WorldWideScience

Sample records for force field optimization

  1. Rigorous force field optimization principles based on statistical distance minimization

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas, E-mail: vlcekl1@ornl.gov [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States); Joint Institute for Computational Sciences, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Chialvo, Ariel A. [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States)

    2015-10-14

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. We exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of the approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.

  2. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    International Nuclear Information System (INIS)

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    An empirically parameterized intermolecular force field is developed for crystal structure modelling and prediction. The model is optimized for use with an atomic multipole description of electrostatic interactions. We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%

  3. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides.

    Science.gov (United States)

    Best, Robert B; Hummer, Gerhard

    2009-07-02

    Obtaining the correct balance of secondary structure propensities is a central priority in protein force-field development. Given that current force fields differ significantly in their alpha-helical propensities, a correction to match experimental results would be highly desirable. We have determined simple backbone energy corrections for two force fields to reproduce the fraction of helix measured in short peptides at 300 K. As validation, we show that the optimized force fields produce results in excellent agreement with nuclear magnetic resonance experiments for folded proteins and short peptides not used in the optimization. However, despite the agreement at ambient conditions, the dependence of the helix content on temperature is too weak, a problem shared with other force fields. A fit of the Lifson-Roig helix-coil theory shows that both the enthalpy and entropy of helix formation are too small: the helix extension parameter w agrees well with experiment, but its entropic and enthalpic components are both only about half the respective experimental estimates. Our structural and thermodynamic analyses point toward the physical origins of these shortcomings in current force fields, and suggest ways to address them in future force-field development.

  4. Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.

    Science.gov (United States)

    Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie

    2018-05-04

    Particle swarm optimization is a powerful metaheuristic population-based global optimization algorithm. However, when applied to non-separable objective functions its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant particle swarm optimization algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates a superior performance across several nonlinear, multimodal benchmark functions compared to the rotation-invariant Particle Swam Optimization (PSO) algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in ReaxFF-lg reactive force field is carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents a better performance compared to a Genetic Algorithm optimization method in the optimization of a ReaxFF-lg correction model parameters. The computational framework is implemented in a standalone C++ code that allows a straightforward development of ReaxFF reactive force fields.

  5. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    Science.gov (United States)

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: goswamim@ornl.gov [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)

    2017-07-01

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.

  7. Optimizing Solute-Solute Interactions in the GLYCAM06 and CHARMM36 Carbohydrate Force Fields Using Osmotic Pressure Measurements.

    Science.gov (United States)

    Lay, Wesley K; Miller, Mark S; Elcock, Adrian H

    2016-04-12

    GLYCAM06 and CHARMM36 are successful force fields for modeling carbohydrates. To correct recently identified deficiencies with both force fields, we adjusted intersolute nonbonded parameters to reproduce the experimental osmotic coefficient of glucose at 1 M. The modified parameters improve behavior of glucose and sucrose up to 4 M and improve modeling of a dextran 55-mer. While the modified parameters may not be applicable to all carbohydrates, they highlight the use of osmotic simulations to optimize force fields.

  8. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    International Nuclear Information System (INIS)

    Abdoli, A; Mirzaee, I; Purmahmod, N; Anvari, A

    2008-01-01

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s -1 at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A b and D c , have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications

  9. Simulation of body force field effects on airfoil separation control and optimization of plasma actuator

    Energy Technology Data Exchange (ETDEWEB)

    Abdoli, A; Mirzaee, I; Purmahmod, N [Faculty of Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Anvari, A [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: ab.abdoli@gmail.com

    2008-09-07

    Among all active flow control methods, EHD, MHD and EMHD are the only methods which operate on the basis of body force induction on flow field. The EHD plasma actuator is the proper method which has been used in various flow control applications recently. In this paper, the effects of different body force fields on different domains have been studied for separation control on NACA 0021 and the results have been discussed. The airflow velocity has been assumed to be 35 m s{sup -1} at a post-stall angle of attack of 23 deg. Three different domains have been used around the airfoil to investigate body forces with different strengths and directions and those which give the best result in separation control have been obtained for each domain. It has been shown that the results could be used for optimizing the plasma actuator by manipulating its electrode configuration. Two non-dimensional numbers, A{sub b} and D{sub c}, have been obtained and validated by different applied body forces. These numbers have been defined for plasma actuators to show their efficiency in different applications.

  10. Intermolecular Force Field Parameters Optimization for Computer Simulations of CH4 in ZIF-8

    Directory of Open Access Journals (Sweden)

    Phannika Kanthima

    2016-01-01

    Full Text Available The differential evolution (DE algorithm is applied for obtaining the optimized intermolecular interaction parameters between CH4 and 2-methylimidazolate ([C4N2H5]− using quantum binding energies of CH4-[C4N2H5]− complexes. The initial parameters and their upper/lower bounds are obtained from the general AMBER force field. The DE optimized and the AMBER parameters are then used in the molecular dynamics (MD simulations of CH4 molecules in the frameworks of ZIF-8. The results show that the DE parameters are better for representing the quantum interaction energies than the AMBER parameters. The dynamical and structural behaviors obtained from MD simulations with both sets of parameters are also of notable differences.

  11. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    Science.gov (United States)

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  12. Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo

    Science.gov (United States)

    Motta, Mario; Zhang, Shiwei

    2018-05-01

    We propose an algorithm for accurate, systematic, and scalable computation of interatomic forces within the auxiliary-field quantum Monte Carlo (AFQMC) method. The algorithm relies on the Hellmann-Feynman theorem and incorporates Pulay corrections in the presence of atomic orbital basis sets. We benchmark the method for small molecules by comparing the computed forces with the derivatives of the AFQMC potential energy surface and by direct comparison with other quantum chemistry methods. We then perform geometry optimizations using the steepest descent algorithm in larger molecules. With realistic basis sets, we obtain equilibrium geometries in agreement, within statistical error bars, with experimental values. The increase in computational cost for computing forces in this approach is only a small prefactor over that of calculating the total energy. This paves the way for a general and efficient approach for geometry optimization and molecular dynamics within AFQMC.

  13. Consistent force fields for saccharides

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld

    1999-01-01

    Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x......-anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field...

  14. Optimizing photophoresis and asymmetric force fields for grading of Brownian particles.

    Science.gov (United States)

    Neild, Adrian; Ng, Tuck Wah; Woods, Timothy

    2009-12-10

    We discuss a scheme that incorporates restricted spatial input location, orthogonal sort, and movement direction features, with particle sorting achieved by using an asymmetric potential cycled on and off, while movement is accomplished by photophoresis. Careful investigation has uncovered the odds of sorting between certain pairs of particle sizes to be solely dependent on radii in each phase of the process. This means that the most effective overall sorting can be achieved by maximizing the number of phases. This optimized approach is demonstrated using numerical simulation to permit grading of a range of nanometer-scale particle sizes.

  15. Forces in electromagnetic field and gravitational field

    OpenAIRE

    Weng, Zihua

    2008-01-01

    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...

  16. Crystal structure and conformational analysis of s-cis-(acetylacetonato)(ethylenediamine-N,N'-diacetato)-chromium(III): development of vibrationally optimized force field (VOFF).

    Science.gov (United States)

    Choi, Jong-Ha; Niketić, Svetozar R; Djordjević, Ivana; Clegg, William; Harrington, Ross W

    2012-05-01

    The crystal structure of [Cr(edda)(acac)] (edda = ethylediamine-N,N'-diacetate; acac = acetylacetonato) has been determined by a single crystal X-ray diffraction study at 150 K. The chromium ion is in a distorted octahedral environment coordinated by two N and two O atoms of chelating edda and two O atoms of acac, resulting in s-cis configuration. The complex crystallizes in the space group P2(1)/c of the monoclinic system in a cell of dimensions a = 10.2588(9), b = 15.801(3), c = 8.7015(11) Å, β =101.201(9)° and Z = 4. The mean Cr-N(edda), Cr-O(edda) and Cr-O(acac) bond distances are 2.0829(14), 1.9678(11) and 1.9477(11) Å while the angles O-Cr-O of edda and O-Cr-O of acac are 171.47(5) and 92.72(5)°, respectively. The crystal structure is stabilized by N-H···O hydrogen bonds linking [Cr(edda)(acac)] molecules in distinct linear strands. The visible electronic and IR spectroscopic properties are also discussed. An improved, physically more realistic force field, Vibrationally Optimized Force Field (VOFF), capable of reproducing structural and vibrational properties of [Cr(edda)(acac)] was developed and its transferability demonstrated on selected chromium(III) complexes with similar ligands.

  17. Deriving force field parameters for coordination complexes

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Brandt, Peter

    2001-01-01

    The process of deriving molecular mechanics force fields for coordination complexes is outlined. Force field basics are introduced with an emphasis on special requirements for metal complexes. The review is then focused on how to set up the initial model, define the target, refine the parameters......, and validate the final force field, Alternatives to force field derivation are discussed briefly....

  18. The Martini Coarse-Grained Force Field

    NARCIS (Netherlands)

    Periole, X.; Marrink, S.J.; Monticelli, Luca; Salonen, Emppu

    2013-01-01

    The Martini force field is a coarse-grained force field suited for molecular dynamics simulations of biomolecular systems. The force field has been parameterized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical

  19. Optimization of well field management

    DEFF Research Database (Denmark)

    Hansen, Annette Kirstine

    Groundwater is a limited but important resource for fresh water supply. Differ- ent conflicting objectives are important when operating a well field. This study investigates how the management of a well field can be improved with respect to different objectives simultaneously. A framework...... for optimizing well field man- agement using multi-objective optimization is developed. The optimization uses the Strength Pareto Evolutionary Algorithm 2 (SPEA2) to find the Pareto front be- tween the conflicting objectives. The Pareto front is a set of non-inferior optimal points and provides an important tool...... for the decision-makers. The optimization framework is tested on two case studies. Both abstract around 20,000 cubic meter of water per day, but are otherwise rather different. The first case study concerns the management of Hardhof waterworks, Switzer- land, where artificial infiltration of river water...

  20. Ehrenfest force in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Sisakyan, A.N.; Shevchenko, O.Yu.; Samojlov, V.N.

    2000-01-01

    The Ehrenfest force in an inhomogeneous magnetic field is calculated. It is shown that there exist such (very rare) topologically nontrivial physical situations when the Gauss theorem in its classic formulation fails and, as a consequence, apart from the usual Lorentz force an additional, purely imaginary force acts on the charged particle. This force arises only in inhomogeneous magnetic fields of special configurations, has a purely quantum origin, and disappears in the classical limit

  1. Near field plasmon and force microscopy

    NARCIS (Netherlands)

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the

  2. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  3. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  4. Transition States from Empirical Force Fields

    DEFF Research Database (Denmark)

    Jensen, Frank; Norrby, Per-Ola

    2003-01-01

    This is an overview of the use of empirical force fields in the study of reaction mechanisms. EVB-type methods (including RFF and MCMM) produce full reaction surfaces by mixing, in the simplest case, known force fields describing reactants and products. The SEAM method instead locates approximate...

  5. Near field plasmon and force microscopy

    OpenAIRE

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the probe size to about 20 nm. At variance to previous work, utilizing a scanning tunneling microscope (STM) with a metallic tip, a dielectric silicon-nitride tip is used in contact mode. This arrangement ...

  6. Software Process Improvement Using Force Field Analysis ...

    African Journals Online (AJOL)

    An improvement plan is then drawn and implemented. This paper studied the state of Nigerian software development organizations based on selected attributes. Force field analysis is used to partition the factors obtained into driving and restraining forces. An attempt was made to improve the software development process ...

  7. Induced forces in the gravitational field

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    In this paper the expression for the magnitude of the so-called induced force, acting on a mass particle, is deduced. The origin of this force is causally connected to the increase of the rest mass of the particle in the gravitational field. (orig.)

  8. Martini Force Field Parameters for Glycolipids

    NARCIS (Netherlands)

    Lopez, Cesar A.; Sovova, Zofie; van Eerden, Floris J.; de Vries, Alex H.; Marrink, Siewert J.

    We present an extension of the Martini coarse-grained force field to glycolipids. The glycolipids considered here are the glycoglycerolipids monogalactosyldiacylglycerol (MGDG), sulfoquinovosyldiacylglycerol (SQDG), digalactosyldiacylglycerol (DGDG), and phosphatidylinositol (PI) and its

  9. Controlling Casimir force via coherent driving field

    Science.gov (United States)

    Ahmad, Rashid; Abbas, Muqaddar; Ahmad, Iftikhar; Qamar, Sajid

    2016-04-01

    A four level atom-field configuration is used to investigate the coherent control of Casimir force between two identical plates made up of chiral atomic media and separated by vacuum of width d. The electromagnetic chirality-induced negative refraction is obtained via atomic coherence. The behavior of Casimir force is investigated using Casimir-Lifshitz formula. It is noticed that Casimir force can be switched from repulsive to attractive and vice versa via coherent control of the driving field. This switching feature provides new possibilities of using the repulsive Casimir force in the development of new emerging technologies, such as, micro-electro-mechanical and nano-electro-mechanical systems, i.e., MEMS and NEMS, respectively.

  10. Solitons in a random force field

    International Nuclear Information System (INIS)

    Bass, F.G.; Konotop, V.V.; Sinitsyn, Y.A.

    1985-01-01

    We study the dynamics of a soliton of the sine-Gordon equation in a random force field in the adiabatic approximation. We obtain an Einstein-Fokker equation and find the distribution function for the soliton parameters which we use to evaluate its statistical characteristics. We derive an equation for the averaged functions of the soliton parameters. We determine the limits of applicability of the delta-correlated in time random field approximation

  11. Charm production and the confining force field

    International Nuclear Information System (INIS)

    Andersson, B.; Bengtsson, H.-U.; Gustafson, G.

    1983-03-01

    We show that charm production at SPS energies can be understood simply from O(α 2 sub (s)) QCD processes when combined with fragmentation of the colour fields stretched by the final state partons. The tension of the confining force field responsible for particle production is found to pull the charmed particles away from the reaction centre, giving rise to a harder x sub (F)-spectrum than would be expected from the bare QCD matrix elements. (Authors)

  12. Harmonic force field for nitro compounds.

    Science.gov (United States)

    Bellido, Edson P; Seminario, Jorge M

    2012-06-01

    Molecular simulations leading to sensors for the detection of explosive compounds require force field parameters that can reproduce the mechanical and vibrational properties of energetic materials. We developed precise harmonic force fields for alanine polypeptides and glycine oligopeptides using the FUERZA procedure that uses the Hessian tensor (obtained from ab initio calculations) to calculate precise parameters. In this work, we used the same procedure to calculate generalized force field parameters of several nitro compounds. We found a linear relationship between force constant and bond distance. The average angle in the nitro compounds was 116°, excluding the 90° angle of the carbon atoms in the octanitrocubane. The calculated parameters permitted the accurate molecular modeling of nitro compounds containing many functional groups. Results were acceptable when compared with others obtained using methods that are specific for one type of molecule, and much better than others obtained using methods that are too general (these ignore the chemical effects of surrounding atoms on the bonding and therefore the bond strength, which affects the mechanical and vibrational properties of the whole molecule).

  13. Nuclear Forces from Effective Field Theory

    International Nuclear Information System (INIS)

    Krebs, H.

    2011-01-01

    Chiral effective field theory allows for a systematic and model-independent derivation of the forces between nucleons in harmony with the symmetries of the quantum chromodynamics. After a brief review on the current status in the development of the chiral nuclear forces I will focus on the role of the Δ-resonance contributions in the nuclear dynamics.We find improvement in the convergence of the chiral expansion of the nuclear forces if we explicitly take into account the Δ-resonance degrees of freedom. The overall results for two-nucleon forces with and without explicit Δ-resonance degrees of freedom are remarkably similar. We discussed the long- and shorter-range N 3 LO contributions to chiral three-nucleon forces. No additional free parameters appear at this order. There are five different topology classes which contribute to the forces. Three of them describe long-range contributions which constitute the first systematic corrections to the leading 2π exchange that appear at N 2 LO. Another two contributions are of a shorter range and include, additionally to an exchange of pions, also one short-range contact interaction and all corresponding 1/m corrections. The requirement of renormalizability leads to unique expressions for N 3 LO contributions to the three-nucleon force (except for 1/m-corrections). We presented the complete N 2 LO analysis of the nuclear forces with explicit Δ-isobar degrees of freedom. Although the overall results in the isospin-conserving case are very similar in the Δ-less and Δ-full theories, we found a much better convergence in all peripheral partial waves once Δ-resonance is explicitly taken into account. The leading CSB contributions to nuclear forces are proportional to nucleon- and Δ-mass splittings. There appear strong cancellations between the two contributions which at leading order yield weaker V III potentials. This effect is, however, entirely compensated at subleading order such that the results in the theories

  14. Rapid parameterization of small molecules using the Force Field Toolkit.

    Science.gov (United States)

    Mayne, Christopher G; Saam, Jan; Schulten, Klaus; Tajkhorshid, Emad; Gumbart, James C

    2013-12-15

    The inability to rapidly generate accurate and robust parameters for novel chemical matter continues to severely limit the application of molecular dynamics simulations to many biological systems of interest, especially in fields such as drug discovery. Although the release of generalized versions of common classical force fields, for example, General Amber Force Field and CHARMM General Force Field, have posited guidelines for parameterization of small molecules, many technical challenges remain that have hampered their wide-scale extension. The Force Field Toolkit (ffTK), described herein, minimizes common barriers to ligand parameterization through algorithm and method development, automation of tedious and error-prone tasks, and graphical user interface design. Distributed as a VMD plugin, ffTK facilitates the traversal of a clear and organized workflow resulting in a complete set of CHARMM-compatible parameters. A variety of tools are provided to generate quantum mechanical target data, setup multidimensional optimization routines, and analyze parameter performance. Parameters developed for a small test set of molecules using ffTK were comparable to existing CGenFF parameters in their ability to reproduce experimentally measured values for pure-solvent properties (<15% error from experiment) and free energy of solvation (±0.5 kcal/mol from experiment). Copyright © 2013 Wiley Periodicals, Inc.

  15. Magnetoelectric force microscopy based on magnetic force microscopy with modulated electric field.

    Science.gov (United States)

    Geng, Yanan; Wu, Weida

    2014-05-01

    We present the realization of a mesoscopic imaging technique, namely, the Magnetoelectric Force Microscopy (MeFM), for visualization of local magnetoelectric effect. The basic principle of MeFM is the lock-in detection of local magnetoelectric response, i.e., the electric field-induced magnetization, using magnetic force microscopy. We demonstrate MeFM capability by visualizing magnetoelectric domains on single crystals of multiferroic hexagonal manganites. Results of several control experiments exclude artifacts or extrinsic origins of the MeFM signal. The parameters are tuned to optimize the signal to noise ratio.

  16. Sultan - forced flow, high field test facility

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-01-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs

  17. Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and...

  18. Building machine learning force fields for nanoclusters

    Science.gov (United States)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  19. The Air Force Center for Optimal Design and Control

    National Research Council Canada - National Science Library

    Burns, John

    1997-01-01

    This report contains a summary and highlights of the research funded by the Air Force under AFOSR URI Grant F49620-93-1-0280, titled 'Center for Optimal Design and Control of Distributed Parameter Systems' (CODAC...

  20. Application of Taguchi method for cutting force optimization in rock

    Indian Academy of Sciences (India)

    In this paper, an optimization study was carried out for the cutting force (Fc) acting on circular diamond sawblades in rock sawing. The peripheral speed, traverse speed, cut depth and flow rate of cooling fluid were considered as operating variables and optimized by using Taguchi approach for the Fc. L16(44) orthogonal ...

  1. An Optimization-Based Impedance Approach for Robot Force Regulation with Prescribed Force Limits

    Directory of Open Access Journals (Sweden)

    R. de J. Portillo-Vélez

    2015-01-01

    Full Text Available An optimization based approach for the regulation of excessive or insufficient forces at the end-effector level is introduced. The objective is to minimize the interaction force error at the robot end effector, while constraining undesired interaction forces. To that end, a dynamic optimization problem (DOP is formulated considering a dynamic robot impedance model. Penalty functions are considered in the DOP to handle the constraints on the interaction force. The optimization problem is online solved through the gradient flow approach. Convergence properties are presented and the stability is drawn when the force limits are considered in the analysis. The effectiveness of our proposal is validated via experimental results for a robotic grasping task.

  2. Systematic Parameterization of Lignin for the CHARMM Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Joshua; Petridis, Loukas; Beckham, Gregg; Crowley, Michael

    2017-07-06

    Plant cell walls have three primary components, cellulose, hemicellulose, and lignin, the latter of which is a recalcitrant, aromatic heteropolymer that provides structure to plants, water and nutrient transport through plant tissues, and a highly effective defense against pathogens. Overcoming the recalcitrance of lignin is key to effective biomass deconstruction, which would in turn enable the use of biomass as a feedstock for industrial processes. Our understanding of lignin structure in the plant cell wall is hampered by the limitations of the available lignin forcefields, which currently only account for a single linkage between lignins and lack explicit parameterization for emerging lignin structures both from natural variants and engineered lignin structures. Since polymerization of lignin occurs via radical intermediates, multiple C-O and C-C linkages have been isolated , and the current force field only represents a small subset of lignin the diverse lignin structures found in plants. In order to take into account the wide range of lignin polymerization chemistries, monomers and dimer combinations of C-, H-, G-, and S-lignins as well as with hydroxycinnamic acid linkages were subjected to extensive quantum mechanical calculations to establish target data from which to build a complete molecular mechanics force field tuned specifically for diverse lignins. This was carried out in a GPU-accelerated global optimization process, whereby all molecules were parameterized simultaneously using the same internal parameter set. By parameterizing lignin specifically, we are able to more accurately represent the interactions and conformations of lignin monomers and dimers relative to a general force field. This new force field will enables computational researchers to study the effects of different linkages on the structure of lignin, as well as construct more accurate plant cell wall models based on observed statistical distributions of lignin that differ between

  3. Efficient nonparametric n -body force fields from machine learning

    Science.gov (United States)

    Glielmo, Aldo; Zeni, Claudio; De Vita, Alessandro

    2018-05-01

    We provide a definition and explicit expressions for n -body Gaussian process (GP) kernels, which can learn any interatomic interaction occurring in a physical system, up to n -body contributions, for any value of n . The series is complete, as it can be shown that the "universal approximator" squared exponential kernel can be written as a sum of n -body kernels. These recipes enable the choice of optimally efficient force models for each target system, as confirmed by extensive testing on various materials. We furthermore describe how the n -body kernels can be "mapped" on equivalent representations that provide database-size-independent predictions and are thus crucially more efficient. We explicitly carry out this mapping procedure for the first nontrivial (three-body) kernel of the series, and we show that this reproduces the GP-predicted forces with meV /Å accuracy while being orders of magnitude faster. These results pave the way to using novel force models (here named "M-FFs") that are computationally as fast as their corresponding standard parametrized n -body force fields, while retaining the nonparametric character, the ease of training and validation, and the accuracy of the best recently proposed machine-learning potentials.

  4. A test on reactive force fields for the study of silica dimerization reactions

    Energy Technology Data Exchange (ETDEWEB)

    Moqadam, Mahmoud; Riccardi, Enrico; Trinh, Thuat T.; Åstrand, Per-Olof; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117, 7491 Trondheim (Norway)

    2015-11-14

    We studied silica dimerization reactions in the gas and aqueous phase by density functional theory (DFT) and reactive force fields based on two parameterizations of ReaxFF. For each method (both ReaxFF force fields and DFT), we performed constrained geometry optimizations, which were subsequently evaluated in single point energy calculations using the other two methods. Standard fitting procedures typically compare the force field energies and geometries with those from quantum mechanical data after a geometry optimization. The initial configurations for the force field optimization are usually the minimum energy structures of the ab initio database. Hence, the ab initio method dictates which structures are being examined and force field parameters are being adjusted in order to minimize the differences with the ab initio data. As a result, this approach will not exclude the possibility that the force field predicts stable geometries or low transition states which are realistically very high in energy and, therefore, never considered by the ab initio method. Our analysis reveals the existence of such unphysical geometries even at unreactive conditions where the distance between the reactants is large. To test the effect of these discrepancies, we launched molecular dynamics simulations using DFT and ReaxFF and observed spurious reactions for both ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting need to be improved by a mutual comparative method.

  5. Force field refinement from NMR scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Huang Jing [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland); Meuwly, Markus, E-mail: m.meuwly@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2012-03-02

    Graphical abstract: We show that two classes of H-bonds are sufficient to quantitatively describe scalar NMR coupling constants in small proteins. Highlights: Black-Right-Pointing-Pointer We present force field refinements based on explicit MD simulations using scalar couplings across hydrogen bonds. Black-Right-Pointing-Pointer This leads to {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.03 Hz at best compared to experiment. Black-Right-Pointing-Pointer A classification of H-bonds according to secondary structure is not sufficiently robust. Black-Right-Pointing-Pointer Grouping H-bonds into two classes and reparametrization yields an RMSD of 0.07 Hz. Black-Right-Pointing-Pointer This is an improvement of 50. - Abstract: NMR observables contain valuable information about the protein dynamics sampling a high-dimensional potential energy surface. Depending on the observable, the dynamics is sensitive to different time-windows. Scalar coupling constants {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} reflect the pico- to nanosecond motions associated with the intermolecular hydrogen bond network. Including an explicit H-bond in the molecular mechanics with proton transfer (MMPT) potential allows us to reproduce experimentally determined {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings to within 0.02 Hz at best for ubiquitin and protein G. This is based on taking account of the chemically changing environment by grouping the H-bonds into up to seven classes. However, grouping them into two classes already reduces the RMSD between computed and observed {sup h3}J{sub NC{sup }{sup P}{sup r}{sup i}{sup m}{sup e}} couplings by almost 50%. Thus, using ensemble-averaged data with two classes of H-bonds leads to substantially improved scalar couplings from simulations with accurate force fields.

  6. [Optimal solution and analysis of muscular force during standing balance].

    Science.gov (United States)

    Wang, Hongrui; Zheng, Hui; Liu, Kun

    2015-02-01

    The present study was aimed at the optimal solution of the main muscular force distribution in the lower extremity during standing balance of human. The movement musculoskeletal system of lower extremity was simplified to a physical model with 3 joints and 9 muscles. Then on the basis of this model, an optimum mathematical model was built up to solve the problem of redundant muscle forces. Particle swarm optimization (PSO) algorithm is used to calculate the single objective and multi-objective problem respectively. The numerical results indicated that the multi-objective optimization could be more reasonable to obtain the distribution and variation of the 9 muscular forces. Finally, the coordination of each muscle group during maintaining standing balance under the passive movement was qualitatively analyzed using the simulation results obtained.

  7. Optimized Free Energies from Bidirectional Single-Molecule Force Spectroscopy

    Science.gov (United States)

    Minh, David D. L.; Adib, Artur B.

    2008-05-01

    An optimized method for estimating path-ensemble averages using data from processes driven in opposite directions is presented. Based on this estimator, bidirectional expressions for reconstructing free energies and potentials of mean force from single-molecule force spectroscopy—valid for biasing potentials of arbitrary stiffness—are developed. Numerical simulations on a model potential indicate that these methods perform better than unidirectional strategies.

  8. Understrength Air Force Officer Career Fields. A Force Management Approach

    Science.gov (United States)

    2005-01-01

    LtCol John Crown (DPSA). In addition, we had very helpful interviews with Mr. Vaughan Blackstone (DPAPP) and Mr. Dennis Miller (DPPAO). Also at...problems in managing personnel assignments. First, there is a high " tax " for special-duty jobs that requires them to place personnel officers into...targeted year-groups populated above the ideal force- structure line (called TOPLINE), in the run up to the RIF of 1992, the desire to avoid or

  9. Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    International Nuclear Information System (INIS)

    Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel

    2014-01-01

    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers. (paper)

  10. Optimization Models for Petroleum Field Exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Jonsbraaten, Tore Wiig

    1998-12-31

    This thesis presents and discusses various models for optimal development of a petroleum field. The objective of these optimization models is to maximize, under many uncertain parameters, the project`s expected net present value. First, an overview of petroleum field optimization is given from the point of view of operations research. Reservoir equations for a simple reservoir system are derived and discretized and included in optimization models. Linear programming models for optimizing production decisions are discussed and extended to mixed integer programming models where decisions concerning platform, wells and production strategy are optimized. Then, optimal development decisions under uncertain oil prices are discussed. The uncertain oil price is estimated by a finite set of price scenarios with associated probabilities. The problem is one of stochastic mixed integer programming, and the solution approach is to use a scenario and policy aggregation technique developed by Rockafellar and Wets although this technique was developed for continuous variables. Stochastic optimization problems with focus on problems with decision dependent information discoveries are also discussed. A class of ``manageable`` problems is identified and an implicit enumeration algorithm for finding optimal decision policy is proposed. Problems involving uncertain reservoir properties but with a known initial probability distribution over possible reservoir realizations are discussed. Finally, a section on Nash-equilibrium and bargaining in an oil reservoir management game discusses the pool problem arising when two lease owners have access to the same underlying oil reservoir. Because the oil tends to migrate, both lease owners have incentive to drain oil from the competitors part of the reservoir. The discussion is based on a numerical example. 107 refs., 31 figs., 14 tabs.

  11. Optimization of 3D Field Design

    Science.gov (United States)

    Logan, Nikolas; Zhu, Caoxiang

    2017-10-01

    Recent progress in 3D tokamak modeling is now leveraged to create a conceptual design of new external 3D field coils for the DIII-D tokamak. Using the IPEC dominant mode as a target spectrum, the Finding Optimized Coils Using Space-curves (FOCUS) code optimizes the currents and 3D geometry of multiple coils to maximize the total set's resonant coupling. The optimized coils are individually distorted in space, creating toroidal ``arrays'' containing a variety of shapes that often wrap around a significant poloidal extent of the machine. The generalized perturbed equilibrium code (GPEC) is used to determine optimally efficient spectra for driving total, core, and edge neoclassical toroidal viscosity (NTV) torque and these too provide targets for the optimization of 3D coil designs. These conceptual designs represent a fundamentally new approach to 3D coil design for tokamaks targeting desired plasma physics phenomena. Optimized coil sets based on plasma response theory will be relevant to designs for future reactors or on any active machine. External coils, in particular, must be optimized for reliable and efficient fusion reactor designs. Work supported by the US Department of Energy under DE-AC02-09CH11466.

  12. Penumbra modifier for optimal electron field combination

    International Nuclear Information System (INIS)

    El-Sherbini, N.; Hejazy, M.; Khalil, W.

    2008-01-01

    Treatment with megavoltage electron beam is ideal for irradiating shallow seated tumors because of their limited range in tissues. However, the treatment of extended areas with electrons requires the use of two or more adjacent fields. Variations may arise at the junction of the fields. These dose variations come from the presence of large bulges in the low value isodose curves created by electron beam divergence and lateral scattering in tissues. Overlapping of these bulges, creates a high dose region at depths. While constriction of the isodose curves near the surface may produce a Long-term follow-up study critically on the fields separation. To overcome this problem, several authors have proposed techniques for matching electron beam edge in such a way as to make the overlap region as uniform as possible. The simplest approach to the problem is to optimize the skin gap between the two adjacent electron field edges. The increased lateral scatter of low-energy electrons and the machine specific characteristics of an electron beam penumbra make the determination of an optimized skin gap somewhat complicated. Optimization is achieved by a complete set of trial and error measurements. The main limitation to the usefulness of the optimized skin gap technique is the strong sensitivity of the dose distribution in the field junction region to small deviation in field separation or in the angulation of the incident electron beams, making it strongly dependent on positioning. The present study is done at electron beam energies of 6, 8, and 15 MeV. The method depends on the abutment of different field areas using beam edge modifier (Penumbra Generator) made of cerrobend. The objectives of this study are to present a systematic study of the modified electron field for better under standing of the behavior and physical characteristics of the penumbra generator, and to investigate the feasibility of using this technique for large electron fields. Also to obtain a quantitative

  13. Generalized force in classical field theory. [Euler-Lagrange equations

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-02-01

    The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.

  14. Preface: Special Topic: From Quantum Mechanics to Force Fields

    Science.gov (United States)

    Piquemal, Jean-Philip; Jordan, Kenneth D.

    2017-10-01

    This Special Topic issue entitled "From Quantum Mechanics to Force Fields" is dedicated to the ongoing efforts of the theoretical chemistry community to develop a new generation of accurate force fields based on data from high-level electronic structure calculations and to develop faster electronic structure methods for testing and designing force fields as well as for carrying out simulations. This issue includes a collection of 35 original research articles that illustrate recent theoretical advances in the field. It provides a timely snapshot of recent developments in the generation of approaches to enable more accurate molecular simulations of processes important in chemistry, physics, biophysics, and materials science.

  15. Optimal field splitting for large intensity-modulated fields

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Ranka, Sanjay; Li, Jonathan; Palta, Jatinder

    2004-01-01

    The multileaf travel range limitations on some linear accelerators require the splitting of a large intensity-modulated field into two or more adjacent abutting intensity-modulated subfields. The abutting subfields are then delivered as separate treatment fields. This workaround not only increases the treatment delivery time but it also increases the total monitor units (MU) delivered to the patient for a given prescribed dose. It is imperative that the cumulative intensity map of the subfields is exactly the same as the intensity map of the large field generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. In this work, we describe field splitting algorithms that split a large intensity-modulated field into two or more intensity-modulated subfields with and without feathering, with optimal MU efficiency while satisfying the hardware constraints. Compared to a field splitting technique (without feathering) used in a commercial planning system, our field splitting algorithm (without feathering) shows a decrease in total MU of up to 26% on clinical cases and up to 63% on synthetic cases

  16. Optimizing Armed Forces Capabilities for Hybrid Warfare – New Challenge for Slovak Armed Forces

    Directory of Open Access Journals (Sweden)

    Peter PINDJÁK

    2015-09-01

    Full Text Available The paper deals with the optimization of military capabilities of the Slovak Armed Forces for conducting operations in a hybrid conflict, which represents one of the possible scenarios of irregular warfare. Whereas in the regular warfare adversaries intend to eliminate the centers of gravity of each other, most often command and control structures, in irregular conflicts, the center of gravity shifts towards the will and cognitive perception of the target population. Hybrid warfare comprises a thoroughly planned combination of conventional military approaches and kinetic operations with subversive, irregular activities, including information and cyber operations. These efforts are often accompanied by intensified activities of intelligence services, special operation forces, and even mercenary and other paramilitary groups. The development of irregular warfare capabilities within the Slovak Armed Forces will require a progressive transformation process that may turn the armed forces into a modern and adaptable element of power, capable of deployment in national and international crisis management operations.

  17. Image-Optimized Coronal Magnetic Field Models

    Science.gov (United States)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.

    2017-01-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.

  18. Image-optimized Coronal Magnetic Field Models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov [NASA Goddard Space Flight Center, Code 670, Greenbelt, MD 20771 (United States)

    2017-08-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.

  19. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.

    Science.gov (United States)

    Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose Iβ microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  20. The Alexandria library, a quantum-chemical database of molecular properties for force field development.

    Science.gov (United States)

    Ghahremanpour, Mohammad M; van Maaren, Paul J; van der Spoel, David

    2018-04-10

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  1. The Alexandria library, a quantum-chemical database of molecular properties for force field development

    Science.gov (United States)

    Ghahremanpour, Mohammad M.; van Maaren, Paul J.; van der Spoel, David

    2018-04-01

    Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules.

  2. The interoperability force in the ERP field

    Science.gov (United States)

    Boza, Andrés; Cuenca, Llanos; Poler, Raúl; Michaelides, Zenon

    2015-04-01

    Enterprise resource planning (ERP) systems participate in interoperability projects and this participation sometimes leads to new proposals for the ERP field. The aim of this paper is to identify the role that interoperability plays in the evolution of ERP systems. To go about this, ERP systems have been first identified within interoperability frameworks. Second, the initiatives in the ERP field driven by interoperability requirements have been identified from two perspectives: technological and business. The ERP field is evolving from classical ERP as information system integrators to a new generation of fully interoperable ERP. Interoperability is changing the way of running business, and ERP systems are changing to adapt to the current stream of interoperability.

  3. Optimization of location and forces of friction dampers

    Directory of Open Access Journals (Sweden)

    Sergio Pastor Ontiveros-Pérez

    Full Text Available Abstract Damper optimization is a new area which has been investigated in recent years. There are various methods employed in optimization, among which are highlighted the classic and the most recent that are functioning with reliability, efficiency and speed for optimum results. This paper proposes a method for simultaneous optimization of placement and forces of friction dampers using the Firefly Algorithm, which is a recent meta-heuristic algorithm inspired in the behavior of fireflies. Herein, three different optimization objective are presented: i minimize the maximum displacement at the top of the structure; ii minimize the maximum inter-story drift; iii minimize the maximum acceleration at the top of the structure. The three objective functions were evaluated in two civil structures (a nine-story building and a sixteen-story building subjected to two real seismic records. The first seismic record is El Centro, which took place in the southeastern California on the boarder of the United States and Mexico in 1940. The second one is the earthquake that occurred in Caucete, province of San Juan, Argentina, in 1977. The results showed that the proposed method was able to optimize the friction dampers, reducing considerably the response of the structures.

  4. Evaluating amber force fields using computed NMR chemical shifts.

    Science.gov (United States)

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  5. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    Science.gov (United States)

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  6. Topology Optimized Nanostrips for Electric Field Enhancements

    DEFF Research Database (Denmark)

    Vester-Petersen, Joakim; Christiansen, Rasmus E.; Julsgaard, Brian

    This work addresses efficiency improvements of solar cells by manipulating the spectrum of sunlight to bettermatch the range of efficient current generation. The intrinsic transmission losses in crystalline silicon can effectivelybe reduced using photon upconversion in erbium ions in which low...... energy photons are converted to higher energy photons able to bridge the band gap energy and contribute the energy generation. The upconversion process in erbium is inefficient under the natural solar irradiation, and without any electric field enhancements of the incident light, the process...... is negligible for photo-voltaic applications. However, the probability for upconversion can be increased by focusing the incident light onto the erbium ions using optimized metal nanostructures[1, 2, 3]. The aim of this work is to increase the photon upconversion yield by optimizing the design of metalic...

  7. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation dissipation theorem

    Science.gov (United States)

    Frank, T. D.; Patanarapeelert, K.; Beek, P. J.

    2008-05-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted.

  8. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation-dissipation theorem

    International Nuclear Information System (INIS)

    Frank, T.D.; Patanarapeelert, K.; Beek, P.J.

    2008-01-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the explicit motor unit properties and of the dynamical features of isometric force production. A constant coefficient of variation in the asymptotic regime and a nonequilibrium fluctuation-dissipation theorem for optimal isometric force are predicted

  9. Muscle optimization techniques impact the magnitude of calculated hip joint contact forces

    NARCIS (Netherlands)

    Wesseling, M.; Derikx, L.C.; de Groote, F.; Bartels, W.; Meyer, C.; Verdonschot, Nicolaas Jacobus Joseph; Jonkers, I.

    2015-01-01

    In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization

  10. Penumbra modifier for optimal electron fields combination

    International Nuclear Information System (INIS)

    ElSherbini, N.; Hejazy, M.A.; Khalil, W.

    2003-01-01

    Abutment of two or more electron fields to irradiate extended areas may lead to significant dose inhomogeneities in the junction region. This study describes the geometric and dosimetric characteristics of a device developed to modify the penumbra of an electron beam and therapy improve of dose uniformity in the over lap region when fields are abutted. The device is lipowitz metal block placed on top of the insertion plate of the electron applicator and positioned to stop part of he electron beam on side of field abutment. The air-scattered electrons beyond the block increase the penumbra width from about 1,4 to 2-7-43.4 cm at SSD 100 cm, the modified penumbra is broad and almost linear at all depths for the 6.8, and 15 MeV electron beams used. Film dosimetry was used to obtain profiles, iso-dose distributions, single modified beams and matched fields of 6, 10, and 15 MeV. Wellhofer dosimetry system was used to obtain beam profiles and iso-dose distributions of single modified beams needed for CADPLAN treatment planning system, which used to optimize and compare the skin gap to be used and to quantify the dose uniformity in a junction of the field separation for both modified and non-modified beams. Results are presented for various field configurations without the penumbra modifier; lateral setup error of 2-3 mm may introduce dose variations of 20% or more in the junction region. Similar setup error cause less than 5% dose variations when the penumbra modifier is used to match the field

  11. First principles molecular dynamics without self-consistent field optimization

    International Nuclear Information System (INIS)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-01

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations

  12. Optimal feedback control of the forced van der Pol system

    International Nuclear Information System (INIS)

    Chagas, T.P.; Toledo, B.A.; Rempel, E.L.; Chian, A.C.-L.; Valdivia, J.A.

