.gov (United States)

    Kim, Woo Kyum; Wu, Chaoxing; Kim, Tae Whan

    2018-06-01

    The electrical characteristics of flexible memristive devices utilizing a graphene oxide (GO):polyvinylpyrrolidone (PVP) nanocomposite charge-trapping layer with a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-modified layer fabricated on an indium-tin-oxide (ITO)-coated polyethylene glycol naphthalate (PEN) substrate were investigated. Current-voltage (I-V) curves for the Al/GO:PVP/PEDOT:PSS/ITO/PEN devices showed remarkable hysteresis behaviors before and after bending. The maximum memory margins of the devices before and after 100 bending cycles were approximately 7.69 × 103 and 5.16 × 102, respectively. The devices showed nonvolatile memory effect with a retention time of more than 1 × 104 s. The "Reset" voltages were distributed between 2.3 and 3.5 V, and the "Set" voltages were dispersed between -0.7 and -0.2 V, indicative of excellent, uniform electrical performance. The endurance number of ON/OFF-switching and bending cycles for the devices was 1 × 102, respectively. The bipolar resistive switching behavior was explained on the basis of I-V results. In particular, the bipolar resistive switching behaviors of the LRS and the HRS for the devices are dominated by the Ohmic and space charge current mechanisms, respectively.

  20. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    International Nuclear Information System (INIS)

    Gelinck, Gerwin H; Cobb, Brian; Van Breemen, Albert J J M; Myny, Kris

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge, and demonstrating reliable writing to and reading from such a large scale memory has thus far not been demonstrated. Here, we report an integration of ferroelectric, P(VDF-TrFE), transistor memory arrays with thin-film circuitry that can address each individual memory element in that array. n-type indium gallium zinc oxide is used as the active channel material in both the memory and logic thin-film transistors. The maximum process temperature is 200 °C, allowing plastic films to be used as substrate material. The technology was scaled up to 150 mm wafer size, and offers good reproducibility, high device yield and low device variation. This forms the basis for successful demonstration of memory arrays, read and write circuitry, and the integration of these. (paper)

  1. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    Science.gov (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  2. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  3. Soldier Flexible Personal Digital Assistant Program

    National Research Council Canada - National Science Library

    Price, Mark; Woytowich, Jason; Carlson, Marc

    2008-01-01

    The main goal of the Soldier Flexible Personal Digital Assistant Program was to develop prototypes of a novel flexible display technology device for demonstration in a laboratory setting and use in Future Force Warrior (FFW) demonstrations...

  4. Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress.

    Science.gov (United States)

    Bettio, Luis E B; Freitas, Andiara E; Neis, Vivian B; Santos, Danúbia B; Ribeiro, Camille M; Rosa, Priscila B; Farina, Marcelo; Rodrigues, Ana Lúcia S

    2014-12-01

    Guanosine is a guanine-based purine that modulates glutamate uptake and exerts neurotrophic and neuroprotective effects. In a previous study, our group demonstrated that this endogenous nucleoside displays antidepressant-like properties in a predictive animal model. Based on the role of oxidative stress in modulating depressive disorders as well as on the association between the neuroprotective and antioxidant properties of guanosine, here we investigated if its antidepressant-like effect is accompanied by a modulation of hippocampal oxidant/antioxidant parameters. Adult Swiss mice were submitted to an acute restraint stress protocol, which is known to cause behavioral changes that are associated with neuronal oxidative damage. Animals submitted to ARS exhibited an increased immobility time in the forced swimming test (FST) and the administration of guanosine (5mg/kg, p.o.) or fluoxetine (10mg/kg, p.o., positive control) before the exposure to stressor prevented this alteration. Moreover, the significantly increased levels of hippocampal malondialdehyde (MDA; an indicator of lipid peroxidation), induced by ARS were not observed in stressed mice treated with guanosine. Although no changes were found in the hippocampal levels of reduced glutathione (GSH), the group submitted to ARS procedure presented enhanced glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) activities and reduced catalase (CAT) activity in the hippocampus. Guanosine was able to prevent the alterations in GPx, GR, CAT activities, and in SOD/CAT activity ratio, but potentiated the increase in SOD activity elicited by ARS. Altogether, the present findings indicate that the observed antidepressant-like effects of guanosine might be related, at least in part, to its capability of modulating antioxidant defenses and mitigating hippocampal oxidative damage induced by ARS. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Molecular-dynamics simulation of lateral friction in contact-mode atomic force microscopy of alkane films: The role of molecular flexibility

    DEFF Research Database (Denmark)

    Soza, P.; Hansen, Flemming Yssing; Taub, H.

    2011-01-01

    than on a surface of molecules with the long axis perpendicular to the surface, in agreement with experimental results. A major dissipation mechanism is the molecular flexibility as manifested in the torsional motion about the molecules' C-C bonds. The generation of gauche defects as a result...

  6. Poisson effect enhances compression force sensing with oxidized carbon nanotube network/polyurethane sensor

    Czech Academy of Sciences Publication Activity Database

    Slobodian, P.; Říha, Pavel; Olejník, R.; Matyáš, J.; Kovář, M.

    2018-01-01

    Roč. 271 (2018), s. 76-82 ISSN 0924-4247 R&D Projects: GA MŠk ED2.1.00/19.0409 Grant - others:Ministerstvo školství, mládeže a tělovýchovy (MŠMT)(CZ) LO1504; TBU in Zlin(CZ) IGA/CPS/2015/001 Institutional research plan: CEZ:AV0Z20600510 Keywords : compression force sensor * carbon nanotubes * polyurethane * polymer composite * nanocracks Subject RIV: BK - Fluid Dynamics OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 2.499, year: 2016

  7. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    Energy Technology Data Exchange (ETDEWEB)

    Buelow, S.J.; Allen, D.; Anderson, G.K. [and others

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  8. Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Effendy Mohammad

    2016-01-01

    Full Text Available The catalytic oxidation of methane for abating the emission vented from coal mine or natural gas transportation has been known as most reliable method. A reverse flow reactor operation has been widely used to oxidize this methane emission due to its capability for autothermal operation and heat production. The design of the reverse flow reactor requires a proper kinetic rate expression, which should be developed based on the operating condition. The kinetic rate obtained in the steady state condition cannot be applied for designing the reactor operated under unsteady state condition. Therefore, new approach to develop the dynamic kinetic rate expression becomes indispensable, particularly for periodic operation such as reverse flow reactor. This paper presents a novel method to develop the kinetic rate expression applied for unsteady state operation. The model reaction of the catalytic methane oxidation over Pt/-Al2O3 catalyst was used with kinetic parameter determined from laboratory experiments. The reactor used was a fixed bed, once-through operation, with a composition modulation in the feed gas. The switching time was set at 3 min by varying the feed concentration, feed flow rate, and reaction temperature. The concentrations of methane in the feed and product were measured and analysed using gas chromatography. The steady state condition for obtaining the kinetic rate expression was taken as a base case and as a way to judge its appropriateness to be applied for dynamic system. A Langmuir-Hinshelwood reaction rate model was developed. The time period during one cycle was divided into some segments, depending on the ratio of CH4/O2. The experimental result shows that there were kinetic regimes occur during one cycle: kinetic regime controlled by intrinsic surface reaction and kinetic regime controlled by external diffusion. The kinetic rate obtained in the steady state operation was not appropriate when applied for unsteady state operation

  9. Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Kim, Jinwoo; Kim, Ji Yoon; Pham-Cong, De; Jeong, Se Young; Chang, Jinho; Choi, Jun Hee; Braun, Paul V.; Cho, Chae Ryong

    2016-01-01

    Highlights: • Li_4Ti_5O_1_2 nanofibers are fabricated by electrospinning and annealing process. • Carbon-coated Li_4Ti_5O_1_2 nanofibers are prepared by hydrothermal process. • Individually graphene-oxide-wrapped Li_4Ti_5O_1_2 nanofibers are prepared by electrostatic force. • Enhanced rate capability of carbon-coated and graphene-oxide-wrapped Li_4Ti_5O_1_2 nanofibers. - Abstract: The as-electrospun polymeric lithium titanate nanofibers are crystallized into Li_4Ti_5O_1_2 nanofibers (denoted as LTO NFs) via post-annealing. The LTO NFs are coated with a carbon layer using a glucose polymer via hydrothermal synthesis. The GO layer electrostatically attracts to the positively charged LTO NFs, resulting in the uniform wrapping of individual LTO NFs without aggregation. The introduction of uniformly coated carbon and GO double layers led to an enhanced rate capability (110 mAh g"−"1 at 20C) and over two orders of magnitude higher diffusion coefficient (D_L_i = ∼1.04 × 10"−"1"1 cm"2 s"−"1) of the tailored LTO NFs with carbon and GO network compared with those of the pristine LTO NFs. Extended testing for over 100 cycles demonstrates the cyclic stability and Coulombic efficiency of over 99% of this system. These results indicate that the interconnection and networks of LTO NFs through carbon coating and the individual GO wrapping, which facilitates the lithium ion and electron transportation, may show excellent electrochemical performance.

  10. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.

    Science.gov (United States)

    Sun, Gengzhi; Zhang, Xiao; Lin, Rongzhou; Yang, Jian; Zhang, Hua; Chen, Peng

    2015-04-07

    One of challenges existing in fiber-based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two-dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2 ) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy-related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well-aligned multi-walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2 -rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid-state, flexible, asymmetric supercapacitors. This fiber-based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  12. Characteristics of low-resistivity aluminum-doped zinc oxide films deposited at room temperature by off-axis radio-frequency sputtering on flexible plastic substrates

    Science.gov (United States)

    Wang, Li-Min; Wang, Chih-Yi; Jheng, Ciao-Ren; Wu, Syu-Jhan; Sai, Chen-Kai; Lee, Ya-Ju; Chiang, Ching-Yu; Shew, Bor-Yuan

    2016-08-01

    The crystalline structure, morphology, composition, electrical transport, and optical properties of aluminum-doped zinc oxide (AZO) films are studied for applications in transparent electronics and optoelectronic devices. AZO thin films of c-axis-oriented growth and with different thickness were deposited on PET flexible plastic substrates at room temperature by rf magnetron sputtering. A larger grain size with a decreased strain ɛ value is observed in a thicker film, while changes in composition for films with different thicknesses are insignificant. Moreover, the resistivity of film decreases with increasing thickness, and the low-temperature electrical transport properties can be described by the scenario of quantum corrections to conductivity. With the room-temperature growth conditions, the resistivity of 4.5 × 10-4 Ω cm, carrier concentration of 6.4 × 1020 cm-3, and transmittance of 80 % for the 1100-nm-thick film are obtained. In addition, the optical bandgap energy decreases with increasing film thickness, which can be attributed to the bandgap renormalization and crystallite size effects.

  13. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    International Nuclear Information System (INIS)

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    Highlights: • Gel electrolyte is prepared and used in electric double layer capacitor. • Insertion of boron crosslinks into GO agglomerates opens channels for ion migration. • Solid supercapacitors show excellent specific capacitance and cycle stability. • Nanocomposite electrolyte shows better thermal stability and mechanical properties. - Abstract: A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs

  14. A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array

    Science.gov (United States)

    Shi, Guochao; Wang, Mingli; Zhu, Yanying; Shen, Lin; Wang, Yuhong; Ma, Wanli; Chen, Yuee; Li, Ruifeng

    2018-04-01

    In this work, we presented an eco-friendly and low-cost method to fabricate a kind of flexible and stable Au nanoparticles/graphene oxide/cicada wing (AuNPs/GO/CW) substrate. By controlling the ratio of reactants, the optimum SERS substrate with average AuNPs size of 65 nm was obtained. The Raman enhancement factor for rhodamine 6G (R6G) was 1.08 ×106 and the limit of detection (LOD) was as low as 10-8 M. After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. In order to better understand the experimental results, the 3D finite-different time-domain simulation was used to simulate the AuNPs/GO/CW-1 (the diameter of the AuNPs was 65 nm) to further investigate the SERS enhancement effect. More importantly, the AuNPs/GO/CW-1 substrates not only can provide strong enhancement factors but also can be stable and reproducible. This SERS substrates owned a good stability for the SERS intensity which was reduced only by 25% after the aging time of 60 days and the relative standard deviation was lower than 20%, revealing excellent uniformity and reproducibility. Our positive findings can pave a new way to optimize the application of SERS substrate as well as provide more SERS platforms for quantitative detection of organic contaminants vestige, which makes it very promising in the trace detection of biological molecules.

  15. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu

    2014-06-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  16. Conflicting flexibility

    NARCIS (Netherlands)

    De Jong, P.; Schaap, A.

    2011-01-01

    New buildings are designed for first users. For a sustainable approach there are many advantages in designing in flexibility and adjustability in order to enable and facilitate the other sequential users. For the first investor this flexibility is translated into improved exit values due to

  17. Observations of crystallization and melting in poly(ethylene oxide)/poly(methyl methacrylate) blends by hot-stage atomic-force microscopy

    NARCIS (Netherlands)

    Pearce, R.; Vancso, Gyula J.

    1998-01-01

    The binary blend of poly(ethylene oxide)/atactic poly(methyl methacrylate) is examined using hot-stage atomic-force microscopy (AFM) in conjunction with differential scanning calorimetry and optical microscopy. It was found possible to follow in real time the melting process, which reveals itself to

  18. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

    Science.gov (United States)

    Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A

    2018-06-15

    Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.

  19. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  20. Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.; Stavrinou, Paul N.; Anthopoulos, Thomas D., E-mail: t.anthopoulos@ic.ac.uk [Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-05-21

    We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGO{sub X}) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGO{sub X} (1–3 monolayers-thick) and AgNWs exhibit sheet resistances of ∼100–1000 kΩ/□ and 100–900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGO{sub X}/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify the nanoscale phenomena responsible for this effect. For rGO{sub X} networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGO{sub X}/AgNWs' networks, rGO{sub X} flakes are found to form conductive “bridges” between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGO{sub X}/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.

  1. Effects of Eleutherococcus senticosus Cortex on Recovery from the Forced Swimming Test and Fatty Acid β-Oxidation in the Liver and Skeletal Muscle of mice.

    Science.gov (United States)

    Sumiyoshi, Maho; Kimura, Yoshiyuki

    2016-03-01

    The root and stem barks of Eleutherococcus senticosus have been used to treat emotional and physical fatigue in China, Russia, Korea, and Japan. The effects of E. senticosus on recovery from physical fatigue and the expenditure of energy currently remain unclear. We herein examined the effects of E. senticosus extract on recovery from physical fatigue after the forced swimming test as well as fatty acid β-oxidation in the liver and skeletal muscle of mice. 1) Physical fatigue; E. senticosus extract (500 and 1000 mg/kg, twice daily) was administered orally to ICR male mice for 7 consecutive days. After swimming had been performed for 15 min, each mouse was placed on the cover of a 100-mm culture plate, and the time for each mouse to move away from the cover was measured. 2) Fatty acid β-oxidation in the liver and skeletal muscle; E. senticosus extract (500 and 1000 mg/kg) was administered orally twice daily to C57BL/6J male mice for 21 consecutive days. The initial and final body and liver weight were measured, and then fatty acid β-oxidation activity in the liver and skeletal muscle was measured by methods using [1- 14 C] palmitic acid. Recovery times after forced swimming were shorter in E. senticosus extract (500 and 1000 mg/kg)-treated mice than in vehicle-treated mice. The body and liver weight had no effect by the oral administration of E. senticosus extract, vitamin mixture and L-carnitine. Fatty acid β-oxidation activity in skeletal muscle was increased by E. senticosus extract (500 and 1000 mg/kg). E. senticosus may enhance recovery from physical fatigue induced by forced swimming by accelerating energy changes through fatty acid β-oxidation in skeletal muscle.

  2. Workplace flexibility.

    Science.gov (United States)

    Scordato, C; Harris, J

    1990-01-01

    Whether your organization is in a growth pattern or downsizing, you are probably facing change. To gain some insight into your options, here is an in-depth look at the problems and benefits of some flexible work arrangements from a just published study by Catalyst.

  3. Flexibility conflict?

    NARCIS (Netherlands)

    Delsen, L.W.M.; Bauer, F.; Groß, H.; Sieglen, G.

    2002-01-01

    The chapter deals with the presupposed conflict of interests between employers and employees resulting from a decoupling of operating hours and working times. It starts from the notion that both long operating hours and flexibility are relative concepts. As there is some discretion, the ultimate

  4. Flexible licensing

    Directory of Open Access Journals (Sweden)

    Martyn Jansen

    2012-07-01

    Full Text Available The case is presented for a more flexible approach to licensing online library resources. Today's distributed education environment creates pressure for UK higher and further education institutions (HEI/FEIs to form partnerships and to develop educational products and roll them out across the globe. Online library resources are a key component of distributed education and yet existing licensing agreements struggle to keep pace with the increasing range of users and purposes for which they are required. This article describes the process of developing a flexible approach to licensing and proposes a new model licence for online library resources which has the adaptability needed in this new global educational landscape. These ideas have been presented and discussed at various workshops across Eduserv's and JISC Collections' higher education and publisher communities, and further consultation is ongoing.

  5. Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells.

    Science.gov (United States)

    He, Qiqi; Yao, Kai; Wang, Xiaofeng; Xia, Xuefeng; Leng, Shifeng; Li, Fan

    2017-12-06

    Flexible perovskite solar cells (PSCs) using plastic substrates have become one of the most attractive points in the field of thin-film solar cells. Low-temperature and solution-processable nanoparticles (NPs) enable the fabrication of semiconductor thin films in a simple and low-cost approach to function as charge-selective layers in flexible PSCs. Here, we synthesized phase-pure p-type Cu-doped NiO x NPs with good electrical properties, which can be processed to smooth, pinhole-free, and efficient hole transport layers (HTLs) with large-area uniformity over a wide range of film thickness using a room-temperature solution-processing technique. Such a high-quality inorganic HTL allows for the fabrication of flexible PSCs with an active area >1 cm 2 , which have a power conversion efficiency over 15.01% without hysteresis. Moreover, the Cu/NiO x NP-based flexible devices also demonstrate excellent air stability and mechanical stability compared to their counterpart fabricated on the pristine NiO x films. This work will contribute to the evolution of upscaling flexible PSCs with a simple fabrication process and high device performances.

  6. Antidepressant-like effect of a Ginkgo biloba extract (EGb761) in the mouse forced swimming test: role of oxidative stress.

    Science.gov (United States)

    Rojas, Patricia; Serrano-García, Norma; Medina-Campos, Omar N; Pedraza-Chaverri, José; Ogren, Sven O; Rojas, Carolina

    2011-10-01

    EGb761 is a well-defined mixture of active compounds extracted from Ginkgo biloba leaves. This extract is used clinically due to its neuroprotective effects, exerted probably via its potent antioxidant or free radical scavenger action. Previous studies suggest that oxidative stress, via free radical production, may play an important role in depression and animal models for depression-like behavior. Preclinical studies have suggested that antioxidants may have antidepressants properties. The aim of this study was to investigate the antidepressant-like of EGb761 due to its antioxidant role against oxidative stress induced in the forced swimming test, the most widely used preclinical model for assessing antidepressant-like behavior. Male BALB/c mice were pretreated with EGb761 (10mg/kg, ip) daily for 17 days followed by the forced swimming test and spontaneous locomotor activity. Animals were sacrificed to evaluate lipid peroxidation, different antioxidant enzyme activities, serotonin and dopamine content in midbrain, hippocampus and prefrontal cortex. EGb761 significantly decreased the immobility time (39%) in the forced swimming test. This antidepressant-like effect of EGb761 was associated with a reduction in lipid peroxidation and superoxide radical production (indicated by a downregulation of Mn-superoxide dismutase activity), both of which are indicators of oxidative stress. The protective effect of EGb761 is not related to excitatory or inhibitory effects in locomotor activity, and was also associated with the modulation of serotonergic and dopaminergic neurotransmission. It is suggested that EGb761 produces an antidepressant-like effect, and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-01-01

    inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films

  8. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  9. Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture.

    Science.gov (United States)

    Xu, Xiaobao; Chen, Qi; Hong, Ziruo; Zhou, Huanping; Liu, Zonghao; Chang, Wei-Hsuan; Sun, Pengyu; Chen, Huajun; De Marco, Nicholas; Wang, Mingkui; Yang, Yang

    2015-10-14

    In this communication, we report an efficient and flexible perovskite solar cell based on formamidinium lead trihalide (FAPbI3) with simplified configuration. The device achieved a champion efficiency of 12.70%, utilizing direct contact between metallic indium tin oxide (ITO) electrode and perovskite absorber. The underlying working mechanism is proposed subsequently, via a systematic investigation focusing on the heterojunction within this device. A significant charge storage has been observed in the perovskite, which is believed to generate photovoltage and serves as the driving force for charge transferring from the absorber to ITO electrode as well. More importantly, this simplified device structure on flexible substrates suggests its compatibility for scale-up fabrication, which paves the way for commercialization of perovskite photovoltaic technology.

  10. Flexible Consumption

    DEFF Research Database (Denmark)

    Holm Jacobsen, Peter; Pallesen, Trine

    This report presents the first findings from our qualitative study of consumer behaviour vis-à-vis flexible consumption. The main of objective of this report is to present our first round of data from Bornholm, and to assist the design of products/services designed in WP6. In the report, we adopt...... the perspective of the consumer: what does living in a demand response setup look like to participants – and what kinds of behaviour and interest motivate – and emerge from – their participation in EcoGrid 2.0....

  11. Flexible Capitalism

    DEFF Research Database (Denmark)

    Approaching “work” as at heart a practice of exchange, this volume explores sociality in work environments marked by the kind of structural changes that have come to define contemporary “flexible” capitalism. It introduces anthropological exchange theory to a wider readership, and shows how...... the perspective offers new ways to enquire about the flexible capitalism’s social dimensions. The essays contribute to a trans-disciplinary scholarship on contemporary economic practice and change by documenting how, across diverse settings, “gift-like” socialities proliferate, and even sustain the intensified...

