WorldWideScience

Sample records for force effects cylinder

  1. Numerical Investigation of the Effect of Corner Radius on Forced Oscillating Square Cylinder

    Directory of Open Access Journals (Sweden)

    Sajjad Miran

    2016-01-01

    Full Text Available The purpose of this work is to numerically visualize the flow past forced oscillating square cylinder and investigate the effect of corner radius on flow induced forces. The finite volume code was applied to simulate the two dimensional flow past forced oscillating square cylinder with different radius to diameter ratios, (R/D = 0 referring to a square cylinder with sharp edges and R/D = 0.5 as a circular cylinder. The near wake of a square section cylinder with an increment of R/D = 0.1 was studied as the body undergoes a complete oscillatory cycle at lock-in condition, F = fe / fs = 1 (where fe is the excitation frequency and fs is the vortex shedding frequency for the stationary cylinder. The computational model was validated for flow past oscillating cylinder with R/D = 0.5 at frequency ratios F = 0.5, 1.0 and 1.50, using as the lock-in and lock-out limits and the results shown good agreement. It was observed that computed value of Strouhal Number is nearly same for both stationary and oscillation case and a similar trend was observed, as R/D ratio increases. However, the results obtained from oscillation cylinder cases show the significant increase in root mean square value of lift coefficient (CL,RMS and mean drag coefficient (CD as compared to the stationary cylinder. Finally, It was found that the percentage increase of CL,RMS is higher than CD in force oscillating condition for R/D = 0, whereas both values decreases with the increase of R/D.

  2. Vertical force acting on partly submerged spindly cylinders

    Directory of Open Access Journals (Sweden)

    Xinbin Zhang

    2014-04-01

    Full Text Available When an object is placed on a water surface, the air-water interface deforms and a meniscus arises due to surface tension effects, which in turn produces a lift force or drag force on the partly submerged object. This study aims to investigate the underlying mechanism of the vertical force acting on spindly cylinders in contact with a water surface. A simplified 2-D model is presented, and the profile of the curved air-water interface and the vertical force are computed using a numerical method. A parametric study is performed to determine the effects of the cylinder center distance, inclined angle, static contact angle, and radius on the vertical force. Several key conclusions are derived from the study: (1 Although the lift force increases with the cylinder center distance, cylinders with smaller center distances can penetrate deeper below the water surface before sinking, thereby obtaining a larger maximum lift force; (2 An increase in the inclined angle reduces the lift force, which can enable the lower cylinders fall more deeply before sinking; (3 While the effect of static contact angle is limited for angles greater than 90°, hydrophobicity allows cylinders to obtain a larger lift force and load capacity on water; (4 The lift force increases rapidly with cylinder radius, but an increase in radius also increases the overall size and weight of cylinders and decreases the proportion of the surface tension force. These findings may prove helpful in the design of supporting legs of biologically-inspired miniature aquatic devices, such as water strider robots.

  3. In-depth Study on Cylinder Wake Controlled by Lorentz Force

    Institute of Scientific and Technical Information of China (English)

    张辉; 范宝春; 陈志华

    2011-01-01

    The underlying mechanisms of the electromagnetic control of cylinder wake are investigated and discussed.The effects of Lorentz force are found to be composed of two parts,one is its direct action on the cylinder(the wall Lorentz force)and the other is applied to the fluid(called the field Lorentz force)near the cylinder surface.Our results show that the wall Lorentz force can generate thrust and reduce the drag; the field Lorentz force increases the drag.However,the cylinder drag is dominated by the wall Lorentz force.In addition,the field Lorentz force above the upper surface decreases the lift,while the upper wall Lorentz force increases it.The total lift is dominated by the upper wall Lorentz force.%The underlying mechanisms of the electromagnetic control of cylinder wake are investigated and discussed. The effects of Lorentz force are found to be composed of two parts, one is its direct action on the cylinder (the wall Lorentz force) and the other is applied to the fluid (called the field Lorentz force) near the cylinder surface. Our results show that the wall Lorentz force can generate thrust and reduce the drag; the Geld Lorentz force increases the drag. However, the cylinder drag is dominated by the wall Lorentz force. In addition, the field Lorentz force above the upper surface decreases the lift, while the upper wall Lorentz force increases it. The total lift is dominated by the upper wall Lorentz force.

  4. FORCE REDUCTION OF FLOW AROUND A SINUSOIDAL WAVY CYLINDER

    Institute of Scientific and Technical Information of China (English)

    ZOU Lin; LIN Yu-feng

    2009-01-01

    A large eddy simulation of cross-flow around a sinusoidal wavy cylinder at Re=3000 was performed and the load cell measurement was introduced for the validation test. The mean flow field and the near wake flow structures were presented and compared with those for a circular cylinder at the same Reynolds number. The mean drag coefficient for the wavy cylinder is smaller than that for a corresponding circular cylinder due to the formation of a longer wake vortex generated by the wavy cylinder. The fluctuating lift coefficient of the wavy cylinder is also greatly reduced. This kind of wavy surface leads to the formation of 3-D free shear layers which are more stable than purely 2-D free shear layers. Such free shear layers only roll up into mature vortices at further downstream position and significantly modify the near wake structures and the pressure distributions around the wavy cylinder. Moreover, the simulations in laminar flow condition were also performed to investigate the effect of Reynolds number on force reduction control.

  5. Electromagnetic Casimir Forces of Parabolic Cylinder and Knife-Edge Geometries

    CERN Document Server

    Graham, Noah; Emig, Thorsten; Rahi, Sahand Jamal; Jaffe, Robert L; Kardar, Mehran

    2011-01-01

    An exact calculation of electromagnetic scattering from a perfectly conducting parabolic cylinder is employed to compute Casimir forces in several configurations. These include interactions between a parabolic cylinder and a plane, two parabolic cylinders, and a parabolic cylinder and an ordinary cylinder. To elucidate the effect of boundaries, special attention is focused on the "knife-edge" limit in which the parabolic cylinder becomes a half-plane. Geometrical effects are illustrated by considering arbitrary rotations of a parabolic cylinder around its focal axis, and arbitrary translations perpendicular to this axis. A quite different geometrical arrangement is explored for the case of an ordinary cylinder placed in the interior of a parabolic cylinder. All of these results extend simply to nonzero temperatures.

  6. Control of mean and fluctuating forces on a circular cylinder at high Reynolds numbers

    Institute of Scientific and Technical Information of China (English)

    Chuanping Shao; Jianming Wang

    2007-01-01

    A narrow strip is used to control mean and fluctuating forces on a circular cylinder at Reynolds numbers from 2.0 x 104 to 1.0 x 105. The axes of the strip and cylinder are parallel. The control parameters are strip width ratio and strip position characterized by angle of attack and distance from the cylinder. Wind tunnel tests show that the vortex shedding from both sides of the cylinder can be suppressed, and mean drag and fluctuating lift on the cylinder can be reduced if the strip is installed in an effective zone downstream of the cylinder. A phenomenon of mono-side vortex shedding is found. The strip-induced local changes of velocity profiles in the near wake of the cylinder are measured, and the relation between base suction and peak value in the power spectrum of fluctuating lift is studied. The control mechanism is then discussed from different points of view.

  7. A Comparative Experimental Study of Wave Forces on a Vertical Cylinder in Long-Crested and Short-Crested Seas

    DEFF Research Database (Denmark)

    Frigaard, Peter; Burcharth, Hans F.

    1988-01-01

    An experimental study is carried out to investigate the wave forces on a slender cylinder. Special attention is given to the wave forces in the surface zone and correlation of forces along the cylinder. The experiments consider the effects of both long and short-crested irregular waves....

  8. Wave Forces on Linear Arrays of Rigid Vertical Circular Cylinders in Regular Wave

    Directory of Open Access Journals (Sweden)

    V.J. Kurian

    2014-06-01

    Full Text Available The present investigation aims to experimentally determine the variation of forces and force coefficients acting on circular cylinders, which are arranged in a linear array along the direction of the waves. Most commonly used structural and non-structural elements in the construction of offshore platforms are circular cylindrical members. In many cases, these members are found in very close neighbourhood of each other, thus modifying the surrounding flow and wave forces acting on them. Model tests were conducted in the wave tank on a maximum of four cylinders of the same diameter. A reasonable scale factor was chosen considering the pertinent factors such as water depth, wave generating capability and accuracy of measurements. The cylinders were installed inside the wave tank as vertical cantilevers fixed at the top. Wave forces acting on the cylinders were measured using special wave force sensors exclusively designed and fabricated for the present project, while the wave profiles were recorded using wave probes installed in the wave basin. The results confirmed the presence of a force shielding effect on the trailing cylinders by the leading cylinders with few exceptions. The findings also substantiated the significant modification of the forces on cylinders when they are present in a linear array. A common practice adopted for the design of offshore platforms was identified with a possibility of underestimating the wave forces acting on the cylindrical elements. In many cases, the experimentally computed hydrodynamic force coefficients were found to be lower than the standard values adopted by various design codes. These findings portray the significance of the present work in achieving economy in the design of jacket platforms and risers.

  9. Spatio-temporal spectral analysis of a forced cylinder wake

    CERN Document Server

    D'Adamo, Juan; Wesfreid, José Eduardo

    2011-01-01

    The wake of a circular cylinder performing rotary oscillations is studied using hydrodynamic tunnel experiments at $Re=100$. Two-dimensional particle image velocimetry on the mid-plane perpendicular to the axis of cylinder is used to characterize the spatial development of the flow and its stability properties. The lock-in phenomenon that determines the boundaries between regions of the forcing parameter space were the wake is globally unstable or convectively unstable is scrutinized using the experimental data. A novel method based on the analysis of power density spectra of the flow allows us to give a detailed description of the forced wake, shedding light on the energy distribution in the different frequency components and in particular on a cascade-like mechanism evidenced for a high amplitude of the forcing oscillation. In addition, a calculation of the drag from the velocity field is performed, allowing us to relate the resulting force on the body to the wake properties.

  10. An Experimental Study of the Drag Force on a Cylinder Exposed to an Argon Thermal Plasma Cross Flow

    Institute of Scientific and Technical Information of China (English)

    XinTao; XiChen; 等

    1992-01-01

    Experimental data are presented concerning the drag force on a cylinder exposed to an argon plasma cross flow with temperatures about 104 K and velocities about 102 m/s.Using a method of sweeping a cylindrical probe across an argon plasma jet,the total drag force on the cylinder can be measured as a function of the lateral distance of cylindrical probe with respect to the plasma-jet axis.Through the Abel inversion,the drag force for per unit of cylinderlength and thus the drag coefflcient of cylinder have been measured under plasma conditions and compared with the values obtained from the standard drag curve of the cylinder in an isothermal flow.Experimental results show that the measured grag forces are always less than their counterparts read from the standard drag curve with the smae Reynolds numbers based on the oncoming plasma properties.Thew drag force on the cylinder exoposed to a thermal plasma flow is shown to be approximately proportional to the square root of cylinder diameter in the present experiment and it increases slightly proportional to the square root of cylinder diameter in the present experiment and if increases slightly with increasing surface temperature of the cylinder,.It is also shown that applying a voltage between the drag prode and the anode of the plasma jet generator has little effect on the drag force of cylinder under the experimental conditions.The drag force on a cylinder with finite length exposed to an argon plasma with the axis parallel to the plams jet is independent of ration of cylinder length to its dismeter L/d for the cases when L/d≤1.

  11. FLOW PATTERNS AND FORCE CHARACTERISTICS OF LAMINAR FLOW PAST FOUR CYLINDERS IN DIAMOND ARRANGEMENT

    Institute of Scientific and Technical Information of China (English)

    ZOU Lin; LIN Yu-feng; LU Hong

    2011-01-01

    A three-dimensional numerical investigation of cross-flow past four circular cylinders in a diamond arrangement at Reynolds number of 200 is carried out. With the spacing ratios ( L/D ) ranging from 1.2 to 5.0, the flow patterns can be classified into three basic regimes. The critical spacing ratio for the transition from narrow gap flow pattern to vortex impingement flow pattern around the cylinders is found to be L/D = 3.0, while a single bluff-body flow pattern is observed at L/D = 1.2. The relationship between the three-dimensional flow patterns and force characteristics around the four cylinders shows that the variation of forces and Strouhal numbers against L/D are generally governed by these three kinds of flow patterns. It is concluded that the spacing ratio has important effects on the development of the free shear layers about the cylinders and hence has significant effects on the force and pressure characteristics of the four cylinders with different spacing ratios.

  12. Controlled oscillations of a cylinder: forces and wake modes

    Science.gov (United States)

    Carberry, J.; Sheridan, J.; Rockwell, D.

    2005-08-01

    The wake states from a circular cylinder undergoing controlled sinusoidal oscillation transverse to the free stream are examined. As the frequency of oscillation passes through the natural Kármán frequency there is a transition between two distinctly different wake states: the low- and high-frequency states. The transition corresponds to a change in the structure of the near wake and is also characterized by a jump in the phase and amplitude of both the total and vortex lift. Over the range of flow and oscillation parameters studied the wake states exhibit a number of universal features. The phases of the vortex lift and drag forces have characteristic values for the low- and high-frequency states, which appear to be directly related to the phase of vortex shedding. A split force concept is employed, whereby instantaneous force traces and images allow discrimination between the actual loading and the physics, and their conventional time-averaged representations. The wake states for the forced oscillations show some remarkable similarities to the response branches of elastically mounted cylinders. The equivalence between forced and self-excited oscillations is addressed in detail using concepts of energy transfer.

  13. On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow.

    Science.gov (United States)

    Parmar, M; Haselbacher, A; Balachandar, S

    2008-06-28

    The unsteady inviscid force on cylinders and spheres in subcritical compressible flow is investigated. In the limit of incompressible flow, the unsteady inviscid force on a cylinder or sphere is the so-called added-mass force that is proportional to the product of the mass displaced by the body and the instantaneous acceleration. In compressible flow, the finite acoustic propagation speed means that the unsteady inviscid force arising from an instantaneously applied constant acceleration develops gradually and reaches steady values only for non-dimensional times c(infinity)t/R approximately >10, where c(infinity) is the freestream speed of sound and R is the radius of the cylinder or sphere. In this limit, an effective added-mass coefficient may be defined. The main conclusion of our study is that the freestream Mach number has a pronounced effect on both the peak value of the unsteady force and the effective added-mass coefficient. At a freestream Mach number of 0.5, the effective added-mass coefficient is about twice as large as the incompressible value for the sphere. Coupled with an impulsive acceleration, the unsteady inviscid force in compressible flow can be more than four times larger than that predicted from incompressible theory. Furthermore, the effect of the ratio of specific heats on the unsteady force becomes more pronounced as the Mach number increases.

  14. Coriolis effects on nonlinear oscillations of rotating cylinders and rings

    Science.gov (United States)

    Padovan, J.

    1976-01-01

    The effects which moderately large deflections have on the frequency spectrum of rotating rings and cylinders are considered. To develop the requisite solution, a variationally constrained version of the Lindstedt-Poincare procedure is employed. Based on the solution developed, in addition to considering the effects of displacement induced nonlinearity, the role of Coriolis forces is also given special consideration.

  15. Suppression of Brazier Effect in Multilayered Cylinders

    Directory of Open Access Journals (Sweden)

    Hiroyuki Shima

    2014-01-01

    Full Text Available When a straight hollow tube having circular cross-section is bent uniformly into an arc, the cross-section tends to ovalize or flatten due to the in-plane stresses induced by bending; this ovalization phenomenon is called the Brazier effect. The present paper is aimed at theoretical formulation of the Brazier effect observed in multilayered cylinders, in which a set of thin hollow cylinders are stacked concentrically about the common axis. The results indicate that mechanical couplings between stacked cylinders are found to yield pronounced suppression of the cross-sectional ovalization. Numerical computations have been performed to measure the degree of suppression in a quantitative manner and to explore how it is affected by the variations in the bending curvature, the number of stacked cylinders, and the interlayer coupling strength.

  16. An Approximate Method for Calculation of Fluid Force and Response of A Circular Cylinder at Lock-in

    Institute of Scientific and Technical Information of China (English)

    WANG Yi

    2008-01-01

    In this paper, equations calculating lift force of a rigid circular cylinder at lock-in in uniform flow are deduced in detail. Besides, equations calculating the lift force on a long flexible circular cylinder at lock-in are deduced based on mode analysis of a multi-degree freedom system. The simplified forms of these equations are also given. Furthermore, an approximate method to predict the forces and response of rigid circular cylinders and long flexible circular cylinders at lock-in is introduced in the case of low mass-damping ratio. A method to eliminate one deficiency of these equations is introduced. Comparison with experimental results shows the effectiveness of this approximate method.

  17. Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden

    2010-01-01

    for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer p. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero...

  18. Drag force and transport property of a small cylinder in free molecule flow: A gas-kinetic theory analysis

    Science.gov (United States)

    Liu, Changran; Li, Zhigang; Wang, Hai

    2016-08-01

    Analytical expressions are derived for aerodynamic drag force on small cylinders in the free molecule flow using the gas-kinetic theory. The derivation considers the effect of intermolecular interactions between the cylinder and gas media. Two limiting collision models, specular and diffuse scattering, are investigated in two limiting cylinder orientations with respect to the drift velocity. The earlier solution of Dahneke [B. E. Dahneke, J. Aerosol Sci. 4, 147 (1973), 10.1016/0021-8502(73)90066-9] is shown to be a special case of the current expressions in the rigid-body limit of collision. Drag force expressions are obtained for cylinders that undergo Brownian rotation and for those that align with the drift velocity. The validity of the theoretical expressions is tested against experimental mobility data available for carbon nanotubes.

  19. Prediction Model for Vortex-Induced Vibration of Circular Cylinder with Data of Forced Vibration

    Institute of Scientific and Technical Information of China (English)

    PAN Zhi-yuan; CUI Wei-cheng; LIU Ying-zhong

    2007-01-01

    A model based on the data from forced vibration experiments is developed for predicting the vortex-induced vibrations (VIV) of elastically mounted circular cylinders in flow. The assumptions for free and forced vibration tests are explored briefly. Energy equilibrium is taken into account to set up the relationship between the dynamic response of self-excited oscillations and the force coefficients from forced vibration experiments. The gap between these two cases is bridged straightforwardly with careful treatment of key parameters. Given reduced mass m* and material damping ratio ζ of an elastically mounted circular cylinder in flow, the response characteristics such as amplitude, frequency, lock-in range, added mass coefficient, cross-flow fluid force and the corresponding phase angle can be predicted all at once. Instances with different combination of reduced mass and material damping ratio are compared to investigate their effects on VIV. The hysteresis phenomenon can be interpreted reasonably. The predictions and the results from recent experiments carried out by Williamson's group are in rather good agreement.

  20. Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp; Bredmose, Henrik; Bingham, Harry B.

    2014-01-01

    Forcing by steep regular water waves on a vertical circular cylinder at finite depth was investigated numerically by solving the two-phase incompressible Navier–Stokes equations. Consistently with potential flow theory, boundary layer effects were neglected at the sea bed and at the cylinder...... surface, but the strong nonlinear motion of the free surface was included. The numerical model was verified and validated by grid convergence and by comparison to relevant experimental measurements. First-order convergence towards an analytical solution was demonstrated and an excellent agreement...... of secondary load cycles. Special attention was paid to this secondary load cycle and the flow features that cause it. By visual observation and a simplified analytical model it was shown that the secondary load cycle was caused by the strong nonlinear motion of the free surface which drives a return flow...

  1. Optical forces from evanescent Bessel beams, multiple reflections and Kerker conditions in magnetodielectric spheres and cylinders

    CERN Document Server

    Auñon, J M

    2014-01-01

    In this work we address, first, the optical force on a magnetodielectric particle on a flat dielectric surface due to an evanescent Bessel beam and, second, the effects on the force of multiple scattering with the substrate. For the first question we find analytical solutions showing that due to the interference of the excited electric and magnetic particle dipoles, the vertical force unusually pushes the object out from the plane. The incident wavelength rules whether the illumination constitutes, or not, an optical trap. As for the second problem, we make a 2D study with a single evanescent plane wave, and we present the Kerker conditions, (so far established for spheres), for magnetodielectric cylinders; showing that in $p$-polarization those are practically reproduced and are associated to minima of the horizontal and vertical forces.

  2. Stable suspension and dispersion-induced transitions from repulsive Casimir forces between fluid separated eccentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Dalvit, Diego A1 [Los Alamos National Laboratory; Rodriguez, Alejandro W [MASS INST OF TECH; Munday, J N [HARVARD UNIV; Joannopoulos, J D [MASS INST OF TECH

    2008-01-01

    Using accurate numerical methods for finite-size nonplanar objects, we demonstrate a stable mechanical suspension of a silica cylinder within a metallic cylinder separated by ethanol, via a repulsive Casimir force between the silica and the metal. We investigate cylinders with both circular and square cross sections, and show that the latter exhibit a stable orientation as well as a stable position, employing a new method to accurately compute Casimir torques for finite objects. Furthermore, the stable orientation of the square cylinder is shown to undergo an unusual 45 transition as a function of the separation lengthscale, and this transition is explained as a consequence of material dispersion.

  3. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  4. Centrifugal force induced by relativistically rotating spheroids and cylinders

    CERN Document Server

    Katz, Joseph; Bicak, Jiri; 10.1088/0264-9381/28/6/065004

    2011-01-01

    Starting from the gravitational potential of a Newtonian spheroidal shell we discuss electrically charged rotating prolate spheroidal shells in the Maxwell theory. In particular we consider two confocal charged shells which rotate oppositely in such a way that there is no magnetic field outside the outer shell. In the Einstein theory we solve the Ernst equations in the region where the long prolate spheroids are almost cylindrical; in equatorial regions the exact Lewis "rotating cylindrical" solution is so derived by a limiting procedure from a spatially bound system. In the second part we analyze two cylindrical shells rotating in opposite directions in such a way that the static Levi-Civita metric is produced outside and no angular momentum flux escapes to infinity. The rotation of the local inertial frames in flat space inside the inner cylinder is thus exhibited without any approximation or interpretational difficulties within this model. A test particle within the inner cylinder kept at rest with respect...

  5. Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders

    CERN Document Server

    Bjørk, R; Smith, A; Pryds, N

    2014-01-01

    The Halbach cylinder is a construction of permanent magnets used in applications such as nuclear magnetic resonance apparatus, accelerator magnets and magnetic cooling devices. In this paper the analytical expression for the magnetic vector potential, magnetic flux density and magnetic field for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer $p$. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero except for the case where $p$ for the inner magnet is one minus $p$ for the outer magnet. Also the force is shown never to be balancing. The torque is shown to be zero unless the inner magnet $p$ is equal to minus the outer magnet $p$. Thus there can never be a force and a torque in the same system.

  6. Effect of Surface Coatings on Cylinders Exposed to Underwater Shock

    Directory of Open Access Journals (Sweden)

    Y.W. Kwon

    1994-01-01

    Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.

  7. Centrifugal instability of Stokes layers in crossflow: the case of a forced cylinder wake

    CERN Document Server

    D'Adamo, Juan; Wesfreid, José Eduardo

    2015-01-01

    The wake flow around a circular cylinder at $Re\\approx100$ performing rotatory oscillations has been thoroughly discussed in the literature, mostly focusing on the modifications to the natural B\\'enard-von K\\'arm\\'an vortex street that result from the forced shedding modes locked to the rotatory oscillation frequency. The usual experimental and theoretical frameworks at these Reynolds numbers are quasi-two-dimensional, since the secondary instabilities bringing a three-dimensional structure to the cylinder wake flow occur only at higher Reynolds numbers. In the present paper we show that a three-dimensional structure can appear below the usual three-dimensionalization threshold, when forcing with frequencies lower than the natural vortex shedding frequency, at high amplitudes, as a result of a previously unreported mechanism: a pulsed centrifugal instability of the oscillating Stokes layer at the wall of the cylinder. The present numerical investigation lets us in this way propose a physical explanation for t...

  8. Laminar forced convection slip-flow in a micro-annulus between two concentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Avci, Mete; Aydin, Orhan [Karadeniz Technical University, Department of Mechanical Engineering, 61080 Trabzon (Turkey)

    2008-07-01

    Forced convection heat transfer in hydrodynamically and thermally fully developed flows of viscous dissipating gases in annular microducts between two concentric micro cylinders is analyzed analytically. The viscous dissipation effect, the velocity slip and the temperature jump at the wall are taken into consideration. Two different cases of the thermal boundary conditions are considered: uniform heat flux at the outer wall and adiabatic inner wall (Case A) and uniform heat flux at the inner wall and adiabatic outer wall (Case B). Solutions for the velocity and temperature distributions and the Nusselt number are obtained for different values of the aspect ratio, the Knudsen number and the Brinkman number. The analytical results obtained are compared with those available in the literature and an excellent agreement is observed. (author)

  9. Numerical Analysis and Prediction of Unsteady Forced Convection over a Sharp and Rounded Edged Square Cylinder

    Directory of Open Access Journals (Sweden)

    Prasenjit Dey

    2016-01-01

    Full Text Available An unsteady two-dimensional forced convection over a square cylinder with sharp and rounded corner edge is numerically analyzed for the low Reynolds number laminar flow regime. In this study, the analysis is carried out for Reynolds number (Re in the range of 80 to 180 with Prandtl number (Pr variation from 0.01 to 1000 for various corner radius (r=0.50, 0.51, 0.54, 0.59, 0.64 and 0.71. The lateral sides of the computational domain are kept constant to maintain the blockage as 5%. Heat transfer due to unsteady forced convection has been predicted by Artificial Neural network (ANN. The present ANN is trained by the input and output data which has been acquired from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD commercial software FLUENT. The heat transfer characteristics over the sharp and rounded corner square cylinder are evaluated by analyzing the local Nusselt number (Nulocal, average Nusselt number (Nuavg at various Reynolds number, Prandtl numbers and for various corner radii. It is found that the heat transfer rate of a circular cylinder can be enhanced by 12% when Re is varying and 14% when Prandtl number is varying by introducing a new cylinder geometry of corner radius r=0.51. It is found that the unsteady forced convection heat transfer over a cylinder can be predicted appropriately by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of forced convection very quickly compared to a standard CFD method.

  10. Stabilization of vortices in the wake of a circular cylinder using harmonic forcing

    DEFF Research Database (Denmark)

    Chamoun, George Chaouki; Schilder, Frank; Brøns, Morten

    2011-01-01

    We explore whether vortex flows in the wake of a fixed circular cylinder can be stabilized using harmonic forcing. We use Fo¨ppl's point vortex model augmented with a harmonic point source-sink mechanism which preserves conservation of mass and leaves the system Hamiltonian. We discover a region...... of Lyapunov-stable vortex motion for an appropriate selection of parameters. We identify four unique parameters that affect the stability of the vortices: the uniform flow velocity, vortex equilibrium positions, forcing amplitude, and forcing frequency. We assess the robustness of the controller using...

  11. Experimetal Investigation of lift Forces on Horizontal Cylinder near Bottom in Oscillating Flow

    Institute of Scientific and Technical Information of China (English)

    GUI jinsong; Liu Hong; Zhou Yanhui; Kang Haigui

    2002-01-01

    The lift forces on horizontal cylinder near bottom is experimentally investigatde at Reynolds(Re)in the range lf 2500~10000and Keulegan~CARPENTER NUMBERS(kc) inthe intervalof5~20,and gap ratio (e/D) is from (a0)are analyzde by using the Fourier analyses method.It is found that found that both Cl& a0 are the functions lf the Kc number.

  12. Forced Convection from Square Cylinder Placed Near a Wall Using Variable Resolution Turbulence Modelling

    Science.gov (United States)

    Ranjan, Pritanshu; Dewan, Anupam

    2015-11-01

    The effect of wall proximity on flow and heat transfer around a square cylinder placed inside a channel is numerically investigated. This flow configuration is a fundamental problem and is widely encountered in several engineering applications. The presence of wall close to the cylinder can alter the shedding process and this in turn can affect the thermal transport in the wake region. Many researchers have studied this phenomenon experimentally but the heat transfer characteristics around a square cylinder placed inside a channel still remain an open question. We present here an insight into this problem. The simulations were carried out for a Reynolds number of 37,000 (based on cylinder diameter, D) and as a function of gap height, G/D, at different blockage ratios. A variable resolution modelling approach (PANS SST k- ω model) was used to study turbulence structures. The results are presented in terms of pressure coefficient, drag coefficient, thermal fluctuations and local and average Nusselt number (Nu). The results obtained showed that, for G / D < 0 . 5 very weak shedding process at random time intervals occurs suggesting the suppression of vortex shedding due to wall. Thus, the local and average Nu decrease as the cylinder is moved towards wall at all blockage ratios.

  13. Experiments on Sphere Cylinder Geometry Dependence in the Electromagnetic Casimir Effect

    Science.gov (United States)

    Mukhopadhyay, Shomeek; Noruzifar, Ehsan; Wagner, Jeffrey; Zandi, Roya; Mohideen, Umar

    2013-03-01

    We report on ongoing experimental investigations on the geometry dependence of the electromagnetic Casimir force in the sphere-cylinder configuration. A gold coated hollow glass sphere which forms one surface is attached to a Silicon AFM cantilever. The cylinder, which is constructed from tapered optical fiber is also gold coated. The resonance frequency shift of the cantilever is measured as a function of the sphere-cylinder surface separation. The sphere-cylinder electrostatic force is used for alignment of the sphere and the cylinder and also for calibrating the system. The results are compared to numerical simulations in the framework of the Proximity Force Approximation (PFA).

  14. Influence of radius of cylinder HTS bulk on guidance force in a maglev vehicle system

    Science.gov (United States)

    Longcai, Zhang

    2014-07-01

    Bulk superconductors had great potential for various engineering applications, especially in a high-temperature superconducting (HTS) maglev vehicle system. In such a system, the HTS bulks were always exposed to AC external magnetic field, which was generated by the inhomogeneous surface magnetic field of the NdFeB guideway. In our previous work, it was observed that the guidance force of the YBCO bulk over the NdFeB guideway used in the HTS maglev vehicle system was decayed by the application of the AC external magnetic field. In this paper, we investigated the influence of the radius of the cylinder HTS bulk exposed to an AC magnetic field perturbation on the guidance force in the maglev vehicle system. From the results, it was found that the guidance force was stronger for the bulk with bigger radius and the guidance force decay rates of the bulks were approximately equal despite of the different radius in the maglev vehicle system. Therefore, in order to obtain higher guidance force in the maglev vehicle system, we could use the cylinder HTS bulks with the bigger radius.

  15. Numerical Simulation of the Effect of Bionic Serrated Structures on the Aerodynamic Noise of a Circular Cylinder

    Institute of Scientific and Technical Information of China (English)

    Lei Shi; Chengchun Zhang; Jing Wang; Luquan Ren

    2012-01-01

    Flow control can effectively reduce the aerodynamic noise radiated from a circular cylinder.As one of the flow control methods,a bionic method,inspired by the serrations at the leading edge of owls' wing,was proposed in this paper.The effects of bionic serrated structures arranged on the upper and lower sides of a cylinder on the aerodynamic and aeroacoustic performance of the cylinder were numerically investigated.At a free stream speed of 24.5 m·s-1,corresponding to Reynolds number of 1.58 × 104,the simulation results indicate that the bionic serrated structures can decrease the frequency of the vortex shedding and control the fluctuating aerodynamic force acting on the cylinder,thus reduce the aerodynamic noise.A qualitative-view of the vorticity in the wake of the cylinder suggest that the serrated structures reduce aerodynamic sound by suppressing the unsteady motion of vortices.

  16. Numerical simulation of turbulent flow around a forced moving circular cylinder on cut cells

    Institute of Scientific and Technical Information of China (English)

    BAI Wei

    2013-01-01

    Fixed and forced moving circular cylinders in turbulent flows are studied by using the Large Eddy Simulation (LES) and two-equation based Detached Eddy Simulation (DES) turbulence models. The Cartesian cut cell approach is adopted to track the body surface across a stationary background grid covering the whole computational domain. A cell-centered finite volume method of second-order accuracy in both time and space is developed to solve the flow field in fluid cells, which is also modified accordingly in cut cells and merged cells. In order to compare different turbulence models, the current flow past a fixed circular cylinder at a mode- rate Reynolds number,Re=3 900, is tested first. The model is also applied to the simulation of a forced oscillating circular cylinder in the turbulent flow, and the influences of different oscillation amplitudes, frequencies and free stream velocities are discussed. The numerical results indicate that the present numerical model based on the Cartesian cut cell approach is capable of solving the turbu- lent flow around a body undergoing motions, which is a foundation for the possible future study on wake induced oscillation and vor- tex induced vibration.

  17. ADAPTIVE CONTROLLER AND ITS APPLICATION IN FORCE SYSTEM OF ASYMMETRIC CYLINDER CONTROLLED BY SYMMETRIC VALVE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation.

  18. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: II. Lateral dissipative and random forces

    Energy Technology Data Exchange (ETDEWEB)

    Filipovic, N [Faculty of Mechanical Engineering, University of Kragujevac (Serbia); Haber, S [Technion-Israel Institute of Technology, Haifa (Israel); Kojic, M [Faculty of Mechanical Engineering, University of Kragujevac (Serbia); Tsuda, A [Harvard School of Public Health, Harvard University, Boston, MA (United States)

    2008-02-07

    Traditional DPD methods address dissipative and random forces exerted along the line connecting neighbouring particles. Espanol (1998 Phys. Rev. E 57 2930-48) suggested adding dissipative and random force components in a direction perpendicular to this line. This paper focuses on the advantages and disadvantages of such an addition as compared with the traditional DPD method. Our benchmark system comprises fluid initially at rest occupying the space between two concentric cylinders rotating with various angular velocities. The effect of the lateral force components on the time evolution of the simulated velocity profile was also compared with that of the known analytical solution. The results show that (i) the solution accuracy at steady state has improved and the error has been reduced by at least 30% (in one case by 75%), (ii) the DPD time to reach steady state has been halved, (iii) the CPU time has increased by only 30%, and (iv) no significant differences exist in density and temperature distributions.

  19. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: II. Lateral dissipative and random forces

    Science.gov (United States)

    Filipovic, N.; Haber, S.; Kojic, M.; Tsuda, A.

    2008-02-01

    Traditional DPD methods address dissipative and random forces exerted along the line connecting neighbouring particles. Espanol (1998 Phys. Rev. E 57 2930-48) suggested adding dissipative and random force components in a direction perpendicular to this line. This paper focuses on the advantages and disadvantages of such an addition as compared with the traditional DPD method. Our benchmark system comprises fluid initially at rest occupying the space between two concentric cylinders rotating with various angular velocities. The effect of the lateral force components on the time evolution of the simulated velocity profile was also compared with that of the known analytical solution. The results show that (i) the solution accuracy at steady state has improved and the error has been reduced by at least 30% (in one case by 75%), (ii) the DPD time to reach steady state has been halved, (iii) the CPU time has increased by only 30%, and (iv) no significant differences exist in density and temperature distributions.

  20. Experimental study of the effect of icing on the aerodynamics of circular cylinders - Part I: Cross flow

    DEFF Research Database (Denmark)

    Demartino, Cristoforo; Koss, Holger; Ricciardelli, Francesco

    2013-01-01

    In this paper, the effects of ice accretion due to in-cloud icing on the aerodynamics of vertical circular cylinders is examined. Aerodynamic force coefficients with varying angle of attack were found, as a function of the wind speed; ice accretions deriving from different flow velocities and tem...... instability regions is made using the Den Hartog criterion. A short description of the accretion is given as well. A parallel paper deals with the case of circular cylinders in inclined flow....

  1. RANS simulations of the U and V grooves effect in the subcritical flow over four rotated circular cylinders

    Institute of Scientific and Technical Information of China (English)

    ALONZO-GARCA A; GUTIRREZ-TORRES C del C; JIMNEZ BERNAL J A; MOLLINEDO-PONCE de LEN H R; MARTINEZ-DELGADILLO S A; BARBOSA-SALDAA J G

    2015-01-01

    This paper presents a CFD study about the effect of the V and U grooves in the flow over four cylinders in diamond shape configuration at subcritical flow conditions(Re=41000). Thek-ε Realizable turbulence model was implemented to fully structured hexahedral grids with near-wall refinements. Results showed that the numerical model was able to reproduce the impinging flow pattern and the repulsive forces present in the lateral cylinders of the smooth cylinder array. As a consequence of the flow alignment induced by the grooves, a jet-flow is formed between the lateral cylinders, which could cause an important vortex induced vibration effect especially in the rear cylinder. The magnitudes of the shear stresses at the valleys and peaks for the V grooved cylinders were lower than those of the U grooved cylinders, but the separation points were delayed due the U grooves presence. It is discussed the presence of a blowing effect caused by counter-rotating eddies located near the grooves peaks that cause a decrease of the shear stresses in the valleys, and promote them at the peaks.

  2. EXPERIMENTAL INVESTIGATION ON PARTICLE EFFECT IN PISTON RING-CYLINDER LUBRICATION

    Institute of Scientific and Technical Information of China (English)

    LIU Kun; LIU Xiaojun; WANG Wei; JIAO Minghua

    2006-01-01

    To study the tribological properties of the piston ring-cylinder liner in liquid-solid lubrication, the experiment is carried out on a modified piston ring-cylinder liner tester. Two kinds of liquid-solid lubricants are used, one with ultra-dispersed diamond (UDD) nano-particles suspending in pure lubricant, the other with micro-sized MoS2 particles. The particle concentrations are 0%, 0.02%and 0.1% by weight. The experimental temperature is 30 ℃ and 75 ℃ respectively. The results show that with the presence of ultra-dispersed diamond particles, the load when scuffing failure occurs is increased. For the lubricant contains MoS2 particles, the scuffing load is decreased. The liquid-solid lubricant also affects the thermal behavior of piston ring-cylinder liner. The surface bulk temperatures of cylinder liner specimen are measured. It has been seen that liquid-solid lubricant used in this research tends to improve the thermal properties generally and the measured friction forces also decreases with the presence of UDD nano-particles. The surface bulk temperature when scuffing occurs is also measured. The results show that the size effect and environment temperature have obvious influence on scuffing load and scuffing temperature. With some new findings, this work is an important complement to the existing research on particle effect on lubrication, because the existing results only show one aspect of this problem.

  3. Artificial Neural Network Ability in Evaluation of Random Wave-Induced Inline Force on A Vertical Cylinder

    Institute of Scientific and Technical Information of China (English)

    Lotfollahi-Yaghin, M. A.; Pourtaghi, A.; Sanaaty, B.; Lotfollahi-Yaghin, A.

    2012-01-01

    An approach based on artificial neural network (ANN) is used to develop predictive relations between hydrodynamic inline force on a vertical cylinder and some effective parameters.The data used to calibrate and validate the ANN models are obtained from an experiment.Multilayer feed-forward neural networks that are trained with the back-propagation algorithm are constructed by use of three design parameters (i.e.wave surface height,horizontal and vertical velocities) as network inputs and the ultimate inline force as the only output.A sensitivity analysis is conducted on the ANN models to investigate the generalization ability (robustness) of the developed models,and predictions from the ANN models are compared to those obtained from Morison equation which is usually used to determine inline force as a computational method.With the existing data,it is found that least square method (LSM) gives less error in determining drag and inertia coefficients of Morison equation.With regard to the predicted results agreeing with calculations achieved from Morison equation that used LSM method,neural network has high efficiency considering its convenience,simplicity and promptitude.The outcome of this study can contribute to reducing the errors in predicting hydrodynamic inline force by use of ANN and to improve the reliability of that in comparison with the more practical state of Morison equation.Therefore,this method can be applied to relevant engineering projects with satisfactory results.

  4. Compressibility effects on the flow past a rotating cylinder

    Science.gov (United States)

    Teymourtash, A. R.; Salimipour, S. E.

    2017-01-01

    In this paper, laminar flow past a rotating circular cylinder placed in a compressible uniform stream is investigated via a two-dimensional numerical simulation and the compressibility effects due to the combination of the free-stream and cylinder rotation on the flow pattern such as forming, shedding, and removing of vortices and also the lift and drag coefficients are studied. The numerical simulation of the flow is based on the discretization of convective fluxes of the unsteady Navier-Stokes equations by second-order Roe's scheme and an explicit finite volume method. Because of the importance of the time dependent parameters in the solution, the second-order time accurate is applied by a dual time stepping approach. In order to validate the operation of a computer program, some results are compared with previous experimental and numerical data. The results of this study show that the effects due to flow compressibility such as normal shock wave caused the interesting variations on the flow around the cylinder even at a free-stream with a low Mach number. At incompressible flow around the rotating cylinder, increasing the speed ratio, α (ratio of the surface speed to free-stream velocity), causes the ongoing increase in the lift coefficient, but in compressible flow for each free-stream Mach number, increasing the speed ratio results in obtaining a limited lift coefficient (a maximum mean lift coefficient). In addition, results from the compressible flow indicate that by increasing the free-stream Mach number, the maximum mean lift coefficient is decreased, while the mean drag coefficient is increased. It is also found that by increasing the Reynolds number at low Mach numbers, the maximum mean lift coefficient and critical speed ratio are decreased and the mean drag coefficient and Strouhal number are increased. However at the higher Mach numbers, these parameters become independent of the Reynolds number.

  5. Effects of GFF Bands on Normal and High Strength Concrete Cylinders

    OpenAIRE

    Jayaprakash, J; Abdul Aziz Abdul Samad; Noridah Mohamad; K.K. Choong; M.J. Megat Azmi; H.A.B. Badorul

    2010-01-01

    This paper exemplifies the effects of externally confined Glass Fibre Fabric (GFF) bands on normal and high strength concrete cylinders. Twelve normal and high strength concrete cylinders were cast and tested in the laboratory environment under axial compression to failure. The experimental results show that the degree of confinement of discrete GFF confined high strength concrete cylinders was significantly better than normal strength concrete cylinders with GFF bands, however...

  6. Reynolds and Mass-Damping Effect on Prediction of the Peak Amplitude of A Freely Vibrating Cylinder

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhi-yong; CUI Wei-cheng; LIU Ying-zhong; HUANG Xiao-ping

    2008-01-01

    The Reynolds effect and mass-damping effect on the peak amplitude of a freely vibrating cylinder is studied by using forced oscillating data from Gopalkrishnan's research in 1993, in which all experimental cases were carried out at a fixed Reynolds and the tested cylinder was recognized as a body that had no mass and damping. However, the Reynolds and mass-damping are the very important parameters for the peak amplitude of a freely vibrating cylinder.In the present study, a function F is introduced to connect the forced oscillation and free vibration. Firstly the peak amplitude A*G can be obtained from the function F using forced oscillation data of Gopalkrishnan's experimental at Re=104, and then the Reynolds effect is taken into account in the function f(Re), while the mass-damping effect is considered in the function K(α), where α is the mass-damping ratio. So the peak amplitude of a freely vibrating cylinder can be predicted by the expression:A*=K(α)f(Re)A*G. It is found that the peak transverse amplitudes predicted by the above equation agree very well with many recent experimental data under both high and low Reynolds conditions while mass-damping varies. Furthermore, it is seen that the Reynolds number does have a great effect on the peak amplitude of a freely vibrating cylinder. The present idea in this paper can be applied as an update in the empirical models that also use forced oscillation data to predict the vortex induced vibration (VIV) response of a long riser in the frequency domain.

  7. Effect of the Presence of Semi-circular Cylinders on Heat Transfer From Heat Sources Placed in Two Dimensional Channel

    Directory of Open Access Journals (Sweden)

    Ahmed W. Mustava

    2013-04-01

    Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations.  The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass.  The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the

  8. The scenario of two-dimensional instabilities of the cylinder wake under electrohydrodynamic forcing: a linear stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    D' Adamo, Juan; Gronskis, Alejandro; Artana, Guillermo [Laboratorio de Fluidodinamica, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Gonzalez, Leo M, E-mail: leo.gonzalez@upm.es [Canal de Ensayos Hidrodinamicos, School of Naval Arquitecture, Universidad Politecnica de Madrid (Spain)

    2012-10-01

    We propose to study the stability properties of an air flow wake forced by a dielectric barrier discharge (DBD) actuator, which is a type of electrohydrodynamic (EHD) actuator. These actuators add momentum to the flow around a cylinder in regions close to the wall and, in our case, are symmetrically disposed near the boundary layer separation point. Since the forcing frequencies, typical of DBD, are much higher than the natural shedding frequency of the flow, we will be considering the forcing actuation as stationary. In the first part, the flow around a circular cylinder modified by EHD actuators will be experimentally studied by means of particle image velocimetry (PIV). In the second part, the EHD actuators have been numerically implemented as a boundary condition on the cylinder surface. Using this boundary condition, the computationally obtained base flow is then compared with the experimental one in order to relate the control parameters from both methodologies. After validating the obtained agreement, we study the Hopf bifurcation that appears once the flow starts the vortex shedding through experimental and computational approaches. For the base flow derived from experimentally obtained snapshots, we monitor the evolution of the velocity amplitude oscillations. As to the computationally obtained base flow, its stability is analyzed by solving a global eigenvalue problem obtained from the linearized Navier-Stokes equations. Finally, the critical parameters obtained from both approaches are compared. (paper)

  9. Tailoring Effective Media by Mie Resonances of Radially-Anisotropic Cylinders

    Directory of Open Access Journals (Sweden)

    Henrik Kettunen

    2015-05-01

    Full Text Available This paper studies constructing advanced effective materials using arrays of circular radially-anisotropic (RA cylinders. Homogenization of such cylinders is considered in an electrodynamic case based on Mie scattering theory. The homogenization procedure consists of two steps. First, we present an effectively isotropic model for individual cylinders, and second, we discuss the modeling of a lattice of RA cylinders. Radial anisotropy brings us extra parameters, which makes it possible to adjust the desired effective response for a fixed frequency. The analysis still remains simple enough, enabling a derivation of analytical design equations. The considered applications include generating artificial magnetism using all-dielectric cylinders, which is currently a very sought-after phenomenon in optical frequencies. We also study how negative refraction is achieved using magnetodielectric RA cylinders.

  10. Buoyancy effect on the flow pattern and the thermal performance of an array of circular cylinders

    CERN Document Server

    Fornarelli, Francesco; Oresta, Paolo

    2016-01-01

    In this paper we found, by means of numerical simulations, a transition in the oscillatory character of the flow field for a particular combination of buoyancy and spacing in an array of six circular cylinders at a Reynolds number of 100 and Prandtl number of 0.7. The cylinders are iso-thermal and they are aligned with the Earth acceleration (g). According to the array orientation, an aiding or an opposing buoyancy is considered. The effect of natural convection with respect to the forced convection is modulated with the Richardson number, Ri, ranging between -1 and 1. Two values of center to center spacing (s=3.6d - 4d) are considered. The effects of buoyancy and spacing on the flow pattern in the near and far field are described. Several transitions in the flow patterns are found and a parametric analysis of the dependence of the force coefficients and Nusselt number with respect to the Richardson number is reported. For Ri=-1, the change of spacing ratio from 3.6 to 4 induces a transition in the standard d...

  11. Effects of viscoelasticity in the high Reynolds number cylinder wake

    KAUST Repository

    Richter, David

    2012-01-16

    At Re = 3900, Newtonian flow past a circular cylinder exhibits a wake and detached shear layers which have transitioned to turbulence. It is the goal of the present study to investigate the effects which viscoelasticity has on this state and to identify the mechanisms responsible for wake stabilization. It is found through numerical simulations (employing the FENE-P rheological model) that viscoelasticity greatly reduces the amount of turbulence in the wake, reverting it back to a state which qualitatively appears similar to the Newtonian mode B instability which occurs at lower Re. By focusing on the separated shear layers, it is found that viscoelasticity suppresses the formation of the Kelvin-Helmholtz instability which dominates for Newtonian flows, consistent with previous studies of viscoelastic free shear layers. Through this shear layer stabilization, the viscoelastic far wake is then subject to the same instability mechanisms which dominate for Newtonian flows, but at far lower Reynolds numbers. © Copyright Cambridge University Press 2012.

  12. Electrohydrodynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure

    Science.gov (United States)

    Moreau, Eric; Benard, Nicolas; Lan-Sun-Luk, Jean-Daniel; Chabriat, Jean-Pierre

    2013-11-01

    Wire-to-cylinder corona discharges are studied to better understand the electrohydrodynamic (EHD) phenomena that govern the performances of electric propulsion systems. First, theory associated with EHD thrusters is presented in order to be compared with experimental results. Secondly, direct thrust measurements are carried out to optimize the electrical and geometrical parameters of such devices. The main results are as follows: (1) the discharge current I is proportional to the square root of the grounded electrode diameter and to 1/d2 where d is the electrode gap; (2) for d ⩽ 20 mm, the mobility of negative ions is higher than that of positive ions while the mobility of both ions is equal for higher gaps; (3) therefore, for gap ⩾30 mm, positive and negative coronas results in the same current-to-thrust conversion; (4) the current-to-thrust conversion is equal to 33 N A-1 per centimetre of gap, and it is proportional to the gap; (5) the thruster effectiveness θ increases with \\sqrt d , decreases with the square root of thrust and reaches about 15 N kW-1 for d = 40 mm (6) the force computed from experimental velocity profiles is overestimated compared with the values measured with a balance, showing that this method cannot be used for thrust determination.

  13. Numerical investigation of effect of the position of the cylinder on solidification in a rectangular cavity

    Science.gov (United States)

    Fertelli, Ahmet; Günhan, Gökhan; Buyruk, Ertan

    2017-02-01

    In the present study, it is aimed to calculate the effect of ice formation on different cylinder geometries placed in a rectangular cavity filled with water. For this aim Fluent package program was used to solve the flow domain numerically and temperature distribution and ice formation depending on time were illustrated. Water temperature in the cavity and cylinder surface temperature were assumed as 4, 8 and -10 °C respectively and firstly temperature distribution, velocity vector, liquid fraction and ratio of Ai/Ac (formed ice area/cross sectional area of cylinder) were determined for cylinders with different placement in fixed volume.

  14. Lateral Casimir forces on parallel plates and concentric cylinders with corugations

    CERN Document Server

    Cavero-Pelaez, Ines; Parashar, Prachi; Shajesh, K V

    2008-01-01

    In this paper we are giving a quantitative description of two different configurations for noncontact gears. We consider the solutions from a perturbative calculation for two semitransparent parallel plates and concentric cylinders both with corrugations on the inner surfaces. In the case of corrugated parallel plates we discuss results from first- and second-order perturbation calculation in the corrugation amplitudes and we will concentrate on the first-order perturbation for the case of the corrugated concentric cylinders (the second order calculation is under study), both for the weak and strong couplings. We compare the perturbative results with the results from the PFA and an exact weak coupling calculation.

  15. Numerical simulation of VAWT on the effects of rotation cylinder

    Science.gov (United States)

    Xing, Shuda; Cao, Yang; Ren, Fuji

    2017-06-01

    Based on Finite Element Analysis Method, studying on Vertical Axis Wind Turbine (VAWT) which is added rotating cylinder in front of its air foils, especially focusing on the analysis of NACA6 series air foils about variation of lift to drag ratio. Choosing the most suitable blades with rotary cylinder added on leading edge. Analysis indicates that the front rotating cylinders on the VAWT is benefit to lift rise and drag fall. The most suitable air foil whose design lift coefficient is 0.8, the blades relative thickness is 20%, and the optimistic tip speed ratio is about 7.

  16. Forced convection mass deposition and heat transfer onto a cylinder sheathed by protective garments

    NARCIS (Netherlands)

    Ambesi, D.; Kleijn, C.R.; Hartog, E.A. den; Bouma, R.H.B.; Brasser, P.

    2014-01-01

    In chemical, biological, radiological, and nuclear protective clothing, a layer of activated carbon material in between two textile layers provides protection against hazardous gases. A cylinder in cross flow, sheathed by such material, is generally used to experimentally test the garment

  17. Non-Newtionian Effects on Chaotic Mixing Between Eccentric Cylinders

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effect of fluid elasticity and shear-thinning viscosity on the chaotic mixing between two alternately rotating cylinders has been studied. The h-p finite element method is used to obtain high accurate solutions of the steady flow. The unsteady, periodic flow is simulated using the piecewise-steady approximation. Characteristics of the chaotic mixing are analyzed by examining the asymptotic coverage of a passive tracer and the lineal stretching of the fluid elements in the annulus. For the viscoelastic fluids modeled by the upper-convected Maxwell constitutive equation (UCM), our computation predicts little effect of the fluid elasticity on the mixing patterns. On the other hand, the shear-thinning viscosity, modeled by the Carreau equation, has a large impact on the advection of a passive tracer and the distribution of lineal stretching. We find that the zones of the lowest stretching match remarkably well with the regular zones in the tracer-coverage plotting. Our study reveals the vital importance of reducing the discretization errors of the velocity field in the numerical simulation of chaotic flows.