    2012-01-01

    A simple feedback control strategy for chaotic systems is investigated using the forced van der Pol system as an example. The strategy regards chaos control as an optimization problem, where the maximum magnitude Floquet multiplier of a target unstable periodic orbit (UPO) is used as a cost function that needs to be minimized. Thus, the method obtains the optimal control gain in terms of the stability of the target UPO. This strategy was recently proposed for the proportional feedback control (PFC) method. Here, it is extended to the highly popular delayed feedback control (DFC) method. Since the DFC method treats the system as a delay-differential equation whose phase space is infinite-dimensional, the characteristic multipliers are found through a truncation in the number of delayed states. Control of a target UPO is achieved for several values of the forcing amplitude. We compare the DFC and PFC methods in terms of stability of the controlled orbit, steady state error and control effort.

  13. Perspective: Ab initio force field methods derived from quantum mechanics

    Science.gov (United States)

    Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.

    2018-03-01

    It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.

  14. Force-field compensation in a manual tracking task.

    Directory of Open Access Journals (Sweden)

    Valentina Squeri

    2010-06-01

    Full Text Available This study addresses force/movement control in a dynamic "hybrid" task: the master sub-task is continuous manual tracking of a target moving along an eight-shaped Lissajous figure, with the tracking error as the primary performance index; the slave sub-task is compensation of a disturbing curl viscous field, compatibly with the primary performance index. The two sub-tasks are correlated because the lateral force the subject must exert on the eight-shape must be proportional to the longitudinal movement speed in order to perform a good tracking. The results confirm that visuo-manual tracking is characterized by an intermittent control mechanism, in agreement with previous work; the novel finding is that the overall control patterns are not altered by the presence of a large deviating force field, if compared with the undisturbed condition. It is also found that the control of interaction-forces is achieved by a combination of arm stiffness properties and direct force control, as suggested by the systematic lateral deviation of the trajectories from the nominal path and the comparison between perturbed trials and catch trials. The coordination of the two sub-tasks is quickly learnt after the activation of the deviating force field and is achieved by a combination of force and the stiffness components (about 80% vs. 20%, which is a function of the implicit accuracy of the tracking task.

  15. Force-free magnetic fields - The magneto-frictional method

    Science.gov (United States)

    Yang, W. H.; Sturrock, P. A.; Antiochos, S. K.

    1986-01-01

    The problem under discussion is that of calculating magnetic field configurations in which the Lorentz force j x B is everywhere zero, subject to specified boundary conditions. We choose to represent the magnetic field in terms of Clebsch variables in the form B = grad alpha x grad beta. These variables are constant on any field line so that each field line is labeled by the corresponding values of alpha and beta. When the field is described in this way, the most appropriate choice of boundary conditions is to specify the values of alpha and beta on the bounding surface. We show that such field configurations may be calculated by a magneto-frictional method. We imagine that the field lines move through a stationary medium, and that each element of magnetic field is subject to a frictional force parallel to and opposing the velocity of the field line. This concept leads to an iteration procedure for modifying the variables alpha and beta, that tends asymptotically towards the force-free state. We apply the method first to a simple problem in two rectangular dimensions, and then to a problem of cylindrical symmetry that was previously discussed by Barnes and Sturrock (1972). In one important respect, our new results differ from the earlier results of Barnes and Sturrock, and we conclude that the earlier article was in error.

  16. Optical Near-field Interactions and Forces for Optoelectronic Devices

    Science.gov (United States)

    Kohoutek, John Michael

    Throughout history, as a particle view of the universe began to take shape, scientists began to realize that these particles were attracted to each other and hence came up with theories, both analytical and empirical in nature, to explain their interaction. The interaction pair potential (empirical) and electromagnetics (analytical) theories, both help to explain not only the interaction between the basic constituents of matter, such as atoms and molecules, but also between macroscopic objects, such as two surfaces in close proximity. The electrostatic force, optical force, and Casimir force can be categorized as such forces. A surface plasmon (SP) is a collective motion of electrons generated by light at the interface between two mediums of opposite signs of dielectric susceptibility (e.g. metal and dielectric). Recently, surface plasmon resonance (SPR) has been exploited in many areas through the use of tiny antennas that work on similar principles as radio frequency (RF) antennas in optoelectronic devices. These antennas can produce a very high gradient in the electric field thereby leading to an optical force, similar in concept to the surface forces discussed above. The Atomic Force Microscope (AFM) was introduced in the 1980s at IBM. Here we report on its uses in measuring these aforementioned forces and fields, as well as actively modulating and manipulating multiple optoelectronic devices. We have shown that it is possible to change the far field radiation pattern of an optical antenna-integrated device through modification of the near-field of the device. This modification is possible through change of the local refractive index or reflectivity of the "hot spot" of the device, either mechanically or optically. Finally, we have shown how a mechanically active device can be used to detect light with high gain and low noise at room temperature. It is the aim of several of these integrated and future devices to be used for applications in molecular sensing

  17. Valence force fields and the lattice dynamics of beryllium oxide

    International Nuclear Information System (INIS)

    Ramani, R.; Mani, K.K.; Singh, R.P.

    1976-01-01

    The lattice dynamics of beryllium oxide have been studied using a rigid-ion model, with short-range forces represented by a valence force field. Various existing calculations on group-IV elements using such a field have been examined as a prelude to transference of force constants from diamond to beryllium oxide. The effects of ionicity on the force constants have been included in the form of scale factors. It is shown that no satisfactory fit to the long-wavelength data on BeO can be found with transferred force constants. However, adequate least-squares fits can be found both with four- and six-parameter valence force fields, the discrepancy with experiment being large only for one optical mode at the Brillouin-zone center. Dispersion curves along Δ and Σ are presented and are in fair agreement with experiment, deviations arising essentially from the quality of the fit to the long-wavelength data. The bond-bending interactions are found to play a significant role and arguments have been presented to show that the inclusion of further angle-angle interactions would yield a very satisfactory picture of the dynamics

  18. Nonequilibrium forces between neutral atoms mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2010-01-01

    We study forces between two neutral atoms, modeled as three-dimensional harmonic oscillators, arising from mutual influences mediated by an electromagnetic field but not from their direct interactions. We allow as dynamical variables the center-of-mass motion of the atom, its internal degrees of freedom, and the quantum field treated relativistically. We adopt the method of nonequilibrium quantum field theory which can provide a first-principles, systematic, and unified description including the intrinsic and induced dipole fluctuations. The inclusion of self-consistent back-actions makes possible a fully dynamical description of these forces valid for general atom motion. In thermal equilibrium we recover the known forces--London, van der Waals, and Casimir-Polder--between neutral atoms in the long-time limit. We also reproduce a recently reported force between atoms when the system is out of thermal equilibrium at late times. More noteworthy is the discovery of the existence of a type of (or identification of the source of some known) interatomic force which we call the ''entanglement force,'' originating from the quantum correlations of the internal degrees of freedom of entangled atoms.

  19. Force-free field model of ball lightning

    International Nuclear Information System (INIS)

    Tsui, K.H.

    2001-01-01

    Due to the nature that the force-free magnetic field, whose current carried by the conducting plasma is everywhere parallel to the magnetic field it generates, is the minimum energy configuration under the constraint of magnetic helicity conservation, ball lightning is considered as a self-organized phenomenon with a plasma fireball immersed in a spherical force-free magnetic field. Since this field does not exert force on the plasma, the plasma pressure, by itself, is in equilibrium with the surrounding environment, and the force-free magnetic field can take on any value without affecting the plasma. Due to this second feature, singular solutions of the magnetic field that are otherwise excluded are allowed, which enable a large amount of energy to be stored to sustain the ball lightning. The singularity is truncated only by the physical limit of current density that a plasma can carry. Scaling the customary soccer-size fireball to larger dimensions could account for day and night sightings of luminous objects in the sky

  20. Thermodynamic properties for applications in chemical industry via classical force fields.

    Science.gov (United States)

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  1. Radiation reaction force and unification of electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1981-04-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration

  2. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    Science.gov (United States)

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  3. Portfolio theory of optimal isometric force production: Variability predictions and nonequilibrium fluctuation-dissipation theorem

    NARCIS (Netherlands)

    Frank, T.D.; Patanarapeelert, K.; Beek, P.J.

    2008-01-01

    We derive a fundamental relationship between the mean and the variability of isometric force. The relationship arises from an optimal collection of active motor units such that the force variability assumes a minimum (optimal isometric force). The relationship is shown to be independent of the

  4. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hölzl, Christoph; Horinek, Dominik, E-mail: dominik.horinek@ur.de [Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg (Germany); Kibies, Patrick; Frach, Roland; Kast, Stefan M., E-mail: stefan.kast@tu-dortmund.de [Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund (Germany); Imoto, Sho, E-mail: sho.imoto@theochem.rub.de; Marx, Dominik [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Suladze, Saba; Winter, Roland [Physikalische Chemie I, Technische Universität Dortmund, 44227 Dortmund (Germany)

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  5. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  6. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures

    International Nuclear Information System (INIS)

    Hölzl, Christoph; Horinek, Dominik; Kibies, Patrick; Frach, Roland; Kast, Stefan M.; Imoto, Sho; Marx, Dominik; Suladze, Saba; Winter, Roland

    2016-01-01

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures – while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute’s response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  7. Energy buildup in sheared force-free magnetic fields

    Science.gov (United States)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  8. Martini Coarse-Grained Force Field : Extension to DNA

    NARCIS (Netherlands)

    Uusitalo, Jaakko J.; Ingolfsson, Helgi I.; Akhshi, Parisa; Tieleman, D. Peter; Marrink, Siewert J.

    We systematically parameterized a coarsegrained (CG) model for DNA that is compatible with the Martini force field. The model maps each nucleotide into six to seven CG beads and is parameterized following the Martini philosophy. The CG nonbonded interactions are based on partitioning of the

  9. Ponderomotive force, magnetic fields and hydrodynamics of laser produced plasmas

    International Nuclear Information System (INIS)

    Bobin, J.-L.; Wee Woo; Degroot, J.-S.

    1977-01-01

    Nonlinear effects deeply change the structure of a laser driven plasma flow. For high intensities, the radiation pressure should be taken into account. It acts through a ponderomotive force proportional to the electron density and to the gradient of the mean electric field energy density of the incident wave. Static magnetic fields originate from a term in the ponderomotive force which includes radiation absorption and whose curl is non zero. The basic properties of the structure are determined analytically in the absence of thermal conductivity and magnetic fields: steep density gradient close to the cut-off density, shelf at lower densities. The conditions of a steady state regime are set up. The isothermal case is specially investigated. It is shown that the cavities which are created in a motionless plasma may disappear due to the onset of a flow. Regions in which electromagnetic forces arising from the static field compensate the ponderomotive force are determined. The subsequent effects on the flow itself are studied [fr

  10. The MARTINI force field : Coarse grained model for biomolecular simulations

    NARCIS (Netherlands)

    Marrink, Siewert J.; Risselada, H. Jelger; Yefimov, Serge; Tieleman, D. Peter; de Vries, Alex H.

    2007-01-01

    We present an improved and extended version of our coarse grained lipid model. The new version, coined the MARTINI force field, is parametrized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds. To

  11. Martini Coarse-Grained Force Field : Extension to Carbohydrates

    NARCIS (Netherlands)

    Lopez, Cesar A.; Rzepiela, Andrzej J.; de Vries, Alex H.; Dijkhuizen, Lubbert; Huenenberger, Philippe H.; Marrink, Siewert J.

    2009-01-01

    We present an extension of the Martini coarse-grained force field to carbohydrates. The parametrization follows the same philosophy as was used previously for lipids and proteins, focusing on the reproduction of partitioning free energies of small compounds between polar and nonpolar phases. The

  12. Optimization of Easy Atomic Force Microscope (ezAFM) Controls for Semiconductor Nanostructure Profiling

    Science.gov (United States)

    2017-09-01

    ARL-MR-0965 ● SEP 2017 US Army Research Laboratory Optimization of Easy Atomic Force Microscope (ezAFM) Controls for... Optimization of Easy Atomic Force Microscope (ezAFM) Controls for Semiconductor Nanostructure Profiling by Satwik Bisoi Science and...REPORT TYPE Memorandum Report 3. DATES COVERED (From - To) 2017 July 05–2017 August 18 4. TITLE AND SUBTITLE Optimization of Easy Atomic Force

  13. Machine learning of accurate energy-conserving molecular force fields

    Science.gov (United States)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  14. Various aspects of magnetic field influence on forced convection

    Directory of Open Access Journals (Sweden)

    Pleskacz Lukasz

    2016-01-01

    Full Text Available Flows in the channels of various geometry can be found everywhere in industrial or daily life applications. They are used to deliver media to certain locations or they are the place where heat may be exchanged. For Authors both points of view are interesting. The enhancement methods for heat transfer during the forced convection are demanded due to a technological development and tendency to miniaturization. At the same time it is also worth to find mechanisms that would help to avoid negative effects like pressure losses or sedimentation in the channel flows. This paper shows and discuss various aspects of magnetic field influence on forced convection. A mathematical model consisted of the mass, momentum and energy conservation equations. In the momentum conservation equation magnetic force term was included. In order to calculate this magnetic force Biot-Savart’s law was utilized. Numerical analysis was performed with the usage of commonly applied software. However, userdefined functions were implemented. The results revealed that both temperature and velocity fields were influenced by the strong magnetic field.

  15. The growth of the concept of forces and fields

    International Nuclear Information System (INIS)

    Mukherji, Visvapriya

    1979-01-01

    The history and development of the concept of forces and fields in nature as was existing since two millenia ago to the ones that are being proposed and modified in the present day schools of field theorists have been traced. The concepts of Aristotle, Galileo, Democritus, Roemer, Newton, etc. which are considered classical in nature are outlined. The modern idea of field theories which owes its origin to the hypothesis propounded by Euler and the later developments by Laplace, Kelvin and Maxwell are described. Finally, Einstein's theory of relativity which projected a very novel interpretation of the gravitational field has also been explained in brief. Some of the hitherto unanswered questions in the field are also posed. (K.B.)

  16. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  17. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    Science.gov (United States)

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  18. Topological and statistical properties of nonlinear force-free fields

    Science.gov (United States)

    Mangalam, A.; Prasad, A.

    2018-01-01

    We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.

  19. Topology optimization of nanoparticles for localized electromagnetic field enhancement

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Vester-Petersen, Joakim; Madsen, Søren Peder

    2017-01-01

    We consider the design of individual and periodic arrangements of metal or semiconductor nanoparticles for localized electromagnetic field enhancement utilizing a topology optimization based numerical framework as the design tool. We aim at maximizing a function of the electromagnetic field...

  20. Optimal sampling schemes for vegetation and geological field visits

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2012-07-01

    Full Text Available The presentation made to Wits Statistics Department was on common classification methods used in the field of remote sensing, and the use of remote sensing to design optimal sampling schemes for field visits with applications in vegetation...

  1. Mapping the force field of a hydrogen-bonded assembly

    Science.gov (United States)

    Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N. R.; Kantorovich, L.; Moriarty, P.

    2014-05-01

    Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism.

  2. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... of the TS geometry on the flexibility of the system has been probed by fixing layers of atoms around the active site and using increasingly larger nonbonded cutoffs. The variability over the 20 structures is found to decrease as the system is made more flexible. Relative energies have been calculated...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...

  3. Tuning the Mass of Chameleon Fields in Casimir Force Experiments

    CERN Document Server

    Brax, Ph; Davis, A C; Shaw, D J; Iannuzzi, D

    2010-01-01

    We have calculated the chameleon pressure between two parallel plates in the presence of an intervening medium that affects the mass of the chameleon field. As intuitively expected, the gas in the gap weakens the chameleon interaction mechanism with a screening effect that increases with the plate separation and with the density of the intervening medium. This phenomenon might open up new directions in the search of chameleon particles with future long range Casimir force experiments.

  4. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  5. Application of Enlisted Force Retention Levels and Career Field Stability

    Science.gov (United States)

    2017-03-23

    APPLICATION OF ENLISTED FORCE RETENTION LEVELS AND CAREER FIELD STABILITY THESIS Presented to the Faculty Department of Operational Sciences ...Fulfillment of the Requirements for the Degree of Master of Science in Operations Research Jamie T. Zimmermann, MS, BS Captain, USAF March 2017...Appendix B. The function proc lifetest is a nonparametric estimate of the survivor function using either the Kaplan-Meier method or the actuarial

  6. Implications of confining force field structures in hard hadronic processes

    International Nuclear Information System (INIS)

    Bengtsson, H.-U.

    1983-04-01

    This thesis is centered on the study of confining force field structures in hard scattering processes. Perturbative QCD provides the means of calculating any process on the parton level, but to be able accurately to describe the actual outcome of an event, one still needs a phenomenological model for how quarks and gluons transform into observable hadrons. One such model is based on the assumption that the particles are produced by the confining fields stretched between the partons. The actual particle distributions will then depend on the topology of the confining fields. We have developed a Monte Carlo program to simulate complete events in hard scattering, and we use this to study the properties of the confining field in different trigger situations. We further look at the amount of hard processes that can be expected in experiments that trigger on transverse energy sum (calorimeter experiments). Finally, we investigate charm production within our model. (author)

  7. Protein-Ligand Informatics Force Field (PLIff): Toward a Fully Knowledge Driven "Force Field" for Biomolecular Interactions.

    Science.gov (United States)

    Verdonk, Marcel L; Ludlow, R Frederick; Giangreco, Ilenia; Rathi, Prakash Chandra

    2016-07-28

    The Protein Data Bank (PDB) contains a wealth of data on nonbonded biomolecular interactions. If this information could be distilled down to nonbonded interaction potentials, these would have some key advantages over standard force fields. However, there are some important outstanding issues to address in order to do this successfully. This paper introduces the protein-ligand informatics "force field", PLIff, which begins to address these key challenges ( https://bitbucket.org/AstexUK/pli ). As a result of their knowledge-based nature, the next-generation nonbonded potentials that make up PLIff automatically capture a wide range of interaction types, including special interactions that are often poorly described by standard force fields. We illustrate how PLIff may be used in structure-based design applications, including interaction fields, fragment mapping, and protein-ligand docking. PLIff performs at least as well as state-of-the art scoring functions in terms of pose predictions and ranking compounds in a virtual screening context.

  8. Designing optimal sampling schemes for field visits

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-10-01

    Full Text Available This is a presentation of a statistical method for deriving optimal spatial sampling schemes. The research focuses on ground verification of minerals derived from hyperspectral data. Spectral angle mapper (SAM) and spectral feature fitting (SFF...

  9. Secondary Structure of Rat and Human Amylin across Force Fields.

    Directory of Open Access Journals (Sweden)

    Kyle Quynn Hoffmann

    Full Text Available The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient

  10. Analysis and optimization of kinematic pair force in control rod drive mechanism

    International Nuclear Information System (INIS)

    Sun Zhenguo; Liu Sen; Ran Xiaobing; Dai Changnian; Li Yuezhong

    2015-01-01

    Function expressions of kinematic pair force with latch dimensions, friction coefficient, link angle and external load was obtained by theoretical analysis, and the expression was verified by the motion analysis software. Key parameters of kinematic pair were confirmed, and their effect trends with force of parts were obtained. They show that the available method of kinematic pair optimization is increasing the space of latch holes. Using the motion analysis software, the forces of parts before and after optimization was compared. The result shows that the forces of parts were improved after the optimization. (authors)

  11. Force fields for silicas and aluminophosphates based on ab initio calculations

    NARCIS (Netherlands)

    Beest, van B.W.H.; Kramer, G.J.; Santen, van R.A.

    1990-01-01

    Authors address the problem of finding interat. force fields for silicas from ab initio calcns. on small clusters. The force field cannot be detd. from cluster data alone; incorporation of bulk-system information into the force field remains essential. Bearing this in mind, authors derive a force

  12. MODELING MAGNETIC FIELD STRUCTURE OF A SOLAR ACTIVE REGION CORONA USING NONLINEAR FORCE-FREE FIELDS IN SPHERICAL GEOMETRY

    International Nuclear Information System (INIS)

    Guo, Y.; Ding, M. D.; Liu, Y.; Sun, X. D.; DeRosa, M. L.; Wiegelmann, T.

    2012-01-01

    We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20° × 20°. Additionally, we apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free, and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.

  13. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    Energy Technology Data Exchange (ETDEWEB)

    Tamma, Venkata Ananth [CaSTL Center, Department of Chemistry, University of California, Irvine, California 92697 (United States); Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu [Department of Electrical Engineering and Computer Science, 142 Engineering Tower, University of California, Irvine, California 92697 (United States); Nowak, Derek [Molecular Vista, Inc., 6840 Via Del Oro, San Jose, California 95119 (United States)

    2016-06-06

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  14. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  15. Bifurcations of optimal vector fields: an overview

    NARCIS (Netherlands)

    Kiseleva, T.; Wagener, F.; Rodellar, J.; Reithmeier, E.

    2009-01-01

    We develop a bifurcation theory for the solution structure of infinite horizon optimal control problems with one state variable. It turns out that qualitative changes of this structure are connected to local and global bifurcations in the state-costate system. We apply the theory to investigate an

  16. Poloidal field leakage optimization in ETE

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Carlos Shinya; Montes, Antonio

    1996-12-01

    A very simple but efficient numerical algorithm is used to minimize the Ohmic coil field leakage into the plasma region of the tokamak ETE. After few interactions the code provides the positions and the current required for two pairs of compensation coils. Resulting optimum field intensity distribution is presented and commented. (author). 5 refs., 4 figs., 2 tabs.

  17. Poloidal field leakage optimization in ETE

    International Nuclear Information System (INIS)

    Shibata, Carlos Shinya; Montes, Antonio.

    1996-01-01

    A very simple but efficient numerical algorithm is used to minimize the Ohmic coil field leakage into the plasma region of the tokamak ETE. After few interactions the code provides the positions and the current required for two pairs of compensation coils. Resulting optimum field intensity distribution is presented and commented. (author). 5 refs., 4 figs., 2 tabs

  18. Field Optimization for short Period Undulators

    CERN Document Server

    Peiffer, P; Rossmanith, R; Schoerling, D

    2011-01-01

    Undulators dedicated to low energy electron beams, like Laser Wakefield Accelerators, require very short period lengths to achieve X-ray emission. However, at these short period length (LambdaU ~ 5 mm) it becomes difficult to reach magnetic field amplitudes that lead to a K parameter of >1, which is generally desired. Room temperature permanent magnets and even superconductive undulators using Nb-Ti as conductor material have proven insufficient to achieve the desired field amplitudes. The superconductor Nb$_{3}$Sn has the theoretical potential to achieve the desired fields. However, up to now it is limited by several technological challenges to much lower field values than theoretically predicted. An alternative idea for higher fields is to manufacture the poles of the undulator body from Holmium instead of iron or to use Nb-Ti wires with a higher superconductor/copper ratio. The advantages and challenges of the different options are compared in this contribution.

  19. Force fields of charged particles in micro-nanofluidic preconcentration systems

    Science.gov (United States)

    Gong, Lingyan; Ouyang, Wei; Li, Zirui; Han, Jongyoon

    2017-12-01

    Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preconcentration systems is still lacking. The mechanism of the electrokinetic trapping of charged particles is currently limited to the force balance analysis between the electric force and fluid drag force in an over-simplified one-dimensional (1D) model, which misses many signatures of the actual system. This letter studies the particle trapping phenomena that are not explainable in the 1D model through the calculation of the two-dimensional (2D) force fields. The trapping of charged particles is shown to significantly distort the electric field and fluid flow pattern, which in turn leads to the different trapping behaviors of particles of different sizes. The mechanisms behind the protrusions and instability of the focused band, which are important factors determining overall preconcentration efficiency, are revealed through analyzing the rotating fluxes of particles in the vicinity of the ion-selective membrane. The differences in the enrichment factors of differently sized particles are understood through the interplay between the electric force and convective fluid flow. These results provide insights into the electrokinetic concentration effect, which could facilitate the design and optimization of ICP-based preconcentration systems.

  20. Joyce and Ulysses: integrated and user-friendly tools for the parameterization of intramolecular force fields from quantum mechanical data.

    Science.gov (United States)

    Barone, Vincenzo; Cacelli, Ivo; De Mitri, Nicola; Licari, Daniele; Monti, Susanna; Prampolini, Giacomo

    2013-03-21

    The Joyce program is augmented with several new features, including the user friendly Ulysses GUI, the possibility of complete excited state parameterization and a more flexible treatment of the force field electrostatic terms. A first validation is achieved by successfully comparing results obtained with Joyce2.0 to literature ones, obtained for the same set of benchmark molecules. The parameterization protocol is also applied to two other larger molecules, namely nicotine and a coumarin based dye. In the former case, the parameterized force field is employed in molecular dynamics simulations of solvated nicotine, and the solute conformational distribution at room temperature is discussed. Force fields parameterized with Joyce2.0, for both the dye's ground and first excited electronic states, are validated through the calculation of absorption and emission vertical energies with molecular mechanics optimized structures. Finally, the newly implemented procedure to handle polarizable force fields is discussed and applied to the pyrimidine molecule as a test case.

  1. Nonlinear gravitational self-force: Field outside a small body

    Science.gov (United States)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  2. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi)

    NARCIS (Netherlands)

    Palstra, A.P.; Mes, D.; Kusters, K.; Roques, J.A.C.; Flik, G.; Kloet, K.; Blonk, R.J.W.

    2015-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (U-opt in m s(-1) or body lengths s(-1), BL s(-1)) were assessed and then applied to determine the effects of long-term forced and

  3. ATK-ForceField: a new generation molecular dynamics software package

    Science.gov (United States)

    Schneider, Julian; Hamaekers, Jan; Chill, Samuel T.; Smidstrup, Søren; Bulin, Johannes; Thesen, Ralph; Blom, Anders; Stokbro, Kurt

    2017-12-01

    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.

  4. Vector field statistical analysis of kinematic and force trajectories.

    Science.gov (United States)

    Pataky, Todd C; Robinson, Mark A; Vanrenterghem, Jos

    2013-09-27

    When investigating the dynamics of three-dimensional multi-body biomechanical systems it is often difficult to derive spatiotemporally directed predictions regarding experimentally induced effects. A paradigm of 'non-directed' hypothesis testing has emerged in the literature as a result. Non-directed analyses typically consist of ad hoc scalar extraction, an approach which substantially simplifies the original, highly multivariate datasets (many time points, many vector components). This paper describes a commensurately multivariate method as an alternative to scalar extraction. The method, called 'statistical parametric mapping' (SPM), uses random field theory to objectively identify field regions which co-vary significantly with the experimental design. We compared SPM to scalar extraction by re-analyzing three publicly available datasets: 3D knee kinematics, a ten-muscle force system, and 3D ground reaction forces. Scalar extraction was found to bias the analyses of all three datasets by failing to consider sufficient portions of the dataset, and/or by failing to consider covariance amongst vector components. SPM overcame both problems by conducting hypothesis testing at the (massively multivariate) vector trajectory level, with random field corrections simultaneously accounting for temporal correlation and vector covariance. While SPM has been widely demonstrated to be effective for analyzing 3D scalar fields, the current results are the first to demonstrate its effectiveness for 1D vector field analysis. It was concluded that SPM offers a generalized, statistically comprehensive solution to scalar extraction's over-simplification of vector trajectories, thereby making it useful for objectively guiding analyses of complex biomechanical systems. © 2013 Published by Elsevier Ltd. All rights reserved.

  5. On the use of quartic force fields in variational calculations

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Yachmenev, Andrey; Thiel, Walter; Lee, Timothy J.

    2013-06-01

    Quartic force fields (QFFs) have been shown to be one of the most effective ways to efficiently compute vibrational frequencies for small molecules. In this letter we discuss how the simple-internal or bond-length bond-angle (BLBA) coordinates can be transformed into Morse-cosine (-sine) coordinates which produce potential energy surfaces from QFFs that possess proper limiting behavior and can describe the vibrational (or rovibrational) energy levels of an arbitrary molecular system to 5 cm-1 or better compared to experiment. We investigate parameter scaling in the Morse coordinate, symmetry considerations, and examples of transformed QFFs making use of the MULTIMODE, TROVE, and VTET variational vibrational methods.

  6. Analytic Optimization of Near-Field Optical Chirality Enhancement

    Science.gov (United States)

    2017-01-01

    We present an analytic derivation for the enhancement of local optical chirality in the near field of plasmonic nanostructures by tuning the far-field polarization of external light. We illustrate the results by means of simulations with an achiral and a chiral nanostructure assembly and demonstrate that local optical chirality is significantly enhanced with respect to circular polarization in free space. The optimal external far-field polarizations are different from both circular and linear. Symmetry properties of the nanostructure can be exploited to determine whether the optimal far-field polarization is circular. Furthermore, the optimal far-field polarization depends on the frequency, which results in complex-shaped laser pulses for broadband optimization. PMID:28239617

  7. Optimal Balance Between Force and Velocity Differs Among World-Class Athletes.

    Science.gov (United States)

    Giroux, Caroline; Rabita, Giuseppe; Chollet, Didier; Guilhem, Gaël

    2016-02-01

    Performance during human movements is highly related to force and velocity muscle capacities. Those capacities are highly developed in elite athletes practicing power-oriented sports. However, it is still unclear whether the balance between their force and velocity-generating capacities constitutes an optimal profile. In this study, we aimed to determine the effect of elite sport background on the force-velocity relationship in the squat jump, and evaluate the level of optimization of these profiles. Ninety-five elite athletes in cycling, fencing, taekwondo, and athletic sprinting, and 15 control participants performed squat jumps in 7 loading conditions (range: 0%-60% of the maximal load they were able to lift). Theoretical maximal power (Pm), force (F0), and velocity (v0) were determined from the individual force-velocity relationships. Optimal profiles were assessed by calculating the optimal force (F0th) and velocity (v0th). Athletic sprinters and cyclists produced greater force than the other groups (P balanced force-velocity profiles. Moreover, the differences between measured and optimal force-velocity profiles raise potential sources of performance improvement in elite athletes.

  8. Scalar meson field and many-body forces. Chapter 23

    International Nuclear Information System (INIS)

    Nyman, E.M.

    1979-01-01

    In applications of field theory to the theory of the nuclear forces, one has frequently assumed that there is a scalar meson. It will then be responsible for most of the medium-range attraction between the nucleons. According to current ideas, however, it is possible to account for the medium-range attraction without an elementary sigma meson. This approach requires a careful treatment of the exchange of interacting pairs of π mesons, such as to include those ππ interactions which are responsible for the formation and decay of the sigma meson. Recently, the scalar field in the nuclear many-body problem has begun to receive more attention. There are two reasons for this change of philosophy. One reason is the discovery of neutron stars. In neutron stars, the nucleon number density can be much higher than in nuclei. One therefore wants to derive the equation of state from a relativistic many-body theory. This forces one to deal explicitly with a set of mesons, such that in the non-relativistic limit one recovers the one-boson-exchange potential. (Auth.)

  9. The Quantum Space Phase Transitions for Particles and Force Fields

    Directory of Open Access Journals (Sweden)

    Chung D.-Y.

    2006-07-01

    Full Text Available We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment space. In miscible space, attachment space is miscible to detachment space, and there is no separation between attachment space and detachment spaces. In binary partition space, detachment space and attachment space are in two separat continuous regions. The transition from wavefunction to the collapse of wavefuction under interference becomes the quantum space phase transition from binary lattice space to miscible space. At extremely conditions, the gauge boson force field undergoes a quantum space phase transition to a "hedge boson force field", consisting of a "vacuum" core surrounded by a hedge boson shell, like a bubble with boundary.

  10. Probing the Importance of Charge Flux in Force Field Modeling.

    Science.gov (United States)

    Sedghamiz, Elaheh; Nagy, Balazs; Jensen, Frank

    2017-08-08

    We analyze the conformational dependence of atomic charges and molecular dipole moments for a selection of ∼900 conformations of peptide models of the 20 neutral amino acids. Based on a set of reference density functional theory calculations, we partition the changes into effects due to changes in bond distances, bond angles, and torsional angles and into geometry and charge flux contributions. This allows an assessment of the limitations of fixed charge force fields and indications for how to design improved force fields. The torsional degrees of freedom are the main contribution to conformational changes of atomic charges and molecular dipole moments, but indirect effects due to change in bond distances and angles account for ∼25% of the variation. Charge flux effects dominate for changes in bond distances and are also the main component of the variation in bond angles, while they are ∼25% compared to the geometry variations for torsional degrees of freedom. The geometry and charge flux contributions to some extent produce compensating effects.

  11. Extragalactic Fields Optimized for Adaptive Optics

    Science.gov (United States)

    2011-03-01

    4Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603,La Serena, Chile . sObservatories of the Carnegie Institution of Washington...unsuitable anyway. Any such fields would be inaccessible from Chile and be at quite high air mass most of the time for major northem hemisphere...drawback of such a star is not the vertical blooming , which affects a small fraction of the imaging area, but the halos due to internal reflections

  12. Optimal integral force feedback for active vibration control

    Science.gov (United States)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  13. A new united atom force field for adsorption of alkenes in zeolites

    NARCIS (Netherlands)

    Liu, B.; Smit, B.; Rey, F.; Valencia, S.; Calero, S.

    2008-01-01

    A new united atom force field was developed that accurately describes the adsorption properties of linear alkenes in zeolites. The force field was specifically designed for use in the inhomogeneous system and therefore a truncated and shifted potential was used. With the determined force field, we

  14. Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations

    International Nuclear Information System (INIS)

    Isfahani, Aarsh Hassanpour; Vaez-Zadeh, Sadegh

    2007-01-01

    Air cored linear permanent magnet synchronous motors have essentially low force pulsations due to the lack of the primary iron core and teeth. However, a motor design with much lower force pulsations is required for many precise positioning systems, as in fabrication of microelectronic chips. This paper presents the design optimization of an air cored linear permanent magnet synchronous motor with extra low force pulsations for such applications. In order to achieve the goal, an analytical layer model of the machine is developed. A very effective objective function regarding force pulsations is then proposed; while the selected motor dimensions are regarded as the design variables. A genetic algorithm is used to find the optimal motor dimensions. This results in a substantial ninety percent reduction in the force pulsations. The design optimization is verified by a finite element method

  15. Functional Fit Evaluation to Determine Optimal Ease Requirements in Canadian Forces Chemical Protective Gloves

    National Research Council Canada - National Science Library

    Tremblay-Lutter, Julie

    1995-01-01

    A functional fit evaluation of the Canadian Forces (CF) chemical protective lightweight glove was undertaken in order to quantify the amount of ease required within the glove for optimal functional fit...

  16. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model

    Science.gov (United States)

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978

  17. A demonstration of magnetic field optimization in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, S.; Yamada, H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wakasa, A. [Hokkaido Univ., Graduate School of Engineering, Sapporo, Hokkaido (JP)] [and others

    2002-11-01

    An optimized configuration of the neoclassical transport and the energetic particle confinement to a level typical of so-called 'advanced stellarators' is found by shifting the magnetic axis position in LHD. Electron heat transport and NBI beam ion distribution are investigated in low-collisionality LHD plasma in order to study the magnetic field optimization effect on the thermal plasma transport and the energetic particle confinement. A higher electron temperature is obtained in the optimized configuration, and the transport analysis suggests a considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. Also a higher energetic ion distribution of NBI beam ions is observed showing the improvement of the energetic particle confinement. These obtained results support a future reactor design by magnetic field optimization in a non-axisymmetric configuration. (author)

  18. A demonstration of magnetic field optimization in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, S.; Yamada, H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wakasa, A. [Hokkaido Univ., Graduate School of Engineering, Sapporo, Hokkaido (JP)] [and others

    2002-10-01

    An optimized configuration of the neoclassical transport and the energetic particle confinement to a level typical of so-called 'advanced stellarators' is found by shifting the magnetic axis position in LHD. Electron heat transport and NBI beam ion distribution are investigated in low-collisionality LHD plasma in order to study the magnetic field optimization effect on the thermal plasma transport and the energetic particle confinement. A higher electron temperature is obtained in the optimized configuration, and the transport analysis suggests a considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. Also a higher energetic ion distribution of NBI beam ions is observed showing the improvement of the energetic particle confinement. These obtained results support a future reactor design by magnetic field optimization in a non-axisymmetric configuration. (author)

  19. A Multiposture Locomotor Training Device with Force-Field Control

    Directory of Open Access Journals (Sweden)

    Jianfeng Sui

    2014-11-01

    Full Text Available This paper introduces a multiposture locomotor training device (MPLTD with a closed-loop control scheme based on joint angle feedback, which is able to overcome various difficulties resulting from mechanical vibration and the weight of trainer to achieve higher accuracy trajectory. By introducing the force-field control scheme used in the closed-loop control, the device can obtain the active-constrained mode including the passive one. The MPLTD is mainly composed of three systems: posture adjusting and weight support system, lower limb exoskeleton system, and control system, of which the lower limb exoskeleton system mainly includes the indifferent equilibrium mechanism with two degrees of freedom (DOF and the driving torque is calculated by the Lagrangian function. In addition, a series of experiments, the weight support and the trajectory accuracy experiment, demonstrate a good performance of mechanical structure and the closed-loop control.

  20. New arrangements in force in the field of transport

    CERN Multimedia

    Tom Wegelius

    2006-01-01

    Please take note of the following information concerning new arrangements in force in the field of transport: China: Regulations applying to wooden packaging materials as of 1st January 2006 As scheduled, China introduced standard ISPM No. 15 on 1st January 2006. This was officially confirmed in a letter from the Federal Minister for Consumer Protection, Food and Agriculture. Henceforth, China will apply the same conditions to the importation of wooden packaging materials as various other countries, including the United States, Mexico and Brazil. This means that items shipped to China in wooden packaging will no longer need to be accompanied by a certificate relating to the protection of plant species or other phytosanitary documents (such as heat treatment certificates). However, a guarantee that the wooden packaging complies with standard ISPM No. 15 will be required. Phase II of US regulations concerning wooden packaging material Phase II of regulations concerning the importation of wooden packaging ma...

  1. Power-optimal force decoupling in a hybrid linear reluctance motor

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Jansen, J.W.; Lomonova, E.A.; Mavrudieva, D.

    2015-01-01

    This paper concerns the power-optimal decoupling of the propulsion and normal force created by a hybrid linear reluctance motor. The intrinsic limitations to the decoupling is addressed by the visualizing each force component with a quadric surface in the Euclidean space which is spanned by the

  2. Novel concepts in near-field optics: from magnetic near-field to optical forces

    Science.gov (United States)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  3. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.

    Science.gov (United States)

    Saito, Minoru; Okazaki, Isao

    2009-12-01

    The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.

  4. Dissolved organic carbon--contaminant interaction descriptors found by 3D force field calculations.

    Science.gov (United States)

    Govers, H A J; Krop, H B; Parsons, J R; Tambach, T; Kubicki, J D

    2002-03-01

    Enthalpies of transfer at 300 K of various partitioning processes were calculated in order to study the suitability of 3D force fields for the calculation of partitioning constants. A 3D fulvic acid (FA) model of dissolved organic carbon (DOC) was built in a MM+ force field using AMI atomic charges and geometrical optimization (GO). 3,5-Dichlorobiphenyl (PCB14), 4,4'-dichlorobiphenyl (PCB15), 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane (PPDDT) and 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (Atrazine) were inserted into different sites and their interaction energies with FA were calculated. Energies of hydration were calculated and subtracted from FA-contaminant interactions of selected sites. The resulting values for the enthalpies of transfer from water to DOC were 2.8, -1.4, -6.4 and 0.0 kcal/mol for PCB 14, PCB15, PPDDT and Atrazine, respectively. The value of PPDDT compared favorably with the experimental value of -5.0 kcal/mol. Prior to this, the method was studied by the calculation of the enthalpies of vaporization and aqueous solution using various force fields. In the MM + force field GO predicted enthalpies of vaporization deviated by +0.7 (PCB14), +3.6 (PCB15) and -0.7 (PPDDT)kcal/mol from experimental data, whereas enthalpies of aqueous solution deviated by -3.6 (PCB14), +5.8 (PCB15) and +3.7 (PPDDT) kcal/mol. Only for PCB14 the wrong sign of this enthalpy value was predicted. Potential advantages and limitations of the approach were discussed.

  5. Lateral force calibration in atomic force microscopy: A new lateral force calibration method and general guidelines for optimization

    International Nuclear Information System (INIS)

    Cannara, Rachel J.; Eglin, Michael; Carpick, Robert W.