  12. Flexible Work Schedules. ERIC Digest.

    Science.gov (United States)

    Kerka, Sandra

    Flexible work schedules are one response to changes in the composition of the work force, new life-styles, and changes in work attitudes. Types of alternative work schedules are part-time and temporary employment, job sharing, and flextime. Part-time workers are a diverse group--women, the very young, and older near-retirees. Although part-time…

  13. View of the bacterial strains of Escherichia coli M-17 and its interaction with the nanoparticles of zinc oxide by means of atomic force microscopy

    International Nuclear Information System (INIS)

    Sagitova, A; Yaminsky, I; Meshkov, G

    2016-01-01

    Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope. (paper)

  14. View of the bacterial strains of Escherichia coli M-17 and its interaction with the nanoparticles of zinc oxide by means of atomic force microscopy

    Science.gov (United States)

    Sagitova, A.; Yaminsky, I.; Meshkov, G.

    2016-08-01

    Visualization of the structure of biological objects plays a key role in medicine, biotechnology, nanotechnology and IT-technology. Atomic force microscopy (AFM) is a promising method of studying of objects’ morphology and structure. In this work, AFM was used to determine the size and shape of the bacterial strains of Escherichia coli M-17 and visualization its interaction with the nanoparticles of zinc oxide. The suspension of E.coli bacteria was applied to natural mica and studied by contact mode using the FemtoScan multifunctional scanning probe microscope.

  15. Flexible Methods for Future Force Concept Development

    National Research Council Canada - National Science Library

    Gossman, J. R; Mauzy, Rebecca P; Heiden, Charles G; Campbell, Charlotte H; Flynn, Michael R; Lussier, James W; Shadrick, Scott B

    2005-01-01

    .... The Army needs a means to generate, elaborate, refine, describe, test, and validate new concepts relating to doctrine, tactics, techniques, procedures, unit and team organization, job allocation...

  16. Investigating the Influence of Micro-Arc Oxide Coating on Rigidity and Strength of Long Force Elements of Spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    Full Text Available Outboard elements (arms, towers are widely used in spacecraft structure for setting-out of a payload; their high stiffness-weight ratio provides an opportunity to decrease the mass. The deployment unit is considered as an example of outboard structure. Its strength beams work under special conditions in operation. At the transportation stage beams are under considerable vibration loads. Therefore for increasing the natural resonance frequency it is rational to increase their rigidity. Using the micro-arc oxide coating suggests itself because the modulus of elasticity of the micro-arc oxide coating is more than that of the aluminium alloy. The beams suffer considerable bending load at the step of deploying; therefore the aluminium alloy with the micro-arc oxide coating must have suitable loading capacity, in addition to increased rigidity.Influence of micro-arc oxide coating on the rigidity and strength of tubes f rom aluminium alloy is investigated. It is determined that forming the micro-arc oxide coating on thin-walled tubes with a ratio of the coating area to the cross-section area of more than 25% is the most rational. In this case the rigidity of composite material considerably exceeds the rigidity of the aluminium alloy of the same cross-section while the redistribution of stresses in the surface coating of heterogeneous elasticity cross-section doesn’t cause the sudden increase of stresses. Also forming an attainable thickness of the micro-arc oxide coating on the surface of tube from aluminium alloy will be rational solution because the increase of attainable thickness of the microarc oxide coating provides an opportunity to form it on thick-walled tubes saving an acceptable, in the context of the strength, ratio of the coating area to the overall cross-section area.Micro-arc oxidation is an advanced method to form the wear resistant, resistant to corrosion, heat-shielding and electrically insulating coatings, but depending on the

  17. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  18. Participation of hippocampal nitric oxide synthase and soluble guanylate cyclase in the modulation of behavioral responses elicited by the rat forced swimming test.

    Science.gov (United States)

    Sales, Amanda J; Hiroaki-Sato, Vinícius A; Joca, Sâmia R L

    2017-02-01

    Systemic or hippocampal administration of nitric oxide (NO) synthase inhibitors induces antidepressant-like effects in animals, implicating increased hippocampal levels of NO in the neurobiology of depression. However, the role played by different NO synthase in this process has not been clearly defined. As stress is able to induce neuroinflammatory mechanisms and trigger the expression of inducible nitric oxide synthase (iNOS) in the brain, as well as upregulate neuronal nitric oxide synthase (nNOS) activity, the aim of the present study was to investigate the possible differential contribution of hippocampal iNOS and nNOS in the modulation of the consequences of stress elicited by the forced swimming test. Male Wistar rats received intrahippocampal injections, immediately after the pretest or 1 h before the forced swimming test, of selective inhibitors of nNOS (N-propyl-L-arginine), iNOS (1400W), or sGC (ODQ), the main pharmacological target for NO. Stress exposure increased nNOS and phospho-nNOS levels at all time points, whereas iNOS expression was increased only 24 h after the pretest. All drugs induced an antidepressant-like effect. However, whereas the nNOS inhibitor was equally effective when injected at different times, the iNOS inhibitor was more effective 24 h after the pretest. These results suggest that hippocampal nNOS and iNOS contribute to increase in NO levels in response to stress, although with a differential time course after stress exposure.

  19. Novel solid oxide cells with SrCo0.8Fe0.1Ga0.1O3-δ oxygen electrode for flexible power generation and hydrogen production

    Science.gov (United States)

    Meng, Xiuxia; Shen, Yichi; Xie, Menghan; Yin, Yimei; Yang, Naitao; Ma, Zi-Feng; Diniz da Costa, João C.; Liu, Shaomin

    2016-02-01

    This work investigates the performance of solid oxide cells as fuel cells (SOFCs) for power production and also as electrolysis cells (SOECs) for hydrogen production. In order to deliver this dual mode flexible operation system, a novel perovskite oxide based on Ga3+ doped SrCo0.8Fe0.1Ga0.1O3-δ (SCFG) is synthesized via a sol-gel method. Its performance for oxygen electrode catalyst was then evaluated. Single solid oxide cell in the configuration of Ni-YSZ|YSZ|GDC|SCFG is assembled and tested in SOFC or SOEC modes from 550 to 850 °C with hydrogen as the fuel or as the product, respectively. GDC is used to avoid the reaction between the electrolyte YSZ and the cobalt-based electrode. Under SOFC mode, a maximum power density of 1044 mW cm-2 is obtained at 750 °C. Further, the cell delivers a stable power output of 650 mW cm-2 up to 125 h at 0.7 V. In the electrolysis mode, when the applied voltage is controlled at 2 V, the electrolysis current density reaches 3.33 A cm-2 at 850 °C with the hydrogen production rate up to 22.9 mL min-1 cm-2 (STP). These results reveal that SCFG is a very promising oxygen electrode material for application in both SOFC and SOEC.

  20. Development of Flexible Pneumatic Cylinder with Built-in Flexible Linear Encoder and Flexible Bending Sensor

    Science.gov (United States)

    Akagi, Tetsuya; Dohta, Shujiro; Matsushita, Hisashi; Fukuhara, Akimasa

    The purpose of this study is to develop a lightweight and intelligent soft actuator which can be safely attached to the human body. A novel flexible pneumatic cylinder that can be used even if it is deformed by external force had been proposed. The cylinder can realize both pushing and pulling motions even if the cylinder bends. In this paper, a flexible pneumatic cylinder with a built-in flexible linear encoder is proposed and tested. The encoder can detect the cylinder displacement even if the cylinder bends. In the next step, to realize an intelligent flexible cylinder, it is essential to recognize the angle of deflection of the cylinder to estimate the direction of the external force. Therefore, a flexible bending sensor that can measure the directional angle by attaching it to the end of the cylinder is also proposed and tested. The tested bending sensor also consists of four inexpensive photo-reflectors set on the circumferential surface to the cylinder tube every 90 degrees from the center of the tube. By measuring the distance between the photo reflector and the surface of the tube at each point, the bending directional angle of the cylinder can be obtained. A low cost measuring system using a micro-computer incorporating a programmed Up/Down counter to measure the displacement of the cylinder is also developed. As a result, it was confirmed that the measuring accuracy of the bending directional angle was good, less than 0.7 degrees as a standard deviation.

  1. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-09-01

    Flexibility, low cost, versatility, miniaturization and multi-functionality are key aspects driving research and innovation in many branches of the electronics industry. With many anticipated emerging applications, like wearable, transparent and biocompatible devices, interest among the research community in pursuit for novel multifunctional miniaturized materials have been amplified. In this context, multiferroic polymer-based nanocomposites, possessing both ferroelectricity and ferromagnetism, are highly appealing. Most importantly, these nanocomposites possess tunable ferroelectric and ferromagnetic properties based on the parameters of their constituent materials as well as the magnetoelectric effect, which is the coupling between electric and magnetic properties. This tunability and interaction is a fascinating fundamental research field promising tremendous potential applications in sensors, actuators, data storage and energy harvesting. This dissertation work is devoted to the investigation of a new class of multiferroic polymer-based flexible nanocomposites, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature, with the goal of understanding and optimizing the origin of their magnetoelectric coupling. The nanocomposites consist of high aspect ratio ferromagnetic nanowires (NWs) embedded inside a ferroelectric co-polymer, poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE) matrix. First, electrochemical deposition of ferromagnetic NWs inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films have been fabricated by means of spin coating and drop casting techniques. The effect of incorporation of NWs inside the ferroelectric polymer on its electroactive phase is discussed. The remanent and saturation polarization as well

  2. Ab initio benchmark study for the oxidative addition of CH4 to Pd: importance of basis-set flexibility and polarization

    NARCIS (Netherlands)

    de Jong, G.T.; Sola, M.; Visscher, L.; Bickelhaupt, F.M.

    2004-01-01

    To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory,

  3. Biogas to syngas: flexible on-cell micro-reformer and NiSn bimetallic nanoparticle implanted solid oxide fuel cells for efficient energy conversion

    NARCIS (Netherlands)

    Hua, B.; Li, M.; Sun, Y.-F.; Zhang, Y.-Q.; Yan, N.; Chen, J.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J.L.

    2016-01-01

    Solid oxide fuel cells (SOFCs) deliver an energy-efficient and eco-friendly pathway to convert biogas into syngas and electricity. However, many problems still need to be solved before their commercialization. Some of the disadvantages of biogas SOFC technology include coking and sulfur poisoning

  4. Evaluation of In-Situ Magnetic Signals from Iron Oxide Nanoparticle-Labeled PC12 Cells by Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Lijun; Min, Yue; Wang, Zhigang; Riggio, Cristina; Calatayud, M Pilar; Pinkernelle, Josephine; Raffa, Vittoria; Goya, Gerardo F; Keilhoff, Gerburg; Cuschieri, Alfred

    2015-03-01

    The magnetic signals from magnetite nanoparticle-labeled PC12 cells were assessed by magnetic force microscopy by deploying a localized external magnetic field to magnetize the nanoparticles and the magnetic tip simultaneously so that the interaction between the tip and PC12 cell-associated Fe3O4 nanoparticles could be detected at lift heights (the distance between the tip and the sample) larger than 100 nm. The use of large lift heights during the raster scanning of the probe eliminates the non-magnetic interference from the complex and rugged cell surface and yet maintains the sufficient sensitivity for magnetic detection. The magnetic signals of the cell-bound nanoparticles were semi-quantified by analyzing cell surface roughness upon three-dimensional reconstruction generated by the phase shift of the cantilever oscillation. The obtained data can be used for the evaluation of the overall cellular magnetization as well as the maximum magnetic forces from magnetic nanoparticle-labeled cells which is crucial for the biomedical application of these nanomaterials.

  5. Living in a Flexible Space

    Science.gov (United States)

    Canepa, Simona

    2017-10-01

    How long does a space or an object have to last? If in the past an object or a building manufacturing was designed to last as much as possible, nowadays it is designed to have a life related to the time in which it will be used. Flexibility is what characterizes a space, it’s the ability to be variable and adaptable to changes in the lives of users or in relation to the use which these will make over time. The evolution of the labour market, the difficulty of inserting within it and the need to push more and more frequent move today in the trial of living space models increasingly flexible: people, especially young people, are forced to move on territory outlining a new condition to which the flexible nomadic dwellings offer an adequate response, ensuring high functional performance in confined spaces.

  6. Modular Structures in a Multinational Force Headquarters

    National Research Council Canada - National Science Library

    Stewart, K; Christie, M

    2004-01-01

    .... It is proposed that future Multinational Force (MNF) military headquarters (HQ) can achieve this flexibility through a modular organizational structure enabled by networked information management and communication technologies...

  7. Dehydrogenation Kinetics and Modeling Studies of MgH2 Enhanced by Transition Metal Oxide Catalysts Using Constant Pressure Thermodynamic Driving Forces

    Directory of Open Access Journals (Sweden)

    Saidi Temitope Sabitu

    2012-06-01

    Full Text Available The influence of transition metal oxide catalysts (ZrO2, CeO2, Fe3O4 and Nb2O5 on the hydrogen desorption kinetics of MgH2 was investigated using constant pressure thermodynamic driving forces in which the ratio of the equilibrium plateau pressure (pm to the opposing plateau (pop was the same in all the reactions studied. The results showed Nb2O5 to be vastly superior to other catalysts for improving the thermodynamics and kinetics of MgH2. The modeling studies showed reaction at the phase boundary to be likely process controlling the reaction rates of all the systems studied.

  8. Flavonoid-rich fraction of the Monodora tenuifolia seed extract attenuates behavioural alterations and oxidative damage in forced-swim stressed rats.

    Science.gov (United States)

    Ekeanyanwu, Raphael Chukwuma; Njoku, Obioma Uzoma

    2015-03-01

    The antidepressant effects of the flavonoid-rich fraction of Monodora tenuifolia seed extract were examined by assessing the extent of attenuation of behavioural alterations and oxidative damage in the rats that were stressed by forced swim test. Compared with the model control group, the altered behavioural parameters were attenuated significantly (P fluoxetine (10 mg·kg(-1)). The flavonoid-rich fraction and fluoxetine improved significantly (P < 0.05) the activities of the antioxidant enzymes such as superoxide dismutase and catalase as well as other biochemical parameters such as reduced glutathione, protein, and nitrite in the brain of the stressed rats. These results suggested that the flavonoid-rich fraction of Monodora tenuifolia seed extract exerted the antidepressant-like effects which could be useful in the management of stress induced disease. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  9. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  10. Characteristic of The RSG-Gas Oxide Fuel Element Temperature Under Forced Convection And Natural Convection Mode

    International Nuclear Information System (INIS)

    Sudarmono

    2000-01-01

    One of the methods used for fuel element plate temperature measurement in RSG-Gas is a direct measurement. Evaluation on the measurement results were done by using HEATHYDE and NATCON code, which was then compared to the safety margin criteria. Results of thermalhydraulic measurement on transitional core both under forced and natural convection were compared with the results of calculations using the two codes. Measurement result for maximum fuel element plate temperature at typical working core of 30 MW, was 121 o C. The deviation between calculation and measurement result was under 9.75 %. Under normal operation, safety margin on DNB and OFI are 3.56 and 2.60, respectively. Natcon calculation result showed that the typical working core under the natural circulation mode, an onset of nucleate boiling (ONB)occurred at a core power level of 826 kW (2.8% of the nominal power)

  11. Validation of Trimethylamine-N-oxide (TMAO) Force Fields Based on Thermophysical Properties of Aqueous TMAO Solutions.

    Science.gov (United States)

    Markthaler, Daniel; Zeman, Johannes; Baz, Jörg; Smiatek, Jens; Hansen, Niels

    2017-11-30

    Five molecular models for trimethylamine N-oxide (TMAO) to be used in conjunction with compatible models for liquid water are evaluated by comparison of molecular dynamics (MD) simulation results to experimental data as functions of TMAO molality. The experimental data comprise thermodynamic properties (density, apparent molar volume, and partial molar volume at infinite dilution), transport properties (self-diffusion and shear viscosity), structural properties (radial distribution functions and degree of hydrogen bonding), and dielectric properties (dielectric spectra and static permittivity). The thermodynamic and transport properties turned out to be useful in TMAO model discrimination while the influence of the water model and the TMAO-water interaction are effectively probed through the calculation of dielectric spectra.

  12. Antifatigue Effect of Luteolin-6-C-Neohesperidoside on Oxidative Stress Injury Induced by Forced Swimming of Rats through Modulation of Nrf2/ARE Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Fang-fang Duan

    2017-01-01

    Full Text Available Luteolin-6-C-neohesperidoside (LN is a flavonoid isolated from moso bamboo leaf. This study was performed to evaluate the antifatigue effect of LN on a rat model undergoing the weight-loaded forced swimming test (FST. Briefly, male Sprague-Dawley rats (20–22 weeks old were forced to undertake exhaustive swimming every other day for 3 weeks. Each swimming session was followed by the administration of distilled water, LN (25–75 mg/kg, or ascorbic acid (100 mg/kg 1 h later. Oral administration of LN significantly improved exercise endurance; normalized alterations in energy metabolic markers; and decreased serum lactic acid, lactate dehydrogenase, and blood urea nitrogen levels of rats that underwent FST. Moreover, LN enhanced the activities of antioxidant enzymes and antioxidant capacity, as measured by enzyme activity assays, RT-PCR, and Western blotting, as well as decreasing the levels of proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1β (IL-1β, and IL-6 and increasing the level of anti-inflammatory (IL-10 in the liver and skeletal muscle. These results suggested that LN reduces both physical and mental effects of chronic fatigue, probably by attenuating oxidative stress injury and inflammatory responses in the liver and skeletal muscle. This study thus supports the use of LN in functional foods for antifatigue and antioxidant effects.

  13. Antifatigue Effect of Luteolin-6-C-Neohesperidoside on Oxidative Stress Injury Induced by Forced Swimming of Rats through Modulation of Nrf2/ARE Signaling Pathways.

    Science.gov (United States)

    Duan, Fang-Fang; Guo, Ying; Li, Jing-Wan; Yuan, Ke

    2017-01-01

    Luteolin-6-C-neohesperidoside (LN) is a flavonoid isolated from moso bamboo leaf. This study was performed to evaluate the antifatigue effect of LN on a rat model undergoing the weight-loaded forced swimming test (FST). Briefly, male Sprague-Dawley rats (20-22 weeks old) were forced to undertake exhaustive swimming every other day for 3 weeks. Each swimming session was followed by the administration of distilled water, LN (25-75 mg/kg), or ascorbic acid (100 mg/kg) 1 h later. Oral administration of LN significantly improved exercise endurance; normalized alterations in energy metabolic markers; and decreased serum lactic acid, lactate dehydrogenase, and blood urea nitrogen levels of rats that underwent FST. Moreover, LN enhanced the activities of antioxidant enzymes and antioxidant capacity, as measured by enzyme activity assays, RT-PCR, and Western blotting, as well as decreasing the levels of proinflammatory cytokines such as tumor necrosis factor- α , interleukin-1 β (IL-1 β ), and IL-6 and increasing the level of anti-inflammatory (IL-10) in the liver and skeletal muscle. These results suggested that LN reduces both physical and mental effects of chronic fatigue, probably by attenuating oxidative stress injury and inflammatory responses in the liver and skeletal muscle. This study thus supports the use of LN in functional foods for antifatigue and antioxidant effects.

  14. Inhibition of the L-arginine-nitric oxide pathway mediates the antidepressant effects of ketamine in rats in the forced swimming test.

    Science.gov (United States)

    Zhang, Guang-Fen; Wang, Nan; Shi, Jin-Yun; Xu, Shi-Xia; Li, Xiao-Min; Ji, Mu-Huo; Zuo, Zhi-Yi; Zhou, Zhi-Qiang; Yang, Jian-Jun

    2013-09-01

    Converging evidence shows that the acute administration of a sub-anaesthetic dose ketamine produces fast-acting and robust antidepressant properties in patients suffering from major depressive disorder. However, the underlying mechanisms have not been fully elucidated. The present study aimed to investigate the role of the L-arginine-nitric oxide pathway in the antidepressant effects of ketamine in rats performing the forced swimming test (FST). Ketamine (10 mg/kg) significantly decreased immobility times in the FST and the activities of total nitric oxide synthases (T-NOS), inducible NOS (iNOS), and endothelial NOS (eNOS) in the rat hippocampus. Interestingly, the plasma activities of T-NOS, iNOS, and eNOS increased after administration of ketamine. Furthermore, the activities of neuronal NOS (nNOS) did not change significantly in either the hippocampus or plasma after ketamine administration. The antidepressant effects of ketamine were prevented by pre-treatment with l-arginine (750 mg/kg). Pre-treatment with the NOS inhibitor L-NG-nitroarginine methyl ester at a sub-antidepressant dose of 50 mg/kg and ketamine at a sub-antidepressant dose of 3 mg/kg reduced immobility time in the FST compared to treatment with either drug alone. None of the drugs affected crossing and rearing scores in the open field test. These results suggest that the L-arginine-nitric oxide pathway is involved in the antidepressant effects of ketamine observed in rats in the FST and this involvement is characterised by the inhibition of brain T-NOS, iNOS, and eNOS activities. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Nickel-cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices

    KAUST Repository

    Shakir, Imran; Shahid, Muhammad; Rana, Usman Ali; Nashef, Inas M Al; Hussain, Rafaqat

    2014-01-01

    Nickel-cobalt layered double hydroxide (Ni-Co LDH) nanoflakes-ZnO nanowires hybrid array has been directly synthesized on a carbon cloth substrate by a facile cost-effective two-step hydrothermal route. As electrode materials for flexible pseudocapacitors, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibits a significantly enhanced specific capacitance of 1927 Fg-1, which is a ∼1.8 time greater than pristine Ni-Co LDH nanoflakes. The synthesized Ni-Co LDH nanoflakes-ZnO nanowires hybrid array shows a maximum energy density of 45.55 Whkg-1 at a power density of 46.15 kWkg -1, which is 35% higher than the pristine Ni-Co LDH nanoflakes electrode. Moreover, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibit excellent excellent rate capability (80.3% capacity retention at 30 Ag -1) and cycling stability (only 3.98% loss after 3000 cycles), due to the significantly improved faradaic redox reaction. © 2014 Elsevier Ltd.