  18. Effect of corner radius in stabilizing the low-Re flow past a cylinder

    KAUST Repository

    Zhang, Wei

    2017-08-03

    We perform global linear stability analysis on low-Re flow past an isolated cylinder with rounded corners. The objective of the present work is to investigate the effect of the cylinder geometry (corner radius) on the stability characteristics of the flow. Our investigation sheds light on new physics that the flow can be stabilized by partially rounding the cylinder in the critical and weakly super-critical flow regimes. The flow is first stabilized and then gradually destabilized as the cylinder varies from square to circular geometry. The sensitivity analysis reveals that the variation of stability is attributed to the different spatial variation trends of the backflow velocity in the near- and far-wake regions for various cylinder geometries. The results from the stability analysis are also verified with those of the direct simulations and very good agreement is achieved.

  19. Casimir effect at nonzero temperature for wedges and cylinders

    CERN Document Server

    Ellingsen, Simen Å; Milton, Kimball A

    2010-01-01

    We consider the Casimir-Helmholtz free energy at nonzero temperature $T$ for a circular cylinder and perfectly conducting wedge closed by a cylindrical arc, either perfectly conducting or isorefractive. The energy expression at nonzero temperature may be regularized to obtain a finite value, except for a singular corner term in the case of the wedge which is present also at zero temperature. Assuming the medium in the interior of the cylinder or wedge be nondispersive with refractive index $n$, the temperature dependence enters only through the non-dimensional parameter $2\\pi naT$, $a$ being the radius of the cylinder or cylindrical arc. We show explicitly that the known zero temperature result is regained in the limit $aT\\to 0$ and that previously derived high temperature asymptotics for the cylindrical shell are reproduced exactly.

  20. Imperfection effects on the buckling of hydrostatically loaded cylinders

    DEFF Research Database (Denmark)

    Pinna, Rodney; Madsen, Søren

    2015-01-01

    The presence of geometric and other imperfections in cylinders has been known to result in collapse loads well below those predicted from eigenvalue analysis for a long time. As the designer's ability to routinely employ non-linear FEA has increased, the importance of modelling such imperfections...

  1. Features of Flow Past Square Cylinder with a Perforated Plate

    Institute of Scientific and Technical Information of China (English)

    汪健生; 徐亚坤; 程浩杰

    2016-01-01

    A numerical investigation was performed on the reduction of the fluid forces acting on the square cylin-der in the laminar flow regime with a perforated plate. The effects of geometric parameters such as the distance between the square cylinder and the perforated plate on the wake of the square cylinder were discussed. Further-more, the flow characteristics such as the drag coefficient, lift coefficient, Strouhal number and flow pattern were obtained. It can be concluded that the drag force of the square cylinder reduces to some extent due to the addition of the perforated plate. The flow structure varies when the perforated plate is located behind the square cylinder. Moreover, the recirculation zone augments with the increase ofL/D, and the vortex trace on the upper and lower surface of the square cylinder moves gradually backwards until a stable recirculation zone formed between the square cylinder and the perforated plate.

  2. Effects of Cylinder Radius, Setover and Heel-Toe Difference on Cylinder-Flat Gauge of a Card

    Institute of Scientific and Technical Information of China (English)

    SUN peng-zi; JU Yan-qing; ZHANG Ming-guang

    2007-01-01

    In order to provide manufacturers of carding machines and relevant accessories with theoretical references, how cylinder radius, setover and heel-toe difference affect cylinder-flat gauge of a carding machine was theoretically studied. The relationship between cylinder-flat gauge and cylinder radius, setover and heel-toe difference was geometrically discussed. Numerical calculation and illustration about the relationship were made with MATLAB in accordance with practical settings. A general formula about the relationship is derived. A concept, the small-gauge zone length, has been defined for the first time, and some relevant results thus obtained. Given setover and heel-toe difference, the greater the cylinder radius, the greater the average gauge. If a smaller overall cylinder-flat gauge is desirable, it is not necessary to emphasize the tangential direction of the heel of clothed surface to the cylinder. Their intersection within a small zone is acceptable. In many cases, small-gauge zone can reduce average gauge which may be helpful to the carding action; given cylinder radius and setover, the smaller the heel-toe difference, the more helpful to reduce the overall gauge; given cylinder radius and heel-toe difference, the small-gauge zone length will increase with the increase of setover, so does the difference between the smallest gauge and outlet gauge.

  3. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    CERN Document Server

    Mitri, F G

    2016-01-01

    Analytical expressions for the axial and transverse acoustic radiation forces as well as the radiation torque per length are derived for a rigid elliptical cylinder placed arbitrarily in the field of in plane progressive, quasi-standing or standing waves. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a fluid particle suspended in air, because of the significant acoustic impedance mismatch at the particle's boundary. Based on the partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force compone...

  4. The effects of cactus inspired spines on the aerodynamics of a cylinder

    Science.gov (United States)

    Levy, Benjamin; Liu, Yingzheng

    2013-05-01

    The effect of cactus-like spines on the topology and the dynamics of the flow past a stationary or pivoted cylinder are experimentally studied. The experiments are performed either in a water channel or a wind tunnel at low to moderate Reynolds number (390-12 500). The instantaneous velocity field is recorded using TR-PIV and investigated for three different configurations: no spines, short spines (0.1D) and long spines (0.2D). The results show how the spines are able to slow the flow past the cylinder and then increase the recirculation area by up to 128% while the maximum fluctuating kinetic energy intensity is decreased by up to 35%. Moreover, the spines have a significant effect on the vortex shedding and the dynamic pressure at the surface of the cylinder, thus significantly reducing both the amplitude and the frequency at which a pivoted cylinder oscillates.

  5. The effect of selected parameters of the honing process on cylinder liner surface topography

    Science.gov (United States)

    Pawlus, P.; Dzierwa, A.; Michalski, J.; Reizer, R.; Wieczorowski, M.; Majchrowski, R.

    2014-04-01

    Many truck cylinder liners made from gray cast iron were machined. Ceramic and diamond honing stones were used in the last stages of operation: coarse honing and plateau honing. The effect of honing parameters on the cylinder liner surface topography was studied. Selected surface topography parameters were response variables. It was found that parameters from the Sq group were sensitive to honing parameter change. When plateau honing time varied, the Smq parameter increased, while the other parameters, Spq and Svq, were stable.

  6. Analysis of pressure distributions on combinations of cylinders due to the effect of wind loading

    Science.gov (United States)

    Ghosh, Kapil; Saha, Anup; Islam, Md. Quamrul; Ali, Mohammad

    2016-07-01

    With the rapid growth of population, design and construction of taller buildings are being emphasized now-a-days. Especially the design of the group of tall buildings is economic to take care of the housing problem of the huge population. As buildings become taller, effect of wind on them also increases. In this research work, experiments have been conducted to investigate the wind effect on a combination of pentagonal and hexagonal cylinders. The test was conducted in an open circuit wind tunnel at a Reynolds number of Re = 4.22 × 104 based on the face width of the cylinder across the flow direction in a uniform flow velocity of 13.5 m/s. A pentagonal cylinder was placed in the upstream and another two hexagonal cylinders were in the downstream. The transverse and longitudinal spacing between the cylinders were varied and the surface static pressures at the different locations of the cylinders were measured with the help of inclined multi-manometers. From the measured values of surface static pressures, pressure coefficients were calculated. Due to the non-dimensional analysis, the results may be applied directly for engineering problems regarding wind loads around a group of skyscrapers, chimneys, towers, oil rigs or marine structures.

  7. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.

    Science.gov (United States)

    Amiri Delouei, A; Nazari, M; Kayhani, M H; Succi, S

    2014-05-01

    In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body can be suitably captured using the immersed boundary thermal lattice Boltzmann method.

  8. Gas adsorption and desorption effects on cylinders and their importance for long-term gas records

    Directory of Open Access Journals (Sweden)

    M. C. Leuenberger

    2015-08-01

    Full Text Available It is well known that gases adsorb on many surfaces, in particular metal surfaces. There are two main forms responsible for these effects (i physisorption and (ii chemisorption. Physisorption is associated with lower binding energies in the order of 1–10 kJ mol−1 compared to chemisorption ranging from 100 to 1000 kJ mol−1. Furthermore, chemisorption forms only monolayers, contrasting physisorption that can form multilayer adsorption. The reverse process is called desorption and follows similar mathematical laws, however, it can be influenced by hysteresis effects. In the present experiment we investigated the adsorption/desorption phenomena on three steel and three aluminium cylinders containing compressed air in our laboratory and under controlled conditions in a climate chamber, respectively. We proved the pressure effect on physisorption for CO2, CH4 and H2O by decanting one steel and two aluminium cylinders completely. The CO2 results for both cylinders are in excellent agreement with the pressure dependence of a monolayer adsorption model. However, adsorption on aluminium (2 and H2O was about 10 times less than on steel (2 amounts adsorbed (5.8 × 1019 CO2 molecules corresponds to about the five-fold monolayer adsorption indicating that the effective surface exposed for adsorption is significantly larger than the geometric surface area. Adsorption/desorption effects were minimal for CH4 and for CO. However, the latter dependence requires further attention since it was only studied on one aluminium cylinder with a very low mole fraction. In the climate chamber the cylinders were exposed to temperatures between −10 and +50 °C to determine the corresponding temperature coefficients of adsorption. Again, we found distinctly different values for CO2 ranging from 0.0014 to 0.0184 ppm °C−1 for steel cylinders and −0.0002 to −0.0003 ppm °C−1 for aluminium cylinders. The reversed temperature dependence for aluminium cylinders

  9. Effects of Nano-Particles on the Tribological and Thermal Properties of Piston Ring-Cylinder Liner

    Institute of Scientific and Technical Information of China (English)

    刘小君; 刘焜; 焦明华; 王伟; 丁曙光

    2004-01-01

    The effects of ultra-dispersed diamond (UDD) on the friction force, wear, and temperature of tribological pairs have been investigated.The experimental tests were carried out on a modified piston ring-cylinder liner bench tester with different particle mass fractions of 0, 0.02%, and 0.10%.The results show that compared with a pure fluid, the mixture of the fluid and UDD not only reduces the friction and wear, but also reduces the bulk temperature of the specimen.The mechanism by which the UDD lubricant improves the tribological properties has some relationship with surface topography, because it can increase the bearing capability of surfaces.

  10. Chemical Reaction Effects on an Unsteady MHD Mixed Convective and Radiative Boundary Layer Flow over a Circular Cylinder

    Directory of Open Access Journals (Sweden)

    T. Poornima

    2016-01-01

    Full Text Available A mathematical model is presented for an optically dense fluid past an isothermal circular cylinder with chemical reaction taking place in it. A constant, static, magnetic field is applied transverse to the cylinder surface. The cylinder surface is maintained at a constant temperature. New variables are introduced to transform the complex geometry into a simple shape and the boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, Crank-Nicolson finite difference scheme. Numerical computations are made and the effects of the various material parameters on the velocity, temperature and concentration as well as the surface skin friction and surface heat and mass transfer rates are illustrated graphs and tables. Increasing magnetohydrodynamic body force parameter (M is found to decelerate the flow but enhance temperatures. Thermal radiation is seen to reduce both velocity and temperature in the boundary layer. Local Nusselt number is also found to be enhanced with increasing radiation parameter.

  11. Interfragmentary compression forces of scaphoid screws in a sawbone cylinder model.

    Science.gov (United States)

    Hausmann, J T; Mayr, W; Unger, E; Benesch, T; Vécsei, V; Gäbler, C

    2007-07-01

    Various screws have been developed to stabilise fractures of the scaphoid. Commonly used are the Herbert, the HBS, the 3-mm AO and the Acutrak screws. Not long ago a new screw, the Twin Fix, was introduced. This is cannulated and similar in shape and appearance to the classical Herbert screw. In our test series we compared the maximum achievable compression forces of the Twin Fix screw with that of three other screws (AO, HBS and Acutrak screws). To avoid the variations of density, stiffness and rigidity in natural bone, a polyurethane sawbone-based test setup was used. The test series included 10 screws of each type. The compression force was measured using a special strain gauge. The mean compression force was significantly higher for the Twin Fix screw (8+/-1N) and the Acutrak screw (7.6+/-0.4/0.6N) in relation to the AO screw (6.8+/-1.0/1.4N) and HBS screw (2+/-1N). We found the Twin Fix and Acutrak screws to be promising in the treatment of scaphoid fractures.

  12. Radiation forces and torque on a rigid elliptical cylinder in acoustical plane progressive and (quasi)standing waves with arbitrary incidence

    Science.gov (United States)

    Mitri, F. G.

    2016-07-01

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of

  13. Time-domain analysis of frequency dependent inertial wave forces on cylinders

    DEFF Research Database (Denmark)

    Krenk, Steen

    2013-01-01

    -number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave...

  14. Experimental Study of Wave Forces on Vertical Circular Cylinders in Long and Short Crested Sea

    DEFF Research Database (Denmark)

    Høgedal, Michael

    The three-dimensional structure of ocean waves is generally ignored in favour of two-dimensional waves, which are easier to handle from a theoretical and computational point of view. For design fixed structures where horizontal in-line and resultant wave forces are important, this is normally on ...... with miniature pressure transducers. The experiments were carried out in the 3-D wave tank in the Hydraulics & Coastal Engineering Laboratory at Aalborg University and in the off-shore basin at the Danish Hydraulic Institute....

  15. Effects of confining walls on heat transfer from a vertical array of isothermal horizontal elliptic cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, T.; Paknezhad, M. [Mechanical Engineering Department, Razi University, Kermanshah, Tehran 11365-4563 (Iran); Ashjaee, M.; Yazdani, S. [School of Mechanical Engineering, University of Tehran, Tehran 11365-4563 (Iran)

    2009-09-15

    Steady state two-dimensional natural convection heat transfer from the vertical array of five horizontal isothermal elliptic cylinders with vertical major axis which confined between two adiabatic walls has been studied experimentally. Experiments were carried out using a Mach-Zehnder interferometer. The Rayleigh number based on cylinder major axis was in the range 10{sup 3}{<=}Ra{<=}2.5 x 10{sup 3}, and dimensionless wall spacing 1.5{<=} t/b{<=}9 and infinity. The effect of wall spacing and Rayleigh number on the heat transfer from the individual cylinder and the array were investigated. Experiments are performed for ratio wall spacing to major diameter t/b = 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 and infinity. A correlation based on the experimental data for the average Nusselt number of the array as a function of Ra and t/b is presented in the aforementioned ranges. A relation has been derived for optimum wall spacing at which the Nusselt number of the array attains its maximum value. At optimum wall spacing, approximately 10% increase in the heat transfer from the confined array of elliptic cylinders has been observed as compared to the unconfined case. Also, a heat transfer correlation has been proposed for a single elliptic cylinder with vertical major axis and has been compared with earlier works. (author)

  16. On the inverse Magnus effect for flow past a rotating cylinder

    Science.gov (United States)

    John, Benzi; Gu, Xiao-Jun; Barber, Robert W.; Emerson, David R.

    2016-11-01

    Flow past a rotating cylinder has been investigated using the direct simulation Monte Carlo method. The study focuses on the occurrence of the inverse Magnus effect under subsonic flow conditions. In particular, the variations in the coefficients of lift and drag have been investigated as a function of the Knudsen and Reynolds numbers. Additionally, a temperature sensitivity study has been carried out to assess the influence of the wall temperature on the computed aerodynamic coefficients. It has been found that both the Reynolds number and the cylinder wall temperature significantly affect the drag as well as the onset of lift inversion in the transition flow regime.

  17. Reduction of the Shupe effect in interferometric fiber optic gyroscopes: The double cylinder-wound coil

    Science.gov (United States)

    Ling, Weiwei; Li, Xuyou; Yang, Hanrui; Liu, Pan; Xu, Zhenlong; Wei, Yanhui

    2016-07-01

    For the first time, we introduce a novel double-cylinder winding method for reducing the Shupe effect in interferometric fiber optic gyroscopes (IFOGs). Simulation by finite element method (FEM) is performed to calculate the dynamic temperature distribution of fiber coils, which can obtained thermal-induced rate errors in IFOGs with cross-wound coil and double cylinder-wound coil respectively. Simulation results reveal that thermal-induced rate errors in IFOGs by both winding methods can be substantially reduced under the same variable temperature conditions, but the latter has a simpler winding technology. This study is promising for reducing the temperature fragility of IFOGs.

  18. Blower Cooling of Finned Cylinders

    Science.gov (United States)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1937-01-01

    Several electrically heated finned steel cylinders enclosed in jackets were cooled by air from a blower. The effect of the air conditions and fin dimensions on the average surface heat-transfer coefficient q and the power required to force the air around the cylinders were determined. Tests were conducted at air velocities between the fins from 10 to 130 miles per hour and at specific weights of the air varying from 0.046 to 0.074 pound per cubic foot. The fin dimensions of the cylinders covered a range in pitches from 0.057 to 0.25 inch average fin thicknesses from 0.035 to 0.04 inch, and fin widths from 0.67 to 1.22 inches.

  19. Flow over an inline oscillating circular cylinder in the wake of a stationary circular cylinder

    Science.gov (United States)

    Zhang, Yang; Zhu, Keqiang

    2017-02-01

    Flow interference between an upstream stationary cylinder and an inline oscillating cylinder is studied with the lattice Boltzmann method. With a fixed Reynolds number Re = 100 and pitch ratio L/D = 4, the effects of oscillation amplitude A/D = [0.25, 1] and frequency f e/f s = [0.5, 2] are investigated. The wake response state is categorized into lock-in and non-lock-in. The lock-in zone in the bifurcation diagram of amplitude versus frequency is discontinuous. Response states of upstream and downstream wakes are similar under the conditions of small amplitude or low frequency. However, with large oscillating parameters, the two wakes are prone to be in different states as the flow field becomes irregular. Two distinct flow regimes have been identified, i.e., single-cylinder and two-cylinder shedding regimes. The presence of single-cylinder shedding regime is attributed to the low shedding frequency of the downstream cylinder at large amplitude. Hydrodynamic forces of the oscillating tandem system are discussed. The results reveal that forces on the two cylinders behave differently and that the absence of vortices in the gap flow significantly reduces the forces exerting on the tandem system.

  20. Forced Convection Film Boiling Heat Transfer from a Horizontal Cylinder to Liquid Cross-flowing Upward : 1st Report, Saturated Liquid

    OpenAIRE

    Ito, Takehiro; Nishikawa, Kaneyasu; Shigechi, Tooru

    1981-01-01

    Forced convection film boiling heat transfer from a horizontal cylinder to saturated liquid cross-flowing upward is analyzed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined by means of the integral method of boundary-layer for water, ethanol and hexane under the atmospheric pressure. The velocity profile, separation point of the boundary-layer, thickness of the boundary-layer, distribution of the heat transfer coefficients and avera...

  1. Forced Convection Film Boiling Heat Transfer from a Horizontal Cylinder to Liquid Cross-flowing Upward : 2nd Report, Subcooled Liquid

    OpenAIRE

    Shigechi, Tooru; Ito, Takehiro; Nishikawa, Kaneyasu

    1983-01-01

    Forced convection film boiling heat transfer from a horizontal cylinder to a subcooled liquid cross-flowing upward is analysed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined for subcooled water, ethanol and hexane under the atmospheric pressure by the method similar to that of the first report for saturated liquid. The velocity profile, the separation point in the vapor film, the thickness of the boundary-layer and the average Nuss...

  2. Coanda effect jet around a cylinder with an interacting adjacent surface

    Science.gov (United States)

    Churchill, Randolph Allen

    The effects of placing a plane solid surface in close proximity to a Coanda effect jet turning over a cylindrical surface are investigated to help judge the possible application of this type of jet to manufacturing line processes. The Coanda jet is proposed as a coating control mechanism for fluidic coatings on sheets or a particulate removal device. A Coanda jet placed close to a surface will develop a strong tangential flow that will shear by viscous effects and pressure gradients. A turbulent k-epsilon finite element model, developed in FIDAP, is presented that studies the effects of cylinder-sheet separation distance and jet-to-gap angular placement of the jet. It is assumed that the operation is isothermal and that the sheet speed is negligible compared to the air jet speed. Unconstrained models and cases with a distant surface were run and compared to published experimental results for an unconstrained Coanda jet to validate the modeling method and optimize the empirical constants in the k-epsilon equations. Best agreement is found if the C(sub 2) parameter in the equations is increased from 1.92 to 3.0. Maximum shear stress and pressure gradient values increased exponentially for a decreasing gap size and physical geometric constraints will be the limiting factor to efficiency. For similar initial jets this study shows that the Coanda jet develops stripping forces about 1/2 as great as the regular air-knife, but has advantages such as directed flow. The Coanda jet is seen as a viable option to air-knives for certain operations.

  3. Effect of constant heat flux at outer cylinder on stability of viscous ...

    African Journals Online (AJOL)

    DR OKE

    dimensional linear stability analysis of the Couette flow between two axial cylinders for ... variable or constant heat flux at the inner cylinder while the outer cylinder is ... differential equations have been obtained to govern the stability of the ...

  4. Investigations on the Effects of Vortex-Induced Vibration with Different Distributions of Lorentz Forces

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2017-01-01

    Full Text Available The control of vortex-induced vibration (VIV in shear flow with different distributions of Lorentz force is numerically investigated based on the stream function–vorticity equations in the exponential-polar coordinates exerted on moving cylinder for Re = 150. The cylinder motion equation coupled with the fluid, including the mathematical expressions of the lift force coefficient C l , is derived. The initial and boundary conditions as well as the hydrodynamic forces on the surface of cylinder are also formulated. The Lorentz force applied to suppress the VIV has no relationship with the flow field, and involves two categories, i.e., the field Lorentz force and the wall Lorentz force. With the application of symmetrical Lorentz forces, the symmetric field Lorentz force can amplify the drag, suppress the flow separation, decrease the lift fluctuation, and then suppress the VIV while the wall Lorentz force decreases the drag only. With the application of asymmetrical Lorentz forces, besides the above-mentioned effects, the field Lorentz force can increase additional lift induced by shear flow, whereas the wall Lorentz force can counteract the additional lift, which is dominated on the total effect.

  5. Sedimentation of a Single Charged Elliptic Cylinder in a Newtonian Fluid by Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chao-Ying; SHI Juan; TAN Hui-Li; LIU Mu-Ren; KONG Ling-Jiang

    2004-01-01

    @@ We simulate the sedimentation of single charged and single uncharged elliptic cylinders in a Newtonian fluid by using the lattice Boltzmann method. Due to the polarizing effects and non-axial symmetry shape, there are the Coulomb force and corresponding torque exerted on the charged elliptic cylinder during the sedimentation, which significantly change the horizontal translation and rotation of the cylinder. When the dielectric constant of the liquid is smaller than that of the wall, the direction of the Coulomb force is opposite to that of the hydrodynamic force. Therefore there appears to be a critical linear charge density qc at which the elliptic cylinder will fall vertically off the centreline.

  6. Effect of angle of attack on the flow past a harbor seal vibrissa shaped cylinder

    Science.gov (United States)

    Kim, Hyo Ju; Yoon, Hyun Sik

    2016-11-01

    The present study considered the geometric disturbance inspired by a harbor seal vibrissa of which undulated surface structures are known as a detecting device to capture the water movement induced by prey fish. In addition, this vibrissa plays an important role to suppress vortex-induced vibration, which has been reported by the previous researches. The present study aims at finding the effect of the angle of attack (AOA) on flow characteristics around the harbor seal vibrissa shaped cylinder, since the flow direction facing the harbor seal vibrissa with the elliptic shape can be changed during the harbor seal's movements and surrounding conditions. Therefore, we considered a wide range of AOA varying from 0 to 90 degree. We carried out large eddy simulation (LES) to investigate the flow around inclined vibrissa shaped cylinder for the Reynolds number (Re) of 500 based hydraulic diameter of a harbor seal vibrissa shape. For comparison, the flow over the elliptic cylinder was also simulated according to AOA at the same Re. The vortical structures of both vibrissa shaped and elliptic cylinders have been compared to identify the fundamental mechanism making the difference flow quantities. This subject is supported by Korea Ministry of Environment (MOE) as "the Chemical Accident Prevention Technology Development Project.", National Research Foundation of Korea (NRF) Grant through GCRCSOP (No.20110030013) and (NRF-2015R1D1A3A01020867).

  7. Eccentricity and thermoviscous effects on ultrasonic scattering from a liquid-coated fluid cylinder

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Calculation of the scattered field of the eccentric scatterers is an old problem with numerous applications. This study considers the interaction of a plane compressional sound wave with a liquid-encapsulated thermoviscous fluid cylinder submerged in an unbounded viscous thermally conducting medium. The translational addition theorem for cylindrical wave functions, the appropriate wave field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in the form of infinite series. The analytical results are illustrated with a numerical example in which the compound cylinder is insonified by a plane sound wave at selected angles of incidence in a wide range of dimensionless frequencies. The backscattered far-field acoustic pressure amplitude and the spatial distribution of the total acoustic pressure in the vicinity of the cylinder are evaluated and discussed for representative values of the parameters characterizing the system. The effects of incident wave frequency, angle of incidence, fluid thermoviscosity, core eccentricity and size are thoroughly examined. Limiting case involving an ideal compressible liquid-coated cylinder is considered and fair agreement with a well-known solution is established.

  8. Wave Diffraction from A Vertical Cylinder with Two Uniform Columns and Porous Outer Wall

    Institute of Scientific and Technical Information of China (English)

    TFNG Rin; HAN Ling; LI Yucheng

    2000-01-01

    Based on a linear model of the pressure difference between two sides of a porous wall and the fluid velocity inside it, an analytic solution is established for wave diffraction from a cylinder with an outer porous column and an inner solid column. Numerical experiments are carried out to examine the effects of the wave force on a porous tow-column cylinder and the wave elevations outside and inside the cylinder due to the porous character of the outer column and the ratio between the radii of the inner and outer columns. The numerical results show that the increase in the coefficient of porosity of the outer column of a double column cylinder will reduce the wave elevation around the cylinder and the wave load on it. The radius of the inner column does not affect too much the wave elevation around the cylinder and the total force on the cylinder.

  9. Effect of Backpacking and Internal Pressurization on Stresses Transmitted to Buried Cylinders.

    Science.gov (United States)

    Various aspects of the behavior of buried cylinders associated with backpacking , internal pressurization, and slippage at the interface are...considered. Parametric curves are presented for horizontally and vertically buried cylinders with and without backpacking . Four configurations of statically...loaded, horizontally buried cylinders were considered: no backpacking , rectangular backpacking placed above the cylinder, backpacking placed around

  10. 离合器分离轴承结构对密封圈压入力影响研究%Influence Research of the Clutch Hydraulic Release Bearing Cylinder 's Construction on the Pressing Force of Sealing Ring

    Institute of Scientific and Technical Information of China (English)

    侯秋丰; 吕强; 刘雪莱; 史浩峰

    2016-01-01

    The finite element model of Hydraulic release bearing is established to study the influence of the construction of clutch hydraulic release bearing cylinder on the pressing force of sealing ring ,and this model is used for analyzing the process of pressing into the hydraulic release bearing's sealing ring .The characteristic curve of the pressing force of sealing ring and the displacement is obtained .The model is validated by comparing the calculated and experimental result .Then u-sing the established model ,the influence of the bearing cylinder's construction and the sealing ring friction coefficient for the pressing force of seal ring is analyzed .The results show that the pressing force of sealing ring has a big fluctuation when it is just pressed ,then gradually reduces and tends to be stable .If the friction coefficient and the outer diameter of cylinder re-duce or the inner diameter of cylinder increases ,the pressing force of sealing ring would reduce effectively .The developed model and conclusions proposed are instructive for the design and structure optimization of clutch hydraulic release bearing .%为了研究离合器液压分离轴承缸体结构对密封圈压入力的影响,建立了液压分离轴承有限元模型,对液压分离轴承密封圈压入过程进行了分析,得到了密封圈压入力随位移变化的关系曲线,并与相关试验结果进行对比分析,验证了有限元模型的正确性.利用建立的模型,分析了轴承缸体结构参数以及与密封圈摩擦因数对压入力的影响.结果表明,在刚被压入时,密封圈受到的压入力波动较大,随后逐渐减小并趋于稳定.降低摩擦因数,增大缸体的内径和降低缸体外径可以有效地降低密封圈受到的压入力.该建模方法和结论对液压分离轴承的设计和结构优化具有一定的指导意义.

  11. Vortices induced in a stagnation region by wakes - Their incipient formation and effects on heat transfer from cylinders

    Science.gov (United States)

    Nagib, H. M.; Hodson, P. R.

    1977-01-01

    Horseshoe-like vortices, induced by wakes in the stagnation region of bluff bodies, are proposed as an efficient mechanism for augmentation of convective heat transfer. The vortex 'flow module' induced by single or multiple wakes, which had not been observed previously, was first documented and the resulting flow field was studied using various visualization techniques and hot-wire anemometry. In an attempt to understand the driving force behind this flow module, the conditions at which incipient formation of the vortices occurs were investigated. Existence of such a threshold is essential and was hitherto an open question in analytical studies of stability of flow in stagnation region. Finally, effects of the flow module on heat transfer from a cylinder were measured.

  12. An Experimental Investigation of Some Three-Dimensional Effects of Stationary Circular Cylinders

    Science.gov (United States)

    Weiss, Lesley G.; Szewczyk, Albin A.

    1999-11-01

    Some effects of three-dimensionality on the near wake of a circular cylinder were investigated in the subcritical Reynolds number range. The three-dimensional effects were imposed by a linear shear approach flow and taper in the cylinder. A rake of 16 hot-wires was placed in the near wake in order to investigate the effects of three-dimensionality on the vortex shedding along the span. Results of the present investigation indicate that the three-dimensionality triggers the formation of constant frequency cells. The number and size of the cells are dependent on the combination of nonuniformity in the flow and cylinder. When based on midspan values of diameter and velocity the Strouhal number remains constant within each cell and is centered around the two-dimensional Strouhal number. If the Strouhal number is based on local values it tends to vary linearly within each cell and jump between cell boundaries. A pseudo-visualization technique using time series data is used to show the splitting of vortex cells of different frequency.

  13. Analytical model for the levitation force between a small magnet and a superconducting cylinder in the critical state

    Science.gov (United States)

    de la Cruz, Artorix; Badía, Antonio

    2002-08-01

    In this work a simple analytical model is presented, which allows to obtain closed-form expressions for the maximum magnetic field trapped by a cylindrical superconductor as well as the levitation force between the sample and a small magnet. Previous models of this kind could not properly account for the behaviour of the repulsion force with the variation of the sample dimensions. In particular, the so-called Js+ Jv model (J. Appl. Phys. 72 (1992) 1013) incorporates size effects by means of a surface current density ( Js) which tends to zero for disc-shaped samples. However, we show that the features encountered both in experimental works and numerical models reported in the literature can be reproduced by a suitable modification of the Js+ Jv model. Analytical expressions of the levitation force are obtained as a function of length and radius of the sample and as well the superconductor-magnet distance.

  14. Delamination of Composite Cylinders

    Science.gov (United States)

    Davies, Peter; Carlsson, Leif A.

    The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.

  15. Vorticity generation and wake transition for a translating circular cylinder: Wall proximity and rotation effects

    DEFF Research Database (Denmark)

    Hourigan, K.; Rao, A.; Brøns, Morten

    2013-01-01

    The wake transitions of generic bluff bodies, such as a circular cylinder, near a wall are important because they provide understanding of different transition paths towards turbulence, and give some insight into the effect of surface modifications on the flow past larger downstream structures....... In this article, the fundamentals of vorticity generation and transport for the two-dimensional flow of incompressible Newtonian fluids are initially reviewed. Vorticity is generated only at boundaries by tangential pressure gradients or relative acceleration. After generation, it can cross......-annihilate with opposite-signed vorticity, and can be stored at a free surface, thus conserving the total vorticity, or circulation. Vorticity generation, diffusion and storage are demonstrated for a cylinder translating and rotating near a wall. The wake characteristics and the wake transitions are shown to change...

  16. Edge effects in electrostatic calibrations for the measurement of the Casimir force

    CERN Document Server

    Wei, Qun

    2011-01-01

    We have performed numerical simulations to evaluate the effect on the capacitance of finite size boundaries realistically present in the parallel plane, sphere-plane, and cylinder-plane geometries. The potential impact of edge effects in assessing the accuracy of the parameters obtained in the electrostatic calibrations of Casimir force experiments is then discussed.

  17. Effects of piston speed, compression ratio and cylinder geometry on system performance of a liquid piston

    Directory of Open Access Journals (Sweden)

    Mutlu Mustafa

    2016-01-01

    Full Text Available Energy storage systems are being more important to compensate irregularities of renewable energy sources and yields more profitable to invest. Compressed air energy storage (CAES systems provide sufficient of system usability, then large scale plants are found around the world. The compression process is the most critical part of these systems and different designs must be developed to improve efficiency such as liquid piston. In this study, a liquid piston is analyzed with CFD tools to look into the effect of piston speed, compression ratio and cylinder geometry on compression efficiency and required work. It is found that, increasing piston speeds do not affect the piston work but efficiency decreases. Piston work remains constant at higher than 0.05 m/s piston speeds but the efficiency decreases from 90.9 % to 74.6 %. Using variable piston speeds has not a significant improvement on the system performance. It is seen that, the effect of compression ratio is increasing with high piston speeds. The required power, when the compression ratio is 80, is 2.39 times greater than the power when the compression ratio is 5 at 0.01 m/s piston speed and 2.87 times greater at 0.15 m/s. Cylinder geometry is also very important because, efficiency, power and work alter by L/D, D and cylinder volume respectively.

  18. Mass transfer from a circular cylinder: Effects of flow unsteadiness and slight nonuniformities

    Science.gov (United States)

    Marziale, M. L.; Mayle, R. E.

    1984-01-01

    Experiments were performed to determine the effect of periodic variations in the angle of the flow incident to a turbine blade on its leading edge heat load. To model this situation, measurements were made on a circular cylinder oscillating rotationally in a uniform steady flow. A naphthalene mass transfer technique was developed and used in the experiments and heat transfer rates are inferred from the results. The investigation consisted of two parts. In the first, a stationary cylinder was used and the transfer rate was measured for Re = 75,000 to 110,000 and turbulence levels from .34 percent to 4.9 percent. Comparisons with both theory and the results of others demonstrate that the accuracy and repeatability of the developed mass transfer technique is about + or - 2 percent, a large improvement over similar methods. In the second part identical flow conditions were used but the cylinder was oscillated. A Strouhal number range from .0071 to .1406 was covered. Comparisons of the unsteady and steady results indicate that the magnitude of the effect of oscillation is small and dependent on the incident turbulence conditions.

  19. Effects of surface finish and treatment on the fatigue behaviour of vibrating cylinder block using frequency response approach

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents the effects of surface finish and treatment on the high cycle fatigue behaviour of vibrating cylinder block of a new two-stroke free piston engine at complex variable amplitude loading conditions using frequency response approach,Finite element modelling and frequency response analysis was conducted using finite element analysis software Package MSC.PATRAN/MSC.NASTRAN and fatigue life prediction was carried out using MSC.FATIGUE software. Based on the finite element results, different frequency response approach was applied to predict the cylinder block fatigue life. Results for different load histories and material combinations are also discussed. Results indicated great effects for all surface finish and treatment. It is concluded that polished and cast surface finish conditions give the highest and lowest cylinder block lives, respectively; and that Nitrided treatment leads to longest cylinder block life. The results were used to draw contour plots of fatigue life and damage in the worst or most damaging case.

  20. Effect of High Porosity Screen on the Near Wake of a Circular Cylinder

    Directory of Open Access Journals (Sweden)

    Sahin B.

    2013-04-01

    Full Text Available The change in flow characteristics downstream of a circular cylinder (inner cylinder surrounded by a permeable cylinder (outer cylinder made of a high porosity screen was investigated in shallow water using Particle Image Velocimetry (PIV technique. The diameter of the inner cylinder, outer cylinder and the water height were kept constant during the experiments as d = 50 mm, D = 100 mm and hw = 50 mm, respectively. The depth-averaged free stream velocity was also kept constant as U = 180 mm/s which corresponded to a Reynolds number of Red = 9000 based on the inner cylinder diameter. It was shown that the outer permeable cylinder had a substantialeffect on the vortex formation and consequent vortex shedding downstream of the circular cylinder, especially in the near wake. The time averaged vorticity layers, streamlines and velocity vector field depict that the location of the interaction of vortices considerably changed by the presence of the outer cylinder. Turbulent statistics clearly demonstrated that in comparison to the natural cylinder, turbulent kinetic energy and Reynolds stresses decreased remarkably downstream of the inner cylinder. Moreover, spectra of streamwise velocity fluctuations showed that the vortex shedding frequency significantly reduced compared to the natural cylinder case.

  1. Dynamic Simulation of the Harvester Boom Cylinder

    Directory of Open Access Journals (Sweden)

    Rongfeng Shen

    2017-04-01

    Full Text Available Based on the complete dynamic calculation method, the layout, force, and strength of harvester boom cylinders were designed and calculated. Closed simulations for the determination of the dynamic responses of the harvester boom during luffing motion considering the cylinder drive system and luffing angle position control have been realized. Using the ADAMS mechanical system dynamics analysis software, six different arm poses were selected and simulated based on the cylinder as the analysis object. A flexible model of the harvester boom luffing motion has been established. The movement of the oil cylinder under different conditions were analyzed, and the main operation dimensions of the harvester boom and the force condition of the oil cylinder were obtained. The calculation results show that the dynamic responses of the boom are more sensitive to the luffing acceleration, in comparison with the luffing velocity. It is seen that this method is very effective and convenient for boom luffing simulation. It is also reasonable to see that the extension of the distance of the bottom of the boom is shortened by adjusting the initial state of the boom in the working process, which can also effectively reduce the workload of the boom—thus improving the mechanical efficiency.

  2. Investigation into Piston-Slap Force under Friction and Connecting Rod Effects of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fuadi Noor Balia

    2011-01-01

    Full Text Available In this paper, a dynamics analysis of diesel engine through investigation of the piston-slap force by considering the friction and connecting rod effects is presented. A single-cylinder of 500 cc Diesel Engine’s mechanism was examined. The position, velocity and acceleration of the pins and the center of mass for each linkage were calculated by using vector analysis principles. The governing equations of the forces and moments were derived based on the Cartesian coordinate principles, and solved by using Gauss elimination method. Hence, the piston-slap force onto the cylinder wall under friction and connecting rod effects were determined. Favourable comparison with previously published work was performed and excellent agreement between the results was obtained. The result shows that the friction and connecting rod effects significantly influence to the piston-slap force.

  3. Effect of Cylinder Size on the Modulus of Elasticity and Compressive Strength of Concrete from Static and Dynamic Tests

    Directory of Open Access Journals (Sweden)

    Byung Jae Lee

    2015-01-01

    Full Text Available The primary objective of this study is to investigate the effects of cylinder size (150 by 300 mm and 100 by 200 mm on empirical equations that relate static elastic moduli and compressive strength and static and dynamic elastic moduli of concrete. For the purposes, two sets of one hundred and twenty concrete cylinders, 150 by 300 mm and 100 by 200 mm, were prepared from three different mixtures with target compressive strengths of 30, 35, and 40 MPa. Static and dynamic tests were performed at 4, 7, 14, and 28 days to evaluate compressive strength and static and dynamic moduli of cylinders. The effects of the two different cylinder sizes were investigated through experiments in this study and database collected from the literature. For normal strength concrete (≤40 MPa, the two different cylinder sizes do not result in significant differences in test results including experimental variability, compressive strength, and static and dynamic elastic moduli. However, it was observed that the size effect became substantial in high strength concrete greater than 40 MPa. Therefore, special care is still needed to compare the static and dynamic properties of high strength concrete from the two different cylinder sizes.

  4. The Total Force Policy and Effective Force

    Science.gov (United States)

    2006-05-31

    analysis.” 23 Roald Dahl, Charlie and the Chocolate Factory , (New York: Pequin Books, 1964), 87, 150. Mr. Dahl’s image of the everlasting gobstopper...Office of the Chief, Army Reserve, 1997. Dahl, Roald. Charlie and the Chocolate Factory . Penguin Books: New York, 1964. Feaver, Peter D. Armed Servants...knot24 that must be untied in order to prove relevance as a military force. Of course, we know the end of these ancient and modern stories. Charlie

  5. Improving the performance of aeroelastic energy harvesters by an interference cylinder

    Science.gov (United States)

    Zhang, L. B.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-08-01

    An interference circular cylinder is introduced and placed downstream of the original circular cylinder for improving the output performance of energy harvesting from vortex-induced vibrations. The interference cylinder is fixed, but its spacing distance from the original cylinder can be adjusted. The experimental results show that the harvested power can be greatly enhanced and the bandwidth of the resonance region is also increased depending on the spacing distance and wind speed, compared to the original energy harvester without an interference cylinder. This is attributed to the fact that the flow pattern for the two cylinders changes with varying the spacing distance, resulting in distinctive characteristics of the Strouhal number and coefficients of fluctuating lift force and mean drag force. The present study gives a suggestive guidance in effectively harvesting energy from vortex-induced vibrations by adjusting the spacing distance according to the available wind speed.

  6. Flow characteristics of the two tandem wavy cylinders and drag reduction phe-nomenon

    Institute of Scientific and Technical Information of China (English)

    邹琳; 郭丛波; 熊灿

    2013-01-01

    This paper presents an extensive numerical study of 3-D laminar flow around two wavy cylinders in the tandem arrangement for spacing ratios (L/Dm ) ranging from 1.5 to 5.5 at a low Reynolds number of 100. The investigation focuses on the effects of spacing ratio (L/Dm ) and wavy surface on the 3-D near wake flow patterns, the force and pressure coefficients and the vortex shedding frequency for the two tandem wavy cylinders. Flows around the two tandem circular cylinders are also obtained for comparison. With the spacing ratio in the range of L/Dm=1.5-5.5 , unlike two tandem circular cylinders, the wavy cylinders in the tandem arrangement do not have the wake interference behaviour of three basic types. The vortex shedding behind the upstream wavy cylinder occurs at a further downstream position as compared with that of the upstream circular cylinder. This leads to the weakening of the effect of the vibration of the cylinders as well as a distinct drag reduction. The effects of the drag reduction and the control of the vibration of the two wavy cylinders in tandem become more and more evident when L/Dm³4.0, with a distinct vortex shedding in the upstream cylinder regime for the two circular cylinders in tandem.

  7. Experimental investigation of turbulent flow past four grooved and smooth cylinders in an in-line square arrangement

    Directory of Open Access Journals (Sweden)

    Ladjedel O.

    2015-01-01

    Full Text Available An experimental study of turbulent flow past four cylinders in square arrangement with a space ratio of (T/D = P/D = 2.88 is performed. The investigation focuses on effects of Reynolds number and the shape of cylinders on the force and pressure coefficients of the cylinders. Two cases are investigated: four smooth cylinders (case1 and four grooved cylinders (case2. The cylinders are equipped with two grooves placed on the external surface at 90° and 270° degrees. The pressure distributions along the tubes (22 circumferential pressure taping were determined for a variation of the azimuthal angle from 0 to 360deg. The drag and lift forces are measured using the TE 44 balance. The results show a bistable flow often exists behind the downstream cylinders is observed. By rising the Reynolds number the pressure coefficient increases in the absolute value.

  8. Dropwise Condensation on Hydrophobic Cylinders

    CERN Document Server

    Park, Kyoo-Chul; Hoang, Michelle; McManus, Brendan; Aizenberg, Joanna

    2016-01-01

    In this work, we studied the effect of the diameter of horizontal hydrophobic cylinders on droplet growth. We postulate that the concentration gradient created by natural convection around a horizontal circular cylinder is related to the droplet growth on the cylinder by condensation. We derive a simple scaling law of droplet growth and compare it with experimental results. The predicted negative exponent of drop diameter (d) as a function of cylinder diameter (D) at different time points is similar to the general trend of experimental data. Further, this effect of cylinder diameter on droplet growth is observed to be stronger than the supersaturation conditions created by different surface temperatures.

  9. Reynolds and froude number effect on the flow past an interface-piercing circular cylinder

    Directory of Open Access Journals (Sweden)

    Koo Bonguk

    2014-09-01

    Full Text Available The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research

  10. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    Directory of Open Access Journals (Sweden)

    Yunfei Yan

    2014-01-01

    Full Text Available A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  11. Effect of catalytic cylinders on autothermal reforming of methane for hydrogen production in a microchamber reactor.

    Science.gov (United States)

    Yan, Yunfei; Guo, Hongliang; Zhang, Li; Zhu, Junchen; Yang, Zhongqing; Tang, Qiang; Ji, Xin

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  12. Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder

    Directory of Open Access Journals (Sweden)

    Akbıyık Hürrem

    2016-01-01

    Full Text Available In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.

  13. Simulation of Flow Around Cylinder Actuated by DBD Plasma

    Science.gov (United States)

    Wang, Yuling; Gao, Chao; Wu, Bin; Hu, Xu

    2016-07-01

    The electric-static body force model is obtained by solving Maxwell's electromagnetic equations. Based on the electro-static model, numerical modeling of flow around a cylinder with a dielectric barrier discharge (DBD) plasma effect is also presented. The flow streamlines between the numerical simulation and the particle image velocimetry (PIV) experiment are consistent. According to the numerical simulation, DBD plasma can reduce the drag coefficient and change the vortex shedding frequencies of flow around the cylinder.

  14. Effects of growth on residual stress distribution along the radial depth of cortical cylinders from bovine femurs.

    Science.gov (United States)

    Yamada, Satoshi; Tadano, Shigeru

    2013-09-03

    Residual stress is defined as the stress that remains in bone tissue without any external forces. This study investigated the effects of growth on residual stress distributions from the surface to deeper regions of cortical cylinders obtained from less-than-one-month-old (Group Y) and two-year-old (Group M) bovine femurs. In these experiments, five diaphysis specimens from each group were used. Residual stress was measured using a high-energy synchrotron white X-ray beam to penetrate X-rays into the deeper region of the bone specimens. The measurements in the cortical cylinders from Groups Y and M were performed at 0.5- and 1-mm intervals, respectively, from the outer surface to the deeper region of the diaphysis specimens at four positions: anterior, posterior, lateral, and medial. The residual stress was calculated on the basis of variation in the interplanar spacing of hydroxyapatite crystals in the bone tissue. According to the results, the diaphysis specimens from Group Y were not subjected to large residual stresses (average -1.2 MPa and 2.4 MPa at the surface region and 1.5mm depth, respectively). In Group M, the surface region of the diaphysis specimens was subjected to tensile residual stresses (average 6.7 MPa) and the deeper region was subjected to compressive stresses (average -8.2 MPa at 3mm depth). There was a strong significant difference between both these regions. The value of residual stresses at the surface region of the diaphysis specimens in both the groups had a positive statistical correlation with the cortical thickness at the measured locations.

  15. Turbulence and heat transfer in condensate in drying cylinders at high g-forces. Phase 1; Turbulens och vaermeoeverfoering i kondensat i torkcylindrar vid hoega g-krafter. Fas 1

    Energy Technology Data Exchange (ETDEWEB)

    Stenstroem, Stig; Ingvarsson, David [Lund Inst. of Tech. (Sweden). Dept. of Chemical Engineering

    2005-09-01

    Drying of paper is performed by bringing the paper into contact with a hot cylinder surface so that the water in the web is evaporated. The energy needed to heat the drying cylinder is supplied with condensing steam creating a condensate layer on the inside surface of the cylinder. For fast paper machines, the condensate layer will be close to stagnant, thus constituting a significant resistance for the heat transfer process from the steam to the paper. The traditional technique to improve the heat transfer has been to install turbulence bars on the inside surface of the cylinder but at machine speeds of up to 2000 m/min this technique is not sufficiently efficient. The goal in the project has been to study the condensate behaviour in drying cylinders at high centrifugal forces and explore different methods to improve the heat transfer in the condensate for both new and existing fast paper machines so that the capacity in the dryer section can be maintained at a high level. The results are of importance for the manufacturers of paper machines as well as the producing newsprint and printing paper companies. The project has been divided in the following parts: - Literature survey of techniques to increase the heat transfer in condensate and the removal of condensate with siphons. - Develop knowledge about the condensate behaviour in rotating cylinders at high g-forces with and without spoiler bars. This has been accomplished by designing a new cylinder where the condensate velocity relative to the cylinder could be measured at centrifugal forces corresponding to the levels today reached at fast paper machines. Such data have previously not been reported in the literature. - Present solutions for the design of the inside surface of the drying cylinder so that high heat transfer rates can be accomplished in fast paper machines. Solutions should be presented both for existing as well as new paper machines. The results in the project show that at centrifugal forces of

  16. Structural-Acoustic Coupling Effects on the Non-Vacuum Packaging Vibratory Cylinder Gyroscope

    Directory of Open Access Journals (Sweden)

    Xiang Xi

    2013-12-01

    Full Text Available The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.

  17. Structural-acoustic coupling effects on the non-vacuum packaging vibratory cylinder gyroscope.

    Science.gov (United States)

    Xi, Xiang; Wu, Xuezhong; Wu, Yulie; Zhang, Yongmeng; Tao, Yi; Zheng, Yu; Xiao, Dingbang

    2013-12-13

    The resonant shells of vibratory cylinder gyroscopes are commonly packaged in metallic caps. In order to lower the production cost, a portion of vibratory cylinder gyroscopes do not employ vacuum packaging. However, under non-vacuum packaging conditions there can be internal acoustic noise leading to considerable acoustic pressure which is exerted on the resonant shell. Based on the theory of the structural-acoustic coupling, the dynamical behavior of the resonant shell under acoustic pressure is presented in this paper. A finite element (FE) model is introduced to quantitatively analyze the effect of the structural-acoustic coupling. Several main factors, such as sealing cap sizes and degree of vacuum which directly affect the vibration of the resonant shell, are studied. The results indicate that the vibration amplitude and the operating frequency of the resonant shell will be changed when the effect of structural-acoustic coupling is taken into account. In addition, an experiment was set up to study the effect of structural-acoustic coupling on the sensitivity of the gyroscope. A 32.4 mV/°/s increase of the scale factor and a 6.2 Hz variation of the operating frequency were observed when the radial gap size between the resonant shell and the sealing cap was changed from 0.5 mm to 20 mm.

  18. Experimental Investigation of the Effects of Various Plasma Actuator Configurations on Lift and Drag Coefficients of a Circular Cylinder Including the Effects of Electrodes

    Institute of Scientific and Technical Information of China (English)

    Siavash TABATABAEIAN; Masoud MIRZAEI; Asghar SADIGHZADEH; Vahid DAMIDEH; Abdollah SHADARAM

    2012-01-01

    In this paper,the effects of the existence of plasma actuator electrodes and also various configurations of the actuator for controlling the flow field around a circular cylinder are experimentally investigated.The cylinder is made of PVC (Polyvinyl Chloride) and considered as a dielectric barrier.Two electrodes are flush-mounted on the surface of the cylinder and are connected to a DC high voltage power supply for generation of electrical discharge.Pressure distribution results show that the existence of the electrodes and also the plasma are able to change the pressure distribution around the cylinder and consequently the lift and drag coefficients.It is found that the effect of the existence of the electrodes is comparable with the effect of plasma actuator in controlling the flow field around the cylinder and this effect is not reported by other researchers.Eventually it is concluded that the existence of the electrodes or any extra objects on the cylinder and also the existence of the plasma are capable of changing the flow field structure around the cylinder so that the behavior of the lift and drag coefficients of the cylinder will be changed significantly.

  19. Flow stress and tribology size effects in scaled down cylinder compression

    Institute of Scientific and Technical Information of China (English)

    GUO Bin; GONG Feng; WANG Chun-ju; SHAN De-bin

    2009-01-01

    Microforming is an effective method to manufacture small metal parts. However, macro forming can not be transferred to microforming directly because of size effects. Flow stress and tribology size effects were studied. Scaled down copper T2 cylinder compression was carried out with the lubrication of castor oil and without lubrication. The results show that the flow stress decreases with decreasing the initial specimen diameter in both lubrication conditions, and the flow stress decreases by 30 MPa with the initial specimen diameter decreasing from 8 mm to 1 mm. The friction factor increases obviously with decreasing the initial specimen diameter in the case of lubricating with castor oil, and the friction factor increases by 0.11 with the initial specimen diameter decreasing from 8mm to 1mm. However, the tribology size effect is not found in the case without lubrication. The reasons of the flow stress and tribology size effects were also discussed.

