K-forbidden transition probabilities
International Nuclear Information System (INIS)
Saitoh, T.R.; Sletten, G.; Bark, R.A.; Hagemann, G.B.; Herskind, B.; Saitoh-Hashimoto, N.; Tsukuba Univ., Ibaraki
2000-01-01
Reduced hindrance factors of K-forbidden transitions are compiled for nuclei with A∝180 where γ-vibrational states are observed. Correlations between these reduced hindrance factors and Coriolis forces, statistical level mixing and γ-softness have been studied. It is demonstrated that the K-forbidden transition probabilities are related to γ-softness. The decay of the high-K bandheads has been studied by means of the two-state mixing, which would be induced by the γ-softness, with the use of a number of K-forbidden transitions compiled in the present work, where high-K bandheads are depopulated by both E2 and ΔI=1 transitions. The validity of the two-state mixing scheme has been examined by using the proposed identity of the B(M1)/B(E2) ratios of transitions depopulating high-K bandheads and levels of low-K bands. A break down of the identity might indicate that other levels would mediate transitions between high- and low-K states. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Neuffer, D.B.
1977-05-01
Calculations are presented of the E1 amplitude expected in forbidden M1 transitions of Tl and Cs if parity is violated in the neutral weak e-N interaction, as proposed in a number of gauge models, including that of Weinberg and Salam. Valence electron wave functions are generated as numerical solutions to the Dirac equation in a modified Tietz central potential. These wave functions are used to calculate allowed E1 transition rates, hfs splittings, and Stark E1 transition ampitudes. These results are compared with experiment and the agreement is generally good. The relativistic Tl 6/sup 2/P/sub 1/2/-7/sup 2/P/sub 1/2/ M1 transition amplitude M is also calculated, and corrections due to interconfiguration interaction, Breit interaction, and hfs mixing are included. The parity violating E1 amplitude E/sub PV/ is calculated and a value for the circular dichroism in the Weinberg model delta = -2.6 x 10/sup -3/ is obtained. Parity violating effects in other Tl transitions are discussed. Contributions to the M1 amplitude for the forbidden Cs 6/sup 2/S/sub 1/2/-7/sup 2/S/sub 1/2/ and 6/sup 2/S/sub 1/2/-8/sup 2/S/sub 1/2/ transitions and to the Cs 6/sup 2/S/sub 1/2/ g-factor anomaly from relativistic effects, Breit interaction, interconfiguration interaction, and hfs mixing are calculated, and it is found that this current theoretical description is not entirely adequate. The parity violating E1 amplitude E/sub PV/ for the 6S/sub 1/2/-7/sup 2/S/sub 1/2/ and 6S/sub 1/2/-8/sup 2/S/sub 1/2/ transitions is evaluated. With a measured value M/sub expt/ and the Weinberg value Q/sub W/ = -99, a circular dichroism delta = 1.64 x 10/sup -4/ for the 6/sup 2/S/sub 1/2/-7/sup 2/S/sub 1/2/ transition is found.
Boson forbidden transitions and their manifestation in spherical nuclei
International Nuclear Information System (INIS)
Stoyanov, Ch.
2002-01-01
For the correct description of the 'boson forbidden' transitions it is necessary to go beyond the quasi-boson approximation and to take into account the fermion structure of the phonons. Once it done it is quantitative description of the transitions is possible within the simplest model based on the separable residual interactions. Calculations of the forbidden E1-transitions in 120 Sn, 144 Sm and 144 Nd are presented. Analysis of some low-energy M1-transitions is made using IBM-2. The discussed examples reveal the complex properties of the low-lying excited states
Forbidden Transition Probabilities of Astrophysical Interest among ...
Indian Academy of Sciences (India)
Atomic structure calculations—atomic data—oscillator strength—lifetimes. 1. Introduction. Vanadium transition data are useful in a wide range of scientific applications. Ionized vanadium, for example, has been used in plasma diagnosis (Wagatsuma & Danzaki. 1999), where physical properties such as electron temperature ...
Forbidden Transition Probabilities of Astrophysical Interest among ...
Indian Academy of Sciences (India)
astrophysical plasma densities are very low, the probability of collisions is small and many states decay by M1 or E2 ..... ences were computed according to the formula [gf (l) − gf (v)] ×100/max{gf(l), gf(v)}. Transition gf (l) gf (v). Diff. (%). 3d a 2G. −. 3d a 2D. 1.518E−11. 1.683E−11. 9.8. 3d a 2G. −. 3d a 2G. 5.290E−07.
The calculation of vibrational intensities in forbidden electronic transitions.
Johnson, Philip M; Xu, Haifeng; Sears, Trevor J
2006-10-28
A method is described for the use of electronic structure and Franck-Condon factor programs in the calculation of the vibrational intensities in forbidden electronic transitions. Using the B 2B2-X 2B1 electronic transition of benzonitrile cation as a test case, transition moments were calculated using the symmetry adapted cluster/configuration interaction method at various points along the normal mode displacements of the molecule, from which transition moment derivatives were obtained. The transition moments were found to vary almost linearly with respect to the normal mode displacements. Using these, along with Franck-Condon factors, an expansion of the transition moment with respect to the normal coordinates provides a measure of vibrational intensities, including the effects of geometry change and Duschinsky rotation [Acta Physicochim. URSS 7, 551 (1937)]. Second order terms in the moment expansion are calculated, and it is determined that they must be included if the intensity of combination bands is to be properly obtained.
Allowed and forbidden transition parameters for Fe XV
International Nuclear Information System (INIS)
Nahar, Sultana N.
2009-01-01
A comprehensive set of fine structure energy levels, oscillator strengths (f), line strengths (S), and radiative decay rates (A) for bound-bound transitions in Fe XV is presented. The allowed electric dipole (E1) transitions were obtained from the relativistic Breit-Pauli R-matrix method which is based on the close coupling approximation. A total of 507 fine structure energy levels with n ≤ 10, l ≤ 9, and 0 ≤ J ≤ 10 are found. They agree within 1% with the available observed energies. These energy levels yield a total of 27,812 E1, same-spin multiplets and intercombination transitions. The A values are in good agreement with those compiled by NIST and other existing values for most transitions. Forbidden transitions are obtained from a set of 20 configurations with orbitals ranging from 1s to 5f using the relativistic code SUPERSTRUCTURE (SS) in the Breit-Pauli approximation. From a set of 123 fine structure levels, a total of 6962 S and A values are presented for forbidden electric quadrupole (E2), electric octupole (E3), magnetic dipole (M1), and magnetic quadrupole (M2) transitions. The energies from SS calculations agree with observed energies to within 1-3%. A values for E2, M1 transitions agree very well with the available values for most transitions while those for M2 transitions show variable agreement. The large set of transition parameters presented should be applicable for both diagnostics and spectral modeling in the X-ray, ultraviolet, and optical regions of astrophysical plasmas.
Effect of layered nanostructures on the linewidth of forbidden E2 transitions
Guzatov, D. V.; Klimov, V. V.
2017-08-01
In the framework of classical electrodynamics, analytical expressions are derived and investigated for the linewidth of forbidden E2 transitions in an atom (molecule) located near layered metal - dielectric nanostructures. It is shown that the radiation intensity at the forbidden transition during detection in the halfspace behind a layered nanostructure can significantly exceed the intensity during detection in the half-space where an atom (molecule) is located.
Pseudospin Symmetry and Forbidden Magnetic Dipole and Gamow-Teller Transitions
Ginocchio, Joseph
1999-10-01
Recently it has been shown that pseudospin symmetry has its origins in a relativistic symmetry of the Dirac Hamiltonian[1]. Using this symmetry we relate single - nucleon relativistic magnetic moments of states in a pseudospin doublet to the relativistic magnetic dipole transitions between the states in the doublet, and we relate single - nucleon relativistic Gamow - Teller transitions within states in the doublet. We apply these relationships to the Gamow - Teller transitions from ^39Ca to its mirror nucleus ^39K [2] and to the systematics of forbidden magnetic dipole transitions. 1. J. N. Ginocchio and A. Leviatan Phys. Lett. B 425, 1 (1998). 2. J. N. Ginocchio Phys. Rev. C 59, 2487 (1999).
Forbidden transitions in excitation by proton impact in Al Li-like ions
International Nuclear Information System (INIS)
Stancalie, V.; Pais, V.; Politechnica University, Bucharest; Totolici, M.; Mihailaescu, A.; Politechnica University, Bucharest
2006-01-01
Complete test of publication follows. Interest in forbidden lines of highly ionized atoms appeared in astrophysics and also in high-temperature laboratory plasmas. In astrophysics, interest in forbidden lines is motivated by the possibility of using them for ion temperature, and density measurements in solar flares and in the solar corona. In laser-produced plasmas, these transitions are mainly responsible for line broadening and lifetimes of the metastable levels. Their measured line intensities and ratios at known electron density may be used to test the adequacy of excitation rates and transition probabilities. Amplification of XUV radiation in plasmas produced by powerful lasers on Al target has been reported. Forbidden transitions in excitation by electron impact in Li-like Al ions were been analysed and effective collision strengths obtained. In this paper we present effective collision strengths for forbidden transitions in excitation by proton impact in Li-like Al ions. Results refer to transitions for a single p electron outside closed shells, namely 2p 1/2 - 2p 3/2 . The impact-parameter formalism as proposed by Burgess and Tully has been used for high energy behaviour calculation. At intermediate energies the cross sections and collision strengths have been evaluated on the use of interpolation in tables provided by Walling and Weisheit. The energy levels have been obtained as output from the R-matrix calculation in the case of Al 10+ . The effective target size has been obtained from the calculated high-energy limit of the collision strength in the Born approximation. The upper bound probability has been set as 4/3 in all cases except those for which the interpolation method has been used. In the cases the Seaton' cut-off probability is needed to get correct results.
Selection rule engineering of forbidden transitions of a hydrogen atom near a nanogap
Directory of Open Access Journals (Sweden)
Kim Hyunyoung Y.
2018-01-01
Full Text Available We perform an analytical study on the allowance of forbidden transitions for a hydrogen atom placed near line dipole sources, mimicking light emanating from a one-dimensional metallic nanogap. It is shown that the rapid variation of the electric field vector, inevitable in the near zone, completely breaks the selection rule of Δl=±1. While the forbidden transitions between spherically symmetric S states, such as 2S to 1S or 3S to 1S (Δl=0, are rather robust against selection rule breakage, Δl=±2 transitions such as between 3D and 1S or 3D and 2S states are very vulnerable to the spatial variation of the perturbing electric field. Transitions between 2S and 3D states are enhanced by many orders of magnitude, aided by the quadratic nature of both the perturbing Hamiltonian and D wavefunctions. The forbidden dipole moment, which approaches one Bohr radius times the electric charge in the vicinity of the gap, can be written in a simple closed form owing to the one-dimensional nature of our gap. With large enough effective volume together with the symmetric nature of the excited state wavefunctions, our work paves way towards atomic physics application of infinitely long nanogaps.
Selection rule engineering of forbidden transitions of a hydrogen atom near a nanogap
Kim, Hyunyoung Y.; Kim, Daisik S.
2018-01-01
We perform an analytical study on the allowance of forbidden transitions for a hydrogen atom placed near line dipole sources, mimicking light emanating from a one-dimensional metallic nanogap. It is shown that the rapid variation of the electric field vector, inevitable in the near zone, completely breaks the selection rule of Δl=±1. While the forbidden transitions between spherically symmetric S states, such as 2S to 1S or 3S to 1S (Δl=0), are rather robust against selection rule breakage, Δl=±2 transitions such as between 3D and 1S or 3D and 2S states are very vulnerable to the spatial variation of the perturbing electric field. Transitions between 2S and 3D states are enhanced by many orders of magnitude, aided by the quadratic nature of both the perturbing Hamiltonian and D wavefunctions. The forbidden dipole moment, which approaches one Bohr radius times the electric charge in the vicinity of the gap, can be written in a simple closed form owing to the one-dimensional nature of our gap. With large enough effective volume together with the symmetric nature of the excited state wavefunctions, our work paves way towards atomic physics application of infinitely long nanogaps.
Strong coupling on a forbidden transition in strontium and nondestructive atom counting
Norcia, Matthew A.; Thompson, James K.
2016-02-01
We observe strong collective coupling between an optical cavity and the forbidden spin singlet to triplet optical transition S10 to P31 in an ensemble of 88Sr. Despite the transition being 1000 times weaker than a typical dipole transition, we observe a well-resolved vacuum Rabi splitting. We use the observed vacuum Rabi splitting to make nondestructive measurements of atomic population with the equivalent of projection-noise limited sensitivity between subsequent measurements and with minimal heating [lattice clocks by generating entangled states and reducing dead time.
Meson-Exchange Enhancement of First-Forbidden $\\beta$-Transitions in the Lead Region
Delaure, B J P; Severijns, N
2002-01-01
Both on-line and off-line low temperature nuclear orientation is used to measure the $\\beta$-asymmetry parameter for the first-forbidden g.s. $\\rightarrow$~g.s. $\\beta$-transitions of $^{205}$Hg, $^{207,209}$Tl, $^{209}$Pb and $^{213}$Bi. From this, the ratio of the rank-zero and the rank-one strengths in these decays can be deduced, with the rank of a $\\beta$-transition being defined as the total angular momentum of the lepton system. Combining this result with the experimental ${ft}$-values yields for the first time a purely experimental determination of the rank-zero contribution in these $\\Delta$ J = 0 first-forbidden transitions. This provides an independent check of the large enhancement (of about 100% over the impulse approximation) of the rank-zero matrix element of $\\gamma_{5} $, caused by meson exchange currents (MEC), which was recently obtained from a comparison of calculated first-forbidden $\\beta$-decay rates with experimentally observed values for nuclei in the lead region (A = 205-212). Measur...
Transition amplitudes within the stochastic quantization scheme
International Nuclear Information System (INIS)
Hueffel, H.
1993-01-01
Quantum mechanical transition amplitudes are calculated within the stochastic quantization scheme for the free nonrelativistic particle, the harmonic oscillator and the nonrelativistic particle in a constant magnetic field; we close with free Grassmann quantum mechanics. (authors)
Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola
2017-10-31
A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Winchester, Matthew N.; Norcia, Matthew A.; Cline, Julia R. K.; Thompson, James K.
2017-06-01
In this Letter we realize a narrow spectroscopic feature using a technique that we refer to as magnetically induced optical transparency. A cold ensemble of 88Sr atoms interacts with a single mode of a high-finesse optical cavity via the 7.5 kHz linewidth, spin forbidden 1S0 to 3P1 transition. By applying a magnetic field that shifts two excited state Zeeman levels, we open a transmission window through the cavity where the collective vacuum Rabi splitting due to a single level would create destructive interference for probe transmission. The spectroscopic feature approaches the atomic transition linewidth, which is much narrower than the cavity linewidth, and is highly immune to the reference cavity length fluctuations that limit current state-of-the-art laser frequency stability.
Theoretical investigation on spin-forbidden cooling transitions of gallium hydride.
Zhang, Yun-Guang; Zhang, Hua; Song, Hai-Yang; Yu, You; Wan, Ming-Jie
2017-09-20
Herein, the spin-forbidden cooling of a gallium hydride molecule is investigated using ab initio quantum chemistry. The cooling transition and the corresponding potential energy curves including , a 3 Π 0 - , a 3 Π 0 + , a 3 Π 1 , a 3 Π 2 , A 1 Π 1 , , 1 3 Σ, , , and 2 3 Σ states are simulated based on the multi-reference configuration interaction approach plus Davidson corrections method. By solving the nuclear Schrödinger equation, we calculate the spectroscopic constants of these states, which are in good agreement with the available experimental values. Based on the transition data, there seems to be a theoretical puzzle: highly diagonally distributed Franck-Condon factor f 00 for transitions , , and for the gallium hydride molecule but the intervening state A 1 Π 1 for transition is prohibitive to laser cooling. In addition, the transition does not have a suitable rate of optical cycling owing to a large radiative lifetime for state. Our theoretical simulation indicates the solution to the puzzle: the transition has a high emission rate, and there is a suitable radiative lifetime for a 3 Π 1 state, which can ensure rapid and efficient laser cooling of gallium hydride. The proposed laser drives transition by using three wavelengths (main pump laser λ 00 ; two repumping lasers λ 10 and λ 21 ). These results demonstrate the possibility of laser-cooling the gallium hydride molecule, and a sub-microkelvin cool temperature can be reached for this molecule.
International Nuclear Information System (INIS)
Neuffer, D.B.
1977-05-01
Calculations are presented of the E1 amplitude expected in forbidden M1 transitions of Tl and Cs if parity is violated in the neutral weak e-N interaction, as proposed in a number of gauge models, including that of Weinberg and Salam. Valence electron wave functions are generated as numerical solutions to the Dirac equation in a modified Tietz central potential. These wave functions are used to calculate allowed E1 transition rates, hfs splittings, and Stark E1 transition ampitudes. These results are compared with experiment and the agreement is generally good. The relativistic Tl 6 2 P/sub 1/2/-7 2 P/sub 1/2/ M1 transition amplitude M is also calculated, and corrections due to interconfiguration interaction, Breit interaction, and hfs mixing are included. The parity violating E1 amplitude E/sub PV/ is calculated and a value for the circular dichroism in the Weinberg model delta = -2.6 x 10 -3 is obtained. Parity violating effects in other Tl transitions are discussed. Contributions to the M1 amplitude for the forbidden Cs 6 2 S/sub 1/2/-7 2 S/sub 1/2/ and 6 2 S/sub 1/2/-8 2 S/sub 1/2/ transitions and to the Cs 6 2 S/sub 1/2/ g-factor anomaly from relativistic effects, Breit interaction, interconfiguration interaction, and hfs mixing are calculated, and it is found that this current theoretical description is not entirely adequate. The parity violating E1 amplitude E/sub PV/ for the 6S/sub 1/2/-7 2 S/sub 1/2/ and 6S/sub 1/2/-8 2 S/sub 1/2/ transitions is evaluated. With a measured value M/sub expt/ and the Weinberg value Q/sub W/ = -99, a circular dichroism delta = 1.64 x 10 -4 for the 6 2 S/sub 1/2/-7 2 S/sub 1/2/ transition is found
Relativistic and correlation effects in electron impact excitation of forbidden transitions of OII
International Nuclear Information System (INIS)
Montenegro, Maximiliano; Eissner, Werner; Nahar, Sultana N; Pradhan, Anil K
2006-01-01
We investigate relativistic and correlation effects in electron impact excitation of singly ionized oxygen using the Breit-Pauli R-matrix method. The intermediate coupling close-coupling calculations are carried out using a 16-level target representation dominated by the electronic configurations 1s 2 2s 2 2p 3 , 1s 2 2s2p 4 , 1s 2 2s 2 2p 2 3s. Resonance structures are delineated in detail to ascertain the effect on averaged collision strengths. Convergence of the partial wave summation is ensured for non-dipole transitions in the R-matrix calculations. The present results differ significantly from the similar Breit-Pauli R-matrix calculations by McLaughlin and Bell (1998 J. Phys. B: At. Mol. Opt. Phys. 31 4317-29), but are essentially in agreement with the LS coupling results of Pradhan (1976a J. Phys. B: At. Mol. Opt. Phys. 9 433-43, 1976b Mon. Not. R. Astron. Soc. 177 31-8). A comprehensive study of the detailed energy behaviour of all forbidden transitions among the five levels of the ground configuration, i.e. 2s2p 3 ( 4 S o 3/2 , 2 D o 5/2,3/2 , 2 P o 3/2,1/2 ) shows that the finestructure collision strengths do not significantly depart from the values obtained from a purely LS → LSJ transformation, and relativistic effects are therefore small. We find that the Maxwellian-averaged effective collision strengths for the ten transitions also differ from the previous work, most likely due to more extensive delineation of resonances in the present work. However, the differences are largely systematic and therefore the OII line intensity ratios are not significantly affected. We also obtain an excellent agreement between the present-calculated cross sections for the 4 S o - 2 D o transition and the experimental merged beam measurements
Casimir amplitudes in topological quantum phase transitions.
Griffith, M A; Continentino, M A
2018-01-01
Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.
Casimir amplitudes in topological quantum phase transitions
Griffith, M. A.; Continentino, M. A.
2018-01-01
Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.
Energy Technology Data Exchange (ETDEWEB)
Sifain, Andrew E. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485 (United States); Wang, Linjun [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Prezhdo, Oleg V. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485 (United States); Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062 (United States)
2016-06-07
Surface hopping is the most popular method for nonadiabatic molecular dynamics. Many have reported that it does not rigorously attain detailed balance at thermal equilibrium, but does so approximately. We show that convergence to the Boltzmann populations is significantly improved when the nuclear velocity is reversed after a classically forbidden hop. The proposed prescription significantly reduces the total number of classically forbidden hops encountered along a trajectory, suggesting that some randomization in nuclear velocity is needed when classically forbidden hops constitute a large fraction of attempted hops. Our results are verified computationally using two- and three-level quantum subsystems, coupled to a classical bath undergoing Langevin dynamics.
Chu, S.
1976-10-01
A measurement of the 6{sup 2}P{sub ½} --> 7{sup 2}P{sub ½} forbidden magnetic dipole matrix element in atomic thallium is described. A pulsed, linearly polarized dye laser tuned to the transition frequency is used to excite the thallium vapor from the 6{sup 2}P{sub ½} ground state to the 7{sup 2}P{sub ½} excited state. Interference between the magnetic dipole M1 amplitude and a static electric field induced E1 amplitude results in an atomic polarization of the 7{sup 2}P{sub ½} state, and the subsequent circular polarization of 535 nm fluorescence. The circular polarization is seen to be proportional to / as expected, and measured for several transitions between hyperfine levels of the 6{sup 2}P{sub ½} and 7{sup 2}P{sub ½} states. The result is = -(2.11 +- 0.30) x 10{sup -5} parallel bar e parallel bar dirac constant/2mc, in agreement with theory.
Four-quasiparticle isomers and K-forbidden transitions in 176Lu
International Nuclear Information System (INIS)
McGoram, T.R.; Dracoulis, G.D.; Kibedi, T.; Mullins, M.; Byrne, A.P.; Baxter, A.M.
2000-01-01
Full text: The odd-odd nucleus 176 Lu has been the subject of extensive experimental and theoretical investigation over the last forty years. Much of this interest has stemmed from the role of 176 Lu in the s-process in nucleosynthesis. From a nuclear structure perspective, 176 Lu resides in a region of the nuclear chart where collective rotation and high-K, multi-quasiparticle states compete to form the yrast line (the locus of state with the lowest energy at a given angular momentum). The electromagnetic decay of intermediate and high-K states is often hindered due to the K-selection rule, while apparent violations of this selection rule have been ascribed to Coriolis mixing, shape changes in the gamma-degree of freedom, and so-called 'statistical' mixing. The relative importance of these mechanisms remains an open question. We present here the results of gamma-ray and conversion-electron spectroscopic measurements, performed at the Heavy Ion Facility at the Australian National University in Canberra, using the reaction 176 Yb( 7 Li, α3n) at a beam energy of 45 MeV. Two new four-quasiparticle isomers have been established, with mean lives of 400(100)ns and 58(5)μs, and spin projections and parities of 12 + and (14 + ) respectively. The shorter--lived isomer displays both normal and anomalous K-forbidden decays, which we show is the result of two-state mixing between the isomeric state and a member of a two-quasiparticle rotational band. The implied mixing matrix element of only 5 eV shows explicitly that very small mixing matrix elements may be responsible for anomalous K-hindered decays
Spectroscopy of the forbidden 1S0 -->3P0 transition on ultra-cold ytterbium atoms
Dareau, Alexandre; Scholl, Matthias; Beaufils, Quentin; Döring, Daniel; Beugnon, Jérôme; Gerbier, Fabrice
2015-05-01
Cold atoms in optical lattices are often considered a rich playground for emulating condensed matter systems, since they make it possible to engineer many-body Hamiltonians with tunable parameters. However, one missing feature is the ability to emulate orbital magnetism. Recent proposals for simulating orbital magnetism with neutral atoms rely on a state-dependent optical lattice with laser-driven hopping. Ytterbium, with its long lived metastable state (3P0), is a well-suited candidate for the implementation of such schemes. Addressing the forbidden transition between ytterbium ground (1S0) and meta-stable (3P0) states is experimentally challenging, and requires the use of a laser with stability close to the standards of atomic clocks. I will report on the building of a ultra-narrow laser locked on a high-finesse low-expansion cavity. I will then show how the absolute frequency of the cavity modes can be calibrated by performing high-resolution spectroscopy on molecular iodine, allowing us perform Doppler spectroscopy on the 1S0 -->3P0 transition of an ytterbium BEC.