  16. Nickel-cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices

    KAUST Repository

    Shakir, Imran

    2014-05-01

    Nickel-cobalt layered double hydroxide (Ni-Co LDH) nanoflakes-ZnO nanowires hybrid array has been directly synthesized on a carbon cloth substrate by a facile cost-effective two-step hydrothermal route. As electrode materials for flexible pseudocapacitors, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibits a significantly enhanced specific capacitance of 1927 Fg-1, which is a ∼1.8 time greater than pristine Ni-Co LDH nanoflakes. The synthesized Ni-Co LDH nanoflakes-ZnO nanowires hybrid array shows a maximum energy density of 45.55 Whkg-1 at a power density of 46.15 kWkg -1, which is 35% higher than the pristine Ni-Co LDH nanoflakes electrode. Moreover, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibit excellent excellent rate capability (80.3% capacity retention at 30 Ag -1) and cycling stability (only 3.98% loss after 3000 cycles), due to the significantly improved faradaic redox reaction. © 2014 Elsevier Ltd.

  17. Carbon Sequestration in Arable Soils is Likely to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative Forcing

    International Nuclear Information System (INIS)

    Li, Changsheng Li; Frolking, S.; Butterbach-Bahl, K.

    2005-01-01

    Strategies for mitigating the increasing concentration of carbon dioxide (CO2) in the atmosphere include sequestering carbon (C) in soils and vegetation of terrestrial ecosystems. Carbon and nitrogen (N) move through terrestrial ecosystems in coupled biogeochemical cycles, and increasing C stocks in soils and vegetation will have an impact on the N cycle. We conducted simulations with a biogeochemical model to evaluate the impact of different cropland management strategies on the coupled cycles of C and N, with special emphasis on C-sequestration and emission of the greenhouse gases methane (CH4) and nitrous oxide (N2O). Reduced tillage, enhanced crop residue incorporation, and farmyard manure application each increased soil C-sequestration, increased N2O emissions, and had little effect on CH4 uptake. Over 20 years, increases in N2O emissions, which were converted into CO2-equivalent emissions with 100-year global warming potential multipliers, offset 75-310% of the carbon sequestered, depending on the scenario. Quantification of these types of biogeochemical interactions must be incorporated into assessment frameworks and trading mechanisms to accurately evaluate the value of agricultural systems in strategies for climate protection

  18. Self-assembly silicon/porous reduced graphene oxide composite film as a binder-free and flexible anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tang, H.; Zhang, Y.J.; Xiong, Q.Q.; Cheng, J.D.; Zhang, Q.; Wang, X.L.; Gu, C.D.; Tu, J.P.

    2015-01-01

    A Si/porous reduced graphene oxide (rGO) composite film synthesized by evaporation and leavening method are developed as a high-performance anode material for lithium ion batteries. The porous structure as buffer base can effectively release the volume expansion of the silicon particles, increase the electrical conductivity and reduce the transfer resistance of Li ions. The Si/porous rGO composite film presents high specific capacity and good cycling stability (1261 mA h g −1 at 50 mA g −1 up to 70 cycles), as well as enhanced rate capability. This approach to prepare such a unique structure is a low-cost and facile route for the silicon-based anode materials

  19. Balance and flexibility.

    Science.gov (United States)

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  20. Flexible benefits plans. Perceptions of their effectiveness.

    Science.gov (United States)

    Agho, A O

    1995-01-01

    Flexible benefits plans have been used in businesses since the 1970s to control healthcare costs and meet the needs of an increasingly diverse work force. More recently, healthcare organizations have begun to implement the flexible benefits concept. This study collected data from human resources executives at hospitals with and without flex plans to investigate how they perceive the effectiveness of and the problems associated with such plans.

  1. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2010-02-15

    Aluminum-doped zinc oxide films were deposited at 100 C on polyethylene terephthalate by radio-frequency magnetron sputtering. The sputtering parameters such as RF power and Argon working pressure were varied from 25 to 125 W and from 1.1 to 0.2 Pa, respectively. The structural properties of as-deposited films were analysed by X-ray diffraction, showing that all the deposited films were polycrystalline, with hexagonal structure and a strong preferred c-axis orientation (0 0 2). Full width at half maximum and grain sizes were around 0.27 and ranged from 24 to 32 nm, respectively. The strain state of the samples was also estimated from X-ray diffraction measurements, obtaining compressive stresses from 0.29 to 0.05 GPa. Resistivity as low as 1.1 x 10{sup -3} {omega} cm was achieved for the film deposited at 75 W and 0.2 Pa, sample that showed a low strain state of -0.06 GPa. High optical transmittance ({proportional_to}80%) was exhibited when films were deposited at RF powers below 100 W. Band gap energies ranged from 3.36 to 3.39 eV and a refractive index of 1.80{+-}0.05, constant in the visible region, was also obtained. (author)

  2. Pharmacological evidence for the involvement of the NMDA receptor and nitric oxide pathway in the antidepressant-like effect of lamotrigine in the mouse forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Ahangari, Mohammad; Nikoui, Vahid; Norouzi-Javidan, Abbas; Zolfaghari, Samira; Jazaeri, Farahnaz; Chamanara, Mohsen; Akbarian, Reyhaneh; Dehpour, Ahmad-Reza

    2016-08-01

    Lamotrigine is an anticonvulsant agent that shows clinical antidepressant properties. The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) receptors and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) synthesis in possible antidepressant-like effect of lamotrigine in forced swimming test (FST) in mice. Intraperitoneal administration of lamotrigine (10mg/kg) decreased the immobility time in the FST (P<0.01) without any effect on locomotor activity in the open-field test (OFT), while higher dose of lamotrigine (30mg/kg) reduced the immobility time in the FST (P<0.001) as well as the number of crossings in the OFT. Pretreatment of animals with NMDA (75mg/kg), l-arginine (750mg/kg, a substrate for nitric oxide synthase [NOS]) or sildenafil (5mg/kg, a phosphodiesterase [PDE] 5 inhibitor) reversed the antidepressant-like effect of lamotrigine (10mg/kg) in the FST. Injection of l-nitroarginine methyl ester (l-NAME, 10mg/kg, a non-specific NOS inhibitor), 7-nitroindazole (30mg/kg, a neuronal NOS inhibitor), methylene blue (20mg/kg, an inhibitor of both NOS and soluble guanylate cyclase [sGC]), or MK-801 (0.05mg/kg), ketamine (1mg/kg), and magnesium sulfate (10mg/kg) as NMDA receptor antagonists in combination with a sub-effective dose of lamotrigine (5mg/kg) diminished the immobility time of animals in the FST compared with either drug alone. None of the drugs produced significant effects on the locomotor activity in the OFT. Based on our findings, it is suggested that the antidepressant-like effect of lamotrigine might mediated through inhibition of either NMDA receptors or NO-cGMP synthesis. Copyright © 2016. Published by Elsevier Masson SAS.

  3. Electrical property heterogeneity at transparent conductive oxide/organic semiconductor interfaces: mapping contact ohmicity using conducting-tip atomic force microscopy.

    Science.gov (United States)

    MacDonald, Gordon A; Veneman, P Alexander; Placencia, Diogenes; Armstrong, Neal R

    2012-11-27

    We demonstrate mapping of electrical properties of heterojunctions of a molecular semiconductor (copper phthalocyanine, CuPc) and a transparent conducting oxide (indium-tin oxide, ITO), on 20-500 nm length scales, using a conductive-probe atomic force microscopy technique, scanning current spectroscopy (SCS). SCS maps are generated for CuPc/ITO heterojunctions as a function of ITO activation procedures and modification with variable chain length alkyl-phosphonic acids (PAs). We correlate differences in small length scale electrical properties with the performance of organic photovoltaic cells (OPVs) based on CuPc/C(60) heterojunctions, built on these same ITO substrates. SCS maps the "ohmicity" of ITO/CuPc heterojunctions, creating arrays of spatially resolved current-voltage (J-V) curves. Each J-V curve is fit with modified Mott-Gurney expressions, mapping a fitted exponent (γ), where deviations from γ = 2.0 suggest nonohmic behavior. ITO/CuPc/C(60)/BCP/Al OPVs built on nonactivated ITO show mainly nonohmic SCS maps and dark J-V curves with increased series resistance (R(S)), lowered fill-factors (FF), and diminished device performance, especially near the open-circuit voltage. Nearly optimal behavior is seen for OPVs built on oxygen-plasma-treated ITO contacts, which showed SCS maps comparable to heterojunctions of CuPc on clean Au. For ITO electrodes modified with PAs there is a strong correlation between PA chain length and the degree of ohmicity and uniformity of electrical response in ITO/CuPc heterojunctions. ITO electrodes modified with 6-8 carbon alkyl-PAs show uniform and nearly ohmic SCS maps, coupled with acceptable CuPc/C(60)OPV performance. ITO modified with C14 and C18 alkyl-PAs shows dramatic decreases in FF, increases in R(S), and greatly enhanced recombination losses.

  4. Antidepressant effect of pramipexole in mice forced swimming test: A cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway.

    Science.gov (United States)

    Ostadhadi, Sattar; Imran Khan, Muhammad; Norouzi-Javidan, Abbas; Dehpour, Ahmad-Reza

    2016-07-01

    Pramipexole is a dopamine D2 receptor agonist indicated for treating Parkinson disorder. This study was aimed to investigate the effect of pramipexole in forced swimming test (FST) in mice and the possible involvement of activation of D2 receptors and inhibition of N-methyl-d-aspartate (NMDA) receptors and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) on this effect. Intraperitoneal administration of pramipexole (1-3mg/kg) reduced the immobility time in the FST similar to fluoxetine (20mg/kg, i.p.). This effect of pramipexole (1mg/kg, i.p.) was ceased when mice were pretreated with haloperidol (0.15mg/kg, i.p,) and sulpiride (5mg/kg, i.p) as D2 receptor antagonists, NMDA (75mg/kg,i.p.), l-arginine (750mg/kg, i.p., a substrate for nitric oxide synthase) or sildenafil (5mg/kg, i.p., a phosphodiesterase 5 inhibitor). The administration of MK-801 (0.05mg/kg, i.p., a NMDA receptor antagonist) l-NG-Nitro arginine methyl ester (l-NAME, 10mg/kg, i.p., a non-specific nitric oxide synthase (NOS) inhibitor), 7-nitroindazole (30mg/kg, i.p., a neuronal NOS inhibitor) and methylene blue (10mg/kg, i.p.), an inhibitor of both NOS and soluble guanylyl cyclase (sGC) in combination with the sub-effective dose of pramipexole (0.3mg/kg, i.p.) reduced the immobility. Altogether, our data suggest that the antidepressant-like effect of pramipexole is dependent on the activation of D2 receptor and inhibition of either NMDA receptors and/or NO-cGMP synthesis. These results contribute to the understanding of the mechanisms underlying the antidepressant-like effect of pramipexole and reinforce the role of D2 receptors, NMDA receptors and l-arginine-NO-GMP pathway in the antidepressant mechanism of this agent. Copyright © 2016. Published by Elsevier Masson SAS.

  5. Can flexibility help you float?

    Science.gov (United States)

    Burton, L. J.; Bush, J. W. M.

    2012-10-01

    We consider the role of flexibility in the weight-bearing characteristics of bodies floating at an interface. Specifically, we develop a theoretical model for a two-dimensional thin floating plate that yields the maximum stable plate load and optimal stiffness for weight support. Plates small relative to the capillary length are primarily supported by surface tension, and their weight-bearing potential does not benefit from flexibility. Above a critical size comparable to the capillary length, flexibility assists interfacial flotation. For plates on the order of and larger than the capillary length, deflection from an initially flat shape increases the force resulting from hydrostatic pressure, allowing the plate to support a greater load. In this large plate limit, the shape that bears the most weight is a semicircle, which displaces the most fluid above the plate for a fixed plate length. Exact results for maximum weight-bearing plate shapes are compared to analytic approximations made in the limits of large and small plate sizes. The value of flexibility for floating to a number of biological organisms is discussed in light of our study.

  6. Advanced device for testing the electrical behavior of conductive coatings on flexible polymer substrates under oscillatory bending: comparison of coatings of sputtered indium-tin oxide and poly3,4ethylenedioxythiophene

    International Nuclear Information System (INIS)

    Königer, Tobias; Münstedt, Helmut

    2008-01-01

    A special device was designed and set up to investigate the electrical behavior of conductive layers on flexible substrates under oscillatory bending. The resistance of conductive coatings can be measured during various oscillatory bending conditions. The bending radius, the amplitude and the frequency can be set to well-defined values. Furthermore, the setup allows us to apply tensile or compressive stress to the coating as well as both stresses alternately. Thus, various bending loads occurring in printable electronics applications can be simulated to investigate the electrical reliability of conductive coatings. In addition, it is possible to simulate different environmental conditions during oscillatory bending by running the device in an environmental chamber. Characterizations of the electrical behavior under oscillatory bending were carried out on commercially available polyethyleneterephthalate (PET) films sputtered with indium-tin oxide (ITO) and coated with poly3,4ethylenedioxythiophene (PEDOT). For coatings of sputtered ITO, a dramatic increase of the resistance is observed for bending radii smaller than 14 mm due to cracks spanning the whole sample width. The higher the amplitude, the more pronounced is the increase of the resistance. Coatings of PEDOT show high stability under oscillatory bending. There is no change in resistance observed for all bending radii and amplitudes applied over a large number of cycles

  7. Improvement in the mechanical properties, proton conductivity, and methanol resistance of highly branched sulfonated poly(arylene ether)/graphene oxide grafted with flexible alkylsulfonated side chains nanocomposite membranes

    Science.gov (United States)

    Liu, Dong; Peng, Jinhua; Li, Zhuoyao; Liu, Bin; Wang, Lei

    2018-02-01

    Sulfonated polymer/graphene oxide (GO) nanocomposites exhibit excellent properties as proton exchange membranes. However, few investigations on highly branched sulfonated poly(arylene ether)s (HBSPE)/GO nanocomposites as proton exchange membranes are reported. In order to obtain HBSPE-based nanocomposite membranes with better dispersibility and properties, a novel GO containing flexible alkylsulfonated side chains (SGO) is designed and prepared for the first time in this work. The HBSPE/SGO nanocomposite membranes with excellent dispersibility are successfully prepared. The properties of these membranes, including the mechanical properties, ion-exchange capacity, water uptake, proton conductivity, and methanol resistance, are characterized. The nanocomposite membranes exhibit higher tensile strength (32.67 MPa), higher proton conductivity (0.39 S cm-1 at 80 °C) and lower methanol permeability (4.89 × 10-7 cm2 s-1) than the pristine membrane. The nanocomposite membranes also achieve a higher maximum power density (82.36 mW cm-2) than the pristine membrane (67.85 mW cm-2) in single-cell direct methanol fuel cell (DMFC) tests, demonstrating their considerable potential for applications in DMFCs.

  8. Ovarian tumor-initiating cells display a flexible metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Angela S. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Roberts, Paul C. [Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA (United States); Frisard, Madlyn I. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Hulver, Matthew W., E-mail: hulvermw@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Schmelz, Eva M., E-mail: eschmelz@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States)

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  9. Ovarian tumor-initiating cells display a flexible metabolism

    International Nuclear Information System (INIS)

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-01-01

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L FFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth

  10. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong; Kavaldzhiev, Mincho; Kosel, Jü rgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency

  11. Flexible Carpooling: Exploratory Study

    OpenAIRE

    Dorinson, Diana; Gay, Deanna; Minett, Paul; Shaheen, Susan

    2009-01-01

    Energy consumption could be reduced if more people shared rides rather than driving alone yet carpooling represents a small proportion of all potential carpoolers. Prior research has found that many who might carpool were concerned about reduced flexibility with carpooling. If flexibility is one of the barriers how could carpooling be organized to be more flexible? In Northern Virginia a flexible system has evolved where there are 3,500 single-use carpools per day. In another example there ...

  12. The Flexibility of Pusher Furnace Grate

    Directory of Open Access Journals (Sweden)

    Słowik J.A.

    2016-12-01

    Full Text Available The lifetime of guide grates in pusher furnaces for heat treatment could be increased by raising the flexibility of their structure through, for example, the replacement of straight ribs, parallel to the direction of grate movement, with more flexible segments. The deformability of grates with flexible segments arranged in two orientations, i.e. crosswise (perpendicular to the direction of compression and lengthwise (parallel to the direction of compression, was examined. The compression process was simulated using SolidWorks Simulation program. Relevant regression equations were also derived describing the dependence of force inducing the grate deformation by 0.25 mm ‒ modulus of grate elasticity ‒ on the number of flexible segments in established orientations. These calculations were made in Statistica and Scilab programs. It has been demonstrated that, with the same number of segments, the crosswise orientation of flexible segments increases the grate structure flexibility in a more efficient way than the lengthwise orientation. It has also been proved that a crucial effect on the grate flexibility has only the quantity and orientation of segments (crosswise / lengthwise, while the exact position of segments changes the grate flexibility by less than 1%.

  13. Integrated engineering increases flexibility

    International Nuclear Information System (INIS)

    Smith, Ray

    1991-01-01

    Integrated Engineering (IE) can be used to describe the best use of increasingly rare good engineering talent in an increasingly competive world. A number of organisations are now moving towards IE without any general agreement on a precise definition. The engineering division of British Nuclear Fuels (BNFL) is one such organisation. This feature covers the reasoning behind the decision, and our experience to date. BNFL engineering division is responsible primarily for the provision of major facilities on BNFL operational sites. This provision includes feasibility, front end and detailed design, procurement, installation and commissioning. Task force working has been used for some of the large projects. But the future workload is expected to comprise many more smaller projects. At the same time, equipment is becoming more complex and the need for mutual understanding and appreciation between disciplines is increasing. To meet this increasing need for flexibility, BNFL has decided to move to the matrix structure of project management and functional departments described in the article. (Author)

  14. Optical and electrical properties of Cu-based all oxide semi-transparent photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Sik; Patel, Malkeshkumar; Yadav, Pankaj; Kim, Joondong, E-mail: joonkim@inu.ac.kr, E-mail: dwkim@ewha.ac.kr [Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, 119 Academy Rd., Yeonsu, Incheon 406772 (Korea, Republic of); Sohn, Ahrum; Kim, Dong-Wook, E-mail: joonkim@inu.ac.kr, E-mail: dwkim@ewha.ac.kr [Department of Physics, Ewha Womans University, Seoul 120750 (Korea, Republic of)

    2016-09-05

    Zero-bias operating Cu oxide-based photodetector was achieved by using large-scale available sputtering method. Cu oxide (Cu{sub 2}O or CuO) was used as p-type transparent layer to form a heterojunction by contacting n-type ZnO layer. All metal-oxide materials were employed to realize transparent device at room temperature and showed a high transparency (>75% at 600 nm) with excellent photoresponses. The structural, morphological, optical, and electrical properties of Cu oxides of CuO and Cu{sub 2}O are evaluated in depth by UV-visible spectrometer, X-ray diffraction, scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and Hall measurements. We may suggest a route of high-functional Cu oxide-based photoelectric devices for the applications in flexible and transparent electronics.

  15. Antidepressant-like effect of atorvastatin in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway.

    Science.gov (United States)

    Shahsavarian, Arash; Javadi, Shiva; Jahanabadi, Samane; Khoshnoodi, Mina; Shamsaee, Javad; Shafaroodi, Hamed; Mehr, Shahram Ejtemaei; Dehpour, Ahmadreza

    2014-12-15

    Atorvastatin is a synthetic and lipophilic statin which has been reported to have a positive role in reducing depression. The potential antidepressant-like effects of atorvastatin and the possible involvement of peroxisome proliferator-activated receptor gamma (PPAR_γ) and nitric oxide system were determined using forced swimming test (FST) in mice was studied. Atorvastatin (0.01, 0.1 and 1 mg/kg, p.o.) was administered 1 h before FST. To assess the involvement of PPAR_γ in the possible antidepressant effect of atorvastatin, pioglitazone, a PPAR_γ agonist (5 mg/kg), and GW-9662, a specific PPAR_γ antagonist (2 mg/kg), was co-administered with atorvastatin (0.01 mg/kg, p.o.) and then FST was performed. The possible role of nitric oxide pathway was determined by using co-administration of a non-specific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p.), and a NO precursor, L-arginine (750 mg/kg, i.p.) with sub-effective doses of atorvastatin and pioglitazone. Immobility time was significantly decreased after atorvastatin administration (0.1 and 1 mg/kg, p.o.). Administration of pioglitazone or L-NAME in combination with the sub-effective dose of atorvastatin (0.01 mg/kg, p.o.) reduced the immobility time in the FST compared to drugs alone, showing the participation of these pathways; while co-administration of non-effective doses of atorvastatin and pioglitazone with GW9662 or L-arginine reversed antidepressant-like effect of atorvastatin in FST. Data from concurrent use of GW9662 and atorvastatin also demonstrated that the antidepressant effect of atorvastatin was significantly reversed by GW9662. The antidepressant-like effect of atorvastatin on mice in the FST is mediated at least in part through PPAR_γ receptors and NO pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Probing anodic oxidation kinetics and nanoscale heterogeneity within TiO2 films by Conductive Atomic Force Microscopy and combined techniques

    International Nuclear Information System (INIS)

    Diamanti, M.V.; Souier, T.; Stefancich, M.; Chiesa, M.; Pedeferri, M.P.