    2006-01-01

    Proper force calibration is a critical step in atomic and lateral force microscopies (AFM/LFM). The recently published torsional Sader method [C. P. Green et al., Rev. Sci. Instrum. 75, 1988 (2004)] facilitates the calculation of torsional spring constants of rectangular AFM cantilevers by eliminating the need to obtain information or make assumptions regarding the cantilever's material properties and thickness, both of which are difficult to measure. Complete force calibration of the lateral signal in LFM requires measurement of the lateral signal deflection sensitivity as well. In this article, we introduce a complete lateral force calibration procedure that employs the torsional Sader method and does not require making contact between the tip and any sample. In this method, a colloidal sphere is attached to a 'test' cantilever of the same width, but different length and material as the 'target' cantilever of interest. The lateral signal sensitivity is calibrated by loading the colloidal sphere laterally against a vertical sidewall. The signal sensitivity for the target cantilever is then corrected for the tip length, total signal strength, and in-plane bending of the cantilevers. We discuss the advantages and disadvantages of this approach in comparison with the other established lateral force calibration techniques, and make a direct comparison with the 'wedge' calibration method. The methods agree to within 5%. The propagation of errors is explicitly considered for both methods and the sources of disagreement discussed. Finally, we show that the lateral signal sensitivity is substantially reduced when the laser spot is not centered on the detector

  6. Optimizing the US Navy’s Combat Logistics Force

    Science.gov (United States)

    2008-01-01

    by some uniformed navy crew, “A” auxillary , “O” fuel oil, “E” explosive ord- nance, “F” refrigerated, and “K” general cargo. The respective crew...may govern the minimum or maximum days allowed between these planned events). 7.4. Decision Variables HITs,bg,d Binary indicator of shuttle s CONSOL...anticipating decisions to procure the T-AKE, shapes the fundamental questions: • How many T-AKEs will be enough? • What is the optimal T-AKE load of ordnance

  7. Generating the optimal magnetic field for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders

    2016-01-01

    In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... remanence distribution for any desired magnetic field. The method is based on the reciprocity theorem, which through the use of virtual magnets can be used to calculate the optimal remanence distribution. Furthermore, we present a method for segmenting a given magnet design that always results...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....

  8. Using remote sensing images to design optimal field sampling schemes

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-08-01

    Full Text Available sampling schemes case studies Optimized field sampling representing the overall distribution of a particular mineral Deriving optimal exploration target zones CONTINUUM REMOVAL for vegetation [13, 27, 46]. The convex hull transform is a method... of normalizing spectra [16, 41]. The convex hull technique is anal- ogous to fitting a rubber band over a spectrum to form a continuum. Figure 5 shows the concept of the convex hull transform. The differ- ence between the hull and the orig- inal spectrum...

  9. Multiple constant multiplication optimizations for field programmable gate arrays

    CERN Document Server

    Kumm, Martin

    2016-01-01

    This work covers field programmable gate array (FPGA)-specific optimizations of circuits computing the multiplication of a variable by several constants, commonly denoted as multiple constant multiplication (MCM). These optimizations focus on low resource usage but high performance. They comprise the use of fast carry-chains in adder-based constant multiplications including ternary (3-input) adders as well as the integration of look-up table-based constant multipliers and embedded multipliers to get the optimal mapping to modern FPGAs. The proposed methods can be used for the efficient implementation of digital filters, discrete transforms and many other circuits in the domain of digital signal processing, communication and image processing. Contents Heuristic and ILP-Based Optimal Solutions for the Pipelined Multiple Constant Multiplication Problem Methods to Integrate Embedded Multipliers, LUT-Based Constant Multipliers and Ternary (3-Input) Adders An Optimized Multiple Constant Multiplication Architecture ...

  10. Projection and nested force-gradient methods for quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, Dmitry

    2017-07-26

    For the Hybrid Monte Carlo algorithm (HMC), often used to study the fundamental quantum field theory of quarks and gluons, quantum chromodynamics (QCD), on the lattice, one is interested in efficient numerical time integration schemes which preserve geometric properties of the flow and are optimal in terms of computational costs per trajectory for a given acceptance rate. High order numerical methods allow the use of larger step sizes, but demand a larger computational effort per step; low order schemes do not require such large computational costs per step, but need more steps per trajectory. So there is a need to balance these opposing effects. In this work we introduce novel geometric numerical time integrators, namely, projection and nested force-gradient methods in order to improve the efficiency of the HMC algorithm in application to the problems of quantum field theories.

  11. International Acquisitons in Multinacionals: Under a Force Field

    Directory of Open Access Journals (Sweden)

    Américo da Costa Ramos Filho

    2010-12-01

    Full Text Available The purpose of this essay is to debate the performance of multinational companies concerning the management alternatives of their foreign unities, especially the ones derived from acquisitions, with consequences on the interaction between the headquarters and its subsidiaries or colligates and the managerial learning and knowledge associated to this process. First the problematic of internationalized companies by foreign direct investments – FDI’s, mainly by acquisitions and strategic alliances, is discussed. The intensity of the assimilation and interchange of values and practices within organizations in interacting process is stressed, including a set of typologies derived from the existing related literature. After this, a more specific approach about intra and interorganization aspects of the multinationals is performed, related to strategies, competences and roles of headquarters and subsidiaries, as well as their impact on the knowledge flux and its derived learning modes, evolving a established typologies set. The next step is to discuss two visions about the opposition between the universal and the particular in international management, with global and contextual aspects: a convergence-divergence opposition, like a force field, impacting on the knowledge transfer. Finally, some concluding comments are made, emphasizing, for the purpose of contribution, another type of multinationals typology relating the convergence-divergence duality to the organizational and national levels, as well the positioning of the companies in the resulted matrix.

  12. Quantum mechanical force fields for condensed phase molecular simulations

    Science.gov (United States)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  13. The cost of leg forces in bipedal locomotion: a simple optimization study.

    Directory of Open Access Journals (Sweden)

    John R Rebula

    Full Text Available Simple optimization models show that bipedal locomotion may largely be governed by the mechanical work performed by the legs, minimization of which can automatically discover walking and running gaits. Work minimization can reproduce broad aspects of human ground reaction forces, such as a double-peaked profile for walking and a single peak for running, but the predicted peaks are unrealistically high and impulsive compared to the much smoother forces produced by humans. The smoothness might be explained better by a cost for the force rather than work produced by the legs, but it is unclear what features of force might be most relevant. We therefore tested a generalized force cost that can penalize force amplitude or its n-th time derivative, raised to the p-th power (or p-norm, across a variety of combinations for n and p. A simple model shows that this generalized force cost only produces smoother, human-like forces if it penalizes the rate rather than amplitude of force production, and only in combination with a work cost. Such a combined objective reproduces the characteristic profiles of human walking (R² = 0.96 and running (R² = 0.92, more so than minimization of either work or force amplitude alone (R² = -0.79 and R² = 0.22, respectively, for walking. Humans might find it preferable to avoid rapid force production, which may be mechanically and physiologically costly.

  14. The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building.

    Science.gov (United States)

    Dupradeau, François-Yves; Pigache, Adrien; Zaffran, Thomas; Savineau, Corentin; Lelong, Rodolphe; Grivel, Nicolas; Lelong, Dimitri; Rosanski, Wilfried; Cieplak, Piotr

    2010-07-28

    Deriving atomic charges and building a force field library for a new molecule are key steps when developing a force field required for conducting structural and energy-based analysis using molecular mechanics. Derivation of popular RESP charges for a set of residues is a complex and error prone procedure because it depends on numerous input parameters. To overcome these problems, the R.E.D. Tools (RESP and ESP charge Derive, ) have been developed to perform charge derivation in an automatic and straightforward way. The R.E.D. program handles chemical elements up to bromine in the periodic table. It interfaces different quantum mechanical programs employed for geometry optimization and computing molecular electrostatic potential(s), and performs charge fitting using the RESP program. By defining tight optimization criteria and by controlling the molecular orientation of each optimized geometry, charge values are reproduced at any computer platform with an accuracy of 0.0001 e. The charges can be fitted using multiple conformations, making them suitable for molecular dynamics simulations. R.E.D. allows also for defining charge constraints during multiple molecule charge fitting, which are used to derive charges for molecular fragments. Finally, R.E.D. incorporates charges into a force field library, readily usable in molecular dynamics computer packages. For complex cases, such as a set of homologous molecules belonging to a common family, an entire force field topology database is generated. Currently, the atomic charges and force field libraries have been developed for more than fifty model systems and stored in the RESP ESP charge DDataBase. Selected results related to non-polarizable charge models are presented and discussed.

  15. An atomistic fingerprint algorithm for learning ab initio molecular force fields

    Science.gov (United States)

    Tang, Yu-Hang; Zhang, Dongkun; Karniadakis, George Em

    2018-01-01

    Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The fingerprint is essentially a continuous density field formed through the superimposition of smoothing kernels centered on the atoms. Rotational invariance of the fingerprint is achieved by aligning, for each fingerprint instance, the neighboring atoms onto a local canonical coordinate frame computed from a kernel minisum optimization procedure. We show that this approach is superior over principal components analysis-based methods especially when the atomistic neighborhood is sparse and/or contains symmetry. We propose that the "distance" between the density fields be measured using a volume integral of their pointwise difference. This can be efficiently computed using optimal quadrature rules, which only require discrete sampling at a small number of grid points. We also experiment on the choice of weight functions for constructing the density fields and characterize their performance for fitting interatomic potentials. The applicability of the fingerprint is demonstrated through a set of benchmark problems.

  16. Optimal design of a vehicle magnetorheological damper considering the damping force and dynamic range

    International Nuclear Information System (INIS)

    Nguyen, Quoc-Hung; Choi, Seung-Bok

    2009-01-01

    This paper presents an optimal design of a passenger vehicle magnetorheological (MR) damper based on finite element analysis. The MR damper is constrained in a specific volume and the optimization problem identifies the geometric dimensions of the damper that minimize an objective function. The objective function consists of the damping force, the dynamic range, and the inductive time constant of the damper. After describing the configuration of the MR damper, the damping force and dynamic range are obtained on the basis of the Bingham model of an MR fluid. Then, the control energy (power consumption of the damper coil) and the inductive time constant are derived. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initial damper. Subsequently, the optimization procedure, using a golden-section algorithm and a local quadratic fitting technique, is constructed via commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR damper, which are constrained in a specific cylindrical volume defined by its radius and height, are determined and a comparative work on damping force and inductive time constant between the initial and optimal design is undertaken

  17. The influence of catch trials on the consolidation of motor memory in force field adaptation tasks

    Directory of Open Access Journals (Sweden)

    Anne eFocke

    2013-07-01

    Full Text Available In computational neuroscience it is generally accepted that human motor memory contains neural representations of the physics of the musculoskeletal system and the objects in the environment. These representations are called internal models. Force field studies, in which subjects have to adapt to dynamic perturbations induced by a robotic manipulandum, are an established tool to analyze the characteristics of such internal models. The aim of the current study was to investigate whether catch trials during force field learning could influence the consolidation of motor memory in more complex tasks. Thereby, the force field was more than double the force field of previous studies (35 Ns/m. Moreover, the arm of the subjects was not supported. A total of forty-six subjects participated in this study and performed center-out movements at a robotic manipulandum in two different force fields. Two control groups learned force field A on day 1 and were retested in the same force field on day 3 (AA. Two test groups additionally learned an interfering force field B (=-A on day 2 (ABA. The difference between the two test and control groups, respectively, was the absence (0% or presence (19% of catch trials, in which the force field was turned off suddenly. The results showed consolidation of force field A on day 3 for both control groups. Test groups showed no consolidation of force field A (19% catch trials and even poorer performance on day 3 (0% catch trials. In conclusion, it can be stated that catch trials seem to have a positive effect on the performance on day 3 but do not trigger a consolidation process as shown in previous studies that used a lower force field viscosity with supported arm. These findings indicate that the results of previous studies in which less complex tasks were analyzed, cannot be fully transferred to more complex tasks. Moreover, the effects of catch trials in these situations are insufficiently understood and further research

  18. On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Afanas' ev, A A; Rubinov, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Gaida, L S; Guzatov, D V; Svistun, A Ch [Yanka Kupala State University of Grodno, Grodno (Belarus)

    2015-10-31

    Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)

  19. Design optimization of piezoresistive cantilevers for force sensing in air and water

    Science.gov (United States)

    Doll, Joseph C.; Park, Sung-Jin; Pruitt, Beth L.

    2009-01-01

    Piezoresistive cantilevers fabricated from doped silicon or metal films are commonly used for force, topography, and chemical sensing at the micro- and macroscales. Proper design is required to optimize the achievable resolution by maximizing sensitivity while simultaneously minimizing the integrated noise over the bandwidth of interest. Existing analytical design methods are insufficient for modeling complex dopant profiles, design constraints, and nonlinear phenomena such as damping in fluid. Here we present an optimization method based on an analytical piezoresistive cantilever model. We use an existing iterative optimizer to minimimize a performance goal, such as minimum detectable force. The design tool is available as open source software. Optimal cantilever design and performance are found to strongly depend on the measurement bandwidth and the constraints applied. We discuss results for silicon piezoresistors fabricated by epitaxy and diffusion, but the method can be applied to any dopant profile or material which can be modeled in a similar fashion or extended to other microelectromechanical systems. PMID:19865512

  20. Design of Optimal Hybrid Position/Force Controller for a Robot Manipulator Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Vikas Panwar

    2007-01-01

    Full Text Available The application of quadratic optimization and sliding-mode approach is considered for hybrid position and force control of a robot manipulator. The dynamic model of the manipulator is transformed into a state-space model to contain two sets of state variables, where one describes the constrained motion and the other describes the unconstrained motion. The optimal feedback control law is derived solving matrix differential Riccati equation, which is obtained using Hamilton Jacobi Bellman optimization. The optimal feedback control law is shown to be globally exponentially stable using Lyapunov function approach. The dynamic model uncertainties are compensated with a feedforward neural network. The neural network requires no preliminary offline training and is trained with online weight tuning algorithms that guarantee small errors and bounded control signals. The application of the derived control law is demonstrated through simulation with a 4-DOF robot manipulator to track an elliptical planar constrained surface while applying the desired force on the surface.

  1. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiajia [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Shi, Zongqian, E-mail: zqshi@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Zhang, Pengbo [Department of Anesthesiology, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, No.157 West 5 Road, Xi’an, Shaanxi Province 710004 (China)

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system. - Highlights: • We compare the results of the ECS method and FEA method with the commercial software, Ansys. • We analyze the physic mechanism of the oscillating motion of the particles in the presence of an oscillating magnet. • We discuss the influence of the oscillating amplitude of the magnet on the behavior of the particle.

  2. Combining spanwise morphing, inline motion and model based optimization for force magnitude and direction control

    Science.gov (United States)

    Scheller, Johannes; Braza, Marianna; Triantafyllou, Michael

    2016-11-01

    Bats and other animals rapidly change their wingspan in order to control the aerodynamic forces. A NACA0013 type airfoil with dynamically changing span is proposed as a simple model to experimentally study these biomimetic morphing wings. Combining this large-scale morphing with inline motion allows to control both force magnitude and direction. Force measurements are conducted in order to analyze the impact of the 4 degree of freedom flapping motion on the flow. A blade-element theory augmented unsteady aerodynamic model is then used to derive optimal flapping trajectories.

  3. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye [Sanford-Burnham-Prebys Medical Discovery Institute (United States); Schwieters, Charles D. [National Institutes of Health, Center for Information Technology (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham-Prebys Medical Discovery Institute (United States)

    2017-01-15

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  4. Generalized field-splitting algorithms for optimal IMRT delivery efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2007-09-21

    Intensity-modulated radiation therapy (IMRT) uses radiation beams of varying intensities to deliver varying doses of radiation to different areas of the tissue. The use of IMRT has allowed the delivery of higher doses of radiation to the tumor and lower doses to the surrounding healthy tissue. It is not uncommon for head and neck tumors, for example, to have large treatment widths that are not deliverable using a single field. In such cases, the intensity matrix generated by the optimizer needs to be split into two or three matrices, each of which may be delivered using a single field. Existing field-splitting algorithms used the pre-specified arbitrary split line or region where the intensity matrix is split along a column, i.e., all rows of the matrix are split along the same column (with or without the overlapping of split fields, i.e., feathering). If three fields result, then the two splits are along the same two columns for all rows. In this paper we study the problem of splitting a large field into two or three subfields with the field width as the only constraint, allowing for an arbitrary overlap of the split fields, so that the total MU efficiency of delivering the split fields is maximized. Proof of optimality is provided for the proposed algorithm. An average decrease of 18.8% is found in the total MUs when compared to the split generated by a commercial treatment planning system and that of 10% is found in the total MUs when compared to the split generated by our previously published algorithm. For more information on this article, see medicalphysicsweb.org.

  5. Research on desulfurisation of fine coal under compounding the physics force field

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Y.; Fu, D.; Tao, D.; Liu, J.; Zhao, Y. [China University of Mining and Technology, Xuzhou (China)

    2005-08-15

    Desulphurization experiment carried on under compounding the physics force field was described for -0.5 mm fine particle of high sulphur coal. The experiment factorial plan of desulphurization on centrifugal gravity Falcon separator was designed and its results were analyzed by using Design-Expert 6.0 software. The 2-reactor interaction relation model between comprehensive desulphurization efficiency of pyrite sulphur and different operation variable was drawn, i.e. 2 FI model, and the 2-factor interaction on pyrite desulphurization efficiency of the operation factors differently was analyzed. The interaction on pyrite desulphurization efficiency of feed rate and feed concentration is significant. The optimization test condition for desulphurization was proposed by Design-Expert 6.0, and comprehensive desulphurization efficiency of 86.90% can be achieved. 5 refs., 3 figs., 7 tabs.

  6. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Agustín Leobardo Herrera-May

    2016-08-01

    Full Text Available Microelectromechanical systems (MEMS resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases.

  7. Dusty plasmas in a constant electric field: Role of the electron drag force

    International Nuclear Information System (INIS)

    Khrapak, S.A.; Morfill, G.E.

    2004-01-01

    We investigate the forces experienced by a microparticle immersed in a weakly ionized plasma with constant electric field. These are electric force and the forces associated with the momentum transfer from electrons and ions drifting in the field (electron and ion drag forces). It is shown that the effect of the electron drag, which is often neglected, can be substantial in a certain parameter range. Numerical calculation of the forces for a reasonable set of plasma parameters is performed to illustrate the importance of this effect

  8. Climate forcing due to optimization of maximal leaf conductance in subtropical vegetation under rising CO2

    NARCIS (Netherlands)

    Boer, H.J. de; Lammertsma, E.I.; Wagner-Cremer, F.; Dilcher, D.L.; Wassen, M.J.; Dekker, S.C.

    2011-01-01

    Plant physiological adaptation to the global rise in atmospheric CO 2 concentration (CO2) is identified as a crucial climatic forcing. To optimize functioning under rising CO2, plants reduce the diffusive stomatal conductance of their leaves (gs) dynamically by closing stomata and structurally by

  9. An Optimal Electric Dipole Antenna Model and Its Field Propagation

    Directory of Open Access Journals (Sweden)

    Yidong Xu

    2016-01-01

    Full Text Available An optimal electric dipole antennas model is presented and analyzed, based on the hemispherical grounding equivalent model and the superposition principle. The paper also presents a full-wave electromagnetic simulation for the electromagnetic field propagation in layered conducting medium, which is excited by the horizontal electric dipole antennas. Optimum frequency for field transmission in different depth is carried out and verified by the experimental results in comparison with previously reported simulation over a digital wireless Through-The-Earth communication system. The experimental results demonstrate that the dipole antenna grounding impedance and the output power can be efficiently reduced by using the optimal electric dipole antenna model and operating at the optimum frequency in a vertical transmission depth up to 300 m beneath the surface of the earth.

  10. Optimization Design of Bipolar Plate Flow Field in PEM Stack

    Science.gov (United States)

    Wen, Ming; He, Kanghao; Li, Peilong; Yang, Lei; Deng, Li; Jiang, Fei; Yao, Yong

    2017-12-01

    A new design of bipolar plate flow field in proton exchange membrane (PEM) stack was presented to develop a high-performance transfer efficiency of the two-phase flow. Two different flow fields were studied by using numerical simulations and the performance of the flow fields was presented. the hydrodynamic properties include pressure gap between inlet and outlet, the Reynold’s number of the two types were compared based on the Navier-Stokes equations. Computer aided optimization software was implemented in the design of experiments of the preferable flow field. The design of experiments (DOE) for the favorable concept was carried out to study the hydrodynamic properties when changing the design parameters of the bipolar plate.

  11. Optimization of levitation and guidance forces in a superconducting Maglev system

    Science.gov (United States)

    Yildizer, Irfan; Cansiz, Ahmet; Ozturk, Kemal

    2016-09-01

    Optimization of the levitation for superconducting Maglev systems requires effective use of vertical and guidance forces during the operation. In this respect the levitation and guidance forces in terms of various permanent magnet array configurations are analyzed. The arrangements of permanent magnet arrays interacting with the superconductor are configured for the purpose of increasing the magnetic flux density. According to configurations, modeling the interaction forces between the permanent magnet and the superconductor are established in terms of the frozen image model. The model is complemented with the analytical calculations and provides a reasonable agreement with the experiments. The agreement of the analytical calculation associated with the frozen image model indicates a strong case to establish an optimization, in which provides preliminary analysis before constructing more complex Maglev system.

  12. TET Offensive II Field Force Vietnam After Action Report 31 January - 18 February 1968

    Science.gov (United States)

    1968-03-01

    and the 5th VC Division. V During this same period of time there were no majur shifts in ARVN forces . However III Corps shifted three...8217-".•: ’ ’SSIFJED U.S. ARMY. VIETNAM. II FIELD FORCE . TET OFFENSIVE II FIELD FORCE VIETNAM AFTER ACTION REPORT, 31 JANUARY-18 FEB- RUARY 1968...H FIELD FORCE VIETNAM AFTER ACTION REPORT 31 January-18 February 1968 RECORD K0- ! FlSjl fi-.-A-,>-•: it tT*\\ : *si h s» -wP Mr-, £< St

  13. Vibrations of a molecule in an external force field.

    Science.gov (United States)

    Okabayashi, Norio; Peronio, Angelo; Paulsson, Magnus; Arai, Toyoko; Giessibl, Franz J

    2018-05-01

    The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation.

  14. Using remotely-sensed data for optimal field sampling

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available M B E R 2 0 0 8 15 USING REMOTELY- SENSED DATA FOR OPTIMAL FIELD SAMPLING BY DR PRAVESH DEBBA STATISTICS IS THE SCIENCE pertaining to the collection, summary, analysis, interpretation and presentation of data. It is often impractical... studies are: where to sample, what to sample and how many samples to obtain. Conventional sampling techniques are not always suitable in environmental studies and scientists have explored the use of remotely-sensed data as ancillary information to aid...

  15. How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field?

    NARCIS (Netherlands)

    Villa, Alessandra; Fan, Hao; Wassenaar, Tsjerk; Mark, Alan E.

    2007-01-01

    The sensitivity of molecular dynamics simulations to variations in the force field has been examined in relation to a set of 36 structures corresponding to 31 proteins simulated by using different versions of the GROMOS force field. The three parameter sets used (43a1, 53a5, and 53a6) differ

  16. Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Iâ

    Science.gov (United States)

    Fernando L. Dri; Xiawa Wu; Robert J. Moon; Ashlie Martini; Pablo D. Zavattieri

    2015-01-01

    Molecular dynamics simulation is commonly used to study the properties of nanocellulose-based materials at the atomic scale. It is well known that the accuracy of these simulations strongly depends on the force field that describes energetic interactions. However, since there is no force field developed specifically for cellulose, researchers utilize models...

  17. Artificial force fields for multi-agent simulations of maritime traffic and risk estimation

    NARCIS (Netherlands)

    Xiao, F.; Ligteringen, H.; Van Gulijk, C.; Ale, B.J.M.

    2012-01-01

    A probabilistic risk model is designed to estimate probabilities of collisions for shipping accidents in busy waterways. We propose a method based on multi-agent simulation that uses an artificial force field to model ship maneuvers. The artificial force field is calibrated by AIS data (Automatic

  18. Improved Parameters for the Martini Coarse-Grained Protein Force Field

    NARCIS (Netherlands)

    de Jong, Djurre H.; Singh, Gurpreet; Bennett, W. F. Drew; Arnarez, Clement; Wassenaar, Tsjerk A.; Schafer, Lars V.; Periole, Xavier; Tieleman, D. Peter; Marrink, Siewert J.

    The Martini coarse-grained force field has been successfully used for simulating a wide range of (bio)molecular systems. Recent progress in our ability to test the model against fully atomistic force fields, however, has revealed some shortcomings. Most notable, phenylalanine and proline were too

  19. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space.

  20. Calculation of the radiation force on a cylinder in a standing wave acoustic field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We present a new calculation of the radiation force on a cylinder in a standing wave acoustic field. We use the formula to calculate the force on a cylinder which is free to move in the field and one which is fixed in space

  1. Internal force field in proteins seen by divergence entropy

    Science.gov (United States)

    Marchewka, Damian; Banach, Mateusz; Roterman, Irena

    2011-01-01

    The characteristic distribution of non-binding interactions in a protein is described. It establishes that hydrophobic interactions can be characterized by suitable 3D Gauss functions while electrostatic interactions generally follow a random distribution. The implementation of this observation suggests differentiated optimization procedure for these two types of interactions. The electrostatic interaction may follow traditional energy optimization while the criteria for convergence shall measure the accordance with 3-D Gauss function. PMID:21769190

  2. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Viet, Man [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France); Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2015-07-14

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  3. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections; TOPICAL

    International Nuclear Information System (INIS)

    G.S. Choe; C.Z. Cheng

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  4. Energy of Force-Free Magnetic Fields in Relation to Coronal Mass Ejections

    International Nuclear Information System (INIS)

    Choe, G.S.; Cheng, C.Z.

    2002-01-01

    In typical observations of coronal mass ejections (CMEs), a magnetic structure of a helmet-shaped closed configuration bulges out and eventually opens up. However, a spontaneous transition between these field configurations has been regarded to be energetically impossible in force-free fields according to the Aly-Sturrock theorem. The theorem states that the maximum energy state of force-free fields with a given boundary normal field distribution is the open field. The theorem implicitly assumes the existence of the maximum energy state, which may not be taken for granted. In this study, we have constructed force-free fields containing tangential discontinuities in multiple flux systems. These force-free fields can be generated from a potential field by footpoint motions that do not conserve the boundary normal field distribution. Some of these force-free fields are found to have more magnetic energy than the corresponding open fields. The constructed force-free configurations are compared with observational features of CME-bearing active regions. Possible mechanisms of CMEs are also discussed

  5. A computed torque method based attitude control with optimal force distribution for articulated body mobile robots

    International Nuclear Information System (INIS)

    Fukushima, Edwardo F.; Hirose, Shigeo

    2000-01-01

    This paper introduces an attitude control scheme based in optimal force distribution using quadratic programming which minimizes joint energy consumption. This method shares similarities with force distribution for multifingered hands, multiple coordinated manipulators and legged walking robots. In particular, an attitude control scheme was introduced inside the force distribution problem, and successfully implemented for control of the articulated body mobile robot KR-II. This is an actual mobile robot composed of cylindrical segments linked in series by prismatic joints and has a long snake-like appearance. These prismatic joints are force controlled so that each segment's vertical motion can automatically follow the terrain irregularities. An attitude control is necessary because this system acts like a system of wheeled inverted pendulum carts connected in series, being unstable by nature. The validity and effectiveness of the proposed method is verified by computer simulation and experiments with the robot KR-II. (author)

  6. Dynamics of solar magnetic fields. VI. Force-free magnetic fields and motions of magnetic foot-points

    International Nuclear Information System (INIS)

    Low, B.C.; Nakagawa, Y.

    1975-01-01

    A mathematical model is developed to consider the evolution of force-free magnetic fields in relation to the displacements of their foot-points. For a magnetic field depending on only two Cartesian coordinates and time, the problem reduces to solving a nonlinear elliptic partial differential equation. As illustration of the physical process, two specific examples of evolving force-free magnetic fields are examined in detail, one evolving with rising and the other with descending field lines. It is shown that these two contrasting behaviors of the field lines correspond to sheared motions of their foot-points of quite different characters. The physical implications of these two examples of evolving force-free magnetic fields are discussed. (auth)

  7. Spatial Confinement of Ultrasonic Force Fields in Microfluidic Channels

    DEFF Research Database (Denmark)

    Manneberg, O; Hagsäter, Melker; Svennebring, J

    2009-01-01

    -PIV). The confinement of the ultrasonic fields during single-or dual-segment actuation, as well as the cross-talk between two adjacent. fields, is characterized and quantified. Our results show that the field confinement typically scales with the acoustic wavelength, and that the cross-talk is insignificant between...... adjacent. fields. The goal is to define design strategies for implementing several spatially separated ultrasonic manipulation functions in series for use in advanced particle or cell handling and processing applications. One such proof-of-concept application is demonstrated, where. flow...

  8. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.

    Science.gov (United States)

    Riniker, Sereina

    2018-03-26

    In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.

  9. The optimal use of contrast agents at high field MRI

    International Nuclear Information System (INIS)

    Trattnig, Siegfried; Pinker, Kathia; Ba-Ssalamah, Ahmed; Noebauer-Huhmann, Iris-Melanie

    2006-01-01

    The intravenous administration of a standard dose of conventional gadolinium-based contrast agents produces higher contrast between the tumor and normal brain at 3.0 Tesla (T) than at 1.5 T, which allows reducing the dose to half of the standard one to produce similar contrast at 3.0 T compared to 1.5 T. The assessment of cumulative triple-dose 3.0 T images obtained the best results in the detection of brain metastases compared to other sequences. The contrast agent dose for dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging at 3.0 T can be reduced to 0.1 mmol compared to 0.2 mmol at 1.5 T due to the increased susceptibility effects at higher magnetic field strengths. Contrast agent application makes susceptibility-weighted imaging (SWI) at 3.0 T clinically attractive, with an increase in spatial resolution within the same scan time. Whereas a double dose of conventional gadolinium-based contrast agents was optimal in SWI with respect to sensitivity and image quality, a standard dose of gadobenate dimeglumine, which has a two-fold higher T1-relaxivity in blood, produced the same effect. For MR-arthrography, optimized concentrations of gadolinium-based contrast agents are similar at 3.0 and 1.5 T. In summary, high field MRI requires the optimization of the contrast agent dose in different clinical applications. (orig.)

  10. Optimal Multiuser Zero Forcing with Per-Antenna Power Constraints for Network MIMO Coordination

    Directory of Open Access Journals (Sweden)

    Kaviani Saeed

    2011-01-01

    Full Text Available We consider a multicell multiple-input multiple-output (MIMO coordinated downlink transmission, also known as network MIMO, under per-antenna power constraints. We investigate a simple multiuser zero-forcing (ZF linear precoding technique known as block diagonalization (BD for network MIMO. The optimal form of BD with per-antenna power constraints is proposed. It involves a novel approach of optimizing the precoding matrices over the entire null space of other users' transmissions. An iterative gradient descent method is derived by solving the dual of the throughput maximization problem, which finds the optimal precoding matrices globally and efficiently. The comprehensive simulations illustrate several network MIMO coordination advantages when the optimal BD scheme is used. Its achievable throughput is compared with the capacity region obtained through the recently established duality concept under per-antenna power constraints.

  11. Relativistic derivation of the ponderomotive force produced by two intense laser fields

    International Nuclear Information System (INIS)

    Stroscio, M.A.

    1985-01-01

    The ponderomotive force plays a fundamental role in the absorption of laser light on self-consistent plasma density profiles, in multiple-photon ionization, and in intense field electrodynamics. The relativistic corrections to the ponderomotive force of a transversely polarized electromagnetic wave lead to an approximately 20-percent reduction in the single particle ponderomotive force produced by a 10-γm 10 16 -W/cm 2 laser field. Recent experimental investigations are based on using two intense laser fields to produce desired lasermatter interactions. This paper presents the first derivation of the nonlinear relativistic ponderomotive force produced by two intense laser fields. The results demonstrate that relativistic ponderomotive forces are not additive

  12. Optimization of a parity of brake forces of automobiles in view of a bias of road

    International Nuclear Information System (INIS)

    Davlatshoev, R.A.; Tursunov, A.A.

    2006-01-01

    In clause it is shown a method optimization of brake of forces in view of a bias road it is established, that in mountain conditions of loss of coupling weight of automobiles than 2-3 times concerning flat conditions therma are more. The degree of use of coupling weight in result use of a regulator of brake forces very much increases also efficiency of brake systems such a kind of automobiles is provided with definition of optimum factor of coupling at which value of loss of coupling weight is provided minimal

  13. Validation of Multibody Program to Optimize Simulated Trajectories II Parachute Simulation with Interacting Forces

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.

    2009-01-01

    A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.

  14. Development of CHARMM-Compatible Force-Field Parameters for Cobalamin and Related Cofactors from Quantum Mechanical Calculations.

    Science.gov (United States)

    Pavlova, Anna; Parks, Jerry M; Gumbart, James C

    2018-02-13

    Corrinoid cofactors such as cobalamin are used by many enzymes and are essential for most living organisms. Therefore, there is broad interest in investigating cobalamin-protein interactions with molecular dynamics simulations. Previously developed parameters for cobalamins are based mainly on crystal structure data. Here, we report CHARMM-compatible force field parameters for several corrinoids developed from quantum mechanical calculations. We provide parameters for corrinoids in three oxidation states, Co 3+ , Co 2+ , and Co 1+ , and with various axial ligands. Lennard-Jones parameters for the cobalt center in the Co(II) and Co(I) states were optimized using a helium atom probe, and partial atomic charges were obtained with a combination of natural population analysis (NPA) and restrained electrostatic potential (RESP) fitting approaches. The Force Field Toolkit was used to optimize all bonded terms. The resulting parameters, determined solely from calculations of cobalamin alone or in water, were then validated by assessing their agreement with density functional theory geometries and by analyzing molecular dynamics simulation trajectories of several corrinoid proteins for which X-ray crystal structures are available. In each case, we obtained excellent agreement with the reference data. In comparison to previous CHARMM-compatible parameters for cobalamin, we observe a better agreement for the fold angle and lower RMSD in the cobalamin binding site. The approach described here is readily adaptable for developing CHARMM-compatible force-field parameters for other corrinoids or large biomolecules.

  15. Force Characteristics Analysis for Linear Machine with DC Field Excitations

    Directory of Open Access Journals (Sweden)

    A/L Krishna Preshant

    2018-01-01

    Full Text Available In urban regions and particularly in developing countries such as Malaysia with its ever-growing transport sector, there is the need for energy efficient systems. In urban railway systems there is a requirement of frequent braking and start/stop motion, and energy is lost during these processes. To improve the issues of the conventional braking systems, particularly in Japan, they have introduced linear induction motor techniques. The drawbacks of this method, however, is the use of permanent magnets, which not only increase the weight of the entire system but also increases magnetic cogging. Hence an alternative is required which uses the same principles as Magnetic-Levitation but using a magnet-less system. Therefore, the objective of this research is to propose an electromagnetic rail brake system and to analyze the effect of replacing permanent magnets with a magnet-less braking systems to produce a significant amount of brake thrust as compared with the permanent magnet system. The modeling and performance analysis of the model is done using Finite Element Analysis (FEA. The mechanical aspects of the model are designed on Solidworks and then imported to JMAG Software to proceed with the electro-magnetic analysis of the model. There are 3 models developed: Base Model (steel, Permanent Magnet (PM Model and DC Coil Model. The performance of the proposed 2D models developed is evaluated in terms of average force produced and motor constant square density. By comparing the values for the 3 models for the same case of 9A current supplied for a 0.1mm/s moving velocity, the base model, permanent magnet model and DC coil model produced an average force of 7.78 N, 7.55 N, and 8.34 N respectively, however, with increase in DC current supplied to the DC coil model, the average force produced is increased to 13.32 N. Thus, the advantage of the DC coil (magnet-less model, is, that the force produced can be controlled by varying the number of turns in the

  16. Optimized design of micromachined electric field mills to maximize electrostatic field sensitivity

    OpenAIRE

    Zhou, Yu; Shafai, Cyrus

    2016-01-01

    This paper describes the design optimization of a micromachined electric field mill, in relation to maximizing its output signal. The cases studied are for a perforated electrically grounded shutter vibrating laterally over sensing electrodes. It is shown that when modeling the output signal of the sensor, the differential charge on the sense electrodes when exposed to vs. visibly shielded from the incident electric field must be considered. Parametric studies of device dimensions show that t...

  17. On the absorbing force of magnetic fields acting on magnetic particle under magnetic particle examination

    International Nuclear Information System (INIS)

    Maeda, N.

    1988-01-01

    During the magnetic particle examination, magnetic particles near defects are deposited by an absorbing force of magnetic fields acting on the magnetic particles. Therefore, a quantitative determination of this absorbing force is a theoretical and experimental basis for solving various problems associated with magnetic particle examinations. The absorbing force is formulated based on a magnetic dipole model, and a measuring method of the absorbing force using magnetic fields formed around linear current is proposed. Measurements according to this method produced appropriate results, verifying the validation of the concept and the measuring method

  18. Hierarchical atom type definitions and extensible all-atom force fields.

    Science.gov (United States)

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers [Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States)

    2016-06-07

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  20. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    Science.gov (United States)

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  1. An optimized field coverage planning approach for navigation of agricultural robots in fields involving obstacle areas

    DEFF Research Database (Denmark)

    Hameed, Ibahim; Bochtis, D.; Sørensen, C.A.

    2013-01-01

    -field obstacle areas, the headland paths generation for the field and each obstacle area, the implementation of a genetic algorithm to optimize the sequence that the field robot vehicle will follow to visit the blocks, and an algorithmically generation of the task sequences derived from the farmer practices......Technological advances combined with the demand of cost efficiency and environmental considerations lead farmers to review their practices towards the adoption of new managerial approaches including enhanced automation. The application of field robots is one of the most promising advances among....... This approach has proven that it is possible to capture the practices of farmers and embed these practices in an algorithmic description providing a complete field area coverage plan in a form prepared for execution by the navigation system of a field robot....

  2. LEPS potential for H3 from force field data

    International Nuclear Information System (INIS)

    Varandas, A.J.C.

    1979-01-01

    A new potential energy surface for H 3 of the London--Eyring--Polanyi--Sato type has been obtained which reproduces the best available estimates for the geometry, classical barrier height, and quadratic force constants of the D/sub infinityh/ saddle point. Other attributes of the surface, e.g., minimum energy profile for the exchange process, spherically averaged potential V 0 , and leading anisotropic potential V 2 , are also shown to be in good agreement with the best available estimates. The simplicity of its functional form further commends it for future dynamical studies

  3. Finger-Shaped GelForce: Sensor for Measuring Surface Traction Fields for Robotic Hand.

    Science.gov (United States)

    Sato, K; Kamiyama, K; Kawakami, N; Tachi, S

    2010-01-01

    It is believed that the use of haptic sensors to measure the magnitude, direction, and distribution of a force will enable a robotic hand to perform dexterous operations. Therefore, we develop a new type of finger-shaped haptic sensor using GelForce technology. GelForce is a vision-based sensor that can be used to measure the distribution of force vectors, or surface traction fields. The simple structure of the GelForce enables us to develop a compact finger-shaped GelForce for the robotic hand. GelForce that is developed on the basis of an elastic theory can be used to calculate surface traction fields using a conversion equation. However, this conversion equation cannot be analytically solved when the elastic body of the sensor has a complicated shape such as the shape of a finger. Therefore, we propose an observational method and construct a prototype of the finger-shaped GelForce. By using this prototype, we evaluate the basic performance of the finger-shaped GelForce. Then, we conduct a field test by performing grasping operations using a robotic hand. The results of this test show that using the observational method, the finger-shaped GelForce can be successfully used in a robotic hand.

  4. External force back-projective composition and globally deformable optimization for 3-D coronary artery reconstruction

    International Nuclear Information System (INIS)

    Yang, Jian; Cong, Weijian; Fan, Jingfan; Liu, Yue; Wang, Yongtian; Chen, Yang

    2014-01-01

    The clinical value of the 3D reconstruction of a coronary artery is important for the diagnosis and intervention of cardiovascular diseases. This work proposes a method based on a deformable model for reconstructing coronary arteries from two monoplane angiographic images acquired from different angles. First, an external force back-projective composition model is developed to determine the external force, for which the force distributions in different views are back-projected to the 3D space and composited in the same coordinate system based on the perspective projection principle of x-ray imaging. The elasticity and bending forces are composited as an internal force to maintain the smoothness of the deformable curve. Second, the deformable curve evolves rapidly toward the true vascular centerlines in 3D space and angiographic images under the combination of internal and external forces. Third, densely matched correspondence among vessel centerlines is constructed using a curve alignment method. The bundle adjustment method is then utilized for the global optimization of the projection parameters and the 3D structures. The proposed method is validated on phantom data and routine angiographic images with consideration for space and re-projection image errors. Experimental results demonstrate the effectiveness and robustness of the proposed method for the reconstruction of coronary arteries from two monoplane angiographic images. The proposed method can achieve a mean space error of 0.564 mm and a mean re-projection error of 0.349 mm. (paper)

  5. The Mechanical Design Optimization of a High Field HTS Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Lalitha, SL; Gupta, RC

    2015-06-01

    This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.