Detection of forbidden Singlet-Triplet Transitions of 12C16O
CSIR Research Space (South Africa)
Steenkamp, CM
2010-09-01
Full Text Available Twenty rovibronic transitions of the e(v'=5)-X(v''=0) band of the 12C16O which experimental wavelengths were previously unavailable were recently detected by vr induced fluorescence excitation spectroscopy. The data is important in astrophysical...
Forbidden optical transition in Ti-like Xe, Ba, and Ir
International Nuclear Information System (INIS)
Bekker, H.; Windberger, A.; Binder, M.; López-Urrutia, J. R. Crespo; Versolato, O. O.; Klawitter, R.
2015-01-01
We present measurements of the (3d 4 ) 5 D 2 − 5 D 3 transitions in the Ti-like ions Xe 32+ , Ba 34+ , and Ir 55+ produced and trapped in the Heidelberg electron beam ion trap. The obtained wavelengths have a precision at the few ppm-level and are thereby the most precise measurements of these transitions up to date. For Z=60−75 semi-empirical calculations have shown excellent agreement, however our measurements combined with data from other works shows that outside this range predictions quickly deviate. The value obtained for Ir 55+ 357.434(2) nm confirms the linear mismatch to ab initio calculations for Z > 70, as hypothesized in Utter et al., Phys. Rev. A 67, 012508 (2003)
DEFF Research Database (Denmark)
Kaasbjerg, Kristen; Martiny, Johannes H. J.; Low, Tony
2017-01-01
protectionmechanism against intervalley scattering in monolayer TMDs. The predicteddefectdependent selection rules for intervalley scattering can be verified viaFourier transform scanning tunneling spectroscopy (FT-STS), and provide aunique identification of, e.g., atomic vacancy defects (M vs X). Our findingsare......Intervalley scattering by atomic defects in monolayer transition metaldichalcogenides (TDMs; MX2) presents a serious obstacle for applicationsexploiting their unique valley-contrasting properties. Here, we show that thesymmetry of the atomic defects can give rise to an unconventional...
Wang, Cih-Su; Liau, Chi-Shung; Sun, Tzu-Ming; Chen, Yu-Chia; Lin, Tai-Yuan; Chen, Yang-Fang
2015-01-01
A new approach is proposed to light up band-edge stimulated emission arising from a semiconductor with dipole-forbidden band-gap transition. To illustrate our working principle, here we demonstrate the feasibility on the composite of SnO2 nanowires (NWs) and chicken albumen. SnO2 NWs, which merely emit visible defect emission, are observed to generate a strong ultraviolet fluorescence centered at 387 nm assisted by chicken albumen at room temperature. In addition, a stunning laser action is further discovered in the albumen/SnO2 NWs composite system. The underlying mechanism is interpreted in terms of the fluorescence resonance energy transfer (FRET) from the chicken albumen protein to SnO2 NWs. More importantly, the giant oscillator strength of shallow defect states, which is served orders of magnitude larger than that of the free exciton, plays a decisive role. Our approach therefore shows that bio-materials exhibit a great potential in applications for novel light emitters, which may open up a new avenue for the development of bio-inspired optoelectronic devices. PMID:25758749
2-vertex Lorentzian spin foam amplitudes for dipole transitions
Sarno, Giorgio; Speziale, Simone; Stagno, Gabriele V.
2018-04-01
We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.
Meson-exchange enhancement of the first forbidden $0^{+} \\leftrightarrow 0^{-} \\beta$-transitions
2002-01-01
In the frame of the standard model of the weak interaction, it has been suggested by Kubodera, Delorme and Rho, that pion exchange should have a large effect on the rank-zero time-like component of the axial current A$_{0}$. The best case for the study of A$ _{0}$ is $0^{-} \\leftrightarrow 0^{+} \\beta$-decay since in this process only rank zero matrix elements of the time-like and space-like components of the axial current contribute to the transition rate. $0^{-} \\leftrightarrow 0^{+}$ decays have been studied in the vicinity of doubly closed-shell nuclei such as $^{16}$O, $^{96}$Zr, and $^{208}$Pb where s$_{1/2} \\leftrightarrow$ p$_{1/2}$ matrix elements were involved. In these cases, the meson-exchange correction to the one-body axial-charge density is significant. ISOLDE offers the possibility to perform sensitive measurements of the $0^{-} \\leftrightarrow 0^{+}$ pseudoscalar decay in nuclei where the p$_{3/2} \\rightarrow$ d$_{3/2}$ matrix elements are involved. We therefore propose a search of the $^{38}...
Energy Technology Data Exchange (ETDEWEB)
Uhl, Elmar [Instituto de Quimica, Departamento de Fisico-Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, CT Bloco A. Rio de Janeiro, 21941-909 Rio de Janeiro (Brazil); Leitao, Alexandre A. [Departamento de Quimica, Universidade Federal de Juiz de Fora, Campus Universitario, Juiz de Fora, MG 36036-900 (Brazil); Rocha, Alexandre B., E-mail: rocha@iq.ufrj.br [Instituto de Quimica, Departamento de Fisico-Quimica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, CT Bloco A. Rio de Janeiro, 21941-909 Rio de Janeiro (Brazil)
2011-11-07
Graphical abstract: Temperature dependence of oscillator strengths calculated through vibronic coupling for electronic transitions of Cu{sup +} impurity in NaF host, described by embedded cluster model. Highlights: Black-Right-Pointing-Pointer Embedded cluster model for impurity levels in the NaF:Cu{sup +} system. Black-Right-Pointing-Pointer Oscillator strengths (OSs) calculated by direct vibronic coupling method. Black-Right-Pointing-Pointer The dependence of the OS on temperature is reported. Black-Right-Pointing-Pointer OS and transition energies calculated at CASSCF and CASSCF/SOCI level. - Abstract: An embedded cluster model is used to describe electronic structure of Cu{sup +} ion in NaF host. Transition energies and oscillator strengths are calculated for the 3d{sup 10} {yields} 3d{sup 9}4s{sup 1} Cu{sup +} ligand field transitions. These are forbidden by dipole selection rules, which can, though, be broken by vibronic coupling. The basic model consists of a [CuF{sub 6}]{sup 5-} cluster surrounded by total ion potentials representing second, third and fourth neighbors to the central Cu{sup +}. The resulting structure is placed inside a cube of point charges to take long distance Coulomb interactions into account. Variations of this basic model needed especially to the calculation of transition energy. The oscillator strengths are calculated by the direct vibronic coupling method we have previously proposed. The effect of temperature on the value of the oscillator strength is calculated for the first time as well as their absolute value. Results are in good agreement with available experiment.
Calculation of hadronic transition amplitudes in charm physics
International Nuclear Information System (INIS)
Klein, Christoph
2011-01-01
Transitions of charmed hadrons are of significant importance, since they provide possibilities to extract the CKM matrix elements V cd and V cs from experimental data as well as interesting channels to search for new physics effects. However, quarks are bound in hadrons, and it is necessary to describe this effect in a reliable way, to study the underlying flavour dynamics. For this, one has to use nonperturbative tools, to determine the corresponding transition amplitudes. The results of such calculations can furthermore be of use, to test the predictions of QCD and to contribute to a deeper understanding of the structure of hadrons. In this thesis two topics are investigated using the method of QCD light-cone sum rules (LCSRs). The first topic consists in the form factors of the semileptonic decays D → πlν l and D → Klν l , for which new results are calculated using up-to-date input values. Since LCSRs are not applicable in the whole range of kinematics, they are extrapolated by the use of appropriate parametrisations and the results agree well with experimental data. The second topic are the transitions of charmed baryons to a nucleon. Here the corresponding transition form factors and in addition the hadronic Λ c D (*) N and Σ c D (*) N coupling constants are calculated - the latter by the consideration of double dispersion relations. These coupling constants are of special interest for the description of hadronic interactions, like open charm production in proton-antiprotoncollisions. Furthermore there appears the problem, that both parity states of a baryon contribute to the considered functional representation, for which a consistent way to separate them is presented. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Nakata, Hidehiko [Waseda Univ., Tokyo (Japan). Dept. of Physics; Tachibana, Takahiro; Yamada, Masami
1997-03-01
Recently the gross theory of nuclear {beta}-decay was refined for odd-odd nuclei. In this refinement, the effect of the selection rule of {beta}-transitions from the ground states of odd-odd nuclei to those of even-even nuclei was taken into account based on a statistical consideration. The transitions to the first 2{sup +} excited states in even-even nuclei were also taken into account according to the selection rule approximately. In that study, it was found that the transitions between 1{sup -} ground states of the odd-odd nuclei and 0{sup +} ground states of even-even nuclei, belonging to the first-forbidden transitions of rank 1, are strongly hindered. A reduction factor was introduced for the transitions to the ground states of even-even nuclei to take into account this hindrance. It was also found that the strength functions of the Gamow-Teller transitions obtained from the conventional gross theory are underestimated by a factor of about 3. In order to improve this underestimation, the Lorentz-type function was adopted for the one-particle strength function in the model instead of the hyperbolic-secant-type function. In the present study we have newly analyzed the experimental ft-values of odd-A nuclei, and found that the first-forbidden transitions of rank 1 are also considerably hindered between the ground states. Following the above refinement we have calculated the {beta}-ray spectra of some odd-odd short-lived fission products with the use of the refined gross theory. These results are compared not only with the experiments by Rudstam et al. but also with the conventional gross theory. (author)
Kamenev, S E; Kopvillem, U Kh; Pasynkov, A S; Sharipov, R Z
1981-01-01
A forbidden ESR line of Mn2+ that is connected with the penetration of Mn into the plancton organism and binding it to a marcomolecule is selected from the experiment. A method for saturating the plancton organism with paramagnetic ions is proposed. It is shown that the constant of the axial electric field in the spin hamiltonian of Mn2+ ion described the dynamics of a selforganizing system. It is tested that the lethal process in the plancton with paramagnetic ion enrichment originated from boson avalanche. Experiments are performed with plancton noctiluca which illustrate the occurrence of avalancheline lethal process in the case of paramagnetic ion enrichment with limiting concentration. The meaning of these results for the problems of oceanology and pollution-ocean inhabitants interaction in the case of paramagnetic ions is discussed.
Multichannel 1 → 2 transition amplitudes in a finite volume
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Hansen, Maxwell T. [Univ. of Washington, Seattle, WA (United States); Walker-Loud, Andre [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)
2015-02-03
We perform a model-independent, non-perturbative investigation of two-point and three-point finite-volume correlation functions in the energy regime where two-particle states can go on-shell. We study three-point functions involving a single incoming particle and an outgoing two-particle state, relevant, for example, for studies of meson decays (e.g., B⁰ → K*l⁺l⁻) or meson photo production (e.g., πγ* → ππ). We observe that, while the spectrum solely depends upon the on-shell scattering amplitude, the correlation functions also depend upon off-shell amplitudes. The main result of this work is a non-perturbative generalization of the Lellouch-Luscher formula relating matrix elements of currents in finite and infinite spatial volumes. We extend that work by considering a theory with multiple, strongly-coupled channels and by accommodating external currents which inject arbitrary four-momentum as well as arbitrary angular-momentum. The result is exact up to exponentially suppressed corrections governed by the pion mass times the box size. We also apply our master equation to various examples, including two processes mentioned above as well as examples where the final state is an admixture of two open channels.
DEFF Research Database (Denmark)
Kilstrup, Mogens
2016-01-01
is an important addition that offers insight into the hardware requirements for bio-semiosis. As any type of semiosis must be dependent upon Semiotic scaffolds, I recently argued that the process of semiosis has to be divided into two separate processes of sign establishment and sign interpretation......, and that misalignment between the two processes result in faulty sign interpretation and over-signification. Such faulty signs were forbidden in the sign classification system of Peirce, so I defined them as forbidden signs. Here I present an analysis of the forbidden sign categories with examples from Occult semiotics....... I also show that biological semiosis offers examples of forbidden signs, where the faulty interpretation of signs may lead to decimation of whole evolutionary lines of organisms. A new concept of Evolutionary memory which is applicable to both human and biological semiosis is explained...
Sun, Zheng; Xu, Yuan-Ping; Li, Sheng; George, Thomas F
2011-02-10
Through combining the electron transition process and dipole moment evolution as well as electron-phonon coupling, molecular dynamics calculations show that the radiative decay of singlet excitons in a conjugated polymer, such as a polymer light-emitting diode (PLED), is largely determined by the evolution of the dipole moment. Without an electric field, the decay life of a singlet exciton is about 1 ns. Once an electric field is applied and exceeds a critical value, with electron-phonon coupling, the original lattice structure evolves into two new localized lattice distortions, consistent with the experimental results. Owing to the new lattice structure and self-trapping, the dipole moment rapidly decreases to zero within 5 fs, eliminating the radiative decay of the singlet exciton.
Iron forbidden lines in tokamak discharges
International Nuclear Information System (INIS)
Suckewer, S.; Hinnov, E.
1979-03-01
Several spectrum lines from forbidden transitions in the ground configurations of highly ionized atoms have been observed in the PLT tokamak discharges. Such lines allow localized observations, in the high-temperature regions of the plasma, of ion-temperatures, plasma motions, and spatial distributions of ions. Measured absolute intensities of the forbidden lines have been compared with simultaneous observations of the ion resonance lines and with model calculations in order to deduce the mechanism of level populaions by means of electron collisions and radiative transitions
Iron forbidden lines in tokamak discharges
Energy Technology Data Exchange (ETDEWEB)
Suckewer, S.; Hinnov, E.
1979-03-01
Several spectrum lines from forbidden transitions in the ground configurations of highly ionized atoms have been observed in the PLT tokamak discharges. Such lines allow localized observations, in the high-temperature regions of the plasma, of ion-temperatures, plasma motions, and spatial distributions of ions. Measured absolute intensities of the forbidden lines have been compared with simultaneous observations of the ion resonance lines and with model calculations in order to deduce the mechanism of level populaions by means of electron collisions and radiative transitions.
International Nuclear Information System (INIS)
McLaughlin, B.M.; Scott, M.P.; Sunderland, A.G.; Noble, C.J.; Burke, V.M.; Ramsbottom, C.A.; Reid, R.H.G.; Hibbert, A.; Bell, K.L.; Burke, P.G.
2007-01-01
Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (T e in degrees Kelvin) in the range 2 x 10 3 to 1 x 10 6 . Forbidden transitions results are given between the 3d 6 , 3d 5 4s, and the 3d 5 4p manifolds applicable to the modeling of laboratory and astrophysical plasmas
Gerges, Meana; Foldes, Emily L.; Ackermann, D. Michael; Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin L.
2010-12-01
High-frequency alternating currents (HFAC) have proven to be a reversible and rapid method of blocking peripheral nerve conduction, holding promise for treatment of disorders associated with undesirable neuronal activity. The delivery of HFAC is characterized by a transient period of neural firing at its inception, termed the 'onset response'. The onset response is minimized for higher frequencies and higher amplitudes, but requires larger currents. However, the complete block can be maintained at lower frequencies and amplitudes, using lower currents. In this in vivo study on whole mammalian peripheral nerves, we demonstrate a method to minimize the onset response by initiating the block using a stimulation paradigm with a high frequency and large amplitude, and then transitioning to a low-frequency and low-amplitude waveform, reducing the currents required to maintain the conduction block. In five of six animals, it was possible to transition from a 30 kHz to a 10 kHz waveform without inducing any transient neural firing. The minimum transition time was 0.03 s. Transition activity was minimized or eliminated with longer transition times. The results of this study show that this method is feasible for achieving a nerve block with minimal onset responses and current amplitude requirements.
Complex semiclassical analysis of the Loschmidt amplitude and dynamical quantum phase transitions
Obuchi, Tomoyuki; Suzuki, Sei; Takahashi, Kazutaka
2017-05-01
We propose a computational method of the Loschmidt amplitude in a generic spin system on the basis of the complex semiclassical analysis on the spin-coherent state path integral. We demonstrate how the dynamical transitions emerge in the time evolution of the Loschmidt amplitude for the infinite-range transverse Ising model with a longitudinal field, exposed by a quantum quench of the transverse field Γ from ∞ or zero. For both initial conditions, we obtain the dynamical phase diagrams that show the presence or absence of the dynamical transition in the plane of transverse field after a quantum quench and the longitudinal field. The results of semiclassical analysis are verified by numerical experiments. Experimental observation of our findings on the dynamical transition is also discussed.
Enabling forbidden dark matter
Cline, James M.; Liu, Hongwan; Slatyer, Tracy R.; Xue, Wei
2017-10-01
The thermal relic density of dark matter is conventionally set by two-body annihilations. We point out that in many simple models, 3 →2 annihilations can play an important role in determining the relic density over a broad range of model parameters. This occurs when the two-body annihilation is kinematically forbidden, but the 3 →2 process is allowed; we call this scenario not-forbidden dark matter. We illustrate this mechanism for a vector-portal dark matter model, showing that for a dark matter mass of mχ˜MeV -10 GeV , 3 →2 processes not only lead to the observed relic density, but also imply a self-interaction cross section that can solve the cusp/core problem. This can be accomplished while remaining consistent with stringent CMB constraints on light dark matter, and can potentially be discovered at future direct detection experiments.
Kinoshita, Takumi; Fujisawa, Jun-Ichi; Nakazaki, Jotaro; Uchida, Satoshi; Kubo, Takaya; Segawa, Hiroshi
2012-02-02
A new osmium (Os) complex of the [Os(tcterpy)-(4,4'-bis(p-butoxystyryl)-2,2'-bipyridine)Cl]PF6 (Os-stbpy) has been synthesized and characterized for dye-sensitized solar cells (DSSCs). The Os-stbpy dye shows enhanced spin-forbidden absorptions around 900 nm. The DSSCs with Os-stbpy show a wide-band spectral response up to 1100 nm with high overall conversion efficiency of 6.1% under standard solar illumination.
Small amplitude oscillations before the L-H transition in EAST
Shao, L. M.; Xu, G. S.; Chen, R.; Chen, L.; Birkenmeier, G.; Duan, Y. M.; Gao, W.; Manz, P.; Shi, T. H.; Wang, H. Q.; Wang, L.; Xu, M.; Yan, N.; Zhang, L.; the EAST Team
2018-03-01
Before L- to H-mode transition small amplitude oscillations (SAOs), different from the widely known intermediate phase (I-phase), at a frequency of a few kilohertz can be observed on EAST. Under sufficient auxiliary heating, SAOs can transit to the H-mode or I-phase. The edge radial electric field ({E}{{r}}) located inside the separatrix can be observed to deepen after bursts of SAOs. In SAOs, the turbulence level preceding the negative radial electric field and floating potential perturbation about 90° in phase, consistent with the model of zonal-flows and turbulence interaction, is measured by the Langmuir probe at the bottom of the edge {E}{{r}} well. A physical mechanism for SAOs is developed: at a critical gradient in pressure and {E}{{r}}, turbulence increases at the inboard edge of the {E}{{r}} well. The increased turbulence level enhances the radial particle, energy and momentum transport at the plasma edge and increases the amplitude of the zonal flow at the bottom of the {E}{{r}} well due to the increased Reynolds force. The increase in the zonal flow amplitude acts to mitigate the turbulence on the inboard edge of the {E}{{r}} well, driving a limit-cycle oscillation. The poloidal magnetic perturbations of the oscillations are poloidal in-out/up-down asymmetric and toroidal symmetric in the SAOs.
Experimental access to transition distribution amplitudes with the PANDA experiment at FAIR
Energy Technology Data Exchange (ETDEWEB)
Zambrana, Manuel; Ahmed, Samer; Deiseroth, Malte; Froehlich, Bertold; Khaneft, Dmitry; Lin, Dexu; Noll, Oliver; Valente, Roserio; Zimmermann, Iris [Institut fuer Kernphysik, Johannes Gutenberg Universitaet, Mainz (Germany); Helmholtz-Institut Mainz (Germany); Mora Espi, Maria Carmen; Ahmadi, Heybat; Capozza, Luigi; Dbeyssi, Alaa; Morales, Cristina; Rodriguez Pineiro, David [Helmholtz-Institut Mainz (Germany); Maas, Frank [Institut fuer Kernphysik, Johannes Gutenberg Universitaet, Mainz (Germany); Helmholtz-Institut Mainz (Germany); Prisma Cluster of Excellence, Mainz (Germany)
2015-07-01
We address the feasibility of accessing proton to pion Transition Distribution Amplitudes with the future PANDA detector at the FAIR facility. At high center of mass energy and four-momentum transfer, the amplitude of signal channel anti pp → e{sup +}e{sup -}π{sup 0} admits a QCD factorized description in terms of Distribution Amplitudes and Transition Distribution Amplitudes in the forward and backward regions. Assuming a factorized cross section, feasibility studies of measuring anti pp → e{sup +}e{sup -}π{sup 0} with PANDA have been performed at the center of mass energy squared s=5 GeV{sup 2} and s=10 GeV{sup 2}, in the kinematic region of four-momentum transfer 3.0 < q{sup 2} < 4.3 GeV{sup 2} and 5 < q{sup 2} < 9 GeV{sup 2}, respectively, with a neutral pion scattered in the forward or backward cone cosθ{sub π{sup 0}} > 0.5 in the anti pp center of mass frame. These include detailed simulations on signal reconstruction efficiency, rejection of the most severe background channel, i.e. anti pp → π{sup +}π{sup -}π{sup 0}, and the feasibility of the measurement using a sample of 2 fb{sup -1} of integrated luminosity. Results of the simulations show that a background rejection factor from 10{sup 7} at s=5 GeV{sup 2} to 10{sup 8} at s=10 GeV{sup 2} can be achieved, while keeping the signal reconstruction efficiency at the level of 40%, and that a clean lepton signal can be reconstructed with 2 fb{sup -1} of integrated luminosity at both energies. The ''measured'' cross sections with the simulations are used to test QCD factorization at the leading order by measuring scaling laws and fitting angular distributions.