    2014-01-01

    Graphical abstract: - Highlights: • Nanoscale anodic titanium oxides were investigated with multidisciplinary approach. • Oxide thickness was estimated via spectrophotometry and coulometry. • C-AFM identified nanometric conductivity heterogeneities, ascribed to oxide structure. • High conductivity areas exhibited local memristive behavior. - Abstract: Anodic oxidation of titanium in acid electrolytes allows to obtain a thin, compact oxide layer with thickness, structure, color, and electrical properties that vary with process parameters imposed, among which cell voltage has a key effect. Although oxidation kinetics have been investigated in several research works, a broader vision of oxide properties–including thickness and structure–still has to be achieved, especially in the case of very thin oxide films, few tens of nanometers thick. This is vital for engineered applications of nanostructured TiO 2 films, as in the field of memristive devices, where a precise control of oxide thickness, composition and structure is required to tune its electrical response. In this work, oxide films were produced on titanium with thickness ranging from few nanometers to 200 nm. Oxide thickness was estimated by coulometry and spectrophotometry. These techniques were then combined with C-AFM, which provided a deeper understanding of oxide thickness and uniformity of the metal surface and probed the presence of crystalline nano-domains within the amorphous oxide phase affecting the overall film electrical and optical properties

  17. Involvement of NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effects of topiramate in mice forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Khan, Muhammad Imran; Norouzi-Javidan, Abbas; Chamanara, Mohsen; Jazaeri, Farahnaz; Zolfaghari, Samira; Dehpour, Ahmad-Reza

    2016-04-01

    Topiramate (TPM) is an agent primarily used in the treatment of epilepsy. Using mice model of forced swimming test (FST) the current study was basically aimed to investigate the influence of TPM on depression by inhibiting NMDA receptor and nitric oxide-cGMP production. When TPM was administered in a dose of 20 and 30 mg/kg by i.p. route it reduced the immobility time during FST. However this effect of TPM (30 mg/kg, i.p.) in the FST was abolished when the mice were pretreated either with NMDA (75 mg/kg, i.p.), or l-arginine (750 mg/kg, i.p. NO precursor), or sildenafil (5mg/kg, i.p. Phosphodiesterase 5 inhibitor). The immobility time in the FST was reduced after administration of L-NAME (10mg/kg, i.p, a non-specific NOS inhibitor), 7-nitoinidazol (30 mg/kg, i.p. a nNOS inhibitor) or MK-801 (0.05 mg/kg, i.p, a NMDA receptor antagonist) in combination with a subeffective dose of TPM (10mg/kg, i.p.) as compared with single use of either drug. Co-administrated of lower doses of MK-801 (0.01 mg/kg) or L-NAME (1mg/kg) failed to effect immobility time. However, simultaneous administration of these two agents in the same doses with subeffective dose of TPM (10mg/kg, i.p.), reduced the immobility time during FST. None of these drugs were found to have a profound effect on the locomotor activity per se during the open field test. Taken together, our data demonstrates that TPM exhibit antidepressant-like effect which is accomplished either due to inhibition of NMDA receptors or NO-cGMP production. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Involvement of nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tropisetron and ondansetron in mice forced swimming test and tail suspension test.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Amiri, Shayan; Haj-Mirzaian, Arvin; Amini-Khoei, Hossien; Ostadhadi, Sattar; Dehpour, AhmadReza

    2016-06-05

    Antidepressant-like effects of 5-hydroxytryptamine subtype 3 (5-HT3) antagonists including tropisetron and ondansetron have been previously demonstrated in the literature. It was reported that stimulation of 5-HT3 receptors activate the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, which is involved in regulation of behavioral and emotional functions. In our study, treating animals with tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01 and 0.1µg/kg) significantly decreased the immobility time in forced swimming test (FST) and tail-suspension test (TST). Co-administration of subeffective doses of tropisetron (1mg/kg) and ondansetron (0.001µg/kg) with subeffective dose of l-NAME (10mg/kg, nonselective NO synthase (NOS) inhibitor) and 7-nitroindazole (25mg/kg, neural NOS inhibitor) exerted antidepressant-like effect in FST and TST, while aminoguanidine (50mg/kg, inducible NOS inhibitor) did not enhance the antidepressant-like effect of 5-HT3 antagonists. Besides, l-arginine (750mg/kg, NO precursor) and sildenafil (5mg/kg, phosphodiesterase inhibitor) suppressed the anti-immobility effect of 5-HT3 antagonists. None of the treatments altered the locomotor behavior of mice in open-field test. Also, hippocampal (but not cortical) nitrite level was significantly lower in tropisetron and ondansetron-treated mice compared with saline-injected mice. Also, co-administration of 7-nitroindazole with tropisetron or ondansetron caused a significant decrease in hippocampal nitrite levels. In conclusion, we suggest that antidepressant-like effect of tropisetron and ondansetron are partially mediated by modulation of NO-cGMP pathway. Copyright © 2016. Published by Elsevier B.V.

  19. Oxide Based Transistor for Flexible Displays

    Science.gov (United States)

    2014-09-15

    to be the first reported on these films. Overall we have shown that GSZO is an excellent candidate for the replacement of IGZO films. (a) Papers... IGZO based TFTs and (d) electrical and optical device stability. The primary goals of this effort were improved performance and stability, compared to...conventional IGZO based TFTs. This work was carried out at NCA&TSU. The second component of the research effort pertained to bottom gate

  20. Robotic Control of a Traditional Flexible Endoscope for Therapy

    NARCIS (Netherlands)

    Ruiter, Jeroen; Bonnema, Gerrit Maarten; van der Voort, Mascha C.; Broeders, Ivo Adriaan Maria Johannes

    2013-01-01

    In therapeutic flexible endoscopy a team of physician and assistant(s) is required to control all independent translations and rotations of the flexible endoscope and its instruments. As a consequence the physician lacks valuable force feedback information on tissue interaction, communication errors

  1. Job flexibility and job insecurity : the Dutch case

    NARCIS (Netherlands)

    Klein Hesselink, D.J.; Vuuren, T. van

    1999-01-01

    Since the 1970s the flexible workforce in the Netherlands has been an important factor of labour force growth. The question raised in this article is whether job flexibility gives rise to feelings of job security. It appears that flexiworkers experience more job insecurity than workers with

  2. Office flexible cystoscopy.

    Science.gov (United States)

    Kavoussi, L R; Clayman, R V

    1988-11-01

    Since the development of the first purpose-built flexible cystoscope in 1984, flexible cystoscopy has become an accepted diagnostic and therapeutic modality. Indeed, it is estimated that more than 10 per cent of practicing urologists are already familiar with this technology. The flexible cystoscope has markedly extended the urologist's ability to examine the bladder, and it has become a valuable adjunct to the rigid cystoscope. Although the operation of this instrument is vastly different from that of its rigid counterpart, with practice, the technique can be learned. After experience is obtained with diagnostic flexible cystoscopy, the urologist will likely prefer this new instrument for bladder inspection, as it provides for a more thorough yet less morbid and less expensive examination. In the future, the development of improved and smaller instrumentation will further extend the therapeutic indications for flexible cystoscopy. Indeed, advances in laser technology are already providing the urologist with 300- to 600-micron (0.9 to 1.8F) flexible probes capable of incision (KTP laser), fulguration (Nd:YAG laser), and stone disintegration (tunable dye laser). Lastly, the skills obtained in using the flexible cystoscope are all readily applicable to the development of dexterity with the already available flexible nephroscope and the more recently developed flexible ureteroscope.

  3. Analysis of flexible structures under lateral impact

    International Nuclear Information System (INIS)

    Ramirez, D. F.; Razavi, H.

    2012-01-01

    Three methods for analysis of flexible structures under lateral impact are presented. The first proposed method (Method A) consists of: (1) modifying an available deceleration on a rigid target with conservation principles to account for structural flexibility; and (2) transient nonlinear analysis of the structure with the corrected forcing function. The second proposed method (Method B) is similar to Method A in obtaining the forcing function but it solves the equations of motion of an idealized two-degree-of-freedom system instead of directly using conservation principles. The last method simply provides the maximum force in the structure using the conservation of energy and linear momentum. A coupled simulation is also performed in LS-DYNA and compared against the proposed methods. A case study is presented to illustrate the applicability of all three methods and the LS-DYNA simulation. (authors)

  4. Accessing the dynamics of end-grafted flexible polymer chains by atomic force-electrochemical microscopy. Theoretical modeling of the approach curves by the elastic bounded diffusion model and Monte Carlo simulations. Evidence for compression-induced lateral chain escape.

    Science.gov (United States)

    Abbou, Jeremy; Anne, Agnès; Demaille, Christophe

    2006-11-16

    The dynamics of a molecular layer of linear poly(ethylene glycol) (PEG) chains of molecular weight 3400, bearing at one end a ferrocene (Fc) label and thiol end-grafted at a low surface coverage onto a gold substrate, is probed using combined atomic force-electrochemical microscopy (AFM-SECM), at the scale of approximately 100 molecules. Force and current approach curves are simultaneously recorded as a force-sensing microelectrode (tip) is inserted within the approximately 10 nm thick, redox labeled, PEG chain layer. Whereas the force approach curve gives access to the structure of the compressed PEG layer, the tip-current, resulting from tip-to-substrate redox cycling of the Fc head of the chain, is controlled by chain dynamics. The elastic bounded diffusion model, which considers the motion of the Fc head as diffusion in a conformational field, complemented by Monte Carlo (MC) simulations, from which the chain conformation can be derived for any degree of confinement, allows the theoretical tip-current approach curve to be calculated. The experimental current approach curve can then be very satisfyingly reproduced by theory, down to a tip-substrate separation of approximately 2 nm, using only one adjustable parameter characterizing the chain dynamics: the effective diffusion coefficient of the chain head. At closer tip-substrate separations, an unpredicted peak is observed in the experimental current approach curve, which is shown to find its origin in a compression-induced escape of the chain from within the narrowing tip-substrate gap. MC simulations provide quantitative support for lateral chain elongation as the escape mechanism.

  5. A More Flexible Approach to Valuing Flexibility

    Science.gov (United States)

    2011-06-20

    Leadership Center of the Air Force Aim High…Fly - Fight - Win The AFIT of Today is the Air Force of Tomorrow ● Willingness to Pay? ● Under neoclassic ...economic definition of value, item’s value can be established from customer’s willingness to pay ●  In theory , value of a particular military capability

  6. Subatomic forces

    International Nuclear Information System (INIS)

    Sutton, C.

    1989-01-01

    Inside the atom, particles interact through two forces which are never felt in the everyday world. But they may hold the key to the Universe. These ideas on subatomic forces are discussed with respect to the strong force, the electromagnetic force and the electroweak force. (author)

  7. Propulsion via flexible flapping in granular media

    Science.gov (United States)

    Peng, Zhiwei; Ding, Yang; Pietrzyk, Kyle; Elfring, Gwynn; Pak, On Shun

    2017-11-01

    Biological locomotion in nature is often achieved by the interaction between a flexible body and its surrounding medium. The interaction of a flexible body with granular media is less understood compared with viscous fluids partially due to its complex rheological properties. In this work, we explore the effect of flexibility on granular propulsion by considering a simple mechanical model in which a rigid rod is connected to a torsional spring that is under a displacement actuation using a granular resistive force theory. Through a combined numerical and asymptotic investigation, we characterize the propulsive dynamics of such a flexible flapper in relation to the actuation amplitude and spring stiffness, and we compare these dynamics with those observed in a viscous fluid. In addition, we demonstrate that the maximum possible propulsive force can be obtained in the steady propulsion limit with a finite spring stiffness and large actuation amplitude. These results may apply to the development of synthetic locomotive systems that exploit flexibility to move through complex terrestrial media. Funding for Z.P. and Y.D. was partially provided by NSFC 394 Grant No. 11672029 and NSAF-NSFC Grant No. U1530401.

  8. Organizational flexibility estimation

    OpenAIRE

    Komarynets, Sofia

    2013-01-01

    By the help of parametric estimation the evaluation scale of organizational flexibility and its parameters was formed. Definite degrees of organizational flexibility and its parameters for the Lviv region enterprises were determined. Grouping of the enterprises under the existing scale was carried out. Special recommendations to correct the enterprises behaviour were given.

  9. Flexible magnetoimpidence sensor

    KAUST Repository

    Kavaldzhiev, Mincho

    2015-05-01

    Recently, flexible electronic devices have attracted increasing interest, due to the opportunities they promise for new applications such as wearable devices, where the components are required to flex during normal use[1]. In this light, different magnetic sensors, like microcoil, spin valve, giant magnetoresistance (GMR), magnetoimpedance (MI), have been studied previously on flexible substrates.

  10. Flexibility within Fidelity

    Science.gov (United States)

    Kendall, Philip C.; Gosch, Elizabeth; Furr, Jami M.; Sood, Erica

    2008-01-01

    The authors address concerns regarding manual-based treatments, highlighting the role of flexibility and creativity. A cognitive-behavioral therapy for youth anxiety called the Coping Cat program demonstrates the flexible application of manuals and emphasizes the importance of a child-centered, personalized approach that involves the child in the…

  11. Flexible position probe assembly

    International Nuclear Information System (INIS)

    Schmitz, J.J.

    1977-01-01

    The combination of a plurality of tubular transducer sections and a flexible supporting member extending through the tubular transducer sections forms a flexible elongated probe of a design suitable for monitoring the level of an element, such as a nuclear magnetically permeable control rod or liquid. 3 claims, 23 figures

  12. Flexible Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Marina Schwan

    2016-09-01

    Full Text Available Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.

  13. Global Sourcing Flexibility

    DEFF Research Database (Denmark)

    Ørberg Jensen, Peter D.; Petersen, Bent

    2013-01-01

    the higher costs (but decreased risk for value chain disruption) embedded in a more flexible global sourcing model that allows the firm to replicate and/or relocate activities across multiple locations. We develop a model and propositions on facilitating and constraining conditions of global sourcing...... sourcing flexibility. Here we draw on prior research in the fields of organizational flexibility, international business and global sourcing as well as case examples and secondary studies. In the second part of the paper, we discuss the implications of global sourcing flexibility for firm strategy...... and operations against the backdrop of the theory-based definition of the construct. We discuss in particular the importance of global sourcing flexibility for operational performance stability, and the trade-off between specialization benefits, emerging from location and service provider specialization, versus...

  14. A flexible optically re-writable color liquid crystal display

    Science.gov (United States)

    Zhang, Yihong; Sun, Jiatong; Liu, Yang; Shang, Jianhua; Liu, Hao; Liu, Huashan; Gong, Xiaohui; Chigrinov, Vladimir; Kowk, Hoi Sing

    2018-03-01

    It is very difficult to make a liquid crystal display (LCD) that is flexible. However, for an optically re-writable LCD (ORWLCD), only the spacers and the substrates need to be flexible because the driving unit and the display unit are separate and there are no electronics in the display part of ORWLCD. In this paper, three flexible-spacer methods are proposed to achieve this goal. A cholesteric liquid crystal colored mirror with a polarizer behind it is used as the colored reflective backboard of an ORWLCD. Polyethersulfone substrates and flexible spacers are used to make the optically re-writable cell insensitive to mechanical force.

  15. The value of flexibility in power markets

    International Nuclear Information System (INIS)

    Goutte, Stephane; Vassilopoulos, Philippe

    2017-01-01

    In this paper we attempt to quantify the net revenues that can be captured by a flexible resource able to react to the short term price variations on the day-ahead and intra-day markets in Germany. We find that the difference between day-ahead and intra-day revenues for a flexible resource has been increasing (although the profitability has been decreasing on both markets). This difference is more pronounced once 15 mn price variations can be captured by a flexible resource. The net revenues from the local 15 mn auction (which is held 3 hours after the hourly 'coupled' day-ahead auction) are more than eight times higher than the day-ahead hourly auction but below the net revenues that can be captured with the high prices from the continuous market. The results of the backward-looking empirical estimations allow us to distinguish and quantify two components of flexibility: (1) the 'immediacy' value as we are approaching real-time and the urgency of the delivery increases (this value is revealed during the continuous intra-day process and is highly linked to the stochastic nature of power supply and demand (i.e. wind/solar forecasts, forced outages of thermal generation,...) forecast error risk), and (2) the 'flexibility' component as a resource can react to variations of shorter granularity (15 mn Vs 60 mn). We model and quantify the 'flexibility' component. (authors)

  16. Where Is the Beef In the Objective Force?

    National Research Council Canada - National Science Library

    Reynolds, Robert

    2003-01-01

    The United States Army Transformation Campaign Plan is designed as a means of ensuring an innovative and flexible transformation from the current force structure to the transformational goal of the Objective Force...

  17. Flexible Word Classes

    DEFF Research Database (Denmark)

    • First major publication on the phenomenon • Offers cross-linguistic, descriptive, and diverse theoretical approaches • Includes analysis of data from different language families and from lesser studied languages This book is the first major cross-linguistic study of 'flexible words', i.e. words...... that cannot be classified in terms of the traditional lexical categories Verb, Noun, Adjective or Adverb. Flexible words can - without special morphosyntactic marking - serve in functions for which other languages must employ members of two or more of the four traditional, 'specialised' word classes. Thus......, flexible words are underspecified for communicative functions like 'predicating' (verbal function), 'referring' (nominal function) or 'modifying' (a function typically associated with adjectives and e.g. manner adverbs). Even though linguists have been aware of flexible world classes for more than...

  18. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-01-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent

  19. Flexibility in insulin prescription

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available This communication explores the concept of flexibility, a propos insulin preparations and insulin regimes used in the management of type 2 diabetes. The flexibility of an insulin regime or preparation is defined as their ability to be injected at variable times, with variable injection-meal time gaps, in a dose frequency and quantum determined by shared decision making, with a minimal requirement of glucose monitoring and health professional consultation, with no compromise on safety, efficiency and tolerability. The relative flexibility of various basal, prandial and dual action insulins, as well as intensive regimes, is compared. The biopsychosocial model of health is used to assess the utility of different insulins while encouraging a philosophy of flexible insulin usage.

  20. Grasp force sensor for robotic hands

    Science.gov (United States)

    Scheinman, Victor D. (Inventor); Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1989-01-01

    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces.

  1. Analytical and numerical modeling for flexible pipes

    Science.gov (United States)

    Wang, Wei; Chen, Geng

    2011-12-01

    The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.

  2. Flexible displays, rigid designs?

    DEFF Research Database (Denmark)

    Hornbæk, Kasper

    2015-01-01

    Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs.......Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs....

  3. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    Science.gov (United States)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high

  4. Rapid Slewing of Flexible Space Structures

    Science.gov (United States)

    2015-09-01

    maneuvers while minimizing the impact of flexible motion. An antenna must point at its targets with a certain degree of accuracy to ensure link...of mass 1 due to force 1 is greatly impacted by mode 1, especially in the low frequency range. This is because the magnitudes of mode 2 and mode 3...mass 1). See responses for H12 and H13 in Figure 14. Figure 14. Impulse responses, h jk t( ) , for system in Figure 10. 53 The residue

  5. Flexible ceramic gasket for SOFC generator

    Science.gov (United States)

    Zafred, Paolo [Murrysville, PA; Prevish, Thomas [Trafford, PA

    2009-02-03

    A solid oxide fuel cell generator (10) contains stacks of hollow axially elongated fuel cells (36) having an open top end (37), an oxidant inlet plenum (52), a feed fuel plenum (11), a combustion chamber (94) for combusting reacted oxidant/spent fuel; and, optionally, a fuel recirculation chamber (106) below the combustion chamber (94), where the fuel recirculation chamber (94) is in part defined by semi-porous fuel cell positioning gasket (108), all within an outer generator enclosure (8), wherein the fuel cell gasket (108) has a laminate structure comprising at least a compliant fibrous mat support layer and a strong, yet flexible woven layer, which may contain catalytic particles facing the combustion chamber, where the catalyst, if used, is effective to further oxidize exhaust fuel and protect the open top end (37) of the fuel cells.

  6. Metabolic flexibility is conserved in diabetic myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2007-01-01

    The purpose of this study was to test the hypothesis that metabolic inflexibility is an intrinsic defect. Glucose and lipid oxidation were studied in human myotubes established from healthy lean and obese subjects and patients with type 2 diabetes (T2D). In lean myotubes, glucose oxidation...... inflexibility described in obese and diabetic patients is not an intrinsic defect; rather, it is based on an extramuscular mechanism (i.e., the inability to vary extracellular fatty acid concentrations during insulin stimulation). Thus, skeletal muscles are metabolic-flexible per se....

  7. Flexible and integrated supercapacitor with tunable energy storage.

    Science.gov (United States)

    Shao, Changxiang; Xu, Tong; Gao, Jian; Liang, Yuan; Zhao, Yang; Qu, Liangti

    2017-08-31

    A flexible integrated supercapacitor based on three dimensional reduced graphene oxide/graphene oxide/reduced graphene oxide (RGO-GO-RGO) foam has been fabricated via a laser direct writing strategy. The supercapacitor with outstanding mechanical properties shows a high capacitance performance which can be easily regulated by controlling the compressive state of the electrodes. This work provides a new platform for potential applications in the next-generation intelligent power supply of electronics.

  8. Experimental Research on Fluid Coupling Flexible Actuator

    Directory of Open Access Journals (Sweden)

    Xiangli Zeng

    2018-02-01

    Full Text Available In the field of micromechanics, piezoelectric actuator has attracted great attention for its high-frequency response, high displacement resolution, and high output force. However, its prospect of practical application has been largely limited by the displacement of micrometer. A fluid coupling flexible actuator was proposed, which utilizes resonance to enlarge the output displacement. The actuator uses a piezoelectric oscillator as an excitation source, fluid as the transmission medium and a flexible diaphragm for the displacement output. On the condition that the fluid is inviscid and incompressible, mathematical formulation of the membrane vibration theory has been analyzed. Then, the prototype is made. The displacement is amplified 21 times to 1.106 mm when driving frequency is 127 Hz. The flexible diaphragm appears the largest displacement output when driving frequency is close to one of the system’s natural frequency. Then, the points with zero amplitude form a circle on the surface of flexible diaphragm and the movement direction of the flexible diaphragm is opposite on different sides of the circle. In fact, rather than vibrates at the first resonance frequency, the membrane in the essay is vibrating at a certain higher-order resonance frequency. The experimental results are mainly consistent with the theoretical analysis.