  20. BUILDING AN EFFECTIVE SALES FORCE

    Directory of Open Access Journals (Sweden)

    Ioana Olariu

    2016-07-01

    Full Text Available Building an effective sales force starts with selecting good salespeople, but good salespeople are very difficult to find. The reason for this is that most sales jobs are very demanding and require a great deal from the salesperson. There are many different types of sales jobs. Before it can hire salespeople, each company must do a careful job analysis to see what particular types of selling and other skills are necessary for each sales job. One task of the market planner is to establish clear objectives each year for the entire sales force, for each region, each sales office, and each salesperson. Sales jobs are different from in-house jobs in some significant ways. Nevertheless, each company must continually work on building and maintaining an effective sales force using the following steps: recruitment, selection, training, compensation and evaluation of each salesperson.

  1. Little–Parks effect in proximity superconductor-ferromagnet coaxial cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Krunavakarn, B., E-mail: boonlit@buu.ac.th

    2016-08-15

    Highlights: • We use the generalized Usadel equations in gauge-invariant form to study the Little–Parks effect in hybrid SC/FM proximity cylinders. • The switching phenomena of the induced superconductivity in the ferromagnet with various vorticities are investigated in detail by solving self-consistently the Usadel equations. • Numerical analysis shows that the vortex states are most energetically favorable than the usual superconducting ground state when the ferromagnetic radius is large. - Abstract: The linearized Usadel equations in a generalized form containing both the spin singlet and the odd frequency spin triplet pair amplitudes in an s-wave state are used to study the oscillatory behavior of the superconducting critical temperature T{sub c} due to the influence of an external magnetic field in proximity coaxial cylinders of a ferromagnetic core surrounded by a superconducting shell. Such geometry modifies the pairing wavefunction periodically with the vortex number L. The exchange field in the ferromagnetic core is chosen to be of the spiral type which rotates in the plane with a spiral wave vector Q. The external magnetic field assumes a constant value and is directed perpendicularly to the plane. The switching phenomena of the induced superconductivity in the ferromagnet with various vortex numbers are investigated in detail by solving self-consistently the Usadel equations to determine the Little–Parks effect i.e., the behavior of T{sub c} versus a magnetic flux threading the ferromagnetic core.

  2. Overview of studies on the effect of recycled aggregates sourced from tested cylinders on concrete material and structural properties

    Directory of Open Access Journals (Sweden)

    Bilal Hamad

    2017-01-01

    Full Text Available The paper presents an overview of a two-phase research program that was designed at the American University of Beirut (AUB to investigate the effect of replacing different percentages of natural coarse aggregates (NCA with recycled coarse aggregates (RCA on the properties of the produced concrete. The source of RCA was tested cylinders in batching plants which would help recycling and reusing portion of the waste products of the concrete industry. In the first phase, the fresh and hardened mechanical properties of the produced concrete mix were investigated. The variables were the concrete strength (28 or 60 MPa and the percentage replacement of NCA with RCA from crushed tested cylinders [0 (control, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength. In the second phase, the structural behavior of normal strength concrete (NSC reinforced concrete beams prepared by replacing different percentages of NCA with RCA from tested concrete cylinders was studied. For each of three modes of failure (flexural, shear, or bond splitting, three beams with different percentages replacement [0 (control, 40, or 100 percent] were tested. One replicate was prepared for each beam to validate the test results. Results indicated no significant difference in the ultimate load reached or load-deflection behavior that could be related to the percentage replacement of NCA with RCA.

  3. Tandem Cylinder Noise Predictions

    Science.gov (United States)

    Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  4. Strouhal number effect on synchronized vibration range of a circular cylinder in cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Tsutomu; Nakao, Toshitsugu; Hayashi, Masaaki; Murayama, Kouichi [Hitachi Ltd., Tokyo (Japan)

    2001-11-01

    Synchronized vibrations were measured for a circular cylinder in a water cross flow at subcritical Reynolds numbers to compare the synchronization range between the subcritical and supercritical regions and clarify the effect of the Strouhal number on the range. A small vibration in the lift direction was found in only the subcritical region when the Karman vortex shedding frequency was about 1/5 of the cylinder natural frequency. The ratio of the Karman vortex shedding frequency to the natural frequency where the self-excited vibration in the drag direction by the symmetrical vortex shedding began was about 1/4 in the subcritical region, and increased to 0.32 at the Strouhal number of 0.29 in the supercritical region. The frequency ratio at the beginning of the lock-in vibration in the drag direction by the Karman vortex shedding was about 1/2, and that in the lift direction decreased from 1 to 0.8 with decreasing Strouhal number. (author)

  5. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  6. The effect of turbulence on the particle impaction on a cylinder in a cross flow

    CERN Document Server

    Rivedal, Nikolai Hydle; Haugen, Nils Erland L

    2011-01-01

    Particle impaction on a cylinder in a cross flow is investigated with the use of Direct Numerical Simulations (DNS) and with a focus on the effect of turbulence on the impaction efficiency. The turbulence considered is isotropic homogeneous turbulence with varying integral scales. It is found that for particles with Stokes numbers in the boundary stopping mode there is up to 10 times more front side impaction for turbulence with a large integral scale than for a corresponding laminar flow. For decreasing integral scales the effect of the turbulence on front side particle impaction efficiency is decreasing. The back side impaction efficiency is also found to be influenced by the turbulence, but for the back side the strongest effect, and largest impaction efficiency, is found for small integral scales.

  7. Effects of Elevated Temperatures on the Compressive Strength Capacity of Concrete Cylinders Confined with FRP Sheets: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Sherif El-Gamal

    2015-01-01

    Full Text Available Due to their high strength, corrosion resistance, and durability, fiber reinforced polymers (FRP are very attractive for civil engineering applications. One of these applications is the strengthening of concrete columns with FRP sheets. The performance of this strengthening technique at elevated temperature is still questionable and needs more investigations. This research investigates the effects of exposure to high temperatures on the compressive strength of concrete cylinders wrapped with glass and carbon FRP sheets. Test specimens consisted of 30 unwrapped and 60 wrapped concrete cylinders. All specimens were exposed to temperatures of 100, 200, and 300°C for periods of 1, 2, and 3 hours. The compressive strengths of the unwrapped concrete cylinders were compared with their counterparts of the wrapped cylinders. For the unwrapped cylinders, test results showed that the elevated temperatures considered in this study had almost no effect on their compressive strength; however, the wrapped specimens were significantly affected, especially those wrapped with GFRP sheets. The compressive strength of the wrapped specimens decreased as the exposure period and the temperature level increased. After three hours of exposure to 300°C, a maximum compressive strength loss of about 25.3% and 37.9%, respectively, was recorded in the wrapped CFRP and GFRP specimens.

  8. Vortex shedding and heat transfer dependence on effective Reynolds number for mixed convection around a cylinder in cross flow

    DEFF Research Database (Denmark)

    Bhattacharyya, S.; Singh, Ashok

    2010-01-01

    vorticity on the wake formation is addressed in the present study. The variation of Strouhal number and Nusselt number with the 'effective Reynolds number', is analyzed for different values of cylinder to free stream temperature ratio. Both Strouhal number and the rate of heat transfer increases...... the effective Reynolds number and the computed data for Strouhal number and Nusselt number do not collapse for the range of temperature ratio considered here. The flow field is found to be asymmetric and the cylinder experiences a negative lift. The drag coefficient increases steadily with the rise of surface...... temperature. © 2010 Elsevier Ltd. All rights reserved....

  9. The effect of boundary conditions on VIV of a fully submerged flexible cylinder

    Science.gov (United States)

    Edraki, Mahdiar; Seyed-Aghazadeh, Banafsheh; Modarres-Sadeghi, Yahya

    2016-11-01

    A series of experiments was conducted in a re-circulating water tunnel, in which Vortex-Induced Vibration (VIV) of a fully submerged, tension-dominated cylinder with different boundary conditions was studied. While in most previous studies, either the cylinder was not fully submerged in flow or the boundary conditions for the cylinder were different at the two ends, in the current study the cylinder is fully submerged and the boundary conditions are carefully controlled. The cylinder was held fixed at both ends and was placed perpendicular to the uniform incoming flow direction. Different symmetric and asymmetric boundary conditions for the cylinder, i.e., clamped-clamped, simply supported, and clamped-hinged were tested. Continuous response of the cylinder in both the crossflow and inline directions were reconstructed from limited number of measurement points based on modal expansion theorem modified using Modal Assurance Criterion (MAC). Amplitudes and frequencies of oscillations were studied in the reduced velocity range of U* = 5.5-32.5 and the Reynolds number range of Re = 200-1220. Modes up to four were excited in the crossflow direction for a cylinder with a length of L =0.3 m and an aspect ratio of 73.

  10. The Effects of Cylinder Head Gasket Opening on Engine Temperature Distribution for a Water-Cooled Engine

    Science.gov (United States)

    Jang, J. Y.; Chi, G. X.

    2017-02-01

    In a liquid-cooled engine, coolant is pumped throughout the water jacket of the engine, drawing heat from the cylinder head, pistons, combustion chambers, cylinder walls, and valves, etc. If the engine temperature is too high or too low, various problems will occur. These include overheating of the lubricating oil and engine parts, excessive stresses between engine parts, loss of power, incomplete burning of fuel, etc. Thus, the engine should be maintained at the proper operating temperature. This study investigated the effects of different cylinder head gasket opening on the engine temperature distributions in a water-cooled motorcycle engine. The numerical predictions for the temperature distribution are in good agreement with the experimental data within 20%.

  11. Thermal Stresses in a Cylinder Block Casting Due to Coupled Thermal and Mechanical Effects

    Institute of Scientific and Technical Information of China (English)

    XU Yan; KANG Jinwu; HUANG Tianyou; HU Yongyi

    2008-01-01

    Thermal stress in castings results from nonuniform cooling. The thermal stress and the deforma-tion can change the casting and mold contact conditions which then alter the heat transfer between the cast-ing and the mold. The contact element method was used to study the interaction between a sand mold and a casting. The contact status was then fed back to the heat transfer analysis between the sand mold and the casting to re-evaluate the heat transfer coefficient based on the gap size or pressure between surfaces. The thermal and mechanical phenomena are then coupled in two directions. The method was applied to analyze stress in a stress frame specimen casting and a cylinder block. The results are more accurate than without consideration of the contact effects on the heat transfer.

  12. MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects

    Institute of Scientific and Technical Information of China (English)

    M Ramzan; M Farooq; T Hayat; A Alsaedi; J Cao

    2015-01-01

    Combined effects of Soret (thermal-diffusion) and Dufour (diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained. Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.

  13. Effects of Surface Irregularities on Piston Ring-Cylinder Tribo Pair of a Two Stroke Motor Engine in Hydrodynamic Lubrication

    Directory of Open Access Journals (Sweden)

    A. Zavos

    2015-03-01

    Full Text Available Tribological parameters such as friction, lubrication and wear influence strongly the engine component's life. In this study, a piston ring-cylinder system simulated taking into account the surface modifications under fully flooded lubrication and normal engine conditions. The hydrodynamic pressure field solved based on the Navier Stokes equations by Fluid Structure Interaction analysis. A real experimental data of piston ring-cylinder was used from a two stroke motor engine 50 cc. The surface irregularities are measured by 3D coordinate measurement machine while the engine has been worked about 4000 hours. The friction force, the hydrodynamic pressure, the oil film and the mechanical stresses were predicted for different engine conditions. Results show that the worn profile ring reduces the friction as well as the mechanical stresses increased. Surface condition of worn top ring was observed after a metallurgical profile analysis.

  14. NONLINEAR FREE SURFACE ACTION WITH AN ARRAY OF VERTICAL CYLINDERS

    Institute of Scientific and Technical Information of China (English)

    HUANG J. B.

    2004-01-01

    Nonlinear diffraction of regular waves by an array of bottom-seated circular cylinders is investigated in frequency domain, based on a Stokes expansion approach. A complete semi-analytical solution is developed which allows an efficient evaluation of the second-order potentials in the entire fluid domain, and the wave forces on the structure. Expressions are derived for the second-order potential in the vicinity of individual cylinders. These expressions have a simple form, thus providing an effective means for investigating the wave enhancement due to nonlinear interactions with multiple cylinders. Based on the present method, the wave run-up and free-surface elevations around an array of two, three and four cylinders are investigated numerically.

  15. Blockage effect on the flow around a cylinder probe in calibration

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-wei; WEI Jun

    2007-01-01

    Flow around a 2-D cylinder pressure probe placed in uniform flow, free jet flow, and wind tunnel flow was analyzed with potential flow theory and simulated with numerical method. Blockage effect was investigated under several typical flow Mach numbers. The result from numerical simulation shows a similar trend to the one from potential flow method while varies in quantity. Wind tunnel walls accelerate the flow near the probe and thus produce a blockage effect;Boundary of free jet flow, however, decelerates the flow and thus produces a "negative" blockage effect. A maximum incoming Mach number exists when the probe is calibrated in wind tunnel in high subsonic condition due to choking caused by shocks and shock induced separation. The critical Mach number varies with blockage ratio, which makes high Mach number impossible to achieve in large blockage ratio condition. The blockage effect itself is unavoidable for calibration or measurement although a sufficiently small blockage ratio brings minor effect. Correction can be implemented based on the numerical simulation result presented in this paper and further works.

  16. Two interacting cylinders in cross flow

    Science.gov (United States)

    Alam, Md. Mahbub; Meyer, J. P.

    2011-11-01

    Cylindrical structures in a group are frequently seen on land and in the ocean. Mutual flow interaction between the structures makes the wake very excited or tranquil depending on the spacing between the structures. The excited wake-enhancing forces in some cases cause a catastrophic failure of the structures. This paper presents results of an experimental investigation of Strouhal number (St), time-mean, and fluctuating forces on, and flow structures around, two identical circular cylinders at stagger angle α = 0 °-180 ° and gap-spacing ratio T/D=0.1-5, where T is the gap width between the cylinders, and D is the diameter of a cylinder. While forces were measured using a load cell, St was from spectral analysis of fluctuating pressures measured on the side surfaces of the cylinders. A flow visualization test was conducted to observe flow structures around the cylinders. Based on forces, St, and flow structures, 19 distinct flow categories in the ranges of α and T/D investigated are observed, including one quadristable flow, three kinds of tristable flows, and four kinds of bistable flows. The quadristable, tristable, and bistable flows ensue from instabilities of the gap flow, shear layers, vortices, separation bubbles, and wakes, engendering a strong jump or drop in forces and St of the cylinders. The two cylinders interact with each other in six different mechanisms, namely interaction between boundary layer and cylinder, shear layer or wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex. While the interaction between vortex and cylinder results in a very high fluctuating drag, that between vortex and shear layer results in a high fluctuating lift. On the other hand, the interaction between shear layer or wake and cylinder weakens mean and fluctuating forces and flow unsteadiness. A mutual discussion of forces, St, and flow structures is presented in this paper.

  17. PIV study of the effect of piston position on the in-cylinder swirling flow during the scavenging process in large two-stroke marine diesel engines

    DEFF Research Database (Denmark)

    Haider, Sajjad; Schnipper, Teis; Obeidat, Anas

    2013-01-01

    A simplified model of a low speed large twostroke marine diesel engine cylinder is developed. The effect of piston position on the in-cylinder swirling flow during the scavenging process is studied using the stereoscopic particle image velocimetry technique. The measurements are conducted...

  18. Sensitivity analysis of small circular cylinders as wake control

    Science.gov (United States)

    Meneghini, Julio; Patino, Gustavo; Gioria, Rafael

    2016-11-01

    We apply a sensitivity analysis to a steady external force regarding control vortex shedding from a circular cylinder using active and passive small control cylinders. We evaluate the changes on the flow produced by the device on the flow near the primary instability, transition to wake. We numerically predict by means of sensitivity analysis the effective regions to place the control devices. The quantitative effect of the hydrodynamic forces produced by the control devices is also obtained by a sensitivity analysis supporting the prediction of minimum rotation rate. These results are extrapolated for higher Reynolds. Also, the analysis provided the positions of combined passive control cylinders that suppress the wake. The latter shows that these particular positions for the devices are adequate to suppress the wake unsteadiness. In both cases the results agree very well with experimental cases of control devices previously published.

  19. Effect of wall proximity of two staggered triangular cylinders on the transport process in a channel

    Directory of Open Access Journals (Sweden)

    Mousa Farhadi

    2016-09-01

    Full Text Available A numerical investigation has been carried out to analyze the heat transfer and the flow field around two isothermal triangular cylinders of equal size placed staggered in a horizontal plane channel with adiabatic walls. Computations have been carried out for Reynolds numbers (based on triangle width 100, 250, and 350, lateral gap ratios (d/B 0, 0.5, and 1, and longitudinal gap ratios (S/B 1, 2, 3 and 4. The effect of longitudinal and lateral gap between obstacles and proximity of channel walls is investigated. Results show that when obstacles are placed in close vicinity of the channel's wall (d/B = 1, vortex shedding disappears at the downstream of triangles at Re = 100 and 250 at all S/B, but for Re = 350 creating and disappearing of the vortex shedding depend on the longitudinal gap ratio (S/B. Proximity of obstacles has more effect on the second triangle than the first triangle especially from longitudinal gap ratio equals 2, so that with approaching the channel wall, the Nusselt number for the first triangle decreases, while for the second triangle a different behavior is seen. Staggered arrangement causes the Nusselt number of the second triangle to become greater than the first triangle.

  20. Uncertainty calculation of the effective emissivity of cylinder-conical blackbody cavities

    Science.gov (United States)

    De Lucas, Javier; Juan Segovia, José

    2016-02-01

    A numerical and geometrical model for calculating the local effective emissivity of isothermal blackbody cylinder-conical cavities with lid, assuming diffuse reflection, is described. This has been developed by generalizing previous models based on conical and cylindrical geometries. The model has been validated by determining the diffusely reflected photon trajectories and the corresponding experimental view factors between given pairs of surface elements. Differences compared to theoretical values, were subsequently analyzed in terms of the model’s intrinsic uncertainty. A well-defined numerical function that calculates the effective emissivity as a function of its natural variables, intrinsic emissivity and geometrical parameters, is established. In order to calculate the probability distribution of the output quantity, we use the Monte Carlo method for the propagation of the probability distributions that characterize our knowledge concerning the values of the influence variables. The model is applied to heat-pipe black bodies installed at our laboratory, previously characterized at the PTB. A comparison with published uncertainty results, obtained by applying classical uncertainty propagation techniques, is also made.

  1. Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekmekci, Alis [University of Toronto Institute for Aerospace Studies, Toronto, ON (Canada); Rockwell, Donald [Lehigh University, Department of Mechanical Engineering, Bethlehem, PA (United States)

    2011-09-15

    Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5 and 75 from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Karman instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Karman mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Karman instability. (orig.)

  2. A computational study of flow past three unequal sized square cylinders at different positions

    Science.gov (United States)

    Islam, Shams-ul; Shigri, Sehrish Hassan; Ying, Zhou Chao; Akbar, Tanvir; Majeed, Danish

    2017-03-01

    The flow past three unequal sized side-by-side square cylinders placed in different vertical configurations is investigated numerically using the lattice Boltzmann method for the Reynolds number Re = 160 and different values of the gap spacing between the cylinders, g, (ranging between 0.5 and 5). The present study is devoted to systematic investigation of the effects of cylinders position on the flow patterns. The reported results reveal that the flow patterns change significantly by the variation of cylinders configuration. Depending on the cylinders positions we observed; chaotic, base bleed, binary vortex street, modulated synchronized, inphase vortex shedding, antiphase vortex shedding, and in-antiphase vortex shedding flow patterns. The characteristics of the flow patterns are discussed with the aid of time history analysis of drag and lift coefficients, power spectra analysis of lift coefficients and vorticity contours visualization. The study also includes a detailed discussion on the aerodynamic forces, such as mean drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients. Our results show that the flow patterns behind three unequal cylinders are distinctly different compared to the flow past equisized square cylinders placed side-by-side. In chaotic flow pattern the secondary cylinder interaction frequency plays an important role especially at the second, third and fourth configurations for all gap spacings. At larger gap spacings for the first and sixth configurations, the primary vortex shedding frequency plays a dominant role and the jet effect almost diminishes between the cylinders.

  3. Effect of steady rotation on low Reynolds number vortex shedding behind a circular cylinder

    Science.gov (United States)

    Satish, Paluri; Patwardhan, Saurabh S.; Ramesh, O. N.

    2013-08-01

    In this paper control of oblique vortex shedding in the wake behind a straight circular cylinder is explored experimentally and computationally. Towards this, steady rotation of the cylinder about its axis is used as a control device. Some limited studies are also performed with a stepped circular cylinder, where at the step the flow is inevitably three-dimensional irrespective of the rotation rate. When there is no rotation, the vortex shedding pattern is three dimensional as described in many previous studies. With a non-zero rotation rate, it is demonstrated experimentally as well as numerically that the shedding pattern becomes more and more two-dimensional. At sufficiently high rotation rates, the vortex shedding is completely suppressed.

  4. Frictional properties of lubrication greases with the addition of nickel nanoparticles in pneumatic cylinder

    Science.gov (United States)

    Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin

    2011-12-01

    This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces

  5. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion

    KAUST Repository

    Badra, Jihad

    2016-04-05

    Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.

  6. Image-Based 3D Treatment Planning for Vaginal Cylinder Brachytherapy: Dosimetric Effects of Bladder Filling on Organs at Risk

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Jennifer; Shen Sui; De Los Santos, Jennifer F. [Department of Radiation Oncology, University of Alabama Medical Center, Birmingham, AL (United States); Kim, Robert Y., E-mail: rkim@uabmc.edu [Department of Radiation Oncology, University of Alabama Medical Center, Birmingham, AL (United States)

    2012-07-01

    Purpose: To investigate the dosimetric effects of bladder filling on organs at risk (OARs) using three-dimensional image-based treatment planning for vaginal cylinder brachytherapy. Methods and Materials: Twelve patients with endometrial or cervical cancer underwent postoperative high-dose rate vaginal cylinder brachytherapy. For three-dimensional planning, patients were simulated by computed tomography with an indwelling catheter in place (empty bladder) and with 180 mL of sterile water instilled into the bladder (full bladder). The bladder, rectum, sigmoid, and small bowel (OARs) were contoured, and a prescription dose was generated for 10 to 35 Gy in 2 to 5 fractions at the surface or at 5 mm depth. For each OAR, the volume dose was defined by use of two different criteria: the minimum dose value in a 2.0-cc volume receiving the highest dose (D{sub 2cc}) and the dose received by 50% of the OAR volume (D{sub 50%}). International Commission on Radiation Units and Measurements (ICRU) bladder and rectum point doses were calculated for comparison. The cylinder-to-bowel distance was measured using the shortest distance from the cylinder apex to the contoured sigmoid or small bowel. Statistical analyses were performed with paired t tests. Results: Mean bladder and rectum D{sub 2cc} values were lower than their respective ICRU doses. However, differences between D{sub 2cc} and ICRU doses were small. Empty vs. full bladder did not significantly affect the mean cylinder-to-bowel distance (0.72 vs. 0.92 cm, p = 0.08). In contrast, bladder distention had appreciable effects on bladder and small bowel volume dosimetry. With a full bladder, the mean small bowel D{sub 2cc} significantly decreased from 677 to 408 cGy (p = 0.004); the mean bladder D{sub 2cc} did not increase significantly (1,179 cGy vs. 1,246 cGy, p = 0.11). Bladder distention decreased the mean D{sub 50%} for both the bladder (441 vs. 279 cGy, p = 0.001) and the small bowel (168 vs. 132 cGy, p = 0.001). Rectum

  7. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    OpenAIRE

    2010-01-01

    Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion...

  8. Scalar cylinder-plate and cylinder-cylinder Casimir interaction in higher dimensional spacetime

    CERN Document Server

    Teo, L P

    2015-01-01

    We study the cylinder-plate and the cylinder-cylinder Casimir interaction in the $(D+1)$-dimensional Minkowski spacetime due to the vacuum fluctuations of massless scalar fields. Different combinations of Dirichlet (D) and Neumann (N) boundary conditions are imposed on the two interacting objects. For the cylinder-cylinder interaction, we consider the case where one cylinder is inside the other, and the case where the two cylinders are outside each other. By computing the transition matrices of the objects and the translation matrices that relate different coordinate systems, the explicit formulas for the Casimir interaction energies are derived. Using perturbation technique, we compute the small separation asymptotic expansions of the Casimir interaction energies up to the next-to-leading order terms. The leading terms coincide with the respective results obtained using proximity force approximation, which is of order $d^{-D+1/2}$, where $d$ is the distance between the two objects. The results on the next-to...

  9. A numerical study on effect of corner radius and Reynolds number on fluid flow over a square cylinder

    Indian Academy of Sciences (India)

    PRASENJIT DEY; AJOY K R DAS

    2017-07-01

    The behaviour of the fluid flowing over a square cylinder with rounded edges subjected to an upstream steady laminar flow was investigated numerically. Here, the commercial CFD software Fluent was used. A two-dimensional steady laminar flow has been investigated numerically at low Reynolds number 5<=Re<=45, different corner radii (r = 0.50, 0.51, 0.54, 0.59, 0.64 and 0.71) and blockage 0.05. The effects of the parameters such as Reynolds number and corner radius on the drag and laminar boundary layer have been studied for the first time. The results are shown in the form of drag coefficient, boundary layer and pressure coefficient on the cylinder surface. It is found that the boundary layer thickness and the displacement thickness decrease with decreasing of the corner radius for a particular Re and also the boundary layer profile shifted downwards on decreasing Re.

  10. Supercritical flows past a square cylinder with rounded corners

    Science.gov (United States)

    Cao, Yong; Tamura, Tetsuro

    2017-08-01

    Large-eddy simulations were used to investigate the supercritical aerodynamics of a square cylinder with rounded corners in comparison with those in the subcritical regime. First, the numerical methods, especially the dynamic mixed model, were validated on the basis of their prediction of supercritical flows past a circular cylinder. Then, the supercritical flows past a rounded-corner square cylinder were simulated and systematically clarified. Strong Reynolds number (Re) effects existed in the forces and local pressures as Re increased from o(104) to o(106). Changeover of flow patterns occurred as Re increased. At the supercritical Re, the free stream overall flowed along the cross sections of the cylinder, separated from the leeward corners and generated Karman vortices behind the cylinder. This pattern resulted in a much smaller recirculation region behind the cylinder compared with the subcritical flow. At the micro level, the flow experienced laminar separation and flow reattachment near the frontal corners, followed by the spatial development of turbulent boundary layers (TBLs) on the side faces and turbulent separation near the leeward corners. The feedback by large-scale primary vortex shedding and the small-scale turbulent motions in the high-frequency region with a slope of -5/3 were detected in the TBL. Their interaction affected the spanwise correlations of wall pressure fluctuations. The TBL on the side face differed from the zero-pressure-gradient flat-plate one; it was subjected to pressure gradients varying in space and time.

  11. Investigation of Effect of Boundary Layer on Flow Structure Around a Cylinder with a Strip

    Directory of Open Access Journals (Sweden)

    Yayla Sedat

    2015-01-01

    Full Text Available In this study, the flow characteristic of the circular cylinder was placed vertically in channel which has dimensions as 8000 mm, 1000 mm, 750 mm, lenght, width and height repectively, was investigated. The cylinder was located in boundary layer with a diameter of 60 mm (D and a elastic stripwhich has a 1400 N/mm2 modulus of elasticity vinyl PVC transperent film was attached behind the cylinder. Lenght of the strip (L was 240 mm L/D=4. The Reynolds number was fixed at Re=7500. The time-averaged and instantaneous velocity vector maps, vorticity contours, Reynold shear and normal stresses, turbulent kinetic energy and frequency of shedding were obtained using the particle image velocimetry (PIV technique. It was found that the elastic plate which exists behind the cylinder has a slight influence on the flow structure of the wake-boundary layer interaction. Values of turbulent kinetic energy, streamwise Reynold stress, transverse Reynold stresses were decreased by attaching strip.

  12. Effect of Fluid Structure Interaction on the Wake Structure of a Thin Flexible Cylinder

    Science.gov (United States)

    Gurram, Harika; Subramanian, Chelakara; Kanherkar, Priyanka

    2016-11-01

    Previous studies by the authors of the drag coefficient for thin flexible cylinders (diameter O(mm)) in a cross flow for Reynolds's numbers range between 100-1000 showed about 20 - 30 percent reduction compared to literature values. At free stream low Reynolds number around 100 the spectral analysis of the hotwire signals in the wake showed tonal and broadband frequencies suggesting features similar to transition flows. To better understand the flow behind the cylinder and wake structure interaction with boundary layer for above range of Reynolds number DNS simulations were conducted. The computational study is performed for two cases: (1) flow on rigid thin cylinder, and (2) flow with 3-D fluid structure interaction for the thin cylinder. It is observed the coefficient of drag values computed for the rigid wire were 8 -12 percent lower compared to the experimental results, while simulation with the fluid structure interaction gave results within 4 percent of the experimental values. The wake structure results based on the experiment and computational study will be discussed. Graduate Student.

  13. Effects of Prandtl number on the laminar cross flow past a heated cylinder

    Science.gov (United States)

    Ajith Kumar, S.; Mathur, Manikandan; Sameen, A.; Anil Lal, S.

    2016-11-01

    Flow past a heated cylinder at constant surface temperature is computationally simulated and analyzed in the laminar regime at moderate buoyancy. The parameters governing the flow dynamics are the Reynolds number, Re, the Richardson number, Ri, and the Prandtl number, Pr. We perform our computations in the range 10 ≤ Re ≤ 35, for which the flow past an unheated cylinder results in a steady separation bubble, and vary the other two parameters in the range 0 ≤ Ri ≤ 2, 0.25 ≤ Pr ≤ 100. The heat transfer from the entire cylinder surface, quantified by the average Nusselt number Nuavg, is shown to obey Nuavg = 0.7435Re0.44Pr0.346 in the mixed convection regime we investigate. For a fixed Re and Pr, the flow downstream of the cylinder becomes asymmetric as Ri is increased from zero, followed by a complete disappearance of the vortices in the recirculation bubble beyond a threshold value of Ri. For a fixed Re and Ri, the vortices in the recirculation bubble are again observed to disappear beyond a threshold Pr, but with the reappearance of both the vortices above a larger threshold of Pr. In the limit of large Pr, the time-averaged flow outside the thermal boundary layer but within the near-wake region regains symmetry about the centerline and ultimately converges to a flow field similar to that of Ri = 0; in the far-wake region, however, we observe asymmetric vortex shedding for moderate Pr. The thermal plume structure in the cylinder wake is then discussed, and the plume generation is identified at points on the cylinder where the Nusselt number is a local minimum. The difference between the plume generation and the flow separation locations on the cylinder is shown to converge to zero in the limit of large Pr. We conclude by plotting the lift and drag coefficients as a function of Ri and Pr, observing that CD decreases with Ri for Pr Prt), where Prt ≈ 7.5.

  14. Many-body effects in intermolecular forces.

    Science.gov (United States)

    Elrod, M J; Saykally, R J

    1994-11-01

    The authors provide a review and literature survey of many-body effects in intermolecular forces. Topics include experimental methods, theoretical methods, many-body effects in atomic systems, and many-body effects in aqueous and nonaqueous molecular systems.

  15. Detection of cylinder pressure in diesel engines using cylinder head vibration and time series methods

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper investigates the vibration characteristics of diesel engine cylinder heads by means of the time series method.With the concept of "Assumed System", the vibration transfer function of real cylinder head structures is established using the autoregressive-moving average models (ARMA models) of cylinder head surface vibration signals.Then this transfer function is successfully used to reconstruct the gas pressure trace inside the cylinder from measured cylinder head vibration signals.This offers an effective means for diesel engine cylinder pressure detection and condition monitoring.

  16. Influence of flexible fins on vortex-induced load over a circular cylinder at low Reynolds number

    Science.gov (United States)

    Jaiman, Rajeev K.; Gurugubelli, Pardha S.

    2016-11-01

    Rigid fins/fairings are known to reduce the vortex induced periodic forces exerting on a cylinder by extending the shear layers interaction further downstream to avoid alternate oppositely-signed shed vortices in the afterbody region. In this work, we present a numerical analysis on the effect of flexible fins with their leading edges fixed tangentially to the cylinder and the trailing edges are free to flap in the wake of two-dimensional (2D) cylinder. Two-dimensional simulations are carried out with varying non-dimensional flexural rigidity, KB ∈ [0.01, 1] at a fixed a non-dimensional mass ratio, m* = 0 . 1 and Reynolds number, Re = 100, defined based on the cylinder diameter. We investigate the role of flexibility in altering the wake flow and load generation over the cylinder body. As the KB is reduced, there exists a critical KB below which the flexible fins lose their stability to perform flapping and the drag acting on combined cylinder flexible fins begins to increase. However surprisingly, we observe that due to the flexible fin flapping the periodic lift forces acting on the cylinder drops significantly. We show that we can achieve an approx. 62.5% decrease in the nett periodic lift forces when compared to the bare cylinder.

  17. Effects of wind-tunnel noise on swept-cylinder transition at Mach 3.5

    Science.gov (United States)

    Creel, T. R., Jr.; Beckwith, I. E.; Chen, F.-J.

    1986-01-01

    Transition data are reported for circular cylinders at swept angles of 45 and 60 degrees in the Mach 3.5 pilot-low-disturbance tunnel where free-stream noise levels are varied from approximately .05-0.5 percent in terms of the rms fluctuating pressure normalized by the mean static pressure. Results indicate that end plate or boundary layer trip disturbances at the upstream end of the cylinders cause turbulent flow along the entire test Reynolds number range of 10-170 thousand per inch. With all end plate and trip disturbances removed, transition at the attachment lines occurred at free-stream Reynolds numbers based on diameters of about 70-80 thousand, independent of stream noise levels. The installation of small trips on the attachement lines caused transition at lower Reynolds numbers, depending on both the roughness height and the wind tunnel noise level.

  18. Low-Re flow past an isolated cylinder with rounded corners

    KAUST Repository

    Zhang, Wei

    2016-06-29

    Direct numerical simulation is performed for flow past an isolated cylinder at Re=1,000. The corners of the cylinder are rounded at different radii, with the non-dimensional radius of curvature varying from R+=R/D=0.000 (square cylinder with sharp corners) to 0.500 (circular cylinder), in which R is the corner radius and D is the cylinder diameter. Our objective is to investigate the effect of the rounded corners on the development of the separated and transitional flow past the cylinder in terms of time-averaged statistics, time-dependent behavior, turbulent statistics and three-dimensional flow patterns. Numerical results reveal that the rounding of the corners significantly reduces the time-averaged drag and the force fluctuations. The wake flow downstream of the square cylinder recovers the slowest and has the largest wake width. However, the statistical quantities do not monotonically vary with the corner radius, but exhibit drastic variations between the cases of square cylinder and partially rounded cylinders, and between the latter and the circular cylinder. The free shear layer separated from the R+=0.125 cylinder is the most stable in which the first roll up of the wake vortex occurs furthest from the cylinder and results in the largest recirculation bubble, whose size reduces as R+ further increases. The coherent and incoherent Reynolds stresses are most pronounced in the near-wake close to the reattachment point, while also being noticeable in the shear layer for the square and R+=0.125 cylinders. The wake vortices translate in the streamwise direction with a convection velocity that is almost constant at approximately 80% of the incoming flow velocity. These vortices exhibit nearly the same trajectory for the rounded cylinders and are furthest away from the wake centerline for the square one. The flow past the square cylinder is strongly three-dimensional as indicated by the significant primary and secondary enstrophy, while it is dominated by the

  19. Transverse and lateral confinement effects on the oscillations of a free cylinder in a viscous flow

    CERN Document Server

    Gianorio, Luciano; Cachile, Mario; Hulin, Jean-Pierre; Auradou, Harold

    2013-01-01

    The different types of instabilities of free cylinders (diameter $D$, length $L$) have been studied in a viscous flow (velocity $U$) between parallel vertical walls of horizontal width $W$ at a distance $H$: the influence of the confinement parameters $D/H$ and $L/W$ has been investigated. As $D/H$ increases, there is a transition from stable flow to oscillations transverse to the walls and then to a fluttering motion with oscillations of the angle of the axis with respect to the horizontal. The two types of oscillations may be superimposed in the transition domain. The frequency $f$ of the transverse oscillations is independent of the lateral confinement $L/W$ in the range: 0.055 \\le L/W \\le 0.94$ for a given cylinder velocity $V_{cx}$ and increases only weakly with $V_{cx}$. These results are accounted for by assuming a 2D local flow over the cylinder with a characteristic velocity independent of $L/W$ for a given $V_{cx}$ value. The experimental values of $f$ are also independent of the transverse confinem...

  20. Effects of Variable Valve Lift on In-Cylinder Air Motion

    Directory of Open Access Journals (Sweden)

    Tianyou Wang

    2015-12-01

    Full Text Available An investigation into in-cylinder swirl and tumble flow characteristics with reduced maximum valve lifts (MVL is presented. The experimental work was conducted in the modified four-valve optical spark-ignition (SI test engine with three different MVL. Particle image velocimetry (PIV was employed for measuring in-cylinder air motion and measurement results were analyzed for examining flow field, swirl and tumble ratio variation and fluctuating kinetic energy distribution. Results of ensemble-averaged flow fields show that reduced MVL could produce strong swirl flow velocity, then resulted in very regular swirl motion in the late stage of the intake process. The strong swirl flow can maintain very well until the late compression stage. The reduction of MVL can also increase both high-frequency and low-frequency swirl flow fluctuating kinetic energy remarkably. Regarding tumble flow, results demonstrate that lower MVLs result in more horizontal intake flow velocity vectors which can be easily detected under the valve seat area. Although the result of lower MVLs show a higher tumble ratio when the piston is close to the bottom dead centre (BDC, higher MVLs substantially produce higher tumble ratios which can be confirmed when most cylinder area lies in the measuring range.

  1. Polarization effects in molecular mechanical force fields

    Science.gov (United States)

    Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei

    2014-01-01

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594

  2. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  3. Effects of Slotted Structures on Nonlinear Characteristics of Natural Convection in a Cylinder with an Internal Concentric Slotted Annulus

    CERN Document Server

    Shen, Chunyun; Zhang, Yuwen; Li, Zheng

    2016-01-01

    Natural convection in a cylinder with an internally slotted annulus was solved by SIMPLE algorithm, and the effects of different slotted structures on nonlinear characteristics of natural convection were investigated. The results show that the equivalent thermal conductivity Keq increases with Rayleigh number, and reaches the maximum in the vertical orientation. Nonlinear results were obtained by simulating the fluid flow at different conditions. With increasing Rayleigh number, heat transfer is intensified and the state of heat transfer changes from the steady to unsteady. We investigated different slotted structures effects on natural convection, and analyze the corresponding nonlinear characteristics.

  4. Magnus force effect in optical manipulation

    Science.gov (United States)

    Cipparrone, Gabriella; Hernandez, Raul Josue; Pagliusi, Pasquale; Provenzano, Clementina

    2011-07-01

    The effect of the Magnus force in optical micromanipulation has been observed. An ad hoc experiment has been designed based on a one-dimensional optical trap that carries angular momentum. The observed particle dynamics reveals the occurrence of this hydrodynamic force, which is neglected in the common approach. Its measured value is larger than the one predicted by the existing theoretical models for micrometric particles and low Reynolds number, showing that the Magnus force can contribute to unconventional optohydrodynamic trapping and manipulation.

  5. Three-dimensional flow around two circular cylinders of different diameters in a close proximity

    Science.gov (United States)

    Thapa, Jitendra; Zhao, Ming; Cheng, Liang; Zhou, Tongming

    2015-08-01

    Flow past two cylinders of different diameters in close proximity is simulated numerically for a constant diameter ratio of 0.45, a gap ratio of 0.0625, and a Reynolds number of 1000 (defined using the diameter of the main cylinder). The effect of the position angle α of the small cylinder relative to the large one on force coefficients and wake flow patterns are studied. Depending on the position angle α of the small cylinder, four wake flow modes are identified: the upstream interference mode for α = 0°, 22.5°, and 45°, the intermittent attached gap flow mode for α = 67.5° and 90°, the attached gap flow mode for α = 112.5° and 135°, and the wake interference mode for α = 157.5° and 180°. The RMS lift coefficients of both cylinders are reduced significantly compared with that of a single cylinder, regardless of the position angle of the small cylinder. Although the variation trends of the mean drag and lift coefficients with the position angle of the small cylinder obtained from the two-dimensional (2D) and three-dimensional (3D) simulations are similar, the 2D simulations overestimate the mean drag coefficient, the RMS drag and lift coefficients compared with those obtained from the 3D simulations.

  6. Effective force control by muscle synergies

    Directory of Open Access Journals (Sweden)

    Denise J Berger

    2014-04-01

    Full Text Available Muscle synergies have been proposed as a way for the central nervous system (CNS to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4 to 5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control. Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor

  7. Effective force control by muscle synergies.

    Science.gov (United States)

    Berger, Denise J; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4-5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination.

  8. Effect of the silicon-carbide micro- and nanoparticle size on the thermo-elastic and time-dependent creep response of a rotating Al-SiC composite cylinder

    Science.gov (United States)

    Loghman, A.; Hammami, M.; Loghman, E.

    2017-05-01

    The history of stresses and creep strains of a rotating composite cylinder made of an aluminum matrix reinforced by silicon carbide particles is investigated. The effect of uniformly distributed SiC micro- and nanoparticles on the initial thermo-elastic and time-dependent creep deformation is studied. The material creep behavior is described by Sherby's constitutive model where the creep parameters are functions of temperature and the particle sizes vary from 50 nm to 45.9 μm. Loading is composed of a temperature field due to outward steady-state heat conduction and an inertia body force due to cylinder rotation. Based on the equilibrium equation and also stress-strain and strain-displacement relations, a constitutive second-order differential equation for displacements with variable and time-dependent coefficients is obtained. By solving this differential equation together with the Prandtl-Reuss relation and the material creep constitutive model, the history of stresses and creep strains is obtained. It is found that the minimum effective stresses are reached in a material reinforced by uniformly distributed SiC particles with the volume fraction of 20% and particle size of 50 nm. It is also found that the effective and tangential stresses increase with time at the inner surface of the composite cylinder; however, their variation at the outer surface is insignificant.

  9. Structural and parameter design of transverse multi-cylinders device on rice agronomic characteristics

    Directory of Open Access Journals (Sweden)

    Zhong Tang

    2015-12-01

    Full Text Available Rice panicles which have reached a mature state must be harvested, requiring differently specialized threshing devices and operating parameters to achieve favorable threshing and separating results. The primary objective of this study is to design a transverse multi-cylinders device that operates under the most effective possible variables to harvest rice in different states of maturity. The attachment forces between the grain and pedicel on the panicle were measured at different moisture contents. Based on rice agronomic characteristics, a transverse multi-cylinders device test bench was developed to conduct threshing and separating experiments. The threshing and separating capability of each transverse cylinder was tested, and the operating parameters of each threshing cylinder were investigated. Results showed that detachment force decreased from the bottom to the top of the rice panicle. Optimal harvesting time was identified at moisture content of 29.69%, and the best operating parameters combination was cylinder speed of 600, 650 and 700 rpm, and concave clearances of 40, 35 and 40 mm. Combine harvester of transverse multi-cylinder device test results showed an un-threshed grain ratio of 0.64%, un-separated grain ratio of 0.35%, and broken grain ratio of 0.22%, at a feeding rate of 6 kg/s. This research can be used in the future to successfully design transverse multi-cylinders device for small and medium-sized rice combine harvesters.

  10. Effects of orthodontic forces on pulp tissue

    Directory of Open Access Journals (Sweden)

    Pinandi Sri Pudyani

    2006-09-01

    Full Text Available Numerous researches on pulp tissue changes caused by orthodontic forces have been performed, among others are: pulp angiogenesis, pulp tissue respiration rate, alkaline phosphatase and aspartate aminotransferase enzyme activities; micro vascular response inside the pulp and the effect of dental movement i.e. extrusion, intrusion, and torque. The result is still controversial, as some researchers claim that orthodontic force has a negative effect, others deny by saying there is no such effect on pulp tissue.

  11. Effect of Engine Speed on In-Cylinder Tumble Flows in a Motored Internal Combustion Engine - An Experimental Investigation Using Particle Image Velocimetry

    Directory of Open Access Journals (Sweden)

    B. Murali Krishna

    2011-01-01

    Full Text Available Now-a-days, the stratified and direct injection spark ignition engines are becoming very popular because of their low fuel consumption and exhaust emissions. But, the challenges to them are the formation and control of the charge which is mainly dependent on the in-cylinder fluid flows. Today, an optical tool like particle image velocimetry (PIV is extensively used for the in-cylinder fluid flow measurements. This paper deals with the experimental investigations of the in-cylinder fluid tumble flows in a motored internal combustion engine with a flat piston at different engine speeds during intake and compression strokes using PIV. The two-dimensional in-cylinder flow measurements and analysis of tumble flows have been carried out in the combustion space on a vertical plane at the cylinder axis. To analyze the fluid flows, ensemble average velocity vectors have been used. To characterize the tumble flow, tumble ratio has been estimated. From the results, it is found that the tumble ratio mainly varies with crank angle positions. At the end of compression stroke, maximum turbulent kinetic energy is more at higher engine speeds. Present study will be very useful in understanding the effect of engine speeds on the in-cylinder fluid tumble flows under real engine conditions.

  12. Gas adsorption and desorption effects on high pressure small volume cylinders and their relevance to atmospheric trace gas analysis

    Science.gov (United States)

    Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus

    2017-04-01

    Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3

  13. Effect of Off-Body Laser Discharge on Drag Reduction of Hemisphere Cylinder in Supersonic Flow

    Science.gov (United States)

    Kianvashrad, Nadia; Knight, Doyle; Wilkinson, Stephen P.; Chou, Amanda; Horne, Robert A.; Herring, Gregory C.; Beeler, George B.; Jangda, Moazzam

    2017-01-01

    The interaction of an off-body laser discharge with a hemisphere cylinder in supersonic flow is investigated. The objectives are 1) experimental determination of the drag reduction and energetic efficiency of the laser discharge, and 2) assessment of the capability for accurate simulation of the interaction. The combined computational and experimental study comprises two phases. In the first phase, laser discharge in quiescent air was examined. The temporal behavior of the shock wave formed by the laser discharge was compared between experiment and simulation and good agreement is observed. In the second phase, the interaction of the laser discharge with a hemisphere cylinder was investigated numerically. Details of the pressure drag reduction and the physics of the interaction of the heated region with the bow shock are included. The drag reduction due to this interaction persisted for about five characteristic times where one characteristic time represents the time for the flow to move a distance equal to the hemisphere radius. The energetic efficiency of laser discharge for the case with 50 mJ energy absorbed by the gas is calculated as 3.22.

  14. Microstructural Anisotropy of Magnetocaloric Gadolinium Cylinders: Effect on the Mechanical Properties of the Material

    Directory of Open Access Journals (Sweden)

    Darja Steiner Petrovič

    2016-05-01

    Full Text Available The development of advanced materials and technologies based on magnetocaloric Gd and its compounds requires an understanding of the dependency of mechanical properties on their underlying microstructure. Therefore, the aim of the study was to characterize microstructural inhomogeneities in the gadolinium that can be used in magnetocaloric refrigeration systems. Microstructures of magnetocaloric gadolinium cylinders were investigated by light microscopy and FE-SEM (Field Emission Scanning Electron Microscopy, EDS (Energy-dispersive X-ray Spectroscopy, and BSE (Back-scattered Electrons in both the extrusion and the extrusion-transversal directions. XRD (X-ray Diffraction analyses were performed to reveal the presence of calcium- and fluorine-based compounds. Metallographic characterization showed an oxidized and inhomogeneous microstructure of the cross-sections. The edges and the outer parts of the cylinders were oxidized more intensively on the surfaces directly exposed to the processing tools. Moreover, a significant morphological anisotropy of the non-metallic inclusions was observed. CaF inclusions act as active nucleation sites for internal oxidation. The non-metallic, Ca- and F-containing inclusions can be classified as complex calciumoxyfluorides. The solubility of Er and Yb in the CaF was negligible compared to the Gd matrix and/or the oxide phase. Lower mechanical properties of the material are a consequence of the lower structural integrity due to selective oxidation of surfaces and interfaces.

  15. Microstructural Anisotropy of Magnetocaloric Gadolinium Cylinders: Effect on the Mechanical Properties of the Material.

    Science.gov (United States)

    Petrovič, Darja Steiner; Šturm, Roman; Naglič, Iztok; Markoli, Boštjan; Pepelnjak, Tomaž

    2016-05-17

    The development of advanced materials and technologies based on magnetocaloric Gd and its compounds requires an understanding of the dependency of mechanical properties on their underlying microstructure. Therefore, the aim of the study was to characterize microstructural inhomogeneities in the gadolinium that can be used in magnetocaloric refrigeration systems. Microstructures of magnetocaloric gadolinium cylinders were investigated by light microscopy and FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy-dispersive X-ray Spectroscopy), and BSE (Back-scattered Electrons) in both the extrusion and the extrusion-transversal directions. XRD (X-ray Diffraction) analyses were performed to reveal the presence of calcium- and fluorine-based compounds. Metallographic characterization showed an oxidized and inhomogeneous microstructure of the cross-sections. The edges and the outer parts of the cylinders were oxidized more intensively on the surfaces directly exposed to the processing tools. Moreover, a significant morphological anisotropy of the non-metallic inclusions was observed. CaF inclusions act as active nucleation sites for internal oxidation. The non-metallic, Ca- and F-containing inclusions can be classified as complex calciumoxyfluorides. The solubility of Er and Yb in the CaF was negligible compared to the Gd matrix and/or the oxide phase. Lower mechanical properties of the material are a consequence of the lower structural integrity due to selective oxidation of surfaces and interfaces.

  16. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder

    Institute of Scientific and Technical Information of China (English)

    XIA Yong; LU De-Tang; LIU Yang; XU You-Sheng

    2009-01-01

    The multiple-relaxation-time lattice Boltzmann method (MRT-LBM) is implemented to numerically simulate the cross flow over a longitudinal vibrating circular cylinder.This research is carried out on a three-dimensional (3D) finite cantilevered cylinder to investigate the effect of forced vibration on the wake characteristics and the 319 effect of a cantilevered cylinder.To meet the accuracy of this method,the present calculation is carried out at a low Reynolds number Re = 100,as well as to make the vibration obvious,we make the vibration strong enough.The calculation results indicate that the vibration has significant influence on the wake characteristics. When the vibrating is big enough,our early works show that the 2D vortex shedding would be locked up by vibration.Contrarily,this phenomenon would not appear in the present 313 case because of the end effect of the cantilevered cylinder.

  17. Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

    Directory of Open Access Journals (Sweden)

    Moshari Shahab

    2014-06-01

    Full Text Available With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

  18. Finite element analysis of second order wave radiation by a group of cylinders in the time domain

    Institute of Scientific and Technical Information of China (English)

    WANG Chi-zhong; MITRA Santanu; HUANG Hao-cai; KHOO Boo-cheong

    2013-01-01

    A finite element based numerical method is employed to analyze the wave radiation by multiple or a group of cylinders in the time domain.The nonlinear free surface and body surface boundary conditions are satisfied based on the perturbation method up to the second order.The first-and second-order velocity potential problems at each time step are solved through a Finite Element Method (FEM).The matrix equation of the FEM is solved through iteration and the initial solution is obtained from the result at the previous time step.The three-dimensional (3-D) mesh required is generated based on a two-dimensional (2-D) hybrid mesh on a horizontal plane and its extension in the vertical direction.The hybrid mesh is generated by combining an unstructured grid away from cylinders and two structured grids near the cylinder and the artificial boundary.The fluid velocity on the free surface and the cylinder surface are calculated by using a differential method.Results for various configurations including the cases of two cylinders and four cylinders and a group of eighteen cylinders are obtained to show the joint influences of cylinders on the first-and secondorder waves and forces,including the effects of spacing ratios and wave frequency on the second order waves and the mean force,in particular.

  19. Theory of interacting dislocations on cylinders.

    Science.gov (United States)

    Amir, Ariel; Paulose, Jayson; Nelson, David R

    2013-04-01

    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  20. Magnus Force and Aharonov-Bohm Effect in Superfluids

    OpenAIRE

    Sonin, E. B.