Energy Technology Data Exchange (ETDEWEB)
Klein, Christoph
2011-09-23
Transitions of charmed hadrons are of significant importance, since they provide possibilities to extract the CKM matrix elements V{sub cd} and V{sub cs} from experimental data as well as interesting channels to search for new physics effects. However, quarks are bound in hadrons, and it is necessary to describe this effect in a reliable way, to study the underlying flavour dynamics. For this, one has to use nonperturbative tools, to determine the corresponding transition amplitudes. The results of such calculations can furthermore be of use, to test the predictions of QCD and to contribute to a deeper understanding of the structure of hadrons. In this thesis two topics are investigated using the method of QCD light-cone sum rules (LCSRs). The first topic consists in the form factors of the semileptonic decays D {yields} {pi}l{nu}{sub l} and D {yields} Kl{nu}{sub l}, for which new results are calculated using up-to-date input values. Since LCSRs are not applicable in the whole range of kinematics, they are extrapolated by the use of appropriate parametrisations and the results agree well with experimental data. The second topic are the transitions of charmed baryons to a nucleon. Here the corresponding transition form factors and in addition the hadronic {lambda}{sub c}D{sup (*)}N and {sigma}{sub c}D{sup (*)}N coupling constants are calculated - the latter by the consideration of double dispersion relations. These coupling constants are of special interest for the description of hadronic interactions, like open charm production in proton-antiprotoncollisions. Furthermore there appears the problem, that both parity states of a baryon contribute to the considered functional representation, for which a consistent way to separate them is presented. (orig.)
Giant first-forbidden resonances
International Nuclear Information System (INIS)
Krmpotic, F.; Nakayama, K.; Sao Paulo Univ.; Pio Galeao, A.; Sao Paulo Univ.
1983-01-01
Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. (orig.)
Experimental access to Transition Distribution Amplitudes with the P¯ANDA experiment at FAIR
Singh, B. P.; Erni, W.; Keshelashvili, I.; Krusche, B.; Steinacher, M.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Fink, M.; Heinsius, F. H.; Held, T.; Holtmann, T.; Koch, H.; Kopf, B.; Kümmel, M.; Kuhl, G.; Kuhlmann, M.; Leyhe, M.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Beck, R.; Hammann, C.; Kaiser, D.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Pietreanu, D.; Vasile, M. E.; Patel, B.; Kaplan, D.; Brandys, P.; Czyzewski, T.; Czyzycki, W.; Domagala, M.; Hawryluk, M.; Filo, G.; Krawczyk, M.; Kwiatkowski, D.; Lisowski, E.; Lisowski, F.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Czech, B.; Kliczewski, S.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Malgorzata, K.; Pysz, K.; Schäfer, W.; Siudak, R.; Szczurek, A.; Biernat, J.; Jowzaee, S.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Palka, M.; Psyzniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wrońska, A.; Augustin, I.; Lehmann, I.; Nicmorus, D.; Schepers, G.; Schmitt, L.; Al-Turany, M.; Cahit, U.; Capozza, L.; Dbeyssi, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Karabowicz, R.; Kliemt, R.; Kunkel, J.; Kurilla, U.; Lehmann, D.; Lühning, J.; Maas, F.; Morales Morales, C.; Mora Espí, M. C.; Nerling, F.; Orth, H.; Peters, K.; Rodríguez Piñeiro, D.; Saito, N.; Saito, T.; Sánchez Lorente, A.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Traxler, M.; Valente, R.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fedunov, A. G.; Festchenko, A. A.; Galoyan, A. S.; Grigoryan, S.; Karmokov, A.; Koshurnikov, E. K.; Lobanov, V. I.; Lobanov, Yu. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Mustafaev, G. A.; Olshevskiy, A.; Pasyuk, M. A.; Perevalova, E. A.; Piskun, A. A.; Pocheptsov, T. A.; Pontecorvo, G.; Rodionov, V. K.; Rogov, Yu. N.; Salmin, R. A.; Samartsev, A. G.; Sapozhnikov, M. G.; Shabratova, G. S.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M. K.; Teshev, R. Sh.; Tokmenin, V. V.; Uzhinsky, V. V.; Vodopyanov, A. S.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Woods, P.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savriè, M.; Stancari, G.; Akishina, V.; Kisel, I.; Kulakov, I.; Zyzak, M.; Arora, R.; Bel, T.; Gromliuk, A.; Kalicy, G.; Krebs, M.; Patsyuk, M.; Zuehlsdorf, M.; Bianchi, N.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Pace, E.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Bianco, S.; Bremer, D.; Brinkmann, K. T.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Eissner, T.; Etzelmüller, E.; Föhl, K.; Galuska, M.; Gessler, T.; Gutz, E.; Hayrapetyan, A.; Hu, J.; Kröck, B.; Kühn, W.; Kuske, T.; Lange, S.; Liang, Y.; Merle, O.; Metag, V.; Mülhheim, D.; Münchow, D.; Nanova, M.; Novotny, R.; Pitka, A.; Quagli, T.; Rieke, J.; Rosenbaum, C.; Schnell, R.; Spruck, B.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wasem, T.; Werner, M.; Zaunick, H. G.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A. V.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.; Lindemulder, M.; Löhner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; van der Weele, J. C.; Tiemens, M.; Veenstra, R.; Vejdani, S.; Kalita, K.; Mohanta, D. P.; Kumar, A.; Roy, A.; Sahoo, R.; Sohlbach, H.; Büscher, M.; Cao, L.; Cebulla, A.; Deermann, D.; Dosdall, R.; Esch, S.; Georgadze, I.; Gillitzer, A.; Goerres, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Kozlov, V.; Lehrach, A.; Leiber, S.; Maier, R.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Ritman, J.; Schadmand, S.; Schumann, J.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Fissum, S.; Hansen, K.; Isaksson, L.; Lundin, M.; Schröder, B.; Achenbach, P.; Bleser, S.; Cardinali, M.; Corell, O.; Deiseroth, M.; Denig, A.; Distler, M.; Feldbauer, F.; Fritsch, M.; Jasinski, P.; Hoek, M.; Kangh, D.; Karavdina, A.; Lauth, W.; Leithoff, H.; Merkel, H.; Michel, M.; Motzko, C.; Müller, U.; Noll, O.; Plueger, S.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Steinen, M.; Thiel, M.; Weber, T.; Zambrana, M.; Dormenev, V. I.; Fedorov, A. A.; Korzihik, M. V.; Missevitch, O. V.; Balanutsa, P.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Varentsov, V.; Boukharov, A.; Malyshev, O.; Marishev, I.; Semenov, A.; Konorov, I.; Paul, S.; Grieser, S.; Hergemöller, A. K.; Khoukaz, A.; Köhler, E.; Täschner, A.; Wessels, J.; Dash, S.; Jadhav, M.; Kumar, S.; Sarin, P.; Varma, R.; Chandratre, V. B.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Roy, B.; Yan, Y.; Chinorat, K.; Khanchai, K.; Ayut, L.; Pornrad, S.; Barnyakov, A. Y.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Sokolov, A. A.; Tikhonov, Y. A.; Atomssa, E.; Hennino, T.; Imre, M.; Kunne, R.; Le Galliard, C.; Ma, B.; Marchand, D.; Ong, S.; Ramstein, B.; Rosier, P.; Tomasi-Gustafsson, E.; Van de Wiele, J.; Boca, G.; Costanza, S.; Genova, P.; Lavezzi, L.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Melnik, Y.; Levin, A.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Yabsley, B.; Bäck, T.; Cederwall, B.; Makónyi, K.; Tegnér, P. E.; von Würtemberg, K. M.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Kashchuk, A.; Levitskaya, O.; Manaenkov, S.; Miklukho, O.; Naryshkin, Y.; Suvorov, K.; Veretennikov, D.; Zhadanov, A.; Rai, A. K.; Godre, S. S.; Duchat, R.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Zotti, L.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mingnore, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Younis, H.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Clement, H.; Gålnander, B.; Caldeira Balkeståhl, L.; Calén, H.; Fransson, K.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Pettersson, J.; Schönning, K.; Wolke, M.; Zlomanczuk, J.; Díaz, J.; Ortiz, A.; Vinodkumar, P. C.; Parmar, A.; Chlopik, A.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Suzuki, K.; Widmann, E.; Zmeskal, J.; Fröhlich, B.; Khaneft, D.; Lin, D.; Zimmermann, I.; Semenov-Tian-Shansky, K.
2015-08-01
Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion ( πN) TDAs from reaction with the future P¯ANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q 2, the amplitude of the signal channel admits a QCD factorized description in terms of πN TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring with the P¯ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q 2 < 4.3 GeV2 and 5 < q 2 GeV2, respectively, with a neutral pion scattered in the forward or backward cone in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the P¯ANDA detector will allow to achieve a background rejection factor of 5 · 107 (1 · 107) at low (high) q 2 for s = 5 GeV2, and of 1 · 108 (6 · 106) at low (high) q 2 for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb-1 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with P¯ANDA will provide a new test of the perturbative QCD description of a novel class of hard
International Nuclear Information System (INIS)
Courtillot, I.
2003-11-01
This thesis reports the first results towards the realization of an optical clock using trapped strontium atoms. This set up would combine advantages of the different approaches commonly used to develop an atomic frequency standard. The first part describes the cold atoms source which is implemented. A magneto-optical trap operating on the 1 S 0 - 1 P 1 transition at 461 nm is loaded from an atomic beam decelerated by a Zeeman slower. The 461 nm laser is obtained by sum-frequency mixing in a potassium titanyl phosphate (KTP) crystal. The second part is devoted to the different stages developed to achieve the direct excitation of the 1 S 0 - 3 P 0 clock transition in 87 Sr. This line has a theoretical natural width of 10 -3 Hz. Before this detection, we obtained an estimate of the resonance frequency by measuring absolute frequencies of several allowed optical transitions. (author)
Kβ satellite and forbidden transitions in elements with 12 ≤≤ Z ≤≤ 30 induced by electron impact
International Nuclear Information System (INIS)
Limandri, Silvina P.; Trincavelli, Jorge C.; Carreras, Alejo C.; Bonetto, Rita D.
2010-01-01
The emission of x rays in the Kβ region of Mg, Al, Si, Sc, Ti, Cr, Fe, Ni, and Zn induced by electron bombardment was studied by means of wavelength dispersive spectroscopy. The lines studied were: the Kβ III and Kβ IV spectator hole transitions, the 1s→3s quadrupole decay, the Kβ 2 and Kβ 5 diagram transitions, the structures related to radiative Auger processes, and the Kβ ' and Kβ '' lines. Relative energies and probabilities were determined through a careful spectral processing based on a parameter refinement method. The results obtained were compared with other experimental and theoretical determinations when available.
Experimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR
Energy Technology Data Exchange (ETDEWEB)
Zambrana, Manuel; Ahmed, Samer; Deiseroth, Malte; Froehlich, Bertold; Khaneft, Dmitry; Lin, Dexu; Noll, Oliver; Valente, Roserio; Zimmermann, Iris [Institut fuer Kernphysik, Johannes Gutenberg Universitaet, Mainz (Germany); Helmholtz-Institut Mainz (Germany); Mora Espi, Maria Carmen; Ahmadi, Heybat; Capozza, Luigi; Dbeyssi, Alaa; Morales, Cristina; Rodriguez Pineiro, David [Helmholtz-Institut Mainz (Germany); Maas, Frank [Institut fuer Kernphysik, Johannes Gutenberg Universitaet, Mainz (Germany); Helmholtz-Institut Mainz (Germany); Prisma Cluster of Excellence, Mainz (Germany); Collaboration: PANDA-Collaboration
2016-07-01
We address the feasibility of accessing proton to pion Transition Distribution Amplitudes with the future PANDA detector at the FAIR facility. Assuming a factorized cross section, feasibility studies of measuring anti pp → e{sup +}e{sup -}π{sup 0} with PANDA have been performed at the center of mass energy squared s = 5 GeV{sup 2} and s = 10 GeV{sup 2}, in the kinematic region of four-momentum transfer 3.0 < q{sup 2} < 4.3 GeV{sup 2} and 5 < q{sup 2} < 9 GeV{sup 2}, respectively,with a neutral pion scattered in the forward or backward cone vertical stroke cosθ{sub π{sup 0}} vertical stroke > 0.5 in the anti pp center of mass frame. These include detailed simulations on signal reconstruction efficiency, rejection of the most severe background channel, i.e. anti pp → π{sup +}π{sup -}π{sup 0}, and the feasibility of the measurement using a sample of 2 fb{sup -1} of integrated luminosity. The cross sections obtained with the simulations are used to test QCD factorization at the leading order by measuring scaling laws and fitting angular distributions.
International Nuclear Information System (INIS)
Gómez, A I; Gasaneo, G; Mitnik, D M
2015-01-01
In this work we present the application of the Generalized Sturmian basis to the process of photonionization by an electromagnetic pulse in the framework of a perturbation theory. The Generalized Sturmian basis have the proper asymptotic behavior allowing us to extract the transition amplitudes directly from the coefficients of expansion. (paper)
``Forbidden'' phonon in the iron chalcogenide series
Fobes, David M.; Zaliznyak, Igor A.; Xu, Zhijun; Gu, Genda; Tranquada, John M.
2015-03-01
Recently, we uncovered evidence for the formation of a bond-order wave (BOW) leading to ferro-orbital order at low temperature, acting to stabilize the bicollinear AFM order, in the iron-rich parent compound, Fe1+yTe. Investigating the inelastic spectra centered near (100) in Fe1+yTe, a signature peak for the BOW formation in the monoclinic phase, we observed an acoustic phonon dispersion in both tetragonal and monoclinic phases. While a structural Bragg peak accompanies the mode in the monoclinic phase, in the tetragonal phase Bragg scattering at this Q is forbidden by symmetry, and we observed no elastic peak. This phonon mode was also observed in superconducting FeTe0.6Se0.4, where structural and magnetic transitions are suppressed. LDA frozen phonon calculations suggested that this mode could result from a spin imbalance between neighboring Fe atoms, but polarized neutron measurements revealed no additional magnetic scattering. We propose that this ``forbidden'' phonon mode may originate from dynamically broken symmetry, perhaps related to the strong dynamic spin correlations in these materials. Work at BNL was supported by BES, US DOE, under Contract No. DE-AC02-98CH10886. Research at ORNL's HFIR and SNS sponsored by Scientific User Facilities Division, BES, US DOE. We acknowledge the support of NIST, in providing neutron research facilities.
Perger, W. F.; Das, B. P.
1987-01-01
The parity-nonconserving electric-dipole-transition amplitudes for the 6s1/2-7s1/2 transition in cesium and the 6p1/2-7p1/2 transition in thallium have been calculated by the Dirac-Hartree-Fock method. The effects of using different Dirac-Hartree-Fock atomic core potentials are examined and the transition amplitudes for both the length and velocity gauges are given. It is found that the parity-nonconserving transition amplitudes exhibit a greater dependence on the starting potential for thallium than for cesium.
Polarization of Coronal Forbidden Lines
Energy Technology Data Exchange (ETDEWEB)
Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)
2017-03-20
Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.
Forbidden Transition Probabilities of Astrophysical Interest among ...
Indian Academy of Sciences (India)
Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately.
Single-cycle terahertz pulses with >0.2 V/A field amplitudes via coherent transition radiation
International Nuclear Information System (INIS)
Daranciang, Dan; Goodfellow, John; Fuchs, Matthias; Ghimire, Shambhu; Wen, Haidan; Reis, David A.; Loos, Henrik; Fisher, Alan S.; Lindenberg, Aaron M.
2011-01-01
We demonstrate terahertz pulses with field amplitudes exceeding 0.2 V/A generated by coherent transition radiation. Femtosecond, relativistic electron bunches generated at the Linac Coherent Light Source are passed through a beryllium foil, and the emitted radiation is characterized as a function of the bunch duration and charge. Broadband pulses centered at a frequency of 10 THz with energies of 140 μJ are measured. These far-below-bandgap pulses drive a nonlinear optical response in a silicon photodiode, with which we perform nonlinear autocorrelations that yield information regarding the terahertz temporal profile. Simulations of the spatiotemporal profile agree well with experimental results.
International Nuclear Information System (INIS)
Sukhovoj, A.M.; Khitrov, V.A.
1984-01-01
A method of unfolding the differential γ-cascade spectra during radiation capture of slow neutrons based on the computeri-- zed processing of the results of measurements performed, by means of a spectrometer with two Ge(Li) detectors is suggested. The efficiency of the method is illustrated using as an example the spectrum of 35 Cl(n, γ) reaction corresponding to the 8580 keV peak. It is shown that the above approach permits to improve the resolution by 1.2-2.6 times without decrease in registration efficiency within the framework of the method of coincidence pulse amplitude summation
Forbidden Channels and SIMP Dark Matter
Choi Soo-Min; Kang Yoo-Jin; Lee Hyun Min
2018-01-01
In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.
Gribin, V. G.; Gavrilov, I. Yu.; Tishchenko, A. A.; Tishchenko, V. A.; Alekseev, R. A.
2017-05-01
This paper is devoted to the wave structure of a flow at its near- and supersonic velocities in a flat turbine cascade of profiles in the zone of phase transitions. The main task was investigation of the mechanics of interaction of the condensation jump with the adiabatic jumps of packing in a change of the initial condition of the flow. The obtained results are necessary for verification of the calculation models of the moisture-steam flow in the elements of lotic parts of the steam turbines. The experimental tests were made on a stand of the wet steam contour (WSC-2) in the Moscow Power Engineering Institute (MPEI, National Research University) at various initial states of steam in a wide range of Mach numbers. In the investigation of the wave structure, use was made of an instrument based on the Schlieren-method principle. The amplitude-frequency characteristics of the flow was found by measurement of static pressure pulsations by means of the piezo resistive sensors established on a bandage plate along the bevel cut of the cascade. It is shown that appearance of phase transitions in the bevel cut of the nozzle turbine cascade leads to a change in the wave structure of the flow. In case of condensation jump, the system of adiabatic jumps in the bevel cut of the cascade becomes nonstationary, and the amplitude-frequency characteristics of static pressure pulsations are restructured. In this, a change in the frequency pulsations of pressure and amplitude takes place. It is noted that, at near-sonic speeds of the flow and the state of saturation at the input, the low-frequency pulsations of static pressure appear that lead to periodic disappearance of the condensation jump and of the adiabatic jump. As a result, in this mode, the flow discharge variations take place.
International Nuclear Information System (INIS)
Tao Feng; Chen Weizhong; Pan Junting; Xu Wen; Du Sidan
2012-01-01
We study the energy flux in a nonlinear electrical transmission line consisting of two coupled segments which are identical in structure and different in parameters. The asymmetry of energy flux caused by nonlinear wave has been observed experimentally in the forbidden band of the line. The experiment shows whether the energy can flow through the transmission line depends on the amplitude of the boundary driving voltages, which can be well explained in the theoretical framework of nonlinear supratransmission. The numerical simulation based on Kirchhoff’s laws further verifies the existence of the asymmetric energy flux in the forbidden band.
Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.
1995-01-01
Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.
Forbidden lines of highly ionized ions for localized plasma diagnostics
International Nuclear Information System (INIS)
Hinnov, E.; Fonck, R.; Suckewer, S.
1980-06-01
Numerous optically forbidden lines resulting from magnetic dipole transitions in low-lying electron configurations of highly ionized Fe, Ti and Cr atoms have been identified in PLT and PDX tokamak discharges, and applied for localized diagnostics in the high-temperature (0.5 to 3.0 keV) interior of these plasmas. The measurements include determination of local ion densities and their variation in time, and of ion motions (ion temperature, plasma rotations) through Doppler effect of the lines. These forbidden lines are particularly appropriate for such measurements because under typical tokamak conditions their emissivities are quite high (10 11 to 10 14 photons/cm 3 -sec), and their relatively long wavelengths allow the use of intricate optical techniques and instrumentation. The spatial location of the emissivity is directly measurable, and tends to occur near radii where the ionization potential of the ion in question is equal to the local electron temperature. In future larger and presumably higher-temperature tokamaks analogous measurements with somewhat heavier atoms, particularly krypton, and perhaps zirconium appear both feasible and desirable
Tetchou Nganso, H. M.; Njock, M. G. Kwato
2007-03-01
A fully relativistic treatment of the S-matrix elements describing two-photon bound-bound transition amplitudes in hydrogen-like ions is undertaken in the present work. Several selected transitions from the ground state |12Srang towards the L and M shells (|22Srang, |32Srang, |32D3/2rang and |32D5/2rang) are described. For that purpose, we use the complete set of relativistic Sturmian functions derived by Szmytkowski (1997 J. Phys. B: At. Mol. Opt. Phys. 30 825) from the first-order Sturm-Liouville problems for the Dirac equation. The method followed consists of writing the matrix elements in terms of Green functions expanded over the first-order Dirac-Coulomb Sturmians. Previous approaches used a Sturmian basis associated with the Gell-Mann-Feynman equation. On the other hand, a distinctive feature of our tensor treatment is that the expressions derived are quite general and could be applied to any multipole of the two-photon bound-bound transitions. In the case of dipole transitions, considered also by Szymanowski et al (1997 Phys. Rev. A 56 700) in their calculations, the selection rules derived from our method lead to two additional terms related to l1p = 2 and l2p = 2. The numerical results obtained for the transition from the ground state |12Srang towards the L and M shells enable us to draw inferences as to the improvements of our method.
Forbidden Zones for Numerically-Controlled Machine Tools
Philpot, D.
1986-01-01
Computer-controlled machine tool prevented from striking and damaging protruding members on workpiece by creating forbidden zone in control program. With aid of computer graphics, tool profile and coordinates of forbidden zone digitized and stored in computer memory as part of tool path.
Krieg, Jan; Kopietz, Peter
2017-10-01
We develop a functional renormalization group (FRG) approach for the two-dimensional X Y model by combining the lattice FRG proposed by Machado and Dupuis [Phys. Rev. E 82, 041128 (2010), 10.1103/PhysRevE.82.041128] with a duality transformation that explicitly introduces vortices via an integer-valued field. We show that the hierarchy of FRG flow equations for the infinite set of relevant and marginal couplings of the model can be reduced to the well-known Kosterlitz-Thouless renormalization group equations for the renormalized temperature and the vortex fugacity. Within our approach it is straightforward to include weak amplitude as well as out-of-plane fluctuations of the spins, which lead to additional interactions between the vortices that do not spoil the Berezinskii-Kosterlitz-Thouless transition. This demonstrates that previous failures to obtain a line of true fixed points within the FRG are a mathematical artifact of insufficient truncation schemes.
Forbidden Pairs and (k,m-Pancyclicity
Directory of Open Access Journals (Sweden)
Crane Charles Brian
2017-08-01
Full Text Available A graph G on n vertices is said to be (k, m-pancyclic if every set of k vertices in G is contained in a cycle of length r for each r ∈ {m, m+1, . . . , n}. This property, which generalizes the notion of a vertex pancyclic graph, was defined by Faudree, Gould, Jacobson, and Lesniak in 2004. The notion of (k, m-pancyclicity provides one way to measure the prevalence of cycles in a graph. We consider pairs of subgraphs that, when forbidden, guarantee hamiltonicity for 2-connected graphs on n ≥ 10 vertices. There are exactly ten such pairs. For each integer k ≥ 1 and each of eight such subgraph pairs {R, S}, we determine the smallest value m such that any 2-connected {R, S}-free graph on n ≥ 10 vertices is guaranteed to be (k,m-pancyclic. Examples are provided that show the given values are best possible. Each such example we provide represents an infinite family of graphs.
Theoretical interpretation of forbidden transitions in solid hydrogen
International Nuclear Information System (INIS)
Balasubramanian, T.K.