  9. Dityrosine, 3,4-Dihydroxyphenylalanine (DOPA), and radical formation from tyrosine residues on milk proteins with globular and flexible structures as a result of riboflavin-mediated photo-oxidation

    DEFF Research Database (Denmark)

    Dalsgaard, Trine Kastrup; Nielsen, Jacob Holm; Brown, Bronwyn

    2011-01-01

    Riboflavin-mediated photo-oxidative damage to protein Tyr residues has been examined to determine whether protein structure influences competing protein oxidation pathways in single proteins and protein mixtures. EPR studies resulted in the detection of Tyr-derived o-semiquione radicals, with thi......Riboflavin-mediated photo-oxidative damage to protein Tyr residues has been examined to determine whether protein structure influences competing protein oxidation pathways in single proteins and protein mixtures. EPR studies resulted in the detection of Tyr-derived o-semiquione radicals...

  10. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  11. Flexible magnetoimpedance sensor

    International Nuclear Information System (INIS)

    Li, Bodong; Kavaldzhiev, Mincho N.; Kosel, Jürgen

    2015-01-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors's magnetic field and frequency responses and their dependence on the sensors's deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor's large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications. - Highlights: • A flexible magnetoimpedance (MI) sensor is developed. • Studies are carried out using a flexible microstrip transmission line. • An MI ratio of up to 90% is obtained. • The effect of magnetostriction is studied

  12. Education for Flexible Personality

    Directory of Open Access Journals (Sweden)

    Bogomir Novak

    1998-12-01

    Full Text Available Flexible personality transforms both cultural environment and itself. Post-modern personality is both contemplative and active. On one hand, it is subject to inner imagination of a creative act, and on the other hand, to creation of a tangible product What is more, flexible personality is also autonomous, mature, healthy and well balanced, as well as stable and responsive to the demand for change. Due to ever quicker changes, flexible personality is a must. And it is a task. The impact of professional work of adults on the education of children, however, is being conditioned by the exrigid family and rigid enterprises or institutions in which adults are employed. Nevertheless, flexible educational style is not repressive, as it used to be, nor permissive and totally concentrated on the child. It is a choice between the two qualities. The educators' style is dependent on their attitude towards life (play and self-education and not only towards work. Nowadays, flexibility is a way towards quality management of social and personal changes.

  13. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  14. Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication

    International Nuclear Information System (INIS)

    Ko, Seung Hwan

    2011-01-01

    A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed

  15. Smart Tendon Actuated Flexible Actuator

    Directory of Open Access Journals (Sweden)

    Md. Masum Billah

    2015-01-01

    Full Text Available We investigate the kinematic feasibility of a tendon-based flexible parallel platform actuator. Much of the research on tendon-driven Stewart platforms is devoted either to the completely restrained positioning mechanism (CRPM or to one particular type of the incompletely restrained positioning mechanism (IRPM where the external force is provided by the gravitational pull on the platform such as in cable-suspended Stewart platforms. An IRPM-based platform is proposed which uses the external force provided by a compliant member. The compliant central column allows the configuration to achieve n DOFs with n tendons. In particular, this investigation focuses on the angular deflection of the upper platform with respect to the lower platform. The application here is aimed at developing a linkable module that can be connected to one another so as to form a “snake robot” of sorts. Since locomotion takes precedence over positioning in this application, a 3-DOF Stewart platform is adopted. For an arbitrary angular displace of the end-effector, the corresponding length of each tendon can be determined through inverse kinematics. Mathematical singularities are investigated using the traditional analytical method of defining the Jacobian.

  16. The role of NMDA receptor and nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effect of dextromethorphan in mice forced swimming test and tail suspension test.

    Science.gov (United States)

    Sakhaee, Ehsan; Ostadhadi, Sattar; Khan, Muhammad Imran; Yousefi, Farbod; Norouzi-Javidan, Abbas; Akbarian, Reyhaneh; Chamanara, Mohsen; Zolfaghari, Samira; Dehpour, Ahmad-Reza

    2017-01-01

    Depression is a devastating disorder which has a high impact on the wellbeing of overall society. As such, need for innovative therapeutic agents are always there. Most of the researchers focused on N-methyl-d-aspartate receptor to explore the antidepressant like activity of new therapeutic agents. Dextromethorphan is a cough suppressant agent with potential antidepressant activity reported in mouse force swimming test. Considering N-methyl-d-aspartate as a forefront in exploring antidepressant agents, here we focused to unpin the antidepressant mechanism of dextromethorphan targeting N-methyl-d-aspartate receptor induced nitric oxide-cyclic guanosine monophosphate signaling. Dextromethorphan administered at a dose of 10 and 30mg/kg i.p significantly reduced the immobility time. Interestingly, this effect of drug (30mg/kg) was inhibited when the animals were pretreated either with N-methyl-d-aspartate (75mg/kg), or l-arginine (750mg/kg) as a nitric oxide precursor and/or sildenafil (5mg/kg) as a phosphodiesterase 5 inhibitor. However, the antidepressant effect of Dextromethorphan subeffective dose (3mg/kg) was augmented when the animals were administered with either L-NG-Nitroarginine methyl ester (10mg/kg) non-specific nitric oxide synthase inhibitor, 7-Nitroindazole (30mg/kg) specific neural nitric oxide synthase inhibitor, MK-801 (0.05mg/kg) an N-methyl-d-aspartate receptor antagonist but not aminoguanidine (50mg/kg) which is specific inducible nitric oxide synthase inhibitor as compared to the drugs when administered alone. No remarkable effect on locomotor activity was observed during open field test when the drugs were administered at the above mentioned doses. Therefore, it is evident that the antidepressant like effect of Dextromethorphan is owed due to its inhibitory effect on N-methyl-d-aspartate receptor and NO- Cyclic guanosine monophosphate pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations

    DEFF Research Database (Denmark)

    Siani, Pablo; de Souza, R M; Dias, L G

    2016-01-01

    our new data of all-atom and coarse-grained simulations of hydroperoxidized lipid monolayer and bilayer systems and (iii) provide a comparison of the MARTINI and ELBA coarse grained force fields for lipid bilayer systems. We show that the better electrostatic treatment of interactions in ELBA is able...

  18. Natural flexible dermal armor.

    Science.gov (United States)

    Yang, Wen; Chen, Irene H; Gludovatz, Bernd; Zimmermann, Elizabeth A; Ritchie, Robert O; Meyers, Marc A

    2013-01-04

    Fish, reptiles, and mammals can possess flexible dermal armor for protection. Here we seek to find the means by which Nature derives its protection by examining the scales from several fish (Atractosteus spatula, Arapaima gigas, Polypterus senegalus, Morone saxatilis, Cyprinius carpio), and osteoderms from armadillos, alligators, and leatherback turtles. Dermal armor has clearly been developed by convergent evolution in these different species. In general, it has a hierarchical structure with collagen fibers joining more rigid units (scales or osteoderms), thereby increasing flexibility without significantly sacrificing strength, in contrast to rigid monolithic mineral composites. These dermal structures are also multifunctional, with hydrodynamic drag (in fish), coloration for camouflage or intraspecies recognition, temperature and fluid regulation being other important functions. The understanding of such flexible dermal armor is important as it may provide a basis for new synthetic, yet bioinspired, armor materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong

    2015-03-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors\\'s magnetic field and frequency responses and their dependence on the sensors\\'s deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor\\'s large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications.

  20. Labor Force

    Science.gov (United States)

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  1. Nickel evaporation in high vacuum and formation of nickel oxide nanoparticles on highly oriented pyrolytic graphite. X-ray photoelectron spectroscopy and atomic force microscopy study

    Czech Academy of Sciences Publication Activity Database

    Franc, Jiří; Bastl, Zdeněk

    2008-01-01

    Roč. 516, č. 18 (2008), s. 6095-6103 ISSN 0040-6090 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503 Keywords : nickel oxide nanoparticles * vapour deposition * XPS * AFM Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.884, year: 2008

  2. Analysis of a Thrust Bearing with Flexible Pads and Flexible Supports

    DEFF Research Database (Denmark)

    Klit, Peder; Thomsen, Kim

    2007-01-01

    A theoretical analysis of a hydrodynamic thrust bearing is presented. The bearing investigated is used in an ndustrial product. The lubricant is water, but the results are valid also for other lubricants.At first the results from a 1-dimensional model for the fluid film forces and the associated...... deformation of the bearing geometry is presented. This model enlightens the influence of pad flexibility and support location and flexibility. Subsequently results from a 2-dimensional model of the bearing is presented. The model is used to carry out an optimization of the bearing design, and the obtained...

  3. Software industrial flexible

    OpenAIRE

    Díaz Araya, Daniel; Muñoz, Leandro; Sirerol, Daniel; Oviedo, Sandra; Ibáñez, Francisco S.

    2012-01-01

    En este trabajo se pretende investigar y proponer técnicas, métodos y tecnologías que permitan el desarrollo de software flexible en ambientes industriales. El objetivo es generar métodos y técnicas para facilitar el desarrollo de software flexible en ambientes industriales. Las áreas de investigación son los sistemas de scheduling de producción, la generación de software para plataformas de hardware abiertas y la innovación.

  4. Production Flexibility and Hedging

    Directory of Open Access Journals (Sweden)

    Georges Dionne

    2015-12-01

    Full Text Available We extend the analysis on hedging with price and output uncertainty by endogenizing the output decision. Specifically, we consider the joint determination of output and hedging in the case of flexibility in production. We show that the risk-averse firm always maintains a short position in the futures market when the futures price is actuarially fair. Moreover, in the context of an example, we show that the presence of production flexibility reduces the incentive to hedge for all risk averse agents.

  5. The flexibility of flexicurity

    DEFF Research Database (Denmark)

    Jensen, Carsten Strøby

    2011-01-01

    by a special relation between flexibility, social security and active labour market policy, where a high level of social security is seen as a precondition for a labour market characterized by flexibility. In this article it is argued that the Danish labour market is characterized by having not just one model...... of flexicurity, but two. These two models cover different parts of the labour market and different segments of employees. The first model (the blue-collar flexicurity model) – the one that is often focused on in the literature – covers primarily skilled and unskilled workers on the labour market. The second...

  6. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  7. Numerical Modeling and Mechanical Analysis of Flexible Risers

    OpenAIRE

    Li, J. Y.; Qiu, Z. X.; Ju, J. S.

    2015-01-01

    ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact ...

  8. Flexibility as a service

    NARCIS (Netherlands)

    Aalst, van der W.M.P.; Adams, M.; Hofstede, ter A.H.M.; Pesic, M.; Schonenberg, H.; Chen, L.; Liu, C.; Liu, Q.; Deng, K.

    2009-01-01

    The lack of flexibility is often seen as an inhibitor for the successful application of workflow technology. Many researchers have proposed different ways of addressing this problem and some of these ideas have been implemented in commercial systems. However, a "one size fits all" approach is likely

  9. Valuing Flexibility. Phase 2

    Science.gov (United States)

    2012-10-29

    Quarterly (2): 38-49. Cormier, P., Olewnik, A., and Lewis, K. 2008. An Approach to Quantifying Design Flexibility for Mass Customization in Early...C. Clarkson, P., and Zanker, W. 2004. Change and customisation in complex engineering domains, Res Eng Des 15(1), 1–21. Ekstrom, M. and Bjornsson, H

  10. Flexible Query Answering Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 12th International Conference on Flexible Query Answering Systems, FQAS 2017, held in London, UK, in June 2017. The 21 full papers presented in this book together with 4 short papers were carefully reviewed and selected from 43 submissions...

  11. Flexible metal bellows

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    A set of flexible metal bellows being fatigue-tested by repeated offset motion. Such bellows assemblies were used in the SPS vacuum system at places where , for instance, beam stoppers and collimators had to be moved frequently in and out of the beam path.

  12. Flexible energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2003-01-01

    The paper discusses and analyses diffent national strategies and points out key changes in the energy system in order to achieve a system which can benefit from a high percentage of wind and CHP without having surplus production problems, introduced here as a flexible energy system....

  13. A flexible WLAN receiver

    NARCIS (Netherlands)

    Schiphorst, Roelof; Hoeksema, F.W.; Slump, Cornelis H.

    2003-01-01

    Flexible radio receivers are also called Software Defined Radios (SDRs) [1], [2]. The focus of our SDR project [3] is on designing the front end, from antenna to demodulation in bits, of a °exible, multi-standard WLAN receiver. We try to combine an instance of a (G)FSK receiver (Bluetooth) with an

  14. Ion irradiation of AZO thin films for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Boscarino, Stefano; Torrisi, Giacomo; Crupi, Isodiana [IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Alberti, Alessandra [CNR-IMM, via Strada VIII 5, 95121 Catania (Italy); Mirabella, Salvatore; Ruffino, Francesco [IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Terrasi, Antonio, E-mail: antonio.terrasi@ct.infn.it [IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy)

    2017-02-01

    Highlights: • Evidence of electrical good quality AZO ultra thin films without thermal annealing. • Evidence of the main role of Oxygen vs. structural parameters in controlling the electrical performances of AZO. • Evidence of the role of the ion irradiation in improving the electrical properties of AZO ultra thin films. • Synthesis of AZO thin films on flexible/plastic substrates with good electrical properties without thermal processes. - Abstract: Aluminum doped Zinc oxide (AZO) is a promising transparent conductor for solar cells, displays and touch-screen technologies. The resistivity of AZO is typically improved by thermal annealing at temperatures not suitable for plastic substrates. Here we present a non-thermal route to improve the electrical and structural properties of AZO by irradiating the TCO films with O{sup +} or Ar{sup +} ion beams (30–350 keV, 3 × 10{sup 15}–3 × 10{sup 16} ions/cm{sup 2}) after the deposition on glass and flexible polyethylene naphthalate (PEN). X-ray diffraction, optical absorption, electrical measurements, Rutherford Backscattering Spectrometry and Atomic Force Microscopy evidenced an increase of the crystalline grain size and a complete relief of the lattice strain upon ion beam irradiation. Indeed, the resistivity of thin AZO films irradiated at room temperature decreased of two orders of magnitude, similarly to a thermal annealing at 400 °C. We also show that the improvement of the electrical properties does not simply depend on the strain or polycrystalline domain size, as often stated in the literature.

  15. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    Science.gov (United States)

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  16. Polymer-metal hybrid transparent electrodes for flexible electronics

    Science.gov (United States)

    Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee

    2015-03-01

    Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius 95% and a sheet resistance solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.

  17. Implementation of a robotic flexible assembly system

    Science.gov (United States)

    Benton, Ronald C.

    1987-01-01

    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.

  18. Thin film transistors for flexible electronics: Contacts, dielectrics and semiconductors

    KAUST Repository

    Quevedo-López, Manuel Angel Quevedo

    2011-06-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed. Copyright © 2011 American Scientific Publishers.

  19. Thin film transistors for flexible electronics: Contacts, dielectrics and semiconductors

    KAUST Repository

    Quevedo-Ló pez, Manuel Angel Quevedo; Wondmagegn, Wudyalew T.; Alshareef, Husam N.; Ramí rez-Bon, Rafael; Gnade, Bruce E.

    2011-01-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed. Copyright © 2011 American Scientific Publishers.

  20. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  1. Movable MEMS Devices on Flexible Silicon

    KAUST Repository

    Ahmed, Sally

    2013-05-05

    Flexible electronics have gained great attention recently. Applications such as flexible displays, artificial skin and health monitoring devices are a few examples of this technology. Looking closely at the components of these devices, although MEMS actuators and sensors can play critical role to extend the application areas of flexible electronics, fabricating movable MEMS devices on flexible substrates is highly challenging. Therefore, this thesis reports a process for fabricating free standing and movable MEMS devices on flexible silicon substrates; MEMS flexure thermal actuators have been fabricated to illustrate the viability of the process. Flexure thermal actuators consist of two arms: a thin hot arm and a wide cold arm separated by a small air gap; the arms are anchored to the substrate from one end and connected to each other from the other end. The actuator design has been modified by adding etch holes in the anchors to suit the process of releasing a thin layer of silicon from the bulk silicon substrate. Selecting materials that are compatible with the release process was challenging. Moreover, difficulties were faced in the fabrication process development; for example, the structural layer of the devices was partially etched during silicon release although it was protected by aluminum oxide which is not attacked by the releasing gas . Furthermore, the thin arm of the thermal actuator was thinned during the fabrication process but optimizing the patterning and etching steps of the structural layer successfully solved this problem. Simulation was carried out to compare the performance of the original and the modified designs for the thermal actuators and to study stress and temperature distribution across a device. A fabricated thermal actuator with a 250 μm long hot arm and a 225 μm long cold arm separated by a 3 μm gap produced a deflection of 3 μm before silicon release, however, the fabrication process must be optimized to obtain fully functioning

  2. Energy Flexibility in Retail Buildings

    DEFF Research Database (Denmark)

    Ma, Zheng; Billanes, Joy Dalmacio; Kjærgaard, Mikkel Baun

    2017-01-01

    Retail buildings has an important role for demand side energy flexibility because of their high energy consumption, variety of energy flexibility resources, and centralized control via building control systems. Energy flexibility requires agreements and collaborations among different actors......), with the discussion of the stakeholders’ roles and their interrelation in delivering energy flexibility with the influential factors to the actual implementation of energy flexible operation of their buildings. Based on a literature analysis, the results cover stakeholders’ types and roles, perceptions (drivers......, barriers, and benefits), energy management activities and technology adoptions, and the stakeholders’ interaction for the energy flexibility in retail buildings....

  3. Flexible heartbeat sensor for wearable device.

    Science.gov (United States)

    Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu

    2017-08-15

    We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ion irradiation of AZO thin films for flexible electronics

    Science.gov (United States)

    Boscarino, Stefano; Torrisi, Giacomo; Crupi, Isodiana; Alberti, Alessandra; Mirabella, Salvatore; Ruffino, Francesco; Terrasi, Antonio

    2017-02-01

    Aluminum doped Zinc oxide (AZO) is a promising transparent conductor for solar cells, displays and touch-screen technologies. The resistivity of AZO is typically improved by thermal annealing at temperatures not suitable for plastic substrates. Here we present a non-thermal route to improve the electrical and structural properties of AZO by irradiating the TCO films with O+ or Ar+ ion beams (30-350 keV, 3 × 1015-3 × 1016 ions/cm2) after the deposition on glass and flexible polyethylene naphthalate (PEN). X-ray diffraction, optical absorption, electrical measurements, Rutherford Backscattering Spectrometry and Atomic Force Microscopy evidenced an increase of the crystalline grain size and a complete relief of the lattice strain upon ion beam irradiation. Indeed, the resistivity of thin AZO films irradiated at room temperature decreased of two orders of magnitude, similarly to a thermal annealing at 400 °C. We also show that the improvement of the electrical properties does not simply depend on the strain or polycrystalline domain size, as often stated in the literature.

  5. Photovoltaic properties of conjugated polymer/fullerene composites on large area flexible substrates

    Directory of Open Access Journals (Sweden)

    Desta Gebeyehu

    2000-06-01

    Full Text Available In this paper we present measurements of the photovoltaic response of bulk donor-acceptor heterojunction between the conjugated polymer, poly(3-octylthiophene, P3OT, (as a donor, D and fullerene (methanofullerene, (as acceptor, A, deposited between indium tin oxide and aluminum electrodes. The innovation involves the substrate, which is a polymer foil instead of glass. These devices are based on ultrafast, reversible, metastable photoinduced electron transfer and charge separation. We also present the efficiency and stability studies on large area (6 cm x 6 cm flexible plastic solar cells with monochromatic energy conversion efficiency (e of about 1.5% and carrier collection efficiency of nearly 20%. Further more, we have investigated the surface network morphology of these films layers by atomic force microscope (AFM. The development of solar cells based on composites of organic conjugated semi-conducting polymers with fullerene derivatives can provide a new method in the exploitation of solar energy.

  6. Advantages of using Ti-mesh type electrodes for flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    He Weizhen; Kim, Hyung-Kook; Hwang, Yoon-Hwae; Qiu Jijun; Zhuge Fuwei; Li Xiaomin; Lee, Jae-Ho; Kim, Yang-Do

    2012-01-01

    We used Ti meshes for both the photoanodes and counter electrodes of dye-sensitized solar cells (DSSCs) to improve the flexibility and conductivity of the electrodes. These mesh type electrodes showed good transparency and high bendability when subjected to an external force. We demonstrated the advantages of cells using such electrodes compared to traditional transparent conducting oxide based electrodes and back side illuminated DSSCs, such as low sheet resistance, elevated photo-induced current and enhanced sunlight utilization. Nanotube layers of different thicknesses were investigated to determine their effect on the photovoltaic parameters of the cell. The overall efficiency of the best cells was approximately 5.3% under standard air mass 1.5 global (AM 1.5 G) solar conditions. Furthermore, the DSSCs showed an efficiency of approximately 3.15% due to the all Ti-mesh type electrodes even after illumination from the back side. (paper)

  7. Printable Transparent Conductive Films for Flexible Electronics.

    Science.gov (United States)

    Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei

    2018-03-01

    Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  9. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  10. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  11. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten

    2014-01-01

    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  12. Flexible training under threat.

    Science.gov (United States)

    Houghton, Anita; Eaton, Jennifer

    2002-10-01

    As the number of women in medicine and the general demand for a better work-life balance rises, flexible training is an increasingly important mechanism for maintaining the medical workforce. The new pay deal, together with entrenched cultural attitudes, are potential threats. Ways forward include more substantive part-time posts, more part-time opportunities at consultant level, and using positive experiences as a way of tackling attitudes in the less accepting specialties.

  13. Flexible weapons architecture design

    OpenAIRE

    Pyant, William C.

    2015-01-01

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilia...