    2001-01-01

    The paper addresses the problem of the transverse force (Magnus force) on a vortex in a Galilean invariant quantum Bose liquid. Interaction of quasiparticles (phonons) with a vortex produces an additional transverse force (Iordanskii force). The Iordanskii force is related to the acoustic Aharonov--Bohm effect.Connection of the effective Magnus force with the Berry phase is also discussed.

  1. Effects of radiation heat transfer space non-uniformity of combustion chamber components on in-cylinder soot emission formation in diesel engine

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Combustion chamber components (cylinder head-cylinder liner-piston assembly-fuel film) were treated as a coupled body. Based on the three-dimensional numerical simulation of heat transfer of the coupled body, the multi-dimensional simulation computation coupling flow and solid on working process and combustion chamber components of internal combustion engine was performed using Discrete Transfer Radiation Model (DTRM) radiation heat transfer model, zoning solution method and boundary coupling method. The simulation was applied to the influence investigation of the space non-uniformity in radiation heat transfer among combustion chamber components on the generation of in-cylinder soot emissions. The results show that the space non-uniformity in heat transfer among the combustion chamber components has great influence on the generation of in-cylinder NOx emissions. The difference value of total soot in cylinder when exhaust valves are opened is 1.3% (no radiation), 0.8% (radiation). So the effect of radiation heat transfer space non-uniformity of combustion chamber components on total soot production can be ignored. While in local area radiation heat transfer space non-uniformity has certain effect on soot production inside whole combustion chamber space, and has less effect on soot production in the area near the wall of combustion chamber components.

  2. High-Multipolar Effects on Dispersive Forces

    CERN Document Server

    Noguez, C; Esquivel-Sirvent, R; Villarreal, C; Noguez, Cecilia; Roman-Velazquez, Carlos E.

    2003-01-01

    We show that the dispersive force between a spherical nanoparticle (with a radius $\\le$ 100 nm) and a substrate is enhanced by several orders of magnitude when the sphere is near to the substrate. We calculate exactly the dispersive force in the non-retarded limit by incorporating the contributions to the interaction from of all the multipolar electromagnetic modes. We show that as the sphere approaches the substrate, the fluctuations of the electromagnetic field, induced by the vacuum and the presence of the substrate, the dispersive force is enhanced by orders of magnitude. We discuss this effect as a function of the size of the sphere.

  3. Effects of Waste Plastic Oil Blends on a Multi Cylinder Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Vijaya Kumar Kareddula

    2017-01-01

    Full Text Available Existing fossil fuels are utilizing at their critical rate, leads to depletion of their reserves in a dramatic way. Generating alternative energy sources in a pragmatic way are necessitated, which demands the researchers to utilize the inherent energy of carbon based products as an energy source to the automobile sector. As a part of it, my research is focused on transforming and using the waste plastics as an alternative fuel in multi cylinder spark ignition engine. This paper aims to present the experimental investigations of performance and emission characteristics in an existing Maruti 800 petrol engine running with the blends of 5%, 10%, 15% and 20% of waste Plastic Pyrolysis Oil (PPO with gasoline. From the results, it is noticed that hydrocarbon emissions are substantially reduced and oxides of nitrogen emissions are increased and petrol engine can operate with PPO blends up to 20% without any engine modifications.

  4. Edge Effects and Coupling Effects in Atomic Force Microscope Images

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang-jun; MENGYong-gang; WENShi-zhu

    2004-01-01

    The AFM images were obtained by an atomic force microscope (AFM) and transformed from the deformation of AFM micro cantilever probe. However, due to the surface topography and surface forces applied on the AFM tip of sample, the deformation of AFM probe results in obvious edge effects and coupling effects in the AFM images. The deformation of AFM probe was analyzed,the mechanism of the edge effects and the coupling effects was investigated, and their results in the AFM images were studied. It is demanstrated by the theoretical analysis and AFM experiments that the edge effects make lateral force images more clear than the topography images, also make extraction of frictional force force from lateral force images mare complex and difficult. While the coupling effects make the comparison between topography images and lateral force images mare advantage to acquire precise topography information by AFM.

  5. Flow control behind a circular cylinder via a porous cylinder in deep water

    Directory of Open Access Journals (Sweden)

    Akilli H.

    2013-04-01

    Full Text Available In this present work, the effects of surrounding outer porous cylinder on vortex structure downstream of a circular inner cylinder are investigated experimentally in deep water flow. The porosity of outer cylinder were selected as β = 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8 and 0.85. Porosity is defined as the ratio of the gap area on the body to the whole body surface area. The ratio of outer cylinder diameter to inner cylinder diameter, Do/Di was selected as 2.0, i.e. the inner cylinder diameter is Di = 30 mm where the outer cylinder diameter is Do = 60 mm. All experiments were carried out above a platform. The water height between the base of the platform and the free surface was adjusted as 340 mm. Free stream velocity is U = 156 mm/s, which corresponds to the Reynolds number of Rei = 5,000 based on the inner cylinder diameter. It has been observed that the outer porous cylinders have influence on the attenuation of vortex shedding in the wake region for all porosities. The turbulent intensity of the flow is reduced at least 45% by the presence of outer porous cylinder compared to the bare cylinder case. The porosities β = 0.4 and 0.5 are most suitable cases to control the flow downstream of the circular cylinder.

  6. Actuator placement for active sound and vibration control of cylinders

    Science.gov (United States)

    Kincaid, Rex K.

    1995-01-01

    Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The cylinder is excited by an exterior noise source -- an acoustic monopole -- located near the outside of the cylinder wall. The goal is to determine the force inputs and sites for the piezoelectric actuators so that (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. We studied external monopole excitations at two frequencies. A cylinder resonance of 100 Hz, where the interior acoustic field is driven in multiple, off-resonance cylinder cavity modes, and a cylinder resonance of 200 Hz are characterized by both near and off-resonance cylinder vibration modes which couple effectively with a single, dominant, low-order acoustic cavity mode at resonance. Previous work has focused almost exclusively on meeting objective (1) and solving a complex least-squares problem to arrive at an optimal force vector for a given set of actuator sites. In addition, it has been noted that when the cavity mode couples with cylinder vibration modes (our 200 Hz case) control spillover may occur in higher order cylinder shell vibrational modes. How to determine the best set of actuator sites to meet objectives (1)-(3) is the main contribution of our research effort. The selection of the best set of actuator sites from a set of potential sites is done via two metaheuristics -- simulated annealing and tabu search. Each of these metaheuristics partitions the set of potential actuator sites into two disjoint sets: those that are selected to control the noise (on) and those that are not (off). Next, each metaheuristic attempts to

  7. Reconstruction of halo power spectrum from redshift-space galaxy distribution: cylinder-grouping method and halo exclusion effect

    CERN Document Server

    Okumura, Teppei; More, Surhud; Masaki, Shogo

    2016-01-01

    The peculiar velocity field measured by redshift-space distortions (RSD) in galaxy surveys provides a unique probe of the growth of large-scale structure. However, systematic effects arise when including satellite galaxies in the clustering analysis. Since satellite galaxies tend to reside in massive halos with a greater halo bias, the inclusion boosts the clustering power. In addition, virial motions of the satellite galaxies cause a significant suppression of the clustering power due to nonlinear RSD effects. We develop a novel method to recover the redshift-space power spectrum of halos from the observed galaxy distribution by minimizing the contamination of satellite galaxies. The cylinder grouping method (CGM) we study effectively excludes satellite galaxies from a galaxy sample. However, we find that this technique produces apparent anisotropies in the reconstructed halo distribution over all the scales which mimic RSD. On small scales, the apparent anisotropic clustering is caused by exclusion of halos...

  8. Numerical investigation of mixed convection heat transfer from two isothermal circular cylinders in tandem arrangement: buoyancy, spacing ratio, and confinement effects

    Science.gov (United States)

    Salcedo, Erick; Cajas, Juan C.; Treviño, César; Martínez-Suástegui, Lorenzo

    2017-04-01

    This paper presents a two-dimensional numerical study for mixed convection in a laminar cross-flow with a pair of stationary equal-sized isothermal cylinders in tandem arrangement confined in a channel. The governing equations are solved using the control volume method on a nonuniform orthogonal Cartesian grid, and the immersed boundary method is employed to identify the cylinders placed in the flow field. The numerical scheme is first validated against standard cases of symmetrically confined isothermal circular cylinders in plane channels, and grid convergence tests were also examined. The objective of the present study was to investigate the influence of buoyancy and the blockage ratio constraint on the flow and heat transfer characteristics of the immersed cylinder array. Using a fixed Reynolds number based on cylinder diameter of ReD = 200, a fixed value of the Prandtl number of Pr = 7, and a blockage ratio of D/H = 0.2, all possible flow regimes are considered by setting the longitudinal spacing ratio (σ = L/D) between the cylinder axes to 2, 3, and 5 for values of the buoyancy parameter (Richardson number) in the range -1≤ Ri≤ 4. The interference effects and complex flow features are presented in the form of mean and instantaneous velocity, vorticity, and temperature distributions. The results demonstrate how the buoyancy, spacing ratio, and wall confinement affect the wake structure and vortex dynamics. In addition, local and average heat transfer characteristics of both cylinders are comprehensively presented for a wide range in the parametric space.

  9. Numerical investigation of mixed convection heat transfer from two isothermal circular cylinders in tandem arrangement: buoyancy, spacing ratio, and confinement effects

    Science.gov (United States)

    Salcedo, Erick; Cajas, Juan C.; Treviño, César; Martínez-Suástegui, Lorenzo

    2016-11-01

    This paper presents a two-dimensional numerical study for mixed convection in a laminar cross-flow with a pair of stationary equal-sized isothermal cylinders in tandem arrangement confined in a channel. The governing equations are solved using the control volume method on a nonuniform orthogonal Cartesian grid, and the immersed boundary method is employed to identify the cylinders placed in the flow field. The numerical scheme is first validated against standard cases of symmetrically confined isothermal circular cylinders in plane channels, and grid convergence tests were also examined. The objective of the present study was to investigate the influence of buoyancy and the blockage ratio constraint on the flow and heat transfer characteristics of the immersed cylinder array. Using a fixed Reynolds number based on cylinder diameter of ReD = 200 , a fixed value of the Prandtl number of Pr = 7 , and a blockage ratio of D/H = 0.2 , all possible flow regimes are considered by setting the longitudinal spacing ratio (σ = L/D ) between the cylinder axes to 2, 3, and 5 for values of the buoyancy parameter (Richardson number) in the range -1≤ Ri≤ 4 . The interference effects and complex flow features are presented in the form of mean and instantaneous velocity, vorticity, and temperature distributions. The results demonstrate how the buoyancy, spacing ratio, and wall confinement affect the wake structure and vortex dynamics. In addition, local and average heat transfer characteristics of both cylinders are comprehensively presented for a wide range in the parametric space.

  10. 速度剪切流中圆柱体绕流特性的数值模拟%Numerical analysis of aerodynamic forces on circular cylinder in linear shear flow

    Institute of Scientific and Technical Information of China (English)

    周强; 曹曙阳; 王通; 周志勇

    2012-01-01

    Three-dimensional direct numerical simulation (DNS) and large eddy simulation (LES) were performed to investigate aerodynamic forces on a circular cylinder in linear shear flow at Reynolds number of Re =60 ~1 000. The shear parameter β, which is based on the velocity gradient, cylinder diameter and upstream mean velocity at the center plane of the cylinder, varies from 0 to 0. 30. The changes of the stagnation point, separation points, and lift coefficients with the variation of shear parameter were studied. The results show that the stagnation point moves to the high-velocity side almost linearly with shear parameter, which mainly influences the aerodynamic forces acting on a circular cylinder in shear flow. Both the Reynolds number and shear parameter influence the movement of the stagnation point and separation point. The lift force increases with the increase of shear parameter and at the same time from the high-velocity side to the low-velocity side.%采用由速度梯度、圆柱半径以及圆柱中心平面上的来流平均速度定义的无量纲剪切参数β来描述速度剪切的强度.在雷诺数Re =60~1000范围内,运用三维直接数值模拟(DNS)和大涡模拟(LES)两种方法对速度剪切流中的圆柱体的绕流特性进行了数值模拟.研究了驻点、高速和低速两侧分离点、圆柱表面压力分布以及不稳定尾流结构随剪切参数的变化及其对雷诺数的依赖性,从而得到了剪切流中圆柱体的气动力以及脱落特性,并对其机理进行了详细探讨.

  11. Effects of magnetic, radiation and chemical reaction on unsteady heat and mass transfer flow of an oscillating cylinder

    Science.gov (United States)

    Ahmed, Rubel; Rana, B. M. Jewel; Ahmmed, S. F.

    2017-06-01

    The effects of magnetic, radiation and chemical reaction parameters on the unsteady heat and mass transfer boundary layer flow past an oscillating cylinder is considered. The dimensionless momentum, energy and concentration equations are solved numerically by using explicit finite difference method with the help of a computer programming language Compaq visual FORTRAN 6.6a. The obtained results of this study have been discussed for different values of well-known parameters with different time steps. The effect of these parameters on the velocity field, temperature field and concentration field, skin-friction, Nusselt number, streamlines and isotherms has been studied and results are presented by graphically represented by the tabular form quantitatively. The stability and convergence analysis of the solution parameters that have been used in the mathematical model have been tested.

  12. Determining required valve performance for discrete control of PTO cylinders for wave energy

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2012-01-01

    Within wave energy a large challenge remains in designing a Power Take-Off (PTO) system capable of converting the slow oscillations induced by waves into electricity. Fluid power is an essential part of most PTO-concepts. To implement an efficient control of the load force produced by a cylinder...... on a floating body, throttle-less force control by discrete variation of the effective cylinder area has been investigated and found feasible for the Wavestar wave energy concept. However, the feasibility study assumes adequate valve performance, such that only the compression loss remains. This paper...

  13. Numerical study on ring bubble dynamics in a narrow cylinder with a compliant coating

    Energy Technology Data Exchange (ETDEWEB)

    Farhangmehr, V; Shervani-Tabar, M T [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Parvizi, R [Department of Cardiac Surgery, Shahid Madani Heart Hospital, Tabriz (Iran, Islamic Republic of); Ohl, S W [Institute of High Performance Computing, 1 Fusinopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Khoo, B C, E-mail: vfarhangmehr@gmail.com [Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)

    2015-04-15

    In this paper, the ring bubble contraction inside a narrow vertical rigid cylinder with a compliant coating filled with water is studied numerically. To simulate ring bubble dynamics numerically, in addition to computing the pressure and velocity fields of the surrounding fluid, an axisymmetric boundary integral equation approach is adopted alongside a finite difference method. The compliant boundary is modeled as a membrane with a spring foundation. During the ring bubble contraction and under the attraction of the cylinder wall due to the Bjerknes force, a horizontal ring jet is initiated and develops towards the cylinder wall. The numerical results represent the effects of the cylinder radius and two compliant coating characteristics, including its mass per unit area and the spring constant, on the ring bubble behavior. This investigation is motivated by the possibility of utilizing the ring jet in therapeutic cardiovascular applications. (paper)

  14. A low-order model for flow control studies in cylinder wakes

    Science.gov (United States)

    Balasubramanian, Ganapathi; Olinger, David J.; Demetriou, Michael

    1998-11-01

    Control of three-dimensional wake structures behind circular cylinders is investigated using a previously developed coupled map lattice. The map consists of circle map oscillators along the cylinder span coupled by a diffusion model. Our goal is to develop an efficient model for flow control studies in cylinder wakes. Complex vortex shedding patterns, such as vortex dislocations and frequency cells, are observed behind vibrating cables in uniform freestream flows and stationary cylinders in sheared flows. These structures are controlled by the addition of periodic control signals to the forcing term in the map. Discontinuous nonlinear control theory is used to derive the control laws. Parallel shedding is realized for the case of uniform flow and oblique shedding is achieved for sheared inflows. The effectiveness of the discontinuous nonlinear control theory is compared with the previous application of chaos control theory to the coupled map lattice.

  15. Influence of Orbital Motion of Inner Cylinder on Eccentric Taylor Vortex Flow of Newtonian and Power-Law Fluids

    Institute of Scientific and Technical Information of China (English)

    FENG Shun-Xin; FU Song

    2007-01-01

    The effects of inner cylinder orbital motion on Taylor vortex flow of Newtonian and power-law fluid are studied numerically. The results demonstrate that when the eccentricity is not small, the orbital motion influences the stability of the flow in a non-monotonic manner. The variations of the flow-induced forces on the inner cylinder versus orbital motion are also different from the cases in which the flow is two-dimensional and laminar.

  16. Effects of a geometrical surface disturbance on flow past a circular cylinder : a large-scale spanwise wire

    NARCIS (Netherlands)

    Ekmekci, A.; Rockwell, D.

    2010-01-01

    Flow control induced by a single wire that is attached on the outer surface and parallel to the span of a stationary circular cylinder is investigated experimentally. The Reynolds number has a value of 10 000 and the wire diameter is nearly two orders of magnitude smaller than the cylinder diameter,

  17. EFFECT OF GASOLINE - ETHANOL BLENDS ON PERFORMANCE AND EMISSION CHARACTERISTICS OF A SINGLE CYLINDER AIR COOLED MOTOR BIKE SI ENGINE

    Directory of Open Access Journals (Sweden)

    A. SAMUEL RAJA

    2015-12-01

    Full Text Available This paper investigates the effect of using gasoline-ethanol (GE blends on performance and exhaust emission of a four stroke 150 cc single cylinder air cooled spark ignition (SI engine, without any modifications. Experiments were conducted at part load and different engine speeds ranging from 3000 to 5000 rpm, without and with catalytic converter. Ethanol content was varied from 5 percentage to 20 percentage by volume and four different blends (E5, E10, E15 and E20 were tested. Fuel consumption, engine speed, air fuel ratio, exhaust gas temperature and exhaust emissions were measured during each experiment. Brake thermal efficiency (ηb,th, volumetric efficiency (ηvol, brake specific fuel consumption (BSFC and excess air factor were calculated for each test run. Brake specific fuel consumption, volumetric efficiency and excess air factor increased with ethanol percentage in the blend. Carbon monoxide (CO, hydrocarbon (HC and oxides of nitrogen (NOx emissions decreased with blends.

  18. Effective reduction of in-cylinder peak pressures in Homogeneous Charge Compression Ignition Engine – A computational study

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2015-09-01

    Full Text Available HCCI mode of combustion is known for simultaneous reduction of NOx and PM emissions besides yielding low specific fuel consumption. The nature of volumetric combustion of HCCI engine leads to the development of high peak pressures inside the combustion chamber. This high peak pressures may damage the engine, limiting the HCCI engine life period and thus demands sturdy designs. In this study an attempt is made to analyze computationally the effect of induction swirl in reducing the peak pressures of a HCCI engine under various operating parameters. For the study, specifications of a single cylinder 1.6 L, reentrant piston bowl diesel engine are chosen. For the computational analysis ECFM-3Z model of STARCD is considered. This model is suitable to analyze the combustion processes in SI and CI engines. As HCCI engine is a hybrid version of SI and CI engines, ECFM-3Z model with necessary modifications is used to analyze the peak pressures inside the combustion chamber. The ECFM-3Z model for HCCI mode of combustion is validated with the existing literature to make sure that the results obtaining are accurate. Numerical experiments are performed to study the effect of compression ratio, equivalence ratio, exhaust gas recirculation and boost pressure under different swirl ratios in reducing the in-cylinder peak pressures. The results showed that swirl ratio has a considerable impact in limiting the peak pressures of HCCI engine. The analysis resulted in achieving about 21% reduction in peak pressures are achieved when a swirl ratio of 4 with 30% EGR is adopted when compared to a swirl ratio of 1 with 0% EGR. The study revealed that out of the four operating parameters selected, lower compression ratios, higher EGR concentrations, lower equivalence ratios, lower boost pressures and higher swirl ratios are favorable in reducing the peak pressures.

  19. NUMERICAL STUDY OF NATURAL CONVECTION FROM TWO PARALLEL HORIZONTAL CYLINDERS ENCLOSED BY CIRCULAR CYLINDER

    Directory of Open Access Journals (Sweden)

    Mahmood Husain Ali

    2013-05-01

    Full Text Available In this paper, numerical solution is presented for the steady state, two dimensional natural convection heat transfer from two parallel horizontal cylinders enclosed by circular cylinder. The inner cylinders are heated and maintained at constant surface temperature, while the outer cylinder is cooled at constant surface temperature. Boundary fitted coordinate system is used to solve governing equations. The vorticity-stream function and energy equations is solved using explicit finite deference method and stream function equation solved by successive iteration method. (20Deferent cases are studied cover rang of Rayleigh number from (1,000 to (25,000 based on the inner cylinder diameter. These cases study the effect of the  varying inner cylinders position horizontally and vertically within outer cylinder on the heat transfer and buoyancy that causes the flow. Outputs are displayed in terms of streamline, isothermal contours and local and average Nusselt number. The results showed that the position of the inner cylinders highly affects the heat transfer and flow movements in the gap. At low Rayleigh numbers the average Nusselt number increases with increase of horizontal distance between inner cylinders but the state is reversed at high Rayleigh numbers, while the average Nusselt number is increases with inner cylinder moving down at all Rayleigh numbers. The optimal position of inner cylinders for maximum and minimum heat transfer is located at each Rayleigh number so can be employed in isolation process or cooling process.

  20. Chiral effective field theory and nuclear forces

    CERN Document Server

    Machleidt, R

    2011-01-01

    We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.

  1. Multi-directional random wave interaction with an array of cylinders

    DEFF Research Database (Denmark)

    Ji, Xinran; Liu, Shuxue; Bingham, Harry B.;

    2015-01-01

    . The biggest transverse force is found to occur on the rear cylinder rather than the front one. This is quite different from the results in unidirectional waves and should be paid much more attention in the design of offshore structures. At last, the possibility of the near-trapping under the multi......Based on the linear theory of wave interaction with an array of circular bottom-mounted vertical cylinders, systematic calculations are made to investigate the effects of the wave directionality on wave loads in short-crested seas. The multi-directional waves are specified using a discrete form...... of the Mitsuyasu-type spreading function. The time series of multi-directional wave loads, including both the wave run-up and wave force, can be simulated. The effect of wave directionality on the wave run-up and wave loading on the cylinders is investigated. For multi-directional waves, as the distribution...

  2. NUMERICAL STUDY OF VORTEX SHEDDING FROM A SQUARE CYLINDER AND ITS EFFECTS ON HEAT TRANSFER OF MIXED CONVECTION

    Institute of Scientific and Technical Information of China (English)

    Zhang Ning; Li Guang-zheng; Huang Jian-chun

    2003-01-01

    The influence of buoyancy on vortex shedding from a heated square cylinder and its effects on the heat transfer of mixed convection were simulated.The flow equations, based on the velocity and the pressure, were solved along with the energy equation by a modified SIMPLER algorithm-the Quick Scheme and small Control Volume (QSCV) algorithm developed by the authors of the present paper.A set of optimized computational domain and artificial lateral boundary conditions were used along with the QSCV algorithm.Several cases were simulated for the Grashof numbers up to 1.8×105, the Reynolds numbers up to 500, and a range of angles between free stream velocity and gravity from 0 to 1.5π.In opposing flow, the results distinguish two different flow patterns: periodic flow for Gr<Grc and steady flow with attached twin vortices for Gr>Grc, and a precise correlation between Grc and Re expressed as Grc=0.00166(Re)2.97795 for Re up to 500 was firstly obtained.In cross flow, it could be seen that the Ri=Gr/Re2 plays a great role in the wake vortex patterns and the temperature fields.In aiding flow, it is found that the main flow currents cause a large expansion of the streamlines and isotherms in the direction normal to the free stream velocity.These changes in the wake vortex patterns and the temperature fields greatly modify the heat flux along the surface of the square cylinder and consequently, the heat transfer rate is strongly dependent upon the Reynolds numbers, the Grashof numbers, and the gravity direction.

  3. Base Stress of the Opened Bottom Cylinder Structures

    Institute of Scientific and Technical Information of China (English)

    刘建起; 孟晓娟

    2004-01-01

    The base stress of the opened bottom cylinder structure differs greatly from that of the structure with a closed bottom. By investigating the inner soil pressure on the cylinder wall and the base stress of the cylinder base, which were obtained from the model experiments, the interactions among the filler inside the cylinder,subsoil and cylinder are analyzed. The adjusting mechanism of frictional resistance between the inner filler and the wall of the cylinder during the overturning of the cylinder is discussed. Based on the experimental study, a method for calculating the base stress of the opened bottom cylinder structure is proposed. Meanwhile, the formulas for calculating the effective anti-overturning ratio of the opened bottom cylinder are derived.

  4. A comparative study on effect of plain- and wavy-wall confinement on wake characteristics of flow past circular cylinder

    Indian Academy of Sciences (India)

    R DEEPAKKUMAR; S JAYAVEL; SHALIGRAM TIWARI

    2017-06-01

    A first attempt is made for identifying the wake characteristics of circular cylinder confined by a wavy wall at laminar flow regime. Numerical study of flow characteristics past circular cylinder with wavy-wall confinement perpendicular to cylinder axis has been carried out in the range of Reynolds number 20–100. Thefinite volume-based CFD solver Ansys Fluent (Version 15.0) is used for computations. The results are presented in the form of streamline plots, mean drag co-efficient, flow separation angle and recirculation length. Wavywall confinement leads to highly significant changes in the cylinder wake such as the evolution of strong x-plane vortices, enhanced fluid mixing, wake suppression near the crest region and vortex stretching near the trough region on the downstream of the cylinder has been observed. Flow separation angle varies significantly along the axis of the cylinder. Increased wall shear stress on rear surface of the cylinder has also been observed. The part of vorticity magnitude as compared to strain rate has been distinguished and identified using vortex identification methods such as Q-criterion and Lambda-2 criterion.

  5. Liquid-film coating on topographically patterned rotating cylinders

    Science.gov (United States)

    Li, Weihua; Carvalho, Marcio S.; Kumar, Satish

    2017-02-01

    The coating of discrete objects having surface topography is an important step in the manufacturing of a broad variety of products. To develop a fundamental understanding of this problem, we study liquid-film flow on rotating cylinders patterned with sinusoidal topographical features. The Stokes equations, augmented with a term accounting for centrifugal forces, are solved in a rotating reference frame using the Galerkin finite-element method (GFEM). A nonlinear evolution equation for the film thickness based on lubrication theory is also solved numerically and its predictions are compared to those from the GFEM calculations. When gravitational effects are negligible and the rotation rate is sufficiently low, liquid accumulates over the pattern troughs before merging to form multiple larger drops (located over troughs) whose number at steady state depends on the topography wavelength and rotation rate. When the rotation rate is sufficiently high, similar merging events occur, but liquid accumulates over the pattern crests at steady state. When gravitational forces become significant, it is possible to obtain a coating that closely conforms to the surface topography. The GFEM calculations are in agreement with predictions from the lubrication model provided the free-surface curvatures are sufficiently small. For sufficiently large pattern amplitude and film thickness, the GFEM calculations show that recirculation regions inside the troughs can appear and vanish as the cylinder rotates due to the variation of gravitational forces around the cylinder surface. This phenomenon, along with flow reversal over the crests, may strongly influence mixing, mass transport, and heat transport.

  6. Evaluation of Concrete Cylinder Tests Using Finite Elements

    DEFF Research Database (Denmark)

    Saabye Ottosen, Niels

    1984-01-01

    Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete...... is employed, which accounts for the strain hardening and softening in the pre‐ and postfailure regions, respectively. When h/d  =  2, the failure mode is found to consist of undisturbed end cones and the occurrence of strain softening, especially in the outer region of the cylinder middle. For shorter...... cylinders the strain softening is more pronounced along the surface of the cylinder middle, whereas longer cylinders exhibit a more uniform distribution of strain softening. The failure modes for force and displacement controlled tests are found to be similar. If long cylinders are to provide the true...

  7. Cylinder monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    Alderson, J.H. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  8. Generalized Bistability in Origami Cylinders

    Science.gov (United States)

    Reid, Austin; Adda-Bedia, Mokhtar; Lechenault, Frederic

    Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight, medicine, and even experimental nuclear physics. In spite of this interest, a general understanding of the dynamics of an origami folded cylinder has been elusive. By solving the fully constrained behavior of a periodic fundamental origami cell defined by unit vectors, we have found an analytic solution for all possible rigid-face states accessible from a cylindrical Miura-ori pattern. Although an idealized bellows has two rigid-face configurations over a well-defined region, a physical device, limited by nonzero material thickness and forced to balance hinge with plate-bending energy, often cannot stably maintain a stowed configuration. We have identified and measured the parameters which control this emergent bistability, and have demonstrated the ability to fabricate bellows with tunable deployability.

  9. Bubbly flows around a two-dimensional circular cylinder

    Science.gov (United States)

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  10. Waves, Coriolis force and the dynamo effect

    CERN Document Server

    Mahajan, S M; Gómez, D O

    2004-01-01

    Dynamo activity caused by waves in a rotating magneto-plasma is investigated. In astrophysical environments such as accretion disks and at sufficiently small spatial scales, the Hall effect is likely to play an important role. It is shown that a combination of the Coriolis force and Hall effect can produce a finite $\\alpha$-effect by generating net helicity in the small scales. The shear/ion-cyclotron normal mode of the Hall plasma is the dominant contributor to the dynamo action for short scale motions.

  11. Thought Experiments on Gravitational Forces

    CERN Document Server

    Lynden-Bell, Donald

    2013-01-01

    Large contributions to the near closure of the Universe and to the acceleration of its expansion are due to the gravitation of components of the stress-energy tensor other than its mass density. To familiarise astronomers with the gravitation of these components we conduct thought experiments on gravity, analogous to the real experiments that our forebears conducted on electricity. By analogy to the forces due to electric currents we investigate the gravitational forces due to the flows of momentum, angular momentum, and energy along a cylinder. Under tension the gravity of the cylinder decreases but the 'closure' of the 3-space around it increases. When the cylinder carries a torque the flow of angular momentum along it leads to a novel helical interpretation of Levi-Civita's external metric and a novel relativistic effect. Energy currents give gravomagnetic effects in which parallel currents repel and antiparallel currents attract, though such effects must be added to those of static gravity. The gravity of...

  12. Flow mediated interactions between two cylinders at finite Re numbers

    Science.gov (United States)

    Gazzola, Mattia; Mimeau, Chloe; Tchieu, Andrew A.; Koumoutsakos, Petros

    2012-04-01

    We present simulations of two interacting moving cylinders immersed in a two-dimensional incompressible, viscous flow. Simulations are performed by coupling a wavelet-adapted, remeshed vortex method with the Brinkman penalization and projection approach. This method is validated on benchmark problems and applied to simulations of a master-slave pair of cylinders. The master cylinder's motion is imposed and the slave cylinder is let free to respond to the flow. We study the relative role of viscous and inertia effects in the cylinders interactions and identify related sharp transitions in the response of the slave. The observed differences in the behavior of cylinders with respect to corresponding potential flow simulations are discussed. In addition, it is observed that in certain situations the finite size of the slave cylinders enhances the transport so that the cylinders are advected more effectively than passive tracers placed, respectively, at the same starting position.

  13. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Science.gov (United States)

    Abramov, Arnold; Kostikov, Alexander

    2017-03-01

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder.

  14. Shear flow induced vibrations of long slender cylinders with a wake oscillator model

    Institute of Scientific and Technical Information of China (English)

    Fei Ge; Wei Lu; Lei Wang; You-Shi Hong

    2011-01-01

    A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations (VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions.The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fluid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model, such as the spanwise average displacement, vibration frequency, dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.

  15. Casimir Force at a Knife's Edge

    CERN Document Server

    Graham, Noah; Emig, Thorsten; Rahi, Sahand Jamal; Jaffe, Robert L; Kardar, Mehran

    2009-01-01

    The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are available, is another case where such a calculation is possible. We compute the interaction energy of a parabolic cylinder and an infinite plate (both perfect mirrors), as a function of their separation and inclination, $H$ and $\\theta$, and the cylinder's parabolic radius $R$. As $H/R\\to 0$, the proximity force approximation becomes exact. The opposite limit of $R/H\\to 0$ corresponds to the a semi-infinite plate, where the effects of edge and inclination can be probed.

  16. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  17. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  18. Lift of a rotating circular cylinder in unsteady flows

    DEFF Research Database (Denmark)

    Carstensen, Stefan; Mandviwalla, Xerxes; Vita, Luca

    2012-01-01

    A cylinder rotating in steady current experiences a lift known as the Magnus effect. In the present study the effect of waves on the Magnus effect has been investigated. This situation is experienced with the novel floating offshore vertical axis wind turbine (VAWT) concept called the DEEPWIND...... concept, which incorporates a rotating spar buoy and thereby utilizes seawater as a roller-bearing. The a priori assumption and the results suggest that the lift in waves, to a first approximation, may be represented by a formulation similar to the well-known Morison formulation. The force coefficients...

  19. In-flight investigation of a rotating cylinder-based structural excitation system for flutter testing

    Science.gov (United States)

    Vernon, Lura

    1993-01-01

    A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic, transonic, and supersonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. In addition, studies were conducted to determine optimal excitation parameters, such as sweep duration, sweep type, and energy levels. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The comparison indicated that the vane with a rotating slotted cylinder provides superior results. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.

  20. Quasi-Periodic Intermittency in Oscillating Cylinder Flow

    CERN Document Server

    Glaz, Bryan; Fonoberova, Maria; Loire, Sophie

    2016-01-01

    Fluid dynamics induced by periodically forced flow around a cylinder is analyzed computationally for the case when the forcing frequency is much lower than the von K{\\'a}rm{\\'a}n vortex shedding frequency corresponding to the constant flow velocity condition. By using the Koopman Mode Decomposition approach, we find a new normal form equation that extends the classical Hopf bifurcation normal form by a time-dependent term for Reynolds numbers close to the Hopf bifurcation value. The normal form describes the dynamics of an observable and features a forcing (control) term that multiplies the state, and is thus a parametric - i.e. not an additive - forcing effect. We find that the dynamics of the flow in this regime are characterized by alternating instances of quiescent and strong oscillatory behavior, and that this pattern persists indefinitely. Furthermore, the spectrum of the associated Koopman operator is shown to possess quasi-periodic features. We establish the theoretical underpinnings of this phenomeno...

  1. Investigation of drag reduction through a flapping mechanism on circular cylinder

    Science.gov (United States)

    Asif, Md. Asafuddoula; Gupta, Avijit Das; Rana, M. D. Juwel; Ahmed, Dewan Hasan

    2016-07-01

    During flapping wing, a bird develops sufficient lift force as well as counteracts drag and increases its speed through different orientations of feathers on the flapping wings. Differently oriented feathers play a significant role in drag reduction during flying of a bird. With an objective to investigate the effect of installation of such flapping mechanism as a mean of drag reduction in case of flow over circular cylinder, this concept has been implemented through installation of continuous and mini flaps, made of MS sheet metal, where flaps are oriented at different angles as like feathers of flapping wings. The experiments are carried out in a subsonic wind tunnel. After validation and comparison with conventional result of drag analysis of a single cylinder, effects of flapping with Reynolds number variation, implementation of different orientations of mini flaps and variation of different interspacing distance between mini flaps are studied to find the most effective angle of attack of drag reduction on the body of circular cylinder. This research show that, installation of continuous flap reduces value of drag co-efficient, CD up to 66%, where as mini flaps are found more effective by reducing it up to 73%. Mini flaps of L/s=6.25, all angled at 30O, at the 30O angular position on the body of circular cylinder has been found the most effective angle of attack for drag reduction in case of flow over circular cylinder.

  2. Effect of initial stress on propagation behaviors of shear horizontal waves in piezoelectric/piezomagnetic layered cylinders.

    Science.gov (United States)

    Zhao, X; Qian, Z H; Zhang, S; Liu, J X

    2015-12-01

    An analytical approach is taken to investigate shear horizontal wave (SH wave) propagation in layered cylinder with initial stress, where a piezomagnetic (PM) material thin layer is bonded to a piezoelectric (PE) cylinder. Two different material combinations are taken into account, and the phase velocities of the SH waves are numerically calculated for the magnetically open and short cases, respectively. It is found that the initial stress, the thickness ratio and the material performance have a great influence on the phase velocity. The results obtained in this paper can offer fundamental significance to the application of PE/PM composite media or structure for the acoustic wave and microwave technologies.

  3. Investigation of breached depleted UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

  4. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...... cylindrical surfaces have the sane characteristic constants and different constants are treated separately. Extensive numerical computations of the field radiated from the slot antennas described here are being carried out, but no numerical results are yet available...

  5. Microstructure Effects for Casimir Forces in Chiral Metamaterials

    OpenAIRE

    McCauley, Alexander P.; Zhao, Rongkuo; Reid, M. T. Homer; Rodriguez, Alejandro W.; Zhou, Jiangfeng; Rosa, F. S. S.; Joannopoulos, John D; Dalvit, D. A. R.; Soukoulis, Costas M.; Johnson, Steven G.

    2010-01-01

    We examine a recent prediction for the chirality-dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized "omega"-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e. proximity forces and anisotropy). We find that these microstructure effe...

  6. Experimental study of the effect of icing on the aerodynamics of circular cylinders - Part II: Inclined flow

    DEFF Research Database (Denmark)

    Demartino, C.; Georgakis, Christos T.; Ricciardelli, F.

    are produced from HDPE, as used for bridge stays. Variations in the accretion parameters were chosen to generate the most common natural ice formations, which might also be expected to produce bridge cable vibrations. A parallel paper deals with the case of circular cylinders in cross flow....

  7. Dual stratified mixed convection flow of Eyring-Powell fluid over an inclined stretching cylinder with heat generation/absorption effect

    Science.gov (United States)

    Rehman, Khalil Ur; Malik, M. Y.; Salahuddin, T.; Naseer, M.

    2016-07-01

    Present work is made to study the effects of double stratified medium on the mixed convection boundary layer flow of Eyring-Powell fluid induced by an inclined stretching cylinder. Flow analysis is conceded in the presence of heat generation/absorption. Temperature and concentration are supposed to be higher than ambient fluid across the surface of cylinder. The arising flow conducting system of partial differential equations is primarily transformed into coupled non-linear ordinary differential equations with the aid of suitable transformations. Numerical solutions of resulting intricate non-linear boundary value problem are computed successfully by utilizing fifth order Runge-Kutta algorithm with shooting technique. The effect logs of physical flow controlling parameters on velocity, temperature and concentration profiles are examined graphically. Further, numerical findings are obtained for two distinct cases namely, zero (plate) and non-zero (cylinder) values of curvature parameter and the behaviour are presented through graphs for skin-friction coefficient, Nusselt number and Sherwood number. The current analysis is validated by developing comparison with previously published work, which sets a benchmark of quality of numerical approach.

  8. Force among magnetic nanocylinders trapped in triangular arrays

    Energy Technology Data Exchange (ETDEWEB)

    Cisternas, E., E-mail: ecisternas@ufro.cl [Departamento de Ciencias Fisicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile); Vasquez, Y.; Vogel, E.E. [Departamento de Ciencias Fisicas, Universidad de La Frontera, Casilla 54-D, Temuco (Chile)

    2012-03-15

    We study the effect of the forces among magnetic nanocylinders trapped in a membrane such as those used to produce them. The interaction force between two parallel and identical magnetic nanocylinders is revisited to obtain expressions that can later be used to add them both in a discrete and a continuum approximation. At this point a particular geometry has to be assumed and we use a particular configuration reported in the literature, namely, a bundle of parallel magnetic cylinders trapped in a circular membrane. When a strong enough external magnetic field is imposed along the axis of the membrane (also along the axes of the cylinders) all magnetizations point along this direction and cylinders repel among themselves. In a first approximation we will consider a soft enough membrane so energy is mostly relaxed through a deformation of the membrane leaving the magnetization of the cylinders basically as it was in the absence of external field. Then we obtain the forces among these cylinders by two methods: one summing the contributions of a discrete number of objects and another one in which we consider a continuum distribution of them to reach larger systems. Numerical evaluation of these forces can reach 50 mdyn approximately. Such forces will act on the membrane at the positions of the magnetic cylinders; in the case of a circular silicon membrane of radius 1.0 mm the radial expansion of the membrane can be of the order of 1 nm. This effect could be larger for softer membranes. A discussion of experimental techniques to detect this phenomenon is also done followed by the proposal of a possible application. - Highlights: Black-Right-Pointing-Pointer Force among magnetic nanocylinders ordered in triangular arrays within a membrane. Black-Right-Pointing-Pointer Macroscopic effect on a membrane containing cylinders by applying an external magnetic field. Black-Right-Pointing-Pointer Membrane deformation due to magnetostatic interaction among cylinders.

  9. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    Science.gov (United States)

    Schey, Oscar W; Ellerbrock, Herman H , Jr

    1936-01-01

    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  10. Approximation by Cylinder Surfaces

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1997-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...... projection of the surface onto this plane, a reference curve is determined by use of methods for thinning of binary images. Finally, the cylinder surface is constructed as follows: the directrix of the cylinder surface is determined by a least squares method minimizing the distance to the points...... in the projection within a tolerance given by the reference curve, and the rulings are lines perpendicular to the projection plane. Application of the method in ship design is given....

  11. Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. F., E-mail: wang-lifeng@iapcm.ac.cn; Ye, W. H.; Liu, Jie; He, X. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Wu, J. F.; Zhang, W. Y. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Guo, H. Y. [Graduate School, China Academy of Engineering Physics, Beijing 100088 (China)

    2015-08-15

    In this research, a weakly nonlinear (WN) model has been developed considering the growth of a small perturbation on a cylindrical interface between two incompressible fluids which is subject to arbitrary radial motion. We derive evolution equations for the perturbation amplitude up to third order, which can depict the linear growth of the fundamental mode, the generation of the second and third harmonics, and the third-order (second-order) feedback to the fundamental mode (zero-order). WN solutions are obtained for a special uniformly convergent case. WN analyses are performed to address the dependence of interface profiles, amplitudes of inward-going and outward-going parts, and saturation amplitudes of linear growth of the fundamental mode on the Atwood number, the mode number (m), and the initial perturbation. The difference of WN evolution in cylindrical geometry from that in planar geometry is discussed in some detail. It is shown that interface profiles are determined mainly by the inward and outward motions rather than bubbles and spikes. The amplitudes of inward-going and outward-going parts are strongly dependent on the Atwood number and the initial perturbation. For low-mode perturbations, the linear growth of fundamental mode cannot be saturated by the third-order feedback. For fixed Atwood numbers and initial perturbations, the linear growth of fundamental mode can be saturated with increasing m. The saturation amplitude of linear growth of the fundamental mode is typically 0.2λ–0.6λ for m < 100, with λ being the perturbation wavelength. Thus, it should be included in applications where Bell-Plesset [G. I. Bell, Los Alamos Scientific Laboratory Report No. LA-1321, 1951; M. S. Plesset, J. Appl. Phys. 25, 96 (1954)] converging geometry effects play a pivotal role, such as inertial confinement fusion implosions.

  12. A new portable vibrator for plaster pouring: effect on the marginal fit at cylinder-abutment

    Directory of Open Access Journals (Sweden)

    Pâmela Cândida Aires Ribas de Andrade

    2012-10-01

    Full Text Available OBJECTIVE: The aim of this study was to test a new portable vibrator for plaster pouring (developed for this purpose, comparing the effect of its use on the accuracy of working cast of implant-supported restorations to the conventional vibrator. MATERIAL AND METHODS: From a master cast with 2 implants, 30 transfer moldings were made randomly and divided into three groups: Group I (GI: pouring performed in an outsourced dental laboratory with conventional plaster vibrator (10 casts, Group II (GII: pouring performed in the laboratory of the Federal University of Santa Catarina (UFSC with conventional plaster vibrator (10 casts and Group III (GIII: pouring performed with the portable vibrator fabricated for this study (10 casts. The position of the analogue and marginal adaptation of the infrastructure were verified by testing the single screw on the master model and on the working model. The measurement of misfit was blindly performed with a precision microscope and analyzing unit, Quadra-Check 200. The data were statistically analyzed by analysis of variance (ANOVA and the Holm-Sidak test (α=0.05. RESULTS: Means±standard deviations were as follows: GI: 19.19±4.73 µm; GII: 21.72±5.41 µm; GIII: 13.5±2.39 µm (P<0.05, with GIII significantly lower as compared to the other groups. CONCLUSION: Within the limitations of this study, it was concluded that a greater accuracy of working cast was achieved when a portable vibrator was used for casting molds.

  13. Casimir Energy for a Dielectric Cylinder

    CERN Document Server

    Cavero-Pelaez, I; Cavero-Pelaez, Ines; Milton, Kimball A.

    2004-01-01

    In this paper we calculate the Casimir energy for a dielectric-diamagnetic cylinder with the speed of light differing on the inside and outside. Although the result is in general divergent, special cases are meaningful. The well-known results for a uniform speed of light are reproduced. The self-stress on a purely dielectric cylinder is shown to vanish through second order in the deviation of the permittivity from its vacuum value, in agreement with the result calculated from the sum of van der Waals forces.

  14. Force

    CERN Document Server

    Graybill, George

    2007-01-01

    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  15. Unsteady Numerical Simulation of Flow around 2-D Circular Cylinder for High Reynolds Numbers

    Institute of Scientific and Technical Information of China (English)

    Yanhui Ai; Dakui Feng; Hengkui Ye; Lin Li

    2013-01-01

    In this paper,2-D computational analyses were conducted for unsteady high Reynolds number flows around a smooth circular cylinder in the supercritical and upper-transition flow regimes,i.e.8.21×104<Re<l.54×106.The calculations were performed by means of solving the 2-D Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a k-ε turbulence model.The calculated results,produced flow structure drag and lift coefficients,as well as Strouhal numbers.The findings were in good agreement with previous published data,which also supplied us with a good understanding of the flow across cylinders of different high Reynolds numbers.Meanwhile,an effective measure was presented to control the lift force on a cylinder,which points the way to decrease the vortex induced vibration of marine structure in future.

  16. The effect of keyboard keyswitch make force on applied force and finger flexor muscle activity.

    Science.gov (United States)

    Rempel, D; Serina, E; Klinenberg, E; Martin, B J; Armstrong, T J; Foulke, J A; Natarajan, S

    1997-08-01

    The design of the force-displacement characteristics or 'feel' of keyboard keyswitches has been guided by preference and performance data; there has been very little information on how switch 'feel' alters muscle activity or applied force. This is a laboratory-based repeated measures design experiment to evaluate the effect of computer keyboard keyswitch design on applied finger force and muscle activity during a typing task. Ten experienced typists typed on three keyboards which differed in keyswitch make force (0.34, 0.47 and 1.02 N) while applied fingertip force and finger flexor electromyograms were recorded. The keyboard testing order was randomized and subjects typed on each keyboard for three trials, while data was collected for a minimum of 80 keystrokes per trial. No differences in applied fingertip force or finger flexor EMG were observed during typing on keyboards with switch make force of 0.34 or 0.47 N. However, applied fingertip force increased by approximately 40% (p < 0.05) and EMG activity increased by approximately 20% (p < 0.05) when the keyswitch make force was increased from 0.47 to 1.02 N. These results suggest that, in order to minimize the biomechanical loads to forearm tendons and muscles of keyboard users, keyswitches with a make force of 0.47 N or less should be considered over switches with a make force of 1.02 N.

  17. Microstructure effects for Casimir forces in chiral metamaterials

    Science.gov (United States)

    McCauley, Alexander P.; Zhao, Rongkuo; Reid, M. T. Homer; Rodriguez, Alejandro W.; Zhou, Jiangfeng; Rosa, F. S. S.; Joannopoulos, John D.; Dalvit, D. A. R.; Soukoulis, Costas M.; Johnson, Steven G.

    2010-10-01

    We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. Although repulsion in the metamaterial regime is rigorously impossible, it is unknown whether a reduction in the attractive force can be achieved through suitable material engineering. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized “omega”-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e., proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. At separations where the homogeneous approximation is valid, in even the most ideal circumstances the effects of chirality are less than 10-4 of the total force, making them virtually undetectable in experiments.

  18. Effect of horizontal vibration on pile of cylinder avalanches as a pseudo-two dimensional granular system

    Science.gov (United States)

    Mardiansyah, Y.; Yulia; Khotimah, S. N.; Suprijadi; Viridi, S.

    2016-08-01

    Dynamics of pseudo-two dimensional granular material consisted of two layers cylinder piles positioned on top of a horizontally vibrated plate is reported in this work. It is aimed to observe structural change of the cylinder pile vibrated in certain frequency and amplitude. Dimensionless acceleration Γ= 4π2f2A/g (with g is gravitational acceleration), which is generally used in granular materials to observe transition between states, e.g. stable, rotating without slipping, rolling and slipping in Γ-f plane, does not work well for this system. For this system additional states for the piles can also be observed, e.g. stable and flowing states. Observations parameters are frequency f (measured in Hz) and amplitude A (measured in cm). These parameters are used to construct the A-f plane instead of Γ-f one.

  19. Flow Features of Three Side-by-side Circular Cylinders at Low Reynolds Number

    Directory of Open Access Journals (Sweden)

    Liu Junkao

    2016-01-01

    Full Text Available In order to study the fluctuation of kinetic parameter of cylinder matrix in incompressible stationary flow, the flow fluid around three side-by-side circular cylinders are simulated using Immersed Boundary–Lattice Boltzmann method (IB-LBM. Drag and lift force of the three cylinders are investigated as the interval between each cylinder varied from zero to five times of the cylinder diameter. Five flow patterns are defined according to the vortices structure in the downstream of the cylinders. Power spectrum analysis of lift force is developed to explain the vortex patterns. Through the research, we find the strength and phase of the gap flow play an important role in the vortex formatting process. The vortices shedding from different cylinders neutralize and combine in the near wake, contributing a lot to the variation of forces.

  20. Effect of a protruding rod-supported disk on the drag of a nose-controlled cylinder

    Science.gov (United States)

    Mikhalev, A. N.; Podlaskin, A. B.; Tomson, S. G.

    2008-04-01

    The drag C x of a cylinder of diameter D with a front protruding disk supported on a rod of length l has been studied as a function of the relative distance l/D under the conditions of high (supersonic) flight velocities. It is established that the optimum (minimum) drug C x exists, the value of which agrees with the results of numerical simulations.

  1. Numerical investigation of tandem-cylinder aerodynamic noise and its control with application to airframe noise

    Science.gov (United States)

    Eltaweel, Ahmed

    Prediction and reduction of airframe noise are critically important to the development of quieter civil transport aircraft. The key to noise reduction is a full understanding of the underlying noise source mechanisms. In this study, tandem cylinders in cross-flow as an idealization of a complex aircraft landing gear configuration are considered to investigate the noise generation and its reduction by flow control using single dielectric barrier discharge plasma actuators. The flow over tandem cylinders at ReD = 22, 000 with and without plasma actuation is computed using large-eddy simulation. The plasma effect is modeled as a body force obtained from a semi-empirical model. The flow statistics and surface pressure frequency spectra show excellent agreement with previous experimental measurements. For acoustic calculations, a boundary-element method is implemented to solve the convected Lighthill equation. The solution method is validated in a number of benchmark problems including flows over a cylinder, a rod-airfoil configuration, and a sphere. With validated flow field and acoustic solver, acoustic analysis is performed for the tandem-cylinder configuration to extend the experimental results and understand the mechanisms of noise generation and its control. Without flow control, the acoustic field is dominated by the interaction between the downstream cylinder and the upstream wake. Through suppression of vortex shedding from the upstream cylinder, the interaction noise is reduced drastically by the plasma flow control, and the vortex-shedding noise from the downstream cylinder becomes equally important. At a free-stream Mach number of 0.2, the peak sound pressure level is reduced by approximately 16 dB. This suggests the viability of plasma actuation for active control of airframe noise. The numerical investigation is extended to the noise from a realistic landing gear experimental model. Coarse-mesh computations are performed, and preliminary results are

  2. Effect of interparticle forces on the fluidization of fine particles

    Science.gov (United States)

    Baerns, M. G.; Ramaswami, D.

    1969-01-01

    Report studies elucidation and description of effect of interparticle forces on feasibility of gaseous fluidization of particles below 50 microns in diameter. Interparticle forces are determined by inclined-plane method. Study indicated that fluidizability is related to the interparticle adhesive force.