1997-01-01
In particular, solid hydrogen as the archetypical molecular quantum solid, seems to present endless opportunities and challenges to experimentalists and theorists alike. This chapter briefly reviews certain aspects of infrared spectrum of solid hydrogen and outline how the various spectral features may be interpreted
Observational study of large-scale forbidden CII emission by Balloon-Borne Infrared Telescope (BIRT)
Shibai, Hiroshi
1992-11-01
A far-infrared emission line of the C(+) ion (forbidden CII 158-micron transition) was detected in an extensive region (30 deg less than/equal to l less than/equal to 51 deg) along the Galactic plane. The forbidden CII line is bright and extended far from discrete luminous HII regions. The diffuse forbidden CII emission probably comes from the photodissociated C+ regions enveloping giant molecular clouds exposed to the general interstellar UV radiation field, namely, 'diffuse photodissociation regions'. The Balloon-Borne Infrared Telescope (BIRT) was used for the observations. It was developed for far-infrared astronomy by a joint project (the BIRT project) between the Institute of Space and Astronautical Science and Kyoto University in Japan. BIRT has a 50-cm reflector telescope mounted on an alt-azimuthal pointing system actuated by a control-moment gyroscope torquer in the azimuth. The pointing and tracking are accomplished by a unique offset guide system which utilizes a star tracker and a star field camera mounted on two-axis offset gimbals, controlled by an on-board CPU. Details of BIRT's design and major results of its observations are presented. In addition, compilations are presented of the far-infrared line observations, far-infrared line parameters, and observational work of the spectral lines.
Generalization of Suppression in Norma Khouri's "Forbidden Love"
Mariam, Olya; Rana, Sidra
2014-01-01
The aim of this research is to critique the repercussions of over-generalization of a social issue as depicted in Norma Khouri's "Forbidden Love." The novel/memoir has been written against the 9/11 backdrop and as such serves as means of sensationalizing and exploiting a cultural event which unfortunately echoes in the East. The…
Forbidden reflections from the aramid PPTA—A novel correlation ...
Indian Academy of Sciences (India)
Keywords. Stacking fault; X-ray diffraction; Kevlar; Twaron. Abstract. The occurrence of space group forbidden reflections in the X-ray diffraction patterns from the aramid PPTA has been correlated with the presence of stacking faults. The fraction of sample affected by the presence of such faults has also been estimated.
E-cigarettes forbidden in offices and closed areas
2013-01-01
Be reminded that all people on the CERN site must comply with the following notice from the Medical Service: “In the same manner as for ordinary cigarettes, the use of e-cigarettes is forbidden in all offices and closed areas.” If you have any question, please write to medical.service@cern.ch HSE Unit/ GS-ME Department
Tasting the Forbidden Fruit: The Social Context of Debut Sexual ...
African Journals Online (AJOL)
Tasting the Forbidden Fruit: The Social Context of Debut Sexual Encounters Among Young Persons in a Rural Nigerian Community. ... Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.
49 CFR 396.7 - Unsafe operations forbidden.
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS INSPECTION, REPAIR, AND MAINTENANCE § 396.7 Unsafe operations forbidden. (a) General. A motor vehicle shall not be operated in such a condition as to likely cause an accident or a breakdown of the vehicle. (b) Exemption. Any motor vehicle...
Energy Technology Data Exchange (ETDEWEB)
Andre, St. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1965-10-01
An apparatus has been developed for studying the exact shape of the spectra of {beta} transitions which lead to an excited state of the final nucleus, using a Siegbahn-Slattis {beta} spectrometer. In particular the {beta} spectrum of the 2- {yields} 2+ transition of {sup 42}K has been measured; a considerable deviation has been found with respect to the statistical shape. The six elements of the nuclear matrices for this transition have been determined using this measurement and other results. It is shown that it cannot be explained by a pure f7/2 {yields} d3/2 transition. Furthermore the value obtained for the ratio of the matrix elements {integral}{alpha} and {integral}r is in excellent agreement with that predicted from the theory for the maintained vectorial current. (author) [French] On a realise et mis au point un appareillage permettant l'etude des formes precises des spectres {beta} des transitions aboutissant a un etat excite du noyau final sur un spectrometre {beta} Siegbahn-Slatis. On a mesure notamment le spectre {beta} de la transition 2- {yields} 2+ du K{sup 42}, mettant en evidence une deviation importante par rapport a la forme statistique. A partir de cette mesure et d'autres resultats, on a determine les six elements de matrice nucleaires de cette transition. On montre qu'elle ne peut pas etre expliquee par une transition f7/2 {yields} d3/2 pure. D'autre part, la valeur obtenue pour le rapport des elements de matrice {integral}{alpha} et {integral}r est en excellent accord avec celle qui est prevue a partir de la theorie du courant vectoriel conserve. (auteur)
Full Polarization Analysis of Resonant Superlattice and Forbidden x-ray Reflections in Magnetite
International Nuclear Information System (INIS)
Wilkins, S.B.; Bland, S.R.; Detlefs, B.; Beale, T.A.W.; Mazzoli, C.; Joly, Y.; Hatton, P.D.; Lorenzo, J.E.; Brabers, V.A.M.
2009-01-01
Despite being one of the oldest known magnetic materials, and the classic mixed valence compound, thought to be charge ordered, the structure of magnetite below the Verwey transition is complex and the presence and role of charge order is still being debated. Here, we present resonant x-ray diffraction data at the iron K-edge on forbidden (0, 0, 2n+1) C and superlattice (0, 0, 2n+1/2)C reflections. Full linear polarization analysis of the incident and scattered light was conducted in order to explore the origins of the reflections. Through simulation of the resonant spectra we have confirmed that a degree of charge ordering takes place, while the anisotropic tensor of susceptibility scattering is responsible for the superlattice reflections below the Verwey transition. We also report the surprising result of the conversion of a significant proportion of the scattered light from linear to nonlinear polarization.
DEFF Research Database (Denmark)
Kaminski, Maciej; Cukras, Janusz; Pecul, Magdalena
2015-01-01
We present a computational methodology to calculate the intensity of circular dichroism (CD) in spinforbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet–singlet transitions in chiral compounds. The protocol is based...... on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n - p* and n ’ p* transitions, respectively, in several chiral enones...
Energy Technology Data Exchange (ETDEWEB)
Courtillot, I
2003-11-01
This thesis reports the first results towards the realization of an optical clock using trapped strontium atoms. This set up would combine advantages of the different approaches commonly used to develop an atomic frequency standard. The first part describes the cold atoms source which is implemented. A magneto-optical trap operating on the {sup 1}S{sub 0}-{sup 1}P{sub 1} transition at 461 nm is loaded from an atomic beam decelerated by a Zeeman slower. The 461 nm laser is obtained by sum-frequency mixing in a potassium titanyl phosphate (KTP) crystal. The second part is devoted to the different stages developed to achieve the direct excitation of the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition in {sup 87}Sr. This line has a theoretical natural width of 10{sup -3} Hz. Before this detection, we obtained an estimate of the resonance frequency by measuring absolute frequencies of several allowed optical transitions. (author)
The rise and fall of horror autotoxicus and forbidden clones.
Jennette, J Charles; Falk, Ronald J
2010-09-01
Cui and associates show that healthy individuals have natural autoantibodies (NAAs) specific for myeloperoxidase, proteinase 3, and glomerular basement membrane (GBM) with the same specificity as anti-neutrophil cytoplasmic antibodies and anti-GBM antibodies that are pathogenic. Although Ehrlich proposed horror autotoxicus and Burnet envisioned elimination of forbidden clones, NAAs are present in all healthy individuals and play beneficial homeostatic roles. Pathogenic autoimmunity is dysregulation of natural homeostatic autoimmunity rather than onset of a previously absent self-recognition.
International Nuclear Information System (INIS)
Kato, D.; Sakaue, H.A.; Murakami, I.; Goto, M.; Morita, S.; Nakamura, N.; Koike, F.; Sasaki, Akira; Ding, X.-B.; Dong, C.-Z.
2013-01-01
Visible lines, which are presumably associated with forbidden lines from tungsten highly charged ions, were clearly observed in a spectrum of 370 - 410 nm recorded shortly after a tungsten pellet injection at the LHD. One of the measured lines has been assigned to a magnetic-dipole (M1) line of the ground-term fine-structure transition of W 26+ . Photon emission was observed at 44 lines of sight divided along the vertical direction of a horizontally elongated poloidal cross section of the LHD plasma. The line-integrated intensity of the lines along each line of sight indicates peaked profiles near the plasma center, while visible line emissions of neutral hydrogen and helium recoded in the same sampling time have a maximum located in the peripheral region of the poloidal cross section. (author)
Indian Academy of Sciences (India)
IAS Admin
plitude waves and finite amplitude waves. This article provides a brief introduction to finite amplitude wave theories. Some of the general characteristics of waves as well as the importance of finite amplitude wave theories are touched upon. 2. Small Amplitude Waves. The topmost and the lowest levels of the waves are re-.
Distribution of forbidden neutral carbon emission in the ring nebula (NGC 6720)
Jewitt, D. C.; Danielson, G. E.; Kupferman, P. N.; Maran, S. P.
1983-01-01
The spatial distribution of forbidden C I 9823, 9850 A emission in NGC 6720 is reported. Like forbidden O I, the forbidden C I radiation appears enhanced in the region of the bright filaments. A few percent of the carbon atoms in the filaments are neutral. The neutral fraction is consistent with ionization equilibrium calculations made under the assumption of complete shielding of direct stellar radiation by hydrogen. The observed carbon lines are excited by photoelectrons produced from hydrogen by the nebular diffuse radiation field. The forbidden C I observations confirm that the filaments in NGC 6720 are regions of locally enhanced shielding.
The Lyman-α1 decay in hydrogen-like ions. Interference between the E1 and M2 transition amplitudes
International Nuclear Information System (INIS)
Surzhykov, A.; Fritzsche, S.; Gumberidze, A.; Stoehlker, T.
2002-04-01
For the Lyman-α 1 transition (2p 3/2 → 1s 1/2 ) in hydrogen-like ions an interference between the leading E1 decay channel and the much weaker M2 multipole transition gives rise to a remarkable modified angular distribution of the emitted photons from aligned ions. This effect is most pronounced for the heaviest elements but results in a still sizeable correction for medium-Z ions. For the particular case of hydrogen-like uranium where the angular distribution of the Lyman-α 1 X-rays following radiative electron capture has been measured, the former variance with theoretical findings is removed when this E1-M2 interference is taken into account. (orig.)
Nonsinglet pentagons and NMHV amplitudes
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2015-07-01
Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.
Shape of Pion Distribution Amplitude
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, Anatoly
2009-11-01
A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.
Periodic instantons and scattering amplitudes
International Nuclear Information System (INIS)
Khlebnikov, S.Yu.; Rubakov, V.A.; Tinyakov, P.G.
1991-04-01
We discuss the role of periodic euclidean solutions with two turning points and zero winding number (periodic instantons) in instanton induced processes below the sphaleron energy E sph . We find that the periodic instantons describe certain multiparticle scattering events leading to the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital and final states of these transitions are determined by the periodic instantons. Furthermore, the corresponding probabilities are maximal among all states of given energy. We show that at E ≤ E sph , the periodic instantons can be approximated by infinite chains of ordinary instantons and anti-instantons, and they naturally emerge as deformations of the zero energy instanton. In the framework of 2d abelian Higgs model and 4d electroweak theory we show, however, that there is not obvious relation between periodic instantons and two-particle scattering amplitudes. (orig.)
On the chromatic number of a space with forbidden equilateral triangle
International Nuclear Information System (INIS)
Zvonarev, A E; Raigorodskii, A M; Kharlamova, A A; Samirov, D V
2014-01-01
We improve the Frankl-Rödl estimate for the product of the numbers of edges in uniform hypergraphs with forbidden cardinalities of the intersection of edges. By using this estimate, we obtain explicit bounds for the chromatic number of a space with forbidden monochromatic equilateral triangles. Bibliography: 31 titles
Energy Technology Data Exchange (ETDEWEB)
Chevriaux, D
2007-06-15
We study wave scattering in different nonlinear media possessing a natural forbidden band gap. In particular, we show the existence of a bistable behavior in media governed by the sine-Gordon equation (short pendular chain, Josephson junction array, quantum Hall bilayer), or the nonlinear Schroedinger equation (Kerr and Bragg media), in discrete and continuous models. These different media are submitted to periodic boundary conditions with a frequency in the forbidden band gap and an amplitude that determines their stability states. Indeed, for a sufficient amplitude (supra-transmission), the medium switches from reflector to transmitter, hence allowing the output signal to jump from evanescent to large values. We give a complete analytical description of the bistability that allows to understand the different stationary states observed and to predict the switch of one state to the other. (author)
Diphoton generalized distribution amplitudes
International Nuclear Information System (INIS)
El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.
2008-01-01
We calculate the leading order diphoton generalized distribution amplitudes by calculating the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region at the Born order and in the leading logarithmic approximation. As in the case of the anomalous photon structure functions, the γγ generalized distribution amplitudes exhibit a characteristic lnQ 2 behavior and obey inhomogeneous QCD evolution equations.
Balloon observations of interstellar CII (158 microns) and OI (63 microns) forbidden lines
Shibai, H.; Okuda, H.; Nakagawa, T.; Maihara, T.; Mizutani, K.; Matsuhara, H.; Kobayashi, Y.; Hiromoto, N.; Low, F. J.; Nishimura, T.
1993-01-01
Interstellar CII and OI forbidden lines were observed by the Balloon-Borne Infrared Telescope (BIRT) with a Fabry-Perot spectrometer. Two balloon flights were successfully made. With a method of 'frequency switching', diffuse CII forbidden-line emission was efficiently detected and mapped in extended regions around HII/molecular cloud complexes and in a wide area of the Galactic plane. It has been shown that the CII forbidden-line emission is very strong and ubiquitously distributed in interstellar space in the Galaxy.
Forbidden Structures for Planar Perfect Consecutively Colourable Graphs
Directory of Open Access Journals (Sweden)
Borowiecka-Olszewska Marta
2017-05-01
Full Text Available A consecutive colouring of a graph is a proper edge colouring with posi- tive integers in which the colours of edges incident with each vertex form an interval of integers. The idea of this colouring was introduced in 1987 by Asratian and Kamalian under the name of interval colouring. Sevast- janov showed that the corresponding decision problem is NP-complete even restricted to the class of bipartite graphs. We focus our attention on the class of consecutively colourable graphs whose all induced subgraphs are consecutively colourable, too. We call elements of this class perfect consecutively colourable to emphasise the conceptual similarity to perfect graphs. Obviously, the class of perfect consecutively colourable graphs is induced hereditary, so it can be characterized by the family of induced forbidden graphs. In this work we give a necessary and sufficient conditions that must be satisfied by the generalized Sevastjanov rosette to be an induced forbid- den graph for the class of perfect consecutively colourable graphs. Along the way, we show the exact values of the deficiency of all generalized Sevastjanov rosettes, which improves the earlier known estimating result. It should be mentioned that the deficiency of a graph measures its closeness to the class of consecutively colourable graphs. We motivate the investigation of graphs considered here by showing their connection to the class of planar perfect consecutively colourable graphs.
Accessing Forbidden Glass Regimes through High-Pressure Sub-Tg Annealing
Svenson, Mouritz N.; Mauro, John C.; Rzoska, Sylwester J.; Bockowski, Michal; Smedskjaer, Morten M.
2017-04-01
Density and hardness of glasses are known to increase upon both compression at the glass transition temperature (Tg) and ambient pressure sub-Tg annealing. However, a serial combination of the two methods does not result in higher density and hardness, since the effect of compression is countered by subsequent annealing and vice versa. In this study, we circumvent this by introducing a novel treatment protocol that enables the preparation of high-density, high-hardness bulk aluminosilicate glasses. This is done by first compressing a sodium-magnesium aluminosilicate glass at 1 GPa at Tg, followed by sub-Tg annealing in-situ at 1 GPa. Through density, hardness, and heat capacity measurements, we demonstrate that the effects of hot compression and sub-Tg annealing can be combined to access a “forbidden glass” regime that is inaccessible through thermal history or pressure history variation alone. We also study the relaxation behavior of the densified samples during subsequent ambient pressure sub-Tg annealing. Density and hardness are found to relax and approach their ambient condition values upon annealing, but the difference in relaxation time of density and hardness, which is usually observed for hot compressed glasses, vanishes for samples previously subjected to high-pressure sub-Tg annealing. This confirms the unique configurational state of these glasses.
Two Photon Distribution Amplitudes
International Nuclear Information System (INIS)
El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.
2008-01-01
The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations
Amplitudes, acquisition and imaging
Energy Technology Data Exchange (ETDEWEB)
Bloor, Robert
1998-12-31
Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.
A minisum model with forbidden regions for locating a semi-desirable facility in the plane
DEFF Research Database (Denmark)
Juel, Henrik; Brimberg, Jack
1998-01-01
-desirable facility that accounts for the service costs by a standard minisum objective with arbitrary travel distance function. The social costs are imputed by specifying around each demand point or population center a convex forbidden region, also defined by an arbitrary distance metric, in which the new facility...... may not be located. A general solution algorithm is suggested, and the methodology is applied to circular forbidden regions and special travel distance functions....
A minisum model with forbidden regions for locating a semi-desirable facility in the plane
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik
-desirable facility which accounts for the service costs by a standard minisum objective with arbitrary travel distance function. The social costs are imputed by specifying around each demand point or population center a convex forbidden region, also defined by an arbitrary distance metric, in which the new facility...... may not be located. A general solution algorithm is suggested, and the methodology applied to circular forbidden regions and special travel distance functions....
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...
The K-Forbidden Beta Decay of Tb160
DEFF Research Database (Denmark)
Hansen, P. Gregers; Johnson, N. R.; Nielsen, H. L.
1964-01-01
The β decay of the odd nucleus Tb160(Iπ = 3−) is shown to populate the 2+ and 4+ states of the ground-state band of Dy160 in intensities of 0.34% and 0.12%, respectively. The ratio of the reduced transition probabilities and the absolute transition strength are both compared with theoretical...
Analysis of unique beta transitions
DEFF Research Database (Denmark)
Eman, B.; Krmpotic, F.; Tadic, D
1967-01-01
The Heidelberg group measurements [For abstr. see Phys. Rev. Nucl. Sci. Vol. 15 (1965)] of unique forbidden transitions have been analysed. It has been found that experimental shape factors can be reproduced only with the induced pseudoscalar form factor d <0, and/or with the induced G-non-conser...
Reinforcing Saccadic Amplitude Variability
Paeye, Celine; Madelain, Laurent
2011-01-01
Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…
Jasper, Ahren W
2015-07-16
The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. This coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin-orbit coupling, dynamical multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal (history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the (3)O + CO → CO2 reaction are compared with the results of statistical theories employing one-dimensional (Landau-Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. The MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for complex systems. The error in statistical
Light Meson Distribution Amplitudes
Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.
2010-01-01
We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.
Structure of two-, four-, and six-quasiparticle isomers in 174Yb and K-forbidden decays
Dracoulis, G. D.; Lane, G. J.; Kondev, F. G.; Byrne, A. P.; Kibédi, T.; Watanabe, H.; Ahmad, I.; Carpenter, M. P.; Freeman, S. J.; Janssens, R. V.; Hammond, N. J.; Lauritsen, T.; Lister, C. J.; Mukherjee, G.; Seweryniak, D.; Chowdhury, P.; Tandel, S. K.
2005-04-01
The stable nucleus 174Yb has been studied using deep-inelastic reactions and time-correlated γ-ray spectroscopy. New intrinsic states assigned include a 370-ns isomer at 1765 keV, which we associate with a predicted Kπ=7- two-quasineutron configuration. Analysis of the alignment and in-band properties of its rotational band, identified using time-correlated coincidences, allows characterization of the configuration. The properties of a newly identified rotational band built on the known 830-μs isomer at 1518 keV support the 6+, 2-quasineutron configuration assignment proposed previously. The 6+ band is fed by a four-quasiparticle, Kπ=14+ isomer at 3699 keV and several higher multiquasiparticle states, including a six-quasiparticle isomer at 6147 keV with K=(22,23). The results are discussed in terms of the states predicted on the basis of multiquasiparticle calculations. The anomalously fast K-forbidden transition strengths from the 14+ isomer are attributed to either K mixing in the neutron configuration or to random mixing in the high-level-density region. The 7- isomer decays are not abnormal, whereas the very hindered E2 transition from the 6+ isomer to the ground-state band remains unexplained.
Spinfoam cosmology with the proper vertex amplitude
Vilensky, Ilya
2017-11-01
The proper vertex amplitude is derived from the Engle-Pereira-Rovelli-Livine vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics. We investigate the effects of dynamical selection on long-range correlations.
Spatial Distribution of the Forbidden 1.707 mm Rovibronic Emission on Io
de Pater, Imke; de Kleer, Katherine; Adamkovics, Mate
2017-10-01
Io’s forbidden SO 1.707 mm rovibronic transition was discovered in 1999 when the satellite was observed with the NIRSPEC spectrometer on the Keck telescope while in eclipse [1]. The emission, at the time indicative of a rotational temperature of 1000 K, was attributed to SO molecules in the excited a1D state, ejected as such from the vent at a thermodynamic quenching temperature of ~1500 K. We suggested Loki as its source, a volcano that was exceptionally active during this period. In subsequent years we found that the disk-averaged SO emission varies substantially over time [2]. In November 2002 we observed Io in eclipse with Keck’s NIRSPEC coupled to the Adaptive Optics (AO) system, and identified a latitudinal variation in SO: most emission came from the equator and the south, and practically no emission was detected in the north [3]. To further investigate the nature of the SO emission, we observed Io in eclipse with the near-infrared integral field spectrograph OSIRIS, coupled to the AO system, on the Keck II telescope on UT 27 July 2010 and 25 December 2015. On the latter date we observed simultaneously with the NIRSPEC spectrometer at a high spectral resolution (R ~ 25,000). On these dates Callisto and Ganymede, resp., were close enough to be used for wavefront sensing. The angular resolution of our images is ~0.1”, or ~10 resolution elements across Io’s disk. The emission is extended; preliminary results show that in 2010 most of the emission originated in the north, and in 2015 it appeared to be more confined to the equatorial region. Potential connections to active volcanoes, or absence thereof, and model fits to the emission bands including LTE vs non-LTE contributions will be discussed. [1]: de Pater, I., et al., 2002. Icarus, 156, 296-301.[2]: Laver, C., et al. 2007. Icarus, 189, 401-408.[3]: de Pater, I. et al., 2007. Icarus, 191, 172-182.
Energy Technology Data Exchange (ETDEWEB)
Briceño, Raúl A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dudek, Jozef J. [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Shultz, Christian J. [Old Dominion Univ., Norfolk, VA (United States); Thomas, Christopher E. [Univ. of Cambridge (United Kingdom); Wilson, David J. [Old Dominion Univ., Norfolk, VA (United States)
2016-06-01
We present a determination of the $P$-wave $\\pi\\pi\\to\\pi\\gamma^\\star$ transition amplitude from lattice quantum chromodynamics. Matrix elements of the vector current in a finite-volume are extracted from three-point correlation functions, and from these we determine the infinite-volume amplitude using a generalization of the Lellouch-L\\"uscher formalism. We determine the amplitude for a range of discrete values of the $\\pi\\pi$ energy and virtuality of the photon, and observe the expected dynamical enhancement due to the $\\rho$ resonance. Describing the energy dependence of the amplitude, we are able to analytically continue into the complex energy plane and from the residue at the $\\rho$ pole extract the $\\rho\\to\\gamma^\\star\\pi$ transition form factor. This calculation, at $m_\\pi\\approx 400$~MeV, is the first time a form factor of a hadron resonance has been calculated within a first-principles approach to QCD.