  14. Industrial Fuel Flexibility Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  15. Flexible Land Administration

    DEFF Research Database (Denmark)

    Enemark, Stig

    2014-01-01

    Security of tenure is widely considered to be the missing piece of the puzzle when it comes to eradication of poverty. And, as explained in the previous issue of Geoinformatics, the European Union is now placing land rights at the heart of EU development policy. This article presents a way forwar...... in terms of building flexible and "fit-for-purpose" land administration systems in developing countries. This will ensure security of tenure for all and sustainable management of the use of land....

  16. PTFE films with improved flexibility

    Science.gov (United States)

    Muraca, R. F.; Koch, A. A.

    1972-01-01

    Development and application of flexible polytetrafluroethylene films for expulsion bladders in spacecraft propellant tanks are described. Flexibility of material is obtained by reducing crystallinity through annealing and quenching in water. Physical and mechanical properties of material are presented.

  17. Different forces

    CERN Multimedia

    1982-01-01

    The different forces, together with a pictorial analogy of how the exchange of particles works. The table lists the relative strength of the couplings, the quanta associated with the force fields and the bodies or phenomena in which they have a dominant role.

  18. Labor Force

    Science.gov (United States)

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  19. Flexible automated manufacturing for SMEs

    DEFF Research Database (Denmark)

    Grube Hansen, David; Bilberg, Arne; Madsen, Erik Skov

    2017-01-01

    SMEs are in general highly flexible and agile in order to accommodate the customer demands in the paradigm of High Mix-Low Volume manufacturing. The flexibility and agility have mainly been enabled by manual labor, but as we are entering the technology and data driven fourth industrial revolution......, where augmented operators and machines work in cooperation in a highly flexible and productive manufacturing system both an opportunity and a need has raised for developing highly flexible and efficient automation....

  20. Steering of flexible needles combining kinesthetic and vibratory force feedback

    NARCIS (Netherlands)

    Pacchierotti, Claudio; Abayazid, Momen; Misra, Sarthak; Prattichizzo, Domenico

    2014-01-01

    Needle insertion in soft-tissue is a minimally invasive surgical procedure which demands high accuracy. In this respect, robotic systems with autonomous control algorithms have been exploited as the main tool to achieve high accuracy and reliability. However, for reasons of safety and acceptance by

  1. Designing structural supply chain flexibility

    NARCIS (Netherlands)

    Mulinski, Ksawery Jan

    2012-01-01

    In a continuously changing business environment the role of supply chain flexibility is constantly increasing. A flexible supply chain can ensure survival in quickly changing market conditions as well as enable sustainable growth. This thesis explores the topic of supply chain flexibility with focus

  2. Global Analysis of Flexible Risers

    DEFF Research Database (Denmark)

    Banke, Lars

    1996-01-01

    Flexible pipes are often a technically attractive alternative to the traditional steel pipe. Often commercial utilisation of oil/gas fields depends on the use of flexible pipes. An example is when floating production vessels are used, where the flexible pipe follows the wave induced motions...

  3. Role of Pectoral Fin Flexibility in Robotic Fish Performance

    Science.gov (United States)

    Bazaz Behbahani, Sanaz; Tan, Xiaobo

    2017-08-01

    Pectoral fins play a vital role in the maneuvering and locomotion of fish, and they have become an important actuation mechanism for robotic fish. In this paper, we explore the effect of flexibility of robotic fish pectoral fins on the robot locomotion performance and mechanical efficiency. A dynamic model for the robotic fish is presented, where the flexible fin is modeled as multiple rigid elements connected via torsional springs and dampers. Blade element theory is used to capture the hydrodynamic force on the fin. The model is validated with experimental results obtained on a robotic fish prototype, equipped with 3D-printed fins of different flexibility. The model is then used to analyze the impacts of fin flexibility and power/recovery stroke speed ratio on the robot swimming speed and mechanical efficiency. It is found that, in general, flexible fins demonstrate advantages over rigid fins in speed and efficiency at relatively low fin-beat frequencies, while rigid fins outperform flexible fins at higher frequencies. For a given fin flexibility, the optimal frequency for speed performance differs from the optimal frequency for mechanical efficiency. In addition, for any given fin, there is an optimal power/recovery stroke speed ratio, typically in the range of 2-3, that maximizes the speed performance. Overall, the presented model offers a promising tool for fin flexibility and gait design, to achieve speed and efficiency objectives for robotic fish actuated with pectoral fins.

  4. Active vibration control of spatial flexible multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  5. Active vibration control of spatial flexible multibody systems

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambrósio, Jorge A. C.; Roseiro, Luis M.; Amaro, A.; Vasques, C. M. A.

    2013-01-01

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  6. Mechanical flexible joint design document

    Science.gov (United States)

    Daily, Vic

    1993-01-01

    The purpose of this report is to document the status of the Mechanical Flexible Joint (MFJ) Design Subtask with the intent of halting work on the design. Recommendations for future work is included in the case that the task is to be resumed. The MFJ is designed to eliminate two failure points from the current flex joint configuration, the inner 'tripod configuration' and the outer containment jacket. The MFJ will also be designed to flex 13.5 degrees and have three degrees of freedom. By having three degrees of freedom, the MFJ will allow the Low Pressure Fuel Duct to twist and remove the necessity to angulate the full 11 degrees currently required. The current flex joints are very labor intensive and very costly and a simple alternative is being sought. The MFJ is designed with a greater angular displacement, with three degrees of freedom, to reside in the same overall envelope, to meet weight constraints of the current bellows, to be compatible with cryogenic fuel and oxidizers, and also to be man-rated.

  7. Dynamics and Control of a Flexible Solar Sail

    OpenAIRE

    Jiafu Liu; Siyuan Rong; Fan Shen; Naigang Cui

    2014-01-01

    Solar sail can merely make use of solar radiation pressure (SRP) force as the thrust for space missions. The attitude dynamics is obtained for the highly flexible solar sail with control vanes, sliding masses, and a gimbaled control boom. The vibration equations are derived considering the geometric nonlinearity of the sail structure subjected to the forces generated by the control vanes, solar radiation pressure (SRP), and sliding masses. Then the dynamic models for attitude/vibration contr...

  8. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    International Nuclear Information System (INIS)

    Jeong, Jin-A; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-01-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/□ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  9. Effects of Piezoelectric Potential of ZnO on Resistive Switching Characteristics of Flexible ZnO/TiO2 Heterojunction Cells

    Science.gov (United States)

    Li, Hongxia; Zhou, You; Du, Gang; Huang, Yanwei; Ji, Zhenguo

    2018-03-01

    Flexible resistance random access memory (ReRAM) devices with a heterojunction structure of PET/ITO/ZnO/TiO2/Au were fabricated on polyethylene terephthalate/indium tin oxide (PET/ITO) substrates by different physical and chemical preparation methods. X-ray diffraction, scanning electron microscopy and atomic force microscopy were carried out to investigate the crystal structure, surface topography and cross-sectional structure of the prepared films. X-ray photoelectron spectroscopy was also used to identify the chemical state of Ti, O and Zn elements. Theoretical and experimental analyses were conducted to identify the effect of piezoelectric potential of ZnO on resistive switching characteristics of flexible ZnO/TiO2 heterojunction cells. The results showed a pathway to enhance the performance of ReRAM devices by engineering the interface barrier, which is also feasible for other electronics, optoelectronics and photovoltaic devices.

  10. Flexible Query Answering Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 10th International Conference on Flexible Query Answering Systems, FQAS 2013, held in Granada, Spain, in September 2013. The 59 full papers included in this volume were carefully reviewed and selected from numerous submissions. The papers...... are organized in a general session train and a parallel special session track. The general session train covers the following topics: querying-answering systems; semantic technology; patterns and classification; personalization and recommender systems; searching and ranking; and Web and human...

  11. Flexibility and trackability of laser cut coronary stent systems.

    Science.gov (United States)

    Szabadíts, Péter; Puskás, Zsolt; Dobránszky, János

    2009-01-01

    Coronary stents are the most important supports in present day cardiology. Flexibility and trackability are two basic features of stents. In this paper, four different balloon-expandable coronary stent systems were investigated mechanically in order to compare their suitability. The coronary stent systems were assessed by measurements of stent flexibility as well as by comparison of forces during simulated stenting in a self-investigated coronary vessel model. The stents were cut by laser from a single tube of 316L stainless steel or L-605 (CoCr) cobalt chromium alloy. The one-and four-point bending tests were carried out to evaluate the stent flexibility E x I (Nmm(2)), under displacement control in crimped and expanded configurations. The flexibility of stents would be rather dependent on the design than on raw material. In general a more flexible stent needs lower tracking force during the implantation. The L-605 raw material stents need lower track force to pass through in the vessel model than the 316L raw material stents. The sort and long stents passed through the curved vessel model in different ways. The long stents nestled to the vessel wall at the outer arc and bent, while the short stents did not bend in the curve, only the delivery systems bent.

  12. High performance flexible electronics for biomedical devices.

    Science.gov (United States)

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  13. Mobile, Flexible, and Adaptable

    DEFF Research Database (Denmark)

    Agergaard, Jytte; Thao, Thi Vu

    2011-01-01

    Industrialisation and urban growth are constitutive aspects of Vietnam's new economy and are important driving forces behind increasing rural-to-urban migration. Growth in informal sector employment is a significant aspect of this development, which has provided for both male and female migrants...

  14. Controlling Flexible Robot Arms Using High Speed Dynamics Process

    Science.gov (United States)

    Jain, Abhinandan (Inventor)

    1996-01-01

    A robot manipulator controller for a flexible manipulator arm having plural bodies connected at respective movable hinges and flexible in plural deformation modes corresponding to respective modal spatial influence vectors relating deformations of plural spaced nodes of respective bodies to the plural deformation modes, operates by computing articulated body quantities for each of the bodies from respective modal spatial influence vectors, obtaining specified body forces for each of the bodies, and computing modal deformation accelerations of the nodes and hinge accelerations of the hinges from the specified body forces, from the articulated body quantities and from the modal spatial influence vectors. In one embodiment of the invention, the controller further operates by comparing the accelerations thus computed to desired manipulator motion to determine a motion discrepancy, and correcting the specified body forces so as to reduce the motion discrepancy. The manipulator bodies and hinges are characterized by respective vectors of deformation and hinge configuration variables, and computing modal deformation accelerations and hinge accelerations is carried out for each one of the bodies beginning with the outermost body by computing a residual body force from a residual body force of a previous body and from the vector of deformation and hinge configuration variables, computing a resultant hinge acceleration from the body force, the residual body force and the articulated hinge inertia, and revising the residual body force modal body acceleration.

  15. Flexibility and security : National social models in transitional labour markets

    NARCIS (Netherlands)

    Muffels, R.J.A.; Crouch, Colin; Wilthagen, A.C.J.M.

    2014-01-01

    Aggregate and individual data are used to test the association between employment performance and different ways of reconciling flexibility and security in European labour markets. Particular use is made of statistics on individuals’ labour market transitions as revealed by national labour force

  16. Biodegradable Piezoelectric Force Sensor.

    Science.gov (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D

    2018-01-30

    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  17. Flexible Graphene Composites for Human Space Flight Applications

    Science.gov (United States)

    Sosa, Edward D.

    2013-01-01

    Graphene oxide allows for better dispersion stability in aqueous and organic solvents. Stabilizers provide dispersion of pristine graphene. Roll coating provide the best coverage of polyurethane sheets. Graphene and GO coated polyurethane used to fabricate flexible laminate composite. Permeation testing indicates that pristine graphene acts as a better gas barrier material. Continuous graphene films are expected to provide even better gas barrier properties.

  18. Smart Material-Actuated Flexible Tendon-Based Snake Robot

    Directory of Open Access Journals (Sweden)

    Mohiuddin Ahmed

    2016-05-01

    Full Text Available A flexible snake robot has better navigation ability compare with the existing electrical motor-based rigid snake robot, due to its excellent bending capability during navigation inside a narrow maze. This paper discusses the modelling, simulation and experiment of a flexible snake robot. The modelling consists of the kinematic analysis and the dynamic analysis of the snake robot. A platform based on the Incompletely Restrained Positioning Mechanism (IRPM is proposed, which uses the external force provided by a compliant flexible beam in each of the actuators. The compliant central column allows the configuration to achieve three degrees of freedom (3DOFs with three tendons. The proposed flexible snake robot has been built using smart material, such as electroactive polymers (EAPs, which can be activated by applying power to it. Finally, the physical prototype of the snake robot has been built. An experiment has been performed in order to justify the proposed model.

  19. Van der Waals epitaxy of functional MoO{sub 2} film on mica for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chun-Hao [Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Lin, Jheng-Cyuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Liu, Heng-Jui; Do, Thi Hien [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Zhu, Yuan-Min; Zhan, Qian [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Ha, Thai Duy; Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); He, Qing [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Arenholz, Elke [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Chiu, Po-Wen, E-mail: pwchiu@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Chu, Ying-Hao, E-mail: yhc@nctu.edu.tw [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-20

    Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO{sub 2} films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO{sub 2} films are similar to those of the bulk. Flexible or free-standing MoO{sub 2} thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.

  20. Modeling of Flexible Beams for Robotic Manipulators

    International Nuclear Information System (INIS)

    Martins, Jorge; Ayala Botto, Miguel; Costa, Jose sa da

    2002-01-01

    This work treats the problem of modeling robotic manipulators with structural flexibility. A mathematical model of a planar manipulator with a single flexible link is developed. This model is capable of reproducing nonlinear dynamic effects, such as the beam stiffening due to the centrifugal forces induced by the rotation of the joints, giving it the capability to predict reliable dynamic behaviors for a wide range of applications. On the other hand, the model complexity is reduced, in order to keep it amenable for analysis and controller design. The models found in current literature for control design of flexible manipulator arms present dynamic limitations for the sake of real time implementation in a control scheme. These limitations are the result of premature linearization in the formulation of the dynamics equations. In this paper, this common linearization is presented and their dynamic limitations uncovered. An alternative reliable model is then presented. The model is founded on two basic assumptions: inextensibility of the neutral fiber and moderate rotations of the cross sections in order to account for the foreshortening of the beam due to bending. Simulation and experimental results show that the proposed model has the closest dynamic behavior to the real beam

  1. Flexible joints in structural and multibody dynamics

    Directory of Open Access Journals (Sweden)

    O. A. Bauchau

    2013-02-01

    Full Text Available Flexible joints, sometimes called bushing elements or force elements, are found in all structural and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformations, identification of its stiffness characteristics is not so simple, specially if the joint is itself a complex system. When finite deformations occur, the definition of deformation measures becomes a critical issue. This paper proposes a family of tensorial deformation measures suitable for elastic bodies of finite dimension. These families are generated by two parameters that can be used to modify the constitutive behavior of the joint, while maintaining the tensorial nature of the deformation measures. Numerical results demonstrate the objectivity of the deformations measures, a feature that is not shared by the deformations measures presently used in the literature. The impact of the choice of the two parameters on the constitutive behavior of the flexible joint is also investigated.

  2. On flexible and rigid nouns

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2010-01-01

    classes. Finally this article wants to claim that the distinction between rigid and flexible noun categories (a) adds a new dimension to current classifications of parts of speech systems, (b) correlates with certain grammatical phenomena (e.g. so-called number discord), and (c) helps to explain the parts......This article argues that in addition to the major flexible lexical categories in Hengeveld’s classification of parts of speech systems (Contentive, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members...... by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger of some rigid word classes) in that members of flexible word categories display the same properties regarding category membership as members of rigid word...

  3. On flexible and rigid nouns

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2008-01-01

    Studies in Language 32-3 (2008), 727-752. Special issue: Parts of Speech: Descriptive tools, theoretical constructs Jan Rijkhoff - On flexible and rigid nouns This article argues that in addition to the flexible lexical categories in Hengeveld’s classification of parts-of-speech systems (Contentive......, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members of flexible word classes are characterized by their vague semantics, which in the case of nouns means that values for the semantic features Shape...... and Homogeneity are either left undetermined or they are specified in such a way that they do not quite match the properties of the kind of entity denoted by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger...

  4. A Direct Derivation of the Equations of Motion for 3D-Flexible Mechanical Systems

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Mads Leergaard

    1998-01-01

    equations for flexible mechanical systems are derived using the principle of virtual work, which introduces inertia in a straightforward manner, because this principle treats inertia as a force. The flexible formulation is exemplified by the use of circular beam elements and some basic matrices are derived...

  5. Flexible Language Interoperability

    DEFF Research Database (Denmark)

    Ekman, Torbjörn; Mechlenborg, Peter; Schultz, Ulrik Pagh

    2007-01-01

    Virtual machines raise the abstraction level of the execution environment at the cost of restricting the set of supported languages. Moreover, the ability of a language implementation to integrate with other languages hosted on the same virtual machine typically constrains the features...... of the language. In this paper, we present a highly flexible yet efficient approach to hosting multiple programming languages on an object-oriented virtual machine. Our approach is based on extending the interface of each class with language-specific wrapper methods, offering each language a tailored view...... of a given class. This approach can be deployed both on a statically typed virtual machine, such as the JVM, and on a dynamic virtual machine, such as a Smalltalk virtual machine. We have implemented our approach to language interoperability on top of a prototype virtual machine for embedded systems based...

  6. Flexible cultural repertoires

    DEFF Research Database (Denmark)

    Lindegaard, Marie Rosenkrantz; Zimmermann, Francisca

    2017-01-01

    Despite extensive studies of street culture and the risks of offending and victimization in urban marginalized areas, little is known about the role of cultural repertoires for variation in victimization risks among young men not involved in crime. Based on two ethnographic studies, conducted...... independently of the authors in neighbouring township areas of Cape Town, we offer insights into patterns of victimization among young men not involved in crime who live and attend school in the townships. Young men WHO perform decent cultural repertoires are highly exposed to victimization due to their moral...... rejection of crime-involved youth. Young men who perform flexible cultural repertoires, by incorporating and shifting between gang and decent repertoires, experience low victimization due to their adaptation to crime-involved youth. Findings emphasize the importance of detailed investigations of the way...

  7. Flexible helical yarn swimmers.

    Science.gov (United States)

    Zakharov, A P; Leshansky, A M; Pismen, L M

    2016-09-01

    We investigate the motion of a flexible Stokesian flagellar swimmer realised as a yarn made of two intertwined elastomer fibres, one active, that can reversibly change its length in response to a local excitation causing transition to the nematic state or swelling, and the other one, a passive isotropic elastomer with identical mechanical properties. A propagating chemical wave may provide an excitation mechanism ensuring a constant length of the excited region. Generally, the swimmer moves along a helical trajectory, and the propagation and rotation velocity are very sensitive to the ratio of the excited region to the pitch of the yarn, as well as to the size of a carried load. External excitation by a moving actuating beam is less effective, unless the direction of the beam is adjusted to rotation of the swimmer.

  8. Flexible weapons architecture design

    Science.gov (United States)

    Pyant, William C., III

    Present day air-delivered weapons are of a closed architecture, with little to no ability to tailor the weapon for the individual engagement. The closed architectures require weaponeers to make the target fit the weapon instead of fitting the individual weapons to a target. The concept of a flexible weapons aims to modularize weapons design using an open architecture shell into which different modules are inserted to achieve the desired target fractional damage while reducing cost and civilian casualties. This thesis shows that the architecture design factors of damage mechanism, fusing, weapons weight, guidance, and propulsion are significant in enhancing weapon performance objectives, and would benefit from modularization. Additionally, this thesis constructs an algorithm that can be used to design a weapon set for a particular target class based on these modular components.

  9. Conformational flexibility of aspartame.

    Science.gov (United States)

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016. © 2016 Wiley Periodicals, Inc.

  10. Nuclear forces

    International Nuclear Information System (INIS)

    Holinde, K.

    1990-01-01

    In this paper the present status of the meson theory of nuclear forces is reviewed. After some introductory remarks about the relevance of the meson exchange concept in the era of QCD and the empirical features of the NN interaction, the exciting history of nuclear forces is briefly outlined. In the main part, the author gives the basic physical ideas and sketch the derivation of the one-boson-exchange model of the nuclear force, in the Feynman approach. Secondly we describe, in a qualitative way, various necessary extensions, leading to the Bonn model of the N interaction. Finally, points to some interesting pen questions connected with the extended quark structure of the hadrons, which are topics of current research activity

  11. Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems

    KAUST Repository

    Sevilla, Galo T.

    2016-10-14

    High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.

  12. Decal Electronics: Printable Packaged with 3D Printing High-Performance Flexible CMOS Electronic Systems

    KAUST Repository

    Sevilla, Galo T.; Cordero, Marlon D.; Nassar, Joanna M.; Hanna, Amir; Kutbee, Arwa T.; Carreno, Armando Arpys Arevalo; Hussain, Muhammad Mustafa

    2016-01-01

    High-performance complementary metal oxide semiconductor electronics are flexed, packaged using 3D printing as decal electronics, and then printed in roll-to-roll fashion for highly manufacturable printed flexible high-performance electronic systems.

  13. ZnO HEMTs on Flexible Substrates for Large Area Monolithic Antenna Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AMBP Tech will implement Zinc Oxide high mobility material technology it has developed specifically for flexible electronics into a direct write process onto large...

  14. Recent Progress on Flexible and Wearable Supercapacitors.

    Science.gov (United States)

    Xue, Qi; Sun, Jinfeng; Huang, Yan; Zhu, Minshen; Pei, Zengxia; Li, Hongfei; Wang, Yukun; Li, Na; Zhang, Haiyan; Zhi, Chunyi

    2017-12-01

    Recently, wearable electronic devices including electrical sensors, flexible displays, and health monitors have received considerable attention and experienced rapid progress. Wearable supercapacitors attract tremendous attention mainly due to their high stability, low cost, fast charging/discharging, and high efficiency; properties that render them value for developing fully flexible devices. In this Concept, the recent achievements and advances made in flexible and wearable supercapacitors are presented, especially highlighting the promising performances of yarn/fiber-shaped and planar supercapacitors. On the basis of their working mechanism, electrode materials including carbon-based materials, metal oxide-based materials, and conductive polymers with an emphasis on the performance-optimization method are introduced. The latest representative techniques and active materials of recently developed supercapacitors with superior performance are summarized. Furthermore, the designs of 1D and 2D electrodes are discussed according to their electrically conductive supporting materials. Finally, conclusions, challenges, and perspective in optimizing and developing the electrochemical performance and function of wearable supercapacitors for their practical utility are addressed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Vibration control of a flexible structure with electromagnetic actuators

    DEFF Research Database (Denmark)

    Gruzman, Maurício; Santos, Ilmar

    2016-01-01

    This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....