  6. Optimal arm posture control and tendon traction forces of a coupled tendon-driven manipulator

    International Nuclear Information System (INIS)

    Ma, Shugen

    1997-01-01

    In this study, the optimum arm posture of a coupled tendon-driven multijoint manipulator arm (or CT Arm) at maximum payload output was derived and the corresponding tendon traction forces were also analyzed, during management of a heavy payload by the manipulator in a gravity environment. The CT Arm is special tendon traction transmission mechanism in which a pair of tendons used to drive a joint is pulled from base actuators via pulleys mounted on the base-side joints. This mechanism enables optimal utilization of the coupled drive function of tendon traction forces and thus enables the lightweight manipulator to exhibit large payload capability. The properties of the CT Arm mechanism are elucidated by the proposed optimal posture control scheme. Computer simulation was also executed to verify the validity of the proposed control scheme. (author)

  7. A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate

    Science.gov (United States)

    Zeman, Johannes; Uhlig, Frank; Smiatek, Jens; Holm, Christian

    2017-12-01

    We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.

  8. Occupational exposure to electromagnetic fields in the Polish Armed Forces.

    Science.gov (United States)

    Sobiech, Jaromir; Kieliszek, Jarosław; Puta, Robert; Bartczak, Dagmara; Stankiewicz, Wanda

    2017-06-19

    Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems). Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Portable radios emit the electric field strength between 20-80 V/m close to a human head. The manpack radio operator's exposure is 60-120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF) band radios, the electric field strength is between 7-30 V/m and inside the radar cabin it ranges between 9-20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7-15 V/m and the personnel of non-directional radio beacons - 100-150 V/m. In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% - only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4):565-577. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  9. Occupational exposure to electromagnetic fields in the Polish Armed Forces

    Directory of Open Access Journals (Sweden)

    Jarosław Kieliszek

    2017-08-01

    Full Text Available Objectives: Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Material and Methods: Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems. Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Results: Portable radios emit the electric field strength between 20–80 V/m close to a human head. The manpack radio operator’s exposure is 60–120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF band radios, the electric field strength is between 7–30 V/m and inside the radar cabin it ranges between 9–20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7–15 V/m and the personnel of non-directional radio beacons – 100–150 V/m. Conclusions: In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% – only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4:565–577

  10. An analytic approach to optimize tidal turbine fields

    Science.gov (United States)

    Pelz, P.; Metzler, M.

    2013-12-01

    Motivated by global warming due to CO2-emission various technologies for harvesting of energy from renewable sources are developed. Hydrokinetic turbines get applied to surface watercourse or tidal flow to gain electrical energy. Since the available power for hydrokinetic turbines is proportional to the projected cross section area, fields of turbines are installed to scale shaft power. Each hydrokinetic turbine of a field can be considered as a disk actuator. In [1], the first author derives the optimal operation point for hydropower in an open-channel. The present paper concerns about a 0-dimensional model of a disk-actuator in an open-channel flow with bypass, as a special case of [1]. Based on the energy equation, the continuity equation and the momentum balance an analytical approach is made to calculate the coefficient of performance for hydrokinetic turbines with bypass flow as function of the turbine head and the ratio of turbine width to channel width.

  11. Dynamics and Optimal Feet Force Distributions of a Realistic Four-legged Robot

    Directory of Open Access Journals (Sweden)

    Saurav Agarwal

    2012-08-01

    Full Text Available This paper presents a detailed dynamic modeling of realistic four-legged robot. The direct and inverse kinematic analysis for each leg has been considered in order to develop an overall kinematic model of the robot, when it follows a straight path. This study also aims to estimate optimal feet force distributions of the said robot, which is necessary for its real-time control. Three different approaches namely, minimization of norm of feet forces (approach 1, minimization of norm of joint torques (approach 2 and minimization of norm of joint power (approach 3 have been developed. Simulation result shows that approach 3 is more energy efficient foot force formulation than other two approaches. Lagrange-Euler formulation has been utilized to determine the joint torques. The developed dynamic models have been examined through computer simulation of continuous gait of the four-legged robot.

  12. Nanomaterials for in vivo imaging of mechanical forces and electrical fields

    Science.gov (United States)

    Mehlenbacher, Randy D.; Kolbl, Rea; Lay, Alice; Dionne, Jennifer A.

    2018-02-01

    Cellular signalling is governed in large part by mechanical forces and electromagnetic fields. Mechanical forces play a critical role in cell differentiation, tissue organization and diseases such as cancer and heart disease; electrical fields are essential for intercellular communication, muscle contraction, neural signalling and sensory perception. Therefore, quantifying a biological system's forces and fields is crucial for understanding physiology and disease pathology and for developing medical tools for repair and recovery. This Review highlights advances in sensing mechanical forces and electrical fields in vivo, focusing on optical probes. The emergence of biocompatible optical probes, such as genetically encoded voltage indicators, molecular rotors, fluorescent dyes, semiconducting nanoparticles, plasmonic nanoparticles and lanthanide-doped upconverting nanoparticles, offers exciting opportunities to push the limits of spatial and temporal resolution, stability, multi-modality and stimuli sensitivity in bioimaging. We further discuss the materials design principles behind these probes and compare them across various metrics to facilitate sensor selection. Finally, we examine which advances are necessary to fully unravel the role of mechanical forces and electrical fields in vivo, such as the ability to probe the vectorial nature of forces, the development of combined force and field sensors, and the design of efficient optical actuators.

  13. Van der Waals Forces and Photon-Less Effective Field Theory

    International Nuclear Information System (INIS)

    Arriola, E.R.

    2011-01-01

    In the ultra-cold regime Van der Waals forces between neutral atoms can be represented by short range effective interactions. We show that universal low energy scaling features of the underlying vdW long range force stemming from two photon exchange impose restrictions on an Effective Field Theory without explicit photons. The role of naively redundant operators, relevant to the definition of three body forces, is also analyzed. (author)

  14. Microscopic mean field approximation and beyond with the Gogny force

    Directory of Open Access Journals (Sweden)

    Péru S.

    2014-03-01

    Full Text Available Fully consistent axially-symmetric-deformed quasiparticle random phase approximation calculations have been performed with the D1S Gogny force. A brief review on the main results obtained in this approach is presented. After a reminder on the method and on the first results concerning giant resonances in deformed Mg and Si isotopes, the multipole responses up to octupole in the deformed and heavy nucleus 238U are discussed. In order to analyse soft dipole modes in exotic nuclei, the dipole responses have been studied in Ne isotopes and in N=16 isotopes, for which results are presented. In these nuclei, the QRPA results on the low lying 2+ states are compared to the 5-Dimensional Collective Hamiltonian ones.

  15. Sigma exchange in the nuclear force and effective field theory

    International Nuclear Information System (INIS)

    Donoghue, John F.

    2006-01-01

    In the phenomenological description of the nuclear interaction an important role is traditionally played by the exchange of a scalar I=0 meson, the sigma, of mass 500-600 MeV, which however is not seen clearly in the particle spectrum and which has a very ambiguous status in QCD. I show that a remarkably simple and reasonably controlled combination of ingredients can reproduce the features of this part of the nuclear force. The use of chiral perturbation theory calculations for two pion exchange supplemented by the Omnes function for pion rescattering suffices to reproduce the magnitude and shape of the exchange of a supposed σ particle. I also attempt to relate this description to the contact interaction that enters more modern descriptions of the internucleon interaction

  16. Force Structure Matters: The US Field Artillery in Operational Art

    Science.gov (United States)

    2015-05-23

    2003 (Fort Sill, OK: US Army Field Artillery Center, 2004), 62-63. 3 Sean Bateman and Steven Hady, “King of Battle Once Again: An Organizational...To What Ends Military Power?” International Security 4, no. 4 (Spring 1980): 3- 35. Bateman , Sean and Steven Hady. “King of Battle Once Again: An

  17. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Augustsson, Per; Bruus, Henrik

    2016-01-01

    , the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip....

  18. MAGNETO-FRICTIONAL MODELING OF CORONAL NONLINEAR FORCE-FREE FIELDS. I. TESTING WITH ANALYTIC SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keppens, R. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Xia, C. [Centre for mathematical Plasma-Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium); Valori, G., E-mail: guoyang@nju.edu.cn [University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2016-09-10

    We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov–Démoulin model. We compare different combinations of spatial and temporal discretizations, and find that the fourth-order central difference with a local Lax–Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper.

  19. Quantifying the Attractive Force Exerted on the Pinned Calcium Spiral Waves by Using the Adventive Field

    International Nuclear Information System (INIS)

    Qiu Kang; Tang Jun; Luo Jin-Ming; Ma Jun

    2013-01-01

    The cytosolic calcium system is inhomogenous because of the discrete and random distribution of ion channels on the ER membrane. It is well known that the spiral tip can be pinned by the heterogenous area, and the field can detach the spiral from the heterogeneity. We use the adventive field to counteract the attractive force exerting on the calcium spiral wave by the heterogeneity, then the strength of the adventive field is used to quantify the attractive force indirectly. Two factors determining the attractive force are studied. It is found that: (1) the attractive force sharply increases with size of the heterogeneity for small-size heterogeneity, whereas the force increases to a saturated value for large-size heterogeneity; (2) for large-size heterogeneity, the force almost remains constant unless the level of the heterogeneity vanishes, the force decreases to zero linearly and sharply, and for small-size heterogeneity, the force decreases successively with the level of the heterogeneity. Furthermore, it is found that the forces exist only when the spiral tip is very close to the heterogenous area. Our study may shed some light on the control or suppression of the calcium spiral wave

  20. Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important

  1. Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important.

  2. Rapid changes in corticospinal excitability during force field adaptation of human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Alain, S; Grey, Michael James

    2012-01-01

    measured changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in the tibialis anterior (TA) muscle before, during, and after subjects adapted to a force field applied to the ankle joint during treadmill walking. When the force field assisted dorsiflexion during...... the swing phase of the step cycle, subjects adapted by decreasing TA EMG activity. In contrast, when the force field resisted dorsiflexion, they increased TA EMG activity. After the force field was removed, normal EMG activity gradually returned over the next 5 min of walking. TA MEPs elicited in the early...... be explained by changes in background TA EMG activity. These effects seemed specific to walking, as similar changes in TA MEP were not seen when seated subjects were tested during static dorsiflexion. These observations suggest that the corticospinal tract contributes to the adaptation of walking...

  3. A new force field including charge directionality for TMAO in aqueous solution

    International Nuclear Information System (INIS)

    Usui, Kota; Nagata, Yuki; Hunger, Johannes; Bonn, Mischa; Sulpizi, Marialore

    2016-01-01

    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O TMAO ) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O TMAO to mimic the O TMAO lone pairs and we migrate the negative charge on the O TMAO to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.

  4. A new force field including charge directionality for TMAO in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Usui, Kota; Nagata, Yuki, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de; Hunger, Johannes; Bonn, Mischa [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Sulpizi, Marialore, E-mail: sulpizi@uni-mainz.de, E-mail: nagata@mpip-mainz.mpg.de [Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz (Germany)

    2016-08-14

    We propose a new force field for trimethylamine N-oxide (TMAO), which is designed to reproduce the long-lived and highly directional hydrogen bond between the TMAO oxygen (O{sub TMAO}) atom and surrounding water molecules. Based on the data obtained by ab initio molecular dynamics simulations, we introduce three dummy sites around O{sub TMAO} to mimic the O{sub TMAO} lone pairs and we migrate the negative charge on the O{sub TMAO} to the dummy sites. The force field model developed here improves both structural and dynamical properties of aqueous TMAO solutions. Moreover, it reproduces the experimentally observed dependence of viscosity upon increasing TMAO concentration quantitatively. The simple procedure of the force field construction makes it easy to implement in molecular dynamics simulation packages and makes it compatible with the existing biomolecular force fields. This paves the path for further investigation of protein-TMAO interaction in aqueous solutions.

  5. Force-Field Prediction of Materials Properties in Metal-Organic Frameworks

    Science.gov (United States)

    2016-01-01

    In this work, MOF bulk properties are evaluated and compared using several force fields on several well-studied MOFs, including IRMOF-1 (MOF-5), IRMOF-10, HKUST-1, and UiO-66. It is found that, surprisingly, UFF and DREIDING provide good values for the bulk modulus and linear thermal expansion coefficients for these materials, excluding those that they are not parametrized for. Force fields developed specifically for MOFs including UFF4MOF, BTW-FF, and the DWES force field are also found to provide accurate values for these materials’ properties. While we find that each force field offers a moderately good picture of these properties, noticeable deviations can be observed when looking at properties sensitive to framework vibrational modes. This observation is more pronounced upon the introduction of framework charges. PMID:28008758

  6. New approaches and solutions of the nonlinear force-free field

    International Nuclear Information System (INIS)

    Xie Baisong; Yin Xintao; Luo Xia

    2006-01-01

    New approaches to nonlinear force-free field equations are presented and new exact solutions are found analytically. Examples are given and some implications of the results to astrophysical solar plasmas as well as tokamak plasmas are discussed

  7. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    Science.gov (United States)

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  8. Matter waves from localized sources in homogeneous force fields

    OpenAIRE

    Kramer, Tobias

    2010-01-01

    We derive a scattering theory in constant potentials based on the energy-dependent Green function. This approach enables us to formulate modern experiments in terms of Green function. One application discussed is the photodetachment of electrons in external electromagnetic fields. In this case an intricate currentdensity distributions exists, that can be explained in terms of interfering classical trajectories. We also derive analytically the two-dimensional Green function in perpendicular el...

  9. The forced flow high field test facility SULTAN

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.

    1984-01-01

    The construction of the 8 Tesla, 1 m bore Test Facility SULTAN - I, a common action of ENEA (I-Frascati), ECN (NL-Petten) and SIN (CH-Villigen), is completed. Results on assembly, cooldown and the first operation of the whole system are presented. The SULTAN facility provides a wide range of capability of parameter variations (field, current, cooling) for the investigation of steady state performance and stability of technical superconductors unders nominal and limiting conditions

  10. Effects of Force Field Selection on the Computational Ranking of MOFs for CO2 Separations.

    Science.gov (United States)

    Dokur, Derya; Keskin, Seda

    2018-02-14

    Metal-organic frameworks (MOFs) have been considered as highly promising materials for adsorption-based CO 2 separations. The number of synthesized MOFs has been increasing very rapidly. High-throughput molecular simulations are very useful to screen large numbers of MOFs in order to identify the most promising adsorbents prior to extensive experimental studies. Results of molecular simulations depend on the force field used to define the interactions between gas molecules and MOFs. Choosing the appropriate force field for MOFs is essential to make reliable predictions about the materials' performance. In this work, we performed two sets of molecular simulations using the two widely used generic force fields, Dreiding and UFF, and obtained adsorption data of CO 2 /H 2 , CO 2 /N 2 , and CO 2 /CH 4 mixtures in 100 different MOF structures. Using this adsorption data, several adsorbent evaluation metrics including selectivity, working capacity, sorbent selection parameter, and percent regenerability were computed for each MOF. MOFs were then ranked based on these evaluation metrics, and top performing materials were identified. We then examined the sensitivity of the MOF rankings to the force field type. Our results showed that although there are significant quantitative differences between some adsorbent evaluation metrics computed using different force fields, rankings of the top MOF adsorbents for CO 2 separations are generally similar: 8, 8, and 9 out of the top 10 most selective MOFs were found to be identical in the ranking for CO 2 /H 2 , CO 2 /N 2 , and CO 2 /CH 4 separations using Dreiding and UFF. We finally suggested a force field factor depending on the energy parameters of atoms present in the MOFs to quantify the robustness of the simulation results to the force field selection. This easily computable factor will be highly useful to determine whether the results are sensitive to the force field type or not prior to performing computationally demanding

  11. Importance of the CMAP Correction to the CHARMM22 Protein Force Field: Dynamics of Hen Lysozyme

    OpenAIRE

    Buck, Matthias; Bouguet-Bonnet, Sabine; Pastor, Richard W.; MacKerell, Alexander D.

    2005-01-01

    The recently developed CMAP correction to the CHARMM22 force field (C22) is evaluated from 25 ns molecular dynamics simulations on hen lysozyme. Substantial deviations from experimental backbone root mean-square fluctuations and N-H NMR order parameters obtained in the C22 trajectories (especially in the loops) are eliminated by the CMAP correction. Thus, the C22/CMAP force field yields improved dynamical and structural properties of proteins in molecular dynamics simulations.

  12. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States); Bohac, Dave [NorthernSTAR, St. Paul, MN (United States); McAlpine, Jack [NorthernSTAR, St. Paul, MN (United States); Hewett, Martha [NorthernSTAR, St. Paul, MN (United States)

    2017-06-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called "combi" systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.

  13. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, Dave [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; McAlpine, Jake [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Hewett, Martha [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-06-23

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called 'combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.

  14. Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation

    International Nuclear Information System (INIS)

    Hegna, C.C.

    1997-08-01

    The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted

  15. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer’s peptides

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thanh Thuy; Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr; Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-05-28

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ{sub 16−22} and Aβ{sub 37−42} of the full length Aβ{sub 1−42} Alzheimer’s peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ{sub 16−22} dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ{sub 16−22} and the dimer and trimer of Aβ{sub 37−42}. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ{sub 16−22} decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ{sub 37−42} decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  16. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    Science.gov (United States)

    Fan, Zhaochuan; Koster, Rik S.; Wang, Shuaiwei; Fang, Changming; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; van Huis, Marijn A.; Vlugt, Thijs J. H.

    2014-12-01

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., "Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth," Nano Lett. 14, 3661-3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  17. A transferable force field for CdS-CdSe-PbS-PbSe solid systems

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhaochuan; Vlugt, Thijs J. H., E-mail: t.j.h.vlugt@tudelft.nl [Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft,The Netherlands (Netherlands); Koster, Rik S.; Fang, Changming; Huis, Marijn A. van [Debye Institute for Nanomaterials Science and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Wang, Shuaiwei [Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2014-12-28

    A transferable force field for the PbSe-CdSe solid system using the partially charged rigid ion model has been successfully developed and was used to study the cation exchange in PbSe-CdSe heteronanocrystals [A. O. Yalcin et al., “Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth,” Nano Lett. 14, 3661–3667 (2014)]. In this work, we extend this force field by including another two important binary semiconductors, PbS and CdS, and provide detailed information on the validation of this force field. The parameterization combines Bader charge analysis, empirical fitting, and ab initio energy surface fitting. When compared with experimental data and density functional theory calculations, it is shown that a wide range of physical properties of bulk PbS, PbSe, CdS, CdSe, and their mixed phases can be accurately reproduced using this force field. The choice of functional forms and parameterization strategy is demonstrated to be rational and effective. This transferable force field can be used in various studies on II-VI and IV-VI semiconductor materials consisting of CdS, CdSe, PbS, and PbSe. Here, we demonstrate the applicability of the force field model by molecular dynamics simulations whereby transformations are initiated by cation exchange.

  18. Forces on a current-carrying wire in a magnetic field: the macro-micro connection

    DEFF Research Database (Denmark)

    Avelar Sotomaior Karam, Ricardo; Kneubil, Fabiana; Robilotta, Manoel

    2017-01-01

    The classic problem of determining the force on a current-carrying wire in a magnetic field is critically analysed. A common explanation found in many introductory textbooks is to represent the force on the wire as the sum of the forces on charge carriers. In this approach neither the nature...... of the forces involved nor their application points are fully discussed. In this paper we provide an alternative microscopic explanation that is suitable for introductory electromagnetism courses at university level. By considering the wire as a superposition of a positive and a negative cylindrical charge...

  19. On a mean field game optimal control approach modeling fast exit scenarios in human crowds

    KAUST Repository

    Burger, Martin; Di Francesco, Marco; Markowich, Peter A.; Wolfram, Marie Therese

    2013-01-01

    The understanding of fast exit and evacuation situations in crowd motion research has received a lot of scientific interest in the last decades. Security issues in larger facilities, like shopping malls, sports centers, or festivals necessitate a better understanding of the major driving forces in crowd dynamics. In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. The model is formulated in the framework of mean field games and based on a parabolic optimal control problem. We consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position and velocity, the overall density of people, and the time to exit. This microscopic setup leads in a mean-field formulation to a nonlinear macroscopic optimal control problem, which raises challenging questions for the analysis and numerical simulations.We discuss different aspects of the mathematical modeling and illustrate them with various computational results. ©2013 IEEE.

  20. On a mean field game optimal control approach modeling fast exit scenarios in human crowds

    KAUST Repository

    Burger, Martin

    2013-12-01

    The understanding of fast exit and evacuation situations in crowd motion research has received a lot of scientific interest in the last decades. Security issues in larger facilities, like shopping malls, sports centers, or festivals necessitate a better understanding of the major driving forces in crowd dynamics. In this paper we present an optimal control approach modeling fast exit scenarios in pedestrian crowds. The model is formulated in the framework of mean field games and based on a parabolic optimal control problem. We consider the case of a large human crowd trying to exit a room as fast as possible. The motion of every pedestrian is determined by minimizing a cost functional, which depends on his/her position and velocity, the overall density of people, and the time to exit. This microscopic setup leads in a mean-field formulation to a nonlinear macroscopic optimal control problem, which raises challenging questions for the analysis and numerical simulations.We discuss different aspects of the mathematical modeling and illustrate them with various computational results. ©2013 IEEE.

  1. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi).

    Science.gov (United States)

    Palstra, Arjan P; Mes, Daan; Kusters, Kasper; Roques, Jonathan A C; Flik, Gert; Kloet, Kees; Blonk, Robbert J W

    2014-01-01

    Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (U opt in m s(-1) or body lengths s(-1), BL s(-1)) were assessed and then applied to determine the effects of long-term forced and sustained swimming at U opt on growth performance of juvenile yellowtail kingfish. U opt was quantified in Blazka-type swim-tunnels for 145, 206, and 311 mm juveniles resulting in values of: (1) 0.70 m s(-1) or 4.83 BL s(-1), (2) 0.82 m s(-1) or 3.25 BL s(-1), and (3) 0.85 m s(-1) or 2.73 BL s(-1). Combined with literature data from larger fish, a relation of U opt (BL s(-1)) = 234.07(BL)(-0.779) (R (2) = 0.9909) was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s(-1) ("swimmers") or allowed to perform spontaneous activity at low water flow ("resters") in a newly designed 3600 L oval flume (with flow created by an impeller driven by an electric motor), were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n = 23) showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n = 23). As both groups were fed equal rations, feed conversion ratio (FCR) for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31%) in the ventral aorta of swimmers vs. resters (44 ± 3 vs. 34 ± 3 mL min(-1), respectively, under anesthesia). Thus, growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  2. Optimization of temperature field of tobacco heat shrink machine

    Science.gov (United States)

    Yang, Xudong; Yang, Hai; Sun, Dong; Xu, Mingyang

    2018-06-01

    A company currently shrinking machine in the course of the film shrinkage is not compact, uneven temperature, resulting in poor quality of the shrinkage of the surface film. To solve this problem, the simulation and optimization of the temperature field are performed by using the k-epsilon turbulence model and the MRF model in fluent. The simulation results show that after the mesh screen structure is installed at the suction inlet of the centrifugal fan, the suction resistance of the fan can be increased and the eddy current intensity caused by the high-speed rotation of the fan can be improved, so that the internal temperature continuity of the heat shrinkable machine is Stronger.

  3. What SCADA systems can offer to optimize field operations

    International Nuclear Information System (INIS)

    McLean, D.J.

    1997-01-01

    A new technology developed by Kenomic Controls Ltd. of Calgary was designed to solve some of the problems associated with producing gas wells with high gas to liquids ratios. The rationale and the system architecture of the SCADA (Supervisory Control and Data Acquisition) system were described. The most common application of SCADA is the Electronic Flow Measurement (EFM) installation using a solar or thermo-electric generator as a power source for the local electronics. Benefits that the SCADA system can provide to producing fields such as increased revenue, decreased operating costs, decreased fixed capital and working capital requirements, the planning and implementation strategies for SCADA were outlined. A case history of a gas well production optimization system in the Pierceland area of northwest Saskatchewan was provided as an illustrative example. 9 figs

  4. Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem

    Directory of Open Access Journals (Sweden)

    Roshan Sharma

    2012-01-01

    Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.

  5. Gravitomagnetic field of the universe and Coriolis force on the rotating Earth

    International Nuclear Information System (INIS)

    Veto, B

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe-deduced from a simple model-exerts a gravitomagnetic Lorentz force on moving bodies, a force parallel to and with comparable strength to the Coriolis force observed on the rotating Earth. It seems after simple considerations that the Coriolis force happens to be the gravitomagnetic Lorentz force exerted by the mass of a black hole universe. The description of the phenomenon is simpler using the gravitomagnetic approach than the standard formulation of general relativity, so the method relying on gravitomagnetism is advisable in lectures intended for master's degree level physics students and advanced undergraduates.

  6. Task-space separation principle: a force-field approach to motion planning for redundant manipulators.

    Science.gov (United States)

    Tommasino, Paolo; Campolo, Domenico

    2017-02-03

    In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.

  7. Probing Field Distributions on Waveguide Structures with an Atomic Force/Photon Scanning Tunneling Microscope

    NARCIS (Netherlands)

    Borgonjen, E.G.; Borgonjen, E.G.; Moers, M.H.P.; Moers, M.H.P.; Ruiter, A.G.T.; van Hulst, N.F.

    1995-01-01

    A 'stand-alone' Photon Scanning Tunneling Microscope combined with an Atomic force Microscope, using a micro-fabricated silicon-nitride probe, is applied to the imaging of field distribution in integrated optical ridge waveguides. The electric field on the waveguide is locally probed by coupling to

  8. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  9. Study on optimization design of superconducting magnet for magnetic force assisted drug delivery system

    International Nuclear Information System (INIS)

    Fukui, S.; Abe, R.; Ogawa, J.; Oka, T.; Yamaguchi, M.; Sato, T.; Imaizumi, H.

    2007-01-01

    Analytical study on the design of the superconducting magnet for the magnetic force assisted drug delivery system is presented in this paper. The necessary magnetic field condition to reside the magnetic drug particle in the blood vessels is determined by analyzing the particle motion in the blood vessel. The design procedure of the superconducting magnet for the M-DDS is presented and some case studies are conducted. The analytical results show that the superconducting magnet to satisfy the magnetic field conduction for the M-DDS is practically feasible

  10. Optimal sample preparation for nanoparticle metrology (statistical size measurements) using atomic force microscopy

    International Nuclear Information System (INIS)

    Hoo, Christopher M.; Doan, Trang; Starostin, Natasha; West, Paul E.; Mecartney, Martha L.

    2010-01-01

    Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2-5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.

  11. Optimized design of micromachined electric field mills to maximize electrostatic field sensitivity

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2016-07-01

    Full Text Available This paper describes the design optimization of a micromachined electric field mill, in relation to maximizing its output signal. The cases studied are for a perforated electrically grounded shutter vibrating laterally over sensing electrodes. It is shown that when modeling the output signal of the sensor, the differential charge on the sense electrodes when exposed to vs. visibly shielded from the incident electric field must be considered. Parametric studies of device dimensions show that the shutter thickness and its spacing from the underlying electrodes should be minimized as these parameters very strongly affect the MEFM signal. Exploration of the shutter perforation size and sense electrode width indicate that the best MEFM design is one where shutter perforation widths are a few times larger than the sense electrode widths. Keywords: MEFM, Finite element method, Electric field measurement, MEMS, Micromachining

  12. OPTIMIZATION OF FINANCIAL PERSONNEL NUMBER IN ARMED FORCES OF THE REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    A. V. Bolshakova

    2014-01-01

    Full Text Available The paper considers a problem pertaining to reduction of the Armed Forces of the Republic of Belarus and necessity to carry out economically reasonable reforms optimizing strength of financial personnel with the purpose to decrease its number but without undermining financial and operational activities of the Armed Forces as a whole. It has been proposed to optimize strength of financial personnel in the Armed Forces while executing organizational staff transformations such as introduction of a centralized accounting system for service personnel by an example of the Ministry of Defense of the Russian Federation.Normative for financial personnel strength of the supposed unified financial centre which is involved in accounting recordings on salary and other payments has been calculated on the basis of inter-branch standards. While taking as an example a conventional organization “B” with staff strength which is equal to the strength of the Armed Forces of the Republic of Belarus the possible efficiency in introduction of the centralized accounting system for service personnel has been determined in the paper. According to represented calculations reduction of financial personnel dealing with accounting recordings on salary and other payments in the whole organization “B” can constitute up to 60 persons with more than 200 branches which are carrying out independent payment accounting for personnel concerned.Dependence of strength normative on number of financial bodies, percentage of personnel receiving payments through a unified financial centre and concentration of financial and economic document circulation has been determined in the paper. It has been pointed out that it is not sufficient to determine quantitative indices in order to ensure an objective reflection of the efficiency of possible introduction of the centralized accounting system for service personnel in the Armed Forces. In order to obtain complete information it is

  13. Design optimization and uncertainty quantification for aeromechanics forced response of a turbomachinery blade

    Science.gov (United States)

    Modgil, Girish A.

    Gas turbine engines for aerospace applications have evolved dramatically over the last 50 years through the constant pursuit for better specific fuel consumption, higher thrust-to-weight ratio, lower noise and emissions all while maintaining reliability and affordability. An important step in enabling these improvements is a forced response aeromechanics analysis involving structural dynamics and aerodynamics of the turbine. It is well documented that forced response vibration is a very critical problem in aircraft engine design, causing High Cycle Fatigue (HCF). Pushing the envelope on engine design has led to increased forced response problems and subsequently an increased risk of HCF failure. Forced response analysis is used to assess design feasibility of turbine blades for HCF using a material limit boundary set by the Goodman Diagram envelope that combines the effects of steady and vibratory stresses. Forced response analysis is computationally expensive, time consuming and requires multi-domain experts to finalize a result. As a consequence, high-fidelity aeromechanics analysis is performed deterministically and is usually done at the end of the blade design process when it is very costly to make significant changes to geometry or aerodynamic design. To address uncertainties in the system (engine operating point, temperature distribution, mistuning, etc.) and variability in material properties, designers apply conservative safety factors in the traditional deterministic approach, which leads to bulky designs. Moreover, using a deterministic approach does not provide a calculated risk of HCF failure. This thesis describes a process that begins with the optimal aerodynamic design of a turbomachinery blade developed using surrogate models of high-fidelity analyses. The resulting optimal blade undergoes probabilistic evaluation to generate aeromechanics results that provide a calculated likelihood of failure from HCF. An existing Rolls-Royce High Work Single

  14. Physical Limitations of Empirical Field Models: Force Balance and Plasma Pressure

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.

    2002-01-01

    In this paper, we study whether the magnetic field of the T96 empirical model can be in force balance with an isotropic plasma pressure distribution. Using the field of T96, we obtain values for the pressure P by solving a Poisson-type equation (gradient) 2 P = (gradient) · (J x B) in the equatorial plane, and 1-D profiles on the Sun-Earth axis by integrating (gradient)P = J x B. We work in a flux coordinate system in which the magnetic field is expressed in terms of Euler potentials. Our results lead to the conclusion that the T96 model field cannot be in equilibrium with an isotropic pressure. We also analyze in detail the computation of Birkeland currents using the Vasyliunas relation and the T96 field, which yields unphysical results, again indicating the lack of force balance in the empirical model. The underlying reason for the force imbalance is likely the fact that the derivatives of the least-square fitted model B are not accurate predictions of the actual magnetospheric field derivatives. Finally, we discuss a possible solution to the problem of lack of force balance in empirical field models

  15. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.

    Science.gov (United States)

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2013-07-26

    This study aims to clarify the mechanism of generating unsteady hydrodynamic forces acting on a hand during swimming in order to directly measure the forces, pressure distribution, and flow field around the hand by using a robotic arm and particle image velocimetry (PIV). The robotic arm consisted of the trunk, shoulder, upper arm, forearm, and hand, and it was independently computer controllable in five degrees of freedom. The elbow-joint angle of the robotic arm was fixed at 90°, and the arm was moved in semicircles around the shoulder joint in a plane perpendicular to the water surface. Two-component PIV was used for flow visualization around the hand. The data of the forces and pressure acting on the hand were sampled at 200Hz and stored on a PC. When the maximum resultant force acting on the hand was observed, a pair of counter-rotating vortices appeared on the dorsal surface of the hand. A vortex attached to the hand increased the flow velocity, which led to decreased surface pressure, increasing the hydrodynamic forces. This phenomenon is known as the unsteady mechanism of force generation. We found that the drag force was 72% greater and the lift force was 4.8 times greater than the values estimated under steady flow conditions. Therefore, it is presumable that swimmers receive the benefits of this unsteady hydrodynamic force. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Microscopic derivation of the force on a dielectric fluid in an electromagnetic field

    International Nuclear Information System (INIS)

    Lai, H.M.; Suen, W.M.; Young, K.

    1982-01-01

    The force acting on a Clausius-Mossotti fluid in an electromagnetic field is evaluated microscopically. Owing to the modification of the two-particle density by the electric field, an additional mechanical force Δf/sup( M/) is found. When this is added to the electrical force f/sup( E/), the total force in the static case becomes identical to that deduced macroscopically by Helmholtz. The analysis is extended to various time-dependent cases, and it is pointed out that Δf/sup( M/) essentially assumes its static value on time scales longer than T/sub c/, the relaxation time of the two-particle density, but is otherwise negligibly small. Thus Peierls's theory of the momentum of light is valid only for pulses much shorter than T/sub c/; the necessary correction due to Δf/sup( M/) in other cases is given and discussed

  17. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    Science.gov (United States)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  18. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

    Science.gov (United States)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  19. Field emission from optimized structure of carbon nanotube field emitter array

    International Nuclear Information System (INIS)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-01-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm"2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  20. Field emission from optimized structure of carbon nanotube field emitter array

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); Noguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kato, S. [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2016-04-07

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  1. The Röntgen interaction and forces on dipoles in time-modulated optical fields

    Science.gov (United States)

    Sonnleitner, Matthias; Barnett, Stephen M.

    2017-12-01

    The Röntgen term is an often neglected contribution to the interaction between an atom and an electromagnetic field in the electric dipole approximation. In this work we discuss how this interaction term leads to a difference between the kinetic and canonical momentum of an atom which, in turn, leads to surprising radiation forces acting on the atom. We use a number of examples to explore the main features of this interaction, namely forces acting against the expected dipole force or accelerations perpendicular to the beam propagation axis.

  2. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  3. Optimal information transfer in enzymatic networks: A field theoretic formulation

    Science.gov (United States)

    Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.

    2017-07-01

    Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in

  4. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  5. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.

    Science.gov (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui

    2016-03-05

    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. A levitation force and magnetic field distribution measurement system in three dimensions

    International Nuclear Information System (INIS)

    Yang, W.M.; Chao, X.X.; Shu, Z.B.; Zhu, S.H.; Wu, X.L.; Bian, X.B.; Liu, P.

    2006-01-01

    A levitation force and magnetic field distribution measurement system in three dimension has been designed and constructed, which can be used for the levitation force measurement between a superconductor and a magnet, or magnet to magnet in three dimensions; and for the measurement of magnetic field distribution in three dimensions according to your need in space. It can also give out the dynamical changing result of magnetic field density with time during levitation force measurement. If we change the sensor of the detector of the measurement system, it also can be used for other kinds of measurement of physical properties. It is a good device for the measurement of magnetic properties of materials. In addition the device can also be used to work at carving in three dimensions

  7. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    Science.gov (United States)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  8. ANLIZE: a molecular mechanics force field visualization tool and its application to 18-crown-6.

    Science.gov (United States)

    Stolworthy, L D; Shirts, R B

    1997-03-01

    We describe a software tool that allows one to visualize and analyze the importance of each individual steric interaction in a molecular mechanics force field. ANLIZE is presently implemented for the Dreiding force field for use with the Cerius2 software package, but could be implemented in any molecular mechanics package with a graphical user interface. ANLIZE calculates individual interactions in the force field, sorts them by size, and displays them in several ways from a menu of choices. This allows the user to scan through selected interactions to visualize which interactions are the primary determinants of preferred conformations. The features of ANLIZE are illustrated using 18-crown-6 as an example, and the factors governing conformational preference in 18-crown-6 are demonstrated. Users of molecular mechanics packages are encouraged to demand this functionality from commercial software producers.

  9. Reactive Force Field for Liquid Hydrazoic Acid with Applications to Detonation Chemistry

    Science.gov (United States)

    Furman, David; Dubnikova, Faina; van Duin, Adri; Zeiri, Yehuda; Kosloff, Ronnie

    The development of a reactive force field (ReaxFF formalism) for Hydrazoic acid (HN3), a highly sensitive liquid energetic material, is reported. The force field accurately reproduces results of density functional theory (DFT) calculations. The quality and performance of the force field are examined by detailed comparison with DFT calculations related to uni, bi and trimolecular thermal decomposition routes. Reactive molecular dynamics (RMD) simulations are performed to reveal the initial chemical events governing the detonation chemistry of liquid HN3. The outcome of these simulations compares very well with recent results of tight-binding DFT molecular dynamics and thermodynamic calculations. Based on our RMD simulations, predictions were made for the activation energies and volumes in a broad range of temperatures and initial material compressions. Work Supported by The Center of Excellence for Explosives Detection, Mitigation and Response, Department of Homeland Security.

  10. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    Science.gov (United States)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  11. Optimizing fracture and completion design in the Westerose field

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Norman, S. [Missouri Univ., Rolla, MO (United States); Griffiths, E.; Barnhart, W. [Pan-Canadian Petroleum Ltd., Calgary, AB (Canada); Aunger, D.; Kenny, L.; Halvaci, M.

    1998-12-31

    An experimental study was conducted to determine the feasibility of developing additional gas reserves in the tight sands located between the main bar trends in the Westerose gas field, located 75 km south of Edmonton, Alberta. As part of the study, fracturing and completion alternatives in the Glauconitic `bar` and `interbar` sands were analyzed and compared. Optimal fracture designs for vertical wells were determined for each type of sand. Vertical well performance was compared to stimulated and unstimulated horizontal wells drilled either parallel or perpendicular to the minimum in-situ stress. Results indicated that in-situ permeabilities in the interbar sands were lower than anticipated. It was also shown that over the permeability ranges studied, predicted rates matched actual rates for both vertical fractured and multifractured horizontal wells, suggesting that analytical models can be used to assess anticipated well performance. A further conclusion drawn from the study was that by stimulating a wide variety of permeability ranges, well orientations, anisotropy, fracture orientations and completion options can be determined. 12 refs., 7 tabs., 4 figs.

  12. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.

    Science.gov (United States)

    Vanommeslaeghe, K; MacKerell, A D

    2012-12-21

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters, and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF's complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/ .

  13. Forced sustained swimming exercise at optimal speed enhances growth of juvenile yellowtail kingfish (Seriola lalandi

    Directory of Open Access Journals (Sweden)

    Arjan P. Palstra

    2015-01-01

    Full Text Available Swimming exercise at optimal speed may optimize growth performance of yellowtail kingfish in a recirculating aquaculture system. Therefore, optimal swimming speeds (Uopt in m s-1 or body lengths s-1, BL s-1 were assessed and then applied to determine the effects of long-term forced and sustained swimming at Uopt on growth performance of juvenile yellowtail kingfish. Uopt was quantified in Blazka-type swim-tunnels for 145 mm, 206 mm and 311 mm juveniles resulting in values of: 1 0.70 m s-1 or 4.83 BL s-1, 2 0.82 m s-1 or 3.25 BL s-1 and 3 0.85 m s-1 or 2.73 BL s-1. Combined with literature data from larger fish, a relation of Uopt (BL s-1 = 234.07(BL-0.779 (R2= 0.9909 was established for this species. Yellowtail kingfish, either forced to perform sustained swimming exercise at an optimal speed of 2.46 BL s-1 (‘swimmers’ or allowed to perform spontaneous activity at low water flow (‘resters’ in a newly designed 3,600 L oval flume (with flow created by an impeller driven by an electric motor, were then compared. At the start of the experiment, ten fish were sampled representing the initial condition. After 18 days, swimmers (n= 23 showed a 92% greater increase in BL and 46% greater increase in BW as compared to resters (n= 23. As both groups were fed equal rations, feed conversion ratio (FCR for swimmers was 1.21 vs. 1.74 for resters. Doppler ultrasound imaging showed a statistically significant higher blood flow (31% in the ventral aorta of swimmers vs. resters (44 ± 3 mL min-1 vs. 34 ± 3 mL min-1, respectively, under anesthesia. Thus growth performance can be rapidly improved by optimal swimming, without larger feed investments.