Indian Academy of Sciences (India)
IAS Admin
are known as intermediate or transitional water waves and if the depth of the water column is less than 1/20 of wavelength, they are called shallow water waves. In the case of both these waves, the particle motion is elliptical. Particle motions are shown in Figure 1. The velocity of waves is generally referred to as wave.
Contribution of a pure NCG forbidden process to the Z associated Higgs production
Energy Technology Data Exchange (ETDEWEB)
Bradji, O.; Mebarki, N. [Theoretical Phys. Lab., Faculty of Physics -USTHBB. P. 32 Bab Ezzouar 16079, Algiers (Algeria); Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)
2012-06-27
The contribution of the pure NCG forbidden subprocess gg{yields}ZHis calculated. It is shown that the cross section becomes important at the LHC energies and depends strongly on the choice of the noncommutativity parameter. Because of the gluons luminosity inside the proton, it becomes comparable to that of the commutative standard model subprocess qq(bar sign)ZH for reasonable values of the NCG parameter.
Pritykin, F. N.; Nebritov, V. I.
2017-06-01
The structure of graphic database specifying the shape and the work envelope projection position of an android arm mechanism with various positions of the known in advance forbidden zones is proposed. The technique of analytical assignment of the work envelope based on the methods of analytical geometry and theory of sets is represented. The conducted studies can be applied in creation of knowledge bases for intellectual systems of android control functioning independently in the sophisticated environment.
SPECTROSCOPIC DIAGNOSTICS OF SOLAR MAGNETIC FLUX ROPES USING IRON FORBIDDEN LINE
Energy Technology Data Exchange (ETDEWEB)
Cheng, X.; Ding, M. D., E-mail: xincheng@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)
2016-05-20
In this Letter, we present Interface Region Imaging Spectrograph Fe xxi 1354.08 Å forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of ≥1000 km s{sup −1} and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The extreme-ultraviolet images at the 131 and 94 Å passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe xxi 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe xxi forbidden line requires a critical temperature (∼11.5 MK) and density. Moreover, the line shows a non-thermal broadening and a blueshift in the early phase. It suggests that magnetic reconnection at that time has initiated; it not only heats the MFR and, at the same time, produces a non-thermal broadening of the Fe xxi line but also produces the poloidal flux, leading to the ascension of the MFRs.
Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line
Cheng, X.; Ding, M. D.
2016-05-01
In this Letter, we present Interface Region Imaging Spectrograph Fe xxi 1354.08 Å forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of ≥1000 km s-1 and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The extreme-ultraviolet images at the 131 and 94 Å passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe xxi 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe xxi forbidden line requires a critical temperature (˜11.5 MK) and density. Moreover, the line shows a non-thermal broadening and a blueshift in the early phase. It suggests that magnetic reconnection at that time has initiated; it not only heats the MFR and, at the same time, produces a non-thermal broadening of the Fe xxi line but also produces the poloidal flux, leading to the ascension of the MFRs.
SPECTROSCOPIC DIAGNOSTICS OF SOLAR MAGNETIC FLUX ROPES USING IRON FORBIDDEN LINE
International Nuclear Information System (INIS)
Cheng, X.; Ding, M. D.
2016-01-01
In this Letter, we present Interface Region Imaging Spectrograph Fe xxi 1354.08 Å forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of ≥1000 km s −1 and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The extreme-ultraviolet images at the 131 and 94 Å passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot channel-like structures. Interestingly, part of the MFRs is also visible in the Fe xxi 1354.08 forbidden line, even prior to the eruption, e.g., for the SOL2014-09-10 event. However, the line emission is very weak and that only appears at a few locations but not the whole structure of the MFRs. This implies that the MFRs could be comprised of different threads with different temperatures and densities, based on the fact that the formation of the Fe xxi forbidden line requires a critical temperature (∼11.5 MK) and density. Moreover, the line shows a non-thermal broadening and a blueshift in the early phase. It suggests that magnetic reconnection at that time has initiated; it not only heats the MFR and, at the same time, produces a non-thermal broadening of the Fe xxi line but also produces the poloidal flux, leading to the ascension of the MFRs.
International Nuclear Information System (INIS)
Reyes-Gasga, J.; Gomez-Rodriguez, A.; Gao Xiaoxia; Jose-Yacaman, M.
2008-01-01
In many cases nanostructures present forbidden spots in their electron diffraction patterns when they are observed by transmission electron microscopy (TEM). To interpretate their TEM and high resolution transmission electron microscopy (HRTEM) images properly, an understanding of the origin of these spots is necessary. In this work we comment on the origin of the forbidden spots observed in the [1 1 1] and [1 1 2] electron diffraction patterns of flat gold triangular nanoparticles. The forbidden spots were successfully indexed as corresponding to the first laue Zone (FOLZ) and the HRTEM images presented a contrast produced by the interference of the zero-order Laue zone (ZOLZ) and FOLZ spots. We discuss the use of the forbidden spots in the study of the structure of nanoparticles and show that they are related to the shape and incompleteness of layers in the very thin particles
Cheng, Zhongwei; Cheng, Kang'an; Deng, Hua; Chen, Taibo; Gao, Peng; Zhu, Kongbo; Fang, Quan
2013-09-30
To distinguish left ventricular outflow tract (LVOT) from right ventricular outflow tract (RVOT) origin in idiopathic premature ventricular contractions or ventricular tachycardia (PVCs/VT) patients with transitional lead at V3 is still a challenge. We sought to develop a new electrocardiography (ECG) algorithm for distinguishing LVOT from RVOT origin in patients with idiopathic outflow tract PVCs/VT with precordial transitional lead at V3. We analyzed the surface ECG characteristics in a retrospective cohort of idiopathic PVCs/VT patients with transitional lead at V3 who underwent successful radiofrequency catheter ablation and developed a new surface ECG algorithm, then validated it in a prospective cohort. A total of 82 consecutive patients (47 ± 17 years, 39% male) underwent radiofrequency catheter ablation of idiopathic outflow tract PVCs/VT between January 2006 and August 2010. Among them, 31 patients (38%) with transitional lead at V3 constituted the retrospective cohort. Based on the areas under the receiver operating characteristic curves, R-wave deflection interval in lead V3>80 ms and R-wave amplitude index in lead V1>0.30 were selected to develop the new surface ECG algorithm. It correctly identified the origin sites of eleven from 12 patients in the prospective cohort, yielding the accuracy of 91.7%. We presented a new simple surface ECG algorithm, R-wave deflection interval in lead V3>80 ms combining with R-wave amplitude index in lead V1>0.30 which can reliably distinguish LVOT from RVOT origin in idiopathic outflow tract PVCs/VT in patients with transitional lead at V3. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Unifying relations for scattering amplitudes
Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao
2018-02-01
We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.
Harper, Graham M.; Richter, Matthew; O'Gorman, Eamon; DeWitt, Curtis; Guinan, Edward F.; EXES Instrument Team
2016-01-01
Betelgeuse is a proving ground for theories of mass loss from cool massive stars: it has little circumstellar dust and low molecular abundances, but it is still able to drive a massive outflow just like its dusty cousins of later spectral-types. To constrain the physical processes causing mass loss we need to examine the conditions in the wind acceleration zone where most of the required energy is deposited. To study the dynamics and thermodynamics in this zone requires spectrally-resolved line profiles from diagnostics with different excitation energies.Forbidden mid-IR Fe II transitions from within the first three terms, with Texc=540 K, 3,400 K, and 11,700 K, provide just such diagnostics. NASA-DLR SOFIA with the Echelon-Cross-Echelle Spectrograph (EXES) provide the required low water vapor (42,000~ft) and spectral resolution (R=50,000) for two of the transitions, while the 17.94 μm line can be observed with TEXES on NASA's IRTF.We present key spectra from our Cycle 2 SOFIA program, which also enabled us to explore the mid-IR signature of the two cm-radio hot-spots that had recently been reported from eMERLIN interferometry. Our high S/N spectra place tight constraints on the amount of warm chromospheric plasma, and we have resolved the 25.99 μm ground-state line for the first time, showing blue-shifted emission from the outflow. Please note that the nature of the puzzling radio-hot spots are now understood.
Amplitude chimeras and chimera death in dynamical networks
International Nuclear Information System (INIS)
Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard
2016-01-01
We find chimera states with respect to amplitude dynamics in a network of Stuart- Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions. (paper)
Field theory amplitudes in a space with SU(2) fuzziness
Komaie-Moghaddam, H.; Fatollahi, A. H.; Khorrami, M.
2008-02-01
The structure of transition amplitudes in field theory in a three-dimensional space whose spatial coordinates are noncommutative and satisfy the SU(2) Lie algebra commutation relations is examined. In particular, the basic notions for constructing the observables of the theory as well as subtleties related to the proper treatment of δ distributions (corresponding to conservation laws) are introduced. Explicit examples are given for scalar field theory amplitudes in the lowest order of perturbation.
Spectroscopic Diagnostics of Solar Magnetic Flux Ropes Using Iron Forbidden Line
Cheng, X.; Ding, M. D.
2016-01-01
In this Letter, we present Interface Region Imaging Spectrograph Fe XXI 1354.08 A forbidden line emission of two magnetic flux ropes (MFRs) that caused two fast coronal mass ejections with velocities of $\\ge$1000 km s$^{-1}$ and strong flares (X1.6 and M6.5) on 2014 September 10 and 2015 June 22, respectively. The EUV images at the 131 A and 94 A passbands provided by the Atmospheric Imaging Assembly on board Solar Dynamics Observatory reveal that both MFRs initially appear as suspended hot c...
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Motivic amplitudes and cluster coordinates
International Nuclear Information System (INIS)
Golden, J.K.; Goncharov, A.B.; Spradlin, M.; Vergu, C.; Volovich, A.
2014-01-01
In this paper we study motivic amplitudes — objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf n (ℙ 3 ) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MHV motivic amplitude A 7,2 M and find that like the previously known six-particle amplitude, it depends only on certain preferred coordinates known in the mathematics literature as cluster X-coordinates on Conf n (ℙ 3 ). We also find intriguing relations between motivic amplitudes and the geometry of generalized associahedrons, to which cluster coordinates have a natural combinatoric connection. For example, the obstruction to A 7,2 M being expressible in terms of classical polylogarithms is most naturally represented by certain quadrilateral faces of the appropriate associahedron. We also find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster X-coordinates of a single algebra. In this respect it is similar to Abel’s 5-term dilogarithm identity
Age and violent-content labels make video games forbidden fruits for youth.
Bijvank, Marije Nije; Konijn, Elly A; Bushman, Brad J; Roelofsma, Peter H M P
2009-03-01
To protect minors from exposure to video games with objectionable content (eg, violence and sex), the Pan European Game Information developed a classification system for video games (eg, 18+). We tested the hypothesis that this classification system may actually increase the attractiveness of games for children younger than the age rating. Participants were 310 Dutch youth. The design was a 3 (age group: 7-8, 12-13, and 16-17 years) x 2 (participant gender) x 7 (label: 7+, 12+, 16+, 18+, violence, no violence, or no label control) x 2 (game description: violent or nonviolent) mixed factorial. The first 2 factors were between subjects, whereas the last 2 factors were within subjects. Three personality traits (ie, reactance, trait aggressiveness, and sensation seeking) were also included in the analyses. Participants read fictitious video game descriptions and rated how much they wanted to play each game. Results revealed that restrictive age labels and violent-content labels increased the attractiveness of video games for all of the age groups (even 7- to 8-year-olds and girls). Although the Pan European Game Information system was developed to protect youth from objectionable content, this system actually makes such games forbidden fruits. Pediatricians should be aware of this forbidden-fruit effect, because video games with objectionable content can have harmful effects on children and adolescents.
M1 and E2 transitions in the ground-state configuration of atomic ...
Indian Academy of Sciences (India)
state configuration are particularly useful because their relatively long wavelengths make them convenient for spectroscopic studies [1]. Although the atomic kinetics depend on, in particular, optical allowed transitions (E1), the weak forbidden transitions (in particular, magnetic dipole, M1 and electric quadrupole, E2) have ...
Strengths of gamma-ray transitions in A = 6–44 nuclei (III)
Endt, P.M.
The present tables list the strengths (in Weisskopf units) of over 2400 γ-ray transitions in A = 6–44 nuclei, classified according to character (electric or magnetic, multipolarity, isospin forbiddenness). Selected transitions from unbound states are included. The strengths for isovector E1 and M1
M1 and E2 transitions in the ground-state configuration of atomic ...
Indian Academy of Sciences (India)
forbidden. The lowest-order metastable levels which radiatively decay correspond to magnetic dipole (M1) and electric quadrupole (E2) transitions [16]. M1 and E2 transi- tion rates are several orders of magnitude smaller than those for electric dipole (E1) tran- sitions with a similar energy level separation. These transitions ...
Large amplitude oscillatory elongation flow
DEFF Research Database (Denmark)
Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia
2008-01-01
A filament stretching rheometer (FSR) was used for measuring the elongation flow with a large amplitude oscillative elongation imposed upon the flow. The large amplitude oscillation imposed upon the elongational flow as a function of the time t was defined as epsilon(t) =(epsilon) over dot(0)t...... with a molecular weight of 145 kg/ mol was subjected to the oscillative flow. The onset of the steady periodic regime is reached at the same Hencky strain as the onset of the steady elongational viscosity ( Lambda = 0). The integral molecular stress function formulation within the 'interchain pressure' concept...
Probing Betelgeuse's extended atmosphere with SOFIA-EXES; exploiting the forbidden Fe II ladder
Harper, Graham
2013-10-01
SOFIA-EXES provides a unique opportunity to probe the velocity fields and temperatures in the extended and expanding atmospheres of early-type M supergiants. These stars are important for unravelling the poorly understood mass loss process; they have little dust and low molecular abundances, but still drive high mass-loss rates like their dusty cousins of later spectral-types. SOFIA-EXES and IRTF-TEXES mid-IR R=50,000 emission line spectroscopy of forbidden line profiles from each of the first three terms of Fe II would permit us to measure the dynamics from the two hot chromospheric features recently discovered with eMERLIN. The three lines, from the dominant ionization species, sample the chromosphere, the wind acceleration region, and beyond to the circumstellar envelope in the ground term line. These spatial scales correspond to the mass loss during the last 100 years.
A search for rare and forbidden decays of η-meson with GAMS-4π
International Nuclear Information System (INIS)
Binon, F.; Blik, A.; Gorin, A.; Donskov, S.; Inaba, S.; Kolosov, V.; Ladygin, M.; Lednev, A.; Lishin, V.; Manuilov, I.; Mikhailov, Yu.; Pegneux, J.P.; Polyakov, V.; Samoylenko, V.; Sobol, A.; Stroot, J.P.; Sugonyaev, V.; Takamatsu, K.; Tsuru, T.; Khaustov, G.
2006-01-01
A search for the rare and forbidden neutral decays of η-meson with the GAMS-4π setup has been performed. The charge-exchange reaction at 32.5 GeV/c was used as a source of 3.7-bar 10 6 η-mesons. At the 90% confidence level the following upper limits were obtained: BR(η->3γ) -4 , BR(η->4γ) -4 , BR(η->π o π o ) -4 , BR(η->π o π o γ) -3 , BR(η->π o π o γγ) -3 , BR(η->3π o γ) -4 , BR(η->4π o ) -5
Searches for rare and forbidden kaon decays at the NA62 experiment at CERN
Lamanna, Gianluca
2014-01-01
The NA62 experiment at the CERN SPS aims at measuring the branching ratio (BR) of the rare K + ! p + n ̄ n decay, with a precision of 10%. This goal will be achieved after two years of data taking by collecting 10 13 K + decays in the fiducial volume. The K + ! p + n ̄ n is a “golden mode” in flavor physics because of the precise theoretical prediction. Thanks to the unprecedent kaon flux, it will also be possible to search for many other forbidden processes, including leptor flavor violation modes, sterile neutrinos, supersymmetric particles. The expected NA62 performances will wallow the exclusion limits for several decay modes to be improved. The experiment will start collecting data in late 2014
Spectral shapes of forbidden argon β decays as background component for rare-event searches
Kostensalo, J.; Suhonen, J.; Zuber, K.
2018-02-01
The spectral shape of the electrons from the two first-forbidden unique {β }- decays of 39Ar and 42Ar were calculated for the first time to the next-to-leading order. Especially the spectral shape of the 39Ar decay can be used to characterize this background component for dark matter searches based on argon. Alternatively, due to the low thresholds of these experiments, the spectral shape can be investigated over a wide energy range with high statistics and thus allow a sensitive comparison with the theoretical predictions, in particular at low electron energies where the shape of the computed β spectrum has a slight dependence on the value of the weak axial-vector coupling constant.
Sazatornil, Federico D; Moré, Marcela; Benitez-Vieyra, Santiago; Cocucci, Andrea A; Kitching, Ian J; Schlumpberger, Boris O; Oliveira, Paulo E; Sazima, Marlies; Amorim, Felipe W
2016-11-01
A major challenge in evolutionary ecology is to understand how co-evolutionary processes shape patterns of interactions between species at community level. Pollination of flowers with long corolla tubes by long-tongued hawkmoths has been invoked as a showcase model of co-evolution. Recently, optimal foraging models have predicted that there might be a close association between mouthparts' length and the corolla depth of the visited flowers, thus favouring trait convergence and specialization at community level. Here, we assessed whether hawkmoths more frequently pollinate plants with floral tube lengths similar to their proboscis lengths (morphological match hypothesis) against abundance-based processes (neutral hypothesis) and ecological trait mismatches constraints (forbidden links hypothesis), and how these processes structure hawkmoth-plant mutualistic networks from five communities in four biogeographical regions of South America. We found convergence in morphological traits across the five communities and that the distribution of morphological differences between hawkmoths and plants is consistent with expectations under the morphological match hypothesis in three of the five communities. In the two remaining communities, which are ecotones between two distinct biogeographical areas, interactions are better predicted by the neutral hypothesis. Our findings are consistent with the idea that diffuse co-evolution drives the evolution of extremely long proboscises and flower tubes, and highlight the importance of morphological traits, beyond the forbidden links hypothesis, in structuring interactions between mutualistic partners, revealing that the role of niche-based processes can be much more complex than previously known. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Scattering Amplitudes from Intersection Theory.
Mizera, Sebastian
2018-04-06
We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.
Employing Helicity Amplitudes for Resummation
Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.
2015-01-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are
Employing helicity amplitudes for resummation
International Nuclear Information System (INIS)
Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.
2015-08-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.
Scattering amplitudes in gauge theories
International Nuclear Information System (INIS)
Henn, Johannes M.; Plefka, Jan C.
2014-01-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Positivity of spin foam amplitudes
International Nuclear Information System (INIS)
Baez, John C; Christensen, J Daniel
2002-01-01
The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e iS ) rather than imaginary-time e -S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model
Discontinuity formulas for multiparticle amplitudes
International Nuclear Information System (INIS)
Stapp, H.P.
1976-03-01
It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations
Ethnic differences in electrocardiographic amplitude measurements
International Nuclear Information System (INIS)
Mansi, Ishak A.; Nash, Ira S.
2004-01-01
There is a controversy regarding ethnic differences in electrocardiographic (ECG) patterns because of the potentially confounding socioeconomic, nutritional, environmental and occupational factors. We reviewed the first 1000 medical files of a multiethnic community, where all individuals shared similar living conditions. Only healthy adults age 15 to 60 years were included. Wave amplitudes were measured manually from the standard 12lead ECG. Minnesota coding was used. ECG from 597 subjects were included in the study: 350 Saudi Arabians, 95 Indians, 17 Sri-Lankans, 39 Filipinos, and 57 Caucasians; 349 were men. the mean +-SD of Sokolow-Lyon voltage (SLV) in men was signifcantly different among ethnic groups (2.9+-0.86, 2.64+-0.79, 2.73+-0.72, 3.23+-0.61, 2.94+-0.6, 2.58+-0.79 mV, P=0.0006, for Saudi's, Indians, Jordanians, Filipinos, Sri-Lankans, and Caucasians, respectively). SLV was similar among ethnic groups in women. The prevalence of early transition pattern was also different among ethnic groups in men but not women (15.8%, 34.6%, 17.9%, 21.7%, 35.3%, 26.8% in Suadi, Indian, Jordanian, Filipino, Sri-Lankan, and Caucasian, respectively, P=0.037). T wave amplitude was significantly different among ethnic groups in selected lead. ECG wave amplitude differs with ethnic region even when other factors are similar. Using SLV of 3.5 mV as a criterion may overestimate the incidence of left ventricular hypertrophy in some ethnic groups. The pattern of high R wave in lead V1is common in healthy adults in certain ethnic groups. T wave height differs with ethnic origin and sex. (author)
International Nuclear Information System (INIS)
Mandal, Subhasish; Dixit, Gopal; Majumder, Sonjoy; Sahoo, B K; Chaudhuri, R K
2008-01-01
The astrophysically important electric quadrupole (E2) and magnetic dipole (M1) transitions for the low-lying states of triply ionized titanium (Ti IV) are calculated very accurately using a state-of-the-art all-order many-body theory called coupled cluster (CC) method in the relativistic framework. Different many-body correlations of the CC theory has been estimated by studying the core and valence electron excitations to the unoccupied states. The calculated excitation energies of different states are in excellent agreement with the measurements. Also, we compare our calculated electric dipole (E1) amplitudes of few transitions with recent many-body calculations by others. The lifetimes of the low-lying states of Ti IV have been estimated and long lifetime is found for the first excited 3d 2 D 5/2 state, which suggested that Ti IV may be one of the useful candidates for many fundamental studies of physics. Most of the forbidden transition results reported here are not available in the literature, to the best of our knowledge
Seismic amplitude processing and inversion
Dev, Ashwani
2008-10-01
Hydrocarbon exploration requires reliable seismic amplitudes to identify oil and gas reservoirs. Erroneous seismic amplitude processing can potentially generate large economic losses. Correct seismic amplitude processing is pre-requisite for any amplitude dependent analysis. The accuracy of the subsurface image and estimation of the elastic properties of subsurface sediments depends upon the reliability of the amplitudes. Geophone groups are wavenumber filters that change the seismic amplitudes because of a wavenumber dependent information loss. Numerically defined filters deconvolve the recording group response from horizontal and the vertical component seismic data recorded with groups of uniform and non-uniform geophone sensitivity, different group lengths and spacing, and noise. The filtering effect of an array increases as the group length increases, and only the wavenumber range defined by the group interval can be correctly compensated for the group effect. A rigorous, explicit spatial antialias filter is designed and applied by removing the energy above the first Nyquist wavenumber in the horizontal slowness-frequency domain. The filter removes the spatially aliased frequencies selectively at each slowness. The aliased energy is dispersive and present at both small and large horizontal slownesses. The filter can be explicitly applied to regularly spaced or irregularly spaced traces and is independent of any event linearity assumption. An integrative interpretation approach defines the effect of the structural setting on gas hydrate and free-gas accumulation at a site at the East Casey fault zone in the Gulf of Mexico. At a well location, hydrates are interpreted as fracture fillings with maximum saturation ˜30% of the available pore space. Two low acoustic impedance (Ip) free-gas features terminating at the bottom simulating reflector (BSR) are interpreted from the 3D seismic data and the derived Ip volumes. The 2D Ip profile shows a contrast in BSR
Forward amplitude in pion deuteron
International Nuclear Information System (INIS)
Ferreira, E.M.; Munguia, G.A.P.; Rosa, L.P.; Thome, Z.D.