  16. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  17. Special Issue: Flexible Work Arrangements.

    Science.gov (United States)

    Olmstead, Barney, Ed.

    1996-01-01

    Section 1 contains five chapters on flexible work arrangements, self-employment, working from home, part-time professionals, job sharing, and temporary employment. Section 2 includes reviews of four books on working flexibly, concluding with a list of 23 additional readings. (SK)

  18. Measuring and Comparing Energy Flexibilities

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2015-01-01

    induced by time and amount individually, and by their com- bination. To this end, we introduce several flexibility measures that take into account the combined effect of time and energy on flex-offer flexibility and discuss their respective pros and cons through a number of realistic examples....

  19. Sensor Technologies on Flexible Substrates

    Science.gov (United States)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  20. Functional aspects of protein flexibility

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2009-01-01

    this into an intuitive perception of protein function is challenging. Flexibility is of overwhelming importance for protein function, and the changes in protein structure during interactions with binding partners can be dramatic. The present review addresses protein flexibility, focusing on protein-ligand interactions...

  1. Flexible ring seal

    International Nuclear Information System (INIS)

    Abbes, Claude; Gournier, Andre; Rouaud, Christian; Villepoix, Raymond de.

    1976-01-01

    The invention concerns a flexible metal ring seal, able to ensure a perfect seal between two bearings due to the crushing and elastic deformation properties akin to similar properties in elastomers. Various designs of seal of this kind are already known, particularly a seal made of a core formed by a helical wire spring with close-wound turns and with high axial compression ratio, closed on itself and having the shape of an annulus. This wire ring is surrounded by at least one envelope having at rest the shape of a toroidal surface of which the generating circle does not close on itself. In a particular design mode, the seal in question can include, around the internal spring, two envelopes of which one in contact with the spring is composed of a low ductility elastic metal, such as mild steel or stainless steel and the other is, on the contrary, made of a malleable metal, such as copper or nickel. The first envelope evenly distributes the partial crushing of the spring, when the seal is tightened, on the second envelope which closely fits the two surfaces between which the seal operates. The stress-crushing curve characteristic of the seal comprises two separate parts, the first with a relatively sharp slope corresponds to the start of the seal compression phase, enabling at least some of these curves to reach the requisite seal threshold very quickly, then, beyond this, a second part, practically flat, where the stress is appreciably constant for a wide operating bracket [fr

  2. Flexible piezotronic strain sensor.

    Science.gov (United States)

    Zhou, Jun; Gu, Yudong; Fei, Peng; Mai, Wenjie; Gao, Yifan; Yang, Rusen; Bao, Gang; Wang, Zhong Lin

    2008-09-01

    Strain sensors based on individual ZnO piezoelectric fine-wires (PFWs; nanowires, microwires) have been fabricated by a simple, reliable, and cost-effective technique. The electromechanical sensor device consists of a single electrically connected PFW that is placed on the outer surface of a flexible polystyrene (PS) substrate and bonded at its two ends. The entire device is fully packaged by a polydimethylsiloxane (PDMS) thin layer. The PFW has Schottky contacts at its two ends but with distinctly different barrier heights. The I- V characteristic is highly sensitive to strain mainly due to the change in Schottky barrier height (SBH), which scales linear with strain. The change in SBH is suggested owing to the strain induced band structure change and piezoelectric effect. The experimental data can be well-described by the thermionic emission-diffusion model. A gauge factor of as high as 1250 has been demonstrated, which is 25% higher than the best gauge factor demonstrated for carbon nanotubes. The strain sensor developed here has applications in strain and stress measurements in cell biology, biomedical sciences, MEMS devices, structure monitoring, and more.

  3. Orthogonal flexible Rydberg aggregates

    Science.gov (United States)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2016-02-01

    We study the link between atomic motion and exciton transport in flexible Rydberg aggregates, assemblies of highly excited light alkali-metal atoms, for which motion due to dipole-dipole interaction becomes relevant. In two one-dimensional atom chains crossing at a right angle adiabatic exciton transport is affected by a conical intersection of excitonic energy surfaces, which induces controllable nonadiabatic effects. A joint exciton-motion pulse that is initially governed by a single energy surface is coherently split into two modes after crossing the intersection. The modes induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. We have shown how this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains [K. Leonhardt et al., Phys. Rev. Lett. 113, 223001 (2014), 10.1103/PhysRevLett.113.223001]. In this article we discuss the underlying complex dynamics in detail, characterize the switch, and derive our isotropic interaction model from a realistic anisotropic one with the addition of a magnetic bias field.

  4. SOCMA study urges flexibility

    International Nuclear Information System (INIS)

    Kirschner, E.

    1993-01-01

    In implementing the 1990 Pollution Prevention Act, regulators and legislators should hold off on cookie-cutter, numerical goal-based requirements to allow for site and process specific programs, says a study sponsored by the Synthetic Organic Chemicals Manufacturers Association (SOCMA; Washington). Companies should have that flexibility to target their resources toward those activities that reduce pollution cost effectively, says SOCMA environmental quality committee chairman Art Gillen, who is also BASF director of environmental regulatory affairs. The study - conducted by Woodward-Clyde Consultants (Denver) - examines four batch and custom chemical manufacturing films. As in the Clean Air Act, the batch processing of SOCMA-member plants should be considered in new regulations, Gillen says. For example, the study found that most wastes are from shutdowns and cleanouts, and there are frequent charges in waste streams and raw materials. Those characteristics do not lend themselves to annual reduction goals. Also, specific goals could have a wide range of costs: measures to reduce stack air emissions run from $18/lb to $1,106/lb. SOCMA says it will present the study to Congress and the Environmental Protection Agency

  5. The sedentary (r)evolution: Have we lost our metabolic flexibility?

    Science.gov (United States)

    Freese, Jens; Klement, Rainer Johannes; Ruiz-Núñez, Begoña; Schwarz, Sebastian; Lötzerich, Helmut

    2018-01-01

    During the course of evolution, up until the agricultural revolution, environmental fluctuations forced the human species to develop a flexible metabolism in order to adapt its energy needs to various climate, seasonal and vegetation conditions. Metabolic flexibility safeguarded human survival independent of food availability. In modern times, humans switched their primal lifestyle towards a constant availability of energy-dense, yet often nutrient-deficient, foods, persistent psycho-emotional stressors and a lack of exercise. As a result, humans progressively gain metabolic disorders, such as the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease, certain types of cancer, cardiovascular disease and Alzheimer´s disease, wherever the sedentary lifestyle spreads in the world. For more than 2.5 million years, our capability to store fat for times of food shortage was an outstanding survival advantage. Nowadays, the same survival strategy in a completely altered surrounding is responsible for a constant accumulation of body fat. In this article, we argue that the metabolic disease epidemic is largely based on a deficit in metabolic flexibility. We hypothesize that the modern energetic inflexibility, typically displayed by symptoms of neuroglycopenia, can be reversed by re-cultivating suppressed metabolic programs, which became obsolete in an affluent environment, particularly the ability to easily switch to ketone body and fat oxidation. In a simplified model, the basic metabolic programs of humans’ primal hunter-gatherer lifestyle are opposed to the current sedentary lifestyle. Those metabolic programs, which are chronically neglected in modern surroundings, are identified and conclusions for the prevention of chronic metabolic diseases are drawn. PMID:29225776

  6. A silicon-based flexible tactile sensor for ubiquitous robot companion applications

    International Nuclear Information System (INIS)

    Kim, Kunnyun; Lee, Kang Ryeol; Lee, Dae Sung; Cho, Nam-Kyu; Kim, Won Hyo; Park, Kwang-Bum; Park, Hyo-Derk; Kim, Yong Kook; Park, Yon-Kyu; Kim, Jong-Ho

    2006-01-01

    We present the fabrication process and characteristics of a 3-axes flexible tactile sensor available for normal and shear mode fabricated using Si micromachining and packaging technologies. The fabrication processes for the 3 axes flexible tactile sensor were classified in the fabrication of sensor chips and their packaging on the flexible PCB. The variation rate of resistance was about 2.1%/N and 0.5%/N in applying normal and shear force, respectively. Because this tactile sensor can measure the variations of resistance of the semiconductor strain gauge for normal and shear force, it can be used to sense touch, pressure, hardness, and slip

  7. Synthesis and electrical characterization of Graphene Oxide films

    International Nuclear Information System (INIS)

    Yasin, Muhammad; Tauqeer, T.; Zaidi, Syed M.H.; San, Sait E.; Mahmood, Asad; Köse, Muhammet E.; Canimkurbey, Betul; Okutan, Mustafa

    2015-01-01

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σ ac of the films was observed to be varied with angular frequency, ω as ω S , with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively

  8. Free form CMOS electronics: Physically flexible and stretchable

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-07

    Free form (physically flexible and stretchable) electronics can be used for applications which are unexplored today due to the rigid and brittle nature of the state-of-the-art electronics. Therefore, we show integration strategy to rationally design materials, processes and devices to transform advanced complementary metal oxide semiconductor (CMOS) electronics into flexible and stretchable one while retaining their high performance, energy efficiency, ultra-large-scale-integration (ULSI) density, reliability and performance over cost benefit to expand its applications for wearable, implantable and Internet-of-Everything electronics.

  9. Granular shear flows of flexible rod-like particles

    Science.gov (United States)

    Guo, Y.; Curtis, J.; Wassgren, C.; Ketterhagen, W.; Hancock, B.

    2013-06-01

    Flexible particles are widely encountered in nature, e.g., stalks of plants, fiberglass particles, and ceramic nanofibers. Early studies indicated that the deformability of particles has a significant impact on the properties of granular materials and fiber suspensions. In this study, shear flows of flexible particles are simulated using the Discrete Element Method (DEM) to explore the effect of particle flexibility on the flow behavior and constitutive laws. A flexible particle is formed by connecting a number of constituent spheres in a straight line using elastic bonds. The forces/moments due to the normal, tangential, bending, and torsional deformation of a bond resist the relative movement between two bonded constituent spheres. The bond stiffness determines how difficult it is to make a particle deform, and the bond damping accounts for the energy dissipation in the particle vibration process. The simulation results show that elastically bonded particles have smaller coefficients of restitution compared to rigidly connected particles, due to the fact that kinetic energy is partially converted to potential energy in a contact between flexible particles. The coefficient of restitution decreases as the bond stiffness decreases and the bond damping coefficient increases. As a result, smaller stresses are obtained for granular flows of the flexible particles with smaller bond stiffness and larger bond damping coefficient.

  10. Flexibility in fuel manufacturing

    International Nuclear Information System (INIS)

    Reparaz, A.; Stavig, W.E.; McLees, R.B.

    1987-01-01

    From its inception Exxon Nuclear has produced both BWR and PWR fuels. This is reflected in a product line that, to date, includes over 20 fuel designs. These range from 6x6 design at one end of the spectrum to the recently introduced 17x17 design. The benefits offered include close tailoring of the fuel design to match the customer's requirements, and the ability to rapidly introduce product changes, such as the axial blanket design, with a minimal impact on manufacturing. This flexibility places a number of demands on the manufacturing organization. Close interfaces must be established, and maintained, between the marketing, product design, manufacturing, purchasing and quality organizations, and the information flows must be immediate and accurate. Production schedules must be well planned and must be maintained or revised to reflect changing circumstances. Finally, the manufacturing facilities must be designed to allow rapid switchover between product designs with minor tooling changes and/or rerouting of product flows to alternate work stations. Among the tools used to manage the flow of information and to maintain the tight integration necessary between the various manufacturing, engineering and quality organizations is a commercially available, computerized planning and tracking system, AMAPS. A real-time production data collection system has been designed which gathers data from each production work station for use by the shop floor control module of AMAPS. Accuracy of input to the system is improved through extensive use of bar codes to gather information on the product as it moves through and between work stations. This computerized preparation of material tracing has an impact on direct manufacturing records, quality control records, nuclear material records and accounting and inventory records. This is of benefit to both Exxon Nuclear and its customers

  11. Unified Technical Concepts. Module 8: Force Transformers.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This concept module on force transformers is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…

  12. Microparticle adhesion studies by atomic force microscopy

    NARCIS (Netherlands)

    Segeren, L.H.G.J.; Siebum, B.; Karssenberg, F.G.; Berg, van den J.W.A.; Vancso, G.J.

    2002-01-01

    Atomic force microscopy (AFM) is one of the most flexible and simple techniques for probing surface interactions. This article reviews AFM studies on particle adhesion. Special attention is paid to the characterization of roughness and its effect on adhesion. This is of importance when comparing the

  13. Controlling flexible robot arms using a high speed dynamics process

    Science.gov (United States)

    Jain, Abhinandan (Inventor); Rodriguez, Guillermo (Inventor)

    1992-01-01

    Described here is a robot controller for a flexible manipulator arm having plural bodies connected at respective movable hinges, and flexible in plural deformation modes. It is operated by computing articulated body qualities for each of the bodies from the respective modal spatial influence vectors, obtaining specified body forces for each of the bodies, and computing modal deformation accelerations of the nodes and hinge accelerations of the hinges from the specified body forces, from the articulated body quantities and from the modal spatial influence vectors. In one embodiment of the invention, the controller further operates by comparing the accelerations thus computed to desired manipulator motion to determine a motion discrepancy, and correcting the specified body forces so as to reduce the motion discrepancy. The manipulator bodies and hinges are characterized by respective vectors of deformation and hinge configuration variables. Computing modal deformation accelerations and hinge accelerations is carried out for each of the bodies, beginning with the outermost body by computing a residual body force from a residual body force of a previous body, computing a resultant hinge acceleration from the body force, and then, for each one of the bodies beginning with the innermost body, computing a modal body acceleration from a modal body acceleration of a previous body, computing a modal deformation acceleration and hinge acceleration from the resulting hinge acceleration and from the modal body acceleration.

  14. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James

    2017-10-30

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  15. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James; Georgiadou, Dimitra G; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-01-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  16. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    Science.gov (United States)

    Semple, James; Georgiadou, Dimitra G.; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-12-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  17. Incentivizing Flexibility in System Operations

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bloom, Aaron P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Townsend, Aaron [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ela, Erik [Electric Power Research Institute; Botterud, Audun [Argonne National Laboratory; Levin, Todd [Argonne National Laboratory

    2018-02-15

    Defining flexibility has been a challenge that a number of industry members and researchers have attempted to address in recent years. With increased variability and uncertainty of variable generation (VG), the resources on the system will have to be more flexible to adjust output, so that power output ranges, power ramp rates, and energy duration sustainability are sufficient to meet the needs of balancing supply with demand at various operational timescales. This chapter discusses whether existing market designs provide adequate incentives for resources to offer their flexibility into the market to meet the increased levels of variability and uncertainty introduced by VG in the short-term operational time frame. It presents a definition of flexibility and discusses how increased levels of VG require increased needs for flexibility on power systems. Following this introductory material, the chapter examines how existing market designs ensure that resources have the right incentives to provide increased flexibility, and then discusses a number of emerging market design elements that impact flexibility incentives.

  18. Aggregating and Disaggregating Flexibility Objects

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Valsomatzis, Emmanouil; Hose, Katja

    2015-01-01

    In many scientific and commercial domains we encounter flexibility objects, i.e., objects with explicit flexibilities in a time and an amount dimension (e.g., energy or product amount). Applications of flexibility objects require novel and efficient techniques capable of handling large amounts...... and aiming at energy balancing during aggregation. In more detail, this paper considers the complete life cycle of flex-objects: aggregation, disaggregation, associated requirements, efficient incremental computation, and balance aggregation techniques. Extensive experiments based on real-world data from...

  19. Polymer Ferroelectric Memory for Flexible Electronics

    KAUST Repository

    Khan, Mohd Adnan

    2013-11-01

    With the projected growth of the flexible and plastic electronics industry, there is renewed interest in the research community to develop high performance all-polymeric memory which will be an essential component of any electronic circuit. Some of the efforts in polymer memories are based on different mechanisms such as filamentary conduction, charge trapping effects, dipole alignment, and reduction-oxidation to name a few. Among these the leading candidate are those based on the mechanism of ferroelectricity. Polymer ferroelectric memory can be used in niche applications like smart cards, RFID tags, sensors etc. This dissertation will focus on novel material and device engineering to fabricate high performance low temperature polymeric ferroelectric memory for flexible electronics. We address and find solutions to some fundamental problems affecting all polymer ferroelectric memory like high coercive fields, fatigue and thermal stability issues, poor breakdown strength and poor p-type hole mobilities. Some of the strategies adopted in this dissertation are: Use of different flexible substrates, electrode engineering to improve charge injection and fatigue properties of ferroelectric polymers, large area ink jet printing of ferroelectric memory devices, use of polymer blends to improve insulating properties of ferroelectric polymers and use of oxide semiconductors to fabricate high mobility p-type ferroelectric memory. During the course of this dissertation we have fabricated: the first all-polymer ferroelectric capacitors with solvent modified highly conducting polymeric poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT:PSS] electrodes on plastic substrates with performance as good as devices with metallic Platinum-Gold electrodes on silicon substrates; the first all-polymer high performance ferroelectric memory on banknotes for security applications; novel ferroelectric capacitors based on blends of ferroelectric poly(vinylidene fluoride

  20. Polymer Ferroelectric Memory for Flexible Electronics

    KAUST Repository

    Khan, Mohd Adnan

    2013-01-01

    With the projected growth of the flexible and plastic electronics industry, there is renewed interest in the research community to develop high performance all-polymeric memory which will be an essential component of any electronic circuit. Some of the efforts in polymer memories are based on different mechanisms such as filamentary conduction, charge trapping effects, dipole alignment, and reduction-oxidation to name a few. Among these the leading candidate are those based on the mechanism of ferroelectricity. Polymer ferroelectric memory can be used in niche applications like smart cards, RFID tags, sensors etc. This dissertation will focus on novel material and device engineering to fabricate high performance low temperature polymeric ferroelectric memory for flexible electronics. We address and find solutions to some fundamental problems affecting all polymer ferroelectric memory like high coercive fields, fatigue and thermal stability issues, poor breakdown strength and poor p-type hole mobilities. Some of the strategies adopted in this dissertation are: Use of different flexible substrates, electrode engineering to improve charge injection and fatigue properties of ferroelectric polymers, large area ink jet printing of ferroelectric memory devices, use of polymer blends to improve insulating properties of ferroelectric polymers and use of oxide semiconductors to fabricate high mobility p-type ferroelectric memory. During the course of this dissertation we have fabricated: the first all-polymer ferroelectric capacitors with solvent modified highly conducting polymeric poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT:PSS] electrodes on plastic substrates with performance as good as devices with metallic Platinum-Gold electrodes on silicon substrates; the first all-polymer high performance ferroelectric memory on banknotes for security applications; novel ferroelectric capacitors based on blends of ferroelectric poly(vinylidene fluoride

  1. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-01-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart

  2. Flexibility of trunnion piping elbows

    International Nuclear Information System (INIS)

    Lewis, G.D.; Chao, Y.J.

    1987-01-01

    Flexibility factors and stress indices for piping component such as straight pipe, elbows, butt-welding tees, branch connections, and butt-welding reducers are contained in the code, but many of the less common piping components, like the trunnion elbow, do not have flexibility factors or stress indices defined. The purpose of this paper is to identify the in-plane and out-of-plane flexibility factors in accordance with code procedures for welded trunnions attached to the tangent centerlines of long radius elbows. This work utilized the finite element method as applicable to plates and shells for calculating the relative rotations of the trunnion elbow-ends for in-plane and out-of-plane elbow moment loadings. These rotations are used to derive the corresponding in-plane and out-of-plane flexibility factors. (orig./GL)

  3. Distributed flexibility in inertial swimmers

    Science.gov (United States)

    Floryan, Daniel; Rowley, Clarence W.; Smits, Alexander J.

    2017-11-01

    To achieve fast and efficient swimming, the flexibility of the propulsive surfaces is an important feature. To better understand the effects of distributed flexibility (either through inhomogeneous material properties, varying geometry, or both) we consider the coupled solid and fluid mechanics of the problem. Here, we develop a simplified model of a flexible swimmer, using Euler-Bernoulli theory to describe the solid, Theodorsen's theory to describe the fluid, and a Blasius boundary layer to incorporate viscous effects. Our primary aims are to understand how distributed flexibility affects the thrust production and efficiency of a swimmer with imposed motion at its leading edge. In particular, we examine the modal shapes of the swimmer to gain physical insight into the observed trends. Supported under ONR MURI Grant N00014-14-1-0533, Program Manager Robert Brizzolara.

  4. Determinants of flexible work arrangements

    OpenAIRE

    Sarbu, Miruna

    2014-01-01

    Flexible work arrangements such as allowing employees to work at home are used in firms, especially since information and communication technologies have become so widespread. Using individual-level data from 10,884 German employees, this paper analyses the determinants of working at home as a form of flexible work arrangements. The analysis is based on descriptive analyses and a discrete choice model using a probit estimation approach. The results reveal that men have a higher...

  5. Workplace flexibility across the lifespan

    OpenAIRE

    Bal, Pieter; Jansen, Paul G W

    2016-01-01

    As demographic changes impact the workplace, governments, organizations and workers arelooking for ways to sustain optimal working lives at higher ages. Workplace flexibility has beenintroduced as a potential way workers can have more satisfying working lives until theirretirement ages. This paper presents a critical review of the literature on workplace flexibilityacross the lifespan. It discusses how flexibility has been conceptualized across differentdisciplines, and postulates a definitio...