  14. Development of a reactive force field for iron-oxyhydroxide systems.

    Science.gov (United States)

    Aryanpour, Masoud; van Duin, Adri C T; Kubicki, James D

    2010-06-03

    We adopt a classical force field methodology, ReaxFF, which is able to reproduce chemical reactions, and train its parameters for the thermodynamics of iron oxides as well as energetics of a few iron redox reactions. Two parametrizations are developed, and their results are compared with quantum calculations or experimental measurements. In addition to training, two test cases are considered: the lattice parameters of a selected set of iron minerals, and the molecular dynamics simulation of a model for alpha-FeOOH (goethite)-water interaction. Reliability and limitations of the developed force fields in predicting structure and energetics are discussed.

  15. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    Science.gov (United States)

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples

  16. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Huyer, S [Univ. of Colorado, Boulder, CO (US)

    1993-04-01

    The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

  17. Development of devices for self-injection: using tribological analysis to optimize injection force

    Directory of Open Access Journals (Sweden)

    Lange J

    2016-05-01

    Full Text Available Jakob Lange, Leos Urbanek, Stefan BurrenYpsomed Delivery Systems, Ypsomed AG, Burgdorf, Switzerland Abstract: This article describes the use of analytical models and physical measurements to characterize and optimize the tribological behavior of pen injectors for self-administration of biopharmaceuticals. One of the main performance attributes of this kind of device is its efficiency in transmitting the external force applied by the user on to the cartridge inside the pen in order to effectuate an injection. This injection force characteristic is heavily influenced by the frictional properties of the polymeric materials employed in the mechanism. Standard friction tests are available for characterizing candidate materials, but they use geometries and conditions far removed from the actual situation inside a pen injector and thus do not always generate relevant data. A new test procedure, allowing the direct measurement of the coefficient of friction between two key parts of a pen injector mechanism using real parts under simulated use conditions, is presented. In addition to the absolute level of friction, the test method provides information on expected evolution of friction over lifetime as well as on expected consistency between individual devices. Paired with an analytical model of the pen mechanism, the frictional data allow the expected overall injection system force efficiency to be estimated. The test method and analytical model are applied to a range of polymer combinations with different kinds of lubrication. It is found that material combinations used without lubrication generally have unsatisfactory performance, that the use of silicone-based internal lubricating additives improves performance, and that the best results can be achieved with external silicone-based lubricants. Polytetrafluoroethylene-based internal lubrication and external lubrication are also evaluated but found to provide only limited benefits unless used in

  18. Fringing field optimization of hemispherical deflector analyzers using BEM and FDM

    Energy Technology Data Exchange (ETDEWEB)

    Sise, Omer, E-mail: omersise@aku.edu.t [Department of Physics, Science and Arts Faculty, Afyon Kocatepe University, 03200 Afyonkarahisar (Turkey); Ulu, Melike; Dogan, Mevlut [Department of Physics, Science and Arts Faculty, Afyon Kocatepe University, 03200 Afyonkarahisar (Turkey); Martinez, Genoveva [Department Fisica Aplicada III, Fac. de Fisica, UCM 28040-Madrid (Spain); Zouros, Theo J.M. [Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete (Greece); TANDEM Accelerator Laboratory, Institute of Nuclear Physics, NCSR ' Demokritos' , 153.10 Aghia Paraskevi, Athens (Greece)

    2010-02-15

    In this paper we present numerical modeling results for fringing field optimization of hemispherical deflector analyzers (HDAs), simulated using boundary-element and finite-difference numerical methods. Optimization of the fringing field aberrations of HDAs is performed by using a biased optical axis and an optimized entry position offset (paracentric) from the center position used in conventional HDAs. The described optimization achieves first-order focusing thus also further improving the energy resolution of HDAs.

  19. Grip Force Adjustments Reflect Prediction of Dynamic Consequences in Varying Gravitoinertial Fields

    Directory of Open Access Journals (Sweden)

    Olivier White

    2018-02-01

    Full Text Available Humans have a remarkable ability to adjust the way they manipulate tools through a genuine regulation of grip force according to the task. However, rapid changes in the dynamical context may challenge this skill, as shown in many experimental approaches. Most experiments adopt perturbation paradigms that affect only one sensory modality. We hypothesize that very fast adaptation can occur if coherent information from multiple sensory modalities is provided to the central nervous system. Here, we test whether participants can switch between different and never experienced dynamical environments induced by centrifugation of the body. Seven participants lifted an object four times in a row successively in 1, 1.5, 2, 2.5, 2, 1.5, and 1 g. We continuously measured grip force, load force and the gravitoinertial acceleration that was aligned with body axis (perceived gravity. Participants adopted stereotyped grasping movements immediately upon entry in a new environment and needed only one trial to adapt grip forces to a stable performance in each new gravity environment. This result was underlined by good correlations between grip and load forces in the first trial. Participants predictively applied larger grip forces when they expected increasing gravity steps. They also decreased grip force when they expected decreasing gravity steps, but not as much as they could, indicating imperfect anticipation in that condition. The participants' performance could rather be explained by a combination of successful scaling of grip force according to gravity changes and a separate safety factor. The data suggest that in highly unfamiliar dynamic environments, grip force regulation is characterized by a combination of a successful anticipation of the experienced environmental condition, a safety factor reflecting strategic response to uncertainties about the environment and rapid feedback mechanisms to optimize performance under constant conditions.

  20. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2011-01-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables--the medium, the quantum field, and the atom's internal degrees of freedom, in that order--to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom's internal degrees of freedom results in an equation of motion for the atom's center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom's motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.

  1. Steady state models for filamentary plasma structures associated with force free magnetic fields

    International Nuclear Information System (INIS)

    Marklund, G.

    1978-05-01

    This paper presents a model for filamentary plasma structures associated with force-free magnetic fields. A homogenous electric field parallel to the symmetry axis of the magnetic field is assumed. Under the influence of these fields, the plasma will drift radially inwards resulting in an accumulation of plasma in the central region. We assume recombination losses to keep the central plasma density at a finite value, and the recombined plasma i.e. the neutrals to diffuse radially outwards. Plasma density and some neutral gas density distributions for a steady state situation are calculated for various cases

  2. An analysis of the energetic reward offered by field bean (Vicia faba) flowers: Nectar, pollen, and operative force.

    Science.gov (United States)

    Bailes, Emily J; Pattrick, Jonathan G; Glover, Beverley J

    2018-03-01

    Global consumption of crops with a yield that is dependent on animal pollinators is growing, with greater areas planted each year. However, the floral traits that influence pollinator visitation are not usually the focus of breeding programmes, and therefore, it is likely that yield improvements may be made by optimizing floral traits to enhance pollinator visitation rates. We investigated the variation present in the floral reward of the bee-pollinated crop Vicia faba (field bean). We examined the genetic potential for breeding flowers with a greater reward into current commercial varieties and used bee behavioral experiments to gain insight into the optimal nectar concentration to maximize bee preference. There was a large range of variation in the amount of pollen and nectar reward of flowers in the genotypes investigated. Bee behavioral experiments using nectar sugar concentrations found in V. faba lines suggest that Bombus terrestris prefers 55% w/w sugar solution over 40% w/w, but has no preference between 55% w/w and 68% w/w sugar solution. We provide a first indication of the force required to open V. faba flowers. Our results provide a valuable starting point toward breeding for varieties with optimized floral reward. Field studies are now needed to verify whether the genetic potential for breeding more rewarding flowers can translate into higher yield and yield stability.

  3. Leveraging intellectual capital through Lewin's Force Field Analysis: The case of software development companies

    Directory of Open Access Journals (Sweden)

    Alexandru Capatina

    2017-09-01

    Full Text Available This article presents an original conceptual framework for the strategic management of intellectual capital assets in software development companies. The framework is based on Lewin's Force Field Analysis. The framework makes it possible to assess software company managers’ opinions regarding the way driving and restraining forces affect the pillars of intellectual capital. The capacity to adapt to change is vital for companies in knowledge-intensive industries. Accordingly, this study examined a sample of 74 Romanian software development companies. The aim was to help companies benefit from managing the driving and restraining forces acting upon the pillars of intellectual capital (human, structural, and relational. The effects of the driving forces, quantified by PathMaker software's Force Field Tool, were observed to be greater than the restraining forces for each pillar of intellectual capital. This paper contributes by showing the explanatory power of this framework. The framework thus offers a tool that helps managers drive change in their organizations through effective intellectual capital management. Furthermore, this article describes how to encourage the implementation of changes that create value for software development companies.

  4. Asymptotic forms for the energy of force-free magnetic field ion figurations of translational symmetry

    Science.gov (United States)

    Sturrock, P. A.; Antiochos, S. K.; Klinchuk, J. A.; Roumeliotis, G.

    1994-01-01

    It is known from computer calculations that if a force-free magnetic field configuration is stressed progressively by footpoint displacements, the configuration expands and approaches the open configuration with the same surface flux distribution and the energy of the field increases progressively. For configurations of translationalsymmetry, it has been found empirically that the energy tends asymptotically to a certain functional form. It is here shown that analysis of a simple model of the asymptotic form of force-free fields of translational symmetry leads to and therefore justifies this functional form. According to this model, the field evolves in a well-behaved manner with no indication of instability or loss of equilibrium.

  5. Benchmarking fully analytic DFT force fields for vibrational spectroscopy: A study on halogenated compounds

    Science.gov (United States)

    Pietropolli Charmet, Andrea; Cornaton, Yann

    2018-05-01

    This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.

  6. Constrained optimization for position calibration of an NMR field camera.

    Science.gov (United States)

    Chang, Paul; Nassirpour, Sahar; Eschelbach, Martin; Scheffler, Klaus; Henning, Anke

    2018-07-01

    Knowledge of the positions of field probes in an NMR field camera is necessary for monitoring the B 0 field. The typical method of estimating these positions is by switching the gradients with known strengths and calculating the positions using the phases of the FIDs. We investigated improving the accuracy of estimating the probe positions and analyzed the effect of inaccurate estimations on field monitoring. The field probe positions were estimated by 1) assuming ideal gradient fields, 2) using measured gradient fields (including nonlinearities), and 3) using measured gradient fields with relative position constraints. The fields measured with the NMR field camera were compared to fields acquired using a dual-echo gradient recalled echo B 0 mapping sequence. Comparisons were done for shim fields from second- to fourth-order shim terms. The position estimation was the most accurate when relative position constraints were used in conjunction with measured (nonlinear) gradient fields. The effect of more accurate position estimates was seen when compared to fields measured using a B 0 mapping sequence (up to 10%-15% more accurate for some shim fields). The models acquired from the field camera are sensitive to noise due to the low number of spatial sample points. Position estimation of field probes in an NMR camera can be improved using relative position constraints and nonlinear gradient fields. Magn Reson Med 80:380-390, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Analysis of force characteristics of a superconducting ball in a given magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianhua, E-mail: liujianhua@mail.iee.ac.c [Institute of Electrical Engineering, Chinese Academy of Sciences, No. 6 Beiertiao, Zhongguancun, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Wang Qiuliang; Yan Luguang [Institute of Electrical Engineering, Chinese Academy of Sciences, No. 6 Beiertiao, Zhongguancun, Beijing 100190 (China)

    2009-07-01

    The electromagnetic force characteristics along Z direction of a superconducting ball levitated by spherical coils with shaping blocks are calculated based on a semi-analytical method. The calculating results from the semi-analytical method are compared with the finite element analysis (FEA) method through a calculation example. The method can be applied to further analysis of dynamic characteristics and parameter optimization in the suspension system.

  8. Confinement of plasma along shaped open magnetic fields from the centrifugal force of supersonic plasma rotation.

    Science.gov (United States)

    Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A

    2010-08-20

    Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.

  9. Force field inside the void in complex plasmas under microgravity conditions

    International Nuclear Information System (INIS)

    Kretschmer, M.; Khrapak, S.A.; Zhdanov, S.K.; Thomas, H.M.; Morfill, G.E.; Fortov, V.E.; Lipaev, A.M.; Molotkov, V.I.; Ivanov, A.I.; Turin, M.V.

    2005-01-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the 'trampoline effect'). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force

  10. Optimization and Control for Sharing of the ITER Vacuum Vessel Support Force

    International Nuclear Information System (INIS)

    Rozov, V.

    2006-01-01

    The ITER Vacuum Vessel (VV) is a complex body supported in 9 points below lower ports by restraints in the radial, toroidal and vertical directions. The applied load produces a combination of reaction forces, which must be consistent with the design of the supported object. A reasonable sharing of the load among the supports is important for overall performance of the structure and helps to avoid excessive stress at the joints between the VV and lower ports. Optimization has been performed of the sharing of the total horizontal load applied to the ITER VV between radial and toroidal restraints. An effective method of finding simple parametric relationships between the design parameters of supports and the balance of the reaction forces has been developed. This allows purely analytical prediction of the sharing of the reaction forces for any desired stiffness of the applied restraints with no need for finite element structural analysis, and also allows control of the sharing by a proper selection of parameters of the supports. The method is based on the use of elementary mono-directional schemes - equivalent oscillators built for the main global modes, in static problems. The types of schemes and parameters of their members, related to the a-priori unknown stiffness of the VV structure under the supports, are found from consideration of the free vibration problem for the object using a 3D model of the VV with mass simulators - a series of simple eigenvalue analyses with variation of stiffness of the external restraints, that demands quite moderate computational resources. The equivalent schemes for the main modes not only enable simple one-line analytical calculation of the natural frequencies at any desired stiffness of the supports, but also indicate the contributions and balance of stiffness, to be considered in the static problem. The results of assessments of the reaction forces by direct static structural analyses for several cases are in agreement with values

  11. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  12. Atomic force and scanning near-field optical microscopy study of carbocyanine dye J-aggregates

    Czech Academy of Sciences Publication Activity Database

    Prokhorov, V.V.; Petrova, M.G.; Kovaleva, Natalia; Demikhov, E.I.

    2014-01-01

    Roč. 10, č. 5 (2014), s. 700-704 ISSN 1573-4137 Institutional support: RVO:68378271 Keywords : carbocyanine dye * elementary fibri * high-resolution atomic force microscopy * J-aggregate * probe microscopy * scanning near-field optical microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.096, year: 2014

  13. Three-dimensional computation of magnetic fields and Lorentz forces of an LHC dipole magnet

    International Nuclear Information System (INIS)

    Daum, C.; Avest, D. ter

    1989-07-01

    Magnetic fields and Lorentz forces of an LHC dipole magnet are calculated using the method of image currents to represent the effect of the iron shield. The calculation is performed for coils of finite length using a parametrization for coil heads of constant perimeter. A comparison with calculations based on POISSON and TOSCA is made. (author). 5 refs.; 31 figs.; 6 tabs

  14. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Adaptation of multi-joint balance coordination to whole body force fields

    NARCIS (Netherlands)

    Engelhart, Denise; Schouten, Alfred Christiaan; Pasma, Jantsje; Aarts, Ronald G.K.M.; Pasma, J.; Meskers, Carel; Maier, Andrea; van der Kooij, Herman

    2014-01-01

    Background and aim: The ankles and the hips play an important role in standing balance. Multi-joint coordination adapts with task, the magnitude and type of disturbance [1]. Arm studies show that postural responses are highly dependent on externally applied force fields [2]. Our aim is to study how

  16. Force-field dependence of the conformational properties of ,-dimethoxypolyethylene glycol

    NARCIS (Netherlands)

    Winger, Moritz; de Vries, Alex H.; van Gunsteren, Wilfred F.

    2009-01-01

    A molecular dynamics (MD) study of ,-dimethoxypolyethylene glycol has been carried out under various conditions with respect to solvent composition, ionic strength, chain length, force field and temperature. A previous MD study on a 15-mer of polyethyleneglycol (PEG) suggested a helical equilibrium

  17. Edge effects on forces and magnetic fields produced by a conductor moving past a magnet

    Energy Technology Data Exchange (ETDEWEB)

    Mulcahy, T.M.; Hull, J.R.; Almer, J.D. (Argonne National Lab., IL (United States)); Rossing, T.D. (Northern Illinois Univ., De Kalb, IL (United States))

    1992-01-01

    Experiments have been performed to further understand the forces acting on magnets moving along and over the edge of a continuous conducting sheet and to produce a comprehensive data set for the validation of analysis methods. Mapping the magnetic field gives information about the eddy currents induced in the conductor, which agrees with numerical calculations.

  18. Edge effects on forces and magnetic fields produced by a conductor moving past a magnet

    Energy Technology Data Exchange (ETDEWEB)

    Mulcahy, T.M.; Hull, J.R.; Almer, J.D. [Argonne National Lab., IL (United States); Rossing, T.D. [Northern Illinois Univ., De Kalb, IL (United States)

    1992-04-01

    Experiments have been performed to further understand the forces acting on magnets moving along and over the edge of a continuous conducting sheet and to produce a comprehensive data set for the validation of analysis methods. Mapping the magnetic field gives information about the eddy currents induced in the conductor, which agrees with numerical calculations.

  19. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-10

    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  20. Researching Refugee and Forced Migration Studies: An Introduction to the Field and the Reference Literature.

    Science.gov (United States)

    Mason, Elisa

    1999-01-01

    Describes the evolution of refugee and forced migration studies, identifies factors that render it a challenging field to research, and highlights a variety of Internet-based and other electronic resources that can be used to locate monographs, periodicals, grey literature, and current information. Provides a bibliography of reference materials in…

  1. Recent Progress in Molecular Simulation of Aqueous Electrolytes: Force Fields, Chemical Potentials and Solubility.

    Czech Academy of Sciences Publication Activity Database

    Nezbeda, Ivo; Moučka, F.; Smith, W.R.

    2016-01-01

    Roč. 114, č. 11 (2016), s. 1665-1690 ISSN 0026-8976 R&D Projects: GA ČR GA15-19542S Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : force fields * chemical potentials * aqueous electrolytes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2016

  2. Gravitomagnetic Field of the Universe and Coriolis Force on the Rotating Earth

    Science.gov (United States)

    Veto, B.

    2011-01-01

    The Machian effect of distant masses of the universe in the frame of reference of the rotating Earth is demonstrated using the gravitomagnetic approach of general relativity. This effect appears in the form of a gravitomagnetic Lorentz force acting on moving bodies on the Earth. The gravitomagnetic field of the universe--deduced from a simple…

  3. A verification of quantum field theory – measurement of Casimir force

    Indian Academy of Sciences (India)

    journal of. Feb. & Mar. 2001 physics pp. 239–243. A verification of quantum field theory ... minum coated a sphere and flat plate using an atomic force microscope. ... where R is the radius of curvature of the spherical surface. The finite .... sured by AFM) of 60% Au/40% Pd, to form a nonreactive and conductive top layer. For.

  4. Calculation of magnetic field and electromagnetic forces in MHD superconducting magnets

    International Nuclear Information System (INIS)

    Martinelli, G.; Morini, A.; Moisio, M.F.

    1992-01-01

    The realization of a superconducting prototype magnet for MHD energy conversion is under development in Italy. Electromechanical industries and University research groups are involved in the project. The paper deals with analytical methods developed at the Department of Electrical Engineering of Padova University for calculating magnetic field and electromagnetic forces in MHD superconducting magnets and utilized in the preliminary design of the prototype

  5. Bifurcations of optimal vector fields in the shallow lake model

    NARCIS (Netherlands)

    Kiseleva, T.; Wagener, F.O.O.

    2010-01-01

    The solution structure of the set of optimal solutions of the shallow lake problem, a problem of optimal pollution management, is studied as we vary the values of the system parameters: the natural resilience, the relative importance of the resource for social welfare and the future discount rate.

  6. Bifurcations of optimal vector fields in the shallow lake model

    NARCIS (Netherlands)

    Kiseleva, T.; Wagener, F.

    2009-01-01

    The solution structure of the set of optimal solutions of the shallow lake problem, a problem of optimal pollution management, is studied as we vary the values of the system parameters: the natural resilience, the relative importance of the resource for social welfare and the future discount rate.

  7. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  8. Time-optimal path planning in uncertain flow fields using ensemble method

    KAUST Repository

    Wang, Tong

    2016-01-06

    An ensemble-based approach is developed to conduct time-optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where a set deterministic predictions is used to model and quantify uncertainty in the predictions. In the operational setting, much about dynamics, topography and forcing of the ocean environment is uncertain, and as a result a single path produced by a model simulation has limited utility. To overcome this limitation, we rely on a finitesize ensemble of deterministic forecasts to quantify the impact of variability in the dynamics. The uncertainty of flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each the resulting realizations of the uncertain current field, we predict the optimal path by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of sampling strategy, and develop insight into extensions dealing with regional or general circulation models. In particular, the ensemble method enables us to perform a statistical analysis of travel times, and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  9. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    Science.gov (United States)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  10. Calculation of electromagnetic fields and forces in coil systems of arbitrary geometry

    International Nuclear Information System (INIS)

    Sackett, S.J.

    1975-01-01

    A computer program, EFFI, is described which calculates the electric and magnetic fields due to an arbitrary spatial distribution of current-carrying circular loops, circular arcs, and straight lines. The electric field is assumed to arise solely from the time variation of the magnetic field, and the magnetic field due to the changing electric field is assumed to be negligible. In addition, the conductor bundle elements (loops, arcs, lines) are assumed to be absent. Electric and magnetic flux lines and magnetic forces and inductances are also calculated by the program. The algorithm used in the code, which is based on a combination of direct and numerical integration using the Biot-Savart law, is discussed. The methods used to maintain accuracy in calculating fields within the conductor bundle, in particular, are detailed. Several examples are then presented to illustrate the input and output features as well as the accuracy obtained and the running time required

  11. Ionization induced by strong electromagnetic field in low dimensional systems bound by short range forces

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, P.A., E-mail: peminov@mail.ru [Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Street, Moscow 2107996 (Russian Federation); National Research University Higher School of Economics, 3/12 Bolshoy Trekhsvyatskiy pereulok, Moscow 109028 (Russian Federation)

    2013-10-01

    Ionization processes for a two dimensional quantum dot subjected to combined electrostatic and alternating electric fields of the same direction are studied using quantum mechanical methods. We derive analytical equations for the ionization probability in dependence on characteristic parameters of the system for both extreme cases of a constant electric field and of a linearly polarized electromagnetic wave. The ionization probabilities for a superposition of dc and low frequency ac electric fields of the same direction are calculated. The impulse distribution of ionization probability for a system bound by short range forces is found for a superposition of constant and alternating fields. The total probability for this process per unit of time is derived within exponential accuracy. For the first time the influence of alternating electric field on electron tunneling probability induced by an electrostatic field is studied taking into account the pre-exponential term.

  12. Optimization of digital image processing to determine quantum dots' height and density from atomic force microscopy.

    Science.gov (United States)

    Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L

    2018-01-01

    An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.

    2009-01-01

    Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of

  14. Well Field Management Using Multi-Objective Optimization

    DEFF Research Database (Denmark)

    Hansen, Annette Kirstine; Hendricks Franssen, H. J.; Bauer-Gottwein, Peter

    2013-01-01

    with infiltration basins, injection wells and abstraction wells. The two management objectives are to minimize the amount of water needed for infiltration and to minimize the risk of getting contaminated water into the drinking water wells. The management is subject to a daily demand fulfilment constraint. Two...... different optimization methods are tested. Constant scheduling where decision variables are held constant during the time of optimization, and sequential scheduling where the optimization is performed stepwise for daily time steps. The latter is developed to work in a real-time situation. Case study...

  15. Optimal radial force and size for palliation in gastroesophageal adenocarcinoma: a comparative analysis of current stent technology.

    Science.gov (United States)

    Mbah, Nsehniitooh; Philips, Prejesh; Voor, Michael J; Martin, Robert C G

    2017-12-01

    The optimal use of esophageal stents for malignant and benign esophageal strictures continues to be plagued with variability in pain tolerance, migration rates, and reflux-related symptoms. The aim of this study was to evaluate the differences in radial force exhibited by a variety of esophageal stents with respect to the patient's esophageal stricture. Radial force testing was performed on eight stents manufactured by four different companies using a hydraulic press and a 5000 N force gage. Radial force was measured using three different tests: transverse compression, circumferential compression, and a three-point bending test. Esophageal stricture composition and diameters were measured to assess maximum diameter, length, and proximal esophageal diameter among 15 patients prior to stenting. There was a statistically significant difference in mean radial force for transverse compression tests at the middle (range 4.25-0.66 newtons/millimeter N/mm) and at the flange (range 3.32-0.48 N/mm). There were also statistical differences in mean radial force for circumferential test (ranged from 1.19 to 10.50 N/mm, p force, which provides further clarification of stent pain and intolerance in certain patients, with either benign or malignant disease. Similarly, current stent diameters do not successfully exclude the proximal esophagus, which can lead to obstructive-type symptoms. Awareness of radial force, esophageal stricture composition, and proximal esophageal diameter must be known and understood for optimal stent tolerance.

  16. Self-consistent Optomechanical Dynamics and Radiation Forces in Thermal Light Fields

    International Nuclear Information System (INIS)

    Sonnleitner, M.

    2014-01-01

    We discuss two different aspects of the mechanical interaction between neutral matter and electromagnetic radiation.The first part addresses the complex dynamics of an elastic dielectric deformed by optical forces. To do so we use a one-dimensional model describing the medium by an array of beam splitters such that the interaction with the incident waves can be described with a transfer-matrix approach. Since the force on each individual beam splitter is known we thus obtain the correct volumetric force density inside the medium. Sending a light field through an initially homogeneous dielectric then results in density modulations which in turn alter the optical properties of this medium.The second part is concerned with mechanical light-effects on atoms in thermal radiation fields. At hand of a generic setup of an atom interacting with a hot sphere emitting blackbody radiation we show that the emerging gradient force may surpass gravity by several orders of magnitude. The strength of the repulsive scattering force strongly depends on the spectrum of the involved atoms and can be neglected in some setups. A special emphasis lies on possible implications on astrophysical scenarios where the interactions between heated dust and atoms, molecules or nanoparticles are of crucial interest. (author) [de

  17. Optimization of exposure parameters in full field digital mammography

    International Nuclear Information System (INIS)

    Williams, Mark B.; Raghunathan, Priya; More, Mitali J.; Seibert, J. Anthony; Kwan, Alexander; Lo, Joseph Y.; Samei, Ehsan; Ranger, Nicole T.; Fajardo, Laurie L.; McGruder, Allen; McGruder, Sandra M.; Maidment, Andrew D. A.; Yaffe, Martin J.; Bloomquist, Aili; Mawdsley, Gordon E.

    2008-01-01

    Optimization of exposure parameters (target, filter, and kVp) in digital mammography necessitates maximization of the image signal-to-noise ratio (SNR), while simultaneously minimizing patient dose. The goal of this study is to compare, for each of the major commercially available full field digital mammography (FFDM) systems, the impact of the selection of technique factors on image SNR and radiation dose for a range of breast thickness and tissue types. This phantom study is an update of a previous investigation and includes measurements on recent versions of two of the FFDM systems discussed in that article, as well as on three FFDM systems not available at that time. The five commercial FFDM systems tested, the Senographe 2000D from GE Healthcare, the Mammomat Novation DR from Siemens, the Selenia from Hologic, the Fischer Senoscan, and Fuji's 5000MA used with a Lorad M-IV mammography unit, are located at five different university test sites. Performance was assessed using all available x-ray target and filter combinations and nine different phantom types (three compressed thicknesses and three tissue composition types). Each phantom type was also imaged using the automatic exposure control (AEC) of each system to identify the exposure parameters used under automated image acquisition. The figure of merit (FOM) used to compare technique factors is the ratio of the square of the image SNR to the mean glandular dose. The results show that, for a given target/filter combination, in general FOM is a slowly changing function of kVp, with stronger dependence on the choice of target/filter combination. In all cases the FOM was a decreasing function of kVp at the top of the available range of kVp settings, indicating that higher tube voltages would produce no further performance improvement. For a given phantom type, the exposure parameter set resulting in the highest FOM value was system specific, depending on both the set of available target/filter combinations, and

  18. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  19. Competition among Li+, Na+, K+ and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations using the Additive CHARMM36 and Drude Polarizable Force Fields

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li+, Na+, K+ and Rb+, and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte so...

  20. Creating optimized machine working patterns on agricultural fields

    OpenAIRE

    Mark Spekken

    2015-01-01

    In the current agricultural context, agricultural machine unproductivity on fields and their impacts on soil along pathways are unavoidable. These machines have direct and indirect costs associated to their work in field, with non-productive time spent in manoeuvres when these are reaching field borders; likewise, there is a double application of product when machines are covering headlands while adding farm inputs. Both issues aggravate under irregular field geometry. Moreover, unproductive ...

  1. A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics

    International Nuclear Information System (INIS)

    Morante, S.; Rossi, G.C.

    2017-01-01

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  2. A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morante, S., E-mail: morante@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Rossi, G.C., E-mail: rossig@roma2.infn.it [Dipartimento di Fisica, Università di Roma, “ Tor Vergata ”, INFN, Sezione di Roma 2, Via della Ricerca Scientifica - 00133 Roma (Italy); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, Compendio del Viminale, Piazza del Viminale 1, I-00184 Rome (Italy)

    2017-02-15

    We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg–Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann–Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

  3. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2013-01-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption. (paper)

  4. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  5. Identification of the cognate peptide-MHC target of T cell receptors using molecular modeling and force field scoring

    DEFF Research Database (Denmark)

    Lanzarotti, Esteban; Marcatili, Paolo; Nielsen, Morten

    2018-01-01

    Interactions of T cell receptors (TCR) to peptides in complex with MHC (p:MHC) are key features that mediate cellular immune responses. While MHC binding is required for a peptide to be presented to T cells, not all MHC binders are immunogenic. The interaction of a TCR to the p:MHC complex holds...... terms. Building a benchmark of TCR:p:MHC complexes where epitopes and non-epitopes are modelled using state-of-the-art molecular modelling tools, scoring p:MHC to a given TCR using force-fields, optimized in a cross-validation setup to evaluate TCR inter atomic interactions involved with each p:MHC, we...... and model the TCR:p:MHC complex structure. In summary, we conclude that it is possible to identify the TCR cognate target among different candidate peptides by using a force-field based model, and believe this works could lay the foundation for future work within prediction of TCR:p:MHC interactions....

  6. Balanced and optimal bianisotropic particles: maximizing power extracted from electromagnetic fields

    International Nuclear Information System (INIS)

    Ra'di, Younes; Tretyakov, Sergei A

    2013-01-01

    Here we introduce the concept of ‘optimal particles’ for strong interactions with electromagnetic fields. We assume that a particle occupies a given electrically small volume in space and study the required optimal relations between the particle polarizabilities. In these optimal particles, the inclusion shape and material are chosen so that the particles extract the maximum possible power from given incident fields. It appears that for different excitation scenarios the optimal particles are bianisotropic chiral, omega, moving and Tellegen particles. The optimal dimensions of resonant canonical chiral and omega particles are found analytically. Such optimal particles have extreme properties in scattering (e.g., zero backscattering or invisibility). Planar arrays of optimal particles possess extreme properties in reflection and transmission (e.g. total absorption or magnetic-wall response), and volumetric composites of optimal particles realize, for example, such extreme materials as the chiral nihility medium. (paper)

  7. Optimized dose conformation of multi-leaf collimator fields

    International Nuclear Information System (INIS)

    Serago, Christopher F.; Buskirk, Steven J.; Foo, May L.; McLaughlin, Mark P.

    1996-01-01

    Purpose/Objective: Current commercially available multi-leaf collimators (MLC) have leaf widths of about 1 cm. These leaf widths may produce stepped dose gradients at the fields edges at the 50% dose level. Small local perturbations of the dose distribution from the prescribed/expected dose distribution may not be acceptable for some clinical applications. Improvements to the conformation of the MLC dose distribution may be achieved using multiple exposures per MLC field, with either shifting the table/patient position, or rotating the orientation of the MLC jaws between exposures. Material and Methods: Dose distributions for MLC, primary jaws only, and lead alloy block fields were measured with film dosimetry for 6 and 20 MV photon beams in a solid water phantom. Square, circular, and typical clinical prostate, brain, lung, esophagus, and head and neck fields were measured. MLC field shapes were produced using a commercial MLC with a leaf width of 1 cm at the treatment isocenter. The dose per MLC field was delivered in either single (conventional) or multiple exposures. The table(patient) position or the collimator rotation was shifted between exposures when multiple exposure MLC fields were used. Differences in the dose distribution were evaluated at the 90% and 50% isodose level. Displacements of the measured 50% isodose from the prescribed/expected 50% isodose were measured at 5 degree intervals. Results: Measurements of the penumbra at a 10 cm depth for square fields show that using double exposure MLC fields with .5 cm table index decreases the effective penumbra by 1 mm. For clinical shaped fields, displacements between the prescribed/expected 50% isodose and the measured 50% isodose for conventional single exposure MLC fields are measured to be as great as 9 mm, and discrepancies on the order of 5 to 6 mm are common. In contrast, the maximum displacement errors measured with multiple exposure MLC fields are less than 5 mm and rarely more than 4 mm. In some

  8. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-01-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities

  9. Lienard-Wiechert field as covariant dynamics of electric lines of force

    International Nuclear Information System (INIS)

    Arutyunyan, S.G.

    1989-01-01

    The Lienard-Wiechert field of an arbitrarily moving charge is presented as a system of Lorentz-covariant moving electric lines of force. It is shown that the 4-vector describing these lines is written as a sum of the 4-vector of the charge and the isotropic 4-vector directed to the observation point. The motion of this 4-vector is described by the equation coinciding with the equation of motion for magnetic moment in external fields provided that the intrinsic magnetic moment is zero. By the system of lines that corresponds to the complete equation of magnetic moment in external fields the electromagnetic field is restored. It turned out that the spatial magnetic current proportional to the isotropic 4-vector directed to the observation point corresponds to this field. 8 refs

  10. The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem

    OpenAIRE

    Muller , Antoine; Pontonnier , Charles; Dumont , Georges

    2018-01-01

    International audience; The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost functions – two polynomial criteria and a min/max criterion – were tested on a planar musculoskeletal model. The MusIC method provides a computation frequenc...

  11. A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA

    International Nuclear Information System (INIS)

    Jiang Chaowei; Feng Xueshang; Xiang Changqing

    2012-01-01

    Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 × 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.

  12. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  13. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.

    2012-02-02

    This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.

  14. Development of force sensing circuit to determine the optimal force required for effective dynamic tripod grip/writing

    Science.gov (United States)

    Suraj S., S.; Kulkarni, Palash; Bokadia, Pratik; Ramanathan, Prabhu; Nageswaran, Sharmila

    2018-04-01

    Handwriting is a combination of fine motor perceptions and cognitive skills to produce words on paper. For writing, the most commonly used and recommended grip is the dynamic tripod grip. A child's handwriting starts developing during the times of pre-schooling and improves over time. While writing, children apply excessive force on the writing instrument. This force is exerted by their fingers and as per the law of reaction, the writing instruments tend to exert an equal and opposite force, that could damage the delicate soft tissue structures in their fingers and initiate cramps and pains. This condition is also prevalent in adults who tend to write for long hours under pressure. An example would be adolescence student during the exams. Clinically this condition is termed as `Writer's Cramp', which is usually characterized by muscle fatigue and pain in the fingers. By understanding and fixing the threshold of the force that should be exerted by the fingers while gripping the instrument, the pain can be controlled or avoided. This research aims in designing an electronic module which can help in understanding the threshold of pressure which is optimum enough to establish a better contact between the fingers and the instrument and should be capable of controlling or avoiding the pain. The design of FSR based electronic system is explained with its circuitry and results of initial testing is presented in this paper.

  15. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition.

    Science.gov (United States)

    Shan, Tzu-Ray; van Duin, Adri C T; Thompson, Aidan P

    2014-02-27

    We have developed a new ReaxFF reactive force field parametrization for ammonium nitrate. Starting with an existing nitramine/TATB ReaxFF parametrization, we optimized it to reproduce electronic structure calculations for dissociation barriers, heats of formation, and crystal structure properties of ammonium nitrate phases. We have used it to predict the isothermal pressure-volume curve and the unreacted principal Hugoniot states. The predicted isothermal pressure-volume curve for phase IV solid ammonium nitrate agreed with electronic structure calculations and experimental data within 10% error for the considered range of compression. The predicted unreacted principal Hugoniot states were approximately 17% stiffer than experimental measurements. We then simulated thermal decomposition during heating to 2500 K. Thermal decomposition pathways agreed with experimental findings.

  16. Fano resonance of the ultrasensitve optical force excited by Gaussian evanescent field

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan

    2015-01-01

    In this paper, we study the angle-dependent Fano-like optical force spectra of plasmonic Ag nanoparticles, which exhibit extraordinary transformation from Lorentzian resonance to Fano resonance when excited by a Gaussian evanescent wave. We systematically analyze the behavior of this asymmetric scattering induced optical force under different conditions and find that this Fano interference-induced force is ultrasensitive to the excitation wavelength, incident angle and particle size, as well as the core–shell configuration, which could be useful for wavelength- and angle-dependent size-selective optical manipulation. The origin of this Fano resonance is further identified as the interference between the two adjacent-order multipolar plasmonic modes excited in the Ag particle under the excitation of an inhomogeneously distributed evanescent field. (paper)

  17. Predicting the Motions and Forces of Wearable Robotic Systems Using Optimal Control

    Directory of Open Access Journals (Sweden)

    Matthew Millard

    2017-08-01

    Full Text Available Wearable robotic systems are being developed to prevent injury to the low back. Designing a wearable robotic system is challenging because it is difficult to predict how the exoskeleton will affect the movement of the wearer. To aid the design of exoskeletons, we formulate and numerically solve an optimal control problem (OCP to predict the movements and forces of a person as they lift a 15 kg box from the ground both without (human-only OCP and with (with-exo OCP the aid of an exoskeleton. We model the human body as a sagittal-plane multibody system that is actuated by agonist and antagonist pairs of muscle torque generators (MTGs at each joint. Using the literature as a guide, we have derived a set of MTGs that capture the active torque–angle, passive torque–angle, and torque–velocity characteristics of the flexor and extensor groups surrounding the hip, knee, ankle, lumbar spine, shoulder, elbow, and wrist. Uniquely, these MTGs are continuous to the second derivative and so are compatible with gradient-based optimization. The exoskeleton is modeled as a rigid-body mechanism that is actuated by a motor at the hip and the lumbar spine and is coupled to the wearer through kinematic constraints. We evaluate our results by comparing our predictions with experimental recordings of a human subject. Our results indicate that the predicted peak lumbar-flexion angles and extension torques of the human-only OCP are within the range reported in the literature. The results of the with-exo OCP indicate that the exoskeleton motors should provide relatively little support during the descent to the box but apply a substantial amount of support during the ascent phase. The support provided by the lumbar motor is similar in shape to the net moment generated at the L5/S1 joint by the body; however, the support of the hip motor is more complex because it is coupled to the passive forces that are being generated by the hip extensors of the human subject

  18. A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther Universität, D-06099 Halle (Germany); Low, B. C. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)

    2014-10-15

    An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship between the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4

  19. Unsteady hydrodynamic forces acting on a hand and its flow field during sculling motion.

    Science.gov (United States)

    Takagi, Hideki; Shimada, Shohei; Miwa, Takahiro; Kudo, Shigetada; Sanders, Ross; Matsuuchi, Kazuo

    2014-12-01

    The goal of this research is to clarify the mechanism by which unsteady forces are generated during sculling by a skilled swimmer and thereby to contribute to improving propulsive techniques. We used particle image velocimetry (PIV) to acquire data on the kinematics of the hand during sculling, such as fluid forces and flow field. By investigating the correlations between these data, we expected to find a new propulsion mechanism. The experiment was performed in a flow-controlled water channel. The participant executed sculling motions to remain at a fixed position despite constant water flow. PIV was used to visualize the flow-field cross-section in the plane of hand motion. Moreover, the fluid forces acting on the hand were estimated from pressure distribution measurements performed on the hand and simultaneous three-dimensional motion analysis. By executing the sculling motion, a skilled swimmer produces large unsteady fluid forces when the leading-edge vortex occurs on the dorsal side of the hand and wake capture occurs on the palm side. By using a new approach, we observed interesting unsteady fluid phenomena similar to those of flying insects. The study indicates that it is essential for swimmers to fully exploit vortices. A better understanding of these phenomena might lead to an improvement in sculling techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties

    DEFF Research Database (Denmark)

    Voroshylova, I. V.; Chaban, V. V.