1979-06-01
The data on total cross section for πd scattering is analysed in terms of a single scattering calculation with Fermi motion dependence, in order to obtain a criterion to fix the value of the energy entering the two body meson nucleon amplitude. It is found that the prescription derived from the non-relativistic three body kinematics gives reasonable results. The introduction of a shift in the energy value, possibly representing nuclear binding effects, leads to a very good fitting of the data. The results are compared with those obtained in direct calculations of Faddeev equations and with the Brueckner model of fixed scatterers. (Author) [pt
Superstring amplitudes and contact interactions
International Nuclear Information System (INIS)
Greensite, J.
1987-08-01
We show that scattering amplitudes computed from light-cone superstring field theory are divergent at tree level. The divergences can be eliminated, and supersymmetry restored, by the addition of certain counter terms to the light-cone Hamiltonian. These counter terms have the form of local contact interactions, whose existence we had previously deduced on grounds of vacuum stability, and closure of the super-Poincare algebra. The quartic contact interactions required in Type I and Type IIB superstring theories are constructed in detail. (orig.)
Amplitude modulation reflectometer for FTU
International Nuclear Information System (INIS)
Zerbini, M.; Buratti, P.; Centioli, C.; Amadeo, P.
1995-06-01
Amplitude modulation (AM) reflectometry is a modification of the classical frequency sweep technique which allows to perform unambiguous phase delay measurements. An eight-channel AM reflectometer has been realized for the measurement of density profiles on the FTU tokamak in the range. The characteristics of the instrument have been determined in extensive laboratory tests; particular attention has been devoted to the effect of interference with parasitic reflections. The reflectometer is now operating on FTU. Some examples of the first experimental data are discussed
Control of amplitude chimeras by time delay in oscillator networks
Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna
2017-04-01
We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.
3D Modeling of Forbidden Line Emission in the Binary Wind Interaction Region of Eta Carinae
Madura, Thomas; Gull, T. R.; Owocki, S.; Okazaki, A. T.; Russell, C. M. P.
2010-01-01
We present recent work using three-dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations to model the high ([Fe III], [Ar III], [Ne III] and [S III]) and low ([Fe II], [Ni II]) ionization forbidden emission lines observed in Eta Carinae using the HST/STIS. These structures are interpreted as the time-averaged, outer extensions of the primary wind and the wind-wind interaction region directly excited by the FUV of the hot companion star of this massive binary system. We discuss how analyzing the results of the 3D SPH simulations and synthetic slit spectra and comparing them to the spectra obtained with the HST/STIS helps us determine the absolute orientation of the binary orbit and helps remove the degeneracy inherent to models based solely on the observed RXTE X-ray light curve. A key point of this work is that spatially resolved observations like those with HST/STIS and comparison to 3D models are necessary to determine the alignment or misalignment of the orbital angular momentum axis with the Homunculus, or correspondingly, the alignment of the orbital plane with the Homunculus skirt.
Directory of Open Access Journals (Sweden)
Magali Gouveia Engel
2008-01-01
Full Text Available O artigo identifica e estuda as sexualidades e afetividades masculinas interditadas e aprisionadas nos hospícios brasileiros, durante as primeiras décadas republicanas. Busca-se problematizar a idéia de que os comportamentos sexuais e afetivos não teriam grande relevância na construção de perfis masculinos considerados 'desviantes' e/ou 'patológicos', por meio da análise de registros psiquiátricos da época. Trata-se, pois, de propor uma reflexão que desloque o eixo da análise para as especificidades de gênero que determinam as diferentes feições assumidas pelos 'distúrbios mentais' atribuídos a certos comportamentos sexuais e afetivos.The article identifies and studies male sexuality and affectivity as forbidden and imprisoned in Brazilian asylums in the first decades of the Republic. By analyzing psychiatric records from that era, it explores the notion that sexual and affective behavior had little to do with the construction of male profiles deemed 'deviant' and/or 'pathological'. This reflection shifts the focus of analysis to the gender specificities that determine the various traits displayed in 'mental disturbances' attributed to certain sexual and affective behavior.
Asymptotic Structure in the Classically Forbidden Region of the Hooke's Atoms
International Nuclear Information System (INIS)
Wang Xuemei
2013-01-01
The two-electron Hooke's atom — a quantum mechanical system with two electrons bound in a harmonic potential — is well known for its exact analytical properties at certain oscillator strengths. The Hooke's atoms with more than two electrons offer more scope for valuable practical applications. In this work, we study the asymptotic structure of these Hooke's atoms in the classically forbidden region. The leading-order term of the long-range expression for the KS exchange-correlation potential v xc (r) is shown to be −1/r. The second and third higher order terms are also exactly obtained. Various components of v xc (r) are also studied. It is shown that the leading term of O(1/r) in v xc (r) is due to the pure Pauli correlation, while the leading contribution of the Coulomb correlation is of O(1/r 3 ). Neither of them makes contribution to the term of O(1/r 2 ), which is shown to be solely due to the kinetic correlation effect. Results for the two-electron Hooke's atom were obtained before in the literature. Our results reduce to those of the two-electron Hooke's atom as a special case. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Numerical simulation of the forbidden Bragg reflection spectra observed in ZnO
Ovchinnikova, E. N.; Dmitrienko, V. E.; Oreshko, A. P.; Beutier, G.; Collins, S. P.
2010-09-01
Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy spectrum of the 115 'forbidden' Bragg reflection in ZnO. Our previous experimental studies showed that the intensity growth of such reflections over a wide range of temperatures is accompanied by a dramatic change in the resonant spectral lineshape. This is the result of the interplay between the temperature-independent (TI) and temperature-dependent TMI contributions. Here, we confirm that the TI part of the resonant structure factor can be associated with the dipole-quadrupole contribution to the structure factor and show that the temperature-dependent part arises from the zinc and oxygen vibrations, which provide additional temperature-dependent dipole-dipole tensor components to the structure factor. By fitting the experimental data at various temperatures we have determined the temperature dependences of autocorrelation langux2(Zn)rang and correlation langux(O)ux(Zn)rang functions.
Beta spectrum of unique first-forbidden decays as a novel test for fundamental symmetries
Directory of Open Access Journals (Sweden)
Ayala Glick-Magid
2017-04-01
Full Text Available Within the Standard Model, the weak interaction of quarks and leptons is characterized by certain symmetry properties, such as maximal breaking of parity and favored helicity. These are related to the V−A structure of the weak interaction. These characteristics were discovered by studying correlations in the directions of the outgoing leptons in nuclear beta decays. Presently, correlation measurements in nuclear beta decays are intensively studied to probe for signatures for deviations from these couplings, which are an indication of Beyond Standard Model physics. We show that the structure of the energy spectrum of emitted electrons in unique first-forbidden β-decays is sensitive to the symmetries of the weak interaction, and thus can be used as a novel probe of physics beyond the standard model. Furthermore, the energy spectrum gives constraints both in the case of right and left couplings of the new beyond standard model currents. We show that a measurement with modest energy resolution of ≈20 keV is expected to lead to new constraints on beyond the standard model interactions with tensor couplings.
Mapping the "forbidden" transverse-optical phonon in single strained silicon (100) nanowire.
Tarun, Alvarado; Hayazawa, Norihiko; Ishitobi, Hidekazu; Kawata, Satoshi; Reiche, Manfred; Moutanabbir, Oussama
2011-11-09
The accurate manipulation of strain in silicon nanowires can unveil new fundamental properties and enable novel or enhanced functionalities. To exploit these potentialities, it is essential to overcome major challenges at the fabrication and characterization levels. With this perspective, we have investigated the strain behavior in nanowires fabricated by patterning and etching of 15 nm thick tensile strained silicon (100) membranes. To this end, we have developed a method to excite the "forbidden" transverse-optical (TO) phonons in single tensile strained silicon nanowires using high-resolution polarized Raman spectroscopy. Detecting this phonon is critical for precise analysis of strain in nanoscale systems. The intensity of the measured Raman spectra is analyzed based on three-dimensional field distribution of radial, azimuthal, and linear polarizations focused by a high numerical aperture lens. The effects of sample geometry on the sensitivity of TO measurement are addressed. A significantly higher sensitivity is demonstrated for nanowires as compared to thin layers. In-plane and out-of-plane strain profiles in single nanowires are obtained through the simultaneous probe of local TO and longitudinal-optical (LO) phonons. New insights into strained nanowires mechanical properties are inferred from the measured strain profiles.
Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies
2014-04-07
Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.
Wood, RT; Walker, PM; Lane, G J; Carroll, R. J.; Cullen, David; Dracoulis, G D; Hota, S. S.; Kibédi, T.; Palalani, N; Podolyak, Zs.; Reed, MW; Schiffl, K; Wright, A.M
2017-01-01
Using the 168Er(10B,5n) reaction at a beam energy of 68 MeV, new data have been obtained for the population and decay of a T1/2=148ns, Kπ=21/2− three-quasiparticle isomer at 1717 keV in 173Ta. Revised decay energies and intensities have been determined, together with newly observed members of a rotational band associated with the isomer. By comparison with other isomers in the A≈180 deformed region, the 173Ta isomer properties help to specify the key degrees of freedom that determine K-forbid...
Calculation of transition probabilities using the multiconfiguration Dirac-Fock method
International Nuclear Information System (INIS)
Kim, Yong Ki; Desclaux, Jean Paul; Indelicato, Paul
1998-01-01
The performance of the multiconfiguration Dirac-Fock (MCDF) method in calculating transition probabilities of atoms is reviewed. In general, the MCDF wave functions will lead to transition probabilities accurate to ∼ 10% or better for strong, electric-dipole allowed transitions for small atoms. However, it is more difficult to get reliable transition probabilities for weak transitions. Also, some MCDF wave functions for a specific J quantum number may not reduce to the appropriate L and S quantum numbers in the nonrelativistic limit. Transition probabilities calculated from such MCDF wave functions for nonrelativistically forbidden transitions are unreliable. Remedies for such cases are discussed
Atomic Transition Probabilities Scandium through Manganese
International Nuclear Information System (INIS)
Martin, G.A.; Fuhr, J.R.; Wiese, W.L.
1988-01-01
Atomic transition probabilities for about 8,800 spectral lines of five iron-group elements, Sc(Z = 21) to Mn(Z = 25), are critically compiled, based on all available literature sources. The data are presented in separate tables for each element and stage of ionization and are further subdivided into allowed (i.e., electric dipole-E1) and forbidden (magnetic dipole-M1, electric quadrupole-E2, and magnetic quadrupole-M2) transitions. Within each data table the spectral lines are grouped into multiplets, which are in turn arranged according to parent configurations, transition arrays, and ascending quantum numbers. For each line the transition probability for spontaneous emission and the line strength are given, along with the spectroscopic designation, the wavelength, the statistical weights, and the energy levels of the upper and lower states. For allowed lines the absorption oscillator strength is listed, while for forbidden transitions the type of transition is identified (M1, E2, etc.). In addition, the estimated accuracy and the source are indicated. In short introductions, which precede the tables for each ion, the main justifications for the choice of the adopted data and for the accuracy rating are discussed. A general introduction contains a discussion of our method of evaluation and the principal criteria for our judgements
Expansion of Einstein-Yang-Mills amplitude
Fu, Chih-Hao; Du, Yi-Jian; Huang, Rijun; Feng, Bo
2017-09-01
In this paper, we study from various perspectives the expansion of tree level single trace Einstein-Yang-Mills amplitudes into linear combination of color-ordered Yang-Mills amplitudes. By applying the gauge invariance principle, a programable recursive construction is devised to expand EYM amplitude with arbitrary number of gravitons into EYM amplitudes with fewer gravitons. Based on this recursive technique we write down the complete expansion of any single trace EYM amplitude in the basis of color-order Yang-Mills amplitude. As a byproduct, an algorithm for constructing a polynomial form of the BCJ numerator for Yang-Mills amplitudes is also outlined in this paper. In addition, by applying BCFW recursion relation we show how to arrive at the same EYM amplitude expansion from the on-shell perspective. And we examine the EYM expansion using KLT relations and show how to evaluate the expansion coefficients efficiently.
Constructing Amplitudes from Their Soft Limits
Energy Technology Data Exchange (ETDEWEB)
Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC
2011-12-09
The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Electroweak amplitudes in chiral quark models
International Nuclear Information System (INIS)
Fiolhais, Manuel
2004-01-01
After referring to some basic features of chiral models for baryons, with quarks and mesons, we describe how to construct model states representing physical baryons. We consider soliton models such as the Linear Sigma Model or the Chromodielectric Model, and bag models such as the Cloudy Bag Model. These models are solved approximately using variational approaches whose starting point is a mean-field description. We go beyond the mean-field description by introducing quantum fluctuations in the mesonic degrees of freedom. This is achieved, in a first step, by using a quantum state to represent meson clouds and, secondly, by performing an angular momentum and isospin projection from the mean-field state (actually a coherent state). Model states for baryons (nucleon, Delta, Roper) constructed in this way are used to determine several physical properties. I this seminar we paid a particular attention to the nucleon-delta electromagnetic and weak transition, presenting the model predictions for the electromagnetic and axial amplitudes
Hanle-Zeeman Scattering Matrix for Magnetic Dipole Transitions
Energy Technology Data Exchange (ETDEWEB)
Megha, A.; Sampoorna, M.; Nagendra, K. N.; Sankarasubramanian, K., E-mail: megha@iiap.res.in, E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: sankar@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India)
2017-06-01
The polarization of the light that is scattered by the coronal ions is influenced by the anisotropic illumination from the photosphere and the magnetic field structuring in the solar corona. The properties of the coronal magnetic fields can be well studied by understanding the polarization properties of coronal forbidden emission lines that arise from magnetic dipole ( M 1) transitions in the highly ionized atoms that are present in the corona. We present the classical scattering theory of the forbidden lines for a more general case of arbitrary-strength magnetic fields. We derive the scattering matrix for M 1 transitions using the classical magnetic dipole model of Casini and Lin and applying the scattering matrix approach of Stenflo. We consider a two-level atom model and neglect collisional effects. The scattering matrix so derived is used to study the Stokes profiles formed in coronal conditions in those regions where the radiative excitations dominate collisional excitations. To this end, we take into account the integration over a cone of an unpolarized radiation from the solar disk incident on the scattering atoms. Furthermore, we also integrate along the line of sight to calculate the emerging polarized line profiles. We consider radial and dipole magnetic field configurations and spherically symmetric density distributions. For our studies we adopt the atomic parameters corresponding to the [Fe xiii] 10747 Å coronal forbidden line. We also discuss the nature of the scattering matrix for M 1 transitions and compare it with that for the electric dipole ( E 1) transitions.
Forbidden energy band gap in diluted a-Ge1−xSix:N films
International Nuclear Information System (INIS)
Guarneros, C.; Rebollo-Plata, B.; Lozada-Morales, R.; Espinosa-Rosales, J.E.; Portillo-Moreno, J.; Zelaya-Angel, O.
2012-01-01
By means of electron gun evaporation Ge 1−x Si x :N thin films, in the entire range 0 ≤ x ≤ 1, were prepared on Si (100) and glass substrates. The initial vacuum reached was 6.6 × 10 −4 Pa, then a pressure of 2.7 × 10 −2 Pa of high purity N 2 was introduced into the chamber. The deposition time was 4 min. Crucible-substrate distance was 18 cm. X-ray diffraction patterns indicate that all the films were amorphous (a-Ge 1−x Si x :N). The nitrogen concentration was of the order of 1 at% for all the films. From optical absorption spectra data and by using the Tauc method the energy band gap (E g ) was calculated. The Raman spectra only reveal the presence of Si-Si, Ge-Ge, and Si-Ge bonds. Nevertheless, infrared spectra demonstrate the existence of Si-N and Ge-N bonds. The forbidden energy band gap (E g ) as a function of x in the entire range 0 ≤ x ≤ 1 shows two well defined regions: 0 ≤ x ≤ 0.67 and 0.67 ≤ x ≤ 1, due to two different behaviors of the band gap, where for x > 0.67 exists an abruptly change of E g (x). In this case E g (x) versus x is different to the variation of E g in a-Ge 1−x Si x and a-Ge 1−x Si x :H. This fact can be related to the formation of Ge 3 N 4 and GeSi 2 N 4 when x ≤ 0.67, and to the formation of Si 3 N 4 and GeSi 2 N 4 for 0.67 ≤ x. - Highlights: ► Nitrogen doped amorphous Ge 1-x Si x thin films are grown by electron gun technique. ► Nitrogen atoms on E g of the a-Ge 1-x Si x films in the 0 £ x £ 1 range are analyzed. ► Variation in 0 £ x £ 1 range shows a warped change of E g in 1.0 – 3.6 eV range. ► The change in E g (x) behavior when x ∼ 0.67 was associated with Ge 2 SiN 4 presence.
RECOLA2: REcursive Computation of One-Loop Amplitudes 2
Denner, Ansgar; Lang, Jean-Nicolas; Uccirati, Sandro
2018-03-01
We present the Fortran95 program RECOLA2 for the perturbative computation of next-to-leading-order transition amplitudes in the Standard Model of particle physics and extended Higgs sectors. New theories are implemented via model files in the 't Hooft-Feynman gauge in the conventional formulation of quantum field theory and in the Background-Field method. The present version includes model files for Two-Higgs-Doublet Model and the Higgs-Singlet Extension of the Standard Model. We support standard renormalization schemes for the Standard Model as well as many commonly used renormalization schemes in extended Higgs sectors. Within these models the computation of next-to-leading-order polarized amplitudes and squared amplitudes, optionally summed over spin and colour, is fully automated for any process. RECOLA2 allows the computation of colour- and spin-correlated leading-order squared amplitudes that are needed in the dipole subtraction formalism. RECOLA2 is publicly available for download at http://recola.hepforge.org.
The Dynamics of Large-Amplitude Motion in Energized Molecules
Energy Technology Data Exchange (ETDEWEB)
Perry, David S. [Univ. of Akron, OH (United States). Dept. of Chemistry
2016-05-27
Chemical reactions involve large-amplitude nuclear motion along the reaction coordinate that serves to distinguish reactants from products. Some reactions, such as roaming reactions and reactions proceeding through a loose transition state, involve more than one large-amplitude degree of freedom. Because of the limitation of exact quantum nuclear dynamics to small systems, one must, in general, define the active degrees of freedom and separate them in some way from the other degrees of freedom. In this project, we use large-amplitude motion in bound model systems to investigate the coupling of large-amplitude degrees of freedom to other nuclear degrees of freedom. This approach allows us to use the precision and power of high-resolution molecular spectroscopy to probe the specific coupling mechanisms involved, and to apply the associated theoretical tools. In addition to slit-jet spectra at the University of Akron, the current project period has involved collaboration with Michel Herman and Nathalie Vaeck of the Université Libre de Bruxelles, and with Brant Billinghurst at the Canadian Light Source (CLS).
Composite superstring model for hadron amplitudes
Energy Technology Data Exchange (ETDEWEB)
Kudryavtsev, V.A. [Petersburg Nuclear Physics Institute, P.O. Box 188300, Gatchina (Russian Federation)
2010-01-15
Hadron dynamics is formulated in terms of interacting composite strings. These composite string amplitudes give other possible solution of duality equations for crossing channels in addition to classical string amplitudes. The composite strings carry quark flavour and spin degrees of freedom on edging two-dimensional surfaces. Consistent composite string models with extended N=3 Virasoro superconformal symmetry are found. Simple amplitudes for interaction of pi and K-mesons in this model are represented.
New relations for graviton-matter amplitudes
CERN. Geneva
2018-01-01
I report on recent progress in finding compact expressions for scattering amplitudes involving gravitons and gluons as well as massive scalar and fermionic matter particles. At tree level the single graviton emission amplitudes may be expressed as linear combination of purely non-gravitational ones. At the one-loop level recent results on all four point Einstein-Yang-Mills amplitudes with at most one opposite helicity state using unitarity methods are reported.
On the singularities of massive superstring amplitudes
International Nuclear Information System (INIS)
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)
On the singularities of massive superstring amplitudes
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1987-06-04
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.
DVCS amplitude with kinematical twist-3 terms
International Nuclear Information System (INIS)
Radyushkin, A.V.; Weiss, C.
2000-01-01
The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term
Studies of charmed states in amplitude analyses at LHCb
Naik, P
2014-01-01
Amplitude analysis is a powerful tool to study the properties of intermediate resonances produced in the decays of $B$ mesons. At LHCb we have studied $B^+ \\to X(3872) K^+$, where $X(3872) \\to J/\\psi \\pi^+ \\pi^-$, to determine the quantum numbers of the $X(3872)$, and $B^+ \\to p \\overline{p} K^+$ to learn more about ($c \\overline{c}$) to $ p \\overline{p}$ transitions. We also exploit the spin of the $J/\\psi$ to perform amplitude analyses of the decays $B^0_s \\to J/\\psi \\pi^+ \\pi^-$, $B^0_s \\to J/\\psi K^+ K^-$, $B^0 \\to J/\\psi \\pi^+ \\pi^-$, and $B^0 \\to J/\\psi K^+ K^-$. Our results use 1.0 $\\rm{fb}^{-1}$ of data taken in 2011 from 7 TeV proton-proton collisions, provided by the LHC.
Amplitude and phase control of trichromatic electromagnetically induced transparency
International Nuclear Information System (INIS)
Hu Xiangming; Zou Jinhua; Li Xing; Du Dan; Cheng Guangling
2005-01-01
We study the dependence of absorption and dispersion spectra on amplitudes and phases of the driving fields in multiple electromagnetically induced transparency. For this purpose we consider trichromatic excitation in a three-level Λ atomic system, in which a trichromatic control laser and a monochromatic probe laser are applied to two different transitions, respectively. We numerically calculate the absorption and dispersion spectra. Two characteristic features are found. Firstly, the central transparency can be made to appear or to disappear by utilizing the amplitudes and phases of the driving components. Secondly, so long as we fix the sum of two relative phases of two sideband excitation components to the central component, the absorption and dispersion spectra keep their own lineshapes unchanged no matter how we vary the respective relative phases
[Medicine and Judaism--a patient is forbidden to endanger his life in order to fast on Yom Kippur].
Gesundheit, Benjamin
2009-09-01
Dr. Israel Katz and his colleagues discuss the theoretical possibility of allowing type-1 diabetes patients to fast on Yom Kippur despite the danger that fasting might lead to a life-threatening state of hypoglycemia. For those diabetics who insist on fasting, the authors recommend more frequent monitoring of their glucose levels, changing their medications and arranging that expert medical advice and treatment be available to them over the course of the fast. In this editorial, the authors argue that most Halakhic authorities (experts in Jewish law) absolutely forbid a type-1 diabetes patient to fast on Yom Kippur, because he is defined as "a patient whose life may be in danger," and is therefore forbidden to fast. This is true even if fasting will only aggravate his medical situation, and even if the patient wishes to fast! While Lantus insulin may be an effective solution for those who have already stabilized their sugar Levels without complications with that drug, a patient who is not already on the drug is forbidden to change his medications, just for Yom Kippur, in order to fast. The authors conclude with a brief survey of the cLassical Halakhic sources regarding the prohibition of endangering one's life in general and the prohibition of endangering one's life by fasting on Yom Kippur in particular. Close collaboration between physicians and rabbis in this and many other issues might contribute substantially to improve patients' care including psychological and ethical aspects of medical practice.
Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S
2015-06-23
We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.
Robust seismic images amplitude recovery using curvelets
Moghaddam, Peyman P.; Herrmann, Felix J.; Stolk, C.C.
2007-01-01
In this paper, we recover the amplitude of a seismic image by approximating the normal (demigration-migration) operator. In this approximation, we make use of the property that curvelets remain invariant under the action of the normal operator. We propose a seismic amplitude recovery method that
Correlation of amplitude modulation to inflow characteristics
DEFF Research Database (Denmark)
Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas
2014-01-01
Amplitude modulation (AM) of noise from wind turbines and its more extreme version named “other amplitude modulation” OAM have been investigated intensively during the last few years due to the additional annoyance impact this type of noise has compared to broad band noise. In a recent published...
On the singularities of massive superstring amplitudes
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are
Scalar-field amplitudes in black-hole evaporation
International Nuclear Information System (INIS)
Farley, A.N.St.J.; D'Eath, P.D.
2004-01-01
We consider the quantum-mechanical decay of a Schwarzschild-like black hole into almost-flat space and weak radiation at a very late time. That is, we are concerned with evaluating quantum amplitudes (not just probabilities) for transitions from initial to final states. In this quantum description, no information is lost because of the black hole. The Lagrangian is taken, in the first instance, to consist of the simplest locally supersymmetric generalization of Einstein gravity and a massless scalar field. The quantum amplitude to go from given initial to final bosonic data in a slightly complexified time-interval T=τexp(-iθ) at infinity may be approximated by the form constxexp(-I), where I is the (complex) Euclidean action of the classical solution filling in between the boundary data. Additionally, in a pure supergravity theory, the amplitude constxexp(-I) is exact. Suppose that Dirichlet boundary data for gravity and the scalar field are posed on an initial spacelike hypersurface extending to spatial infinity, just prior to collapse, and on a corresponding final spacelike surface, sufficiently far to the future of the initial surface to catch all the Hawking radiation. Only in an averaged sense will this radiation have an approximately spherically-symmetric distribution. If the time-interval T had been taken to be exactly real, then the resulting 'hyperbolic Dirichlet boundary-value problem' would, as is well known, not be well posed. Provided instead ('Euclidean strategy') that one takes T complex, as above (0<θ=<π/2), one expects that the field equations become strongly elliptic, and that there exists a unique solution to the classical boundary-value problem. Within this context, by expanding the bosonic part of the action to quadratic order in perturbations about the classical solution, one obtains the quantum amplitude for weak-field final configurations, up to normalization. Such amplitudes are here calculated for weak final scalar fields
Amplitude image processing by diffractive optics.
Cagigal, Manuel P; Valle, Pedro J; Canales, V F
2016-02-22
In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.
Temporal Control of Metabolic Amplitude by Nocturnin
Directory of Open Access Journals (Sweden)
Jeremy J. Stubblefield
2018-01-01
Full Text Available The timing of food intake and nutrient utilization is critical to health and regulated partly by the circadian clock. Increased amplitude of circadian oscillations and metabolic output has been found to improve health in diabetic and obesity mouse models. Here, we report a function for the circadian deadenylase Nocturnin as a regulator of metabolic amplitude across the day/night cycle and in response to nutrient challenge. We show that mice lacking Nocturnin (Noct−/− display significantly increased amplitudes of mRNA expression of hepatic genes encoding key metabolic enzymes regulating lipid and cholesterol synthesis, both over the daily circadian cycle and in response to fasting and refeeding. Noct−/− mice have increased plasma triglyceride throughout the night and increased amplitude of hepatic cholesterol levels. Therefore, posttranscriptional control by Nocturnin regulates the amplitude of these critical metabolic pathways, and loss of this activity results in increased metabolic flux and reduced obesity.
The nature of the emission transition of the octahedral uranate group, ch. 5
International Nuclear Information System (INIS)
Hair, J.Th.W. de
1976-01-01
Decay times of the green luminescence of U 6+ in oxides with perovskite structure are reported. The influence of the site symmetry is found to be considerable. The temperature dependence of the decay time gives evidence for a coupling of the electronic transition with a phonon of about 200 cm -1 in the excited state. The results show the emission to originate from a parity forbidden transition, vibronically allowed by coupling with vibrations of ungerade symmetry. (Auth.)
Interband transitions in 106Pd, 152Sm, 152Gd and 182W
International Nuclear Information System (INIS)
Kartashov, V.M.; Oborovskij, A.I.; Troitskaya, A.G.
1990-01-01
Internal transitions in 106 Pd, 152 Sm, 152 Gd, 182 W nuclei, observed during decay of 152,152m Eu, 182,183 Ta, 106m Ag, are studied. The experimental characteristics of E0-transitions and E0-components of E0+M1+E2 type transitions in the studied nuclei, relative intensities of internal conversion electron lines during 182 Ta decay, multipolar composition and forbidden factor for 182 W and 183 W low-energy transitions, characteristics of transitions are presented
Telemetry Standards, RCC Standard 106-17, Annex A.1, Pulse Amplitude Modulation Standards
2017-07-01
Standard 106-17 Annex A.1, July 2017 A.1-iii Acronyms dB decibel FM frequency modulation IF intermediate frequency PAM pulse amplitude...standard defines the recommended pulse train structure and design characteristics for the implementation of pulse amplitude modulation (PAM) telemetry...between transitions in the PAM pulse train shall be limited by whichever is the narrower of the following: a. One-half of the 3-dB frequency of the
Renormalization and applications of baryon distribution amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Rohrwild, Juergen Holger
2009-07-17
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)
Renormalization and applications of baryon distribution amplitudes QCD
Energy Technology Data Exchange (ETDEWEB)
Rohrwild, Juergen Holger
2009-07-17
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N{sup *}(1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N{sup *} distribution amplitudes. (orig.)
Renormalization and applications of baryon distribution amplitudes QCD
International Nuclear Information System (INIS)
Rohrwild, Juergen Holger
2009-01-01
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N * distribution amplitudes. (orig.)
Renormalization and applications of baryon distribution amplitudes in QCD
International Nuclear Information System (INIS)
Rohrwild, Juergen Holger
2009-01-01
Higher-twist effects are relevant for precision calculations of hard exclusive reactions. Furthermore, they reveal fine details of the hadron structure. In this work we construct an operator basis for arbitrary twist respecting the conformal symmetry of QCD (which is realized on 1-loop level). Using this basis the 1-loop renormalization kernels of twist 4 are constructed for baryon operators. The full spectrum of anomalous dimensions and the multiplicatively renormalizable operators is obtained. As an application of these results the radiative N * (1535) decay is discussed. Employing light-cone sum rule, the transition form factors can be directly related to the N* distribution amplitudes. (orig.)
Variation of nonlinearity parameter at low fundamental amplitudes
Barnard, Daniel J.
1999-04-01
Recent harmonic generation measurements of the nonlinearity parameter β in polycrystalline Cu-Al alloys have shown a transition to lower values at low fundamental amplitude levels. Values for β at high (>10 Å) fundamental levels are in the range predicted by single-crystal second- and third-order elastic constants while lower fundamental levels (alloy by others. The source of the effect is unclear but initial results may require a reexamination of current methods for measurement of third-order elastic constants.
Speech production in amplitude-modulated noise
DEFF Research Database (Denmark)
Macdonald, Ewen N; Raufer, Stefan
2013-01-01
the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...
Analytic continuation of dual Feynman amplitudes
International Nuclear Information System (INIS)
Bleher, P.M.
1981-01-01
A notion of dual Feynman amplitude is introduced and a theorem on the existence of analytic continuation of this amplitude from the convergence domain to the whole complex is proved. The case under consideration corresponds to massless power propagators and the analytic continuation is constructed on the propagators powers. Analytic continuation poles and singular set of external impulses are found explicitly. The proof of the theorem on the existence of analytic continuation is based on the introduction of α-representation for dual Feynman amplitudes. In proving, the so-called ''trees formula'' and ''trees-with-cycles formula'' are established that are dual by formulation to the trees and 2-trees formulae for usual Feynman amplitudes. (Auth.)
Effective string theory and QCD scattering amplitudes
International Nuclear Information System (INIS)
Makeenko, Yuri
2011-01-01
QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.
An analysis of heavy ion scattering amplitudes
International Nuclear Information System (INIS)
Marty, C.
1979-01-01
A heurisht method is derived for the analysis of light heavy ion systems. It consists in splitting an oscillatory amplitude into subamplitudes each of them being smooth, at least in modulus. Applications are given
A new type time-amplitude converter
International Nuclear Information System (INIS)
Mou Haiwei; Han Jian; Li Zhongwei
2004-01-01
The time-amplitude converter is used mostly in nuclear physics experiments where require fast time measurement, such as the identify of particles, the measurement of excitated life-span and flying time of nucleon, and so on. According to the requirement of experiment, a new type time-amplitude converter composing of IC has been developed. It is precision is 100 ns. It has the merits of stable performance, higher precision and so on. (authors)
Employing helicity amplitudes for resummation in SCET
International Nuclear Information System (INIS)
Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Nikhef, Amsterdam
2016-05-01
Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.
Scattering amplitudes of regularized bosonic strings
Ambjørn, J.; Makeenko, Y.
2017-10-01
We compute scattering amplitudes of the regularized bosonic Nambu-Goto string in the mean-field approximation, disregarding fluctuations of the Lagrange multiplier and an independent metric about their mean values. We use the previously introduced Lilliputian scaling limit to recover the Regge behavior of the amplitudes with the usual linear Regge trajectory in space-time dimensions d >2 . We demonstrate a stability of this minimum of the effective action under fluctuations for d <26 .
Effective gluon interactions from superstring disk amplitudes
Energy Technology Data Exchange (ETDEWEB)
Oprisa, D.
2006-05-15
In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)
The Cepheid bump progression and amplitude equations
International Nuclear Information System (INIS)
Kovacs, G.; Buchler, J.R.
1989-01-01
It is shown that the characteristic and systematic behavior of the low-order Fourier amplitudes and phases of hydrodynamically generated radial velocity and light curves of Cepheid model sequences is very well captured not only qualitatively but also quantitatively by the amplitude equation formalism. The 2:1 resonance between the fundamental and the second overtone plays an essential role in the behavior of the models 8 refs
Satellites of Xe transitions induced by infrared active vibrational modes of CF4 and C2F6 molecules.
Alekseev, Vadim A; Schwentner, Nikolaus
2011-07-28
Absorption and luminescence excitation spectra of Xe/CF(4) mixtures were studied in the vacuum UV region at high resolution using tunable synchrotron radiation. Pressure-broadened resonance bands and bands associated with dipole-forbidden states of the Xe atom due to collision-induced breakdown of the optical selection rules are reported. The spectra display in addition numerous satellite bands corresponding to transitions to vibrationally excited states of a Xe-CF(4) collisional complex. These satellites are located at energies of Xe atom transition increased by one quantum energy in the IR active v(3) vibrational mode of CF(4) (v(3) = 1281 cm(-1)). Satellites of both resonance and dipole-forbidden transitions were observed. Satellites of low lying resonance states are spectrally broad bands closely resembling in shape their parent pressure-broadened resonance bands. In contrast, satellites of dipole-forbidden states and of high lying resonance states are spectrally narrow bands (FWHM ∼10 cm(-1)). The satellites of dipole-forbidden states are orders of magnitude stronger than transitions to their parent states due to collision-induced breakdown of the optical selection rules. These satellites are attributed to a coupling of dipole-forbidden and resonance states induced by the electric field of the transient CF(4) (v(3) = 0 ↔ v(3) = 1) dipole. Similar satellites are present in spectra of Xe/C(2)F(6) mixtures where these bands are induced by the IR active v(10) mode of C(2)F(6). Transitions to vibrationally excited states of Xe-CF(4)(C(2)F(6)) collision pairs were also observed in two-photon LIF spectra. © 2011 American Institute of Physics
International Nuclear Information System (INIS)
Reiss, H.R.
1984-01-01
The negative conclusion in the Comment of Becker, Schlicher, and Scully about electromagnetic enhancement of beta decay is shown to be faulty. They have found an algebraic oversight in my paper, but correction of that oversight yields results strongly resembling the original. Becker, Schlicher, and Scully fail to find this. They then conduct an analysis which is highly implicit and incomplete. In attempting to analyze their very complicated expressions they claim not to find significant electromagnetic effects. Yet they also lose completely the electron retardation term of conventional forbidden beta decay. When they attempt to explain the difference between their results and mine, they misconstrue the momentum-translation technique and end up in a logical contradiction. They attempt also to apply a ''no-go'' theorem applicable only to plane-wave particles to my theory, which is built around the use of bound-state nuclear wave functions. This makes the no-go theorem inapplicable
Energy position of bistable defect (CiCs)0 in 'B' configuration in a forbidden zone of n-Si
International Nuclear Information System (INIS)
Dolgolenko, A.P.; Litovchenko, P.G.; Varentsov, M.D.
2003-01-01
Float-zone and phosphorus-doped n-Si samples after irradiation by fast-pile neutrons and subsequent annealing at room temperature were investigated. The calculation of effective concentration of carriers after irradiation was carried out in the framework of Gossick's model taking into account the recharges of defects both in conducting matrix of n-Si and in the space-charge region of defect clusters. The distribution function of electrons on the acceptor level of bistable defect (C i C s ) 0 when the concentration of this defect is the function of the Fermi level in conducting matrix of n-Si is determined. The concentration of bistable interstitial-carbon-substitutional-carbon pair and its energy level at (E c - 0,123 eV) in forbidden band of silicon were calculated. On the observable level of stable configuration C i C s (A - )-defects at (E c - 0,147 eV) the theoretical change of carriers concentration in the conduction band simulated by the recharges (C i C s ) 0 was imposed. The concentration of these (C i C s ) 0 -defects has been changed in the process of their recharges. It is shown that in n-Si with high carbon and oxygen concentration after affiliating of oxygen atoms to bistable defect (C i C s ) 0 in a forbidden band of n-Si the stable defects not only in 'A' but also in 'B' configurations are formed with energy levels at (E c - 0,13 eV) and (E c - 0,09 eV)
Thinking Forbidden Thoughts: The Oedipus Complex as a Complex of Knowing.
Schein, Michael
2016-04-01
The Oedipus complex, considered by Freud the "nuclear complex of development," played a central role in the evolution of psychoanalytic thought. This paper returns to the point of transition from the seduction theory, Freud's initial theorem, to the oedipal model, and suggests that the Oedipus complex is first and foremost a text and as such contains a multiplicity of narratives. In particular, the author articulates the close relation between the Oedipus complex and the subject of knowing, postulating that underlying its surface level, the deep-level structure of this complex is one of knowing. As a complex of knowing it is of dual quality, both promoting and impeding the ability to know.
Kumar, R.; Narayanan, R.; Prasad, Awadhesh
2014-12-01
Hysteresis in amplitudes of the self-excited oscillations of the floating potential and discharge current is observed in an unmagnetized co-axial electrode-geometry DC glow discharge plasma system. The nonlinearities of these oscillations are studied using standard dynamical analysis tools. The characterization revealed the transition of low-amplitude high-frequency period-n oscillations to a large amplitude low frequency period-1 oscillations through a chaotic intermediate route. The transition of the low amplitude, high frequency period-n oscillations to chaotic type is observed to be linked to the dynamical change in the plasma system, i.e., after a negative differential resistance (NDR) region, whereas the transition from chaotic to period-1 is observed to be linked to a discharge current threshold.
Scattering amplitudes in open superstring theory
Energy Technology Data Exchange (ETDEWEB)
Schlotterer, Oliver
2011-07-15
The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all
Direct amplitude detuning measurement with ac dipole
Directory of Open Access Journals (Sweden)
S. White
2013-07-01
Full Text Available In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result in limitations on the performance reach of the accelerator. Assessing and understanding these effects in experiments is essential to confirm the accuracy of the magnetic model and improve the machine performance. A direct measurement of the machine nonlinearities can be obtained by characterizing the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude detuning. The conventional technique is to excite the beam to large amplitudes with a single kick and derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a very precise tune measurement it has the significant disadvantage of being destructive. An alternative, nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free oscillations which should be correctly taken into account in the interpretation of experimental data. The use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated using experimental data from the Large Hadron Collider. An experimental proof of the theoretical derivations based on measurements performed at injection energy is provided as well as an application of this technique at top energy using a large number of excitations on the same beam.
Parity nonconservation in Zeeman atomic transitions
International Nuclear Information System (INIS)
Kraftmakher, A.Ya.
1990-01-01
The abilities to observe the parity violation at the radiofrequency transitions between the hyperfine and Zeeman terms of the atomic levels are considered. The E-1 amplitudes fo the Zeeman transitions of heavy atoms in weak magnetic fields are larger, than for the light atoms hyperfine transitions at the same wavelength. 9 refs
Optical twists in phase and amplitude
DEFF Research Database (Denmark)
Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper
2011-01-01
Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique bea...... for cold atoms and for optical manipulation of microscopic particles.......Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...... where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...
Cut-constructible part of QCD amplitudes
International Nuclear Information System (INIS)
Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo
2006-01-01
Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon amplitudes
Nonlinear (super)symmetries and amplitudes
Energy Technology Data Exchange (ETDEWEB)
Kallosh, Renata [Physics Department, Stanford University,382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)
2017-03-07
There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E{sub 7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N≥5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.
Amplitude-modulated fiber-ring laser
DEFF Research Database (Denmark)
Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter
2000-01-01
Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...
Scaling of saturation amplitudes in baroclinic instability
International Nuclear Information System (INIS)
Shepherd, T.G.
1994-01-01
By using finite-amplitude conservation laws for pseudomomentum and pseudoenergy, rigorous upper bounds have been derived on the saturation amplitudes in baroclinic instability for layered and continuously-stratified quasi-geostrophic models. Bounds have been obtained for both the eddy energy and the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. This approach provides an efficient way of extracting an analytical estimate of the dynamical scalings of the saturation amplitudes in terms of crucial non-dimensional parameters. A possible use is in constructing eddy parameterization schemes for zonally-averaged climate models. The scaling dependences are summarized, and compared with those derived from weakly-nonlinear theory and from baroclinic-adjustment estimates
Relativistic amplitudes in terms of wave functions
International Nuclear Information System (INIS)
Karmanov, V.A.
1978-01-01
In the framework of the invariant diagram technique which arises at the formulation of the fueld theory on the light front the question about conditions at which the relativistic amplitudes may be expressed through the wave functions is investigated. The amplitudes obtained depend on four-vector ω, determining the light front surface. The way is shown to find such values of the four-vector ω, at which the contribution of diagrams not expressed through wave functions is minimal. The investigation carried out is equivalent to the study of the dependence of amplitudes of the old-fashioned perturbation theory in the in the infinite momentum frame on direction of the infinite momentum
Scattering Amplitudes and Worldsheet Models of QFTs
CERN. Geneva
2016-01-01
I will describe recent progress on the study of scattering amplitudes via ambitwistor strings and the scattering equations. Ambitwistor strings are worldsheet models of quantum field theories, inspired by string theory. They naturally lead to a representation of amplitudes based on the scattering equations. While worldsheet models and related ideas have had a wide-ranging impact on the modern study of amplitudes, their direct application at loop level is a very recent success. I will show how a major difficulty in the loop-level story, the technicalities of higher-genus Riemann surfaces, can be avoided by turning the higher-genus surface into a nodal Riemann sphere, with the nodes representing the loop momenta. I will present new formulas for the one-loop integrands of gauge theory and gravity, with or without supersymmetry, and also some two-loop results.
Higher-order multipole amplitude measurement in psi ' -> gamma chi(c2)
Ablikim, M.; Achasov, M. N.; Alberto, D.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Calcaterra, A. C.; Cao, G. F.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Leung, J. K. C.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, X. T.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu; Nefedov, Y.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Park, J. W.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tian, H. L.; Toth, D.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.
2011-01-01
Using 106 x 10(6) psi' events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition psi' -> gamma chi(c2) -> gamma pi(+)pi(-)/gamma K+K- are measured. A fit to the chi(c2) production and decay angular distributions yields M2
Dossi, M.; Forte, Emanuele; Pipan, M.
2017-12-01
We study the importance of accurately recording signal amplitudes for the quantitative analysis of GPR data sets. Specifically, we measure the peak amplitudes of signals emitted by GPR antennas with different central frequencies and study their amplitude decay with distance, in order to extrapolate the peak amplitude of the wavelet initially transmitted by each antenna. The purpose is to compare the reference and reflected amplitudes in order to accurately estimate the subsurface EM impedance contrasts. Moreover, we study how sampling-related amplitude distortions can affect the quantitative analysis, and subsequently the resulting subsurface models, even in the absence of aliasing effects. The well-known Nyquist-Shannon theorem gives practical lower limits for the sampling rate in order to preserve the spectral content of a digitized signal; however, we show that it does not prevent possible amplitude distortions. In particular, we demonstrate that significant and unrecoverable loss of amplitude information occurs even at sampling rates well above the Nyquist-Shannon threshold. Interpolation may theoretically reduce such amplitude distortions; however, its accuracy would depend on the implemented algorithm and it is not verifiable in real data sets, since the actual amplitude information is limited to the sampled values. Moreover, re-sampling the interpolated signal simply reintroduces the initial problem, when a new sampling rate is selected. Our analysis suggests that, in order to limit the maximum peak amplitude error within 5%, the sampling rate selected during data acquisition must be at least 12 times the signal central frequency, which is higher than the commonly adopted standards.
Dossi, M.; Forte, Emanuele; Pipan, M.
2018-03-01
We study the importance of accurately recording signal amplitudes for the quantitative analysis of GPR data sets. Specifically, we measure the peak amplitudes of signals emitted by GPR antennas with different central frequencies and study their amplitude decay with distance, in order to extrapolate the peak amplitude of the wavelet initially transmitted by each antenna. The purpose is to compare the reference and reflected amplitudes in order to accurately estimate the subsurface EM impedance contrasts. Moreover, we study how sampling-related amplitude distortions can affect the quantitative analysis, and subsequently the resulting subsurface models, even in the absence of aliasing effects. The well-known Nyquist-Shannon theorem gives practical lower limits for the sampling rate in order to preserve the spectral content of a digitized signal; however, we show that it does not prevent possible amplitude distortions. In particular, we demonstrate that significant and unrecoverable loss of amplitude information occurs even at sampling rates well above the Nyquist-Shannon threshold. Interpolation may theoretically reduce such amplitude distortions; however, its accuracy would depend on the implemented algorithm and it is not verifiable in real data sets, since the actual amplitude information is limited to the sampled values. Moreover, re-sampling the interpolated signal simply reintroduces the initial problem, when a new sampling rate is selected. Our analysis suggests that, in order to limit the maximum peak amplitude error within 5%, the sampling rate selected during data acquisition must be at least 12 times the signal central frequency, which is higher than the commonly adopted standards.
Amplitude Models for Discrimination and Yield Estimation
Energy Technology Data Exchange (ETDEWEB)
Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-01
This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.
High energy multi-gluon exchange amplitudes
International Nuclear Information System (INIS)
Jaroszewicz, T.