  6. Flexible packaging for PV modules

    Science.gov (United States)

    Dhere, Neelkanth G.

    2008-08-01

    Economic, flexible packages that provide needed level of protection to organic and some other PV cells over >25-years have not yet been developed. However, flexible packaging is essential in niche large-scale applications. Typical configuration used in flexible photovoltaic (PV) module packaging is transparent frontsheet/encapsulant/PV cells/flexible substrate. Besides flexibility of various components, the solder bonds should also be flexible and resistant to fatigue due to cyclic loading. Flexible front sheets should provide optical transparency, mechanical protection, scratch resistance, dielectric isolation, water resistance, UV stability and adhesion to encapsulant. Examples are Tefzel, Tedlar and Silicone. Dirt can get embedded in soft layers such as silicone and obscure light. Water vapor transmittance rate (WVTR) of polymer films used in the food packaging industry as moisture barriers are ~0.05 g/(m2.day) under ambient conditions. In comparison, light emitting diodes employ packaging components that have WVTR of ~10-6 g/(m2.day). WVTR of polymer sheets can be improved by coating them with dense inorganic/organic multilayers. Ethylene vinyl acetate, an amorphous copolymer used predominantly by the PV industry has very high O2 and H2O diffusivity. Quaternary carbon chains (such as acetate) in a polymer lead to cleavage and loss of adhesional strength at relatively low exposures. Reactivity of PV module components increases in presence of O2 and H2O. Adhesional strength degrades due to the breakdown of structure of polymer by reactive, free radicals formed by high-energy radiation. Free radical formation in polymers is reduced when the aromatic rings are attached at regular intervals. This paper will review flexible packaging for PV modules.

  7. Flexible forms of working hours

    OpenAIRE

    Knapp, Viktor

    2017-01-01

    66 Abstract - Flexible forms of working hours This diploma thesis deals with the flexible forms of working hours and its goal is to describe this issue in intelligible and comprehensive way. It is being very interesting and current theme which is to a great extent not subject to direct legal regulations and provides its contracting parties with a big amount of freedom of contract. This fact assists in bigger flexibilization of labour market and represents a significant instrument in the fight...

  8. Developmental constraints on behavioural flexibility.

    Science.gov (United States)

    Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E

    2013-05-19

    We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.

  9. A comparison of force sensing techniques for planetary manipulation

    Science.gov (United States)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  10. Mathematics of flexible risers including pressure and internal flow affects

    Energy Technology Data Exchange (ETDEWEB)

    Seyed, F.B. (John Brown Engineers and Constructors Ltd., London (GB)); Patel, M.H. (University Coll., London (GB). Dept. of Mechanical Engineering)

    1992-01-01

    Derivations are presented for calculation of pressure and internal flow induced forces on flexible risers and other curved pipes using a mathematically rigorous approach. Approximate and exact methods are presented for calculation of pressure forces on straight and curved pipes in two dimensions. The mathematical identity of these equations with those for effective tension is illustrated. The force arising from the flow of an internal fluid of constant density is then calculated and combined with those for pressure forces in derivation of the catenary equations including pressure and internal flow terms. It is shown that internal flow contributes a new term to the expression for effective tension. These governing equations are then reduced for the specific cases of simple catenary, steep-S, lazy-S, steep-wave and lazy-wave risers. In each case, the solution method has been presented and the governing equilibrium and geometric compatability conditions cited. (author).

  11. An efficient structural finite element for inextensible flexible risers

    Science.gov (United States)

    Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.

    2017-12-01

    A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.

  12. Cu mesh for flexible transparent conductive electrodes.

    Science.gov (United States)

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-06-03

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

  13. Coriolis Force

    Science.gov (United States)

    Marciuc, Daly; Solschi, Viorel

    2017-04-01

    Understanding the Coriolis effect is essential for explaining the movement of air masses and ocean currents. The lesson we propose aims to familiarize students with the manifestation of the Coriolis effect. Students are guided to build, using the GeoGebra software, a simulation of the motion of a body, related to a rotating reference system. The mathematical expression of the Coriolis force is deduced, for particular cases, and the Foucault's pendulum is presented and explained. Students have the opportunity to deepen the subject, by developing materials related to topics such as: • Global Wind Pattern • Ocean Currents • Coriolis Effect in Long Range Shooting • Finding the latitude with a Foucault Pendulum

  14. Invisible force

    International Nuclear Information System (INIS)

    Panek, Richard

    2010-01-01

    Astronomers have compiled evidence that what we always thought of as the actual universe- all the planets, stars, galaxies and matter in space -represents a mere 4% of what's out there. The rest is dark: 23% is called dark matter, 73% dark energy. Scientists have ideas about what dark matter is, but hardly any understanding about dark energy. This has led to rethinking traditional physics and cosmology. Assuming the existence of dark matter and that the law of gravitation is universal, two teams of astrophysicists, from Lawrence Berkeley National Laboratory and the Australian National University, analysed the universe's growth and to their surprise both concluded that the universe expansion is not slowing but speeding up. If the dominant force of evolution isn't gravity what is it?

  15. Stability of perovskite solar cells on flexible substrates

    Science.gov (United States)

    Tam, Ho Won; Chen, Wei; Liu, Fangzhou; He, Yanling; Leung, Tik Lun; Wang, Yushu; Wong, Man Kwong; Djurišić, Aleksandra B.; Ng, Alan Man Ching; He, Zhubing; Chan, Wai Kin; Tang, Jinyao

    2018-02-01

    Perovskite solar cells are emerging photovoltaic technology with potential for low cost, high efficiency devices. Currently, flexible devices efficiencies over 15% have been achieved. Flexible devices are of significant interest for achieving very low production cost via roll-to-roll processing. However, the stability of perovskite devices remains a significant challenge. Unlike glass substrate which has negligible water vapor transmission rate (WVTR), polymeric flexible film substrates suffer from high moisture permeability. As PET and PEN flexible substrates exhibit higher water permeability then glass, transparent flexible backside encapsulation should be used to maximize light harvesting in perovskite layer while WVTR should be low enough. Wide band gap materials are transparent in the visible spectral range low temperature processable and can be a moisture barrier. For flexible substrates, approaches like atomic layer deposition (ALD) and low temperature solution processing could be used for metal oxide deposition. In this work, ALD SnO2, TiO2, Al2O3 and solution processed spin-on-glass was used as the barrier layer on the polymeric side of indium tin oxide (ITO) coated PEN substrates. The UV-Vis transmission spectra of the prepared substrates were investigated. Perovskite solar cells will be fabricated and stability of the devices were encapsulated with copolymer films on the top side and tested under standard ISOS-L-1 protocol and then compared to the commercial unmodified ITO/PET or ITO/PEN substrates. In addition, devices with copolymer films laminated on both sides successfully surviving more than 300 hours upon continuous AM1.5G illumination were demonstrated.

  16. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    Science.gov (United States)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  17. Neuron-inspired flexible memristive device on silicon (100)

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-06-18

    Comprehensive understanding of the world\\'s most energy efficient powerful computer, the human brain, is an elusive scientific issue. Still, already gained knowledge indicates memristors can be used as a building block to model the brain. At the same time, brain cortex is folded allowing trillions of neurons to be integrated in a compact volume. Therefore, we report flexible aluminium oxide based memristive devices fabricated and then derived from widely used bulk mono-crystalline silicon (100). We use complementary metal oxide semiconductor based processes to layout the foundation for ultra large scale integration (ULSI) of such memory devices to advance the task of comprehending a physical model of human brain.

  18. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors.

    Science.gov (United States)

    Liu, Lili; Niu, Zhiqiang; Zhang, Li; Zhou, Weiya; Chen, Xiaodong; Xie, Sishen

    2014-07-23

    Reduced graphene oxide (rGO) and polyaniline (PANI) assemble onto the surface of cellulose fibers (CFs) and into the pores of CF paper, to form a hierarchical nanostructured PANI-rGO/CF composite paper. Based on these composite papers, flexible and foldable all-solid-state supercapacitors are achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of flexibility on flapping wing characteristics under forward flight

    International Nuclear Information System (INIS)

    Zhu, Jianyang; Jiang, Lin; Zhou, Chaoying; Wang, Chao

    2014-01-01

    Through two-dimensional numerical simulation and by solving the unsteady incompressible Navier–Stokes (NS) equations, coupled with the structural dynamic equation for the motion of the wing, the effect of flexibility on flapping wing characteristics during forward flight is systematically studied. The flapping wing is considered as a cantilever, which performs the translational and rotational motion at its leading edge, and the other part is passively deformed by the aerodynamic force. The frequency ratio ω* and mass ratio m* are defined and used to characterize the flexibility of the flapping wing. It has been found that an optimal range of the frequency ratio exists in which the flexible wing possesses both a larger propulsive efficiency and lifting efficiency than their rigid counterpart. Also, the flexible wing with the smaller mass ratio may be of benefit to generate thrust, while the larger mass ratio may be of benefit to generate lift. In addition, a stronger leading edge vortex and reattachment vortex are observed around the appropriate flexibility wing’s surface, which therefore leads to better aerodynamic characteristics. (paper)

  20. Design of flexible skin based on a mixed cruciform honeycomb

    Science.gov (United States)

    Rong, Jiaxin; Zhou, Li

    2017-04-01

    As the covering of morphing wings, flexible skin is required to provide adequate cooperation deformation, keep the smoothness of the aerodynamic configuration and bear the air load. The non-deformation direction of flexible skin is required to be restrained to keep the smoothness during morphing. This paper studies the deformation mechanisms of a cruciform honeycomb under zero Poisson's ratio constraint. The morphing capacity and in-plane modulus of the cruciform honeycomb are improved by optimizing the shape parameters of honeycomb unit. To improve the out-of-plane bending capacity, a zero Poisson's ratio mixed cruciform honeycomb is proposed by adding ribs into cruciform honeycomb, which can be used as filling material of flexible skin. The mechanical properties of the mixed honeycomb are studied by theoretical analysis and simulation. The local deformation of flexible skin under air load is also analyzed. Targeting the situation of non-uniform air load, a gradient density design scheme is referred. According to the design requirements of the variable camber trailing edge wing flexible skin, the specific design parameters and performance parameters of the skin based on the mixed honeycomb are given. The results show that the zero Poisson's ratio mixed cruciform honeycomb has a large bending rigidity itself and can have a better deformation capacity in-plane and a larger bending rigidity out-of-plane by optimizing the shape parameters. Besides, the designed skin also has advantages in driving force, deformation capacity and quality compared with conventional skin.

  1. Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Da-Chen Pang

    2017-06-01

    Full Text Available This paper presents the world’s first transparent flexible capacitive micromachined ultrasonic transducer (CMUT that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics.

  2. Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes.

    Science.gov (United States)

    Yang, Yu; Xi, Yunlong; Li, Junzhi; Wei, Guodong; Klyui, N I; Han, Wei

    2017-12-01

    Flexible supercapacitors(SCs) made by reduced graphene oxide (rGO)-based aerogel usually suffer from the low energy density, short cycle life and bad flexibility. In this study, a new, synthetic strategy was developed for enhancing the electrochemical performances of rGO aerogel-based supercapacitor via electrodeposition polyaniline arrays on the prepared ultralight rGO aerogel. The novel hybrid composites with coated polyaniline (PANI) arrays growing on the rGO surface can take full advantage of the rich open-pore and excellent conductivity of the crosslinking framework structure of 3D rGO aerogel and high capacitance contribution from the PANI. The obtained hybrid composites exhibit excellent electrochemical performance with a specific capacitance of 432 F g -1 at the current density of 1 A g -1 , robust cycling stability to maintain 85% after 10,000 charge/discharge cycles and high energy density of 25 W h kg -1 . Furthermore, the flexible all-solid-state supercapacitor have superior flexibility and outstanding stability under different bending states from the straight state to the 90° status. The high-performance flexible all-solid-state SCs together with the lighting tests demonstrate it possible for applications in portable electronics.

  3. Configuration of an inelastic flexible anchored cable

    Directory of Open Access Journals (Sweden)

    T. P. Dreyer

    1992-07-01

    Full Text Available Consider an inelastic, perfectly flexible cable with given external forces acting on the total length of the cable. The one end-point is fixed in the origin and the other end-point is anchored at a given point (a;b;c in space. The resulting configuration of the cable in space can be modelled by a system of non-linear differential equations. In this article it is shown that this continuous model of the cable can always be solved in terms of an integral. In the special case of a constant (i.e. independent of the position on the cable external force per unit length the solution is given explicitly in terms of three constants that describe the tension at the origin. These three constants are determined by the boundary values a, b and c at the other end-point, and must be calculated in general by a numerical procedure from the three resulting simultaneous non-linear equations. A few applications of this method are shown.

  4. Flexible free-standing TiO2/graphene/PVdF films as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Ren, H.M.; Ding, Y.H.; Chang, F.H.; He, X.; Feng, J.Q.; Wang, C.F.; Jiang, Y.; Zhang, P.

    2012-01-01

    Highlights: ► Flexible TiO 2 /graphene electrode was prepared by a solvent evaporation technique. ► PVdF was used as substance to support the TiO 2 /graphene active materials. ► The flexible films can be employed as anode materials for Li-ion battery. - Abstract: Graphene composites were prepared by hydrothermal method using titanium dioxide (TiO 2 ) adsorbed graphene oxide (GO) sheets as precursors. Free-standing hybrid films for lithium-ion batteries were prepared by adding TiO 2 /graphene composites to the polyvinylidene fluoride (PVdF)/N-methyl-2-pyrrolidone (NMP) solution, followed by a solvent evaporation technique. These films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and various electrochemical techniques. Flexible films show an excellent cycling performance, which was attributed to the interconnected graphene conducting network, which depressed the increasing of electric resistance during the cycling.

  5. Wearable Flexible Sensors: A Review

    KAUST Repository

    Nag, Anindya

    2017-05-18

    The paper provides a review on some of the significant research work done on wearable flexible sensors (WFS). Sensors fabricated with flexible materials have been attached to a person along with the embedded system to monitor a parameter and transfer the significant data to the monitoring unit for further analyses. The use of wearable sensors has played a quite important role to monitor physiological parameters of a person to minimize any malfunctioning happening in the body. The paper categorizes the work according to the materials used for designing the system, the network protocols and different types of activities that were being monitored. The challenges faced by the current sensing systems and future opportunities for the wearable flexible sensors regarding its market values are also briefly explained in the paper.

  6. Wearable Flexible Sensors: A Review

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2017-01-01

    The paper provides a review on some of the significant research work done on wearable flexible sensors (WFS). Sensors fabricated with flexible materials have been attached to a person along with the embedded system to monitor a parameter and transfer the significant data to the monitoring unit for further analyses. The use of wearable sensors has played a quite important role to monitor physiological parameters of a person to minimize any malfunctioning happening in the body. The paper categorizes the work according to the materials used for designing the system, the network protocols and different types of activities that were being monitored. The challenges faced by the current sensing systems and future opportunities for the wearable flexible sensors regarding its market values are also briefly explained in the paper.

  7. Balancing energy flexibilities through aggregation

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2014-01-01

    One of the main goals of recent developments in the Smart Grid area is to increase the use of renewable energy sources. These sources are characterized by energy fluctuations that might lead to energy imbalances and congestions in the electricity grid. Exploiting inherent flexibilities, which exist...... in both energy production and consumption, is the key to solving these problems. Flexibilities can be expressed as flex-offers, which due to their high number need to be aggregated to reduce the complexity of energy scheduling. In this paper, we discuss balance aggregation techniques that already during...... aggregation aim at balancing flexibilities in production and consumption to reduce the probability of congestions and reduce the complexity of scheduling. We present results of our extensive experiments....

  8. FLEXIBLE BUDGET OF SPORT COMPETITIONS

    Directory of Open Access Journals (Sweden)

    Dragan Vukasović

    2009-11-01

    Full Text Available Manager of sport competition has right to decide and also to take responsibility for costs, income and financial results. From economic point of wiev flexible budget and planning cost calculations is top management base for analyzing success level of sport competition. Flexible budget is made before sport competition with few output level, where one is always from static plan-master plan. At the end of competition when we have results, we make report of plan executing and we also analyzing plan variances. Results of comparation between achieved and planning level of static budget can be acceptable if achieved level is approximate to budget level or if we analyzing results from gross or net income. Flexible budget become very important in case of world eco- nomic crises

  9. Flexible Query Answering Systems 2006

    DEFF Research Database (Denmark)

    -computer interaction. The overall theme of the FQAS conferences is innovative query systems aimed at providing easy, flexible, and intuitive access to information. Such systems are intended to facilitate retrieval from information repositories such as databases, libraries, and the World-Wide Web. These repositories......This volume constitutes the proceedings of the Seventh International Conference on Flexible Query Answering Systems, FQAS 2006, held in Milan, Italy, on June 7--10, 2006. FQAS is the premier conference for researchers and practitioners concerned with the vital task of providing easy, flexible...... are typically equipped with standard query systems which are often inadequate, and the focus of FQAS is the development of query systems that are more expressive, informative, cooperative, and productive. These proceedings contain contributions from invited speakers and 53 original papers out of about 100...

  10. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  11. [Flexibility competencies: emotional organization management].

    Science.gov (United States)

    Caballero Muñoz, Domingo; Blanco Prieto, Antonio

    2007-11-01

    The aim of this article is to analyse the transferral of flexibility from contemporary organizations to workers. Through the approach of management by competencies, organizations try to develop in their workers behaviours that are related to efficient job performance. In order to appraise the importance of this approach, we used a critical-rational perspective to discuss the productivity demands that are characteristic of advanced industrial societies. The article shows how the link between workers' flexibility management and their emotional competencies affects their lives, which, like the organizations, should be versatile and adaptable to change.

  12. Polymer electronics a flexible technology

    CERN Document Server

    Technology, Rapra

    2009-01-01

    The worldwide market for polymer electronic products has been estimated to be worth up to £15 billion by 2015 and the opportunity for new markets could be as high as £125 billion by 2025.'The rapid development of polymer electronics has revealed the possibility for transforming the electronics market by offering lighter, flexible and more cost effective alternatives to conventional materials and products. With applications ranging from printed, flexible conductors and novel semiconductor components to intelligent labels and large area displays and solar panels, products that were previously un

  13. Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis.

    Science.gov (United States)

    Zhou, Peilin; Yu, Haibo; Yang, Wenguang; Wen, Yangdong; Wang, Zhidong; Li, Wen Jung; Liu, Lianqing

    2017-05-17

    In this article, we present a novel method of spatial manipulation and assembly of nanoparticles via atomic force microscopy tip-induced dielectrophoresis (AFM-DEP). This method combines the high-accuracy positioning of AFM with the parallel manipulation of DEP. A spatially nonuniform electric field is induced by applying an alternating current (AC) voltage between the conductive AFM probe and an indium tin oxide glass substrate. The AFM probe acted as a movable DEP tweezer for nanomanipulation and assembly of nanoparticles. The mechanism of AFM-DEP was analyzed by numerical simulation. The effects of solution depth, gap distance, AC voltage, solution concentration, and duration time were experimentally studied and optimized. Arrays of 200 nm polystyrene nanoparticles were assembled into various nanostructures, including lines, ellipsoids, and arrays of dots. The sizes and shapes of the assembled structures were controllable. It was thus demonstrated that AFM-DEP is a flexible and powerful tool for nanomanipulation.

  14. Flexible fiber in interaction with a dense granular flow close to the jamming transition

    Directory of Open Access Journals (Sweden)

    Algarra Nicolas

    2017-01-01

    Full Text Available We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fiber acting as a flexible intruder. We study experimentally the reconfiguration and the forces exerted on the flexible fiber produced by the flow at a constant and low velocity of a two-dimensional disordered packing of grains close but below the jamming transition.

  15. Flexible fiber in interaction with a dense granular flow close to the jamming transition

    Science.gov (United States)

    Algarra, Nicolas; Leang, Marguerite; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2017-06-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fiber acting as a flexible intruder. We study experimentally the reconfiguration and the forces exerted on the flexible fiber produced by the flow at a constant and low velocity of a two-dimensional disordered packing of grains close but below the jamming transition.

  16. Taming Time with Flexible Work.

    Science.gov (United States)

    Stamps, David

    1995-01-01

    Because of increasing incidence of burnout among midlevel managers, many companies are reducing workload schedules, an arrangement that would have been unthinkable 10 years ago. Surveys have made the case that flexible work arrangements increase employee happiness and, therefore, productivity. (JOW)

  17. Flexible working motivates all staff.

    Science.gov (United States)

    2001-04-01

    A recent survey has demolished the myth that work-life balance is only of interest to women with children. The survey, commissioned by Lloyds TSB on behalf of the Employers for Work Life Balance organisation, shows that young workers and men are equally interested in flexible working arrangements that allow them to pursue interests outside of work.

  18. Distribution method optimization : inventory flexibility

    NARCIS (Netherlands)

    Asipko, D.

    2010-01-01

    This report presents the outcome of the Logistics Design Project carried out for Nike Inc. This project has two goals: create a model to measure a flexibility aspect of the inventory usage in different Nike distribution channels, and analyze opportunities of changing the decision model of splitting

  19. Flexible spintronic devices on Kapton

    DEFF Research Database (Denmark)

    Bedoya-Pinto, Amilcar; Donolato, Marco; Gobbi, Marco

    2014-01-01

    Magnetic tunnel junctions and nano-sized domain-wall conduits have been fabricated on the flexible substrate Kapton. Despite the delicate nature of tunneling barriers and zig-zag shaped nanowires, the devices show an outstanding integrity and robustness upon mechanical bending. High values of ben...

  20. Flexible Bistable Cholesteric Reflective Displays

    Science.gov (United States)

    Yang, Deng-Ke

    2006-03-01

    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.