  3. Microstructure Effects for Casimir Forces in Chiral Metamaterials

    CERN Document Server

    McCauley, Alexander P; Reid, M T Homer; Rodriguez, Alejandro W; Zhou, Jiangfeng; Rosa, F S S; Joannopoulos, John D; Dalvit, D A R; Soukoulis, Costas M; Johnson, Steven G

    2010-01-01

    We examine a recent prediction for the chirality-dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. We compute the exact force for a chiral bent-cross pattern, as well as forces for an idealized "omega"-particle medium in the dilute approximation and identify the effects of structural inhomogeneity (i.e. proximity forces and anisotropy). We find that these microstructure effects dominate the force for separations where chirality was predicted to have a strong influence. To get observations of chirality free from microstructure effects, one must go to large separations where the effect of chirality is at most $\\sim10^{-4}$ of the total force.

  4. Axisymmetric planar cracks in finite hollow cylinders of transversely isotropic material: Part II—cutting method for finite cylinders

    Science.gov (United States)

    Pourseifi, M.; Faal, R. T.; Asadi, E.

    2017-06-01

    This paper is the outcome of a companion part I paper allocated to finite hollow cylinders of transversely isotropic material. The paper provides the solution for the crack tip stress intensity factors of a system of coaxial axisymmetric planar cracks in a transversely isotropic finite hollow cylinder. The lateral surfaces of the hollow cylinder are under two inner and outer self-equilibrating distributed shear loadings. First, the stress fields due to these loadings are given for both infinite and finite cylinders. In the next step, the state of stress in an infinite hollow cylinder with transversely isotropic material containing axisymmetric prismatic and radial dislocations is extracted from part I paper. Next, using the distributed dislocation technique, the mixed mode crack problem in finite cylinder is reduced to Cauchy-type singular integral equations for dislocation densities on the surfaces of the cracks. The problem of a cracked finite hollow cylinder is treated by cutting method; i.e., the infinite cylinder is cut to a finite one by slicing it using two annular axisymmetric cracks at its ends. The cutting method is validated by comparing the state of stress of a sliced intact infinite cylinder with that of an intact finite cylinder. The paper is furnished to several examples to study the effect of crack type and location in finite cylinders on the ensuing stress intensity factors of the cracks and the interaction between the cracks.

  5. Flow-induced vibrations of two tandem cylinders in a channel

    Directory of Open Access Journals (Sweden)

    Jiang Ren-Jie

    2012-01-01

    Full Text Available We numerically studied flow-induced vibrations of two tandem cylinders in transverse direction between two parallel walls. The effect of the horizontal separation between two cylinders, ranging from 1.1 to 10, on the motions of the cylinders and the flow structures were investigated and a variety of periodic and non-periodic vibration regimes were observed. The results show that when two cylinders are placed in close proximity to each other, compared with the case of an isolated cylinder, the gap flow plays an important role. As the separation ratio is increased, the fluid-structure interaction decouples and the cylinders behave as two isolated cylinders.

  6. On the flow in an annulus surrounding a whirling cylinder

    Science.gov (United States)

    Brennen, C.

    1976-01-01

    When fluid in an annulus between two cylinders is set in motion by whirling movements of one or both of the cylinders, dynamic forces are imposed by the fluid on the cylinders. Knowledge of these forces is frequently important, indeed often critical, to the engineer designing rotor systems or journal bearings. Quite general solutions of the Navier-Stokes equations are presented for this problem and are limited only by restrictions on the amplitude of the whirl motion. From these solutions, the forces are derived under a wide variety of circumstances, including large and small annular widths, high and low Reynolds numbers, and the presence and absence of a mean flow created by additional net rotation of one or both of the cylinders.

  7. Slip effects on flow, heat, and mass transfer of nanofluid over stretching horizontal cylinder in the prescence of suction/injection

    Directory of Open Access Journals (Sweden)

    Elbashbeshy Elsayed M.A.

    2016-01-01

    Full Text Available Two slip effects, Brownian diffusion and thermophoresis, on flow, heat, and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder in the presence of suction/injection are discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases and found to be in a good agreement.

  8. Lie Group Analysis on Brownian Motion and Thermophoresis Effect on Free Convective Boundary-Layer Flow on a Vertical Cylinder Embedded in a Nanofluid-Saturated Porous Medium

    Directory of Open Access Journals (Sweden)

    Mohammad Ferdows

    2015-01-01

    Full Text Available Natural convective boundary-layer flow of a nanofluid on a heated vertical cylinder embedded in a nanofluid-saturated porous medium is studied. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. Lie groups analysis is used to get the similarity transformations, which transform the governing partial differential equations to a system of ordinary differential equations. Two groups of similarity transformations are obtained. Numerical solutions of the resulting ordinary differential systems are obtained and discussed for various values of the governing parameters.

  9. Flow interaction between a streamwise oscillating cylinder and a downstream stationary cylinder

    Science.gov (United States)

    Xu, S. J.; Gan, L.; Zhou, Y.

    2016-11-01

    In this paper, we present some experimental results about the physical effects of a cylinder's streamwise oscillation motion on a downstream one in a tandem arrangement. The upstream cylinder undergoes a controlled simple harmonic oscillation at amplitudes A/ d = 0.2-0.8, where d is the cylinder diameter, and the frequency ratio of f_e/f_s = 0-3.0, where f_e is the cylinder oscillation frequency and f_s is the natural frequency of vortex shedding from a single stationary cylinder. Under these conditions, the vortex shedding is locked to the controlled oscillation motion. Flow visualisation using the planar laser-induced fluorescence and qualitative measurements using hot-wire anemometry reveal three distinct flow regimes behind the downstream cylinder. For f_e/f_s > (f_e/f_s)_c, where (f_e/f_s)_c is a critical frequency ratio which depends on A/ d and Reynolds number Re, a so-called SA-mode occurs. The upstream oscillating cylinder generates binary vortices symmetrically arranged about the centreline, each containing a pair of counter-rotating vortices, and the downstream cylinder sheds vortices alternately at 0.5f_e. For 0.7-1.0 < f_e/f_s < (f_e/f_s)_c a complex vortex street that consists of two outer rows of vortices generated by the oscillating cylinder and two inner rows of vortices shed from the downstream stationary cylinder, which is referred to as AA-mode. For 0.3-0.6 < f_e/f_s< 0.8-1.0, one single staggered vortex street (A-mode) is observed. It is also found that, when f_e/f_s is near unity, the streamwise interaction of the two cylinders gives rise to the most energetic wake in the cross-stream direction, in terms of its maximum width, and the wake is AA-mode-like. The effects of other parameters such as the spacing between the two cylinders, Re and A/ d on the flow pattern are also discussed in details. The observations are further compared to the stationary tandem cylinder cases.

  10. Active control of interior noise in a large scale cylinder using piezoelectric actuators

    Science.gov (United States)

    Lester, H. C.; Silcox, R. J.

    1992-07-01

    The noise reduction effectiveness of two types of control force actuator models has been analytically investigated: (1) a point actuator, and (2) an in-plane, piezoelectric actuator. The actuators were attached to the wall of a simply supported, elastic cylinder closed with rigid end caps. Control inputs to the actuators were determined such that the integrated square of the pressure over the interior of the vibrating cylinder was a minimum. Significant interior noise reductions were achieved for all actuator configurations, but especially for the structurally dominated response. Noise reduction of 9 dB to 26 dB were achieved using point force actuators, as well as localized and extended piezoelectric actuators. Control spillover was found to limit overall performance for all cases. However, the use of extended piezoelectric actuators was effective in reducing control spillover, without increasing the number of control degrees of freedom.

  11. Collective effects in the radiation pressure force

    CERN Document Server

    Bachelard, R; Guerin, W; Kaiser, R

    2016-01-01

    We discuss the role of diffuse, Mie and cooperative scattering on the radiation pressure force acting on the center of mass of a cloud of cold atoms. Even though a mean-field Ansatz (the `timed Dicke state'), previously derived from a cooperative scattering approach, has been shown to agree satisfactorily with experiments, diffuse scattering also describes very well most features of the radiation pressure force on large atomic clouds. We compare in detail an incoherent, random walk model for photons and a diffraction approach to the more complete description based on coherently coupled dipoles. We show that a cooperative scattering approach, although it provides a quite complete description of the scattering process, is not necessary to explain the previous experiments on the radiation pressure force.

  12. Cylinder valve packing nut studies

    Energy Technology Data Exchange (ETDEWEB)

    Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  13. Steady viscous flows in an annulus between two cylinders produced by vibrations of the inner cylinder

    CERN Document Server

    Ilin, K

    2010-01-01

    We study the steady streaming between two infinitely long circular cylinders produced by small amplitude transverse vibrations of the inner cylinder about the axis of the outer cylinder. The Vishik-Lyusternik method is employed to construct an asymptotic expansion of the solution of the Navier-Stokes equations in the limit of high-frequency vibrations for Reynolds numbers of order of unity. The effect of the Stokes drift of fluid particles is also studied. It is shown that it is nonzero not only within the boundary layers but also in higher order terms of the expansion of the averaged outer flow.

  14. Rolling Cylinder Phase 1

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Taraborrelli, Valeria Taraborrelli

    Margheritini and Valeria Taraborrelli(valeria.taraborrelli@hotmail.it) with a total of 3 day visit from the developers. Laboratory tests in irregular waves will be performed by Lucia Margheritini. The report is aimed at the first stage testing of the Rolling Cylinder wave energy device. This phase includes...

  15. Effect of the measurement size on the robustness of the assessment of the features specific for cylinder liner surfaces

    Science.gov (United States)

    Dimkovski, Z.; Ohlsson, R.; Rosén, B.-G.

    2014-01-01

    The quality of the cylinder liner surface is of great importance due to its impact on the fuel/oil consumption and emissions of the internal combustion engine. A good liner function depends on the size and distribution of the deep honing grooves and the amount of the cold work material (Blechmantel) left inside the grooves after finishing. A fast evaluation of these features requires optical three-dimensional measurements with a large area and good resolution, but many interferometers used today have limited resolution when measuring larger areas. To find out how the measurement size and resolution would affect the quantification and the variation of the parameters, two objectives, 2.5 × and 10 × , were used for measuring a cylinder liner from a truck engine. The Blechmantel was of special interest as it first comes into contact with piston/rings, detaches as particles and wears the running surfaces. The 2.5 × objective showed more robust assessment than the 10 × one, manifested by a lower coefficient of variation for the parameters describing the features: Blechmantel, groove width and height, groove balance and number of grooves. This means that fewer measurements are required if a 2.5 × objective is used in production and hence the time and cost of the liner would be decreased.

  16. Size Effects in Residual Stress Formation during Quenching of Cylinders Made of Hot-Work Tool Steel

    Directory of Open Access Journals (Sweden)

    Manuel Schemmel

    2015-01-01

    Full Text Available The present work investigates the residual stress formation and the evolution of phase fractions during the quenching process of cylindrical specimens of different sizes. The cylinders are made of hot-work tool steel grade X36CrMoV5-1. A phase transformation kinetic model in combination with a thermomechanical model is used to describe the quenching process. Two phase transformations are considered for developing a modelling scheme: the austenite-to-martensite transformation and the austenite-to-bainite transformation. The focus lies on the complex austenite-to-bainite transformation which can be observed at low cooling rates. For an appropriate description of the phase transformation behaviour nucleation and growth of bainite are taken into account. The thermomechanical model contains thermophysical data and flow curves for each phase. Transformation induced plasticity (TRIP is modelled by considering phase dependent Greenwood-Johnson parameters for martensite and bainite, respectively. The influence of component size on residual stress formation is investigated by the finite element package Abaqus. Finally, for one cylinder size the simulation results are validated by X-ray stress measurements.

  17. THE EXPERIMENT WITH FARADAY CYLINDER

    Institute of Scientific and Technical Information of China (English)

    薛英

    2004-01-01

    Suppose there are two electricity testers, A and B(Figure A) . And a metal cylinder C which is almost closed (called Faraday Cylinder)is fixed to tester B, making both tester B and cylinder C charged. As a result, the aluminium foil on tester B opens.

  18. Total aerosol effect: forcing or radiative flux perturbation?

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  19. Effects of nonlinear forces on dynamic mode atomic force microscopy and spectroscopy.

    Science.gov (United States)

    Das, Soma; Sreeram, P A; Raychaudhuri, A K

    2007-06-01

    In this paper, we describe the effects of nonlinear tip-sample forces on dynamic mode atomic force microscopy and spectroscopy. The jumps and hysteresis observed in the vibration amplitude (A) versus tip-sample distance (h) curves have been traced to bistability in the resonance curve. A numerical analysis of the basic dynamic equation was used to explain the hysteresis in the experimental curve. It has been found that the location of the hysteresis in the A-h curve depends on the frequency of the forced oscillation relative to the natural frequency of the cantilever.

  20. Thermal shock in a circumferentially cracked hollow cylinder with cladding

    Science.gov (United States)

    Nied, H. F.

    1984-01-01

    An theoretical analysis is presented which demonstrates the effect of cladding on the thermal resistance of a circumferentially cracked hollow cylinder. The cladding is assumed to be bonded to the inner wall of the hollow cylinder. The axisymmetric circumferential crack may be either embedded in the cylinder wall or may be an edge crack which passes through the clad and opens into the inner wall of the hollow cylinder. The problem is formulated mathematically and a solution is found which is in the form of a single integral equation. The integral equation is solved numerically and yields estimates of transient temperature distributions, thermal stresses in the uncracked cylinder, and stress intensity factors as a function of time for various cladding thickness to cylinder wall thickness ratios. It is shown that yielding of the clad under certain conditions can result in a reduction in the magnitude of the stress intensity factor for the crack tip in the elastic base material.

  1. Chiral effective field theory for nuclear forces: Achievements and challenges

    Directory of Open Access Journals (Sweden)

    Machleidt R.

    2014-03-01

    Full Text Available I start with a historical review of the theories of nuclear forces and then shift to the main focus, which is the chiral effective field theory approach to nuclear forces. I summarize the current status of this approach and discuss the most important open issues: the proper renormalization of the chiral two-nucleon potential and sub-leading three-nucleon forces.

  2. EC Hidraulic Drive Cylinder Relief Vlave Test

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; /Fermilab

    1991-04-03

    This engineering note documents the testing of the set pressure of the EC hydraulic drive cylinder relief valve. The purpose of the relief valve is to provide a safety measure in the event that oil becomes trapped in the rod side of the cylinder and pressure is applied to the cap side. The note includes an explanation of the procedure used and a summary of the result of the testing done on February 14, 1991 by Gary Trotter. The result was that the cylinder relief valve relieved at the correct set pressure of 10,500 psig. The basic concern is for the protection of the cylinder. The pump is capable of providing up to 10,500 psi of pressure to either side of the cylinder. The cylinder is rated for 10,500 psi. Under normal operating conditions, the valves would be open, and the pumping pressure would automatically flow oil into one side, and remove oil from the other side. If, however, the valve for the other side was closed, so that oil could not be removed, then the pressure would build in that side. If the rod side is pressurized to the maximum pump pressure of 10,500 psi, the cross sectional area ratio of 2.29 results in a pressure of approximately 4600 psi in the cap side, which is well under the rated pressure. If, however, the cap side is pressurized to 10,500 psi, the cross sectional area would produce a pressure of approximately 24,000 psi in the rod side, which could damage the cylinder. Therefore, the pressure on the rod side must be limited to the rated pressure of 10,500 psi. In reality, the maximum operating force on the piston would be under 11,000 Ibs., which would result in the maximum cylinder pressure being under 8000 psi to the rod side, and under 3500 psi to the cap side. Therefore, the relief is only needed as a safety precaution in the case that oil becomes trapped.

  3. Quantum phase transition in ultra small doubly connected superconducting cylinders

    Science.gov (United States)

    Sternfeld, I.; Koret, R.; Shtrikman, H.; Tsukernik, A.; Karpovski, M.; Palevski, A.

    2008-02-01

    The kinetic energy of Cooper pairs, in doubly connected superconducting cylinders, is a function of the applied flux and the ratio between the diameter of the cylinder and the zero temperature coherence length d/ ξ(0). If d >ξ(0) the known Little-Parks oscillations are observed. On the other hand if d ξ(0), we observed the LP oscillations. In the Al cylinders we did not observe a transition to the superconducting state due to the proximity effect, resulted from an Au layer coating the Al. However, we did observe Altshuler-Aronov-Spivak (h/2e) oscillations in these cylinders.

  4. Effects of material properties on the competition mechanism of heat transfer of a granular bed in rotary cylinders

    Institute of Scientific and Technical Information of China (English)

    Xie Zhi-Yin; Feng Jun-Xiao

    2013-01-01

    Mixing and heat transfer processes of the granular materials within rotary cylinders play a key role in industrial processes.The numerical simulation is carried out by using the discrete element method (DEM) to investigate the influences of material properties on the bed mixing and heat transfer process,including heat conductivity,heat capacity,and shear modulus.Moreover,a new Péclet number is derived to determine the dominant mechanism of the heating rate within the particle bed,which is directly related to thermal and mechanical properties.The system exhibits a faster heating rate with the increase of ratio of thermal conductivity and heat capacity,or the decrease of shear modulus when inter-particle conduction dominates the heating rate; conversely,it shows a fast-mixing bed when particle convection governs the heating rate.The simulation results show good agreement with the theoretical predictions.

  5. Effect of fatigue/ageing on the lithium distribution in cylinder-type Li-ion batteries

    Science.gov (United States)

    Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.; Senyshyn, A.

    2017-04-01

    The lithium concentration in the graphite anode of fatigued (cycled 1000 times at 25 °C) Li-ion cell of 18650-type has been probed non-destructively by spatially resolved neutron diffraction. The amount x of Li in LixC6 has been determined in a central plane of a cylinder-type Li-ion cell. A radial mesh with a gauge volume of 2 × 2 × 20 mm3 was used. Besides the evidently lower lithiation grade, caused by a lack of free movable lithium and a loss of electrolyte, a development of fatigue-driven spatial lithium inhomogeneities has been observed in radial direction. Observed changes have been discussed in light of their correlations to an increase of the internal cell resistance and to a change of the electrolyte concentration.

  6. Flow past rotating and stationary circular cylinders near a plane screen. II - Characteristics of flow past a stationary cylinder

    Science.gov (United States)

    Kovalenko, V. M.; Byehkov, N. M.; Kisel, G. A.; Dikovskaia, N. D.

    1984-03-01

    Measurements have been made of pressure distributions and pulsations in a cross flow past a circular cylinder placed near a plane screen of finite length. The experiments reported here have been carried out under low turbulence conditions over a range of Reynolds numbers that includes the critical values. The boundary layer separation points and the evolution of the front critical point and other characteristic zones with the distance to the screen are determined. The components of the aerodynamic force acting on the cylinder and the Strouhal number are calculated on the basis of the predominant pulsation frequencies on the cylinder.

  7. Stability of Flow around a Cylinder in Plane Poiseuille Flow

    Science.gov (United States)

    Dou, Hua-Shu; Ben, An-Qing; Fluid Mechanics Research Team

    2013-11-01

    Simulation of Navier-Stokes equations is carried out to study the stability of flow around a cylinder in plane Poiseuille flow. The energy gradient method is employed to analyze the mechanism of instability of cylinder wake. The ratio of the channel width to the cylinder diameter is 30, and the Reynolds number based on the cylinder diameter and incoming centerline velocity is 26 and 100, respectively. The incoming flow is given as being laminar. It is found that the instability of the cylinder wake, starting near the front stagnation point upstream. The recirculation zone behind the cylinder has no effect on the stability of the wake. In the wake behind the recirculation zone, the flow stability is controlled by the energy gradient in the shear layer along the two sides of the wake. At high Re, the energy gradient of averaged flow in the channel interacts with the wake vortex, strengthening the wake vortex structure. Due to the large ratio of the channel width to the cylinder diameter, the disturbance caused by the cylinder mainly occurs in the vicinity of the centerline and has little effect on the flow near the wall. The velocity profile on the two sides of the cylinder wake in the downstream channel remains laminar (parabolic profile). Professor in Fluid Mechanics; AIAA Associate Fellow.

  8. Simulation of Effects of the Saffman Force and the Magnus Force on Sand Saltation in Turbulent Flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhongquan C.; Zou, Xueyong; Yang, Xiaofan; Cheng, Hong

    2011-12-11

    The effects of both the Saffman force and Magnus force on sand saltation are investigated. Turbulent flows in a channel and over a barchans dune are considered with sand particles injected into the flow. The results show that both of the forces increase the height and skipping distance of sand saltation, with the Magnus force giving more significant effect on the height. These forces can also increase the sand settling at the lee side of the barchans dune.

  9. Effect of various periodic forces on Duffing oscillator

    Indian Academy of Sciences (India)

    V Ravichandran; V Chinnathambi; S Rajasekar

    2006-08-01

    Bifurcations and chaos in the ubiquitous Duffing oscillator equation with different external periodic forces are studied numerically. The external periodic forces considered are sine wave, square wave, rectified sine wave, symmetric saw-tooth wave, asymmetric saw-tooth wave, rectangular wave with amplitude-dependent width and modulus of sine wave. Period doubling bifurcations, chaos, intermittency, periodic windows and reverse period doubling bifurcations are found to occur due to the applied forces. A comparative study of the effect of various forces is performed.

  10. Effects of Magnet Size and Geometry on Magnetic Levitation Force

    Institute of Scientific and Technical Information of China (English)

    M. K. Alqadi; H. M. Al-khateeb; F. Y. Alzoubi; N. Y. Ayoub

    2007-01-01

    We obtain analytical relations for the levitation force as a function of dimensions of the superconductor-magnet system. The force has been calculated on the basis of the dipole-dipole interaction model.The effect of thickness of the superconductor on the levitation force is investigated. The results show that the influence of geometry and thickness of the magnet becomes significantly large at small levitation distances. Furthermore, approximating the permanent magnet as a point dipole results in an inaccurate estimation of the levitation force.

  11. Human Health Effects, Task Force Assessment, Preliminary Report.

    Science.gov (United States)

    Aronow, Wilbert S.; And Others

    Presented in this preliminary report is one of seven assessments conducted by a special task force of Project Clean Air, the Human Health Effects Task Force. The reports summarize assessments of the state of knowledge on various air pollution problems, particularly in California, and make tentative recommendations as to what the University of…

  12. Kinesio Taping effects on knee extension force among soccer players

    Directory of Open Access Journals (Sweden)

    Maysa V. G. B. Serra

    2015-04-01

    Full Text Available Background : Kinesio Taping (KT is widely used, however the effects of KT on muscle activation and force are contradictory. Objective : To evaluate the effects of KT on knee extension force in soccer players. Method: This is a clinical trial study design. Thirty-four subjects performed two maximal isometric voluntary contractions of the lower limbs pre, immediately post, and 24 hours after tape application on the lower limbs. Both lower limbs were taped, using K-Tape and 3M Micropore tape randomly on the right and left thighs of the participants. Isometric knee extension force was measured for dominant side using a strain gauge. The following variables were assessed: peak force, time to peak force, rate of force development until peak force, time to peak rate of force development, and 200 ms pulse. Results : There were no statistically significant differences in the variables assessed between KT and Micropore conditions (F=0.645, p=0.666 or among testing sessions (pre, post, and 24h after (F=0.528, p=0.868, and there was no statistical significance (F=0.271, p=0.986 for interaction between tape conditions and testing session. Conclusion: KT did not affect the force-related measures assessed immediately and 24 hours after the KT application compared with Micropore application, during maximal isometric voluntary knee extension.

  13. Numerical simulation of low-Reynolds number flows past two tandem cylinders of different diameters

    Directory of Open Access Journals (Sweden)

    Yong-tao WANG

    2013-10-01

    Full Text Available The flow past two tandem circular cylinders of different diameters was simulated using the ?nite volume method. The diameter of the downstream main cylinder (D was kept constant, and the diameter of the upstream control cylinder (d varied from 0.1D to D. The studied Reynolds numbers based on the diameter of the downstream main cylinder were 100 and 150. The gap between the control cylinder and the main cylinder (G ranged from 0.1D to 4D. It is concluded that the gap-to-diameter ratio (G/D and the diameter ratio between the two cylinders (d/D have important effects on the drag and lift coef?cients, pressure distributions around the cylinders, vortex shedding frequencies from the two cylinders, and ?ow characteristics.

  14. Active linear mass absorber technology for the reduction of noise and vibration at a cylinder deactivation vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Rottner, T.; Eckel, H.G. [Vibracoustic GmbH und Co. KG (Germany); Kim, J.H. [Hyundai Motor Company (Korea); Klatt, C. [Freudenberg New Technologies, Weinheim (Germany)

    2007-07-01

    Cylinder deactivation is a suitable strategy for reducing the fuel consumption of a vehicle. In this particular case, a V6 engine runs under partial load conditions in a restricted engine speed range as an inline three cylinder engine by deactivating an entire bank. As a side effect, noise and vibrations in the deactivated condition deteriorate significantly. For comfort reasons, however, a similar noise and vibration level for both - full and deactivated engine running condition - is desired. To achieve this, active technology is used. In the cylinder deactivation mode, two active linear mass aborbers installed at the engine mounts cancel out the main disturbing engine excitation orders of the engine mount forces. As a result, the noise and vibration in the passenger compartment is significantly reduced. (orig.)

  15. Vortex noise from nonrotating cylinders and airfoils

    Science.gov (United States)

    Schlinker, R. H.; Amiet, R. K.; Fink, M. R.

    1976-01-01

    An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.

  16. Modeling Heat and Mass Transfer from Fabric-Covered Cylinders

    Directory of Open Access Journals (Sweden)

    Phillip Gibson

    2009-03-01

    Full Text Available Fabric-covered cylinders are convenient analogs forclothing systems. The geometry is well defined andincludes many of the effects that are important ingarments. Fabric-covered cylinder models are usedin conjunction with laboratory measurements ofmaterial properties to calculate heat and mass transferproperties of clothing under specific conditions ofenvironmental wind speed, temperature, and relativehumidity.

  17. modelingthe effect the effect of contact and seepage forces of ...

    African Journals Online (AJOL)

    eobe

    NIGERIA. 2 DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF NIGERIA, NSUKKA. ... This research work has investigated the contribution of contact force and seepage force to the .... iii Operational and maintenance failures. With the ...

  18. Effective electromagnetic forces in thin sheet metal specimen

    Directory of Open Access Journals (Sweden)

    Langstädtler L.

    2015-01-01

    Full Text Available Electromagnetic forming is mainly investigated for the macro world as the body forces in this high speed process are decreasing with the volume of the specimen. For micro metal sheets different effects are observed which make an analysis of the acting forces more difficult. Hence, the validity of process simulations for electromagnetic forming is still limited. In this research the effective electromagnetic force on thin EN AW-1050A (Al99.5 sheet metals is investigated by varying the loading energy EC, the ration sR between sheet thickness and skin depth, the sheets width b and the distance dC between passive tool and sheet metal.

  19. Poiseuille flow past a nanoscale cylinder in a slit channel: Lubrication theory versus molecular dynamics analysis

    CERN Document Server

    Rahmani, Amir M; Jupiterwala, Mehlam; Colosqui, Carlos E

    2015-01-01

    Plane Poiseuille flow past a nanoscale cylinder that is arbitrarily confined (i.e., symmetrically or asymmetrically confined) in a slit channel is studied via hydrodynamic lubrication theory and molecular dynamics simulations, considering cases where the cylinder remains static or undergoes thermal motion. Lubrication theory predictions for the drag force and volumetric flow rate are in close agreement with molecular dynamics simulations of flows having molecularly thin lubrication gaps, despite the presence of significant structural forces induced by the crystalline structure of the modeled solid. While the maximum drag force is observed in symmetric confinement, i.e., when the cylinder is equidistant from both channel walls, the drag decays significantly as the cylinder moves away from the channel centerline and approaches a wall. Hence, significant reductions in the mean drag force on the cylinder and hydraulic resistance of the channel can be observed when thermal motion induces random off-center displace...

  20. Finite Difference Analysis of Unsteady MHD Free Convective Flow over Moving Semi-Infinite Vertical Cylinder with Chemical Reaction and Temperature Oscillation Effects

    Directory of Open Access Journals (Sweden)

    Rajesh Vemula

    2016-01-01

    Full Text Available In the present study, the effects of chemical reaction on unsteady free convection flow of a viscous, electrically conducting, and incompressible fluid past a moving semi-infinite vertical cylinder with mass transfer and temperature oscillation is studied. The dimensionless governing partial differential equations are solved using an implicit finite-difference method of Crank–Nicolson type, which is stable and convergent. The transient velocity, transient temperature, and transient concentration profiles are studied for various parameters. The local as well as average skin-friction, Nusselt number, and Sherwood number are also analyzed and presented graphically. The results are compared with available computations in the literature, and are found to be in good agreement.

  1. [The effect of public self-consciousness on forced laughter].

    Science.gov (United States)

    Oshimi, Teruo

    2002-08-01

    The purpose of this study was to investigate the effect of public self-consciousness on forced laughter. Participants (N = 409) were asked to imagine a group of either friends or acquaintances, and then to indicate how often he or she exhibited forced laughter toward the group members. They also completed Self-Consciousness Scale (Fenigstein, Scheier, & Buss, 1975). Results indicated that persons with high public self-consciousness reported more frequent expressions of all types of forced laughter--expression control, intimacy maintenance, action control, and affect manipulation--than those who were low, regardless of interpersonal intimacy level. Besides public self-consciousness, both gender and intimate feeling toward group members influenced frequency of forced laughter. Implications for the nature of public self-consciousness and forced laughter were discussed.

  2. Wave Loads on Cylinders

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Frigaard, Peter

    1989-01-01

    Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....

  3. A PORTABLE DENTAL STERILIZING CYLINDER

    Science.gov (United States)

    The report describes an aluminum cylinder in which dental instruments could be sterilized under emergency field conditions and at the same time be...protected against corrosion. The procedure involves loading the cylinder with dental instruments, flushing it with ethylene oxide-Freon gas, closing it...and then immersing it in boiling water for l hour. In preliminary experiments with a prototype of the sterilizing cylinder, dental instruments were

  4. Regimes of flow induced vibration for tandem, tethered cylinders

    Science.gov (United States)

    Nave, Gary; Stremler, Mark

    2015-11-01

    In the wake of a bluff body, there are a number of dynamic response regimes that exist for a trailing bluff body depending on spacing, structural restoring forces, and the mass-damping parameter m* ζ . For tandem cylinders with low values of m* ζ , two such regimes of motion are Gap Flow Switching and Wake Induced Vibration. In this study, we consider the dynamics of a single degree-of-freedom rigid cylinder in the wake of another in these regimes for a variety of center-to-center cylinder spacings (3-5 diameters) and Reynolds numbers (4,000-11,000). The system consists of a trailing cylinder constrained to a circular arc around a fixed leading cylinder, which, for small angle displacements, bears a close resemblance to the transversely oscillating cylinders found more commonly in existing literature. From experiments on this system, we compare and contrast the dynamic response within these two regimes. Our results show sustained oscillations in the absence of a structural restoring force in all cases, providing experimental support for the wake stiffness assumption, which is based on the mean lift toward the center line of flow.

  5. Ratchet effect on a relativistic particle driven by external forces

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, Niurka R [Departamento de Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, Calle Virgen de Africa 7, E-41011 Sevilla (Spain); Alvarez-Nodarse, Renato [Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Sevilla, Apdo 1160, E-41080 Sevilla (Spain); Cuesta, Jose A, E-mail: niurka@us.es, E-mail: ran@us.es, E-mail: cuesta@math.uc3m.es [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes, Madrid (Spain)

    2011-10-21

    We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)

  6. Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping

    Energy Technology Data Exchange (ETDEWEB)

    Megaritis, A. [Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH (United Kingdom); Yap, D. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Wyszynski, M.L. [Mechanical and Manufacturing Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2007-12-15

    There is increased interest worldwide in renewable engine fuels as well as in new combustion technologies. Bioethanol is one of the alternative fuels that have been used successfully in spark ignition engines. A combustion technology that currently attracts a lot of interest is the homogeneous charge compression ignition (HCCI) combustion, which has shown potential for low nitrogen oxides emissions with no particulate matter formation. The authors have shown previously that applying forced induction to bioethanol HCCI with residual gas trapping results in an extended load range compared to naturally aspirated operation. However, at high boost pressures, high cylinder pressure rise rates develop. Work by other researchers has shown that direct injection of water can be used as a combustion control method. The present work explores water blending as a way that might have an effect on combustion in order to lower the maximum pressure rise rates and further improve emissions. The obtained experimental results show that in contrast to variable rate direct injection of water, fixed rate water-ethanol blending is counterproductive for the reduction of pressure rise rates at higher loads. In addition, increasing the water content in ethanol results in reduction of the effective load range and increased emissions. (author)

  7. Turbulent fluid-structure interaction of water-entry/exit of a rotating circular cylinder using SPH method

    Science.gov (United States)

    Ghazanfarian, Jafar; Saghatchi, Roozbeh; Gorji-Bandpy, Mofid

    2015-12-01

    This paper studies the two-dimensional (2D) water-entry and exit of a rotating circular cylinder using the Sub-Particle Scale (SPS) turbulence model of a Lagrangian particle-based Smoothed-Particle Hydrodynamics (SPH) method. The full Navier-Stokes (NS) equations along with the continuity have been solved as the governing equations of the problem. The accuracy of the numerical code is verified using the case of water-entry and exit of a nonrotating circular cylinder. The numerical simulations of water-entry and exit of the rotating circular cylinder are performed at Froude numbers of 2, 5, 8, and specific gravities of 0.25, 0.5, 0.75, 1, 1.75, rotating at the dimensionless rates of 0, 0.25, 0.5, 0.75. The effect of governing parameters and vortex shedding behind the cylinder on the trajectory curves, velocity components in the flow field, and the deformation of free surface for both cases have been investigated in detail. It is seen that the rotation has a great effect on the curvature of the trajectory path and velocity components in water-entry and exit cases due to the interaction of imposed lift and drag forces with the inertia force.

  8. Damping Transversal Vibrations of the Offset Cylinder of the Offset Press

    Directory of Open Access Journals (Sweden)

    Eglė Šalvienė

    2012-01-01

    Full Text Available Investigation into the influence of a dynamic vibration damper on the intensity of the absolute forced transversal vibrations of the blanket cylinder of the web printing offset press was performed. The analytical and numerical examination of the dynamic model of the cylinder was done. The obtained results have disclosed that the application of the damper decreases the intensity of printing cylinder vibrations.Article in Lithuanian

  9. A note on the numerical simulations of flow past a wavy square-section cylinder

    Institute of Scientific and Technical Information of China (English)

    G.C.Ling; L.M.Lin

    2008-01-01

    The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations.The extra terms.due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations,are correctly derived,and the incorrect ones in the previous literature are pointed out and analyzed.Furthermore,the relationship between the vorticity,especially on the cylinder surface,and the disturbance is derived and explained theoretically.The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006.0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body.Numerical results have shedding is suppressed completely for Re=100,while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180.The drag reduction is up to 21.6%at Re=100 and 25.7%at Re=180 for the high waviness of 0.167 compared with the non-wavy cylinder.The lift and the Strouhal number varied with difierent Reynolds numbers and the wave steepness are also obtained.

  10. Solvent effects on the AIBN forced degradation of cumene: Implications for forced degradation practices.

    Science.gov (United States)

    Nelson, Eric D; Thompson, Gina M; Yao, Ye; Flanagan, Holly M; Harmon, Paul A

    2009-03-01

    Solvent effects on the AIBN and ACVA forced degradation of cumene are explored. The degradant formation rates of the three cumene oxidative degradants, cumene hydroperoxide, acetophenone, and 2-phenyl-2-propanol are reported. The relative abundance and ratios of these three degradants provide insight into the fate of the peroxy radical oxidants generated by the forced stress system, and suggest that alkoxy radicals are actually a significant source of the observed reactivity. The presence of even 1% methanol in the forced stress solvent significantly quenches this alkoxy radical reactivity, dramatically reducing the overall degradation rate and leaving cumene hydroperoxide as the major product of the oxidation reaction. The origin of this significant solvent effect on the oxidation product distribution is shown to be related to the preferential H-atom abstraction from methanol and its trace impurities by any alkoxy radicals present in the reaction solution. The implications for these observations are explored with the intent of producing more predictive oxidative forced stress experiments.

  11. Effects of wake forces on ERL

    CERN Document Server

    Shobuda, Y

    2003-01-01

    The most important reason that limits the beam current in ERL is the beam instability due to higher order mode (HOM) in accelerating cavities. It has been known that we can increase the threshold current by randomizing the frequencies of transverse HOM. It is possible to create the frequency spread intentionally without relying on the fabrication errors. The threshold current is increased most efficiently when this frequency spread obeys the Gaussian distribution. The ordering of cavities along the linac is also important, because each cavity has different frequency. Basically, the frequency deviation must be large at both the entrance and exit of linac. Longitudinal effect of fundamental mode is also important. The beam energy decreases until the head of the beam return to the linac and it goes up slowly. In order to avoid this transient effect, the beam must be injected into ERL adiabatically.

  12. Chiral Magnetic Effect Task Force Report

    CERN Document Server

    Skokov, Vladimir; Koch, Volker; Schlichting, Soeren; Thomas, Jim; Voloshin, Sergei; Wang, Gang; Yee, Ho-Ung

    2016-01-01

    In this report, we briefly examine the current status of the study of the chiral magnetic effect including theory and experimental progress. We recommend future strategies for resolving uncertainties in interpretation including recommendations for theoretical work, recommendations for measurements based on data collected in the past five years, and recommendations for beam use in the coming years of RHIC. We have specifically investigated the case for colliding nuclear isobars (nuclei with the same mass but different charge) and find the case compelling. We recommend that a program of nuclear isobar collisions to isolate the chiral magnetic effect from background sources be placed as a high priority item in the strategy for completing the RHIC mission.

  13. Turbulent Taylor-Couette flow with stationary inner cylinder

    CERN Document Server

    Ostilla-Monico, Rodolfo; Lohse, Detlef

    2016-01-01

    A series of direct numerical simulations of Taylor-Couette (TC) flow, the flow between two coaxial cylinders, with the outer cylinder rotating and the inner one fixed, were performed. Three cases, with outer cylinder Reynolds numbers $Re_o$ of $Re_o=5.5\\cdot10^4$, $Re_o=1.1\\cdot10^5$ and $Re_o=2.2\\cdot10^5$ were considered. The radius ratio $\\eta=r_i/r_o$ was fixed to $\\eta=0.909$ to mitigate the effects of curvature. The vertical aspect ratio $\\Gamma$ was fixed to $\\Gamma=2.09$. Being linearly stable, outer cylinder rotation TC flow is known to have very different behavior than pure inner cylinder rotation TC flow. Here, we find that the flow nonetheless becomes turbulent, but the torque required to drive the cylinders and level of velocity fluctuations was found to be smaller than those for pure inner cylinder rotation at comparable Reynolds numbers. The mean angular momentum profiles showed a large gradient in the bulk, instead of the constant angular momentum profiles of pure inner cylinder rotation. The ...

  14. Poiseuille flow-induced vibrations of two cylinders in tandem

    Science.gov (United States)

    Lin, Jianzhong; Jiang, Renjie; Chen, Zhongli; Ku, Xiaoke

    2013-07-01

    Laminar flows past two tandem cylinders which are free to move transversely in a parallel-wall channel were studied numerically by the lattice Boltzmann method. With fixed Reynolds number Re=100, blockage ratio β=1/4 and structural damping ξ=0, the effect of streamwise separation between two cylinders at a range of S/D=[1.1, 10] on the motions of cylinders and fluids was studied for both mass ratios of m(*)=1 and m(*)=0.1. A variety of distinct vibration regimes involving periodic, quasi-periodic and non-periodic vibrations with corresponding flow patterns were observed. A detailed analysis of the vibration amplitudes, vibration frequencies and relative equilibrium positions for both mass ratios demonstrated that as S/D increases, the interaction of the two cylinders first enhances and then reduces. In the strong coupling regime, both cylinders oscillate periodically around the centerline of the channel with large vibration amplitudes and high vibration frequencies. By comparing with the case of an isolated cylinder, a further study indicated that the gap flow plays an important role in such a dynamic system, and the vortex cores formation behind the front cylinder causes the interaction of the cylinders decouple rapidly. Based on the present observations, such a dynamic model system can be considered as a novel type of vortex-induced vibrations (VIV) and is expected to find applications in fluid mixing and heat transfer.

  15. Acoustic resonances in cylinder bundles oscillating in a compressibile fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.H.; Raptis, A.C.

    1984-12-01

    This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determined from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.

  16. Scattering characteristics of conducting cylinder coated with nonuniform magnetized ferrite

    Institute of Scientific and Technical Information of China (English)

    Hu Bin-Jie; Edward Yung Kai-Ning; Zhang Jun; Toutain Serge

    2005-01-01

    An analytical technique, referred to as the scattering matrix method (SMM), is developed to analyse the scattering of a planar wave from a conducting cylinder coated with nonuniform magnetized ferrite. The SMM solution for the nonuniform ferrite coating can be reduced to the expressions for the scattering and penetrated coefficients in four particular cases: nonuniform magnetized ferrite cylinder, uniform magnetized ferrite-coated conducting cylinder, uniform ferrite cylinder as well as homogeneous dielectric-coated conducting cylinder. The resonant condition for the nonuniform ferrite coating is obtained. The distinctive differences in scattering between the nonuniform ferrite coating and the nonuniform dielectric coating are demonstrated. The effects of applied magnetic fields and wave frequencies on the scattering characteristics for two types of the linear profiles are revealed.

  17. Effect of Excess Gravitational Force on Cultured Myotubes in Vitro

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2013-06-01

    Full Text Available An effect of an excess gravitational force on cultured myoblasts has been studied in an experimental system with centrifugal force in vitro. Mouse myoblasts (C2C12 were seeded on a culture dish of 35 mm diameter, and cultured in the Dulbecco's Modified Eagle's Medium until the sub-confluent condition. To apply the excess gravitational force on the cultured cells, the dish was set in a conventional centrifugal machine. Constant gravitational force was applied to the cultured cells for three hours. Variations were made on the gravitational force (6 G, 10 G, 100 G, 500 G, and 800 G with control of the rotational speed of the rotator in the centrifugal machine. Morphology of the cells was observed with a phasecontrast microscope for eight days. The experimental results show that the myotube thickens day by day after the exposure to the excess gravitational force field. The results also show that the higher excess gravitational force thickens myotubes. The microscopic study shows that myotubes thicken with fusion each other.

  18. Effective source approach to self-force calculations

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Ian [Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Wardell, Barry [Max-Planck-Institut fuer Gravitationphysik, Albert-Einstein-Institut, 14476 Potsdam (Germany); Diener, Peter, E-mail: ianvega@uoguelph.ca, E-mail: barry.wardell@aei.mpg.de, E-mail: diener@cct.lsu.edu [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2011-07-07

    Numerical evaluation of the self-force on a point particle is made difficult by the use of delta functions as sources. Recent methods for self-force calculations avoid delta functions altogether, using instead a finite and extended 'effective source' for a point particle. We provide a review of the general principles underlying this strategy, using the specific example of a scalar point charge moving in a black hole spacetime. We also report on two new developments: (i) the construction and evaluation of an effective source for a scalar charge moving along a generic orbit of an arbitrary spacetime, and (ii) the successful implementation of hyperboloidal slicing that significantly improves on previous treatments of boundary conditions used for effective-source-based self-force calculations. Finally, we identify some of the key issues related to the effective source approach that will need to be addressed by future work.

  19. Effective source approach to self-force calculations

    CERN Document Server

    Vega, Ian; Diener, Peter

    2011-01-01

    Numerical evaluation of the self-force on a point particle is made difficult by the use of delta functions as sources. Recent methods for self-force calculations avoid delta functions altogether, using instead a finite and extended "effective source" for a point particle. We provide a review of the general principles underlying this strategy, using the specific example of a scalar point charge moving in a black hole spacetime. We also report on two new developments: (i) the construction and evaluation of an effective source for a scalar charge moving along a generic orbit of an arbitrary spacetime, and (ii) the successful implementation of hyperboloidal slicing that significantly improves on previous treatments of boundary conditions used for effective-source-based self-force calculations. Finally, we identify some of the key issues related to the effective source approach that will need to be addressed by future work.

  20. Rolling Cylinder Phase 1bis

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    Cylinder Phase 1: proof of concept and first optimization”, DCE report 115, ISSN 1901-726X, and it is recommended that the two are consulted together as they were firstly agreed to be in one document. The present report aims at estimate the efficiency of the Rolling Cylinder long model (previously...

  1. Natural convection from circular cylinders

    CERN Document Server

    Boetcher, Sandra K S

    2014-01-01

    This book presents a concise, yet thorough, reference for all heat transfer coefficient correlations and data for all types of cylinders: vertical, horizontal, and inclined. This book covers all natural convection heat transfer laws for vertical and inclined cylinders and is an excellent resource for engineers working in the area of heat transfer engineering.

  2. Approximation of Surfaces by Cylinders

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1998-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  3. Theoretical and Experimental Analysis of Torsional and Bending Effect on Four Cylinders Engine Crankshafts by Using Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Prof. R. G. Desavale , A. M. Patil

    2013-10-01

    Full Text Available The problem of torsional vibration of the crankshaft of high-speed diesel engine has become critical with increase in excitation forces. This results in high torsional vibration amplitudes and hence high stresses the paper aims at complete FEM analysis of a crankshaft for torsional and bending vibrations, identification of stresses. It is analyzed for natural frequency, rigid body mode shape by ANSYS and Holzer method. The complete simulation of actual boundary conditions is done for journal bearing support, inertia lumping for reciprocating parts and bearing stiffness. Customized code is developed in ANSYS-Macros, which will convert user input Pressure-Crank angle variation to excitation forces for various orders through FFT. The dynamic responses obtained for displacement and stresses. Finally all results are combined to obtain the variation of Fillet Stress as a function of engine speed and harmonic orders. The critical dynamic response is compared with results obtained experimentally for torsional amplitudes.

  4. Effect of cohesive force on the formation of a sandpile

    Science.gov (United States)

    Dong, K. J.; Zou, R. P.; Chu, K. W.; Yang, R. Y.; Yu, A. B.; Hu, D. S.

    2013-06-01

    This paper presents a numerical study on the piling processes of mono-sized wet particles by the discrete element method (DEM). The capillary force between particles due to liquid bridge is implemented in an existing DEM model. The effects of moisture content on the repose angle and structure of a pile are studied by a series of controlled numerical experiments. It is confirmed that the structure of a pile is similar to that of a packing for cohesive particles. Moreover, the averaged local porosity and repose angle have similar changes with the moisture content and can be linearly correlated. Therefore, the relationship between the repose angle and the cohesive force can be established based on the previous correlation between the porosity and the force ratio of the cohesive force to gravity developed in the packing of cohesive particles.

  5. Formation of whispering gallery modes by scattering of an electromagnetic plane wave by two cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Arnold, E-mail: qulaser@gmail.com [Kuang-Chi Institute of Advanced Technology, Shenzhen, 518057 (China); Kostikov, Alexander [Donbass State Engineering Academy, 84303, Kramatorsk, Donetsk (Ukraine)

    2017-03-26

    We report the effect of scattering of electromagnetic plane waves by two cylinders on whispering gallery mode (WGM) formation in a cylinder. WGM can occur because of the presence of additional cylinder scatterers at specific location, while WGMs can only form in a single cylinder for specific cylinder radius and/or wavelength values, the matching accuracy required would be much greater than that required in our model for the additional cylinders locations. Analysis of the general solution to the problem showed that the effect can be explained by the interference of waves scattered by additional cylinders and incident on the main cylinder. - Highlights: • We consider scattering of electromagnetic plane waves by two cylinders. • WGMs occur because of the presence of additional cylinder at specific location. • The accuracy for the locations is much less than required for specific values of single cylinder. • The interference of waves scattered by additional cylinders and incident on the main is responsible for the effect.

  6. Effects of Capillary Forces and Adsorption on Reserves Distribution

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1996-01-01

    The purpose of this study is to evaluate the effects of capillary forces and adsorption on the distribution of a hydrocarbon mixture in an oil-gas-condensate reservoir. These effects consist in the precipitation of the liquid phase in thin pores and on the internal surface of the reservoir rock...

  7. Radiation Effect on Mixed Convection Boundary Layer Flow of a Viscoelastic Fluid over a Horizontal Circular Cylinder with Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Hussain Ahmad

    2016-01-01

    Full Text Available In the present article, radiation effect on mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder with constant heat flux has been numerically analyzed. The governing boundary layer equations are transformed to dimensionless nonlinear partial differential equations. The equations are solved numerically by using Keller-box method. The computed results are in excellent agreement with the previous studies. Skin friction coefficient and Nusselt number are emphasized specifically. These quantities are displayed against the curvature parameter. The effects of pertinent parameters involved in the problem namely effective Prandtl number and mixed convection parameter on skin friction coefficient and Nusselt number are shown through graphs and table. Boundary layer separation points are also calculated with and without radiation and a comparison is shown. The presence of radiation helps to decrease or increase the skin friction coefficient for the negative or positive values of the mixed convection parameter accordingly. The decrease in value of effective Prandtl number helps to increase the value of skin friction coefficient and Nusselt number for viscoelastic fluids.

  8. Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder

    CERN Document Server

    Lin, Te-Sheng; Tseluiko, Dmitri; Thiele, Uwe

    2015-01-01

    We discuss the behavior of partially wetting liquids on a rotating cylinder using the model of Thiele [J. Fluid Mech. 671, 121-136 (2011)] that takes into account the effects of gravity, viscosity, rotation, surface tension and wettability. Such a system can be considered as a prototype for many other systems where the interplay of spatial heterogeneity and a lateral driving force in the proximity of a first- or second-order phase transition results in intricate behaviour. So does a partially wetting drop on a rotating cylinder undergo a depinning transition as the rotation speed is increased, whereas for ideally wetting liquids the behavior changes monotonically. We analyze in detail the transition in the bifurcation behavior for partially wetting liquids as the wettability of the liquid decreases, and, in particular, how the global bifurcation related to the depinning of drops is created when increasing the contact angle. We employ various numerical continuation techniques that allow us to track stable/unst...

  9. Chaos Control in the Wake of an Oscillating Cylinder

    Science.gov (United States)

    Balasubramanian, Ganapathi R.; Olinger, David J.

    1997-11-01

    The nonlinear dynamics of vortex shedding behind circular cylinders are investigated using a previously developed spatial-temporal map lattice. The map studied consists of a series of circle map oscillators placed along the cylinder span coupled with a simple diffusion model. Chaotic states associated with disordered vortex shedding patterns are observed when forcing the cylinder outside the classical lock-on region. These are controlled through application of a small-amplitude periodic perturbation of a system parameter, as proposed by Ott, Grebogi, and Yorke. Periodic lace-like structures and parallel shedding patterns are realized by driving the chaotic system to the desired target state. A wide range of forcing frequency-amplitude combinations are studied along with manipulation of vortex lock-on region extents. Preliminary extensions of these chaos control techniques to a two-dimensional wake flow using finite element techniques are also discussed.

  10. Simulation of Utilisation of Pressure Propagation for Increased Efficiency of Secondary Controlled Discrete Displacement Cylinders

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Hansen, Anders Hedegaard; Andersen, Torben Ole

    2012-01-01

    A key component of upcoming secondary controlled fluid-power systems for e.g. wave energy is the implementation of discrete force control of cylinders by discrete variation of the cylinder displacement. However, as the discrete control is implemented by shifting between fixed system pressures in ...

  11. Influence and Utilisation of Pressure Propagation in Pipelines for Secondary Controlled Discrete Displacement Cylinders

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Hansen, Anders Hedegaard; Andersen, Torben Ole

    2012-01-01

    Efficient discrete force control of cylinders may be realised by having multi-chambered cylinders, where the pressure of the chambers are shifted between fixed pressure levels of a secondary controlled system. However, the pressure shifting on a volume where the dynamics of pressure propagation i...

  12. Influence and Utilisation of Pressure Propagation in Pipelines for Secondary Controlled Discrete Displacement Cylinders

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Hansen, Anders Hedegaard; Andersen, Torben Ole

    2012-01-01

    Efficient discrete force control of cylinders may be realised by having multi-chambered cylinders, where the pressure of the chambers are shifted between fixed pressure levels of a secondary controlled system. However, the pressure shifting on a volume where the dynamics of pressure propagation...