    2014-01-01

    Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis(trifluoromethanesulfonyl)......Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis......(trifluoromethanesulfonyl)imide, dicyanamide, hexafluorophosphate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cationanion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove...... and elevated temperature. The developed atomistic models provide a systematic refinement upon the well-known Canongia LopesPadua (CL&P) FF. Together with the original CL&P parameters the present models foster a computational investigation of ionic liquids....

  1. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7

    Directory of Open Access Journals (Sweden)

    A. V. Sulimov

    2017-01-01

    Full Text Available Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  2. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7.

    Science.gov (United States)

    Sulimov, A V; Kutov, D C; Katkova, E V; Sulimov, V B

    2017-01-01

    Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.

  3. Crystal structure prediction of flexible molecules using parallel genetic algorithms with a standard force field.

    Science.gov (United States)

    Kim, Seonah; Orendt, Anita M; Ferraro, Marta B; Facelli, Julio C

    2009-10-01

    This article describes the application of our distributed computing framework for crystal structure prediction (CSP) the modified genetic algorithms for crystal and cluster prediction (MGAC), to predict the crystal structure of flexible molecules using the general Amber force field (GAFF) and the CHARMM program. The MGAC distributed computing framework includes a series of tightly integrated computer programs for generating the molecule's force field, sampling crystal structures using a distributed parallel genetic algorithm and local energy minimization of the structures followed by the classifying, sorting, and archiving of the most relevant structures. Our results indicate that the method can consistently find the experimentally known crystal structures of flexible molecules, but the number of missing structures and poor ranking observed in some crystals show the need for further improvement of the potential. Copyright 2009 Wiley Periodicals, Inc.

  4. Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF

    Science.gov (United States)

    2014-01-01

    We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted. PMID:25574157

  5. Near-field Light Scattering Techniques for Measuring Nanoparticle-Surface Interaction Energies and Forces.

    Science.gov (United States)

    Schein, Perry; Ashcroft, Colby K; O'Dell, Dakota; Adam, Ian S; DiPaolo, Brian; Sabharwal, Manit; Shi, Ce; Hart, Robert; Earhart, Christopher; Erickson, David

    2015-08-15

    Nanoparticles are quickly becoming commonplace in many commercial and industrial products, ranging from cosmetics to pharmaceuticals to medical diagnostics. Predicting the stability of the engineered nanoparticles within these products a priori remains an important and difficult challenge. Here we describe our techniques for measuring the mechanical interactions between nanoparticles and surfaces using near-field light scattering. Particle-surface interfacial forces are measured by optically "pushing" a particle against a reference surface and observing its motion using scattered near-field light. Unlike atomic force microscopy, this technique is not limited by thermal noise, but instead takes advantage of it. The integrated waveguide and microfluidic architecture allow for high-throughput measurements of about 1000 particles per hour. We characterize the reproducibility of and experimental uncertainty in the measurements made using the NanoTweezer surface instrument. We report surface interaction studies on gold nanoparticles with 50 nm diameters, smaller than previously reported in the literature using similar techniques.

  6. A molecular mechanics (MM3(96)) force field for metal-amide complexes

    International Nuclear Information System (INIS)

    Hay, B.P.; Clement, O.; Sandrone, G.; Dixon, D.A.

    1998-01-01

    A molecular mechanics (MM3(96)) force field is reported for modeling metal complexes of amides in which the amide is coordinated through oxygen. This model uses a points-on-a-sphere approach which involves the parameterization of the Msingle bondO stretch, the Msingle bondO double-bond C bend, and the Msingle bondO double-bond Csingle bondX (X = C, H, N) torsion interactions. Relationships between force field parameters and metal ion properties (charge, ionic radius, and electronegativity) are presented that allow the application of this model to a wide range of metal ions. The model satisfactorily reproduces the structures of over fifty amide complexes with the alkaline earths, transition metals, lanthanides, and actinides

  7. Zero mass field quantization and Kibble's long-range force criterion for the Goldstone theorem

    International Nuclear Information System (INIS)

    Wright, S.H.

    1981-01-01

    The central theme of the dissertation is an investigation of the long-range force criterion used by Kibble in his discussion of the Goldstone Theorem. This investigation is broken up into the following sections: I. Introduction. Spontaneous symmetry breaking, the Goldstone Theorem and the conditions under which it holds are discussed. II. Massless Wave Expansions. In order to make explicit calculations of the operator commutators used in applying Kibble's criterion, it is necessary to work out the operator expansions for a massless field. Unusual results are obtained which include operators corresponding to classical macroscopic field modes. III. The Kibble Criterion for Simple Models Exhibiting Spontaneously Broken Symmetries. The results of the previous section are applied to simple models with spontaneously broken symmetries, namely, the real scalar massless field and the Goldstone model without gauge coupling. IV. The Higgs Mechanism in Classical Field Theory. It is shown that the Higgs Mechanism has a simple interpretation in terms of classical field theory, namely, that it arises from a derivative coupling term between the Goldstone fields and the gauge fields. V. The Higgs Mechanism and Kibble's Criterion. This section draws together the material discussed in sections II to IV. Explicit calculations are made to evaluate Kibble's criterion on a Goldstone-Higgs type of model in the Coulomb gauge. It is found, as expected, that the criterion is not met, but not for reasons relating to the range of the mediating force. By referring to the findings of sections III and IV, it is concluded that the common denominator underlying both the Higgs Mechanism and the failure of Kibble's criterion is a structural aspect of the field equations: derivative coupling between fields

  8. Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats.

    Science.gov (United States)

    Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza

    2016-10-21

    Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R 2  = 0.42, respectively. We found that LFP signal on gamma frequency bands (30-120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications.

  9. Improvement of Low-Frequency Sound Field Obtained by an Optimized Boundary

    Institute of Scientific and Technical Information of China (English)

    JING Lu; ZHU Xiao-tian

    2006-01-01

    An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound field. The frequency response, eigenfrequency, spatial distribution and transient response were calculated. Experimental data were obtained through a 1:5 scaled set up. The results show that the optimized treatment has a positive effect on sound field and the improvement is obvious.

  10. A Basic Experiment on Two-Dimensional Force of HTSC-Bulk in DC Magnetic-Field

    OpenAIRE

    吉田, 欣二郎; 松田, 茂雄; 松本, 洋和

    2000-01-01

    High temperature superconducting (HTSC) bulk can levitate stably on a track which consists of permanent magnets of the same polarity. This is because HTSC-bulk has a pinning force which keeps from vertical displacement due to the weight. We have proposed a new LSM theory which is based on an idea of considering the pinning force as synchronizing force in using armature travelling-magnetic-field instead of permanent magnets. However, the lift force enough to levitate the vehicle on the ground ...

  11. Force-free fields in the vicinity of a Reissner-Nordstroem black hole

    International Nuclear Information System (INIS)

    Evangelidis, E.

    1978-01-01

    The behaviour of a force-free field has been studied in a Reissner-Nordstroem metric. An expansion in tensor harmonics of even-odd parity reduced the radial equations in a differential equation of the Sturm-Liouville system which was solved asymptotically in a conveniently defined space coordinate. Further, it has been possible to regularize the singular behaviour of the Reissner-Nordstroem metric at the event horizon and the modified metric to be given explicitly. (Auth.)

  12. How well do force fields capture the strength of salt bridges in proteins?

    Directory of Open Access Journals (Sweden)

    Mustapha Carab Ahmed

    2018-06-01

    Full Text Available Salt bridges form between pairs of ionisable residues in close proximity and are important interactions in proteins. While salt bridges are known to be important both for protein stability, recognition and regulation, we still do not have fully accurate predictive models to assess the energetic contributions of salt bridges. Molecular dynamics simulation is one technique that may be used study the complex relationship between structure, solvation and energetics of salt bridges, but the accuracy of such simulations depends on the force field used. We have used NMR data on the B1 domain of protein G (GB1 to benchmark molecular dynamics simulations. Using enhanced sampling simulations, we calculated the free energy of forming a salt bridge for three possible lysine-carboxylate ionic interactions in GB1. The NMR experiments showed that these interactions are either not formed, or only very weakly formed, in solution. In contrast, we show that the stability of the salt bridges is overestimated, to different extents, in simulations of GB1 using seven out of eight commonly used combinations of fixed charge force fields and water models. We also find that the Amber ff15ipq force field gives rise to weaker salt bridges in good agreement with the NMR experiments. We conclude that many force fields appear to overstabilize these ionic interactions, and that further work may be needed to refine our ability to model quantitatively the stability of salt bridges through simulations. We also suggest that comparisons between NMR experiments and simulations will play a crucial role in furthering our understanding of this important interaction.

  13. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case

    DEFF Research Database (Denmark)

    Rossi, G.; Monticelli, L.; Puisto, S. R.

    2011-01-01

    We hereby introduce a new hybrid thermodynamic-structural approach to the coarse-graining of polymers. The new model is developed within the framework of the MARTINI force-field (Marrink et al., J. Phys. Chem. B, 2007, 111, 7812), which uses mainly thermodynamic properties as targets...... of microseconds. Finally, we tested our model in dilute conditions. The collapse of the polymer chains in a bad solvent and the swelling in a good solvent could be reproduced....

  14. Relativistic equation of the orbit of a particle in a arbitrary central force field

    International Nuclear Information System (INIS)

    Aaron, Francisc D.

    2005-01-01

    The equation of the orbit of a relativistic particle moving in an arbitrary central force field is derived. Straightforward generalizations of well-known first and second order differential equations are given. It is pointed out that the relativistic equation of the orbit has the same form as in the non-relativistic case, the only changes consisting in the appearance of additional terms proportional to 1/c 2 in both potential and total energies. (author)

  15. Study of vapour phase dynamics with nitrogen boiling in the field of centrifugal forces

    International Nuclear Information System (INIS)

    Levchenko, N.M.; Kolod'ko, I.M.

    1987-01-01

    The vapour phase dynamics during film boiling of liquid nitrogen on horizontal wire in the field of centrifugal forces has been studied experimentally in a wide range of overloads(1 ≤ η ≤ 375) and heat fluxes (q kp2 ≤ q ≤ 4q kpi ). The available data confirmed and the theoretical relationships suggested make it possible to calculate the hydrodynamic film boiling parameters (wave length, bubble departure diameter and frequency) for other liquids

  16. The MusIC method: a fast and quasi-optimal solution to the muscle forces estimation problem.

    Science.gov (United States)

    Muller, A; Pontonnier, C; Dumont, G

    2018-02-01

    The present paper aims at presenting a fast and quasi-optimal method of muscle forces estimation: the MusIC method. It consists in interpolating a first estimation in a database generated offline thanks to a classical optimization problem, and then correcting it to respect the motion dynamics. Three different cost functions - two polynomial criteria and a min/max criterion - were tested on a planar musculoskeletal model. The MusIC method provides a computation frequency approximately 10 times higher compared to a classical optimization problem with a relative mean error of 4% on cost function evaluation.

  17. The scaled-charge additive force field for amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Fileti, E. E.; Chaban, V. V.

    2014-01-01

    Ionic liquids (ILs) constitute an emerging research field. New ILs involve more and more organic and inorganic ions. Amino acid based ILs (AAILs) represent a specific interest due to their evolutional connection to proteins. We report a new non-polarizable force field (FF) for the eight AAILs...... comprising 1-ethyl-3-methylimidazolium cation and amino acid anions. The anions were obtained via deprotonation of carboxyl group. Specific cation-anion non-covalent interactions were taken into account by computing electrostatic potential for ion pairs. The van der Waals interactions were adopted from...

  18. Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan Karl

    2016-02-12

    In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.

  19. A Kirkwood-Buff derived force field for alkaline earth halide salts

    Science.gov (United States)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  20. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    Science.gov (United States)

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  1. Simplified TiO2 force fields for studies of its interaction with biomolecules

    Science.gov (United States)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2015-06-01

    Engineered TiO2 nanoparticles have been routinely applied in nanotechnology, as well as in cosmetics and food industries. Despite active experimental studies intended to clarify TiO2's biological effects, including potential toxicity, the relation between experimentally inferred nanotoxicity and industry standards for safely applying nanoparticles remains somewhat ambiguous with justified concerns. Supplemental to experiments, molecular dynamics simulations have proven to be efficacious in investigating the molecular mechanism of a biological process occurring at nanoscale. In this article, to facilitate the nanotoxicity and nanomedicine research related to this important metal oxide, we provide a simplified force field, based on the original Matsui-Akaogi force field but compatible to the Lennard-Jones potentials normally used in modeling biomolecules, for simulating TiO2 nanoparticles interacting with biomolecules. The force field parameters were tested in simulating the bulk structure of TiO2, TiO2 nanoparticle-water interaction, as well as the adsorption of proteins on the TiO2 nanoparticle. We demonstrate that these simulation results are consistent with experimental data/observations. We expect that simulations will help to better understand the interaction between TiO2 and molecules.

  2. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms.

    Science.gov (United States)

    Wu, Xiaojing; Clavaguera, Carine; Lagardère, Louis; Piquemal, Jean-Philip; de la Lande, Aurélien

    2018-04-16

    We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H 2 O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.

  3. Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields.

    Science.gov (United States)

    Mercadante, Davide; Milles, Sigrid; Fuertes, Gustavo; Svergun, Dmitri I; Lemke, Edward A; Gräter, Frauke

    2015-06-25

    Understanding the function of intrinsically disordered proteins is intimately related to our capacity to correctly sample their conformational dynamics. So far, a gap between experimentally and computationally derived ensembles exists, as simulations show overcompacted conformers. Increasing evidence suggests that the solvent plays a crucial role in shaping the ensembles of intrinsically disordered proteins and has led to several attempts to modify water parameters and thereby favor protein-water over protein-protein interactions. This study tackles the problem from a different perspective, which is the use of the Kirkwood-Buff theory of solutions to reproduce the correct conformational ensemble of intrinsically disordered proteins (IDPs). A protein force field recently developed on such a basis was found to be highly effective in reproducing ensembles for a fragment from the FG-rich nucleoporin 153, with dimensions matching experimental values obtained from small-angle X-ray scattering and single molecule FRET experiments. Kirkwood-Buff theory presents a complementary and fundamentally different approach to the recently developed four-site TIP4P-D water model, both of which can rescue the overcollapse observed in IDPs with canonical protein force fields. As such, our study provides a new route for tackling the deficiencies of current protein force fields in describing protein solvation.

  4. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.

    Science.gov (United States)

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-10-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  5. Mean-field Ohm's law and coaxial helicity injection in force-free plasmas

    International Nuclear Information System (INIS)

    Weening, R. H.

    2011-01-01

    A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity η and hyper-resistivity Λ terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.

  6. A Simple Model of Fields Including the Strong or Nuclear Force and a Cosmological Speculation

    Directory of Open Access Journals (Sweden)

    David L. Spencer

    2016-10-01

    Full Text Available Reexamining the assumptions underlying the General Theory of Relativity and calling an object's gravitational field its inertia, and acceleration simply resistance to that inertia, yields a simple field model where the potential (kinetic energy of a particle at rest is its capacity to move itself when its inertial field becomes imbalanced. The model then attributes electromagnetic and strong forces to the effects of changes in basic particle shape. Following up on the model's assumption that the relative intensity of a particle's gravitational field is always inversely related to its perceived volume and assuming that all black holes spin, may create the possibility of a cosmic rebound where a final spinning black hole ends with a new Big Bang.

  7. Thermodynamic investigation and optimization of laminar forced convection in a rotating helical tube heat exchanger

    International Nuclear Information System (INIS)

    Shi, Zhongyuan; Dong, Tao

    2014-01-01

    Highlights: • Variation of total entropy generation is investigated parametrically. • Pareto solution sets for heat transfer and flow friction components are obtained. • Dominant irreversibility component and impact of key variables are discussed. - Abstract: Based on the second law of thermodynamics, an entropy generation investigation is carried out under given dimensionless parameters, i.e. heat exchanger duty, heat flux, with respect to heat transfer and frictional pressure drop in a rotating helical tube heat exchanger with laminar convective flow. The entropy generation from heat transfer across a finite temperature difference – Ψ h decreases with increasing Dean number which represents the impact of centrifugal force induced secondary flow in enhancing heat transfer. Another aspect of increasing Dean number is that intensified momentum transfer in the radial direction also raises the entropy generation from frictional pressure drop – Ψ f , the superposed effect of which yields a decreasing–increasing trend of the total entropy generation-Ψ, a local minimum located in between. The rotation of the helical tube in streamwise (co-rotation) or counter streamwise (counter-rotation) direction leads to a decrease in Ψ h and a increase in Ψ f which complicates the situation that whether or where the minimum of total entropy generation exists is dependent on whether Ψ is dominated by Ψ h or Ψ f or somewhere in between. No difference is discerned between pairs of cases with constant wall temperature and uniform wall heat flux but the same set of variables and parameters. A multi-objective optimization targeting Ψ h and Ψ f simultaneously is implemented using the non-dominated sorting genetic algorithm II (NSGA II). Five solution sets are selected and compared with the conventional optimization in regard of Ψ distinguishing the Ψ h -dominated region from the Ψ f -dominated region, the dimensionless variable η 1 is found to be the most suitable

  8. Field redevelopment optimization to unlock reserves and enhance production

    Directory of Open Access Journals (Sweden)

    AHMED AL-HASHAMI

    2013-09-01

    Full Text Available A cluster area "H" consists of 4 carbonate gas fields producing dry gas from N-A reservoir in the Northern area of Oman. These fields are producing with different maturity levels since 1968. An FDP (Field Development Plan study was done in 2006 which proposed drilling of 7 additional vertical wells beside the already existing 5 wells to develop the reserves and enhance gas production from the fields. The FDP well planning was based on a seismic amplitude "Qualitative Interpretation (QI" study that recommended drilling the areas with high amplitudes as an indication for gas presence, and it ignored the low amplitude areas even if it is structurally high. A follow up study was conducted in 2010 for "H" area fields using the same seismic data and the well data drilled post FDP. The new static and dynamic work revealed the wrong aspect of the 2006 QI study, and proved with evidence from well logs and production data that low seismic amplitudes in high structural areas have sweet spots of good reservoir quality rock. This has led to changing the old appraisal strategy and planning more wells in low amplitude areas with high structure and hence discovering new blocks that increased the reserves of the fields.Furthermore, water production in these fields started much earlier than FDP expectation. The subsurface team have integrated deeply with the operation team and started a project to find new solutions to handle the water production and enhance the gas rate. The subsurface team also started drilling horizontal wells in the fields to increase the UR, delay the water production and also reduce the wells total CAPEX by drilling less horizontal wells compared to many vertical as they have higher production and recovery. These subsurface and surface activities have successfully helped to stabilize and increase the production of "H" area cluster by developing more reserves and handling the water production.

  9. Vibrational self-consistent field theory using optimized curvilinear coordinates.

    Science.gov (United States)

    Bulik, Ireneusz W; Frisch, Michael J; Vaccaro, Patrick H

    2017-07-28

    A vibrational SCF model is presented in which the functions forming the single-mode functions in the product wavefunction are expressed in terms of internal coordinates and the coordinates used for each mode are optimized variationally. This model involves no approximations to the kinetic energy operator and does not require a Taylor-series expansion of the potential. The non-linear optimization of coordinates is found to give much better product wavefunctions than the limited variations considered in most previous applications of SCF methods to vibrational problems. The approach is tested using published potential energy surfaces for water, ammonia, and formaldehyde. Variational flexibility allowed in the current ansätze results in excellent zero-point energies expressed through single-product states and accurate fundamental transition frequencies realized by short configuration-interaction expansions. Fully variational optimization of single-product states for excited vibrational levels also is discussed. The highlighted methodology constitutes an excellent starting point for more sophisticated treatments, as the bulk characteristics of many-mode coupling are accounted for efficiently in terms of compact wavefunctions (as evident from the accurate prediction of transition frequencies).

  10. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.

    Directory of Open Access Journals (Sweden)

    Alessandro Vato

    Full Text Available We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop.

  11. Using Future Value Analysis to Select an Optimal Portfolio of Force Protection Initiatives

    National Research Council Canada - National Science Library

    Eskridge, Robert

    2003-01-01

    With the recent increase in terrorist activity, force protection has become a key issue for the Department of Defense, Leading the research for new ideas and concepts in force protection for the US...

  12. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics.

    Science.gov (United States)

    Schein, Perry; Kang, Pilgyu; O'Dell, Dakota; Erickson, David

    2015-02-11

    Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.

  13. Analysis of optimal Reynolds number for developing laminar forced convection in double sine ducts based on entropy generation minimization principle

    International Nuclear Information System (INIS)

    Ko, T.H.

    2006-01-01

    In the present paper, the entropy generation and optimal Reynolds number for developing forced convection in a double sine duct with various wall heat fluxes, which frequently occurs in plate heat exchangers, are studied based on the entropy generation minimization principle by analytical thermodynamic analysis as well as numerical investigation. According to the thermodynamic analysis, a very simple expression for the optimal Reynolds number for the double sine duct as a function of mass flow rate, wall heat flux, working fluid and geometric dimensions is proposed. In the numerical simulations, the investigated Reynolds number (Re) covers the range from 86 to 2000 and the wall heat flux (q'') varies as 160, 320 and 640 W/m 2 . From the numerical simulation of the developing laminar forced convection in the double sine duct, the effect of Reynolds number on entropy generation in the duct has been examined, through which the optimal Reynolds number with minimal entropy generation is detected. The optimal Reynolds number obtained from the analytical thermodynamic analysis is compared with the one from the numerical solutions and is verified to have a similar magnitude of entropy generation as the minimal entropy generation predicted by the numerical simulations. The optimal analysis provided in the present paper gives worthy information for heat exchanger design, since the thermal system could have the least irreversibility and best exergy utilization if the optimal Re can be used according to practical design conditions

  14. Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions

    Science.gov (United States)

    Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta

    2018-03-01

    Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.

  15. Streamwise-body-force-model for rapid simulation combining internal and external flow fields

    Directory of Open Access Journals (Sweden)

    Cui Rong

    2016-10-01

    Full Text Available A streamwise-body-force-model (SBFM is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The validation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.

  16. Magnetic Field Equivalent Current Analysis-Based Radial Force Control for Bearingless Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2015-05-01

    Full Text Available Bearingless permanent magnet synchronous motors (BPMSMs, with all advantages of permanent magnet motors (PMSMs and magnetic bearings, have become an important research direction in the bearingless motor field. To realize a stable suspension for the BPMSM, accurate decoupling control between the electromagnetic torque and radial suspension force is indispensable. In this paper, a concise and reliable analysis method based on a magnetic field equivalent current is presented. By this analysis method, the operation principle is analyzed theoretically, and the necessary conditions to produce a stable radial suspension force are confirmed. In addition, mathematical models of the torque and radial suspension force are established which is verified by the finite element analysis (FEA software ANSYS. Finally, an experimental prototype of a 2-4 poles surface-mounted BPMSM is tested with the customized control strategy. The simulation and experimental results have shown that the motor has good rotation and suspension performance, and validated the accuracy of the proposed analysis method and the feasibility of the control strategy.

  17. Multiphysics field analysis and multiobjective design optimization: a benchmark problem

    Czech Academy of Sciences Publication Activity Database

    di Barba, P.; Doležel, Ivo; Karban, P.; Kůs, P.; Mach, F.; Mognaschi, M. E.; Savini, A.

    2014-01-01

    Roč. 22, č. 7 (2014), s. 1214-1225 ISSN 1741-5977 R&D Projects: GA ČR(CZ) GAP102/11/0498 Institutional support: RVO:61388998 Keywords : coupled-field problems * finite-element analysis * hp-FEM adaptation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.868, year: 2014

  18. Optimized 425MHz passive wireless magnetic field sensor

    KAUST Repository

    Li, Bodong; Kosel, Jü rgen

    2014-01-01

    -X cut LiNbO3 LiNbO3 substrate. The integrated sensor is characterized with a network analyzer through an S-parameter measurement. Upon the application of a magnetic field, a maximum magnitude change and phase shift of 7.8 dB and 27 degree, respectively

  19. Theory and numerical calculation of the acoustic field exerted by eddy-current forces

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, K.

    1976-01-01

    The equations for calculating the acoustic field produced within a nonmagnetic metal by interaction of eddy currents with a static magnetic field were obtained on the assumptions (1) an ultrasonic wave is generated by the electromagentic force through classical and macroscopic phenomena; (2) the electric, magnetic, and elastic properties of the metal are linear, isotropic, and homogeneous throughout the metal, which occupies semi-infinite space; (3) the whole system is axially symmetric; and (4) eddy currents and elastic waves show a steady-state sinusoidal variation. The acoustic field produced by a specific electromagnetic ultrasonic transducer with axial symmetry was calculated numerically, and the results showed a well-defined ultrasonic wave beam, which was narrower than had been expected from the size of the transducer. (auth)

  20. Control-Informed Geometric Optimization of Wave Energy Converters: The Impact of Device Motion and Force Constraints

    Directory of Open Access Journals (Sweden)

    Paula B. Garcia-Rosa

    2015-12-01

    Full Text Available The energy cost for producing electricity via wave energy converters (WECs is still not competitive with other renewable energy sources, especially wind energy. It is well known that energy maximising control plays an important role to improve the performance of WECs, allowing the energy conversion to be performed as economically as possible. The control strategies are usually subsequently employed on a device that was designed and optimized in the absence of control for the prevailing sea conditions in a particular location. If an optimal unconstrained control strategy, such as pseudo-spectral optimal control (PSOC, is adopted, an overall optimized system can be obtained no matter whether the control design is incorporated at the geometry optimization stage or not. Nonetheless, strategies, such as latching control (LC, must be incorporated at the optimization design stage of the WEC geometry if an overall optimized system is to be realised. In this paper, the impact of device motion and force constraints in the design of control-informed optimized WEC geometries is addressed. The aim is to verify to what extent the constraints modify the connection between the control and the optimal device design. Intuitively, one might expect that if the constraints are very tight, the optimal device shape is the same regardless of incorporating or not the constrained control at the geometry optimization stage. However, this paper tests the hypothesis that the imposition of constraints will limit the control influence on the optimal device shape. PSOC, LC and passive control (PC are considered in this study. In addition, constrained versions of LC and PC are presented.

  1. Optimizing platelet-rich plasma gel formation by varying time and gravitational forces during centrifugation.

    Science.gov (United States)

    Jo, Chris H; Roh, Young Hak; Kim, Ji Eun; Shin, Sue; Yoon, Kang Sup

    2013-10-01

    Despite the increasing clinical use of topical platelet-rich plasma (PRP) to enhance tissue healing and regeneration, there is no properly standardized method of autologous PRP gel preparation. This study examined the effect of the centrifugation time and gravitational force (g) on the platelet recovery ratio of PRP and determined the most effective centrifugation conditions for preparing PRP. Two-step centrifugations for preparing PRP were used in 39 subjects who had consented prior to the study's start. The separating centrifugation (Step 1, used to separate whole blood into its two main components: red blood cells and plasma) was tested from 500g to 1900g at 200g increments for 5 minutes (min), and from 100g to 1300g at 200g increments for 10 minutes. After separating centrifugation, upper plasma layer was transferred to another plain tube for the condensation centrifugation and remaining lower cell layer was discarded. The condensation centrifugation (Step 2, used to condense the platelets in the separated plasma) was tested at 1000g for 15 min, 1500g for 15 min, 2000g for 5 min and 3000g for 5 min, additionally at 1000g for 10 min and 1500g for 10 min. Platelet gelation was induced by adding 10% calcium gluconate to final PRP with volume ratio of 1:10. The optimal separating centrifugation conditions were followed by 900g for 5 minutes and the condensation conditions were followed by 1500g for 15 minutes, of which recovery ratios were 92.0 ± 3.1% and 84.3 ± 10.0%, respectively.

  2. Instrument response measurements of ion mobility spectrometers in situ: maintaining optimal system performance of fielded systems

    Science.gov (United States)

    Wallis, Eric; Griffin, Todd M.; Popkie, Norm, Jr.; Eagan, Michael A.; McAtee, Robert F.; Vrazel, Danet; McKinly, Jim

    2005-05-01

    Ion Mobility Spectroscopy (IMS) is the most widespread detection technique in use by the military for the detection of chemical warfare agents, explosives, and other threat agents. Moreover, its role in homeland security and force protection has expanded due, in part, to its good sensitivity, low power, lightweight, and reasonable cost. With the increased use of IMS systems as continuous monitors, it becomes necessary to develop tools and methodologies to ensure optimal performance over a wide range of conditions and extended periods of time. Namely, instrument calibration is needed to ensure proper sensitivity and to correct for matrix or environmental effects. We have developed methodologies to deal with the semi-quantitative nature of IMS and allow us to generate response curves that allow a gauge of instrument performance and maintenance requirements. This instrumentation communicates to the IMS systems via a software interface that was developed in-house. The software measures system response, logs information to a database, and generates the response curves. This paper will discuss the instrumentation, software, data collected, and initial results from fielded systems.

  3. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    International Nuclear Information System (INIS)

    Kim, S H; Hashi, S; Ishiyama, K

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  4. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    Science.gov (United States)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  5. A code for calculating force and temperature of a bitter plate type toroidal field coil system

    International Nuclear Information System (INIS)

    Christensen, U.

    1989-01-01

    To assist the design effort of the TF coils for CIT, a set of programs was developed to calculate the transient spatial distribution of the current density, the temperature and the forces in the TF coil conductor region. The TF coils are of the Bitter (disk) type design and therefore have negligible variation of current density in the toroidal direction. During the TF pulse, voltages are induced which cause the field and current to diffuse in the minor radial direction. This penetration, combined with the increase of resistance due to the temperature rise determines the distribution of the current. After the current distribution has been determined, the in-plane (TF-TF) and the out-of-plane (TF-PF) forces in the conductor are computed. The predicted currents and temperatures have been independently corroborated using the SPARK code which has been modified for this type of problem. 6 figs

  6. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.

    Science.gov (United States)

    Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba

    2017-11-01

    The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the

  7. Optimization study on the magnetic field of superconducting Halbach Array magnet

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  8. Optimized 425MHz passive wireless magnetic field sensor

    KAUST Repository

    Li, Bodong

    2014-06-01

    A passive, magnetic field sensor consisting of a 425 MHz surface acoustic wave device loaded with a giant magnetoimpedance element is developed. The GMI element with a multilayer structure composed of Ni80Fe 20/Cu/Ni80Fe20, is fabricated on a 128° Y-X cut LiNbO3 LiNbO3 substrate. The integrated sensor is characterized with a network analyzer through an S-parameter measurement. Upon the application of a magnetic field, a maximum magnitude change and phase shift of 7.8 dB and 27 degree, respectively, are observed. Within the linear region, the magnetic sensitivity is 1.6 dB/Oe and 5 deg/Oe. © 2014 IEEE.

  9. Planning and Optimization of Wireless LANs through Field Measurements

    OpenAIRE

    Mongia, Puneet Kumar; Singh, B. J.

    2013-01-01

    In this paper, the field measurements of signal strength taken at the frequency of 2432 MHz in indoor & outdoor environments are presented and analyzed. The received signal levels from the base station were monitored manually. Total coverage area considered for the measurement campaign consisted of a mixture of different propagation environments. Based on the experimental data obtained, path loss exponent and standard deviation of signal strength variability are derived. It is shown that the ...

  10. A Two-Mode Mean-Field Optimal Switching Problem for the Full Balance Sheet

    Directory of Open Access Journals (Sweden)

    Boualem Djehiche

    2014-01-01

    a two-mode optimal switching problem of mean-field type, which can be described by a system of Snell envelopes where the obstacles are interconnected and nonlinear. The main result of the paper is a proof of a continuous minimal solution to the system of Snell envelopes, as well as the full characterization of the optimal switching strategy.

  11. An optimized absorbing potential for ultrafast, strong-field problems

    Science.gov (United States)

    Yu, Youliang; Esry, B. D.

    2018-05-01

    Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.

  12. Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication

    Directory of Open Access Journals (Sweden)

    Jesús Sanz Maudes

    2012-08-01

    Full Text Available Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID technology (NFC. The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient’s dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system’s operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials.

  13. Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance

    International Nuclear Information System (INIS)

    Dong Xufeng; Ou Jinping; Guan Xinchun; Qi Min

    2010-01-01

    Magnetostrictive properties have relationship with the applied orientation field during the preparation of giant magnetostrictive composites. To understand the dependence of the optimal orientation field on particle volume fraction, composites with 20%, 30% and 50% particles by volume were fabricated by distributing Terfenol-D particles in an unsaturated polyester resin under various orientation fields. Their magnetostrictive properties were tested without pre-stress at room temperature. The results indicate that as the particle volume fraction increases, the optimal orientation field increases. The main reason for this phenomenon is the packing density for the composites with higher particle volume fraction is larger than that for those with lower particle content.

  14. Optimal orientation field to manufacture magnetostrictive composites with high magnetostrictive performance

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xufeng, E-mail: dongxf@dlut.edu.c [School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); Ou Jinping [School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China); School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Guan Xinchun [School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090 (China); Qi Min [School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning 116024 (China)

    2010-11-15

    Magnetostrictive properties have relationship with the applied orientation field during the preparation of giant magnetostrictive composites. To understand the dependence of the optimal orientation field on particle volume fraction, composites with 20%, 30% and 50% particles by volume were fabricated by distributing Terfenol-D particles in an unsaturated polyester resin under various orientation fields. Their magnetostrictive properties were tested without pre-stress at room temperature. The results indicate that as the particle volume fraction increases, the optimal orientation field increases. The main reason for this phenomenon is the packing density for the composites with higher particle volume fraction is larger than that for those with lower particle content.

  15. Effect of simulated resistance, fleeing, and use of force on standardized field sobriety testing.

    Science.gov (United States)

    Ho, Jeffrey; Dawes, Donald; Nystrom, Paul; Moore, Johanna; Steinberg, Lila; Tilton, Annemarie; Miner, James

    2015-07-01

    When a law enforcement officer (LEO) stops a suspect believed to be operating (a vehicle) while impaired (OWI), the suspect may resist or flee, and the LEO may respond with force. The suspect may then undergo a Standardized Field Sobriety Test (SFST) to gauge impairment. It is not known whether resistance, fleeing, or actions of force can create an inaccurate SFST result. We examined the effect of resistance, fleeing, and force on the SFST. Human volunteers were prospectively randomized to have a SFST before and after one of five scenarios: (1) five-second conducted electrical weapon exposure; (2) 100-yard (91.4 m) sprint; (3) 45-second physical fight; (4) police dog bite with protective gear; and (5) Oleoresin Capsicum spray to the face with eyes shielded. The SFST was administered and graded by a qualified LEO. After the SFST, the volunteer entered their scenario and was then administered another SFST. Data were analyzed using descriptive statistics. SFST performance was compared before and after using chi-square tests. Fifty-seven subjects enrolled. Three received a single-point penalty during one component of the three-component SFST pre-scenario. No subject received a penalty point in any components of the SFST post-scenario (p = 0.08). This is the first human study to examine the effects of physical resistance, flight, and use of force on the SFST result. We did not detect a difference in the performance of subjects taking the SFST before and after exposure to resistance, flight, or a simulated use of force. © Australian Council for Educational Research 2014.

  16. Mapping the global football field: a sociological model of transnational forces within the world game.

    Science.gov (United States)

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. © London School of Economics and Political Science 2012.

  17. Effect of magnetic field and radiative condensation on the Jeans instability of dusty plasma with polarization force

    International Nuclear Information System (INIS)

    Prajapati, R.P.

    2013-01-01

    The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.

  18. Analysis of PM Magnetization Field Effects on the Unbalanced Magnetic Forces due to Rotor Eccentricity in BLDC Motors

    Directory of Open Access Journals (Sweden)

    S. Mahdiuon-Rad

    2013-08-01

    Full Text Available This paper investigates both static and dynamic eccentricities in single phase brushless DC (BLDC motors and analyzes the effect of the PM magnetization field on unbalanced magnetic forces acting on the rotor. Three common types of PM magnetization field patterns including radial, parallel and sinusoidal magnetizations are considered. In both static and dynamic eccentricities, harmonic components of the unbalanced magnetic forces on the rotor are extracted and analyzed. Based on simulation results, the magnetization fields that produce the lowest and highest unbalanced magnetic forces are determined in rotor eccentricity conditions.

  19. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  20. Improvement of a force field to model the edges of clay particles

    International Nuclear Information System (INIS)

    Pouvreau, Maxime

    2016-01-01

    The CLAYFF force field is widely used to model the interfaces of clay minerals - and related layered materials - with an aqueous phase. In the simulations, clay particles are typically represented by semi-infinite layers, i.e. only surfaces parallel to the layer plane (basal surfaces) are considered. This simplification is acceptable to a certain extent, but clay layers are really nano sized and terminated by lateral surfaces or edges. These surfaces can not only adsorb solvated species but are also subject to proton transfers, and all physico-chemical processes related to the aqueous phase acidity predominantly occur at the edges. By adding to the CLAYFF force field a Metal-O-H angle bending term whose parameters are correctly adjusted, the simulations of edge interfaces become possible.The parameters of Al-O-H and Mg-O-H terms were obtained from DFT calculations on bulk, basal surface and edge structural models of gibbsite Al(OH) 3 and brucite Mg(OH) 2 , whose layers can be considered as the backbones of clay minerals and related materials. In addition, the Si-O-H term was parametrized from an edge model of kaolinite Al 2 Si 2 O 5 (OH) 4 . Molecular dynamics simulations based on DFT and on CLAYFF with and without Metal-O-H term were performed. The modified force field clearly improves the description of hydroxylated surfaces: the orientation and the vibrational dynamics of the hydroxyl groups, the hydrogen bonding, and the coordination of metal atoms belonging to the edge are all closer to reality [fr

  1. An experimental and multi-objective optimization study of a forced draft cooling tower with different fills

    International Nuclear Information System (INIS)

    Singh, Kuljeet; Das, Ranjan

    2016-01-01

    Highlights: • Experimental and optimization study on forced draft cooling tower is done. • New correlations for splash, trickle and film type fills are proposed. • Multi-objective performance optimization study has been done using NSGA-II. • Weighted decision making criterion is proposed depending upon user priority. • Proposed generalized methodology can be implemented in industrial cooling towers. - Abstract: In the present study, a forced draft mechanical cooling tower has been experimentally investigated using trickle, film and splash fills. Various performance parameters such as range, tower characteristic ratio, effectiveness and water evaporation rate are first analyzed for each fill. Thereafter, based upon the experimental data, pertinent correlations have been developed for performance parameters by considering mass flow rates of water and air as design variables. Each of the performance parameters is considered to be an individual objective function and all objectives are then simultaneously optimized for maximizing the performance of the cooling tower using elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II). The multi-objective optimization algorithm gives a set of possible combinations of design variables, which is referred as the optimal Pareto-front, out of which a unique combination is selected based upon a decision making criterion. The proposed decision making procedure evaluates a Decision Making Score (DMS) based on assigned performance priorities for each point of the Pareto-front. Depending on DMS a unique combination of design variables is then selected for each type of fill that maximizes the tower’s performance. These optimal points and the corresponding objective function are finally compared and based upon the highest DMS value, the wire-mesh (trickle) fill is found to be the most efficient fill under the present experimental conditions. The methodology presented in this work has been made more generalized, so that it

  2. Development of a Scaled Quantum Mechanical Force Field for Peptides in Aqueous Solution

    Science.gov (United States)

    1996-03-01

    differ. Raman and IR techniques are complimentary which helps in assignment of observed vibrational modes. As described in beginning organic ...1588 I NH, .i.sor(98) 2076 2100 24 CH3 55(95) 2125 2207 82 CH3 as’ (56), CH3 as’ (43) 2235 2253 18 CH3 as’(55), CH3 as’(41) 2888 COff .(100) 3155 NH...Application of self- consistent-field ab initio calculations to organic molecules I. Equilibrium struc- ture and force constants of hydrocarbons

  3. Study of vapour phase dynamics with nitrogen boiling in the field of centrifugal forces

    Energy Technology Data Exchange (ETDEWEB)

    Levchenko, N M; Kolod' ko, I M

    1987-07-01

    The vapour phase dynamics during film boiling of liquid nitrogen on horizontal wire in the field of centrifugal forces has been studied experimentally in a wide range of overloads(1 less than or equal to eta less than or equal to 375) and heat fluxes (q/sub kp2/ less than or equal to q less than or equal to 4q/sub kpi/). The available data confirmed and the theoretical relationships suggested make it possible to calculate the hydrodynamic film boiling parameters (wave length, bubble departure diameter and frequency) for other liquids.