  13. Casimir-Polder repulsion: Polarizable atoms, cylinders, spheres, and ellipsoids

    CERN Document Server

    Milton, Kimball A; Pourtolami, Nima; Brevik, Iver

    2012-01-01

    Recently, the topic of Casimir repulsion has received a great deal of attention, largely because of the possibility of technological application. The general subject has a long history, going back to the self-repulsion of a conducting spherical shell and the repulsion between a perfect electric conductor and a perfect magnetic conductor. Recently it has been observed that repulsion can be achieved between ordinary conducting bodies, provided sufficient anisotropy is present. For example, an anisotropic polarizable atom can be repelled near an aperture in a conducting plate. Here we provide new examples of this effect, including the repulsion on such an atom moving on a trajectory nonintersecting a conducting cylinder; in contrast, such repulsion does not occur outside a sphere. Classically, repulsion does occur between a conducting ellipsoid placed in a uniform electric field and an electric dipole. The Casimir-Polder force between an anisotropic atom and an anisotropic dielectric semispace does not exhibit r...

  14. An investigation of the fluid-structure interaction of piston/cylinder interface

    Science.gov (United States)

    Pelosi, Matteo

    The piston/cylinder lubricating interface represents one of the most critical design elements of axial piston machines. Being a pure hydrodynamic bearing, the piston/cylinder interface fulfills simultaneously a bearing and sealing function under oscillating load conditions. Operating in an elastohydrodynamic lubrication regime, it also represents one of the main sources of power loss due to viscous friction and leakage flow. An accurate prediction of the time changing tribological interface characteristics in terms of fluid film thickness, dynamic pressure field, load carrying ability and energy dissipation is necessary to create more efficient interface designs. The aim of this work is to deepen the understanding of the main physical phenomena defining the piston/cylinder fluid film and to discover the impact of surface elastic deformations and heat transfer on the interface behavior. For this purpose, a unique fully coupled multi-body dynamics model has been developed to capture the complex fluid-structure interaction phenomena affecting the non-isothermal fluid film conditions. The model considers the squeeze film effect due to the piston micro-motion and the change in fluid film thickness due to the solid boundaries elastic deformations caused by the fluid film pressure and by the thermal strain. The model has been verified comparing the numerical results with measurements taken on special designed test pumps. The fluid film calculated dynamic pressure and temperature fields have been compared. Further validation has been accomplished comparing piston/cylinder axial viscous friction forces with measured data. The model has been used to study the piston/cylinder interface behavior of an existing axial piston unit operating at high load conditions. Numerical results are presented in this thesis.

  15. Effects of experimental muscle pain on force variability during task-related and three directional isometric force task

    DEFF Research Database (Denmark)

    Mista, Christian Ariel; Graven-Nielsen, Thomas

    2013-01-01

    -dimensional force task during acute muscle pain. Twelve right-handed healthy volunteers participated in the experiment. Three-dimensional force signals were acquired during isometric elbow flexion at 5%, 15%, and 30% of the maximum voluntary contraction (MVC). The force components were represented by a circle...... the sense of effort and motor output during contractions. However, little is known about the pain effects on the force components when task-related or three-dimensional force matching task are required. The aim of this study was to quantify changes in the force variability during task-related and three...... on a computer screen, and a moving square was used for the visual target. Subjects were asked to match the main direction of the contraction during the task-related (1D) or all the force components during the three-dimensional (3D) force matching tasks. Isotonic and hypertonic saline injections were randomly...

  16. A characteristic analysis of the fluidic muscle cylinder

    Science.gov (United States)

    Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.

  17. Characteristic analysis and experimental evaluation of artificial pneumatic cylinder

    Science.gov (United States)

    Kim, Dong-Soo; Bae, Sang-Kyu; Choi, Kyung-Hyun

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. Its features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was fabricated and tested. Finally, we compared the results between the test and the finite element analysis.

  18. Analytical Study on Wave Diffraction from a Vertical Circular Cylinder in Front of Orthogonal Vertical Walls

    Institute of Scientific and Technical Information of China (English)

    NING Dezhi; TENG Bin; SONG Xiangqun

    2005-01-01

    In this paper, the principle of mirror image is used to transform the problem of wave diffraction from a circular cylinder in front of orthogonal vertical walls into the problem of diffraction of four symmetric incident waves from four symmetrically arranged circular cylinders, and then the eigenfunction expansion of velocity potential and Grafs addition theorem are used to give the analytical solution to the wave diffraction problem. The relation of the total wave force on cylinder to the distance between the cylinder and orthogonal vertical walls and the incidence angle of wave is also studied by numerical computation.

  19. Effect of Bubble Size on Cylinder Head Boiling Heat Transfer%气泡尺寸对气缸盖沸腾换热的影响

    Institute of Scientific and Technical Information of China (English)

    何联格; 左正兴; 向建华

    2013-01-01

    In Eulerian multiphase flow model to simulate the gas-liquid two-phase flow boiling heat transfer, the bubble size of discrete phase is often treated as the constant. However, bubbles exist in different shapes and sizes, and bubble size is vital important to the simulation results. Using ANSYS Workbench as the simulation platform, and by considering the effects of different bubble sizes in the computational fluid dynamics module CFX, the gas-liquid two-phase flow boiling heat transfer model was applied in the fluid-solid coupling heat transfer system, which consists of cylinder head and cooling water jacket. Gas-liquid two-phase flow field distribution in cooling water jacket and cylinder head temperature distribution was obtained and validated by the experimental data. Results show that, in the case of bubble size=l mm, simulation results agree well with the experimental data. Gas-liquid two-phase flow boiling heat transfer can effectively reduce the peak temperature of cylinder head flame-face in the nose region of exhaust port and decreases heat load at this position.%在应用欧拉多相流模型仿真计算气液两相流沸腾换热时,离散相的气泡尺寸常常被看作常数,而实际上往往气泡具有不同的形状和尺寸,因此研究气泡尺寸大小对仿真计算结果的影响显得至关重要.以ANSYS Workbench为仿真计算平台,在计算流体动力学模块CFX中,用气液两相流沸腾换热计算模型,对不同气泡尺寸下柴油机气缸盖与冷却水腔所组成的流固耦合传热系统进行了整场离散、整场求解,得到了冷却水腔中气液两相流流场分布特性和气缸盖温度场分布,通过与试验结果的对比分析证明了计算模型的有效性.结果表明,在气泡尺寸大小为1 mm的情况下,仿真结果更接近试验结果,并且考虑气液两相流沸腾换热能够有效地降低气缸盖火力面排气道鼻梁区的最高温度,以此降低此处的热负荷.

  20. Effective radiative forcing from historical land use change

    Science.gov (United States)

    Andrews, Timothy; Betts, Richard A.; Booth, Ben B. B.; Jones, Chris D.; Jones, Gareth S.

    2017-06-01

    The effective radiative forcing (ERF) from the biogeophysical effects of historical land use change is quantified using the atmospheric component of the Met Office Hadley Centre Earth System model HadGEM2-ES. The global ERF at 2005 relative to 1860 (1700) is -0.4 (-0.5) Wm-2, making it the fourth most important anthropogenic driver of climate change over the historical period (1860-2005) in this model and larger than most other published values. The land use ERF is found to be dominated by increases in the land surface albedo, particularly in North America and Eurasia, and occurs most strongly in the northern hemisphere winter and spring when the effect of unmasking underlying snow, as well as increasing the amount of snow, is at its largest. Increased bare soil fraction enhances the seasonal cycle of atmospheric dust and further enhances the ERF. Clouds are shown to substantially mask the radiative effect of changes in the underlying surface albedo. Coupled atmosphere-ocean simulations forced only with time-varying historical land use change shows substantial global cooling (d T = -0.35 K by 2005) and the climate resistance (ERF/d T = 1.2 Wm-2 K-1) is consistent with the response of the model to increases in CO2 alone. The regional variation in land surface temperature change, in both fixed-SST and coupled atmosphere-ocean simulations, is found to be well correlated with the spatial pattern of the forced change in surface albedo. The forcing-response concept is found to work well for historical land use forcing—at least in our model and when the forcing is quantified by ERF. Our results suggest that land-use changes over the past century may represent a more important driver of historical climate change then previously recognised and an underappreciated source of uncertainty in global forcings and temperature trends over the historical period.

  1. Triadic instability of a non-resonant precessing fluid cylinder

    CERN Document Server

    Lagrange, R; Eloy, C

    2015-01-01

    Flows forced by a precessional motion can exhibit instabilities of crucial importance, whether they concern the fuel of a flying object or the liquid core of a telluric planet. So far, stability analyses of these flows have focused on the special case of a resonant forcing. Here, we address the instability of the flow inside a precessing cylinder in the general case. We first show that the base flow forced by the cylinder precession is a superposition of a vertical or horizontal shear flow and an infinite sum of forced modes. We then perform a linear stability analysis of this base flow by considering its triadic resonance with two free Kelvin modes. Finally, we derive the amplitude equations of the free Kelvin modes and obtain an expression of the instability threshold and growth rate.

  2. Approximation of Surfaces by Cylinders

    DEFF Research Database (Denmark)

    Randrup, Thomas

    1998-01-01

    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...... projection of the surface onto this plane, a reference curve is determined by use of methods for thinning of binary images. Finally, the cylinder surface is constructed as follows: the directrix of the cylinder surface is determined by a least squares method minimizing the distance to the points...... in the projection within a tolerance given by the reference curve, and the rulings are lines perpendicular to the projection plane. Application of the method in ship design is given....

  3. The capillary interaction between two vertical cylinders

    KAUST Repository

    Cooray, Himantha

    2012-06-27

    Particles floating at the surface of a liquid generally deform the liquid surface. Minimizing the energetic cost of these deformations results in an inter-particle force which is usually attractive and causes floating particles to aggregate and form surface clusters. Here we present a numerical method for determining the three-dimensional meniscus around a pair of vertical circular cylinders. This involves the numerical solution of the fully nonlinear Laplace-Young equation using a mesh-free finite difference method. Inter-particle force-separation curves for pairs of vertical cylinders are then calculated for different radii and contact angles. These results are compared with previously published asymptotic and experimental results. For large inter-particle separations and conditions such that the meniscus slope remains small everywhere, good agreement is found between all three approaches (numerical, asymptotic and experimental). This is as expected since the asymptotic results were derived using the linearized Laplace-Young equation. For steeper menisci and smaller inter-particle separations, however, the numerical simulation resolves discrepancies between existing asymptotic and experimental results, demonstrating that this discrepancy was due to the nonlinearity of the Laplace-Young equation. © 2012 IOP Publishing Ltd.

  4. Experimental study of the effects of couple weak waves on laminar-turbulent transition on attachment-line of a swept cylinder

    Science.gov (United States)

    Yermolaev, Yu. G.; Yatskih, A. A.; Kosinov, A. D.; Semionov, N. V.; Kolosov, G. L.; Panina, A. V.

    2016-10-01

    An experiment on a swept cylinder with 68°-sweep angle at Mach number M = 2.5 is described. The flow attachment line was disturbed by two weak shock waves. Shock waves were generated by a two-dimensional surface inhomogeneity on the wall of the test section of wind tunnel. It was found that the laminar-turbulent transition on the attachment-line of the cylinder is accompanied by an uneven growth of pulsations. Influence of Mach waves on the transition when their fall on the cylinder far away from domain of measuring is not observed. The laminar-turbulent transition occurs at a much lower unit Reynolds numbers in the case when a pair of waves falling on the attachment-line near the measurement field.

  5. Four-Cylinder Stirling Engine Control Simulation

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1986-01-01

    Four-cylinder, Stirling-engine, transient-engine-simulation computer program developed. Program intended for control analysis. Associated engine model simplified to shorten computer calculation time. Model includes engine mechanical-drive dynamics and vehicle-load effects. Computer program also includes subroutines that allow acceleration of engine by addition of hydrogen to system and braking of engine by short circuiting of working spaces.

  6. The formation of standing cylinders in block copolymer films by irreversibly adsorbed polymer layers on substrates

    Science.gov (United States)

    Shang, Jun; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori

    2013-03-01

    Block copolymers offer a simple and effective route to produce standing cylindrical nanostructures with regularity on the order of 10-100 nm, the length scale that is desirable for many advanced applications. However, these formations have been especially troublesome due to the fact that preferential interactions between one of the blocks and the surfaces will induce parallel alignment of the cylinders in order to minimize interfacial and surface energy. Here we introduce an alternative simple method utilizing an irreversibly adsorbed polymer layer (a ``Guiselin'' brush) as a neutral ``substrate'' formed on solid substrates for the arrangement of standing cylindrical nanostructures. The effect of polymer adsorbed layer on the long range ordering of asymmetric cylinder forming poly(styrene-block-ethylene/butylene-block-styrene) (SEBS) triblock copolymer thin films were investigated by using a combination of grazing incidence small angle x-ray scattering and atomic force microscopy techniques. We found that the SEBS, which forms cylinders lying parallel to the surface when prepared on silicon substrates, show standing cylindrical structures on selected Guiselin brush layers after prolong thermal annealing. The details will be discussed in the presentation. We acknowledges the financial support from NSF Grant No. CMMI-084626

  7. Differences in scour around a single surface-piercing cylinder and a submerged cylinder

    Science.gov (United States)

    Beninati, M. L.; Volpe, M. A.; Riley, D. R.; Krane, M.

    2011-12-01

    The equilibrium state of scour for a single surface piercing cylinder and a submerged cylinder of specific aspect ratio are presented. The equilibrium state is defined by a scour depth and associated time interval for a given set of flow conditions. Control variables such as sediment coarseness (or grain size) and cylinder size are held constant, while the flow intensity is varied. Sediment bed form topology is characterized with a series of two-dimensional slices across the bed for both the surface-piercing and submerged cylinder cases. Test results will help identify the geometry and pattern of the scour around the cylinders to aid in the optimal design of marine hydrokinetic (MHK) support structures in an effort to help minimize the deleterious impact of these devices on the local substrate. This study is performed in the small-scale testing platform in the hydraulic flume facility (32 ft long, 4 ft wide and 1.25 ft deep) in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University. The cylinders, of the same material and diameter, are placed centrally in the sediment filled test section (2.5 ft long, 2 ft wide and 0.75 ft deep) of the platform. Flow field measurements are taken with a 16-MHz Micro Acoustic Doppler Velocimeter while water depth is acquired using an ultrasonic distance sensor. These devices are attached to a gantry system that can be accurately positioned anywhere in the test section. Clear-water conditions (in the absence of live-bed scour) are maintained to study the effect of the horseshoe and wake vortices on the displacement of sediment around the cylinder as well as downstream of the device. Bed form topology is measured using an HR Wallingford 2D Sediment Bed Profiler with a low-powered laser distance sensor to accurately characterize changes in bed form around the cylinders. Additionally, specifications for testing such as operational procedures for start-up and shut-down of the facility are given.

  8. Laminar vortex shedding behind a cooled circular cylinder

    Science.gov (United States)

    Trávníček, Zdeněk; Wang, An-Bang; Tu, Wen-Yun

    2014-02-01

    This paper addresses the functional demonstration of a hot air flow generator driven by convective heat transfer and the airflow behind a cooled circular cylinder in cross flow in the low velocity range. The wake flow was investigated experimentally using flow visualization, hot-wire anemometry, and laser Doppler anemometry. An evaluation of the free-stream velocity from the vortex shedding frequency was derived for the isothermal and non-isothermal cases and demonstrated using simple stroboscope measurements. The results confirm that cylinder cooling destabilizes the wake flow in air, i.e., the laminar steady regime can be changed into the vortex shedding regime, and the vortex shedding frequency increases as the cylinder temperature decreases. This thermal effect of cylinder cooling is consistent with its counterpart, the known effect of flow stabilization by cylinder heating. The effective temperature and effective Reynolds number concept have been further quantitatively evaluated, and the extension of their validity to the case of cooled cylinders has been confirmed.

  9. Upgraded Analytical Model of the Cylinder Test

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P. Clark; Lauderbach, Lisa; Garza, Raul; Ferranti, Louis; Vitello, Peter

    2013-03-15

    A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter ω was obtained directly. The total detonation energy density was locked to the v=7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.

  10. Upgraded Analytical Model of the Cylinder Test

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P. Clark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Lauderbach, Lisa [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Garza, Raul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Ferranti, Louis [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Vitello, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center

    2013-03-15

    A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter ω was obtained directly. Finally, the total detonation energy density was locked to the v = 7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.

  11. Effect of centrifugal forces on dimensional error of bored shapes

    Science.gov (United States)

    Arsuaga, M.; de Lacalle, L. N. López; Lobato, R.; Urbikain, G.; Campa, F.

    2012-04-01

    Boring operations of deep holes with a slender boring bar are often hindered by the precision because of their low static stiffness and high deformations. Because of that, it is not possible to remove much larger depths of cuts than the nose radius of the tool, unlike the case of turning and face milling operations, and consequently, the relationship between the cutting force distribution, tool geometry, feed rate and depth of cut becomes non-linear and complex. This problem gets worse when working with a rotating boring head where apart from the cutting forces and the variation of the inclination angle because of shape boring, the bar and head are affected by de centrifugal forces. The centrifugal forces, and therefore the centrifugal deflection, will vary as a function of the rotating speed, boring bar mass distribution and variable radial position of the bar in shape boring. Taking in to account all this effects, a load and deformation model was created. This model has been experimentally validated to use as a corrector factor of the radial position of the U axis in the boring head.

  12. Geothermal Casimir phenomena for the sphere-plate and cylinder-plate configurations

    CERN Document Server

    Weber, Alexej

    2010-01-01

    We investigate the nontrivial interplay between geometry and temperature in the Casimir effect for the sphere-plate and cylinder-plate configurations. At low temperature, the thermal contribution to the Casimir force is dominated by this interplay, implying that standard approximation techniques such as the PFA are inapplicable even in the limit of small surface separation. Thermal fluctuations on scales of the thermal wavelength lead to a delocalization of the thermal force density at low temperatures. As a consequence, the temperature dependence strongly differs from naive expectations. Most prominently, thermal forces can develop non-monotonic behavior below a critical temperature. We perform a comprehensive study of such geothermal phenomena in these Casimir geometries, using analytical and numerical worldline techniques for Dirichlet scalar fluctuations.

  13. An Approach to Stability Analysis of Embedded Large-Diameter Cylinder Quay

    Institute of Scientific and Technical Information of China (English)

    王元战; 祝振宇

    2002-01-01

    The large-diameter cylinder structure, which is made of large successive bottomless cylinders placed on foundationbed or partly driven into soil, is a recently developed retaining structure in China. It can be used in port, coastal and off-shore works. The method for stability analysis of the large-diameter cylinder structure, especially for stability analysis ofthe embedded large-diameter cylinder structure, is an important issue. In this paper, an idea is presented that is, em-bedded large-diameter cylinder quays can be divided into two types, i.e. the gravity wall type and the cylinder pile walltype. A method for stability analysis of the large-diameter cylinder quay of the cylinder pile wall type is developed and amethod for stability analysis of the large-diameter cylinder quay of the gravity wall type is also proposed. The effect of sig-nificant parameters on the stability of the large-dianeter cylinder quay of the cylinder pile wall type is investigated throughnumerical calculation.

  14. Effects of oncoming target velocities on rapid force production and accuracy of force production intensity and timing.

    Science.gov (United States)

    Ohta, Yoichi

    2016-12-12

    The present study aimed to clarify the effects of oncoming target velocities on the ability of rapid force production and accuracy and variability of simultaneous control of both force production intensity and timing. Twenty male participants (age: 21.0 ± 1.4 years) performed rapid gripping with a handgrip dynamometer to coincide with the arrival of an oncoming target by using a horizontal electronic trackway. The oncoming target velocities were 4, 8, and 12 m · s(-1), which were randomly produced. The grip force required was 30% of the maximal voluntary contraction. Although the peak force (Pf) and rate of force development (RFD) increased with increasing target velocity, the value of the RFD to Pf ratio was constant across the 3 target velocities. The accuracy of both force production intensity and timing decreased at higher target velocities. Moreover, the intrapersonal variability in temporal parameters was lower in the fast target velocity condition, but constant variability in 3 target velocities was observed in force intensity parameters. These results suggest that oncoming target velocity does not intrinsically affect the ability for rapid force production. However, the oncoming target velocity affects accuracy and variability of force production intensity and timing during rapid force production.

  15. Effect of humidity on the sur-face adhesion force of inor-ganic crystals by the force spectrum method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Effect of relative humidity on the surface adhesion force of several inorganic crystals of mica, CaF2 and KCl was studied by atomic force microscopy (AFM). The results showed that the magnitude of surface adhesion force is mainly dependent on the surface free energy of the adsorbed liquid film, but almost independent of the thickness of the film. Furthermore, the deliquescence on the crystal surface was investigated, which demonstrated the capability of the force spectrum method to monitor changes in ionic concentrations of adsorbed liquid film in real-time.

  16. Experimental Investigation of the Velocity Effect on Adhesion Forces with an Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    魏征; 赵亚溥

    2004-01-01

    Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM)in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity.It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.

  17. Experimental Study of Natural Convective Flow over a Hot Horizontal Rhombus Cylinder Immersed in Water via PIV Technique

    Directory of Open Access Journals (Sweden)

    M. Karbasi pour

    2017-01-01

    Full Text Available Natural convective flow over a horizontal cylinder is a phenomenon used in many industries such as heat transfer from an electrical wire, heat exchanger, pipe heat transfer, etc. In this research, fluid dynamics of natural convective flow over a horizontal rhombus cylinder, with uniform heat flux, is investigated by using two-dimensional Particle Image Velocimetry (PIV Technique. Experiments are carried out in a cubical tank full of water having an interface with air and the cylinder is placed horizontally inside the tank. The heater is turned on for 40s and the effects of heater's power and the height of water above the cylinder are surveyed. The experiments are carried out in three different heights of water and two different heater’s powers in which Rayleigh number changes from 1.33×107 to 1.76×107. The emitted heat flux causes the buoyancy force to be made and the main branch of flow to be formed. Then, moving up the main branch flow through the stationary water generates two equal anti-direction vortexes. These vortexes are developed when they reach the free surface. The results indicate that the flow pattern changes for different values of water height and heater’s power.

  18. Wave propagation in coated cylinders with reference to fretting fatigue

    Indian Academy of Sciences (India)

    M Ramesh; Satish V Kailas; K R Y Simha

    2008-06-01

    Fretting fatigue is the phenomenon of crack initiation due to dynamic contact loading, a situation which is commonly encountered in mechanical couplings subjected to vibration. The study of fretting fatigue in high frequency regime has gained importance in recent years. However the stress wave effects at high frequency y loading is scanty in the literature. The objective of present investigation is to study stress wave propagation in cylinders with reference to high frequency fretting. The case of a coated cylinder is considered since coating is often provided to improve tribological properties of the component. Rule of mixtures is proposed to understand the dispersion phenomenon in coated or layered cylinder knowing the dispersion relation for the cases of homogeneous cylinders made of coating and substrate materials separately. The possibility of stress wave propagation at the interface with a particular phase velocity without dispersion is also discussed. Results are given for two different thicknesses of coating.

  19. Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine

    Directory of Open Access Journals (Sweden)

    Fukang Ma

    2015-06-01

    Full Text Available In-cylinder air flow is very important from the point of view of mixture formation and combustion. In this direction, intake chamber structure and piston crown shape play a very crucial role for in-cylinder air pattern of opposed-piston two-stroke (OP2S engines. This study is concerned with the three-dimensional (3D computational fluid dynamics (CFD analysis of in-cylinder air motion coupled with the comparison of predicted results with the zero-dimensional (0D parametric model. Three configurations viz., a flat piston uniform scavenging chamber, a flat piston non-uniform scavenging chamber and a pit piston non-uniform scavenging chamber have been studied. 0D model analysis of in-cylinder air flow is consistent with 3D CFD simulation. It is concluded that a pit piston non-uniform scavenging chamber is the best design from the point of view of tumble ratio, turbulent kinetic energy and turbulent intensity, which play very important roles in imparting proper air motion. Meanwhile a flat piston uniform scavenging chamber can organize a higher swirl ratio and lower tumble ratio which is important to improve the scavenging process.

  20. The Effects of Thermal Barrier Coating, Common-Rail Injection, and Reduced Compression Ratio on the Efficiency of Single-Cylinder Diesel Engines

    Science.gov (United States)

    2010-05-12

    66 Figure 37: Meriam Instruments Laminar Flow Element...66 Figure 38: Meriam Instruments 2100 Series Smartgauge............................................................ 67 Figure 39: Digital...in a graduated cylinder during a measured period of time. Air flow was measured using a damper tank and differential pressure device ( Meriam LFE

  1. Effect of Pilot Injection Timings on the Combustion Temperature Distribution in a Single-Cylinder CI Engine Fueled with DME and ULSD

    National Research Council Canada - National Science Library

    Jeon, Joonho; Park, Yong Hee; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    ... that there is no sooting flame in DME combustion. In order to investigate the combustion characteristics in this study, the KIVA-3 V code was implemented to research various pilot injection strategies on a single-cylinder CI engines with DME...

  2. Numerical study of shear rate effect on unsteady flow separation from the surface of the square cylinder using structural bifurcation analysis

    Science.gov (United States)

    Ray, Rajendra K.; Kumar, Atendra

    2017-08-01

    In this paper, an incompressible two-dimensional shear flow past a square cylinder problem is investigated numerically using a higher order compact finite difference scheme. Simulations are presented for three sets of Reynolds numbers, 100, 200, and 500, with various shear parameter (K) values ranging from 0.0 to 0.4. The purpose of the present study is to elaborate the influence of shear rate on the vortex shedding phenomenon behind the square cylinder. The results presented here show that the vortex shedding phenomenon strongly depends on Re as well as K. The strength and size of vortices shed behind the cylinder vary as a function of Re and K. When K is larger than a critical value, the vortex shedding phenomenon has completely disappeared depending on the Reynolds number. Apart from the numerical study, a thorough theoretical investigation has been done by using a topology based structural bifurcation analysis for unsteady flow separations from the walls of the cylinder. Through this analysis, we study the exact locations of the bifurcation points associated with secondary and tertiary vortices with appropriate non-dimensional time of occurrence. To the best of our knowledge, this is the first time, a topological aspect based structural bifurcation analysis has been done to understand the vortex shedding phenomenon and flow separation for this problem.

  3. Pressure cylinders under fire condition

    Directory of Open Access Journals (Sweden)

    Jan Hora

    2016-03-01

    Full Text Available The presence of pressure cylinders under fire conditions significantly increases the risk rate for the intervening persons. It is considerably problematic to predict the pressure cylinders behaviour during heat exposition, its destruction progress and possible following explosion of the produced air–gas mixture because pressure cylinders and its environment generate a highly complicated dynamic system during an uncontrolled destruction. The large scale tests carried out by the Pilsen Fire and Rescue Department and the Rapid Response Unit of the Czech Republic Police in October 2012 and in May 2014 in the Military area Brdy and in the area of the former Lachema factory in Kaznějov had several objectives, namely, to record, qualify and quantify some of the aspects of an uncontrolled heat destruction procedure of an exposed pressure cylinder in an enclosed space and to qualify and describe the process of a controlled destruction of a pressure cylinder by shooting through it including basic tactical concepts. The article describes the experiments that were carried out.

  4. Criticality of flow transition behind two side-by-side elliptic cylinders

    Science.gov (United States)

    Peng, Y. F.; Sau, Amalendu; Hwang, Robert R.; Yang, W. C.; Hsieh, Chih-Min

    2012-03-01

    In this study, near-critical bifurcations of low Reynolds number (Re) flows past a pair of elliptic cylinders in the side-by-side arrangement are numerically investigated, and onsets of several distinct transition scenarios are addressed. A nested Cartesian-grid formulation, in combination with an effective immersed boundary method and a two-step fractional-step procedure, has been adopted to simulate the flows. The transition scenarios associated with various periodic, quasi-periodic, and biased flows, their bifurcation characteristics, corresponding critical Reynolds numbers, and phase-portraits are exploited to better understand the governing physics. From the global point of view, there appear variety of flow patterns within the investigated parameter space, 40 ⩽ Re ⩽ 300, 0.2 ⩽ G ⩽ 3.0 (G being the gap-ratio of the cylinders), and 1.5 ⩽ A ⩽ 3 (A is the cylinder aspect-ratio), which include, symmetric vortex shedding mode, semi-single/twin vortex street formations, asymmetric/deflected flows, stationary/biased flip-flopped-type vortex shedding, weakly-chaotic flows, and in-phase/anti-phase vortex synchronizations. We numerically present these flows by tuning Re quasi-stationary, and provide a broader understanding of the entire transition process. A comprehensive analysis of effects of Reynolds number, the gap-ratio, and the angle of incidence on different flow-induced forces on the cylinders is included in this regard. On the other hand, our simulated wakes with various non-zero incidence-angles are found to reveal a rich variety of instability induced weakly synchronized physical evolution characteristics, which remained virtually unexplored.

  5. PIV measurements of near wake behind a U-grooved cylinder

    Science.gov (United States)

    Lim, H.-C.; Lee, S.-J.

    2003-08-01

    The flow structure around a circular cylinder with U-grooved surfaces has been investigated experimentally. The results were compared with that of a smooth cylinder having the same diameter. Drag force and turbulence statistics of wake behind each cylinder were measured for Reynolds numbers based on the cylinder diameter (/D=60mm) in the range ReD=8×103-1.4×105. At ReD=1.4×105, the U-type grooves reduce the drag coefficient acting on the cylinder by 18.6%, compared with that of smooth cylinder. The flow characteristics of wake behind the U-grooved cylinder have been analyzed using two kinds of particle image velocimetry (PIV) velocity measurement techniques, cinematic PIV and high-resolution PIV. Consecutive instantaneous velocity fields were measured using the cinematic PIV technique at time interval of 5ms, corresponding to about 1% of the vortex shedding frequency of the wake. The instantaneous velocity fields measured with the high-resolution PIV technique were ensemble-averaged to get the spatial distributions of turbulent statistics including turbulent intensities and turbulent kinetic energy. For the case of smooth cylinder, large-scale vortices formed behind the cylinder maintain round shape and do not spread out noticeably in the near wake. However, for the case of U-grooved cylinder, the vortices are largely distorted and spread out significantly as they go downstream. The longitudinal grooves seem to shift the location of spanwise vortices toward the cylinder, reducing the vortex formation region, compared with the smooth cylinder. The sharp peaks of longitudinal U-shaped grooves also suppress the formation of large-scale secondary streamwise vortices. The secondary vortices are broken into smaller eddies, reducing turbulent kinetic energy in the near-wake region.

  6. Piezoelectric actuator models for active sound and vibration control of cylinders

    Science.gov (United States)

    Lester, Harold C.; Lefebvre, Sylvie

    1993-01-01

    Analytical models for piezoelectric actuators, adapted from flat plate concepts, are developed for noise and vibration control applications associated with vibrating circular cylinders. The loadings applied to the cylinder by the piezoelectric actuators for the bending and in-plane force models are approximated by line moment and line force distributions, respectively, acting on the perimeter of the actuator patch area. Coupling between the cylinder and interior acoustic cavity is examined by studying the modal spectra, particularly for the low-order cylinder modes that couple efficiently with the cavity at low frequencies. Within the scope of this study, the in-plane force model produced a more favorable distribution of low-order modes, necessary for efficient interior noise control, than did the bending model.

  7. Ion size effect on colloidal forces within the primitive model

    Directory of Open Access Journals (Sweden)

    J.Wu

    2005-01-01

    Full Text Available The effect of ion size on the mean force between a pair of isolated charged particles in an electrolyte solution is investigated using Monte Carlo simulations within the framework of the primitive model where both colloidal particles and small ions are represented by charged hard spheres and the solvent is treated as a dielectric continuum. It is found that the short-ranged attraction between like-charged macroions diminishes as the diameter of the intermediating divalent counterions and coions increases and the maximum attractive force is approximately a linear function of the counterion diameter. This size effect contradicts the prediction of the Asakura-Oosawa theory suggesting that an increase in the excluded volume of small ions would lead to a stronger depletion between colloidal particles. Interestingly, the simulation results indicate that both the hard-sphere collision and the electrostatic contributions to the mean force are insensitive to the size disparity of colloidal particles with the same average diameter.

  8. Effect of streamwise spacing on periodic and random unsteadiness in a bundle of short cylinders confined in a channel

    Science.gov (United States)

    Ostanek, Jason K.; Thole, Karen A.

    2012-12-01

    While flow across long tube bundles is considered classical data, pin-fin arrays made up of short tubes have become a growing topic of interest for use in cooling gas turbine airfoils. Data from the literature indicate that decreasing streamwise spacing increases heat transfer in pin-fin arrays; however, the specific mechanism that causes increased heat transfer coefficients remains unknown. The present work makes use of time-resolved PIV to quantify the effects of streamwise spacing on the turbulent near wake throughout various pin-fin array spacings. Specifically, proper orthogonal decomposition was used to separate the (quasi-) periodic motion from vortex shedding and the random motion from turbulent eddies. Reynolds number flow conditions of 3.0 × 103 and 2.0 × 104, based on pin-fin diameter and velocity at the minimum flow area, were considered. Streamwise spacing was varied from 3.46 pin diameters to 1.73 pin diameters while the pin-fin height-to-diameter ratio was unity and the spanwise spacing was held constant at two diameters. Results indicated that (quasi-) periodic motions were attenuated at closer streamwise spacings while the level of random motions was not strongly dependent on pin-fin spacing. This trend was observed at both Reynolds number conditions considered. Because closer spacings exhibit higher heat transfer levels, the present results imply that periodic motions may not contribute to heat transfer, although further experimentation is required.

  9. The effects of unilateral forced nostril breathing on cognitive performance.

    Science.gov (United States)

    Jella, S A; Shannahoff-Khalsa, D S

    1993-11-01

    This study describes the effects of 30 minutes of unilateral forced nostril breathing on cognitive performance in 51 right-handed undergraduate psychology students (25 males and 26 females). A verbal analogies task modeled after the Miller Analogies and SAT Tests was used as a test of left-hemispheric performance and mental rotation tasks based on the Vandenburg and Kuse adaptation of Shepard and Metzler's tests were used as spatial tasks for testing right-hemispheric performance. Spatial task performance was significantly enhanced during left nostril breathing in both males and females, p = .028. Verbal task performance was greater during right nostril breathing, but not significantly p = .14. These results are discussed in comparison to other cognitive and physiological studies using unilateral forced nostril breathing. This yogic breathing technique may have useful application in treating psychophysiological disorders with hemispheric imbalances and disorders with autonomic abnormalities.

  10. Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate

    Science.gov (United States)

    Sengupta, Tapan K.; Gullapalli, Atchyut

    2016-11-01

    Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].

  11. Flow of power-law fluids in fixed beds of cylinders or spheres

    KAUST Repository

    Singh, John P.

    2012-10-29

    An ensemble average of the equations of motion for a Newtonian fluid over particle configurations in a dilute fixed bed of spheres or cylinders yields Brinkman\\'s equations of motion, where the disturbance velocity produced by a test particle is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n are constants. In this case, the ensemble-averaged momentum equation includes a body force resulting from the nonlinear drag exerted on the surrounding particles, a power-law stress associated with the disturbance velocity of the test particle, and a stress term that is linear with respect to the test particle\\'s disturbance velocity. The latter term results from the interaction of the test particle\\'s velocity disturbance with the random straining motions produced by the neighbouring particles and is important only in shear-thickening fluids where the velocity disturbances of the particles are long-ranged. The solutions to these equations using scaling analyses for dilute beds and numerical simulations using the finite element method are presented. We show that the drag force acting on a particle in a fixed bed can be written as a function of a particle-concentration-dependent length scale at which the fluid velocity disturbance produced by a particle is modified by hydrodynamic interactions with its neighbours. This is also true of the drag on a particle in a periodic array where the length scale is the lattice spacing. The effects of particle interactions on the drag in dilute arrays (periodic or random) of cylinders and spheres in shear-thickening fluids is dramatic, where it arrests the algebraic growth of the disturbance velocity with radial position when n≥ 1 for cylinders and n≥ 2 for spheres. For concentrated random arrays of particles, we adopt an

  12. Filament winding cylinders. I - Process model

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  13. PERCOLATION OF RANDOM CYLINDER AGGREGATES

    Directory of Open Access Journals (Sweden)

    Dominique Jeulin

    2011-05-01

    Full Text Available The percolation threshold ρc of Boolean models of cylinders with their axis parallel to a given direction is studied by means of simulations. An efficient method of construction of percolating connected components was developed, and is applied to one or two scales Boolean model, in order to simulate the presence of aggregates. The invariance of the percolation threshold with respect to affine transformations in the common direction of the axis of cylinders is approximately satisfied on simulations. The prediction of the model (ρc close to 0.16 is consistent with experimental measurements on plasma spray coatings, which motivated this study.

  14. Refinement of Out of Circularity and Thickness Measurements of a Cylinder for Finite Element Analysis

    Science.gov (United States)

    2016-09-01

    deviations from a perfectly round shape and plate thickness variations of a cylinder that is subjected to external pressure are known to have a...thickness variations of a cylinder that is subjected to external pressure are known to have a significant effect on the collapse strength. Non-linear...and plate thickness variations of a cylinder subjected to external pressure are known to have a significant effect on the collapse strength. When

  15. Vortex Shedding in the Wake of a Dual Step Cylinder

    CERN Document Server

    Morton, Chris

    2012-01-01

    A dual-step cylinder is comprised of a large diameter cylinder (D) with low aspect ratio (L/D) attached co-axially to the mid-span of a small diameter cylinder (d). The fluid dynamics video presented in this investigation is used to illustrate the effect of aspect ratio on dual step cylinder wake development for Re = 2100, D/d = 2, and 0.2 < L/D < 3. In addition, the video provides visualization of such flow phenomena as interaction of spanwise vortices, development of streamwise vortex filaments, and formation of Kelvin-Helmholtz rollers. The experiments were performed in a water flume at the University of Waterloo. A hydrogen bubble flow visualization technique was employed to visualize vortical structures downstream of each cylinder model. High-resolution images of the flow were obtained with a high speed Photron camera and post-processed using Adobe Photoshop CS4. The results show a plethora of vortices developing in the wake of the dual step cylinder. For 1 < L/D < 3, spanwise vortex shedding...

  16. Quantum phase transition in ultra small doubly connected superconducting cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Sternfeld, I. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)], E-mail: itayst@post.tau.ac.il; Koret, R. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Shtrikman, H. [Department of Condensed Matter, Weizmann Institute of Science, Rehovot 76100 (Israel); Tsukernik, A. [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978 (Israel); Karpovski, M.; Palevski, A. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2008-02-15

    The kinetic energy of Cooper pairs, in doubly connected superconducting cylinders, is a function of the applied flux and the ratio between the diameter of the cylinder and the zero temperature coherence length d/{xi}(0). If d >{xi}(0) the known Little-Parks oscillations are observed. On the other hand if d <{xi}(0), the superconducting state is energetically not favored around odd multiples of half flux quanta even at T{approx}0, resulting in the so called destructive regime [Y. Liu, et al., Science 294 (2001) 2332]. We developed a novel technique to fabricate superconducting doubly connected nanocylinders with both diameter and thickness less than 100 nm, and performed magnetoresistance measurements on such Nb and Al cylinders. In the Nb cylinders, where d >{xi}(0), we observed the LP oscillations. In the Al cylinders we did not observe a transition to the superconducting state due to the proximity effect, resulted from an Au layer coating the Al. However, we did observe Altshuler-Aronov-Spivak (h/2e) oscillations in these cylinders.

  17. Fracture analysis for a penny-shaped crack problem of a superconducting cylinder in a parallel magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gao, S.W. [Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Feng, W.J., E-mail: wjfeng9999@126.com [Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Fang, X.Q. [Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Zhang, G.L. [School of Material Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China)

    2014-11-15

    Highlights: • A penny-shaped crack problem of a superconducting cylinder is investigated. • The effects of crack on flux density in the cylinder are taken into account. • The ERR in both the ZFC and FC processes are obtained and numerical calculated. • The FC process is easier to enhance crack propagation than the ZFC process. For the FC process, the maximal field has important effects on crack propagation. - Abstract: In this work, the penny-shaped crack problem is investigated for an infinite long superconducting cylinder under electromagnetic forces. The distributions of magnetic flux density in the superconducting cylinder are obtained analytically for both the zero-field cooling (ZFC) and the field cooling (FC) activation processes, where the magnetically impermeable crack surface condition and the Bean model outside the crack region are adopted. Based on the finite element method (FEM), the stress intensity factor (SIF) and energy release rate (ERR) at the crack tips in the process of field descent are further numerically calculated. Numerical results obtained show that according to the maximal energy release rate criterion, the FC process is generally easier to enhance crack initiation and propagation than the ZFC activation process. On the other hand, for the FC activation process, the larger the maximal applied magnetic field, more likely the crack propagates. Additionally, crack size has important and slightly different effects on the crack extension forces for the ZFC and FC cases. Thus, all of the activation processes, the applied field and the diameter of the penny-shaped crack have significant effects on the intensity analysis and design of superconducting materials.

  18. The Effect of Water Injection on the Control of In-Cylinder Pressure and Enhanced Power Output in a Four-Stroke Spark-Ignition Engine

    Directory of Open Access Journals (Sweden)

    Mingrui Wei

    2016-09-01

    Full Text Available This paper presents the results for liquid water injection (WI into a cylinder during the compression and expansion strokes of an internal combustion engine (ICE, with the aim of achieving an optimal in-cylinder pressure and improving power output using CFD simulation. Employing WI during the compression stroke at 80° of crank angle (CA before top dead centre (bTDC resulted in the reduction of compression work due to a reduction in peak compression pressure by a margin of about 2%. The decreased peak compression pressure also yielded the benefit of a decrease in NOx emission by a margin of 34% as well as the prevention of detonation. Using WI during the expansion stroke (after top dead centre–aTDC revealed two stages of the in-cylinder pressure: the first stage involved a decrease in pressure by heat absorption, and the second stage involved an increase in the pressure as a result of an increase in the steam volume via expansion. For the case of water addition (WA 3.0% and a water temperature of 100 °C, the percentage decrease of in-cylinder pressure was 2.7% during the first stage and a 2.5% pressure increase during the second stage. Water injection helped in reducing the energy losses resulting from the transfer of heat to the walls and exhaust gases. At 180° CA aTDC, the exhaust gas temperature decreased by 42 K, 89 K, and 136 K for WA 1.0, WA 2.0, and WA 3.0, respectively. Increasing the WI temperature to 200 °C resulted in a decrease of the in-cylinder pressure by 1.0% during the first stage, with an increase of approximately 4.0% in the second stage. The use of WI in both compression and expansion strokes resulted in a maximum increase of in-cylinder pressure of about 7%, demonstrating the potential of higher power output.

  19. MHD natural convection in open inclined square cavity with a heated circular cylinder

    Science.gov (United States)

    Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar

    2017-06-01

    MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around

  20. Modeling Effects on Forces in Shear Wall-Frame Structures

    Directory of Open Access Journals (Sweden)

    Adang Surahman

    2015-05-01

    Full Text Available Shear walls are added to a structural system to reduce lateral deformations in moment resisting frames and are designed to carry a major portion of lateral load induced by an earthquake. A small percentage error in the shear wall calculation will have a significant effect on the frame forces. The results show that even a slight difference in structural assumption, or modeling, results in significant differences. Some of these differences are beyond the values that are covered by safety factors for errors in modeling. The differences are more obvious in the upper stories. It is not recommended to overestimate shear wall stiffness, nor underestimate frame stiffness.

  1. Effects of dispersion forces in the instability of polymer films

    Institute of Scientific and Technical Information of China (English)

    Zhao He-Ping; Ophelia K.C.Tsui; Liu Zheng-You

    2006-01-01

    Spontaneous rupture of some polymer films upon heating is commonplace. The very criterion for this instability is the system free energy possessing a negative curvature. Within the framework of full frequency-dependent theory of dispersion forces, we have derived the excess free energy of a typical system-polystyrene film deposited on the silicon substrate. The excess free energy, wavelengths and growth rates are calculate and a comparison is made between the accurate results and the approximate results. It is found that the stability of the film can be tuned by the variation of the thickness of the coating and the retardation effects can be significant sometimes.

  2. A mechanical brake hardware-in-the-loop simulation of a railway vehicle that accounts for hysteresis and pneumatic cylinder dynamics

    Directory of Open Access Journals (Sweden)

    Dong-Chan Lee

    2015-11-01

    Full Text Available A brake hardware-in-the-loop simulation system for a railway vehicle provides an effective platform for testing the braking performance under various dangerous braking conditions. However, in general, four-brake calipers are required to implement a mechanical brake system for one car. In this article, we implement a brake hardware-in-the-loop simulation system only with one brake caliper and three air tanks accounting for hysteresis and pneumatic cylinder dynamics, ultimately saving installation space and reducing financial budget costs. Since the brake caliper has a high nonlinearity, such as hysteresis resulting from friction and from the precompressed spring of the brake cylinder, we measured the hysteresis of the brake caliper clamping force for a mechanical brake system using loadcells, based on which a mathematical model was constructed for the hysteresis of the clamping force between the brake pad and the disk. Moreover, the pneumatic cylinder dynamics are identified and are implemented in three air tanks, together with hysteresis nonlinearity. The proposed brake hardware-in-the-loop simulation system is applied to the wheel-slide protection simulation of a railway vehicle with an initial speed of 80 km/h and demonstrated experimentally accounting for the hysteresis and brake cylinder dynamics.

  3. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  4. Placement and efficiency effects on radiative forcing of solar installations

    Science.gov (United States)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-09-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  5. On certain geodesic conjugacies of flat cylinders

    Indian Academy of Sciences (India)

    C S ARAVINDA; H A GURURAJA

    2017-06-01

    We prove $C^0$-conjugacy rigidity of any flat cylinder among two different classes of metrics on the cylinder, namely among the class of rotationally symmetric metrics and among the class of metrics without conjugate points.

  6. Anisotropic Poisson Processes of Cylinders

    CERN Document Server

    Spiess, Malte

    2010-01-01

    Main characteristics of stationary anisotropic Poisson processes of cylinders (dilated k-dimensional flats) in d-dimensional Euclidean space are studied. Explicit formulae for the capacity functional, the covariance function, the contact distribution function, the volume fraction, and the intensity of the surface area measure are given which can be used directly in applications.

  7. Control of the flow in the annular region of a shrouded cylinder with splitter plate

    Directory of Open Access Journals (Sweden)

    Ozkan Gokturk Memduh

    2017-01-01

    Full Text Available In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.

  8. Dynamic Response Analysis for Embedded Large-Cylinder Breakwaters Under Wave Excitation

    Institute of Scientific and Technical Information of China (English)

    王元战; 祝振宇; 周枝荣

    2004-01-01

    A numerical model is developed for dynamic analysis of large-cylinder breakwaters embedded in soft soil. In the model, the large cylinder is taken as a rigid body divided into elements and the soft soil is replaced by discrete 3D nonlinear spring-dashpot systems. The numerical model is used to simulate the dynamic response of a large-cylinder breakwater to breaking wave excitation. The effects of the dynamic stress-strain relationship models of the soil, the radius and embedded depth of the cylinder, the nonlinear behaviors of the soil, and the limit strength condition of the soil on the dynamic responses of the large-cylinder structure are investigated with an example given. It is indicated that the above-mentioned factors have significant effects on the dynamic responses of an embedded large cylinder breakwater under breaking wave excitation.

  9. Stochastic effects in a seasonally forced epidemic model

    Science.gov (United States)

    Rozhnova, G.; Nunes, A.

    2010-10-01

    The interplay of seasonality, the system’s nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.

  10. Stochastic effects in a seasonally forced epidemic model

    CERN Document Server

    Rozhnova, Ganna

    2010-01-01

    The interplay of seasonality, the system's nonlinearities and intrinsic stochasticity is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.

  11. Natural convective heat transfer from square cylinder

    Science.gov (United States)

    Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej

    2016-06-01

    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable

  12. Comparison of aerodynamic noise from three nose-cylinder combinations

    Science.gov (United States)

    Guenther, R. A.; Reding, M. P.

    1970-01-01

    Results of experiments with three different cylinder and blunted nose combinations are discussed. Combinations include smooth cylinder with single 15 deg cone, smooth cylinder with double cone of 25 and 10 deg, and longitudinally corrugated cylinder with similar double cone.

  13. Fracture problem for an external circumferential crack in a functionally graded superconducting cylinder subjected to a parallel magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z. [Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Gao, S.W. [College of Civil Engineering, Hebei Institute of Architecture and Civil Engineering, Zhangjiakou 075000 (China); Feng, W.J., E-mail: wjfeng9999@126.com [Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China)

    2016-02-15

    Highlights: • External circumferential crack problem of superconducting cylinder is investigated. • A functionally graded superconducting cylinder is analyzed. • The magnetically impermeable crack surface condition is applied. • The generalized Irie-Yamafuji critical state model outside the crack region is adopted. - Abstract: In this study, the multiple isoparametric finite element method (MIFEM) is used to investigate external circumferential crack problem of a functionally graded superconducting cylinder subjected to electromagnetic forces. The superconducting cylinder is composed by Bi2223/Ag composite with material parameters varying. A crack reference region is defined to reflect the effects of crack on flux and current densities, and the magnetically impermeable crack surface condition and the generalized Irie–Yamafuji critical state model outside the crack region are adopted. The distributions of magnetic flux density in the superconducting cylinder are obtained analytically for both the zero-field cooling (ZFC) and the field cooling (FC) activation processes. Based on the MIFEM, the stress intensity factors (SIFs) at crack fronts in the process of field ascent and/or descent are then numerically calculated. It is interesting to note from numerical results that for the present crack model in the ZFC activation process, the crack is easily propagate and grow with the applied field increases, and that in the field descent process of either the ZFC case or FC case, the crack generally does not propagate. In addition, in the field ascent process of the ZFC case, the SIFs depend on not only the crack depths and model parameters but also the applied field. The present study should be helpful to the design and application of high-temperature superconductors with external edge cracks.

  14. Health effects of forced evictions in the slums of Mumbai.

    Science.gov (United States)

    Emmel, N D; D'Souza, L

    1999-09-25

    This paper focuses on the effects of forced evictions on the health of the people living in the slum areas of Mumbai, India. The media has remained silent on issues regarding the refugee crisis in the developing world, which concerns mainly, the forced eviction of people to make way for development projects. These projects included many urban development schemes, which displace 10 million people a year in less developed countries. In Mumbai, there has been a systematic program of slum clearance. Slum dwellers in Ambedkar Nagar epitomize the plight of the slum dwellers in Mumbai. Over the past 10 years, these slum dwellers have faced eviction 45 times and the repeated evictions have had profound effects on the health of the residents, some of which are protracted deprivation, widespread infections, hypovitaminosis, and wasting. Evictions in India have continuously been carried out despite Article 21 of the Constitution, which recognizes the right to life. However, despite the legal framework, it is evident that the Brihanmumbai Municipal Corporation, in its efforts to achieve a vision of modern Mumbai, is ignoring the plight of the poor.

  15. Wake-induced vibrations in Tandem Cylinders

    Science.gov (United States)

    Mysa, Ravi Chaithanya; Jaiman, Rajeev Kumar

    2015-11-01

    The upstream cylinder is fixed in the tandem cylinders arrangement. The downstream cylinder is placed at a distance of four diameters from the upstream cylinder in the free stream direction and is mounted on a spring. The dynamic response of the downstream cylinder is studied at Reynolds number of 10,000. The transverse displacement amplitude of the downstream cylinder is larger compared to that of single cylinder in the post-lock-in region. The transverse dynamic response of the downstream cylinder in the post-lock-in region is characterized by a dominant low frequency component compared to shed frequency, which is nearer to the structural natural frequency. The interaction of upstream wake with the downstream cylinder is carefully analyzed to understand the introduction of low frequency component in the transverse load along with the shed frequency. We found that the stagnation point moves in proportional to the velocity of the cylinder and is in-phase with the velocity. The low frequency component in the stagnation point movement on the downstream cylinder is sustained by the interaction of upstream wake. The frequencies in the movement of the stagnation point is reflected in the transverse load resulting in large deformation of the cylinder. The authors wish to acknowledge support from A*STAR- SERC and Singapore Maritime Institute.

  16. Compressive Behaviours of Concrete Cylinders Wrapped with 2-D Glass Fabrics

    Institute of Scientific and Technical Information of China (English)

    HUANG Gu; ZUO Zhong-e

    2007-01-01

    Concrete cylinders wrapped with glass fabrics of various constructions were fabricated. Compressive behaviours of cylinders with and without fabric wrapping were investigated. Comparisons of the compressive characters while using different fabrication parameters were made. It was demonstrated that the effect of the fabric reinforcement was obvious. The tensile strength of the filament used in the fabric played an important role as far as the anti-compression behaviour of the reinforced cylinders is concerned.

  17. [Effect of Acupuncture Intervention on c-jun N-terminal Kinase Signaling in the Hippocampus in Rats with Forced Swimming Stress].

    Science.gov (United States)

    Guo, Yu; Xu, Ke; Bao, Wu-ye; Wang, Yu; Zhang, Xu-hui; Xu, Ming-min; Yu, Miao; Zhang, Chun-tao; Zhao, Bing-cong; Wu, Ji-hong; Tu, Ya

    2016-02-01

    To observe the effect of acupuncture on c-jun N-terminal Kinase (JNK) signaling in the hippocampus in rats with forced-swimming stress, so as to reveal its underlying mechanism in relieving depression-like motor response. Forty-eight Sprague-Dawley rats were randomly divided into 8 groups as control, control + JNK inhibitor (SP 600125) , model, model + SP 600125, acupuncture, acupuncture + SP 600125, Fluoxetine (an anti-depressant) , and Fluoxetine + SP 600125 (n = 6 in each group). The depression-like behavior (immobility) model was established by forcing the rat to swim in a glass-cylinder and solitary raise. Acupuncture stimulation was applied to "Baihui" (GV-20) and "Yintang" (GV 29) for 20 min before forced swimming and once again 24 h later.. The rats of the Fluoxetine and Fluoxetine+ SP 600125 groups were treated by intragastric administration of fluoxetine 10 mL (1.8 mg)/kg before forced swimming and once again 24 h thereafter. The rats of the model + SP 600125 and acupuncture + SP 600125 groups were treated by intraperitoneal injection of SP 600125 (10 mg/kg) 90 min before forced swimming and 30 min before acupuncture intervention, respectively. The immobility duration of rats in the water glass-cylinder was used to assess their depression-like behavior response. The expression levels of protein kinase kinase 4 (MKK 4), MKK 7, JNK, and phosphorylated JNK (p-JNK) in the hippocampus were detected by Western blot. Compared to the control group, the duration of immobility, and the expression levels of hippocampal MKK 4, MKK 7, and p-JNK proteins were significantly increased in the model group (P acupuncture, acupuncture + SP 600125, Fluoxetine and Fluoxetine + SP 600125 groups, the expression levels of hippocampal MKK 4 and MKK 7 proteins in the Fluoxetine + SP 600125 group, and those of p-JNK protein in the acupuncture, acupuncture + SP 600125, model + SP 600125, Fluoxetine and Fluoxetine + SP 600125 groups were considerably decreased (P acupuncture

  18. 基于超磁致伸缩材料的非网曲面形活塞销孔加工新型机构%Novel mechanism for boring non-cylinder piston pinhole based on giant magnetostrictive materials

    Institute of Scientific and Technical Information of China (English)

    翟鹏; 张承瑞; 王新亮; 秦磊; 秦有志

    2008-01-01

    To bear more loads for heavy truck pistons, the shape of heavy truck piston pinhole is often designed as non-cylinder form. Current methods cannot meet the needs for precision machining on non-cylinder piston pinhole (NCPPH). A novel mechanism based on giant magnetostrictive materials (GMM) is presented. New models are established for the servo mechanism, GMM, and magnetizing force of the control solenoid to characterize the relationship between the control current of the solenoid and the displacement of the giant magnetostrictive actuator (GMA). Experiments show that the novel mechanism can meet the needs to perform fine machining on NCPPH effectively.

  19. Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Mingyue Liu

    2015-09-01

    Full Text Available The Deep Draft Semi-Submersible (DDS concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around α = 15°. Furthermore, the flow around circular- section-cylinder arrays is also discussed in comparison with that of square cylinders.

  20. Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Liu Mingyue

    2015-09-01

    Full Text Available The Deep Draft Semi-Submersible (DDS concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around α = 15°. Furthermore, the flow around circular-section-cylinder arrays is also discussed in comparison with that of square cylinders.

  1. Flow-induced vibrations of long circular cylinders modeled by coupled nonlinear oscillators

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.

  2. Stirring by multi-cylinder in potential flow

    CERN Document Server

    Zhang, Yuanzhao

    2014-01-01

    We analyze the mixing efficiency of multiple-cylinder in potential flow to assess the effect of schooling in ocean-biomixing. The model is a generalization of Thiffeault & Childress's work [Physics Letters A 374, 3487 (2010)], where fluid particle displacements due to a single inviscid swimmer were analyzed to produce an effective diffusivity. Here we climb the population ladder to see how the interaction among swimmers would influence the motion of particles in the flow. Two cylinders moving synchronously through the flow in various angles and separations were studied, with several important patterns revealed---when the separation is small (less than $\\frac{1}{3}$ body length), two cylinders moving side-by-side ($\\theta=\\pi/2$) has the highest mixing efficiency, while the chasing configuration ($\\theta=0$) takes over for larger separations. But regardless of the angle and separation, the normalized effective diffusivity is constantly higher than single-swimmer value, which indicates schooling effect as a...

  3. Integrated hydraulic cooler and return rail in camless cylinder head

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  4. Circumferential resonance modes of solid elastic cylinders excited by obliquely incident acoustic waves.

    Science.gov (United States)

    Fan, Ying; Honarvar, Farhang; Sinclair, Anthony N; Jafari, Mohammad-Reza

    2003-01-01

    When an immersed solid elastic cylinder is insonified by an obliquely incident plane acoustic wave, some of the resonance modes of the cylinder are excited. These modes are directly related to the incidence angle of the insonifying wave. In this paper, the circumferential resonance modes of such immersed elastic cylinders are studied over a large range of incidence angles and frequencies and physical explanations are presented for singular features of the frequency-incidence angle plots. These features include the pairing of one axially guided mode with each transverse whispering gallery mode, the appearance of an anomalous pseudo-Rayleigh in the cylinder at incidence angles greater than the Rayleigh angle, and distortional effects of the longitudinal whispering gallery modes on the entire resonance spectrum of the cylinder. The physical explanations are derived from Resonance Scattering Theory (RST), which is employed to determine the interior displacement field of the cylinder and its dependence on insonification angle.

  5. Experimental Study on Local Scour Around A Large Circular Cylinder Under Irregular Waves

    Institute of Scientific and Technical Information of China (English)

    周益人; 陈国平

    2004-01-01

    A series of physical model tests are conducted for local scour around a circular cylinder of a relatively large diameter (0.15 < D/L < 0.5) under the action of irregular waves. The laws of change of the topography around the cylinder are systematically studied. The effects of wave height, wave period, water depth, sediment grain size and cylinder diameter are taken into account. The mechanism of formation of the topography around the cylinder is analyzed. A detailed analysis is given to bed sediment grain size, and it is considered that the depth of scour around the cylinder under wave action is not inversely proportional to the sediment grain diameter. On such a basis, an equation is proposed for calculation of the maximum depth of scour around a cylinder as well as its position under the action of irregular waves.

  6. Experimental study on the near wake behind two side-by-side cylinders of unequal diameters

    Science.gov (United States)

    Gao, Yangyang; Yu, Dingyong; Tan, Soonkeat; Wang, Xikun; Hao, Zhiyong

    2010-10-01

    The wake structure behind two side-by-side circular cylinders with unequal diameter was investigated using the particle image velocimetry (PIV) technique. This investigation focused on the asymmetrical flow within the subcritical Reynolds number regime. A comparison between the time-averaged mean flow field of one cylinder and that of two side-by-side cylinders of unequal diameter was made for elucidating the mean flow characteristics attributable to the latter. The distribution of mean velocity behind two side-by-side unequal cylinders was distinctly different from that behind one cylinder, and an asymmetric combination was observed behind the two cylinders. The present paper also presents the authors' interpretation of the generation mechanism of gap flow deflection based on the instantaneous vorticity contours and velocity distribution. The effect of Reynolds number on flow structure was studied by analyzing the mean velocity distribution and time-averaged wake structures. The results showed that vortex formation length decreases with Reynolds number.

  7. Optical binding of cylinder photonic molecules in the near-field of partially coherent fluctuating Gaussian Schell model sources. A coherent mode representation

    CERN Document Server

    Auñón, Juan Miguel; Nieto-Vesperinas, Manuel

    2014-01-01

    We present a theory and computation method of radiation pressure from partially coherent light by establishing a coherent mode representation of the radiation forces. This is illustrated with the near field emitted from a Gaussian Schell model source, mechanically acting on a single cylinder with magnetodielectric behavior, or on a photonic molecule constituted by a pair of such cylinders. Thus after studying the force produced by a single particle, we address the effects of the spatial coherence on the bonding and anti-bonding states of two particles. The coherence length manifests the critical limitation of the contribution of evanescent modes to the scattered fields, and hence to the nature and strength of the electromagnetic fores, even when electric and/or magnetic partial wave resonances are excited.

  8. Recording Rapidly Changing Cylinder-wall Temperatures

    Science.gov (United States)

    Meier, Adolph

    1942-01-01

    The present report deals with the design and testing of a measuring plug suggested by H. Pfriem for recording quasi-stationary cylinder wall temperatures. The new device is a resistance thermometer, the temperature-susceptible part of which consists of a gold coating applied by evaporation under high vacuum and electrolytically strengthened. After overcoming initial difficulties, calibration of plugs up to and beyond 400 degrees C was possible. The measurements were made on high-speed internal combustion engines. The increasing effect of carbon deposit at the wall surface with increasing operating period is indicated by means of charts.

  9. Vibration Characteristics of a Mistuned Bladed Disk considering the Effect of Coriolis Forces

    OpenAIRE

    Xuanen Kan; Bo Zhao

    2016-01-01

    To investigate the influence of Coriolis force on vibration characteristics of mistuned bladed disk, a bladed disk with 22 blades is employed and the effects of different rotational speeds and excitation engine orders on the maximum forced response are discussed considering the effects of Coriolis forces. The results show that if there are frequency veering regions, the largest split of double natural frequencies of each modal family considering the effects of Coriolis forces appears at frequ...

  10. Effects of Anisotropic Thermal Conductivity and Lorentz Force on the Flow and Heat Transfer of a Ferro-Nanofluid in a Magnetic Field

    Directory of Open Access Journals (Sweden)

    Yubai Li

    2017-07-01

    Full Text Available In this paper, we study the effects of the Lorentz force and the induced anisotropic thermal conductivity due to a magnetic field on the flow and the heat transfer of a ferro-nanofluid. The ferro-nanofluid is modeled as a single-phase fluid, where the viscosity depends on the concentration of nanoparticles; the thermal conductivity shows anisotropy due to the presence of the nanoparticles and the external magnetic field. The anisotropic thermal conductivity tensor, which depends on the angle of the applied magnetic field, is suggested considering the principle of material frame indifference according to Continuum Mechanics. We study two benchmark problems: the heat conduction between two concentric cylinders as well as the unsteady flow and heat transfer in a rectangular channel with three heated inner cylinders. The governing equations are made dimensionless, and the flow and the heat transfer characteristics of the ferro-nanofluid with different angles of the magnetic field, Hartmann number, Reynolds number and nanoparticles concentration are investigated systematically. The results indicate that the temperature field is strongly influenced by the anisotropic behavior of the nanofluids. In addition, the magnetic field may enhance or deteriorate the heat transfer performance (i.e., the time-spatially averaged Nusselt number in the rectangular channel depending on the situations.

  11. Preconditioned iterative methods for unsteady non-Newtonian flow between eccentrically rotating cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Gwynllyw, D.Rh.; Phillips, T.N. [Univ. of Wales, Aberystwyth (United Kingdom)

    1994-12-31

    The journal bearing is an essential part of all internal combustion engines as a means of transferring the energy from the piston rods to the rotating crankshaft. It consists essentially of an inner cylinder (the journal), which is part of the crankshaft, and an outer cylinder (the bearing), which is at the end of the piston rod. In general, the two cylinders are eccentric and there is a lubricating film of oil separating the two surfaces. The addition of polymers to mineral (Newtonian) oils to minimize the variation of viscosity with temperature has the added effect of introducing strain-dependent viscosity and elasticity. The physical problem has many complicating features which need to be modelled. It is a fully three-dimensional problem which means that significant computational effort is required to solve the problem numerically. The system is subject to dynamic loading in which the journal is allowed to move under the forces the fluid imparts on it and also any other loads such as that imparted by the engine force. The centre of the journal traces out a nontrivial locus in space. In addition, there is significant deformation of the bearing and journal and extensive cavitation of the oil lubricant. In the present study the authors restrict themselves to the two-dimensional statically loaded problem. In previous work a single domain spectral method was used which employed a bipolar coordinate transformation to map the region between the journal and the bearing onto a rectangle. The flow variables were then approximated on this rectangle using Fourier-Chebyshev expansions. However, to allow for future possible deformation of the journal and bearing surfaces due to increased load in the dynamically loaded case they have decided to use a more versatile spectral element formulation.

  12. The Rayleigh-Taylor instability for a thin film on the inside of a horizontal cylinder

    Science.gov (United States)

    Hammoud, Naima; Trinh, Philippe; Howell, Peter; Chapman, Jonathan; Stone, Howard

    2013-11-01

    Thin films on curved surfaces are widely observed in coating and painting processes and wetting problems. We consider a thin film on a curved substrate under the effect of gravitational, viscous, and surface tension forces. When the film is on the underside of the substrate, gravity works as a destabilizing force, and a Rayleigh-Taylor type instability is expected. We consider the stability of a uniform thin film coating the inside of a horizontal circular cylinder. Using asymptotic methods, we find that instabilities are of a transient nature, thus showing that curvature helps stabilize the film. We also find that these ``instabilities'' occur primarily in the angular direction with the axial perturbations only appearing as higher-order corrections. These results seem to agree well with experiments (H. Kim et al., this conference).

  13. Dynamic Response Analysis of 4 -Cylinder Diesel Engine Cylinder Block%某四缸柴油机龙门式气缸体动力响应分析

    Institute of Scientific and Technical Information of China (English)

    韩峰; 黄国龙

    2011-01-01

    建立了某四缸龙门式柴油机气缸体的有限元分析模型,从某四缸龙门式柴油机气缸体的结构动态特性和振动响应进行分析,采用模态试验对有限元模型进行修正,通过有限元、多体动力学手段研究柴油机在额定工况下,以气缸燃气压力、活塞侧压力和主轴承作用力为主要因素,确定了柴油机所受的激励力,利用模态叠加法对柴油机进行了动态响应分析计算,得出了额定载荷下的整机振动烈度,并与整机振动烈度的实测值进行比较,验证了模型的正确性。%The FEM (Finite Element Model) of the 4 cylinder diesel engine cylinder block is established. A model test is used to correct the FEM. After considering the combustion gas pressure in the cylinder, the piston lateral pressure and the main bearing force, the exciting force of the diesel engine are calculated under rated conditions. The dynamic response analysis of the diesel engine is carried out by the modal superposition method, and obtains the vibration intensity of the diesel engine cylinder block under the rated load. The comparison between the theoretical value and the measured value of the vibration intensity for the diesel engine body is executed, which validates the effectiveness of the modeling in this paper.

  14. Effects of electric charges on hydrophobic forces. II.

    Science.gov (United States)

    Bulone, D.; Martorana, V.; San Biagio, P. L.; Palma-Vittorelli, M. B.

    2000-11-01

    We study by molecular-dynamics simulations the effect of electric charges of either sign on hydrophobic interactions and on the dynamics of hydration water, using explicit water and very simplified solutes. Results show that the presence of a charged solute can disrupt the ``hydrophobic contact bond'' between two apolar solutes nearby, by forcing them towards a different configuration. As a consequence of different structural changes of the solvent caused by charges of opposite sign, the effect is markedly charge-sign-dependent. Analogous weaker effects appear to be induced by the presence of one additional apolar element. The dynamics of hydration water around each solute is also seen to be strongly influenced by the presence of other (charged or uncharged) nearby solutes. Comparison between our results on hydration water dynamics around charged solutes and available experimental data allows sorting out the effects of solute charge sign and size. Our results also offer a plain interpretation of the equivalence of the effects on water structure due to solute ions and to high pressures. These results reflect at a basic paradigmatic level the immensely more complex cases of well-known phenomena such as salting-in and salting-out, and of protein conformational changes caused, e.g., by the arrival of a charged or of an apolar group (phosphorilation or methylation). As it will be discussed, they help in the direction of Delbruck's desirable ``progress towards a radical physical explanation'' for this class of phenomena.

  15. Mechanically fully variable valvetrain and cylinder deactivation; Mechanisch vollvariabler Ventiltrieb und Zylinderabschaltung

    Energy Technology Data Exchange (ETDEWEB)

    Flierl, Rudolf; Lauer, Frederic [Technische Univ. Kaiserslautern (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen

    2013-04-15

    Engines with a mechanically fully variable valvetrain on inlet and exhaust side can easily be equipped with the functionality of cylinder deactivation. Hereby the fully variable valvetrain is used for valve shut-off on particular cylinders, while the full functionality of valve lift and valve duration variation on the other valves is maintained. The effectiveness of these measures is demonstrated at the University of Kaiserslautern using a four-cylinder downsizing gasoline engine with direct injection and monoscroll turbo charger. Additionally a strategy for mode transition between four- and two-cylinder mode is presented. (orig.)

  16. Collisional Effects on Nonlinear Ion Drag Force for Small Grains

    CERN Document Server

    Hutchinson, I H

    2013-01-01

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  17. Effect of a preload force on anchor system frequency

    Institute of Scientific and Technical Information of China (English)

    Lu Aihong; Xu Jinhai; Liu Haishun

    2013-01-01

    The interrelationship between preload forces and natural frequencies of anchors was obtained from the structure of an anchor and its mechanical characteristics.We established a numerical model for the dynamic analysis of a bolt support system taking into consideration the working surroundings of the anchor.The natural frequency distribution of the system under various preload forces of the anchor was analyzed with ANSYS.Our results show that each order of the system frequency varied with an increase in preload forces.A single order frequency decreased with an increase in the preload force.A preload force affected low-order frequencies more than high-order frequencies.We obtained a functional relationship by fitting preload forces and fundamental frequencies,which was in agreement with our theoretical considerations.This study provides theoretical support for the detection of preload forces.

  18. Flow around a semicircular cylinder with passive flow control mechanisms

    Science.gov (United States)

    Hamed, A. M.; Vega, J.; Liu, B.; Chamorro, L. P.

    2017-03-01

    Wind tunnel experiments were performed to study the effect of passive flow control strategies on the wake and drag of a semicircular cylinder of infinite aspect ratio. High-resolution planar particle image velocimetry was used to obtain flow statistics around the semicircular cylinder at Reynolds number Re≈ 3.2× 10^4 based on the cylinder diameter. The control mechanisms under consideration include rigid flaps of various lengths placed at the edges of the structure and a small slot along the symmetry plane of the cylinder. Mean velocity fields reveal the distinctive effects of each passive mechanism on the flow, such as velocity recovery, size of the recirculation bubble and location of the reattachment point. The distributions of turbulence kinetic energy and kinematic shear stress show the modulation of each passive control mechanism on the wake, including the onset and location of the maximum turbulence levels. Instantaneous and mean fields of swirling strength further highlight the role of the passive mechanisms in the vortex dynamics. Drag coefficient for the various cases was estimated indirectly from the flow measurements using a momentum balance. This approach shows that long flaps and slot were able to reduce drag with respect to the base case. The rigid flaps with length coincident with the diameter of the cylinder offered the best performance with drag reduction of ˜25%.

  19. Hydrogen Bubbles as a Visualization Tool for Cylinder Shedding

    Science.gov (United States)

    Sigurdson, Lorenz; Gilbert, Stuart

    2004-11-01

    We examine the behavior of hydrogen bubbles formed by electrolysis of water on a 2.54 mm cylindrical electrode in a water tunnel. The Reynolds Number based on cylinder diameter varies from 400 to 1100, and tunnel velocities range from 17 to 50 cm/s. At the lowest velocity buoyancy is a strong effect which inhibits accurate flow tracking by the bubbles. This effect largely disappears by 25 cm/s. As the tunnel velocity increases, bubble size decreases, reflected light for photography is reduced, and bubbles begin to track the von Karman vortex street vortex cores near the cylinder. The vortex cores have a sufficiently low pressure to capture the bubbles. Vortex street wavelength is seen to discretely increase as vortices proceed downstream. The location of this scale-change becomes nearer the cylinder as Re increases. Voids of bubbles occur in continuous linear downstream segments originating near the cylinder. They seem to be due to vortex modification in the wake similar to what other cylinder shedding researchers have found.

  20. Oscillation of cylinders of rectangular cross section immersed in fluid

    Science.gov (United States)

    Brumley, Douglas R.; Willcox, Michelle; Sader, John E.

    2010-05-01

    The ability to calculate flows generated by oscillating cylinders immersed in fluid is a cornerstone in micro- and nanodevice development. In this article, we present a detailed theoretical analysis of the hydrodynamic load experienced by an oscillating rigid cylinder, of arbitrary rectangular cross section, that is immersed in an unbounded viscous fluid. We also consider the formal limit of inviscid flow for which exact analytical and asymptotic solutions are derived. Due to its practical importance in application to the atomic force microscope and nanoelectromechanical systems, we conduct a detailed assessment of the dependence of this load on the cylinder thickness-to-width ratio. We also assess the validity and accuracy of the widely used infinitely-thin blade approximation. For thin rectangular cylinders of finite thickness, this approximation is found to be excellent for out-of-plane motion, whereas for in-plane oscillations it can exhibit significant error. A database of accurate numerical results for the hydrodynamic load as a function of the thickness-to-width ratio and normalized frequency is also presented, which is expected to be of value in practical application and numerical benchmarking.

  1. Effective medium theory expressions for the effective diffusion in chromatographic beds filled with porous, non-porous and porous-shell particles and cylinders. Part II: Numerical verification and quantitative effect of solid core on expected B-term band broadening.

    Science.gov (United States)

    Deridder, Sander; Desmet, Gert

    2011-01-07

    The results of a numerical simulation study of the diffusion and retention in fully porous spheres and cylinders are compared with some of the high order accuracy analytical solutions for the effective diffusion coefficient that have been derived from the effective medium theory (EMT) theory in part I of the present study. A variety of different ordered (spheres and cylinders) and disordered (cylinders) packings arrangements has been considered. The agreement between simulations and theory was always excellent, lying within the (very tight) accuracy limits of the simulations over the full range of retention factor and diffusion constant values that is practically relevant for most LC applications. Subsequently filling up the spheres and cylinders with a central solid core, while keeping the same packing geometry and the same mobile phase (same thermodynamic retention equilibrium), it was found that the core induces an additional obstruction which reduces the effective intra-particle diffusion coefficient exactly with a factor γ(part)=2/(2+ρ³) for spherical particles and γ(part)=1/(1+ρ²) for cylinders (ρ is the ratio of the core to the particle diameter, ρ=d(core)/d(part)). These expressions hold independently of the packing geometry, the value of the diffusion coefficients and the equilibrium constant or the size of the core. The expressions also imply that, if considering equal mobile phase conditions, the presence of the solid core will never reduce the particle contribution to the B-term band broadening with more than 33% (50% in case of cylindrical pillars). Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Cylinder components properties, applications, materials

    CERN Document Server

    2016-01-01

    Owing to the ever-increasing requirements to be met by gasoline and diesel engines in terms of CO2 reduction, emission behavior, weight, and service life, a comprehensive understanding of combustion engine components is essential today. It is no longer possible for professionals in automotive engineering to manage without the corresponding expertise, whether they work in the field of design, development, testing, or maintenance. This technical book provides in-depth answers to questions about design, production, and machining of cylinder components. In this second edition, every section has been revised and expanded to include the latest developments in the combustion engine. Content Piston rings Piston pins and piston pin circlips Bearings Connecting rods Crankcase and cylinder liners Target audience Engineers in the field of engine development and maintenanceLecturers and students in the areas of mechanical engineering, engine technology, and vehicle constructionAnyone interested in technology Publisher MAH...

  3. Effects of Spin Quantum Force in Magnetized Quantum Plasma

    Institute of Scientific and Technical Information of China (English)

    杨秀峰; 姜虹; 祁学宏; 段文山

    2011-01-01

    Starting from the governing equations for a quantum magnetoplasma including the electron spin -1/2 effects and quantum Bohm potential, we derive Korteweg-de Vries (KdV) equation of the system of quantum magneto- hydrodynamics (QMHD). The amplitude and width of magnetosonic soliton with different parameters in the system are studied. It is found that the normalized Zeeman energy E plays a crucial role, for E ≥ 1 the amplitude τmξ and the width we of solitary wave all decrease as E increases. That is, the introduction of spin quantum force modifies the shape of solitary magnetosonic waves and makes them more narrower and shallower.

  4. On the development of lift and drag in a rotating and translating cylinder

    Science.gov (United States)

    Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon

    2014-11-01

    The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  5. Counting Polyominoes on Twisted Cylinders

    OpenAIRE

    Barequet, Gill; Moffie, Micha; Ribó, Ares; Rote, Günter

    2005-01-01

    International audience; We improve the lower bounds on Klarner's constant, which describes the exponential growth rate of the number of polyominoes (connected subsets of grid squares) with a given number of squares. We achieve this by analyzing polyominoes on a different surface, a so-called $\\textit{twisted cylinder}$ by the transfer matrix method. A bijective representation of the "states'' of partial solutions is crucial for allowing a compact representation of the successive iteration vec...

  6. Adaptronic tools for superfinishing of cylinder bores

    Science.gov (United States)

    Roscher, Hans-Jürgen; Hochmuth, Carsten; Hoffmann, Michael; Praedicow, Michael

    2012-04-01

    Today in the production of internal combustion engines it is possible to make pistons as well as cylinders, for all practical purposes, perfectly round. The negative consequences of the subsequent assembly processes and operation of the engine is that the cylinders and pistons are deformed, resulting in a loss of power and an increase in fuel consumption. This problem can be solved by using an adaptronic tool, which can machine the cylinder to a predetermined nonround geometry, which will deform to the required geometry during assembly and operation of the engine. The article describes the actuatory effect of the tool in conjunction with its measuring and controlling algorithms. The adaptronic tool consists out the basic tool body and three axially-staggered floating cutter groups, these cutter groups consist out of guides, actuators and honing stones. The selective expansion of the tool is realised by 3 piezoelectric multilayer-actuators deployed in a series - parallel arrangement. It is also possible to superimpose actuator expansion on the conventional expansion. A process matrix is created during the processing of the required and actual contour data in a technology module. This is then transferred over an interface to the machine controller where it is finally processed and the setting values for the piezoelectric actuators are derived, after which an amplifier generates the appropriate actuator voltages. A slip ring system on the driveshaft is used to transfer the electricity to the actuators in the machining head. The functioning of the adaptronic form-honing tool and process were demonstrated with numerous experiments. The tool provides the required degrees of freedom to generate a contour that correspond to the inverse compound contour of assembled and operational engines.

  7. The gravitational force on a gyroscope and the electromagnetic force on a magnetic dipole as analogous tidal effects

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L Filipe O; Herdeiro, Carlos A R, E-mail: filipezola@fc.up.p, E-mail: crherdei@fc.up.p [Centro de Fisica do Porto, Faculdade de Ciencias Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2010-05-01

    We compare the covariant expression of the electromagnetic force exerted on a magnetic dipole with Papapetrou's equation for the gravitational force exerted on a spinning test particle. We show that if Pirani's supplementary spin condition holds, there is an exact, covariant, and fully general analogy relating these two forces: both are determined by a contraction of the spin 4-vector with a magnetic-type tidal tensor. Moreover, these tidal tensors obey strikingly analogous equations which are covariant forms for (some of) Maxwell's and Einstein's field equations. These equations allow for an insightful comparison between the two interactions. It is shown that, in the special case that the gyroscope/dipole are 'at rest' and far away from a stationary source, the two forces are similar (in accordance with the results known from linearized theory); but that for generic dynamics key differences arise. In particular we show that the time projection of the force on a dipole is the power transferred to it by Faraday's induction, whereas the fact that the force on a gyroscope is spatial signals the absence of an analogous gravitational effect; that whereas the total work done on a magnetic dipole by a stationary magnetic field is zero, a stationary gravitomagnetic field, by contrast, does work on mass currents, which quantitatively explains the Hawking-Wald spin interaction energy.

  8. Design and Analysis of Cylinder and Cylinder head of 4-stroke SI Engine for weight reduction

    Directory of Open Access Journals (Sweden)

    Ravindra R. Navthar

    2012-03-01

    Full Text Available The present paper deals with design of cylinder & cylinder head with air cooling system for 4 strokes 4 cylinder SI engine. The main objective of design is to reduce weight to power ratio & will result in producing high specific power. The authors have proposed preliminary design cylinder & cylinder head of a horizontallyopposed SI engine, which develops 120 BHP and posses the maximum rotational speed of 6000rpm. Four stroke opposed engine is inherently well balanced due to opposite location of moving masses and also it provides efficient air cooling. For the requirement of weight reduction the material selected for design of cylinder and cylinder head is Aluminum alloy that is LM-13. The cylinder bore coating using NIKASIL coating was done to improve strength of cylinder with minimum weight..

  9. Control of the Unsteady Flow Structure Behind the Cylinder with Passive Control Method

    Directory of Open Access Journals (Sweden)

    Mustafa Atakan Akar

    2014-04-01

    Full Text Available In this study, it is aimed to control flow structure downstream of inner cylinder with seven different diameters (Di= 30, 40, 50, 60, 70, 80, 90mm by a surrounding outer cylinder that have β=0.5 porosity. The diameter of outer cylinder was chosen as 100mm. The perforation hole diameters of the cylinder were 10mm. The water height was kept constant during experiments as hw=400mm.The depth-averaged free stream velocity was U=100m/s which corresponded to a Reynolds number ReD=10000 based on outer cylinder diameter. Flow characteristics downstream of cylinder was investigated by using particle image velocimetry (PIV technique. PIV experiments were performed at the mid-section of water 200mm. It has been observed that the perforated outer cylinder decreased vortex shedding downstream of inner cylinder with different diameters (Di=30, 40, 50, 60, 70, 80, 90mm. For high diameter ratios Di/Do≥0.7 perforated outer cylinder lost its effect on the flow control.

  10. Effects of Low Incoming Turbulence on the Flow around a 5 : 1 Rectangular Cylinder at Non-Null-Attack Angle

    Directory of Open Access Journals (Sweden)

    M. Ricci

    2016-01-01

    Full Text Available The incompressible high Reynolds number flow around the rectangular cylinder with aspect ratio 5 : 1 has been extensively studied in the recent literature and became a standard benchmark in the field of bluff bodies aerodynamics. The majority of the proposed contributions focus on the simulation of the flow when a smooth inlet condition is adopted. Nevertheless, even when nominally smooth conditions are reproduced in wind tunnel tests, a low turbulence intensity is present together with environmental disturbances and model imperfections. Additionally, many turbulence models are known to be excessively dissipative in laminar-to-turbulent transition zones, generally leading to overestimation of the reattachment length. In this paper, Large Eddy Simulations are performed on a 5 : 1 rectangular cylinder at non-null-attack angle aiming at studying the sensitivity of such flow to a low level of incoming disturbances and compare the performance of standard Smagorinsky-Lilly and Kinetic Energy Transport turbulence models.

  11. Asymmetry of the Venus nightside ionosphere: Magnus force effects

    Science.gov (United States)

    Pérez-de-Tejada, H.

    2008-11-01

    A study of the dawn-dusk asymmetry of the Venus nightside ionosphere is conducted by examining the configuration of the ionospheric trans-terminator flow around Venus and also the dawn-ward displacement of the region where most of the ionospheric holes and the electron density plateau profiles are observed (dawn meaning the west in the retrograde rotation of Venus and that corresponds to the trailing side in its orbital motion). The study describes the position of the holes and the density plateau profiles which occur at neighboring locations in a region that is scanned as the trajectory of the Pioneer Venus Orbiter (PVO) sweeps through the nightside hemisphere with increasing orbit number. The holes are interpreted as crossings through plasma channels that extend downstream from the magnetic polar regions of the Venus ionosphere and the plateau profiles represent cases in which the electron density maintains nearly constant values in the upper ionosphere along the PVO trajectory. From a collection of PVO passes in which these profiles were observed it is found that they appear at neighboring positions of the ionospheric holes in a local solar time (LST) map including cases where only a density plateau profile or an ionospheric hole was detected. It is argued that the ionospheric holes and the density plateau profiles have a common origin at the magnetic polar regions where plasma channels are formed and that the density plateau profiles represent crossings through a friction layer that is adjacent to the plasma channels. It is further suggested that the dawn-dusk asymmetry in the position of both features in the nightside ionosphere results from a fluid dynamic force (Magnus force) that is produced by the combined effects of the trans-terminator flow and the rotational motion of the ionosphere that have been inferred from the PVO measurements.

  12. Effect of secondary radiation force on aggregation between encapsulated microbubbles

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan-Li; Zheng Hai-Rng; Tang Meng-Xing; Zhang Dong

    2011-01-01

    Secondary radiation force can be an attractive force causing aggregates of encapsulated microbubbles in ultrasonic molecular imaging. The influence of the secondary radiation force on aggregation between two coated bubbles is investigated in this study. Numerical calculations are performed based on four simultaneous differential equations of radial and translational motions.Results show that the secondary force can change from attraction to repulsion during approach,and stable microbubble pairs can be formed in the vicinity of resonant regions; the possibility of microbubble aggregations can be reduced by using low exciting amplitude,ultrasonic frequencies deviating from the resonant frequencies or microbubbles with small compressibility.

  13. The impulsive motion of a small cylinder at an interface

    Science.gov (United States)

    Vella, Dominic; Li, Jie

    2010-05-01

    We study the unsteady motion caused by an impulse acting at time t =0 on a small cylinder floating horizontally at a liquid-gas interface. This is a model for the impact of a cylinder onto a liquid surface after the initial splash. Following the impulse, the motion of the cylinder is determined by its weight per unit length (pulling it into the bulk liquid) and resistance from the liquid, which acts to keep the cylinder at the interface. The range of cylinder radii r and impact speeds U considered is such that the resistance from the liquid comes from both the interfacial tension and hydrodynamic pressures. We use two theoretical approaches to investigate this problem. In the first, we apply the arbitrary Lagrangian Eulerian (ALE) method developed by Li et al. ["An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water," J. Comput. Phys. 208, 289 (2005)] to compute the fluid flow caused by the impulse and the (coupled) motion of the cylinder. We show that at early times the interfacial deformation is given by a family of shapes parametrized by r /t2/3. We also find that for a given density and radius there is a critical impulse speed below which the cylinder is captured by the interface and floats but above which it pierces the interface and sinks. Our second theoretical approach is a simplified one in which we assume that the interface is in equilibrium and derive an ordinary differential equation for the motion of the cylinder. Solving this we again find the existence of a critical impulse speed for sinking giving us some quantitative understanding of the results from the ALE simulations. Finally, we compare our theoretical predictions with the results of experiments for cylinder impacts by Vella and Metcalfe ["Surface tension dominated impact," Phys. Fluids 19, 072108 (2007)]. This comparison suggests that the influence of contact line effects, neglected here, may be important in the transition from floating

  14. Cylinder Block Fixture for Mistake Proofing.

    Directory of Open Access Journals (Sweden)

    L.B.Raut

    2014-10-01

    Full Text Available The project idea basically developed from trunnion tables which are one type of fixture having ability to rotate about its axis and able to fix the component at any angle, so there is no requirement of angle plate and sine plates, drilling process is also computer controlled so no guide bush is required, So robust design for extra rigidity, flexibility and simple to use. In this project task is difficult as design rotary cage type fixture for component like cylinder block, which is heavy of 76 kg. it is not possible to rotate or handle component manually and proceed on them to make this process accident proof and automated for this purpose we are designing a rotary cage which rotate 360 degree and allow indexing to process on the component. Processes are to be operated on the component are drilling tapping and air blow washing ,Since drilling don’t need clamping here components self weight will enough to carry drilling force and tapping force coming through power tools. Therefore, rotary cage type fixture is critical importance.

  15. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  16. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  17. Unsteady mixed convection flow from a slender cylinder due to impulsive change in wall velocity and temperature

    Directory of Open Access Journals (Sweden)

    Patil P.M.

    2013-01-01

    Full Text Available An unsteady mixed convection flow of a viscous incompressible fluid over a non-permeable linear stretching vertical slender cylinder is considered to investigate the combined effects of buoyancy force and thermal diffusion. It is assumed that the slender cylinder is in line with the flow. The unsteadiness in the flow and temperature fields is caused due to the impulsive change in the wall velocity and wall temperature of linearly stretching vertical slender cylinder. The effect of surface curvature is also taken into account, particularly for the applications as wire and fiber drawing where exact predictions are expected. The governing boundary layer equations are transformed into a non-dimensional form by a group of non-similar transformations. The resulting system of coupled non-linear partial differential equations is solved by an implicit finite difference scheme in combination with the quasi-linearization technique. Numerical computations are performed to understand the physical situations of linear stretching surface for different values of parameters to display the velocity and temperature profiles graphically. The numerical results for the local skin-friction coefficient and local Nusselt number are also presented. Present results are compared with previously published work and are found to be in excellent agreement.

  18. Numerical and Experimental Investigation of Circulation in Short Cylinders

    CERN Document Server

    Kageyama, A; Goodman, J; Chen, F; Shoshan, E; Kageyama, Akira; Ji, Hantao; Goodman, Jeremy; Chen, Fei; Shoshan, Ethan

    2004-01-01

    In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we explore Couette flows having height comparable to the gap between cylinders, centrifugally stable rotation, and high Reynolds number. Experiments in water are compared with numerical simulations. Simulations show that endcaps corotating with the outer cylinder drive a strong poloidal circulation that redistributes angular momentum. Predicted azimuthal flow profiles agree well with experimental measurements. Spin-down times scale with Reynolds number as expected for laminar Ekman circulation; extrapolation from two-dimensional simulations at $Re\\le 3200$ agrees remarkably well with experiment at $Re\\sim 10^6$. This suggests that turbulence does not dominate the effective viscosity. Further detailed numerical studies reveal a strong radially inward flow near both endcaps. After turning vertically along the inner cylinder, these flows converge at the midplane and depart the boundary in a radial jet. To minimize th...

  19. Optimal control of circular cylinder wakes using long control horizons

    CERN Document Server

    Flinois, Thibault L B

    2015-01-01

    The classical problem of minimizing the drag of a circular cylinder by using body rotation is revisited in an adjoint-based optimal control framework. The cylinder's unsteady and fully unconstrained rotation rate is optimized at Reynolds numbers of 100 and 200 and over horizons that are longer than in previous studies, where they are typically of the order of a vortex shedding period or shorter. In the best configuration, the drag is reduced by $19\\%$, the vortex shedding is effectively suppressed, and this low drag state is maintained with minimal cylinder rotation after transients. Without closed-loop control, which maintains a specific phase relationship between the actuation and the shedding, the wake is not stabilized. A comparison is also given between the performance of optimizations for different horizon lengths and cost functions. It is shown that the long horizons used are necessary in order to stabilize the vortex shedding efficiently.

  20. Effects of bruxism on the maximum bite force

    Directory of Open Access Journals (Sweden)

    Todić Jelena T.

    2017-01-01

    Full Text Available Background/Aim. Bruxism is a parafunctional activity of the masticatory system, which is characterized by clenching or grinding of teeth. The purpose of this study was to determine whether the presence of bruxism has impact on maximum bite force, with particular reference to the potential impact of gender on bite force values. Methods. This study included two groups of subjects: without and with bruxism. The presence of bruxism in the subjects was registered using a specific clinical questionnaire on bruxism and physical examination. The subjects from both groups were submitted to the procedure of measuring the maximum bite pressure and occlusal contact area using a single-sheet pressure-sensitive films (Fuji Prescale MS and HS Film. Maximal bite force was obtained by multiplying maximal bite pressure and occlusal contact area values. Results. The average values of maximal bite force were significantly higher in the subjects with bruxism compared to those without bruxism (p 0.01. Maximal bite force was significantly higher in the males compared to the females in all segments of the research. Conclusion. The presence of bruxism influences the increase in the maximum bite force as shown in this study. Gender is a significant determinant of bite force. Registration of maximum bite force can be used in diagnosing and analysing pathophysiological events during bruxism.

  1. Power counting for nuclear forces in chiral effective field theory

    CERN Document Server

    Long, Bingwei

    2016-01-01

    The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.

  2. Power counting for nuclear forces in chiral effective field theory

    Science.gov (United States)

    Long, Bingwei

    2016-02-01

    The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.

  3. Optimization Study on a Single-cylinder Compressed Air Engine

    Institute of Scientific and Technical Information of China (English)

    YU Qihui; CAI Maolin; SHI Yan; XU Qiyue

    2015-01-01

    The current research of compressed air engine (CAE) mainly focused on simulations and system integrations. However, energy efficiency and output torque of the CAE is limited, which restricts its application and popularization. In this paper, the working principles of CAE are briefly introduced. To set a foundation for the study on the optimization of the CAE, the basic mathematical model of working processes is set up. A pressure-compensated valve which can reduce the inertia force of the valve is proposed. To verify the mathematical model, the prototype with the newly designed pressure-compensated intake valve is built and the experiment is carried out, simulation and experimental results of the CAE are conducted, and pressures inside the cylinder and output torque of the CAE are obtained. Orthogonal design and grey relation analysis are utilized to optimize structural parameters. The experimental and optimized results show that, first of all, pressure inside the cylinder has the same changing tendency in both simulation curve and experimental curve. Secondly, the highest average output torque is obtained at the highest intake pressure and the lowest rotate speed. Thirdly, the optimization of the single-cylinder CAE can improve the working efficiency from an original 21.95% to 50.1%, an overall increase of 28.15%, and the average output torque increases also increases from 22.047 5 N • m to 22.439 N • m. This research designs a single-cylinder CAE with pressure-compensated intake valve, and proposes a structural parameters design method which improves the single-cylinder CAE performance.

  4. Friction reduction in power cylinder systems of gasoline engines; Reibungsreduzierung bei Kolbensystemen im Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Fahr, Matthias; Hanke, Wolfgang [KS Kolbenschmidt GmbH, Neckarsulm (Germany); Klimesch, Christian [KS Aluminium-Technologie GmbH, Neckarsulm (Germany); Rehl, Andreas [Kolbenschmit Pierburg AG, Neckarsulm (Germany). Forschung und Technologie

    2011-07-15

    The power cylinder system, consisting of the piston rings, pistons and cylinder running surfaces, offers great potential for a further reduction in friction. A study by Kolbenschmidt Pierburg quantifies the parameters that cause friction and shows which further developments are particularly effective in minimising friction and wear. (orig.)

  5. Antidepressant effect of Melissa officinalis in the forced swimming test

    Directory of Open Access Journals (Sweden)

    M Emamghoreishi

    2009-03-01

    Full Text Available ABSTRACT Background: In Iranian and other traditional medicines, an antidepressant effect has been indicated for Melissa officinalis (Lamiaceae. However, studies showing its antidepressant effect is lacking. Therefore, the present study was undertaken to examine whether the aqueous extract and essential oil from leaves of Melissa officinalis have an antidepressant-like activity in mice.  Materials and Methods: The effect of subchronic administration of different doses of the aqueous extract (25, 75, 150, 300 mg/kg or water; n=9-10 and the essential oil (10, 25, 75, 150, 300 mg/kg or almond oil; n=9-10 on immobility, climbing, and swimming behaviors were evaluated in the forced swimming test. Fluoxetine (20mg/kg and imipramine (15 mg/kg were used as reference drugs. Additionally, the effect of both plant preparations on spontaneous activity was examined. Results: All doses of the aqueous extract, used in this study, produced a significant reduction in immobility along with an increase in climbing behavior which is similar to those which have been observed with imipramine. Essential oil caused a dose-dependent reduction in immobility and an increase in climbing at all studied doses, compared to control group. Only the highest dose (300mg/kg of essential oil showed a significant increase in swimming behavior. The aqueous extract, but not the essential oil, decreased spontaneous activity in a dose dependent manner. Conclusion: The results of this study suggests that the Melissa officinalis possess an antidepressant-like activity similar to imipramine which may have a potential clinical value for treatment of depression.

  6. Lift Enhancement and Oscillatory Suppression of Vortex-induced Vibration in Shear Flow by Loentz Force

    Institute of Scientific and Technical Information of China (English)

    张辉; 范宝春; 李鸿志

    2012-01-01

    The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cyl- inder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re = 150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Loreutz force increases the lift.

  7. Plasmonic modes and extinction properties of a random nanocomposite cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-04-15

    We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.

  8. 3-D Effects Force Reduction of Short-Crested Non-Breaking Waves on Caissons

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Z.

    1998-01-01

    The effect of wave short-crestedness on the horizontal wave force on a caisson is twofold. The one is the force reduction due to the reduction of point pressure on the caisson, named point-pressure reduction. The other is the force reduction due to the fact that the peak pressures do not occur si...

  9. Harmonic components of cylinder pressure variation and their characteristics for combustion noise in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.R.; Miyamoto, Noboru; Murayama, Tadashi

    1987-10-31

    Combustion noise is a serious problem in internal combustion engines, especially diesel engines. Although the cylinder pressure variation is easily visible tool to evaluate the combustion noise and thermal efficiency, the exciting force in engine combustion noise has not been completely determined. Cylinder pressure variation for different combustion behaviors and their harmonic components were calculated and an attempt was made to correlate the various components. It was found that the logarithmic harmonic components of cylinder pressure variations, the cylinder pressure level (CPL) can be described by a function with four variables, the values of cylinder pressure variation. The results of this paper is summarized as follows: 1) A relationship was established between CPL and four characteristic values describing the cylinder pressure and variation diagram. 2) Harmonic components of cylinder pressure variations are described by a linear function with four variables and four characteristic values. 3) In this case, the coefficients of the four variables depend solely on the order of engine revolutions and are independent of combustion behavior and engine operating conditions. (13 figs, 7 refs)

  10. Vortex-Induced Vibration of a Circular Cylinder Fitted with a Single Spanwise Tripwire

    Science.gov (United States)

    Vaziri, Ehsan; Ekmekci, Alis

    2016-11-01

    A spanwise tripwire can be used to alter the coherence and strength of the vortex shedding from cylindrical structures. While this has been well-documented for cylinders in stationary state, there exists a lack of understanding regarding the control induced by spanwise tripwires for cylinders undergoing vortex-induced vibration (VIV). The current experimental research investigates the consequences of spanwise tripping on VIV of a cylinder. Experiments are conducted in a recirculating water tunnel at a Reynolds number of 10,000. The test setup allows the rigid test cylinder to have one-degree-of-freedom vibration in the cross-flow direction as a result of fluid forcing. To measure the cylinder motion, a high-resolution laser displacement sensor is used. The tripwire diameter to cylinder diameter ratio is fixed at 6.1%. Various angular positions of tripwire are studied ranging from 40 to 90 degrees. It is shown that the tripwire location controls the pattern, amplitude, frequency, and mid-position of oscillations significantly. Different oscillation modes are classified based on the observed oscillation pattern, amplitude and frequency. Oscillation amplitude can be reduced by 61% with respect to the amplitude of a clean cylinder undergoing VIV under the same flow condition.

  11. Results of the remote sensing feasibility study for the uranium hexafluoride storage cylinder yard program

    Energy Technology Data Exchange (ETDEWEB)

    Balick, L.K.; Bowman, D.R. [Bechtel Nevada, Las Vegas, NV (United States). Remote Sensing Lab.; Bounds, J.H. [Los Alamos National Lab., NM (United States)] [and others

    1997-02-01

    The US DOE manages the safe storage of approximately 650,000 tons of depleted uranium hexafluoride remaining from the Cold War. This slightly radioactive, but chemically active, material is contained in more than 46,000 steel storage cylinders that are located at Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Some of the cylinders are more than 40 years old, and approximately 17,500 are considered problem cylinders because their physical integrity is questionable. These cylinders require an annual visual inspection. The remainder of the 46,000-plus cylinders must be visually inspected every four years. Currently, the cylinder inspection program is extremely labor intensive. Because these inspections are accomplished visually, they may not be effective in the early detection of leaking cylinders. The inspection program requires approximately 12--14 full-time-equivalent (FTE) employees. At the cost of approximately $125K per FTE, this translates to $1,500K per annum just for cylinder inspection. As part of the technology-development portion of the DOE Cylinder Management Program, the DOE Office of Facility Management requested the Remote Sensing Laboratory (RSL) to evaluate remote sensing techniques that have potential to increase the effectiveness of the inspection program and, at the same time, reduce inspection costs and personnel radiation exposure. During two site visits (March and May 1996) to the K-25 Site at Oak Ridge, TN, RSL personnel tested and characterized seven different operating systems believed to detect leakage, surface contamination, thickness and corrosion of cylinder walls, and general area contamination resulting from breached cylinders. The following techniques were used and their performances are discussed: Laser-induced fluorescent imaging; Long-range alpha detection; Neutron activation analysis; Differential gamma-ray attenuation; Compton scatterometry; Active infrared inspection; and Passive thermal infrared imaging.

  12. Interaction of circular cylinder wake with a short asymmetrically located downstream plate

    Science.gov (United States)

    Yucel, S. B.; Cetiner, O.; Unal, M. F.

    2010-07-01

    This study reveals the interaction patterns of separated shear layers from a circular cylinder with a short downstream plate and their reflection on the frequency and the formation length of the vortices from the cylinder as a function of plate location relative to the cylinder. The effect of horizontal ( G/D) and vertical ( Z/D) distances between the cylinder and the plate on the near wake is studied via Digital Particle Image Velocimetry (DPIV) in a water channel for Reynolds numbers of 200, 400 and 750, based on the cylinder diameter D. It is shown that the interaction of wake with the plate of length D can be categorized depending on the horizontal and the vertical distances between the cylinder and the plate. For the vertical distance range of Z/D ≤ 0.7, there is a critical horizontal spacing before which the shear layers from the cylinder are inhibited to form vortices in front of the plate. Resulting elongated recirculation region between the plate and the cylinder suggests modification of the absolutely unstable near wake of free circular cylinder in favor of convective instability. Z/D = 0.9 provides a passage from Z/D ≤ 0.7 to ≥1.1 and is associated with a dominant effect on the near-wake characteristics of interaction of shear layers from the cylinder with those from the downstream plate. For Z/D ≥ 1.1, there is again, yet a smaller critical horizontal spacing after which vortices interact with decreased downstream plate interference. In this vertical separation distance range, a gap flow between the plate and the cylinder plays a determining role on the formation length and St number of vortices for small horizontal spacing values.

  13. Effects of Rate of Movement on Effective Maximal Force Generated by Elbow Extensors.

    Science.gov (United States)

    Updyke, Wynn F.; And Others

    This study investigated the effects of the velocity of muscular contraction on the effective force (torque) exerted by forty 18- to 21-year-old males. The dynomemeter lever arm, the fulcrum of which was aligned with the axis of elbow rotation, allowed extension and flexion for the subjects. All subjects were tested at three velocities (.10, .20,…

  14. Vortex-induced vibrations of circular cylinder in cross flow at supercritical Reynolds numbers; Chorinkai Reynolds su ryoiki ni okeru enchu no uzu reiki shindo

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Nakao, T.; Takahashi, M.; Hayashi, M.; Goto, N. [Hitachi, Ltd., Tokyo (Japan)

    1999-07-25

    Vortex-induced vibrations were measured for a circular cylinder subjected to a water cross flow at supercritical Reynolds numbers for a wide range of reduced velocities. Turbulence intensities were changed from 1% to 13% in order to investigate the effect of the Strouhal number on the region of synchronization by symmetrical and Karman vortex shedding. The reduced damping of the test cylinder was about 0.1 in water. The surface roughness of the cylinder was a mirror-polished surface. Strouhal number decreased from about 0.48 to 0.29 with increasing turbulence intensity. Synchronized vibrations were observed even at supercritical Reynolds numbers where fluctuating fluid force was small. Reduced velocities at which drag and lift direction lock-in by Karman vortex shedding were initiated decreased with increasing Strouhal number. When Strouhal number was about 0.29, the self-excited vibration in drag direction by symmetrical vortex shedding began at which the frequency ratio of Karman vortex shedding frequency to the natural frequency of cylinder was 0.32. (author)

  15. Process for controlled effect on the properties of cylinder charges of two-stroke Diesel engines, particularly those with particle filters or catalysts. Verfahren zur geregelten Beeinflussung der Beschaffenheit der Zylinderladung von Zweitaktdieselmotoren, insbesondere solcher mit Partikelfilter oder Katalysator

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, B.