  4. Multipolar Force Fields and Their Effects on Solvent Dynamics around Simple Solutes

    DEFF Research Database (Denmark)

    Jakobsen, Sofie; Bereau, Tristan; Meuwly, Markus

    2015-01-01

    The performance of multipole (MTP) and point charge (PC) force fields in classical molecular dynamics (MD) simulations of condensed-phase systems for both equilibrium and dynamical quantities is compared. MTP electrostatics provides an improved description of the anisotropic electrostatic potential......, which is especially important to describe key, challenging interactions, such as lone pairs, π-interactions, and hydrogen bonds. These chemical environments are probed by focusing on the hydration properties of two molecules: N-methylacetamide and phenyl bromide. Both, equilibrium and dynamical...

  5. An analytical model for the vertical electric field distribution and optimization of high voltage REBULF LDMOS

    International Nuclear Information System (INIS)

    Hu Xia-Rong; Lü Rui

    2014-01-01

    In this paper, an analytical model for the vertical electric field distribution and optimization of a high voltage-reduced bulk field (REBULF) lateral double-diffused metal—oxide-semiconductor (LDMOS) transistor is presented. The dependences of the breakdown voltage on the buried n-layer depth, thickness, and doping concentration are discussed in detail. The REBULF criterion and the optimal vertical electric field distribution condition are derived on the basis of the optimization of the electric field distribution. The breakdown voltage of the REBULF LDMOS transistor is always higher than that of a single reduced surface field (RESURF) LDMOS transistor, and both analytical and numerical results show that it is better to make a thick n-layer buried deep into the p-substrate. (interdisciplinary physics and related areas of science and technology)

  6. The optimization of the electrostatic field inside the ZEUS forward drift chambers: Calculations and measurements

    International Nuclear Information System (INIS)

    Dobberstein, M.P.; Krawczyk, F.; Schaefer-Jotter, M.

    1990-11-01

    The electrostatic field inside small drift cells shows in general edge effects which are not negligible. These are usually corrected by field shaping wires or strips. The operating voltages of the field shaping electrodes have to be adjusted to maximize the field homogeneity. We present the underlying ideas of such an optimization procedure for the cells of the ZEUS forward drift chambers. Using the finite difference code PROFI, the optimization can be performed automatically by a multiple solution of the Poisson equation. An experimental verification of the optimal voltages was carried out measuring the gas amplifications at the six sense wires. Modifications of the drift cell geometry were necessary for calibration measurements with a laser beam. This caused additional distortions of the electrostatic field. Their influence was calculated using the MAFIA code, which allows to include open boundary conditions. (orig.)

  7. An analytical-numerical comprehensive method for optimizing the fringing magnetic field

    International Nuclear Information System (INIS)

    Xiao Meiqin; Mao Naifeng

    1991-01-01

    The criterion of optimizing the fringing magnetic field is discussed, and an analytical-numerical comprehensive method for realizing the optimization is introduced. The method mentioned above consists of two parts, the analytical part calculates the field of the shims, which corrects the fringing magnetic field by using uniform magnetizing method; the numerical part fulfils the whole calculation of the field distribution by solving the equation of magnetic vector potential A within the region covered by arbitrary triangular meshes with the aid of finite difference method and successive over relaxation method. On the basis of the method, the optimization of the fringing magnetic field for a large-scale electromagnetic isotope separator is finished

  8. Optimal Background Attenuation for Fielded Radiation Detection Systems

    International Nuclear Information System (INIS)

    Robinson, Sean M.; Kaye, William R.; Schweppe, John E.; Siciliano, Edward R.

    2006-01-01

    Radiation detectors are often placed in positions difficult to shield from the effects of terrestrial background. This is particularly true in the case of Radiation Portal Monitor (RPM) systems, as their wide viewing angle and outdoor installations make them susceptible to terrestrial background from the surrounding area. A low background is desired in most cases, especially when the background noise is of comparable strength to the signal of interest. The problem of shielding a generalized RPM from terrestrial background is considered. Various detector and shielding scenarios are modeled with the Monte-Carlo N Particle (MCNP) computer code. Amounts of nominal-density shielding needed to attenuate the terrestrial background to varying degrees are given, along with optimal shielding geometry to be used in areas where natural shielding is limited, and where radiation detection must occur in the presence of natural background. Common shielding solutions such as steel plating are evaluated based on the signal to noise ratio and the benefits are weighed against the incremental cost.

  9. Optimal Background Attenuation for Fielded Spectroscopic Detection Systems

    International Nuclear Information System (INIS)

    Robinson, Sean M.; Ashbaker, Eric D.; Schweppe, John E.; Siciliano, Edward R.

    2007-01-01

    Radiation detectors are often placed in positions difficult to shield from the effects of terrestrial background gamma radiation. This is particularly true in the case of Radiation Portal Monitor (RPM) systems, as their wide viewing angle and outdoor installations make them susceptible to radiation from the surrounding area. Reducing this source of background can improve gross-count detection capabilities in the current generation of non-spectroscopic RPM's as well as source identification capabilities in the next generation of spectroscopic RPM's. To provide guidance for designing such systems, the problem of shielding a general spectroscopic-capable RPM system from terrestrial gamma radiation is considered. This analysis is carried out by template matching algorithms, to determine and isolate a set of non-threat isotopes typically present in the commerce stream. Various model detector and shielding scenarios are calculated using the Monte-Carlo N Particle (MCNP) computer code. Amounts of nominal-density shielding needed to increase the probability of detection for an ensemble of illicit sources are given. Common shielding solutions such as steel plating are evaluated based on the probability of detection for 3 particular illicit sources of interest, and the benefits are weighed against the incremental cost of shielding. Previous work has provided optimal shielding scenarios for RPMs based on gross-counting measurements, and those same solutions (shielding the internal detector cavity, direct shielding of the ground between the detectors, and the addition of collimators) are examined with respect to their utility to improving spectroscopic detection

  10. An Optimization of the Maintenance Assets Distribution Network in the Argentine Air Force

    Science.gov (United States)

    2015-03-26

    Air Force (2010). Manual de Conduccion Logistica . Buenos Aires: HQ Argentine Air Force. Argentine Air Force (2012). El vuelo del condor: 1912-2012...recommendation was made to consider organic or private transportation and reduce transportation time in order to improve responsiveness and drive down...determine overall transportation demand and capacity required for a defined level of service, and to evaluate the tradeoffs between costs and service

  11. Multi-objective optimization of surface roughness, cutting forces, productivity and Power consumption when turning of Inconel 718

    Directory of Open Access Journals (Sweden)

    Hamid Tebassi

    2016-01-01

    Full Text Available Nickel based super alloys are excellent for several applications and mainly in structural components submitted to high temperatures owing to their high strength to weight ratio, good corrosion resistance and metallurgical stability such as in cases of jet engine and gas turbine components. The current work presents the experimental investigations of the cutting parameters effects (cutting speed, depth of cut and feed rate on the surface roughness, cutting force components, productivity and power consumption during dry conditions in straight turning using coated carbide tool. The mathematical models for output parameters have been developed using Box-Behnken design with 15 runs and Box-Cox transformation was used for improving normality. The results of the analysis have shown that the surface finish was statistically sensitive to the feed rate and cutting speed with the contribution of 43.58% and 23.85% respectively, while depth of cut had the greatest effect on the evolution of cutting force components with the contribution of 79.87% for feed force, 66.92% for radial force and 66.26% for tangential force. Multi-objective optimization procedure allowed minimizing roughness Ra, cutting forces and power consumption and maximizing material removal rate using desirability approach.

  12. Optimal design of an automotive magnetorheological brake considering geometric dimensions and zero-field friction heat

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2010-01-01

    This paper presents an optimal design of a magnetorheological (MR) brake for a middle-sized passenger car which can replace a conventional hydraulic disc-type brake. In the optimization, the required braking torque, the temperature due to zero-field friction of MR fluid, the mass of the brake system and all significant geometric dimensions are considered. After describing the configuration, the braking torque of the proposed MR brake is derived on the basis of the field-dependent Bingham and Herschel–Bulkley rheological model of the MR fluid. The optimal design of the MR brake is then analyzed taking into account available space, mass, braking torque and steady heat generated by zero-field friction torque of the MR brake. The optimization procedure based on the finite element analysis integrated with an optimization tool is proposed to obtain optimal geometric dimensions of the MR brake. Based on the proposed procedure, optimal solutions of single and multiple disc-type MR brakes featuring different types of MR fluid are achieved. From the results, the most effective MR brake for the middle-sized passenger car is identified and some discussions on the performance improvement of the optimized MR brake are described

  13. Coupled force-balance and particle-occupation rate equations for high-field electron transport

    International Nuclear Information System (INIS)

    Lei, X. L.

    2008-01-01

    It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field

  14. Topology optimization based design of unilateral NMR for generating a remote homogeneous field.

    Science.gov (United States)

    Wang, Qi; Gao, Renjing; Liu, Shutian

    2017-06-01

    This paper presents a topology optimization based design method for the design of unilateral nuclear magnetic resonance (NMR), with which a remote homogeneous field can be obtained. The topology optimization is actualized by seeking out the optimal layout of ferromagnetic materials within a given design domain. The design objective is defined as generating a sensitive magnetic field with optimal homogeneity and maximal field strength within a required region of interest (ROI). The sensitivity of the objective function with respect to the design variables is derived and the method for solving the optimization problem is presented. A design example is provided to illustrate the utility of the design method, specifically the ability to improve the quality of the magnetic field over the required ROI by determining the optimal structural topology for the ferromagnetic poles. Both in simulations and experiments, the sensitive region of the magnetic field achieves about 2 times larger than that of the reference design, validating validates the feasibility of the design method. Copyright © 2017. Published by Elsevier Inc.

  15. Optimal control of quantum systems: Origins of inherent robustness to control field fluctuations

    International Nuclear Information System (INIS)

    Rabitz, Herschel

    2002-01-01

    The impact of control field fluctuations on the optimal manipulation of quantum dynamics phenomena is investigated. The quantum system is driven by an optimal control field, with the physical focus on the evolving expectation value of an observable operator. A relationship is shown to exist between the system dynamics and the control field fluctuations, wherein the process of seeking optimal performance assures an inherent degree of system robustness to such fluctuations. The presence of significant field fluctuations breaks down the evolution of the observable expectation value into a sequence of partially coherent robust steps. Robustness occurs because the optimization process reduces sensitivity to noise-driven quantum system fluctuations by taking advantage of the observable expectation value being bilinear in the evolution operator and its adjoint. The consequences of this inherent robustness are discussed in the light of recent experiments and numerical simulations on the optimal control of quantum phenomena. The analysis in this paper bodes well for the future success of closed-loop quantum optimal control experiments, even in the presence of reasonable levels of field fluctuations

  16. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.

    Science.gov (United States)

    Dennis, John Ojur; Ahmad, Farooq; Khir, M Haris Bin Md; Bin Hamid, Nor Hisham

    2015-07-27

    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.

  17. Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the COMPASS Force Field

    National Research Council Canada - National Science Library

    Bunte, Steven

    2000-01-01

    To investigate the mechanical and other condensed phase properties of energetic materials using atomistic simulation techniques, the COMPASS force field has been expanded to include high-energy nitro functional groups...

  18. Adapting crop management practices to climate change: Modeling optimal solutions at the field scale

    NARCIS (Netherlands)

    Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.; Walter, A.

    2013-01-01

    Climate change will alter the environmental conditions for crop growth and require adjustments in management practices at the field scale. In this paper, we analyzed the impacts of two different climate change scenarios on optimal field management practices in winterwheat and grain maize production

  19. Optimized molten salt receivers for ultimate trough solar fields

    Science.gov (United States)

    Riffelmann, Klaus-J.; Richert, Timo; Kuckelkorn, Thomas

    2016-05-01

    Today parabolic trough collectors are the most successful concentrating solar power (CSP) technology. For the next development step new systems with increased operation temperature and new heat transfer fluids (HTF) are currently developed. Although the first power tower projects have successfully been realized, up to now there is no evidence of an all-dominant economic or technical advantage of power tower or parabolic trough. The development of parabolic trough technology towards higher performance and significant cost reduction have led to significant improvements in competitiveness. The use of molten salt instead of synthetic oil as heat transfer fluid will bring down the levelized costs of electricity (LCOE) even further while providing dispatchable energy with high capacity factors. FLABEG has developed the Ultimate TroughTM (UT) collector, jointly with sbp Sonne GmbH and supported by public funds. Due to its validated high optical accuracy, the collector is very suitable to operate efficiently at elevated temperatures up to 550 °C. SCHOTT will drive the key-innovations by introducing the 4th generation solar receiver that addresses the most significant performance and cost improvement measures. The new receivers have been completely redesigned to provide a product platform that is ready for high temperature operation up to 550 °C. Moreover distinct product features have been introduced to reduce costs and risks in solar field assembly and installation. The increased material and design challenges incurred with the high temperature operation have been reflected in sophisticated qualification and validation procedures.

  20. NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2013-01-01

    We developed a new nonlinear force-free magnetic field (NLFFF) forward-fitting algorithm based on an analytical approximation of force-free and divergence-free NLFFF solutions, which requires as input a line-of-sight magnetogram and traced two-dimensional (2D) loop coordinates of coronal loops only, in contrast to stereoscopically triangulated three-dimensional loop coordinates used in previous studies. Test results of simulated magnetic configurations and from four active regions observed with STEREO demonstrate that NLFFF solutions can be fitted with equal accuracy with or without stereoscopy, which relinquishes the necessity of STEREO data for magnetic modeling of active regions (on the solar disk). The 2D loop tracing method achieves a 2D misalignment of μ 2 = 2.°7 ± 1.°3 between the model field lines and observed loops, and an accuracy of ≈1.0% for the magnetic energy or free magnetic energy ratio. The three times higher spatial resolution of TRACE or SDO/AIA (compared with STEREO) also yields a proportionally smaller misalignment angle between model fit and observations. Visual/manual loop tracings are found to produce more accurate magnetic model fits than automated tracing algorithms. The computation time of the new forward-fitting code amounts to a few minutes per active region.

  1. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  2. Toward Structure Prediction for Short Peptides Using the Improved SAAP Force Field Parameters

    Directory of Open Access Journals (Sweden)

    Kenichi Dedachi

    2013-01-01

    Full Text Available Based on the observation that Ramachandran-type potential energy surfaces of single amino acid units in water are in good agreement with statistical structures of the corresponding amino acid residues in proteins, we recently developed a new all-atom force field called SAAP, in which the total energy function for a polypeptide is expressed basically as a sum of single amino acid potentials and electrostatic and Lennard-Jones potentials between the amino acid units. In this study, the SAAP force field (SAAPFF parameters were improved, and classical canonical Monte Carlo (MC simulation was carried out for short peptide models, that is, Met-enkephalin and chignolin, at 300 K in an implicit water model. Diverse structures were reasonably obtained for Met-enkephalin, while three folded structures, one of which corresponds to a native-like structure with three native hydrogen bonds, were obtained for chignolin. The results suggested that the SAAP-MC method is useful for conformational sampling for the short peptides. A protocol of SAAP-MC simulation followed by structural clustering and examination of the obtained structures by ab initio calculation or simply by the number of the hydrogen bonds (or the hardness was demonstrated to be an effective strategy toward structure prediction for short peptide molecules.

  3. Optimal grasp planning for a dexterous robotic hand using the volume of a generalized force ellipsoid during accepted flattening

    Directory of Open Access Journals (Sweden)

    Peng Jia

    2017-01-01

    Full Text Available A grasp planning method based on the volume and flattening of a generalized force ellipsoid is proposed to improve the grasping ability of a dexterous robotic hand. First, according to the general solution of joint torques for a dexterous robotic hand, a grasping indicator for the dexterous hand—the maximum volume of a generalized external force ellipsoid and the minimum volume of a generalized contact internal force ellipsoid during accepted flattening—is proposed. Second, an optimal grasp planning method based on a task is established using the grasping indicator as an objective function. Finally, a simulation analysis and grasping experiment are performed. Results show that when the grasping experiment is conducted with the grasping configuration and positions of contact points optimized using the proposed grasping indicator, the root-mean-square values of the joint torques and contact internal forces of the dexterous hand are at a minimum. The effectiveness of the proposed grasping planning method is thus demonstrated.

  4. Effects of lorentz force on flow fields of free burning arc and wall stabilized non-transferred arc

    International Nuclear Information System (INIS)

    Peng Yi; Huang Heji; Pan Wenxia

    2013-01-01

    The flow fields of two typical DC plasma arcs, namely the transferred free burning arc and the non-transferred arc were simulated by solving hydrodynamic equations and electromagnetic equations. The effects of the Lorentz force on the characteristics of the flow fields of these two typical DC plasma arcs were estimated. Results show that in the case of the free burning arc, the Lorentz force due to the current self-induced magnetic field has significant impact on the flow fields, as the self-induced magnetic compression is the main arc constraint mechanism. However, in the case of the non-transferred arc generated in a torch with long and narrow inter-electrode inserts and an abruptly expanded anode, the Lorentz force has limited impact on the flow fields of the plasma especially at the downstream of the inter-electrode inserts, compared with the strong wall constraints and relatively high aerodynamic force. This is because the ratio of the electromagnetic force to the aerodynamic force is only about 0.01 in this region. When the main consideration is outlet parameters of the wall stabilized non-transferred DC arc plasma generator, in order to improve the efficiency of the numerical simulation program, the Lorentz force could be neglected in the non-transferred arc in some cases. (authors)

  5. Optimization of Transverse Oscillating Fields for Vector Velocity Estimation with Convex Arrays

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2013-01-01

    A method for making Vector Flow Images using the transverse oscillation (TO) approach on a convex array is presented. The paper presents optimization schemes for TO fields for convex probes and evaluates their performance using Field II simulations and measurements using the SARUS experimental...... from 90 to 45 degrees in steps of 15 degrees. The optimization routine changes the lateral oscillation period lx to yield the best possible estimates based on the energy ratio between positive and negative spatial frequencies in the ultrasound field. The basic equation for lx gives 1.14 mm at 40 mm...

  6. Air Force Officer Accession Planning: Addressing Key Gaps in Meeting Career Field Academic Degree Requirements for Nonrated Officers

    Science.gov (United States)

    2016-06-09

    C O R P O R A T I O N Research Report Air Force Officer Accession Planning Addressing Key Gaps in Meeting Career Field Academic Degree Requirements...potential performance, and how to include these quality measures in the classification process. The research sponsor asked us to focus on academic ...Andrew P., and James K. Lowe, “Decision Support for the Career Field Selection Process at the US Air Force Academy,” European Journal of Operational

  7. Constrained Optimization Methods in Health Services Research-An Introduction: Report 1 of the ISPOR Optimization Methods Emerging Good Practices Task Force.

    Science.gov (United States)

    Crown, William; Buyukkaramikli, Nasuh; Thokala, Praveen; Morton, Alec; Sir, Mustafa Y; Marshall, Deborah A; Tosh, Jon; Padula, William V; Ijzerman, Maarten J; Wong, Peter K; Pasupathy, Kalyan S

    2017-03-01

    Providing health services with the greatest possible value to patients and society given the constraints imposed by patient characteristics, health care system characteristics, budgets, and so forth relies heavily on the design of structures and processes. Such problems are complex and require a rigorous and systematic approach to identify the best solution. Constrained optimization is a set of methods designed to identify efficiently and systematically the best solution (the optimal solution) to a problem characterized by a number of potential solutions in the presence of identified constraints. This report identifies 1) key concepts and the main steps in building an optimization model; 2) the types of problems for which optimal solutions can be determined in real-world health applications; and 3) the appropriate optimization methods for these problems. We first present a simple graphical model based on the treatment of "regular" and "severe" patients, which maximizes the overall health benefit subject to time and budget constraints. We then relate it back to how optimization is relevant in health services research for addressing present day challenges. We also explain how these mathematical optimization methods relate to simulation methods, to standard health economic analysis techniques, and to the emergent fields of analytics and machine learning. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  8. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    Science.gov (United States)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  9. Construction of force-free fields which have toroidal surfaces about a given surface

    International Nuclear Information System (INIS)

    Bouligand, G.

    1983-05-01

    A study of two-fields (B vector, rotB vector) of conservative flux which admits a family of toroidal surfaces of parameter phi on a domain limited by a given surface S, suggests their construction by a Cauchy-Arzela method of step by step. Taking into account the Newcomb condition this method is consistent with force-free magnetic fields and with helical equilibria with scalar pressure. The method supposes that B vector is of class C 1 . This construction makes use of the remarkable property of the field B vector to be the surface gradient of a generating multivalued function Q on a closed surface. Consequently, the initial surface will be given with its normal metric coefficient K; that is to say, B vector admits a family F of homotopic surfaces on a infinitesimal domain about S, an element of F. From this, the periodic part of Q is a solution of a Beltrami equation for the flux conservation of which numerical resolution is envisaged. The study of these fields is made in a biorthogonal system of coordinates. The coeffficients of the two fundamental metric forms of magnetic surfaces vary with phi and are interrelated by a sixth order differential system of equations which gives their variation [fr

  10. Controlling the structure of forced convective flow by means of rotating magnetic-field inductors

    International Nuclear Information System (INIS)

    Sorkin, M.Z.; Mozgirs, O.Kh.

    1993-01-01

    The forced convective flow generated by a rotating magnetic-field inductor is used in a melt as a means of controlling the transfer of mass and heat in the case of directed crystallization. An obvious advantage in using a rotating field is the generation of azimuthal twisting of the fluid, this providing for an evening out of the crystallization conditions in the azimuthal direction under nonsymmetrical boundary conditions in an actual technological process. From the standpoint of affecting the crystallization processes it would be preferable to use an inductor which would allow alteration of the intensity and of the direction of the meridional flow. Mixing in the form of velocity pulsations generated by the inductor within the melt would be if interest from the standpoint of affecting the crystallization processes, in particular to intensify the crystallization purification. The authors propose the use of a double magnetohydrodynmic rotator which consists of two rotating magnetic-field inductors, separated in altitude, with separate power supplies. The supply of power to the inductors with various current loads allows the generation of a controllable nonuniformity in field distribution and in the azimuthal velocity through the altitude and thus allows control of both the intensity and configuration of the meridional flows. The dual rotator makes it possible to purposefully control the structure of the meridional flows and the pulsation component of velocity and can be recommended for use in processes of directed crystallization as well as in crystallization purification. 4 refs., 3 figs

  11. TEMPORAL AND SPATIAL RELATIONSHIP OF FLARE SIGNATURES AND THE FORCE-FREE CORONAL MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K.; Veronig, A.; Su, Y., E-mail: julia.thalmann@uni-graz.at [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria)

    2016-08-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.

  12. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    Science.gov (United States)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  13. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Suyu; Wang Jiasu; Zheng Jun [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  14. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    Science.gov (United States)

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  15. Continuous micro-feeding of fine cohesive powders actuated by pulse inertia force and acoustic radiation force in ultrasonic standing wave field.

    Science.gov (United States)

    Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan

    2018-07-10

    Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts.

    Directory of Open Access Journals (Sweden)

    J Lucas McKay

    Full Text Available Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3 across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2× compared to individual muscle control. Our results are consistent with the idea that hierarchical, task

  17. Bioactive conformational generation of small molecules: A comparative analysis between force-field and multiple empirical criteria based methods

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-11-01

    Full Text Available Abstract Background Conformational sampling for small molecules plays an essential role in drug discovery research pipeline. Based on multi-objective evolution algorithm (MOEA, we have developed a conformational generation method called Cyndi in the previous study. In this work, in addition to Tripos force field in the previous version, Cyndi was updated by incorporation of MMFF94 force field to assess the conformational energy more rationally. With two force fields against a larger dataset of 742 bioactive conformations of small ligands extracted from PDB, a comparative analysis was performed between pure force field based method (FFBM and multiple empirical criteria based method (MECBM hybrided with different force fields. Results Our analysis reveals that incorporating multiple empirical rules can significantly improve the accuracy of conformational generation. MECBM, which takes both empirical and force field criteria as the objective functions, can reproduce about 54% (within 1Å RMSD of the bioactive conformations in the 742-molecule testset, much higher than that of pure force field method (FFBM, about 37%. On the other hand, MECBM achieved a more complete and efficient sampling of the conformational space because the average size of unique conformations ensemble per molecule is about 6 times larger than that of FFBM, while the time scale for conformational generation is nearly the same as FFBM. Furthermore, as a complementary comparison study between the methods with and without empirical biases, we also tested the performance of the three conformational generation methods in MacroModel in combination with different force fields. Compared with the methods in MacroModel, MECBM is more competitive in retrieving the bioactive conformations in light of accuracy but has much lower computational cost. Conclusions By incorporating different energy terms with several empirical criteria, the MECBM method can produce more reasonable conformational

  18. Topology Optimization of a High-Temperature Superconducting Field Winding of a Synchronous Machine

    DEFF Research Database (Denmark)

    Pozzi, Matias; Mijatovic, Nenad; Jensen, Bogi Bech

    2013-01-01

    This paper presents topology optimization (TO) of the high-temperature superconductor (HTS) field winding of an HTS synchronous machine. The TO problem is defined in order to find the minimum HTS material usage for a given HTS synchronous machine design. Optimization is performed using a modified...... genetic algorithm with local optimization search based on on/off sensitivity analysis. The results show an optimal HTS coil distribution, achieving compact designs with a maximum of approximately 22% of the available space for the field winding occupied with HTS tape. In addition, this paper describes...... potential HTS savings, which could be achieved using multiple power supplies for the excitation of the machine. Using the TO approach combined with two excitation currents, an additional HTS saving of 9.1% can be achieved....

  19. Bias Magnetic Field of Stack Giant Magnetostrictive Actuator: Design, Analysis, and Optimization

    Directory of Open Access Journals (Sweden)

    Zhaoshu Yang

    2016-01-01

    Full Text Available Many novel applications using giant magnetostrictive actuators (GMA require their actuators output bidirectional strokes to be large enough to drive the load. In these cases, the sophisticated method to form such a sufficient bias field with minimum power and bulk consumption should be considered in the principal stage of GMA design. This paper concerns the methodology of bias field design for a specific GMA with stack PMs and GMMs (SGMA: both loop and field models for its bias field are established; the optimization method for given SGMA structure is outlined; a prototype is fabricated to verify the theory. Simulation and test results indicate that the bias field could be exerted more easily using SGMA structure; the modeling and optimization methodology for SGMA is valid in practical design.

  20. Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces

    Science.gov (United States)

    Hedayati, R.; Mirzaali, M. J.; Vergani, L.; Zadpoor, A. A.

    2018-03-01

    Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of "action-at-a-distance" metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular) materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson's ratios as a way of making "action-at-a-distance" metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable) robotics and exosuits.

  1. Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces

    Directory of Open Access Journals (Sweden)

    R. Hedayati

    2018-03-01

    Full Text Available Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of “action-at-a-distance” metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson’s ratios as a way of making “action-at-a-distance” metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable robotics and exosuits.

  2. Effects of kinesthetic and cutaneous stimulation during the learning of a viscous force field.

    Science.gov (United States)

    Rosati, Giulio; Oscari, Fabio; Pacchierotti, Claudio; Prattichizzo, Domenico

    2014-01-01

    Haptic stimulation can help humans learn perceptual motor skills, but the precise way in which it influences the learning process has not yet been clarified. This study investigates the role of the kinesthetic and cutaneous components of haptic feedback during the learning of a viscous curl field, taking also into account the influence of visual feedback. We present the results of an experiment in which 17 subjects were asked to make reaching movements while grasping a joystick and wearing a pair of cutaneous devices. Each device was able to provide cutaneous contact forces through a moving platform. The subjects received visual feedback about joystick's position. During the experiment, the system delivered a perturbation through (1) full haptic stimulation, (2) kinesthetic stimulation alone, (3) cutaneous stimulation alone, (4) altered visual feedback, or (5) altered visual feedback plus cutaneous stimulation. Conditions 1, 2, and 3 were also tested with the cancellation of the visual feedback of position error. Results indicate that kinesthetic stimuli played a primary role during motor adaptation to the viscous field, which is a fundamental premise to motor learning and rehabilitation. On the other hand, cutaneous stimulation alone appeared not to bring significant direct or adaptation effects, although it helped in reducing direct effects when used in addition to kinesthetic stimulation. The experimental conditions with visual cancellation of position error showed slower adaptation rates, indicating that visual feedback actively contributes to the formation of internal models. However, modest learning effects were detected when the visual information was used to render the viscous field.

  3. Trampoline effect and the force field inside the void in complex plasma under microgravity conditions

    International Nuclear Information System (INIS)

    Khrapak, S. A.; Kretschmer, M.; Zhdanov, S. K.; Thomas, H. M.; MOrfill, G. e.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Ivanov, A. I.; Turin, M. V.

    2005-01-01

    The PKE-Nefedov facility onboard the International Space Station (ISS),operational since March, 2'001, has enabled the study of complex (dusty) plasmas under microgravity conditions. A complex plasma is generated by introducing micron sized grains in a capacitively coupled rf discharge. The grains form a cloud inside the bulk of the discharge and can be easily visualized with the help of standard tools-laser illumination and video cameras. In most of the experiments under microgravity conditions the central region of the discharge is free of grains a so called void is formed. Due to recent theoretical advances, showing that the ion drag force can be more than a factor of ten larger than had traditionally been believed, void formation is now through to be a consequence of this (enhanced) interaction. The way this process works is the following: the ions drifting from the central region of a discharge to its walls and electrodes transfer their momentum to the grains pushing them out of the center. However, no direct experimental results on the origin of the void formation were reported so far. In this paper we report new results on the observation of a weak instability of the void-complex plasma interface observed at a relatively low gas pressure (p=12Pa). The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called trampoline effect), The trajectories of injected particles are analyzed providing information on the force field and potential energy distribution inside the void. For the relatively low neutral gas pressure used in the experiment a direct comparison with theory involving a model of the ion drag force in the collisionless regime is possible. Such a comparison yields good agreement, implying that we have observed the first experimental confirmation of the ion drag mechanism as being responsible for the void formation. (Author)

  4. Trampoline effect and the force field inside the void in complex plasma under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khrapak, S. A.; Kretschmer, M.; Zhdanov, S. K.; Thomas, H. M.; MOrfill, G. e.; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Ivanov, A. I.; Turin, M. V.

    2005-07-01

    The PKE-Nefedov facility onboard the International Space Station (ISS),operational since March, 2'001, has enabled the study of complex (dusty) plasmas under microgravity conditions. A complex plasma is generated by introducing micron sized grains in a capacitively coupled rf discharge. The grains form a cloud inside the bulk of the discharge and can be easily visualized with the help of standard tools-laser illumination and video cameras. In most of the experiments under microgravity conditions the central region of the discharge is free of grains a so called void is formed. Due to recent theoretical advances, showing that the ion drag force can be more than a factor of ten larger than had traditionally been believed, void formation is now through to be a consequence of this (enhanced) interaction. The way this process works is the following: the ions drifting from the central region of a discharge to its walls and electrodes transfer their momentum to the grains pushing them out of the center. However, no direct experimental results on the origin of the void formation were reported so far. In this paper we report new results on the observation of a weak instability of the void-complex plasma interface observed at a relatively low gas pressure (p=12Pa). The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called trampoline effect), The trajectories of injected particles are analyzed providing information on the force field and potential energy distribution inside the void. For the relatively low neutral gas pressure used in the experiment a direct comparison with theory involving a model of the ion drag force in the collisionless regime is possible. Such a comparison yields good agreement, implying that we have observed the first experimental confirmation of the ion drag mechanism as being responsible for the void formation. (Author)

  5. Volume pinning force and upper critical field of irradiated Nb3Sn

    International Nuclear Information System (INIS)

    Maier, P.; Seibt, E.

    1981-01-01

    Irradiation by neutrons and ions in A15 superconductors (Nb 3 Sn, V 3 Ga) exerts a stronger influence on the pinning behavior than in nonordered alloys (NbTi). In this work it is shown for deuteron irradiated Nb 3 /Sn wires prepared by the bronze process that the dose curve of the volume pinning force P/sub V/ can be conveniently described by a sum of two terms, due to the grain boundary pinning and to the radiation pinning, respectively. After deduction of the contribution by the radiation-induced pinning centers, good agreement is obtained between the measured P/sub V/ values and those calculated using the upper critical field B/sub c/2 and the transition temperature T/sub c/ on the basis of the irradiation fluence. The use of a theoretical relationship between B/sub c/2 and T/sub c/ is supported by measured values. Application to multifilamentary superconductors with high current carrying capabilities simplifies the calculation of P/sub V/, since the radiation induced volume pinning force can be neglected

  6. Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Madsen, D.E.; Esbensen, A.L.

    2004-01-01

    of the (gg, gt and tg) rotamers of methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol. respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second...... for monosaccharide carbohydrate benchmark systems. Selected results are: (i) The interaction energy of the alpha-D-alucopyranose-H2O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error...

  7. Predictions of Phase Separation in Three-Component Lipid Membranes by the MARTINI Force Field

    DEFF Research Database (Denmark)

    Davis, Ryan S.; Sunil Kumar, P. B.; Sperotto, Maria Maddalena

    2013-01-01

    The phase behavior of the coarse-grained MARTINI model for three-component lipid bilayers composed of dipalmytoyl-phosphatidylcholine (DPPC), cholesterol (Chol), and an unsaturated phosphatidylcholine (PC) was systematically investigated by molecular dynamics simulations. The aim of this study...... is to understand which types of unsaturated PC induce the formation of thermodynamically stable coexisting phases when added to mixtures of DPPC and Chol and to unravel the mechanisms that drive phase separation in such three-component mixtures. Our simulations indicate that the currently used MARTINI force field...... PCs, such as dilinoleyl-phosphatidylcholine (DUPC) and diarachidonoyl-phosphatidylcholine (DAPC). Through systematic tweaking of the interactions between the hydrophobic groups of the PC molecules, we show that the appearance of phase separation in three-component lipid bilayers, as modeled through...

  8. Plasmonic micropillars for precision cell force measurement across a large field-of-view

    Science.gov (United States)

    Xiao, Fan; Wen, Ximiao; Tan, Xing Haw Marvin; Chiou, Pei-Yu

    2018-01-01

    A plasmonic micropillar platform with self-organized gold nanospheres is reported for the precision cell traction force measurement across a large field-of-view (FOV). Gold nanospheres were implanted into the tips of polymer micropillars by annealing gold microdisks with nanosecond laser pulses. Each gold nanosphere is physically anchored in the center of a pillar tip and serves as a strong, point-source-like light scattering center for each micropillar. This allows a micropillar to be clearly observed and precisely tracked even under a low magnification objective lens for the concurrent and precision measurement across a large FOV. A spatial resolution of 30 nm for the pillar deflection measurement has been accomplished on this platform with a 20× objective lens.

  9. Mind as a force field: comments on a new interactionistic hypothesis.

    Science.gov (United States)

    Lindahl, B I; Arhem, P

    1994-11-07

    The survival and development of consciousness in biological evolution call for an explanation. An interactionistic mind-brain theory seems to have the greatest explanatory value in this context. An interpretation of an interactionistic hypothesis, recently proposed by Karl Popper, is discussed both theoretically and based on recent experimental data. In the interpretation, the distinction between the conscious mind and the brain is seen as a division into what is subjective and what is objective, and not as an ontological distinction between something immaterial and something material. The interactionistic hypothesis is based on similarities between minds and physical forces. The conscious mind is understood to interact with randomly spontaneous spatio-temporal patterns of action potentials through an electromagnetic field. Consequences and suggestions for future studies are discussed.

  10. Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration

    DEFF Research Database (Denmark)

    Maciejewski, A.; Pasenkiewicz-Gierula, M.; Cramariuc, O.

    2014-01-01

    validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule....... In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree-Fock (HF), (2) second order Moller-Plesset perturbation theory (MP2), and (3...... one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM)....

  11. Electric field and dielectrophoretic force on a dielectric particle chain in a parallel-plate electrode system

    International Nuclear Information System (INIS)

    Techaumnat, B; Eua-arporn, B; Takuma, T

    2004-01-01

    This paper presents results of calculations of the electric field and dielectrophoretic force on a dielectric particle chain suspended in a host liquid lying between parallel-plate electrodes. The method of calculation is based on the method of multipole images using the multipole re-expansion technique. We have investigated the effect of the particle permittivity, the tilt angle (between the chain and the applied field) and the chain arrangement on the electric field and force. The results show that the electric field intensification rises in accordance with the increase in the ratio of the particle-to-liquid permittivity, Γ ε . The electric field at the contact point between the particles decreases with increasing tilt angle, while the maximal field at the contact point between the particles and the plate electrodes is almost unchanged. The maximal field can be approximated by a simple formula, which is a quadratic function of Γ ε . The dielectrophoretic force depends significantly on the distance from other particles or an electrode. However, for the tilt angles in this paper, the horizontal force on the upper particle of the chain always has the direction opposite to the shear direction. The maximal horizontal force of a chain varies proportional to (Γ ε - 1) 1.7 if the particles in the chain are still in contact with each other. The approximated force, based on the force on an isolated chain, has been compared with our calculation results. The comparison shows that no approximation model agrees well with our results throughout the range of permittivity ratios

  12. The outflows accelerated by the magnetic fields and radiation force of accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinwu, E-mail: cxw@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai, 200030 (China)

    2014-03-01

    The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, Θ=c{sub s}{sup 2}/r{sup 2}Ω{sub K}{sup 2}≪(H/r){sup 2}, which is significantly lower than that of a gas-pressure-dominated disk, Θ ∼ (H/r){sup 2}. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.

  13. Low NOx combustion and SCR flow field optimization in a low volatile coal fired boiler.

    Science.gov (United States)

    Liu, Xing; Tan, Houzhang; Wang, Yibin; Yang, Fuxin; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-08-15

    Low NO x burner redesign and deep air staging have been carried out to optimize the poor ignition and reduce the NO x emissions in a low volatile coal fired 330 MW e boiler. Residual swirling flow in the tangentially-fired furnace caused flue gas velocity deviations at furnace exit, leading to flow field unevenness in the SCR (selective catalytic reduction) system and poor denitrification efficiency. Numerical simulations on the velocity field in the SCR system were carried out to determine the optimal flow deflector arrangement to improve flow field uniformity of SCR system. Full-scale experiment was performed to investigate the effect of low NO x combustion and SCR flow field optimization. Compared with the results before the optimization, the NO x emissions at furnace exit decreased from 550 to 650 mg/Nm³ to 330-430 mg/Nm³. The sample standard deviation of the NO x emissions at the outlet section of SCR decreased from 34.8 mg/Nm³ to 7.8 mg/Nm³. The consumption of liquid ammonia reduced from 150 to 200 kg/h to 100-150 kg/h after optimization. Copyright © 2018. Published by Elsevier Ltd.

  14. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    Science.gov (United States)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  15. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  16. Optimal Value of Series Capacitors for Uniform Field Distribution in Transmission Line MRI Coils

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2016-01-01

    Transmission lines are often used as coils in high field magnetic resonance imaging (MRI). Due to the distributed nature of transmission lines, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the coil....... The equations for optimal values of evenly distributed capacitors are derived and expressed in terms of the implemented transmission line parameters.The achieved magnetic field homogeneity is estimated under quasistatic approximation and compared to the regular transmission line resonator. Finally, a more...... practical case of a microstrip line coil with two series capacitors is considered....

  17. Regularization of fields for self-force problems in curved spacetime: Foundations and a time-domain application

    International Nuclear Information System (INIS)

    Vega, Ian; Detweiler, Steven

    2008-01-01

    We propose an approach for the calculation of self-forces, energy fluxes and waveforms arising from moving point charges in curved spacetimes. As opposed to mode-sum schemes that regularize the self-force derived from the singular retarded field, this approach regularizes the retarded field itself. The singular part of the retarded field is first analytically identified and removed, yielding a finite, differentiable remainder from which the self-force is easily calculated. This regular remainder solves a wave equation which enjoys the benefit of having a nonsingular source. Solving this wave equation for the remainder completely avoids the calculation of the singular retarded field along with the attendant difficulties associated with numerically modeling a delta-function source. From this differentiable remainder one may compute the self-force, the energy flux, and also a waveform which reflects the effects of the self-force. As a test of principle, we implement this method using a 4th-order (1+1) code, and calculate the self-force for the simple case of a scalar charge moving in a circular orbit around a Schwarzschild black hole. We achieve agreement with frequency-domain results to ∼0.1% or better.

  18. Simulation-Driven Development and Optimization of a High-Performance Six-Dimensional Wrist Force/Torque Sensor

    Directory of Open Access Journals (Sweden)

    Qiaokang LIANG

    2010-05-01

    Full Text Available This paper describes the Simulation-Driven Development and Optimization (SDDO of a six-dimensional force/torque sensor with high performance. By the implementation of the SDDO, the developed sensor possesses high performance such as high sensitivity, linearity, stiffness and repeatability simultaneously, which is hard for tranditional force/torque sensor. Integrated approach provided by software ANSYS was used to streamline and speed up the process chain and thereby to deliver results significantly faster than traditional approaches. The result of calibration experiment possesses some impressive characters, therefore the developed fore/torque sensor can be usefully used in industry and the methods of design can also be used to develop industrial product.

  19. Optimization of Process Parameters of Edge Robotic Deburring with Force Control

    Directory of Open Access Journals (Sweden)

    Burghardt A.

    2016-12-01

    Full Text Available The issues addressed in the paper present a part of the scientific research conducted within the framework of the automation of the aircraft engine part manufacturing processes. The results of the research presented in the article provided information in which tolerances while using a robotic control station with the option of force control we can make edge deburring.

  20. Optimization of Process Parameters of Edge Robotic Deburring with Force Control

    Science.gov (United States)

    Burghardt, A.; Szybicki, D.; Kurc, K.; Muszyńska, M.

    2016-12-01

    The issues addressed in the paper present a part of the scientific research conducted within the framework of the automation of the aircraft engine part manufacturing processes. The results of the research presented in the article provided information in which tolerances while using a robotic control station with the option of force control we can make edge deburring.

  1. On Optimizing Steering Performance of Multi-axle Vehicle Based on Driving Force Control

    Directory of Open Access Journals (Sweden)

    Wu Zhicheng

    2017-01-01

    Full Text Available The steering performance of multi-axle vehicle with independent driving system is affected by the distribution of the wheel driving force. A nonlinear vehicle dynamics model including magic formula tire model for describing 11 DoF four-axle vehicle with dual-front-axle-steering (DFAS system was presented. The influence of different driving force distribution scheme on the steering performance of the vehicle was analyzed. A control strategy for improving the steady response and transient response of the vehicle steering is proposed. The results show: For the steady response, setting different drive force for internal and external wheels according to the actual steering characteristics of the vehicle can effectively improve its steering characteristics; For the transient response, adopting the zero sideslip angle control strategy and using the PID control algorithm to control the driving force of the outside wheel of tear-two-axle, under angle step input, the vehicle sideslip angle can quickly stabilize to 0 and yaw rate also significantly decreases.

  2. Air Commando Intel: Optimizing Specialization Training for Air Force Special Operations Command Intelligence Officers

    Science.gov (United States)

    2011-12-01

    15 2. Managing Careers by Core Competencies ......................................15 D. GLASS CEILINGS ...Transforming the Force: Past, Present & Future,” Slide presentation, Washington, D.C., October 28, 2002, 5. 38 Ibid. 17 D. GLASS CEILINGS Getting AF...Agency Support to PR MSN Mission Planning SOF Mission Planning Exercise/Organization, Case Studies (Somalia/ Lebanon ), HUMINT case study SYS Systems

  3. A Numerical Study of Low-Thrust Limited Power Trajectories between Coplanar Circular Orbits in an Inverse-Square Force Field

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2012-01-01

    Full Text Available A numerical study of optimal low-thrust limited power trajectories for simple transfer (no rendezvous between circular coplanar orbits in an inverse-square force field is performed by two different classes of algorithms in optimization of trajectories. This study is carried out by means of a direct method based on gradient techniques and by an indirect method based on the second variation theory. The direct approach of the trajectory optimization problem combines the main positive characteristics of two well-known direct methods in optimization of trajectories: the steepest-descent (first-order gradient method and a direct second variation (second-order gradient method. On the other hand, the indirect approach of the trajectory optimization problem involves two different algorithms of the well-known neighboring extremals method. Several radius ratios and transfer durations are considered, and the fuel consumption is taken as the performance criterion. For small-amplitude transfers, the results are compared to the ones provided by a linear analytical theory.

  4. Compatibility of the Chameleon-Field Model with Fifth-Force Experiments, Cosmology, and PVLAS and CAST Results

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2007-01-01

    We analyze the PVLAS results using a chameleon field whose properties depend on the environment. We find that, assuming a runaway bare potential V(φ) and a universal coupling to matter, the chameleon potential is such that the scalar field can act as dark energy. Moreover, the chameleon-field model is compatible with the CERN Axion Solar Telescope results, fifth-force experiments, and cosmology

  5. Discrepancies between conformational distributions of a polyalanine peptide in solution obtained from molecular dynamics force fields and amide I' band profiles.

    Science.gov (United States)

    Verbaro, Daniel; Ghosh, Indrajit; Nau, Werner M; Schweitzer-Stenner, Reinhard

    2010-12-30

    Structural preferences in the unfolded state of peptides determined by molecular dynamics still contradict experimental data. A remedy in this regard has been suggested by MD simulations with an optimized Amber force field ff03* ( Best, R. Hummer, G. J. Phys. Chem. B 2009 , 113 , 9004 - 9015 ). The simulations yielded a statistical coil distribution for alanine which is at variance with recent experimental results. To check the validity of this distribution, we investigated the peptide H-A(5)W-OH, which with the exception of the additional terminal tryptophan is analogous to the peptide used to optimize the force fields ff03*. Electronic circular dichroism, vibrational circular dichroism, and infrared spectroscopy as well as J-coupling constants obtained from NMR experiments were used to derive the peptide's conformational ensemble. Additionally, Förster resonance energy transfer between the terminal chromophores of the fluorescently labeled peptide analogue H-Dbo-A(5)W-OH was used to determine its average length, from which the end-to-end distance of the unlabeled peptide was estimated. Qualitatively, the experimental (3)J(H(N),C(α)), VCD, and ECD indicated a preference of alanine for polyproline II-like conformations. The experimental (3)J(H(N),C(α)) for A(5)W closely resembles the constants obtained for A(5). In order to quantitatively relate the conformational distribution of A(5) obtained with the optimized AMBER ff03* force field to experimental data, the former was used to derive a distribution function which expressed the conformational ensemble as a mixture of polyproline II, β-strand, helical, and turn conformations. This model was found to satisfactorily reproduce all experimental J-coupling constants. We employed the model to calculate the amide I' profiles of the IR and vibrational circular dichroism spectrum of A(5)W, as well as the distance between the two terminal peptide carbonyls. This led to an underestimated negative VCD couplet and an

  6. Optimal Force Control of Vibro-Impact Systems for Autonomous Drilling Applications

    Science.gov (United States)

    Aldrich, Jack B.; Okon, Avi B.

    2012-01-01

    The need to maintain optimal energy efficiency is critical during the drilling operations performed on future and current planetary rover missions (see figure). Specifically, this innovation seeks to solve the following problem. Given a spring-loaded percussive drill driven by a voice-coil motor, one needs to determine the optimal input voltage waveform (periodic function) and the optimal hammering period that minimizes the dissipated energy, while ensuring that the hammer-to-rock impacts are made with sufficient (user-defined) impact velocity (or impact energy). To solve this problem, it was first observed that when voice-coil-actuated percussive drills are driven at high power, it is of paramount importance to ensure that the electrical current of the device remains in phase with the velocity of the hammer. Otherwise, negative work is performed and the drill experiences a loss of performance (i.e., reduced impact energy) and an increase in Joule heating (i.e., reduction in energy efficiency). This observation has motivated many drilling products to incorporate the standard bang-bang control approach for driving their percussive drills. However, the bang-bang control approach is significantly less efficient than the optimal energy-efficient control approach solved herein. To obtain this solution, the standard tools of classical optimal control theory were applied. It is worth noting that these tools inherently require the solution of a two-point boundary value problem (TPBVP), i.e., a system of differential equations where half the equations have unknown boundary conditions. Typically, the TPBVP is impossible to solve analytically for high-dimensional dynamic systems. However, for the case of the spring-loaded vibro-impactor, this approach yields the exact optimal control solution as the sum of four analytic functions whose coefficients are determined using a simple, easy-to-implement algorithm. Once the optimal control waveform is determined, it can be used

  7. Optimization of Saturn paraboloid magnetospheric field model parameters using Cassini equatorial magnetic field data

    Directory of Open Access Journals (Sweden)

    E. S. Belenkaya

    2016-07-01

    Full Text Available The paraboloid model of Saturn's magnetosphere describes the magnetic field as being due to the sum of contributions from the internal field of the planet, the ring current, and the tail current, all contained by surface currents inside a magnetopause boundary which is taken to be a paraboloid of revolution about the planet-Sun line. The parameters of the model have previously been determined by comparison with data from a few passes through Saturn's magnetosphere in compressed and expanded states, depending on the prevailing dynamic pressure of the solar wind. Here we significantly expand such comparisons through examination of Cassini magnetic field data from 18 near-equatorial passes that span wide ranges of local time, focusing on modelling the co-latitudinal field component that defines the magnetic flux passing through the equatorial plane. For 12 of these passes, spanning pre-dawn, via noon, to post-midnight, the spacecraft crossed the magnetopause during the pass, thus allowing an estimate of the concurrent subsolar radial distance of the magnetopause R1 to be made, considered to be the primary parameter defining the scale size of the system. The best-fit model parameters from these passes are then employed to determine how the parameters vary with R1, using least-squares linear fits, thus providing predictive model parameters for any value of R1 within the range. We show that the fits obtained using the linear approximation parameters are of the same order as those for the individually selected parameters. We also show that the magnetic flux mapping to the tail lobes in these models is generally in good accord with observations of the location of the open-closed field line boundary in Saturn's ionosphere, and the related position of the auroral oval. We then investigate the field data on six passes through the nightside magnetosphere, for which the spacecraft did not cross the magnetopause, such that in this case we compare the

  8. Magnetic field modeling and optimal operational control of a single-side axial-flux permanent magnet motor with center poles

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lee, S.-C.

    2006-01-01

    A detailed approach for analyzing magnetic field distributions of a single-sided axial-flux permanent magnet motor with center poles will be provided. Based on the devised flux model, the related position-dependent torque and axial force of the motor can be systematically developed. By incorporating adequate control designs, the optimal operational performance of the motor system can be conveniently achieved. Results showed that not only the motor structure is suitable for related military and transportation applications, but also the magnetic field model can provide appropriate mathematical basis for relative operational realizations

  9. Optimal usage of computing grid network in the fields of nuclear fusion computing task

    International Nuclear Information System (INIS)

    Tenev, D.

    2006-01-01

    Nowadays the nuclear power becomes the main source of energy. To make its usage more efficient, the scientists created complicated simulation models, which require powerful computers. The grid computing is the answer to powerful and accessible computing resources. The article observes, and estimates the optimal configuration of the grid environment in the fields of the complicated nuclear fusion computing tasks. (author)

  10. Determination of the optimal method for the field-in-field technique in breast tangential radiotherapy

    International Nuclear Information System (INIS)

    Tanaka, Hidekazu; Hayashi, Shinya; Hoshi, Hiroaki

    2014-01-01

    Several studies have reported the usefulness of the field-in-field (FIF) technique in breast radiotherapy. However, the methods for the FIF technique used in these studies vary. These methods were classified into three categories. We simulated a radiotherapy plan with each method and analyzed the outcomes. In the first method, a pair of subfields was added to each main field: the single pair of subfields method (SSM). In the second method, three pairs of subfields were added to each main field: the multiple pairs of subfields method (MSM). In the third method, subfields were alternately added: the alternate subfields method (ASM). A total of 51 patients were enrolled in this study. The maximum dose to the planning target volume (PTV) (Dmax) and the volumes of the PTV receiving 100% of the prescription dose (V100%) were calculated. The thickness of the breast between the chest wall and skin surface was measured, and patients were divided into two groups according to the median. In the overall series, the average V100% with ASM (60.3%) was significantly higher than with SSM (52.6%) and MSM (48.7%). In the thin breast group as well, the average V100% with ASM (57.3%) and SSM (54.2%) was significantly higher than that with MSM (43.3%). In the thick breast group, the average V100% with ASM (63.4%) was significantly higher than that with SSM (51.0%) and MSM (54.4%). ASM resulted in better dose distribution, regardless of the breast size. Moreover, planning for ASM required a relatively short time. ASM was considered the most preferred method. (author)

  11. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments.

    Science.gov (United States)

    Lin, Jun; Valentine, Megan T

    2012-05-01

    We present the design, calibration, and testing of a magnetic tweezers device that employs two pairs of permanent neodymium iron boron magnets surrounded by low-carbon steel focusing tips to apply large forces to soft materials for microrheology experiments. Our design enables the application of forces in the range of 1-1800 pN to ∼4.5 μm paramagnetic beads using magnet-bead separations in the range of 0.3-20 mm. This allows the use of standard coverslips and sample geometries. A high speed camera, custom LED-based illumination scheme, and mechanically stabilized measurement platform are employed to enable the measurement of materials with viscoelastic moduli as high as ∼1 kPa.

  12. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jun [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States); Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106 (United States); Valentine, Megan T. [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States)

    2012-05-15

    We present the design, calibration, and testing of a magnetic tweezers device that employs two pairs of permanent neodymium iron boron magnets surrounded by low-carbon steel focusing tips to apply large forces to soft materials for microrheology experiments. Our design enables the application of forces in the range of 1-1800 pN to {approx}4.5 {mu}m paramagnetic beads using magnet-bead separations in the range of 0.3-20 mm. This allows the use of standard coverslips and sample geometries. A high speed camera, custom LED-based illumination scheme, and mechanically stabilized measurement platform are employed to enable the measurement of materials with viscoelastic moduli as high as {approx}1 kPa.

  13. An inverse method for determining the interaction force between the probe and sample using scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Chang, Win-Jin; Fang, Te-Hua

    2006-01-01

    This study proposes a means for calculating the interaction force during the scanning process using a scanning near-field optical microscope (SNOM) probe. The determination of the interaction force in the scanning system is regarded as an inverse vibration problem. The conjugate gradient method is applied to treat the inverse problem using available displacement measurements. The results show that the conjugate gradient method is less sensitive to measurement errors and prior information on the functional form of quality was not required. Furthermore, the initial guesses for the interaction force can be arbitrarily chosen for the iteration process

  14. Energy expenditure and intake during Special Operations Forces field training in a jungle and glacial environment.

    Science.gov (United States)

    Johnson, Caleb D; Simonson, Andrew J; Darnell, Matthew E; DeLany, James P; Wohleber, Meleesa F; Connaboy, Christopher

    2018-04-01

    The purpose of this study was to identify and compare energy requirements specific to Special Operations Forces in field training, in both cool and hot environments. Three separate training sessions were evaluated, 2 in a hot environment (n = 21) and 1 in a cool environment (n = 8). Total energy expenditure was calculated using doubly labeled water. Dietary intake was assessed via self-report at the end of each training mission day, and macronutrient intakes were calculated. Across the 3 missions, mean energy expenditure (4618 ± 1350 kcal/day) exceeded mean energy intake (2429 ± 838 kcal/day) by an average of 2200 kcal/day. Macronutrient intakes (carbohydrates (g/(kg·day body weight (bw)) -1 ) = 3.2 ± 1.2; protein (g/(kg·day bw) -1 ) = 1.3 ± 0.7; fat (g/(kg·day bw) -1 ) = 1.2 ± 0.7) showed inadequate carbohydrate and possibly protein intake across the study period, compared with common recommendations. Total energy expenditures were found to be similar between hot (4664 ± 1399 kcal/day) and cool (4549 ± 1221 kcal/day) environments. However, energy intake was found to be higher in the cool (3001 ± 900 kcal/day) compared with hot (2200 ± 711 kcal/day) environments. Based on the identified energy deficit, high variation in energy expenditures, and poor macronutrient intake, a greater attention to feeding practices during similar training scenarios for Special Operations Forces is needed to help maintain performance and health. The differences in environmental heat stress between the 2 climates/environments had no observed effect on energy expenditures, but may have influenced intakes.

  15. Trace Contraband Detection Field-Test by the South Texas Specialized Crimes and Narcotics Task Force

    Energy Technology Data Exchange (ETDEWEB)

    Hannum, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Contraband Detection Dept.; Shannon, Gary W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Contraband Detection Dept.

    2006-04-01

    This report describes the collaboration between the South Texas Specialized Crimes and Narcotics Task Force (STSCNTF) and Sandia National Laboratories (SNL) in a field test that provided prototype hand-held trace detection technology for use in counter-drug operations. The National Institute of Justice (NIJ)/National Law Enforcement and Corrections Technology Center (NLECTC)/Border Research and Technology Center (BRTC) was contacted by STSCNTF for assistance in obtaining cutting-edge technology. The BRTC created a pilot project for Sandia National Laboratories (SNL) and the STSCNTF for the use of SNL’s Hound, a hand-held sample collection and preconcentration system that, when combined with a commercial chemical detector, can be used for the trace detection of illicit drugs and explosives. The STSCNTF operates in an area of high narcotics trafficking where methods of concealment make the detection of narcotics challenging. Sandia National Laboratories’ (SNL) Contraband Detection Department personnel provided the Hound system hardware and operational training. The Hound system combines the GE VaporTracer2, a hand-held commercial chemical detector, with an SNL-developed sample collection and preconcentration system. The South Texas Task force reported a variety of successes, including identification of a major shipment of methamphetamines, the discovery of hidden compartments in vehicles that contained illegal drugs and currency used in drug deals, and the identification of a suspect in a nightclub shooting. The main advantage of the hand-held trace detection unit is its ability to quickly identify the type of chemical (drugs or explosives) without a long lag time for laboratory analysis, which is the most common analysis method for current law enforcement procedures.

  16. Optimization Case Study: ISR Allocation in the Global Force Management Process

    Science.gov (United States)

    2016-09-01

    assets available to meet the GCC requirements. The Joint Staff, in concert with USSTRATCOM, use many factors to prioritize allocation of assets to...include determining which GCC gets the assets and for how long. The decision influencers recommend a resource allocation solution based on experience...The allocation process illustrated in Figure 1 is the OV-1 diagram from the Joint Staff Global Force Management Enterprise Integration

  17. A Non-Linear Force-Free Field Model for the Evolving Magnetic Structure of Solar Filaments

    Science.gov (United States)

    Mackay, Duncan H.; van Ballegooijen, A. A.

    2009-12-01

    In this paper the effect of a small magnetic element approaching the main body of a solar filament is considered through non-linear force-free field modeling. The filament is represented by a series of magnetic dips. Once the dips are calculated, a simple hydrostatic atmosphere model is applied to determine which structures have sufficient column mass depth to be visible in Hα. Two orientations of the bipole are considered, either parallel or anti-parallel to the overlying arcade. The magnetic polarity that lies closest to the filament is then advected towards the filament. Initially for both the dominant and minority polarity advected elements, right/left bearing barbs are produced for dextral/sinsitral filaments. The production of barbs due to dominant polarity elements is a new feature. In later stages the filament breaks into two dipped sections and takes a highly irregular, non-symmetrical form with multiple pillars. The two sections are connected by field lines with double dips even though the twist of the field is less than one turn. Reconnection is not found to play a key role in the break up of the filament. The non-linear force-free fields produce very different results to extrapolated linear-force free fields. For the cases considered here the linear force-free field does not produce the break up of the filament nor the production of barbs as a result of dominant polarity elements.

  18. Magnetic tweezers optimized to exert high forces over extended distances from the magnet in multicellular systems

    Science.gov (United States)

    Selvaggi, L.; Pasakarnis, L.; Brunner, D.; Aegerter, C. M.

    2018-04-01

    Magnetic tweezers are mainly divided into two classes depending on the ability of applying torque or forces to the magnetic probe. We focused on the second category and designed a device composed by a single electromagnet equipped with a core having a special asymmetric profile to exert forces as large as 230 pN-2.8 μm Dynabeads at distances in excess of 100 μm from the magnetic tip. Compared to existing solutions our magnetic tweezers overcome important limitations, opening new experimental paths for the study of a wide range of materials in a variety of biophysical research settings. We discuss the benefits and drawbacks of different magnet core characteristics, which led us to design the current core profile. To demonstrate the usefulness of our magnetic tweezers, we determined the microrheological properties inside embryos of Drosophila melanogaster during the syncytial stage. Measurements in different locations along the dorsal-ventral axis of the embryos showed little variation, with a slight increase in cytoplasm viscosity at the periphery of the embryos. The mean cytoplasm viscosity we obtain by active force exertion inside the embryos is comparable to that determined passively using high-speed video microrheology.

  19. Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors.

    Science.gov (United States)

    Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán

    2018-04-05

    Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

  20. A novel patch-field design using an optimized grid filter for passively scattered proton beams

    International Nuclear Information System (INIS)

    Li Yupeng; Zhang Xiaodong; Dong Lei; Mohan, Radhe

    2007-01-01

    For tumors with highly complex shapes, a 'patching' strategy is often used in passively scattered proton therapy to match the sharp distal edge of the spread-out Bragg peak (SOBP) of the patch field to the lateral penumbra of the through field at 50% dose level. The differences in the dose gradients at the distal edge and at the lateral penumbra could cause hot and cold doses at the junction. In this note, we describe an algorithm developed to optimize the range compensator design to yield a more uniform dose distribution at the junction. The algorithm is based on the fact that the distal fall-off of the SOBP can be tailored using a grid filter that is placed perpendicular to the beam's path. The filter is optimized so that the distal fall-off of the patch field complements the lateral penumbra fall-off of the through field. In addition to optimizing the fall-off, the optimization process implicitly accounts for the limitations of conventional compensator design algorithms. This algorithm uses simple ray tracing to determine the compensator shape and ignore scatter. The compensated dose distribution may therefore differ substantially from the intended dose distribution, especially when complex heterogeneities are encountered, such as those in the head and neck. In such a case, an adaptive optimization strategy can be used to optimize the 'grid' filter locally considering the tissue heterogeneities. The grid filter thus obtained is superimposed on the original range compensator so that the composite compensator leads to a more uniform dose distribution at the patch junction. An L-shaped head and neck tumor was used to demonstrate the validity of the proposed algorithm. A robustness analysis with focus on range uncertainty effect is carried out. (note)

  1. Recent advances toward a general purpose linear-scaling quantum force field.

    Science.gov (United States)

    Giese, Timothy J; Huang, Ming; Chen, Haoyuan; York, Darrin M

    2014-09-16

    Conspectus There is need in the molecular simulation community to develop new quantum mechanical (QM) methods that can be routinely applied to the simulation of large molecular systems in complex, heterogeneous condensed phase environments. Although conventional methods, such as the hybrid quantum mechanical/molecular mechanical (QM/MM) method, are adequate for many problems, there remain other applications that demand a fully quantum mechanical approach. QM methods are generally required in applications that involve changes in electronic structure, such as when chemical bond formation or cleavage occurs, when molecules respond to one another through polarization or charge transfer, or when matter interacts with electromagnetic fields. A full QM treatment, rather than QM/MM, is necessary when these features present themselves over a wide spatial range that, in some cases, may span the entire system. Specific examples include the study of catalytic events that involve delocalized changes in chemical bonds, charge transfer, or extensive polarization of the macromolecular environment; drug discovery applications, where the wide range of nonstandard residues and protonation states are challenging to model with purely empirical MM force fields; and the interpretation of spectroscopic observables. Unfortunately, the enormous computational cost of conventional QM methods limit their practical application to small systems. Linear-scaling electronic structure methods (LSQMs) make possible the calculation of large systems but are still too computationally intensive to be applied with the degree of configurational sampling often required to make meaningful comparison with experiment. In this work, we present advances in the development of a quantum mechanical force field (QMFF) suitable for application to biological macromolecules and condensed phase simulations. QMFFs leverage the benefits provided by the LSQM and QM/MM approaches to produce a fully QM method that is able to

  2. X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water.

    Science.gov (United States)

    Xie, Wangshen; Orozco, Modesto; Truhlar, Donald G; Gao, Jiali

    2009-02-17

    A recently proposed electronic structure-based force field called the explicit polarization (X-Pol) potential is used to study many-body electronic polarization effects in a protein, in particular by carrying out a molecular dynamics (MD) simulation of bovine pancreatic trypsin inhibitor (BPTI) in water with periodic boundary conditions. The primary unit cell is cubic with dimensions ~54 × 54 × 54 Å(3), and the total number of atoms in this cell is 14281. An approximate electronic wave function, consisting of 29026 basis functions for the entire system, is variationally optimized to give the minimum Born-Oppenheimer energy at every MD step; this allows the efficient evaluation of the required analytic forces for the dynamics. Intramolecular and intermolecular polarization and intramolecular charge transfer effects are examined and are found to be significant; for example, 17 out of 58 backbone carbonyls differ from neutrality on average by more than 0.1 electron, and the average charge on the six alanines varies from -0.05 to +0.09. The instantaneous excess charges vary even more widely; the backbone carbonyls have standard deviations in their fluctuating net charges from 0.03 to 0.05, and more than half of the residues have excess charges whose standard deviation exceeds 0.05. We conclude that the new-generation X-Pol force field permits the inclusion of time-dependent quantum mechanical polarization and charge transfer effects in much larger systems than was previously possible.

  3. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    Science.gov (United States)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    Biomass and fossil fuel combustion emits black (BC) and brown carbon (BrC) aerosols that absorb sunlight to warm climate and organic carbon (OC) aerosols that scatter sunlight to cool climate. The net forcing depends strongly on the composition, mixing state and transformations of these carbonaceous aerosols. Complexities from large variability of fuel types, combustion conditions and aging processes have confounded their treatment in models. We analyse recent laboratory and field measurements to uncover fundamental mechanism that control the chemical, optical and microphysical properties of carbonaceous aerosols that are elaborated below: Wavelength dependence of absorption and the single scattering albedo (ω) of fresh biomass burning aerosols produced from many fuels during FLAME-4 was analysed to determine the factors that control the variability in ω. Results show that ω varies strongly with fire-integrated modified combustion efficiency (MCEFI)—higher MCEFI results in lower ω values and greater spectral dependence of ω (Liu et al GRL 2014). A parameterization of ω as a function of MCEFI for fresh BB aerosols is derived from the laboratory data and is evaluated by field data, including BBOP. Our laboratory studies also demonstrate that BrC production correlates with BC indicating that that they are produced by a common mechanism that is driven by MCEFI (Saleh et al NGeo 2014). We show that BrC absorption is concentrated in the extremely low volatility component that favours long-range transport. We observe substantial absorption enhancement for internally mixed BC from diesel and wood combustion near London during ClearFlo. While the absorption enhancement is due to BC particles coated by co-emitted OC in urban regions, it increases with photochemical age in rural areas and is simulated by core-shell models. We measure BrC absorption that is concentrated in the extremely low volatility components and attribute it to wood burning. Our results support

  4. Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field

    Science.gov (United States)

    Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D.

    2017-08-01

    Topology optimization offers great opportunities to design permanent magnetic systems that have specific external field characteristics. Additive manufacturing of polymer-bonded magnets with an end-user 3D printer can be used to manufacture permanent magnets with structures that had been difficult or impossible to manufacture previously. This work combines these two powerful methods to design and manufacture permanent magnetic systems with specific properties. The topology optimization framework is simple, fast, and accurate. It can also be used for the reverse engineering of permanent magnets in order to find the topology from field measurements. Furthermore, a magnetic system that generates a linear external field above the magnet is presented. With a volume constraint, the amount of magnetic material can be minimized without losing performance. Simulations and measurements of the printed systems show very good agreement.

  5. Optimal Magnetic Field Shielding Method by Metallic Sheets in Wireless Power Transfer System

    Directory of Open Access Journals (Sweden)

    Feng Wen

    2016-09-01

    Full Text Available To meet the regulations established to limit human exposure to time-varying electromagnetic fields (EMFs such as the International Committee on Non-Ionizing Radiation Protection (ICNIRP guidelines, thin metallic sheets are often used to shield magnetic field leakage in high power applications of wireless power transfer (WPT systems based on magnetic field coupling. However, the metals in the vicinity of the WPT coils cause the decrease of self and mutual inductances and increase of effective series resistance; as such, the electric performance including transmission power and the efficiency of the system is affected. With the research objective of further investigating excellent shielding effectiveness associated with system performance, the utilization of the optimal magnetic field shielding method by metallic sheets in magnetic field coupling WPT is carried out in this paper. The circuit and 3D Finite Element Analysis (FEA models are combined to predict the magnetic field distribution and electrical performance. Simulation and experiment results show that the method is very effective by obtaining the largest possible coupling coefficient of the WPT coils within the allowable range and then reducing the value nearest to and no smaller than the critical coupling coefficient via geometric unbroken metallic sheets. The optimal magnetic field shielding method which considers the system efficiency, transmission power, transmission distance, and system size is also achieved using the analytic hierarchy process (AHP. The results can benefit WPT by helping to achieve efficient energy transfer and safe use in metal shielded equipment.

  6. Optimizing atomic force microscopy for characterization of diamond-protein interfaces

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Ukraintsev, Egor; Kromka, Alexander

    2011-01-01

    Roč. 6, Apr. (2011), 337/1-337/10 ISSN 1931-7573 R&D Projects: GA MŠk(CZ) LC06040; GA ČR(CZ) GAP108/11/0794; GA AV ČR KAN400100701; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : atomic force microscopy (AFM) * nanocrystalline diamond * oxygen-terminated diamond * hydrogen-terminated diamond * proteins * fetal bovine serum (FBS) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.726, year: 2011

  7. The impact of previous knee injury on force plate and field-based measures of balance.

    Science.gov (United States)

    Baltich, Jennifer; Whittaker, Jackie; Von Tscharner, Vinzenz; Nettel-Aguirre, Alberto; Nigg, Benno M; Emery, Carolyn

    2015-10-01

    Individuals with post-traumatic osteoarthritis demonstrate increased sway during quiet stance. The prospective association between balance and disease onset is unknown. Improved understanding of balance in the period between joint injury and disease onset could inform secondary prevention strategies to prevent or delay the disease. This study examines the association between youth sport-related knee injury and balance, 3-10years post-injury. Participants included 50 individuals (ages 15-26years) with a sport-related intra-articular knee injury sustained 3-10years previously and 50 uninjured age-, sex- and sport-matched controls. Force-plate measures during single-limb stance (center-of-pressure 95% ellipse-area, path length, excursion, entropic half-life) and field-based balance scores (triple single-leg hop, star-excursion, unipedal dynamic balance) were collected. Descriptive statistics (mean within-pair difference; 95% confidence intervals) were used to compare groups. Linear regression (adjusted for injury history) was used to assess the relationship between ellipse-area and field-based scores. Injured participants on average demonstrated greater medio-lateral excursion [mean within-pair difference (95% confidence interval); 2.8mm (1.0, 4.5)], more regular medio-lateral position [10ms (2, 18)], and shorter triple single-leg hop distances [-30.9% (-8.1, -53.7)] than controls, while no between group differences existed for the remaining outcomes. After taking into consideration injury history, triple single leg hop scores demonstrated a linear association with ellipse area (β=0.52, 95% confidence interval 0.01, 1.01). On average the injured participants adjusted their position less frequently and demonstrated a larger magnitude of movement during single-limb stance compared to controls. These findings support the evaluation of balance outcomes in the period between knee injury and post-traumatic osteoarthritis onset. Copyright © 2015 Elsevier Ltd. All rights

  8. Pareto-Optimization of HTS CICC for High-Current Applications in Self-Field

    Directory of Open Access Journals (Sweden)

    Giordano Tomassetti

    2018-01-01

    Full Text Available The ENEA superconductivity laboratory developed a novel design for Cable-in-Conduit Conductors (CICCs comprised of stacks of 2nd-generation REBCO coated conductors. In its original version, the cable was made up of 150 HTS tapes distributed in five slots, twisted along an aluminum core. In this work, taking advantage of a 2D finite element model, able to estimate the cable’s current distribution in the cross-section, a multiobjective optimization procedure was implemented. The aim of optimization was to simultaneously maximize both engineering current density and total current flowing inside the tapes when operating in self-field, by varying the cross-section layout. Since the optimization process involved both integer and real geometrical variables, the choice of an evolutionary search algorithm was strictly necessary. The use of an evolutionary algorithm in the frame of a multiple objective optimization made it an obliged choice to numerically approach the problem using a nonstandard fast-converging optimization algorithm. By means of this algorithm, the Pareto frontiers for the different configurations were calculated, providing a powerful tool for the designer to achieve the desired preliminary operating conditions in terms of engineering current density and/or total current, depending on the specific application field, that is, power transmission cable and bus bar systems.

  9. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    International Nuclear Information System (INIS)

    Zhang Longcai; Wang Suyu; Wang Jiasu

    2009-01-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  10. Suppression of guidance force decay of HTS bulk exposed to AC magnetic field perturbation in a maglev vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Longcai, E-mail: zhlcai2000@163.co [College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, Sichuan 618307 (China); Wang Suyu; Wang Jiasu [Applied Superconductivity Laboratory, Southwest Jiaotong University, P.O. Box 152, Chengdu, Sichuan 610031 (China)

    2009-07-01

    Superconducting maglev vehicle was one of the most promising applications of HTS bulks. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFdB guideway used in the high-temperature superconducting maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we adopted a method to suppress the decay by altering the field-cooled height of the bulk. From the experimental results, it was found that the decay rate of the guidance force was smaller at lower field-cooled height. So we could suppress the guidance force decay of HTS bulk exposed to AC external magnetic field perturbation in the maglev vehicle system by reducing the field-cooled height of the bulk. Furthermore, all the experimental results in this paper were explained based on Bean critical-state model.

  11. Combination Rules for Morse-Based van der Waals Force Fields.

    Science.gov (United States)

    Yang, Li; Sun, Lei; Deng, Wei-Qiao

    2018-02-15

    In traditional force fields (FFs), van der Waals interactions have been usually described by the Lennard-Jones potentials. Conventional combination rules for the parameters of van der Waals (VDW) cross-termed interactions were developed for the Lennard-Jones based FFs. Here, we report that the Morse potentials were a better function to describe VDW interactions calculated by highly precise quantum mechanics methods. A new set of combination rules was developed for Morse-based FFs, in which VDW interactions were described by Morse potentials. The new set of combination rules has been verified by comparing the second virial coefficients of 11 noble gas mixtures. For all of the mixed binaries considered in this work, the combination rules work very well and are superior to all three other existing sets of combination rules reported in the literature. We further used the Morse-based FF by using the combination rules to simulate the adsorption isotherms of CH 4 at 298 K in four covalent-organic frameworks (COFs). The overall agreement is great, which supports the further applications of this new set of combination rules in more realistic simulation systems.

  12. Determination of a silane intermolecular force field potential model from an ab initio calculation

    International Nuclear Information System (INIS)

    Li, Arvin Huang-Te; Chao, Sheng D.; Chang, Chien-Cheng

    2010-01-01

    Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.

  13. Comparison of force fields and calculation methods for vibration intervals of isotopic H+3 molecules

    International Nuclear Information System (INIS)

    Carney, G.D.; Adler-Golden, S.M.; Lesseski, D.C.

    1986-01-01

    This paper reports (a) improved values for low-lying vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 calculated using the variational method and Simons--Parr--Finlan representations of the Carney--Porter and Dykstra--Swope ab initio H + 3 potential energy surfaces, (b) quartic normal coordinate force fields for isotopic H + 3 molecules, (c) comparisons of variational and second-order perturbation theory, and (d) convergence properties of the Lai--Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 for these potential surfaces are 6.9 (Carney--Porter) and 1.2 cm -1 (Dykstra--Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10 cm -1 for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed ''t'' coordinate Hamiltonian for these molecules, except in the case of H 2 D +

  14. Relation of twist of magnetic force tube and flare magnetic field

    International Nuclear Information System (INIS)

    Tanaka, H.

    1978-01-01

    The configuration of magnetic field and its development in the regions of big flare were investigated to study the features of magnetic force tubes. The photographs of delta type solar spots taken at Mt. Wilson Observatory were selected. 94 percent of the delta type spots belong to the class B activity or more active class. The features of delta type spots are the reverse configuration and the shear motion. The reverse configuration is divided into the p/f configuration and the f/p configuration. The shear motion is divided into the normal motion, the reverse motion, and the indefinite motion. Vortex structures appeared around the solar spots of reverse configuration showing normal motion. The relation among the direction of twist, reverse configuration and the direction of shear motion was deduced. In the region of normal motion, the p/f configuration corresponds to the reverse S type vortices and the f/p configuration to S type. In the region of reverse motion, the p/f configuration corresponds to the S type vortices and the f/p corresponds to the reverse S type vortices. The mechanism of development of delta type solar spots is discussed. (Kato, T.)

  15. The ELBA force field for coarse-grain modeling of lipid membranes.

    Directory of Open Access Journals (Sweden)

    Mario Orsi

    Full Text Available A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (ε(r = 1. Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC and dioleoylphosphatidylethanolamine (DOPE in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids; this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities.

  16. Ligandbook: an online repository for small and drug-like molecule force field parameters.

    Science.gov (United States)

    Domanski, Jan; Beckstein, Oliver; Iorga, Bogdan I

    2017-06-01

    Ligandbook is a public database and archive for force field parameters of small and drug-like molecules. It is a repository for parameter sets that are part of published work but are not easily available to the community otherwise. Parameter sets can be downloaded and immediately used in molecular dynamics simulations. The sets of parameters are versioned with full histories and carry unique identifiers to facilitate reproducible research. Text-based search on rich metadata and chemical substructure search allow precise identification of desired compounds or functional groups. Ligandbook enables the rapid set up of reproducible molecular dynamics simulations of ligands and protein-ligand complexes. Ligandbook is available online at https://ligandbook.org and supports all modern browsers. Parameters can be searched and downloaded without registration, including access through a programmatic RESTful API. Deposition of files requires free user registration. Ligandbook is implemented in the PHP Symfony2 framework with TCL scripts using the CACTVS toolkit. oliver.beckstein@asu.edu or bogdan.iorga@cnrs.fr ; contact@ligandbook.org . Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  17. Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2015-04-21

    Semi-quartic force fields (QFF) rely on a Taylor-expansion of the multi-dimensional Born-Oppenheimer potential energy surface (PES) and are frequently used within the calculation of anharmonic vibrational frequencies based on 2nd order vibrational perturbation theory (VPT2). As such they are usually determined by differentiation of the electronic energy with respect to the nuclear coordinates. Alternatively, potential energy surfaces can be expanded in terms of multi-mode expansions, which typically do not require any derivative techniques. The computational effort to retrieve QFF from size-reduced multi-mode expansions has been studied and has been compared with standard Taylor-expansions. As multi-mode expansions allow for the convenient introduction of subtle approximations, these will be discussed in some detail. In addition, a preliminary study about the applicability of a generalized Duschinsky transformation to QFFs is provided. This transformation allows for the efficient evaluation of VPT2 frequencies of isotopologues from the PES of the parent compound and thus avoids the recalculation of PESs in different axes systems.

  18. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  19. Phase-Field Relaxation of Topology Optimization with Local Stress Constraints

    DEFF Research Database (Denmark)

    Stainko, Roman; Burger, Martin

    2006-01-01

    inequality constraints. We discretize the problem by finite elements and solve the arising finite-dimensional programming problems by a primal-dual interior point method. Numerical experiments for problems with local stress constraints based on different criteria indicate the success and robustness......We introduce a new relaxation scheme for structural topology optimization problems with local stress constraints based on a phase-field method. In the basic formulation we have a PDE-constrained optimization problem, where the finite element and design analysis are solved simultaneously...

  20. Optimization of the blankholder force distribution with application to the stamping of a car front door panel (Numisheet'99)

    International Nuclear Information System (INIS)

    Ayed, L. Ben; Delameziere, A.; Batoz, J.L.; Knopf-Lenoir, C.

    2005-01-01

    New materials such as dual phase steel or aluminium and complex geometries of industrial parts increase the difficulties to obtain a defect free part by stamping. One way of solution is a better regulation of the blankholder pressures. Our work is based on an original idea of Siegert, Haeussermann and Haller. The goal is to control the movement of the blank under the blankholder. Thanks to a deformable flexible blankholder, it is possible to create some independent zones. In each zone, a blankholder force can be applied on the sheet, so that a strong force can hold the blank in a zone, and a smaller one can let it move in another zone. The methodology is presented as well as some results dealing with the optimization of the blankholder force considering the drawing of a front door panel (Numisheet'99 benchmark test). The numerical simulations are performed using ABAQUS Explicit. The parameters of the finite element model (mesh density, speed of punch) are set to achieve a good prediction with a minimum simulation time. The objective function is defined to minimize the work of the punch. Three inequality constraints functions were defined to avoid necking and wrinkling. To avoid necking, the major stress of the blank is limited to a value, which is determined by using the modified maximum force criterion (MMFC). To avoid wrinkling, under the blankholder, the angle between the blankholder surface and an element of the blank is limited to a value set by the user, as proposed by Gelin and Labergere. However, in the useful part of the workpiece, the major stress is limited to a value, which was proposed by Brunet, Batoz and Bouabdallah. For the localization of the optimum, we use a response surface method computed with a diffuse approximation and coupled with an adaptative strategy to update the research space