    1992-02-27

    In Diesel engines, the automatic free combustion of a particle filter is only guaranteed near full load with sufficiently high exhaust gas temperatures. By the new process, the exhaust gas temperature of two-stroke Diesel engines is to be raised so far in the part load range that the automatic free combustion of a particle filter or the efficiency of a catalyst is guaranteed in all working conditions of the engine. The quantity of flushing air introduced into the cylinder per working cycle is controlled depending on the load by a control device, so that at full load and in the range near full load, the ratio of the volume of flushing air per working cycle to the cylinder swept space is greater than 1, but in the low part load range and at tickover it is appreciably less than 1. In the lower part load range, the flushing air is additionally increasing preheated with decreasing load in an exhaust gas flushing air heat exchanger after the particle filter or the catalyst. Apart from the automatic particle filter cleaning, an effect corresponding to exhaust gas feedback and a seris of other advantages are achieved. Two-stroke Diesel engines with frequent part-load operation, eg: for vehicles and working engines.

  16. Fatigue Tests with Densit Cylinders - D4

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    This report contains descriptions and results of a series of fatigue tests performed during the autumn of 2005 at the Stuctural Research Laboratory, Aalborg University. Cylinders with a diameter of 45 mm and a height of 90 mm were used as test specimens; the material was Densit Ducorit D4. Four...... cylinders were tested statically under compression and the rest of the cylinders (30) were tested under fatigue conditions with a load varying sinusoidally....

  17. Rarita-Schwinger Type operators on Cylinders

    OpenAIRE

    2011-01-01

    Here we define Rarita-Schwinger operators on cylinders and construct their fundamental solutions. Further the fundamental solutions to the cylindrical Rarita-Schwinger type operators are achieved by applying translation groups. In turn, a Borel-Pompeiu Formula, Cauchy Integral Formula and a Cauchy Transform are presented for the cylinders. Moreover we show a construction of a number of conformally inequivalent spinor bundles on these cylinders. Again we construct Rarita-Schwinger operators an...

  18. Quantum Mechanics on the cylinder

    CERN Document Server

    González, J A; Tosiek, J

    2003-01-01

    A new approach to deformation quantization on the cylinder considered as phase space is presented. The method is based on the standard Moyal formalism for R^2 adapted to (S^1 x R) by the Weil--Brezin--Zak transformation. The results are compared with other solutions of this problem presented by Kasperkovitz and Peev (Ann. Phys. vol. 230, 21 (1994)0 and by Plebanski and collaborators (Acta Phys. Pol. vol. B 31}, 561 (2000)). The equivalence of these three methods is proved.

  19. Experimental test for approximately dispersionless forces in the Aharonov-Bohm effect

    Science.gov (United States)

    Becker, Maria; Batelaan, Herman

    2016-07-01

    A new class of forces, approximately dispersionless forces, were recently predicted as part of a semiclassical description of the Aharonov-Bohm effect. Electron time-of-flight measurements have been performed that test for such forces. Magnetized iron cores used in the previous time-of-flight experiment may affect potential back-action forces and have, therefore, been eliminated. We report that no forces were detected. This finding supports the local and nonlocal, quantum descriptions of the AB effect and rules out local, semiclassical descriptions.

  20. Lattice Boltzmann simulation to laminar pulsating flow past a circular cylinder with constant temperature

    Science.gov (United States)

    Zheng, Youqu; Li, Guoneng; Guo, Wenwen; Dong, Cong

    2017-09-01

    In order to investigate the heat transfer characteristics of pulsating flows past a circular cylinder, a Lattice Boltzmann (LB) numerical code based on a 2-dimension-9-velocity frame is developed. The local Nusselt number and the dimensionless viscous force around the cylinder surface are explored in detail. Double Particle Distribution Function model and the second order extrapolation method for the curve boundary of the cylinder are employed in the LB numerical code. Numerical results found that the spatial averaged Nusselt number of the cylinder is oscillating with the same pulsating frequency of the incoming air flows. The heat transfer enhancement is mainly located in the windward side of the cylinder, and the heat transfer enhancement only happens in one half cycle of the pulsation. Whereas the heat transfer in the leeward side of the cylinder is found to be unaffected, and the heat transfer is slightly deteriorated in the other half cycle of the pulsation. Further analysis showed that the heat transfer enhancement is proportional to the magnitude of dimensionless viscous force.

  1. NUMERICAL SIMULATION OF FLOW OVER TWO SIDE-BY-SIDE CIRCULAR CYLINDERS

    Institute of Scientific and Technical Information of China (English)

    SARVGHAD-MOGHADDAM Hesam; NOOREDIN Navid; GHADIRI-DEHKORDI Behzad

    2011-01-01

    In the present paper,the unsteady,viscous,incompressible and 2-D flow around two side-by-side circular cylinders was simulated using a Cartesian-staggered grid finite volume based method.A great-source term technique was employed to identify the solid bodies (cylinders) located in the flow field and boundary conditions were enforced by applying the ghost-cell technique.Finally,the characteristics of the flow around two side-by-side cylinders were comprehensively obtained through several computational simulations.The computational simulations were performed for different transverse gap ratios (1.5≤T/D≤4) in laminar (Re =100,200 ) and turbulent (Re =104) regimes,where T and D are the distance between the centers of cylinders and the diameter of cylinders,respectively.The Reynolds number is based on the diameter of cylinders,D.The pressure field and vorticity distributions along with the associated streamlines and the time histories of hydrodynamic forces were also calculated and analyzed for different gap ratios.Generally,different flow patterns were observed as the gap ratio and Reynolds number varied.Accordingly,the hydrodynamic forces showed irregular variations for small gaps while they took a regular pattern at higher spacing ratios.

  2. Rotation of an immersed cylinder sliding near a thin elastic coating

    Science.gov (United States)

    Rallabandi, Bhargav; Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Schönecker, Clarissa; Mahadevan, L.; Stone, Howard A.

    2017-07-01

    It is known that an object translating parallel to a soft wall in a viscous fluid produces hydrodynamic stresses that deform the wall, which in turn results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [B. Saintyves et al., Proc. Natl. Acad. Sci. USA 113, 5847 (2016), 10.1073/pnas.1525462113]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely, that a softer elastic layer results in a greater angular speed of the cylinder.

  3. INTERACTION OF A FLOATING ELLIPTIC CYLINDER WITH A VIBRATING CIRCULAR CYLINDER

    Institute of Scientific and Technical Information of China (English)

    SUN Ren; CHWANG Allen T.

    2006-01-01

    The nonlinear hydrodynamic interaction between a floating elliptic cylinder and a vibrating circular cylinder immersed in an infinite fluid was investigated. By taking the added masses of the two-cylinder system into account, the dynamical equations of motion were formulated from the Lagrange equations of motion. The dynamical behaviors of these two cylinders were analyzed numerically for some typical situations, and the results show that the presence of a vibrating circular cylinder has a significant influence on the planar motion of a floating elliptic cylinder. The hydrodynamic interaction between them results in complicated nonlinear behaviors of the floating cylinder. It is found that oscillatory motion of the elliptic cylinder takes place in response to the vibrating mode of the circular one.

  4. Numerical simulation of flow past twin near-wall circular cylinders in tandem arrangement at low Reynolds number

    Directory of Open Access Journals (Sweden)

    Guo-qiang Tang

    2015-10-01

    Full Text Available Fluid flow past twin circular cylinders in a tandem arrangement placed near a plane wall was investigated by means of numerical simulations. The two-dimensional Navier-Stokes equations were solved with a three-step finite element method at a relatively low Reynolds number of Re = 200 for various dimensionless ratios of and , where D is the cylinder diameter, L is the center-to-center distance between the two cylinders, and G is the gap between the lowest surface of the twin cylinders and the plane wall. The influences of and on the hydrodynamic force coefficients, Strouhal numbers, and vortex shedding modes were examined. Three different vortex shedding modes of the near wake were identified according to the numerical results. It was found that the hydrodynamic force coefficients and vortex shedding modes are quite different with respect to various combinations of and . For very small values of , the vortex shedding is completely suppressed, resulting in the root mean square (RMS values of drag and lift coefficients of both cylinders and the Strouhal number for the downstream cylinder being almost zero. The mean drag coefficient of the upstream cylinder is larger than that of the downstream cylinder for the same combination of and . It is also observed that change in the vortex shedding modes leads to a significant increase in the RMS values of drag and lift coefficients.

  5. Inner cylinder of the CMS vacuum tank.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the outer cylinder already attached to the innermost ring of the barrel yoke.

  6. Fire exposure of empty 30B cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Ziehlke, K.T. [MJB Technical Associates, Inc., Knoxville, TN (United States)

    1991-12-31

    Cylinders for UF{sub 6} handling, transport, and storage are designed and built as unfired pressure vessels under ASME Boiler and Pressure Vessel Code criteria and standards. They are normally filled and emptied while UF{sub 6} is in its liquid phase. Transport cylinders such as the Model 30B are designed for service at 200 psi and 250{degrees}F, to sustain the process conditions which prevail during filling or emptying operations. While in transport, however, at ambient temperature the UF{sub 6} is solid, and the cylinder interior is well below atmospheric pressure. When the cylinders contain isotopically enriched product (above 1.0 percent U-235), they are transported in protective overpacks which function to guard the cylinders and their contents against thermal or mechanical damage in the event of possible transport accidents. Two bare Model 30B cylinders were accidentally exposed to a storage warehouse fire in which a considerable amount of damage was sustained by stored materials and the building structure, as well as by the cylinder valves and valve protectors. The cylinders were about six years old, and had been cleaned, inspected, hydrotested, and re-certified for service, but were still empty at the time of the fire. The privately-owned cylinders were transferred to DOE for testing and evaluation of the fire damage.

  7. Overseas shipments of 48Y cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

    1991-12-31

    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  8. Optimization and improvement of Halbach cylinder design

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders;

    2008-01-01

    that this parameter was optimal for long Halbach cylinders with small rex. Using the previously mentioned additional blocks of magnets can improve the parameter by as much as 15% as well as improve the homogeneity of the field in the cylinder bore. ©2008 American Institute of Physics......In this paper we describe the results of a parameter survey of a 16 segmented Halbach cylinder in three dimensions in which the parameters internal radius, rin, external radius, rex, and length, L, have been varied. Optimal values of rex and L were found for a Halbach cylinder with the least...

  9. The behavior of implant-supported dentures and abutments using the cemented cylinder technique with different resinous cements

    Directory of Open Access Journals (Sweden)

    Ivete Aparecida de Mathias Sartori

    2008-01-01

    Full Text Available Objective: Evaluate the behavior of implant-supported dentures and their components, made by cemented cylinder technique, using threetypes of resin cements. Methods: Fifty three patients, of whom 26 were women and 27 men, aged between 25 and 82 years. Results: With partial (54.43% and total (45.57% implant-supported dentures, of the Cone Morse, external and internal hexagon types (Neodent®, Curitiba, Brazil, totaling 237 fixations, were analyzed. The resin cements used were Panavia® (21.94%, EnForce® (58.23% and Rely X® (19.83% and the components were used in accordance with the Laboratory Immediate Loading - Neodent® sequence. The period of time of denture use ranged between 1 and 5 years. The results reported that 5(2.1% cylinders were loosened from metal structure (both belonging to Rely X group, 2(0.48% implants were lost after the first year of use, 16(6.75% denture retention screws wereloosened and 31(13.08% abutment screws were unloosened.Conclusion: The reasons for these failures probably are: metal structure internal retention failure, occlusal pattern, cementation technique and loading conditions. The cemented cylinder technique was effective when used in partial and total implant-supported rehabilitations, keeping prosthetic components stable, despite the resin cement utilized. However, further clinical studies must be conducted.

  10. 49 CFR 178.35 - General requirements for specification cylinders.

    Science.gov (United States)

    2010-10-01

    ...) The word “spun” or “plug” must be placed near the DOT specification marking when an end closure in the finished cylinder has been welded by the spinning process, or effected by plugging. (ii) As prescribed in... shoulder, top head, or neck. (5) The size of each marking must be at least 0.25 inch or as space permits...

  11. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase

    Directory of Open Access Journals (Sweden)

    Martínez-Valencia María Asunción

    2015-06-01

    Full Text Available Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak, a peak rate of force development (RFDpeak and time to RFD (TRFD in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001 in sprint times (20 and 30 m sprint for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s−1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s−1, p ≤ 0.01. Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration.

  12. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase

    Science.gov (United States)

    Martínez-Valencia, María Asunción; Romero-Arenas, Salvador; Elvira, José L.L.; González-Ravé, José María; Navarro-Valdivielso, Fernando; Alcaraz, Pedro E.

    2015-01-01

    Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm)) on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg) performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak), a peak rate of force development (RFDpeak) and time to RFD (TRFD) in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001) in sprint times (20 and 30 m sprint) for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s−1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s−1, p ≤ 0.01). Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration. PMID:26240657

  13. Effects of Sled Towing on Peak Force, the Rate of Force Development and Sprint Performance During the Acceleration Phase.

    Science.gov (United States)

    Martínez-Valencia, María Asunción; Romero-Arenas, Salvador; Elvira, José L L; González-Ravé, José María; Navarro-Valdivielso, Fernando; Alcaraz, Pedro E

    2015-06-27

    Resisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm)) on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg) performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak), a peak rate of force development (RFDpeak) and time to RFD (TRFD) in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001) in sprint times (20 and 30 m sprint) for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s-1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s-1, p ≤ 0.01). Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration.

  14. Numerical study of combined convection heat transfer for thermally developing upward flow in a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Mohammed Hussein A.

    2008-01-01

    Full Text Available The problem of the laminar upward mixed convection heat transfer for thermally developing air flow in the entrance region of a vertical circular cylinder under buoyancy effect and wall heat flux boundary condition has been numerically investigated. An implicit finite difference method and the Gauss elimination technique have been used to solve the governing partial differential equations of motion (Navier Stocks equations for two-dimensional model. This investigation covers Reynolds number range from 400 to 1600, heat flux is varied from 70 W/m2 to 400 W/m2. The results present the dimensionless temperature profile, dimensionless velocity profile, dimensionless surface temperature along the cylinder, and the local Nusselt number variation with the dimensionless axial distance Z+. The dimensionless velocity and temperature profile results have revealed that the secondary flow created by natural convection have a significant effect on the heat transfer process. The results have also shown an increase in the Nusselt number values as the heat flux increases. The results have been compared with the available experimental study and with the available analytical solution for pure forced convection in terms of the local Nusselt number. The comparison has shown satisfactory agreement. .

  15. The effect of motor overflow on bimanual asymmetric force coordination.

    Science.gov (United States)

    Cunningham, David A; Roelle, Sarah M; Allexandre, Didier; Potter-Baker, Kelsey A; Sankarasubramanian, Vishwanath; Knutson, Jayme S; Yue, Guang H; Machado, Andre G; Plow, Ela B

    2017-01-16

    Motor overflow, typically described in the context of unimanual movements, refers to the natural tendency for a 'resting' limb to move during movement of the opposite limb and is thought to be influenced by inter-hemispheric interactions and intra-cortical networks within the 'resting' hemisphere. It is currently unknown, however, how motor overflow contributes to asymmetric force coordination task accuracy, referred to as bimanual interference, as there is need to generate unequal forces and corticospinal output for each limb. Here, we assessed motor overflow via motor evoked potentials (MEPs) and the regulation of motor overflow via inter-hemispheric inhibition (IHI) and short-intra-cortical inhibition (SICI) using transcranial magnetic stimulation in the presence of unimanual and bimanual isometric force production. All outcomes were measured in the left first dorsal interosseous (test hand) muscle, which maintained 30% maximal voluntary contraction (MVC), while the right hand (conditioning hand) was maintained at rest, 10, 30, or 70% of its MVC. We have found that as higher forces are generated with the conditioning hand, MEP amplitudes at the active test hand decreased and inter-hemispheric inhibition increased, suggesting reduced motor overflow in the presence of bimanual asymmetric forces. Furthermore, we found that subjects with less motor overflow (i.e., reduced MEP amplitudes in the test hemisphere) demonstrated poorer accuracy in maintaining 30% MVC across all conditions. These findings suggest that motor overflow may serve as an adaptive substrate to support bimanual asymmetric force coordination.

  16. Effect of object width on precision grip force and finger posture.

    Science.gov (United States)

    Domalain, M; Vigouroux, L; Danion, F; Sevrez, V; Berton, E

    2008-09-01

    This study aimed to define the effect of object width on spontaneous grasp. Participants held objects of various masses (0.75 to 2.25 kg) and widths (3.5 to 9.5 cm) between thumb and index finger. Grip force, maximal grip force and corresponding finger postures were recorded using an embedded force sensor and an optoelectronic system, respectively. Results showed that index finger joints varied to accommodate the object width, whereas thumb posture remained constant across conditions. For a given object mass, grip force increased as a function of object width, although this result is not dictated by the laws of mechanics. Because maximal grip force also increased with object width, we hypothesise that participants maintain a constant ratio between grip force and their maximal grip force at each given width. Altogether we conclude that when the task consists in manipulating objects/tools, the optimal width is different than when maximal force exertions are required.

  17. Thermocapillary bubble flow and coalescence in a rotating cylinder: A 3D study

    Science.gov (United States)

    Alhendal, Yousuf; Turan, A.; Al-mazidi, M.

    2015-12-01

    The process of thermocapillary bubbles rising in a rotating 3D cylinder in zero gravity was analysed and presented numerically with the aid of computational fluid dynamics (CFD) by means of the volume of fluid (VOF) method. Calculations were carried out to investigate in detail the effect of the rotational speed of the hosted liquid on the trajectory of both single and group bubbles driven by the Marangoni force in zero-gravity conditions. For rotational speeds from 0.25 to 2 rad/s, bubble displacement with angular motion was found to be directed between the hotter surface and the rotational axis. This is contrary to the conventional bubble flow from areas of high pressure to low pressure, radial direction, or from cold to hot regions, axial direction. The results demonstrate that for the ratio of rotational speeds to the thermocapillary bubble velocity larger than unity, the surface tension gradient is the dominant force and the bubble motion towards the hotter. On the other hand, for ratio less than 1, the bubble motion is dominated and is significantly affected by centrifugal force. As rotation speed increases, the amount of deflection increases and the Marangoni effect vanishes. The current study is novel in the sense that single- and multi-bubble motion incorporating thermocapillary forces in a rotating liquid in a zero-gravity environment has never been numerically investigated.

  18. Fuel Efficiency Mapping of a 2014 6-Cylinder GM EcoTec 4.3L Engine with Cylinder Deactivation (SAE 2016-01-0662)

    Science.gov (United States)

    This paper describes the method and test results of the engine dyno portion of the benchmarking test results including engine fuel consumption maps showing the effects of cylinder deactivation engine technology.

  19. Hard sphere packings within cylinders.

    Science.gov (United States)

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  20. Representing plants as rigid cylinders in experiments and models

    Science.gov (United States)

    Vargas-Luna, Andrés; Crosato, Alessandra; Calvani, Giulio; Uijttewaal, Wim S. J.

    2016-07-01

    Simulating the morphological adaptation of water systems often requires including the effects of plants on water and sediment dynamics. Physical and numerical models need representing vegetation in a schematic easily-quantifiable way despite the variety of sizes, shapes and flexibility of real plants. Common approaches represent plants as rigid cylinders, but the ability of these schematizations to reproduce the effects of vegetation on morphodynamic processes has never been analyzed systematically. This work focuses on the consequences of representing plants as rigid cylinders in laboratory tests and numerical simulations. New experiments show that the flow resistance decreases for increasing element Reynolds numbers for both plants and rigid cylinders. Cylinders on river banks can qualitatively reproduce vegetation effects on channel width and bank-related processes. A comparative review of numerical simulations shows that Baptist's method that sums the contribution of bed shear stress and vegetation drag, underestimates bed erosion within sparse vegetation in real rivers and overestimates the mean flow velocity in laboratory experiments. This is due to assuming uniform flow among plants and to an overestimation of the role of the submergence ratio.

  1. Effects of vertically ribbed surface roughness on the forced convective heat losses in central receiver systems

    Science.gov (United States)

    Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas

    2016-05-01

    External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.

  2. Experiments evaluating compliance and force feedback effect on manipulator performance

    Science.gov (United States)

    Kugath, D. A.

    1972-01-01

    The performance capability was assessed of operators performing simulated space tasks using manipulator systems which had compliance and force feedback varied. Two manipulators were used, the E-2 electromechanical man-equivalent (force, reach, etc.) master-slave system and a modified CAM 1400 hydraulic master-slave with 100 lbs force capability at reaches of 24 ft. The CAM 1400 was further modified to operate without its normal force feedback. Several experiments and simulations were performed. The first two involved the E-2 absorbing the energy of a moving mass and secondly, guiding a mass thru a maze. Thus, both work and self paced tasks were studied as servo compliance was varied. Three simulations were run with the E-2 mounted on the CAM 1400 to evaluate the concept of a dexterous manipulator as an end effector of a boom-manipulator. Finally, the CAM 1400 performed a maze test and also simulated the capture of a large mass as the servo compliance was varied and with force feedback included and removed.

  3. Mixed convection of ferrofluids in a lid driven cavity with two rotating cylinders

    Directory of Open Access Journals (Sweden)

    Fatih Selimefendigil

    2015-09-01

    Full Text Available Mixed convection of ferrofluid filled lid driven cavity in the presence of two rotating cylinders were numerically investigated by using the finite element method. The cavity is heated from below, cooled from driven wall and rotating cylinder surfaces and side vertical walls of the cavity are assumed to be adiabatic. A magnetic dipole source is placed below the bottom wall of the cavity. The study is performed for various values of Reynolds numbers (100 ≤ Re ≤ 1000, angular rotational speed of the cylinders (−400 ≤ Ω ≤ 400, magnetic dipole strengths (0 ≤ γ ≤ 500, angular velocity ratios of the cylinders (0.25≤Ωi/Ωj≤4 and diameter ratios of the cylinders (0.5≤Di/Dj≤2. It is observed that flow patterns and thermal transport within the cavity are affected by variation in Reynolds number and magnetic dipole strength. The results of this investigation revealed that cylinder angular velocities, ratio of the angular velocities and diameter ratios have profound effect on heat transfer enhancement within the cavity. Averaged heat transfer enhancements of 181.5 % is achieved for clockwise rotation of the cylinder at Ω = −400 compared to motionless cylinder case. Increasing the angular velocity ratio from Ω2/Ω1=0.25 to Ω2/Ω1=4 brings about 91.7 % of heat transfer enhancement.

  4. Scattering of electromagnetic waves by many thin cylinders: theory and computational modeling

    CERN Document Server

    Ramm, A G

    2015-01-01

    Electromagnetic (EM) wave scattering by many parallel infinite cylinders is studied asymptotically as a tends to 0, where a is the radius of the cylinders. It is assumed that the centres of the cylinders are distributed so that their numbers is determined by some positive function N(x). The function N(x) >= 0 is a given continuous function. An equation for the self-consistent (limiting) field is derived as a tends to 0. The cylinders are assumed perfectly conducting. Formula for the effective refraction coefficient of the new medium, obtained by embedding many thin cylinders into a given region, is derived. The numerical results presented demonstrate the validity of the proposed approach and its efficiency for solving the many-body scattering problems, as well as the possibility to create media with negative refraction coefficients.

  5. Fluence Rate in UV Photoreactor for Disinfection of Water: Isotropically Radiating Cylinder

    Directory of Open Access Journals (Sweden)

    Roman Ilinsky

    2014-01-01

    Full Text Available The calculation of fluence rate in the photochemical reactor using ultraviolet (UV radiation for disinfection of water for the case, when a cylinder of infinite length is used as a light source, has been considered. Such a cylinder is filled with an isotropically radiating medium. The dependence of the fluent rate on the diameter of the radiating cylinder has been analytically analyzed. The limiting case when the diameter of the radiating cylinder tends to zero has been considered and the notion of “effective interval” has been introduced. Based on this notion, the comparison of fluence rates for the cylinders of finite and infinite lengths has been performed. In the calculations of fluence rate, it is advisable to use the Chebyshev method for the operations of numerical integration.

  6. Investigation of the influence of free convection on the heat transfer of cylinders with different aspect ratios

    Science.gov (United States)

    Henselowsky, C.; Kuhlmann, H. C.; Rath, H. J.

    2001-03-01

    The heat transfer from an electrically heated cylinder (wire) of finite length to the surrounding fluid can be divided into heat radiation, conduction and convection. A technical application of these cylinders with typical dimensions of 1-2 mm length and a few micrometers diameter is the Hot-Wire-Anemometry. This systematic study should clarify the influence of free convection to three dimensional heat transfer of cylinders. For this aim it is planned to investigate Reynolds numbers below Re=1 (creeping flow). For this reason measurements should be done under 1g in the earth laboratory and also under microgravity (µg) conditions. Comparisons of these measurements under otherwise same conditions allows to distinguish between the pure convection heat transfer and the contributions due to conduction and other effects. For measurements under µg the Drop Tower Bremen can be used as research facility. Due to the fast response of convection to changes in the gravity conditions the Drop Tower is an ideal and cost efficient experimental tool. The experimental setup is build to operate at velocity range of 0-1 m/s which includes the whole range of convection from pure free convection at 0 m/s over mixed convection up to pure forced convection at velocities above about 0.15 m/s. This velocity region corresponds to a range of the Reynolds number of Re=0-0.18 for a cylinder of 5 µ m diameter at Tf=140°C in air at an ambient temperature of about 21°C.

  7. Investigation of the Influence of Free Convection on the Heat Transfer of Cylinders with Different Aspect Ratios

    Institute of Scientific and Technical Information of China (English)

    C. Henselowsky; H.C. Kuhlmann; H.J. Rath

    2001-01-01

    The heat transfer from an electrically heated cylinder (wire) of finite length to the surrounding fluid can be divided into heat radiation, conduction and convection. A technical application of these cylinders with typical di mensions of 1-2 mm length and a few micrometers diameter is the Hot-Wire-Anemometry. This systematic study should clarify the influence of free convection to three dimensional heat transfer of cylinders. For this aim it is planned to investigate Reynolds numbers below Re = 1 (creeping flow). For this reason measurements should be done under lg in the earth laboratory and also under microgravity (μg) conditions. Comparisons of these meas urements under otherwise same conditions allows to distinguish between the pure convection heat transfer and the contributions due to conduction and other effects.For measurements underμg the Drop Tower Bremen can be used as research facility. Due to the fast response of convection to changes in the gravity conditions the Drop Tower is an ideal and cost efficient experimental tool.The experimental setup is build to operate at velocity range of 0-1 m/s which includes the whole range of con vection from pure free convection at 0 m/s over mixed convection up to pure forced convection at velocities abo ve about 0.15 m/s. This velocity region corresponds to a range of the Reynolds number of Re = 0 - 0.18 for a cylinder of 5 μ m diameter at Tf= 140℃ in air at an ambient temperature of about 21℃.

  8. Effect of combined variation of force amplitude and rate of force development on the modulation characteristics of muscle activation during rapid isometric aiming force production.

    Science.gov (United States)

    Park, Jin-Hoon; Stelmach, George E

    2006-01-01

    Studies of rapid target-directed limb movements have suggested that various control schemes can be defined by the modulation pattern of the muscle activity. The present study was aimed to address the question regarding the extent to which a simultaneous control of force amplitude, and rate of force development influences the modulation characteristics of muscle activation associated with producing rapid isometric aiming forces at the elbow joint. The subjects were instructed to produce rapid isometric force pulses to three different force amplitudes (15, 35, and 55% of their maximal voluntary contractions) under systematically varied force-rate conditions ranging from a fast and accurate force-rate to the fastest force-rate possible. The results showed that larger force amplitudes were achieved by increasing the rate of force development (d F/d t) while the time to peak force remained relatively constant. The magnitude of the electromyographic (EMG) burst systematically increased as a function of force amplitude at all force-rate conditions. The primary finding was that the characteristic of the EMG burst duration associated with different force amplitudes showed a significant difference among force-rate conditions. Under a fast and accurate force-rate condition, the duration of the agonist burst increased linearly with force amplitude. A gradual transition into a fixed duration of the agonist burst then was observed over the remaining three force-rate requirements. With increasingly faster force-rates, there were no changes in the agonist burst duration over three force amplitudes. These results indicate that the combined variations in force amplitude and force-rate examined relative to the most rapid force-rate influence the control patterns for the muscle activation during the fast isometric force production. Changes in the EMG modulation patterns observed are likely due to the constraints imposed by muscle contractile properties.

  9. Repulsive and Restoring Casimir Forces Based on Magneto-Optical Effect

    Institute of Scientific and Technical Information of China (English)

    ZENG Ran; YANG Ya-Ping

    2011-01-01

    The Casimir force direction tuned by the external magnetic field due to the magneto-optical Voigt effect is investigated. The magneto-optical effect gives rise to the modified frequency-dependent electric permittivity and thus the electromagnetic properties of the materials can be adjusted to satisfy the condition of the formation of repulsive Casimir force. It is found that between the ordinary dielectric slab and magneto-optical material slab, a repulsive force may exist by adjusting the applied magnetic field. The restoring Casimir force can also be obtained if suitable parameter values are taken. For realistic materials, the repulsive and the restoring force is shown to possibly take place at typical distances in microelectromechanical systems.%@@ The Casimir force direction tuned by the external magnetic field due to the magneto-optical Voigt effect is investigated.The magneto-optical effect gives rise to the modified frequency-dependent electric permittivity and thus the electromagnetic properties of the materials can be adjusted to satisfy the condition of the formation of repulsive Casimir force.It is found that between the ordinary dielectric slab and magneto-optical material slab,a repulsive force may exist by adjusting the applied magnetic field.The restoring Casimir force can also be obtained if suitable parameter values are taken.For realistic materials,the repulsive and the restoring force is shown to possibly take place at typical distances in microelectromechanical systems.

  10. Buckling Experiment on Anisotropic Long and Short Cylinders

    Directory of Open Access Journals (Sweden)

    Atsushi Takano

    2016-07-01

    Full Text Available A buckling experiment was performed on anisotropic, long and short cylinders with various radius-to-thickness ratios. The 13 cylinders had symmetric and anti-symmetric layups, were between 2 and 6 in terms of the length-to-radius ratio, between 154 and 647 in radius-to-thickness ratio, and made of two kinds of carbon fiber reinforced plastic (CFRP prepreg with high or low fiber modulus. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length and compared with the test results. The theoretical buckling loads for the cylinders were calculated from the previously published solution by using linear bifurcation theory considering layup anisotropy and transverse shear deformation and by using deep shell theory to account for the effect of length. The knockdown factor, defined as the ratio of the experimental value to the theoretical value, was found to be between 0.451 and 0.877. The test results indicated that a large length-to-radius ratio reduces the knockdown factor, but the radius-to-thickness ratio and other factors do not affect it.

  11. A Convenient Storage Rack for Graduated Cylinders

    Science.gov (United States)

    Love, Brian

    2004-01-01

    An attempt is made to find a solution to the occasional problem of a need for storing large numbers of graduated cylinders in many teaching and research laboratories. A design, which involves the creation of a series of parallel channels that are used to suspend inverted graduated cylinders by their bases, is proposed.

  12. Optimization and improvement of Halbach cylinder design

    CERN Document Server

    Bjørk, R; Smith, A; Pryds, N

    2014-01-01

    In this paper we describe the results of a parameter survey of a 16 segmented Halbach cylinder in three dimensions in which the parameters internal radius, $r_{\\mathrm{\\scriptsize{in}}}$, external radius, $r_{\\mathrm{\\scriptsize{ex}}}$, and length, $L$, have been varied. Optimal values of $r_{\\mathrm{\\scriptsize{ex}}}$ and $L$ were found for a Halbach cylinder with the least possible volume of magnets with a given mean flux density in the cylinder bore. The volume of the cylinder bore could also be significantly increase by only slightly increasing the volume of the magnets, for a fixed mean flux density. Placing additional blocks of magnets on the end faces of the Halbach cylinder also improved the mean flux density in the cylinder bore, especially so for short Halbach cylinders with large $r_{\\mathrm{\\scriptsize{ex}}}$. Moreover magnetic cooling as an application for Halbach cylinders was considered. A magnetic cooling quality parameter, $\\Lambda_{\\mathrm{cool}}$, was introduced and results showed that this...

  13. MOTIONS STUDY OF A SINGLE CYLINDER HIGH SPEED SPARK IGNITION LINIER ENGINE WITH SPRING SYSTEM AS RETURN CYCLE

    Directory of Open Access Journals (Sweden)

    A. Z.M. Fathallah

    2014-01-01

    Full Text Available A single cylinder two stroke spark ignition conventional engine have been modified to linier engine with spring mechanism. Before develop the design of linear engine is necessary to analysis of motion. Although principle of combustion process in combustion chamber is the same in fact the oscillation movement is different. Simulation technique has been adopted to study both linear and conventional engine. 3D engines model have been simulate of the motion. Due to simulate both engines, three different tools have been used. Solid works has been used to design, assembly and motion analysis of engine models. However, pressure dynamics have been simulating by GT-Power. Spread sheet has been used to optimize geometry of spring. Spring force and friction force are including components of dynamic and gas dynamic models. Three results have been conducted such as comparison in basic motion (displacement, velocity and acceleration between conventional and linear engine, effect spring design on motion of piston movement and effect friction of piston ring and journal bearing on the motion characteristics of linear engine. The simulation shows clear different motion characteristics between conventional and linear engine. The effect of spring design on motion characteristics is very strong. The friction between ring piston with cylinder liner and journal bearing with rod influenced of piston movement. However, it need modified the design of spring mechanism.

  14. Effect of permanent-magnet irregularities in levitation force measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  15. Effect of permanent-magnet irregularities in levitation force measurements

    Science.gov (United States)

    Hull, John R.

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM.

  16. Effect of permanent-magnet irregularities in levitation force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM. (author)

  17. Stokes flow past a swarm of porous circular cylinders with Happel and Kuwabara boundary conditions

    Indian Academy of Sciences (India)

    Satya Deo

    2004-08-01

    The problem of creeping flow past a swarm of porous circular cylinders with Happel and Kuwabara boundary conditions is investigated. The Brinkman equation for the flow inside the porous cylinder and the Stokes equation outside the porous cylinder in their stream function formulations are used. The force experienced by each porous circular cylinder in a cell is evaluated. Explicit expressions of stream functions are obtained for both the inside and outside flow fields. The earlier results reported by Happel and Kuwabara for flow past a solid cylinder in Happel’s and Kuwabara’s cell model, have been deduced. Analytical expressions for the velocity components, pressure, vorticity and stress- tensor are also obtained.

  18. Stability analysis of the rimming flow inside a uniformly heated rotating horizontal cylinder

    Science.gov (United States)

    Kumawat, Tara Chand; Tiwari, Naveen

    2017-03-01

    The stability analysis is presented for a thin viscous liquid film flowing inside a uniformly heated horizontal cylinder that is rotating about its axis. The free surface evolution equation for the liquid-gas interface is obtained by simplifying the Navier-Stokes and energy equations within the lubrication approximation. Various dimensionless numbers are obtained that quantify the effect of gravity, viscous drag, inertia, surface tension, and thermocapillary stress. The film thickness evolution equation is solved numerically to obtain two-dimensional, steady state solutions neglecting axial variations. A liquid pool forms at the bottom of the cylinder when gravity dominates other forces. This liquid pool is shifted in the direction of rotation when inertia or viscous drag is increased. Small axial perturbations are then imposed to the steady solutions to study their stability behavior. It is found that the inertia and capillary pressure destabilize whereas the gravity and thermocapillary stress stabilize the rimming flow. The influence of Marangoni number is reported by computing the stable and unstable parametric regions. Thicker films are shown to be more susceptible to become unstable.

  19. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    Directory of Open Access Journals (Sweden)

    Andrew N. Guarendi

    2013-01-01

    Full Text Available Numerical simulations of magnetohydrodynamic (MHD hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1 calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.

  20. Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder

    Science.gov (United States)

    Lin, Te-Sheng; Rogers, Steven; Tseluiko, Dmitri; Thiele, Uwe

    2016-08-01

    We discuss the behavior of partially wetting liquids on a rotating cylinder using a model that takes into account the effects of gravity, viscosity, rotation, surface tension, and wettability. Such a system can be considered as a prototype for many other systems where the interplay of spatial heterogeneity and a lateral driving force in the proximity of a first- or second-order phase transition results in intricate behavior. So does a partially wetting drop on a rotating cylinder undergo a depinning transition as the rotation speed is increased, whereas for ideally wetting liquids, the behavior only changes quantitatively. We analyze the bifurcations that occur when the rotation speed is increased for several values of the equilibrium contact angle of the partially wetting liquids. This allows us to discuss how the entire bifurcation structure and the flow behavior it encodes change with changing wettability. We employ various numerical continuation techniques that allow us to track stable/unstable steady and time-periodic film and drop thickness profiles. We support our findings by time-dependent numerical simulations and asymptotic analyses of steady and time-periodic profiles for large rotation numbers.

  1. Magnetohydrodynamic simulations of hypersonic flow over a cylinder using axial- and transverse-oriented magnetic dipoles.

    Science.gov (United States)

    Guarendi, Andrew N; Chandy, Abhilash J

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.

  2. Network design for cylinder gas distribution

    Directory of Open Access Journals (Sweden)

    Tejinder Pal Singh

    2015-01-01

    Full Text Available Purpose: Network design of the supply chain is an important and strategic aspect of logistics management. In this paper, we address the network design problem specific to packaged gases (cylinder supply chain. We propose an integrated framework that allows for the determination of the optimal facility locations, the filling plant production capacities, the inventory at plants and hubs, and the number of packages to be routed in primary and secondary transportation. Design/methodology/approach: We formulate the problem as a mixed integer program and then develop a decomposition approach to solve it. We illustrate the proposed framework with numerical examples from real-life packaged gases supply chain. The results show that the decomposition approach is effective in solving a broad range of problem sizes. Findings: The main finding of this paper is that decomposing the network design problem into two sub-problems is very effective to tackle the real-life large scale network design problems occurring in cylinder gas distribution by optimizing strategic and tactical decisions and approximating the operational decisions. We also benchmark the results from the decomposition approach by solving the complete packaged gases network design model for smaller test cases. Originality/value: The main contribution of our work is that it integrates supply chain network design decisions without fixing the fillings plant locations with inventory and resource allocation decisions required at the plants. We also consider the transportation costs for the entire supply chain including the transhipment costs among different facilities by deciding the replenishment frequency.

  3. Flow and mixing of gas in cylinder of a stratified charge engine with two intake valves. Effects of late closing valve timing and intake port configurations; Kyuki nibenshiki sojo kyuki engine no cylinder nai gas ryudo to kongo. Osotoji valve timing oyobi port keijo ni yoru eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Charoenphonphanich, C.; Niwa, H.; Ennoji, H.; Iijima, T. [Tokai University, Tokyo (Japan)

    1997-10-01

    A numerical analysis of the flow and mixing of rich mixture and air inducted into the cylinder through each of the two intake ports of a stratified charge engine have been carried out. Numerical calculations were performed by finite volume method for three types of the intake port configurations: inverse V type, parallel type and V type and two types of valve timing; conventional and late closing (Miller cycle). Velocity field, turbulent kinetic energy and distribution of mixture concentration in the cylinder were examined. 3 refs., 10 figs.

  4. Effect of Pilot Injection Timings on the Combustion Temperature Distribution in a Single-Cylinder CI Engine Fueled with DME and ULSD

    Directory of Open Access Journals (Sweden)

    Jeon Joonho

    2016-01-01

    Full Text Available Many studies of DiMethyl Ether (DME as an alternative fuel in Compression-Ignition (CI engines have been performed. Although diverse DME engine research has been conducted, the investigation of combustion behavior and temperature distribution in the combustion engine has not progressed due to the fact that there is no sooting flame in DME combustion. In order to investigate the combustion characteristics in this study, the KIVA-3 V code was implemented to research various pilot injection strategies on a single-cylinder CI engines with DME and Ultra-Low-Sulfur Diesel (ULSD fuels. The combustion distribution results obtained from the numerical investigation were validated when compared with the measurement of flame temperature behaviors in the experimental approach. This study showed that long intervals between two injection timings enhanced pilot combustion by increasing the ambient pressure and temperature before the start of the main combustion. Different atomization properties between DME and ULSD fuels contributed to the formation of a fuel-air mixture at the nozzle tip and piston lip regions, separately, which strongly affected the temperature distribution of the two fuels. In addition, the pilot injection timing played a vital role in regard to ignition delay and peak combustion temperatures. Exhaust emissions, such as NOx and soot, are related to the local equivalence ratio and temperature in the combustion chamber, also illustrated by the contrary result on a Φ (equivalence ratio – T (temperature map.

  5. Investigation of the effects of pressure gradient, temperature and wall temperature ratio on the stagnation point heat transfer for circular cylinders and gas turbine vanes

    Science.gov (United States)

    Nagamatsu, H. T.; Duffy, R. E.

    1984-01-01

    Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.

  6. Quantum walk on a cylinder

    CERN Document Server

    Bru, Luis A; Di Molfetta, Giuseppe; Pérez, Armando; Roldán, Eugenio; Silva, Fernando

    2016-01-01

    We consider the 2D alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components, which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasi-momentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasi-momentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high energy physical theories that include extra dimensions.

  7. Effects of increased gravity force on nutations of sunflower hypocotyls

    Science.gov (United States)

    Brown, A. H.; Chapman, D. K.

    1977-01-01

    A centrifuge was used to provide sustained acceleration in order to study the hypocotyl nutation of 6-day-old Helianthus annuus L. over a range of g-forces, up to 20 times normal g. At the upper end of this g-range, nutation was impeded and at times was erratic evidently because the weight of the cotyledons exceeded the supportive abilities of the hypocotyls. Over the range 1 to 9 g, the period of nutation was independent of the resultant force vector. Over the same g-range, the amplitude of nutation was nearly independent of the chronic g-force. If nutation in sunflower seedlings is an oscillation caused by a succession of geotropic responses which continue to overshoot the equilibrium position (plumb line), its amplitude might be expected to be more sensitive to changes in magnitude of the sustained g-force. In order to preserve the geotropic model, in which nutation is considered to be a sustained oscillation driven by geotropic reactions, it is necessary to assume that geotropic response must increase with increasing g most rapidly in the region of the g-parameter below the terrestrial value of 1 g.

  8. TR-PIV measurement of the wake behind a grooved cylinder at low Reynolds number

    Science.gov (United States)

    Liu, Ying Zheng; Shi, Liu Liu; Yu, Jun

    2011-04-01

    were found to be generated and convected downstream in the same phase, which would significantly reduce the fluctuating force on the cylinder surface.

  9. Feasibility Study of Electromechanical Cylinder Drivetrain for Offshore Mechatronic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Hagen

    2017-04-01

    Full Text Available Currently, there is an increasing focus on the environmental impact and energy consumption of the oil and gas industry. In offshore drilling equipment, electric motors tend to replace traditionally used hydraulic motors, especially in rotational motion control applications. However, force densities available from linear hydraulic actuators are still typically higher than those of electric actuators. Therefore, usually the remaining source of hydraulic power is thereby the hydraulic cylinder. This paper presents a feasibility study on the implementation of an electromechanical cylinder drivetrain on an offshore vertical pipe handling machine. The scope of this paper is to investigate the feasibility of a commercial off-the-shelf drivetrain. With a focus on the motion performance, numerical modeling and simulation are used when sizing and selecting the components of the considered electromechanical cylinder drivetrain. The simulation results are analyzed and discussed together with a literature study regarding advantages and disadvantages of the proposed solution considering the design criteria of offshore drilling equipment. It is concluded that the selected drivetrain can only satisfy the static motion requirements since the required transmitted power is higher than the recommended permissible power of the transmission screw. Consequently, based on the recommendation of the manufacturer, avoidance of overheating cannot be guaranteed for the drivetrain combinations considered for the case study presented in this paper. Hence, to avoid overheating, the average speed of the motion cycle must be decreased. Alternatively, external cooling or temperature monitoring and control system that prevents overheating could be implemented.

  10. Effects of a slow harmonic displacement on an Atomic Force Microscope system under Lennard-Jones forces

    Directory of Open Access Journals (Sweden)

    Khadraoui Morad

    2016-01-01

    Full Text Available We focus in this paper on the modeling and dynamical analysis of a tapping mode atomic force microscopy (AFM. The microbeam is subjected to a low frequency harmonic displacement of its base and to the Lennard-Jones (LJ forces at its free end. Static and modal analysis are performed for various gaps between the tip of the microbeam and a sample. The Galerkin method is employed to reduce the equations of motion to a fast-slow dynamical system. We show that the dynamics of the AFM system is governed by the contact and the noncontact invariant slow manifolds. The tapping mode is triggered via two saddle-node bifurcations of these manifolds. Moreover, the contact time is computed and the effects of the base motion amplitude and the initial gap are discussed.

  11. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation

    Science.gov (United States)

    Meng, Deyuan; Tao, Guoliang; Liu, Hao; Zhu, Xiaocong

    2014-07-01

    Friction compensation is particularly important for motion trajectory tracking control of pneumatic cylinders at low speed movement. However, most of the existing model-based friction compensation schemes use simple classical models, which are not enough to address applications with high-accuracy position requirements. Furthermore, the friction force in the cylinder is time-varying, and there exist rather severe unmodelled dynamics and unknown disturbances in the pneumatic system. To deal with these problems effectively, an adaptive robust controller with LuGre model-based dynamic friction compensation is constructed. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. In addition, in order to realize LuGre model-based friction compensation, the modified dual-observer structure for estimating immeasurable friction internal state is developed. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology is applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping is used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Finally, the proposed controller is tested for tracking sinusoidal trajectories and smooth square trajectory under different loads and sudden disturbance. The testing results demonstrate that the achievable performance of the proposed controller is excellent and is much better than most other studies in literature. Especially when a 0.5 Hz sinusoidal trajectory is tracked, the maximum tracking error is 0.96 mm and the average tracking error is 0.45 mm. This

  12. Experimental Thermal Analysis of Diesel Engine Piston and Cylinder Wall

    Directory of Open Access Journals (Sweden)

    Subodh Kumar Sharma

    2015-01-01

    Full Text Available Knowledge of piston and cylinder wall temperature is necessary to estimate the thermal stresses at different points; this gives an idea to the designer to take care of weaker cross section area. Along with that, this temperature also allows the calculation of heat losses through piston and cylinder wall. The proposed methodology has been successfully applied to a water-cooled four-stroke direct-injection diesel engine and it allows the estimation of the piston and cylinder wall temperature. The methodology described here combines numerical simulations based on FEM models and experimental procedures based on the use of thermocouples. Purposes of this investigation are to measure the distortion in the piston, temperature, and radial thermal stresses after thermal loading. To check the validity of the heat transfer model, measure the temperature through direct measurement using thermocouple wire at several points on the piston and cylinder wall. In order to prevent thermocouple wire entanglement, a suitable pathway was designed. Appropriate averaged thermal boundary conditions such as heat transfer coefficients were set on different surfaces for FE model. The study includes the effects of the thermal conductivity of the material of piston, piston rings, and combustion chamber wall. Results show variation of temperature, stresses, and deformation at various points on the piston.

  13. Fracture analysis for a penny-shaped crack problem of a superconducting cylinder in a parallel magnetic field

    Science.gov (United States)

    Gao, S. W.; Feng, W. J.; Fang, X. Q.; Zhang, G. L.

    2014-11-01

    In this work, the penny-shaped crack problem is investigated for an infinite long superconducting cylinder under electromagnetic forces. The distributions of magnetic flux density in the superconducting cylinder are obtained analytically for both the zero-field cooling (ZFC) and the field cooling (FC) activation processes, where the magnetically impermeable crack surface condition and the Bean model outside the crack region are adopted. Based on the finite element method (FEM), the stress intensity factor (SIF) and energy release rate (ERR) at the crack tips in the process of field descent are further numerically calculated. Numerical results obtained show that according to the maximal energy release rate criterion, the FC process is generally easier to enhance crack initiation and propagation than the ZFC activation process. On the other hand, for the FC activation process, the larger the maximal applied magnetic field, more likely the crack propagates. Additionally, crack size has important and slightly different effects on the crack extension forces for the ZFC and FC cases. Thus, all of the activation processes, the applied field and the diameter of the penny-shaped crack have significant effects on the intensity analysis and design of superconducting materials.

  14. Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks.

    Science.gov (United States)

    Shinohara, Minoru; Li, Sheng; Kang, Ning; Zatsiorsky, Vladimir M; Latash, Mark L

    2003-01-01

    The objective of the study is to examine the effects of age and gender on finger coordination. Twelve young (24 +/- 8 yr; 6 men and 6 women) and 12 elderly (75 +/- 5 yr; 6 men and 6 women) subjects performed single-finger maximal contraction [maximal voluntary contraction (MVC)], four-finger MVC, and four-finger ramp force production tasks by pressing on individual force transducers. A drop in the force of individual fingers during four-finger MVC tasks compared with single-finger MVC tasks (force deficit) was larger, whereas unintended force production by other fingers during single-finger MVC tasks (enslaving) was smaller, in elderly than in young subjects and in women than in men. Force deficit was smaller and enslaving was larger in subjects with higher peak force. During the ramp task, the difference between the variance of total force and the sum of variances of individual forces showed a logarithmic relation to the level of total force, across all subject groups. These findings suggest that indexes of finger coordination scale with force-generating capabilities across gender and age groups.

  15. Angular Dependence of Lateral and Levitation Forces in Asymmetric Small Magnet/Superconducting Systems

    Institute of Scientific and Technical Information of China (English)

    H. M. Al-Khateeb; M. K. Alqadi; F. Y. Alzoubi; N. Y. Ayoub

    2007-01-01

    The dipole-dipole interaction model is used to calculate the angular dependence of lateral and levitation forces on a small permanent magnet and a cylindrical superconductor in the Meissner state lying laterally offthe symmetric axis of the cylinder. Under the assumption that the lateral displacement of the magnet is small compared with the physical dimensions of the system, we obtain analytical expressions for the lateral and levitation forces as functions of geometrical parameters of the superconductor as well as the height, the lateral displacement and the orientation of magnetic moment of the magnet. The effect of thickness and radius of the superconductor on the levitation force is similar to that for a symmetric magnet/superconducting cylinder system, but within the range of lateral displacement. The splitting in the levitation force increases with the increasing angle of orientation of the magnetic moment of the magnet. For a given lateral displacement of the magnet, the lateral force vanishes when the magnetic moment is perpendicular to the surface of the superconductor and has a maximum value when the moment is parallel to the surface. For a given orientation of the magnetic moment, the lateral force has a linear relationship with the lateral displacement. The stability of the magnet above the superconducting cylinder is discussed in detail.

  16. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.

    Science.gov (United States)

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B

    2016-06-01

    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running.

  17. Convective mass transfer from a horizontal rotating cylinder in a slot air jet flow

    Institute of Scientific and Technical Information of China (English)

    Hongting MA; Dandan MA; Na YANG

    2009-01-01

    The effects of air jet impinging on the mass transfer characteristics from a rotating spinning cylinder surface were experimentally investigated. The effects of rotational Reynolds numberRer, jet-exit Reynolds number Rej, the nozzle width-to-cylinder diameter ratio B/d, and the ratio of the distance between nozzle exit and the front of cylinder to nozzle width L/B on the mean Sh were determined. The phenomena of the first and second critical point was analyzed and validated. On the basis of experimental data, the correlation equation was obtained.

  18. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    Science.gov (United States)

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain.

  19. Flow past a rotating cylinder at high Reynolds number using PANS method

    Science.gov (United States)

    Kumar, Rajesh

    2016-11-01

    In the present study, high-Reynolds number flow past a rotating cylinder has been simulated using Partially-Averaged Navier-Stokes (PANS) method. The simulations are performed at Re = 140000. The spin ratio of the cylinder, which is defined by the ratio of the circumferential speed of the cylinder to the free-stream speed, varies from a = 0 to a = 4. The resolved and the modeled physical scales have been compared with the corresponding LES data for better understanding of the efficacy of the PANS method. The comparison of PANS results with the LES results showed good agreement. It has been recognized that the PANS simulation is able to produce fairly acceptable results using even a coarse-mesh. It is recognized that the time-averaged flow statistics obtained using PANS and URANS simulations are approximately same. However the vortex structure is much better captured by the PANS method. With the increase in the spin ratio, decrease in the time-averaged drag and increase in the time-averaged lift force acting on the cylinder have been observed. The vortices in far wake region are displaced and deformed but those in the vicinity of the cylinder are stretched at the bottom and accumulated over the top of the cylinder.

  20. The effect of the Coriolis force on the stability of rotating magnetic stars.

    Science.gov (United States)

    Sakurai, K.

    1972-01-01

    The effect of the Coriolis force on the stability of rotating magnetic stars in hydrostatic equilibrium is investigated by using the method of the energy principle. It is shown that this effect is to inhibit the onset of instability.