1980-11-01
We examine perturbative high energy n-gluon exchange amplitudes calculated in the Coulomb gauge. If n exceeds the minimum required by the t-channel quantum numbers, such amplitudes are non-leading in lns. We derive a closed system of coupled integral equations for the corresponding two-particle n-gluon vertices, obtained by summing the leading powers of ln(N μ psup(μ)), where psup(μ) is the incident momentum and Nsup(μ) the gauge-defining vector. Our equations are infra-red finite, provided the external particles are colour singlets. (author)
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
DEFF Research Database (Denmark)
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
Gluon scattering amplitudes at strong coupling
Energy Technology Data Exchange (ETDEWEB)
Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)
2007-06-15
We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.
Chiral symmetry constraints on resonant amplitudes
Bruns, Peter C.; Mai, Maxim
2018-03-01
We discuss the impact of chiral symmetry constraints on the quark-mass dependence of meson resonance pole positions, which are encoded in non-perturbative parametrizations of meson scattering amplitudes. Model-independent conditions on such parametrizations are derived, which are shown to guarantee the correct functional form of the leading quark-mass corrections to the resonance pole positions. Some model amplitudes for ππ scattering, widely used for the determination of ρ and σ resonance properties from results of lattice simulations, are tested explicitly with respect to these conditions.
Scattering Amplitudes via Algebraic Geometry Methods
DEFF Research Database (Denmark)
Søgaard, Mads
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without...... unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...
Microwave Imaging using Amplitude-only Data
DEFF Research Database (Denmark)
Rubæk, Tonny; Zhurbenko, Vitaliy
2010-01-01
This paper discuss how the performance of an imaging system is affected when the phase information of the measurements are removed from the data, leaving only amplitude information as input for the imaging algorithm. Simulated data are used for this purpose, and the images resulting from using...... amplitude-only data are compared with images obtained using the same data sets in which the phase information has been retained. In addition to this, some modifications for the imaging algorithm is presented which to some extent counters the effects of excluding the phase information in the reconstruction....
Energy Technology Data Exchange (ETDEWEB)
Poupard, J
2000-11-15
This thesis presents the study of 2 characteristics of metastable helium that are important for laser cooling. First, we measure two-body losses in a magneto-optical trap. The losses, enhanced by nearly resonant laser radiation, are mainly due to ionizing collisions. We measure the loss rate by observing the decay of the number of trapped atoms using either atomic fluorescence or ion production. We study the loss rate as a function of the trapping laser parameters. The second part of the thesis concerns experiments to measure the transition rates of the intercombination lines: 2{sup 3}P{sub 1} to 1{sup 1}S{sub 0} and 2{sup 3}P{sub 2} to 1{sup 1}S{sub 0}. The first of these rates is measured by exciting a small fraction of the atoms in a magneto-optical trap to the 2{sup 3}P{sub 1} state and observing the decrease in the trap lifetime. We then measure the ratio of the transition rates for 2{sup 3}P{sub 1} and 2{sup 3}P{sub 2} towards the 1{sup 1}S{sub 0} ground state by monitoring the flux of UV photons associated with the transition. (author)
Stora's fine notion of divergent amplitudes
Directory of Open Access Journals (Sweden)
Joseph C. Várilly
2016-11-01
Full Text Available Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
Ward identities for amplitudes with reggeized gluons
International Nuclear Information System (INIS)
Bartles, J.; Vacca, G.P.
2012-05-01
Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.
Particle Distribution Modification by Low Amplitude Modes
International Nuclear Information System (INIS)
White, R.B.; Gorelenkov, N.; Heidbrink, W.W.; Van Zeeland, M.A.
2009-01-01
Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.
Connected formulas for amplitudes in standard model
Energy Technology Data Exchange (ETDEWEB)
He, Song [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No. 19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China)
2017-03-17
Witten’s twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.
Scattering amplitudes in super-renormalizable gravity
International Nuclear Information System (INIS)
Donà, Pietro; Giaccari, Stefano; Modesto, Leonardo; Rachwał, Lesław; Zhu, Yiwei
2015-01-01
We explicitly compute the tree-level on-shell four-graviton amplitudes in four, five and six dimensions for local and weakly nonlocal gravitational theories that are quadratic in both, the Ricci and scalar curvature with form factors of the d’Alembertian operator inserted between. More specifically we are interested in renormalizable, super-renormalizable or finite theories. The scattering amplitudes for these theories turn out to be the same as the ones of Einstein gravity regardless of the explicit form of the form factors. As a special case the four-graviton scattering amplitudes in Weyl conformal gravity are identically zero. Using a field redefinition, we prove that the outcome is correct for any number of external gravitons (on-shell n−point functions) and in any dimension for a large class of theories. However, when an operator quadratic in the Riemann tensor is added in any dimension (with the exception of the Gauss-Bonnet term in four dimensions) the result is completely altered, and the scattering amplitudes depend on all the form factors introduced in the action.
Fatigue Reliability under Multiple-Amplitude Loads
DEFF Research Database (Denmark)
Talreja, R.
1979-01-01
A method to determine the fatigue of structures subjected to multiple-amplitude loads is presented. Unlike the more common cumulative damage methods, which are usually based on fatigue life data, the proposed method is based on tensile strength data. Assuming the Weibull distribution for the init...
Kaon decay amplitudes using staggered fermions
International Nuclear Information System (INIS)
Sharpe, S.R.
1986-12-01
A status report is given of an attempt, using staggered fermions to calculate the real and imaginary parts of the amplitudes for K → ππ,. Semi-quantitative results are found for the imaginary parts, and these suggest that ε' might be smaller than previously expected in the standard model
Investigation of the isospin-forbidden reaction 6Li(6Li,d2)10B0+,1
International Nuclear Information System (INIS)
Wiebach, S.; Bachmann, A.; Brand, H.; Eule, R.P.; Freiesleben, H.; Heyber, B.; Leifels, Y.; Potthast, K.W.; Rosenthal, P.; Kamys, B.
1993-01-01
Angular distributions of the isospin-forbidden reaction 6 Li( 6 Li, d 2 ) 10 B 0+1 were measured at six beam energies in the range from 3 to 8 MeV. The contribution of two-step transfer mechamism to the reaction under consideration was found to be negligible. Hauser-Feshbach model cross sections, obtained with parameters derived from a previous analysis of isospin-allowed reactions in the 6 Li+ 6 Li system are consistent with the data, provided a 2% reduction factor reflecting isospin mixing of compound nucleus levels. From this factor an iso-spin-breaking matrix element of left angle H c 2 right angle 1/2 ∼13 keV was deduced. The presence of one broad or several resonances with (J P , T)=(1 - , 1) or (2 - , 1) concentrated at an excitation energy of about 30.3 MeV in 12 C seems to be responsible for the observed shape of angular distributions and their energy dependence. (orig.)
Electric Monopole Transition Strengths in 62Ni
Directory of Open Access Journals (Sweden)
Evitts L. J.
2016-01-01
Full Text Available Excited states in 62Ni were populated with a (p, p’ reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0, were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77−34+23 × 10−3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0 value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0 values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0 value for the 22+ to 21+ transition.
Electric Monopole Transition Strengths in 62Ni
Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Moukaddam, M.; Alshahrani, B.; Eriksen, T. K.; Holt, J. D.; Hota, S. S.; Lane, G. J.; Lee, B. Q.; McCormick, B. P.; Palalani, N.; Reed, M. W.; Stroberg, S. R.; Stuchbery, A. E.
2016-09-01
Excited states in 62Ni were populated with a (p, p') reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0), were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77-34+23 × 10-3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0) value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0) values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0) value for the 22+ to 21+ transition.
Forerunning mode transition in a continuous waveguide
Slepyan, Leonid; Ayzenberg-Stepanenko, Mark; Mishuris, Gennady
2014-01-01
We have discovered a new, forerunning mode transition as the periodic transition wave propagating in a uniform continuous waveguide. The latter is represented by an elastic beam separating from the elastic foundation under the action of sinusoidal waves. The critical displacement is the separation criterion. We show that the steady-state separation mode, where the separation front speed is independent of the wave amplitude, exists only in a bounded speed-dependent range of the wave amplitude....
International Nuclear Information System (INIS)
Pomeau, Y.
1981-07-01
In this work it is reviewed a few known types of transition to turbulence, as the cascade of period doubling and the intermittent transition. This happens in dynamical systems with a few degrees of freedom, as modelled by the iteration of non linear maps. Then it is presented specific transitions for systems with many degrees of freedom. It is condidered first the occurence of a low frequency broadband noise in large cells at the onset of Rayleigh-Benard convection; then the transition by intermittent bursts in parallel flows. In this last case, one is concerned with localized and finite amplitude perturbations. Simple geometric arguments show that these fluctuations, when they are isolated and with a well definite relative speed, exist for a single value of the Reynolds number only [fr
Differential equations, associators, and recurrences for amplitudes
Directory of Open Access Journals (Sweden)
Georg Puhlfürst
2016-01-01
Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.
Modified amplitude of the gravitational wave spectrum
International Nuclear Information System (INIS)
Ghayour, Basem; Suresh, P K
2012-01-01
The spectrum of thermal gravitational waves is obtained by including the high-frequency thermal gravitons created from extra-dimensional effects and is a new feature of the spectrum. The amplitude and spectral energy density of gravitational waves in a thermal vacuum state are found to be enhanced. The amplitude of the waves is modified in the frequency range (10 −16 –10 8 Hz) but the corresponding spectral energy density is less than the upper bound of various estimated results. With the addition of higher frequency thermal waves, the obtained spectral energy density of the wave in the thermal vacuum state does not exceed the upper bound put by the nucleosynthesis rate. The existence of cosmologically originated thermal gravitational waves due to extra dimension is not ruled out. (paper)
Loop Amplitude Diagrams in Manifest, Maximal Supergravity
Karlsson, Anna
The issue of finiteness of maximal supergravity has been subject to research for quite some time. Here, we approach that question through an examination of how to describe amplitude diagrams in D = 11 maximal supergravity from a field theory point of view. The strength of the formulation is the presence of manifest supersymmetry through the use of pure spinors. An initial analysis of what the subsequent characteristics turn out to be, partly in lower dimensions through dimensional reduction, gives at hand results that agree with previous work, pointing towards a first divergence for the 7-loop contribution to the 4-point amplitude in four dimensions. The text is mainly based on and may be regarded as an introduction to the main points presented there.
Energy Technology Data Exchange (ETDEWEB)
Yarkony, D.R. [Johns Hopkins Univ., Baltimore, MD (United States)
1993-12-01
This research program focusses on studies of spin-forbidden and electronically nonadiabatic processes involving radical species relevant to combustion reactions and combustion diagnostics. To study the electronic structure aspects of these processes a unique and powerful system of electronic structure programs, developed over the past nine years, the BROOKLYN codes, is employed. These programs enable the authors to address questions basic to the understanding of elementary combustion processes not tractable using more standard quantum chemistry codes.
Scattering Amplitudes via Algebraic Geometry Methods
DEFF Research Database (Denmark)
Søgaard, Mads
unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...... in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of tree-level amplitudes. Several explicit examples are provided...
A brief introduction to modern amplitude methods
Dixon, Lance J.
2014-12-10
I provide a basic introduction to modern helicity amplitude methods, including color organization, the spinor helicity formalism, and factorization properties. I also describe the BCFW (on-shell) recursion relation at tree level, and explain how similar ideas - unitarity and on-shell methods - work at the loop level. These notes are based on lectures delivered at the 2012 CERN Summer School and at TASI 2013.
Phase analysis of amplitude binary mask structures
Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Herzig, Hans Peter; Vogler, Uwe; Bramati, Arianna; Voelkel, Reinhard
2016-03-01
Shaping of light behind masks using different techniques is the milestone of the printing industry. The aerial image distribution or the intensity distribution at the printing distances defines the resolution of the structure after printing. Contrast and phase are the two parameters that play a major role in shaping of light to get the desired intensity pattern. Here, in contrast to many other contributions that focus on intensity, we discuss the phase evolution for different structures. The amplitude or intensity characteristics of the structures in a binary mask at different proximity gaps have been analyzed extensively for many industrial applications. But the phase evolution from the binary mask having OPC structures is not considered so far. The mask we consider here is the normal amplitude binary mask but having high resolution Optical Proximity Correction (OPC) structures for corners. The corner structures represent a two dimensional problem which is difficult to handle with simple rules of phase masks design and therefore of particular interest. The evolution of light from small amplitude structures might lead to high contrast by creating sharp phase changes or phase singularities which are points of zero intensity. We show the phase modulation at different proximity gaps and can visualize the shaping of light according to the phase changes. The analysis is done with an instrument called High Resolution Interference Microscopy (HRIM), a Mach-Zehnder interferometer that gives access to three-dimensional phase and amplitude images. The current paper emphasizes on the phase measurement of different optical proximity correction structures, and especially on corners of a binary mask.
Deep Inelastic Scattering at the Amplitude Level
International Nuclear Information System (INIS)
Brodsky, Stanley J.
2005-01-01
The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances
Transversity Amplitudes in Hypercharge Exchange Processes
International Nuclear Information System (INIS)
Aguilar Benitez de Lugo, M.
1979-01-01
' In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used in processes having a pure spin configuration, as well as the more relevant results obtained with data from K p and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs
Accommodative Amplitude in School-Age Children
Directory of Open Access Journals (Sweden)
Ikaunieks Gatis
2017-10-01
Full Text Available In children, intensive near-work affects the accommodation system of the eye. Younger children, due to anatomical parameters, read at smaller distance than older children and we can expect that the accommodation system of younger can be affected more than that of older children. We wanted to test this hypothesis. Some authors showed that the norms of amplitude of accommodation (AA developed by Hofstetter (1950 not always could be applied for children. We also wanted to verify these results. A total of 106 (age 7-15 children participated in the study. Distance visual acuity was measured for all children and only data of children with good visual acuity 1.0 or more (dec. units were analysed (73 children. Accommodative amplitude was measured before and after lessons using subjective push-up technique (with RAF Near Point Ruler. The results showed that the amplitude of accommodation reduced significantly (p < 0.05 during the day and decrease of AA was similar in different age groups (about ~0.70 D. Additional measurements are needed to verify that the observed changes in AA were associated with fatigue effect. The results showed lower accommodation values compared to average values calculated according to the Hofstetter equation (p < 0.05.
Differential equations for Feynman graph amplitudes
International Nuclear Information System (INIS)
Remiddi, E.
1997-01-01
It is by now well established that, by means of the integration by part identities all the integrals occurring in the evaluation of a Feynman graph of given topology can be expressed in terms of a few independent master integrals. It is shown in this paper that the integration by part identities can be further used for obtaining a linear system of first-order differential equations for the master integrals themselves. The equations con then be used for the numerical evaluation of the amplitudes as well as for investigating their analytic properties, such as the asymptotic and threshold behaviours and the corresponding expansions (and for analytic integration purposes, when possible). The new method is illustrated through its somewhat detailed application to the case of the one-loop self-mass amplitude, by explicitly working out expansions and quadrature formulas, both in arbitrary continuous dimension n and in the n→4 limit. It is then shortly discussed which features of the new method are expected to work in the more general case of multi-point, multi-loop amplitudes
Amplitude analysis for hypercharge exchange reactions
Barger, V
1972-01-01
The s channel helicity non-flip amplitudes for the line reversed reactions pi N to K( Sigma , Lambda ) and KN to pi ( Sigma , Lambda ) are determined directly from cross-section and polarization data at 4 GeV/c. Rigorous bounds are obtained on the magnitudes of the flip amplitudes, whose phases are assumed to be given by an exchange degenerate K*-K** Regge trajectory. The solution for the non-flip amplitude is unique and shows the following characteristics: (i) Im K* ( Delta lambda =0) has a 'cross-over' zero at t approximately=-0.15 in both Sigma and Lambda reactions, (ii) Im K** ( Delta lambda =0) has an approximate double zero near t approximately=-0.6 in Sigma reactions and a positive minimum there in Lambda reactions, (iii) Re K* ( Delta lambda =0) and Re K** ( Delta lambda =0) are less peripheral in character than their imaginary counter-part and have similar behaviour at alpha =0 to simple Regge poles. (12 refs).
Cascaded Amplitude Modulations in Sound Texture Perception
Directory of Open Access Journals (Sweden)
Richard McWalter
2017-09-01
Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.
DEFF Research Database (Denmark)
Berg, Rolf W.
1978-01-01
The low frequency infrared and Raman spectra of normal and per-deuterated ((CH3)4N)2[MCl6] (M=Pt, Te, or Sn) have been measured at temperatures down to ~100 K and evidence for phase transitions was found. The spectra have been carefully assigned and it was shown that bands due to forbidden methyl...
From correlation functions to scattering amplitudes
Eden, Burkhard; Korchemsky, Gregory P.; Sokatchev, Emery
2011-12-01
We study the correlation functions of half-BPS protected operators in mathcal{N} = {4} super-Yang-Mills theory, in the limit where the positions of adjacent operators become light-like separated. We compute the loop corrections by means of Lagrangian insertions. The divergences resulting from the light-cone limit are regularized by changing the dimension of the integration measure over the insertion points. Switching from coordinates to dual momenta, we show that the logarithm of the correlation function is identical with twice the logarithm of the matching MHV gluon scattering amplitude. We present a number of examples of this new relation, at one and two loops.
Inlaying vertex function and scattering amplitude
International Nuclear Information System (INIS)
Naito, S.
1997-01-01
Scattering processes among strings are analyzed by using fundamental equations of three types, which divide the whole complex z-plane into various types of N punctured ring domains plus various unpunctured ring domains, where internal strings freely propagate. In order to calculate scattering amplitudes (among physical particles) in Witten close-quote s quantum string field theory, we derive and apply the open-quotes Gluing theorem,close-quote close-quote mathematical proof of which is given (in operator forms) by constructing various (inlint) conformal mapping operators. copyright 1997 American Institute of Physics
Multiloop integrand reduction for dimensionally regulated amplitudes
Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano
2013-12-01
We present the integrand reduction via multivariate polynomial division as a natural technique to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of loops and external legs, which can be used to obtain the decomposition of any integrand analytically with a finite number of algebraic operations. The general results are illustrated by applications to two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can also be seamlessly applied to integrands with denominators appearing with arbitrary powers.
Amplitude death in a ring of nonidentical nonlinear oscillators with unidirectional coupling.
Ryu, Jung-Wan; Kim, Jong-Ho; Son, Woo-Sik; Hwang, Dong-Uk
2017-08-01
We study the collective behaviors in a ring of coupled nonidentical nonlinear oscillators with unidirectional coupling, of which natural frequencies are distributed in a random way. We find the amplitude death phenomena in the case of unidirectional couplings and discuss the differences between the cases of bidirectional and unidirectional couplings. There are three main differences; there exists neither partial amplitude death nor local clustering behavior but an oblique line structure which represents directional signal flow on the spatio-temporal patterns in the unidirectional coupling case. The unidirectional coupling has the advantage of easily obtaining global amplitude death in a ring of coupled oscillators with randomly distributed natural frequency. Finally, we explain the results using the eigenvalue analysis of the Jacobian matrix at the origin and also discuss the transition of dynamical behavior coming from connection structure as the coupling strength increases.
Amplitude death in a ring of nonidentical nonlinear oscillators with unidirectional coupling
Ryu, Jung-Wan; Kim, Jong-Ho; Son, Woo-Sik; Hwang, Dong-Uk
2017-08-01
We study the collective behaviors in a ring of coupled nonidentical nonlinear oscillators with unidirectional coupling, of which natural frequencies are distributed in a random way. We find the amplitude death phenomena in the case of unidirectional couplings and discuss the differences between the cases of bidirectional and unidirectional couplings. There are three main differences; there exists neither partial amplitude death nor local clustering behavior but an oblique line structure which represents directional signal flow on the spatio-temporal patterns in the unidirectional coupling case. The unidirectional coupling has the advantage of easily obtaining global amplitude death in a ring of coupled oscillators with randomly distributed natural frequency. Finally, we explain the results using the eigenvalue analysis of the Jacobian matrix at the origin and also discuss the transition of dynamical behavior coming from connection structure as the coupling strength increases.
DEFF Research Database (Denmark)
RezaNejad Gatabi, Javad; Das, Sayantan; Forouzbakhsh, Farshid
2016-01-01
Ultrasonic Doppler-based systems for surface topography measurements are attractive alternatives to the transit-time-based methods. Sensors used in Doppler systems are less dependent on the speed of the sound in air, although contemporary Doppler measurement systems are sensitive to the amplitude...... variation of the received signal. Amplitude variation significantly affects the measurement accuracy when the surface axial displacement range is comparable with the ultrasonic wavelength. This paper presents a theoretical and experimental study of the effect of amplitude modulation on the performance...... of the Doppler measurement techniques. A modified Doppler measurement system that significantly improves the measurement accuracy is also presented. The fabricated sensor has 72-μm measurement accuracy using 40-kHz transducers. This technique can also be employed in cost-effective displacement measurement...
Getting superstring amplitudes by degenerating Riemann surfaces
International Nuclear Information System (INIS)
Matone, Marco; Volpato, Roberto
2010-01-01
We explicitly show how the chiral superstring amplitudes can be obtained through factorisation of the higher genus chiral measure induced by suitable degenerations of Riemann surfaces. This powerful tool also allows to derive, at any genera, consistency relations involving the amplitudes and the measure. A key point concerns the choice of the local coordinate at the node on degenerate Riemann surfaces that greatly simplifies the computations. As a first application, starting from recent ansaetze for the chiral measure up to genus five, we compute the chiral two-point function for massless Neveu-Schwarz states at genus two, three and four. For genus higher than three, these computations include some new corrections to the conjectural formulae appeared so far in the literature. After GSO projection, the two-point function vanishes at genus two and three, as expected from space-time supersymmetry arguments, but not at genus four. This suggests that the ansatz for the superstring measure should be corrected for genus higher than four.
The Construction of Spin Foam Vertex Amplitudes
Directory of Open Access Journals (Sweden)
Eugenio Bianchi
2013-01-01
Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
Wrist proprioception: amplitude or position coding?
Directory of Open Access Journals (Sweden)
Francesca Marini
2016-10-01
Full Text Available This work examines physiological mechanisms underlying the position sense of the wrist, namely the codification of proprioceptive information related to pointing movements of the wrist towards kinesthetic targets. Twenty-four healthy subjects participated to a robot-aided assessment of their wrist proprioceptive acuity to investigate if the sensorimotor transformation involved in matching targets located by proprioceptive receptors relies on amplitude or positional cues. A joint position matching test was performed in order to explore such dichotomy. In this test, the wrist of a blindfolded participant is passively moved by a robotic device to a preset target position and, after a removal movement from this position, the participant has to actively replicate and match it as accurately as possible. The test involved two separate conditions: in the first the matching movements started from the same initial location; in the second one the initial location was randomly assigned. Target matching accuracy, precision and bias in the two conditions were then compared. Overall results showed a consistent higher performance in the former condition than in the latter, thus supporting the hypothesis that the joint position sense is based on vectorial or amplitude coding rather than positional.
Scattering amplitudes with off-shell quarks
van Hameren, A.; Kutak, K.; Salwa, T.
2013-11-01
We present a prescription to calculate manifestly gauge invariant tree-level scattering amplitudes for arbitrary scattering processes with off-shell initial-state quarks within the kinematics of high-energy scattering. Consider the embedding of the process, in which the off-shell u-quark is replaced by an auxiliary quark qA, and an auxiliary photon γA is added in final state. The momentum flow is as if qA carries momentum k1 and the momentum of γA is identical to 0. γA only interacts via Eq. (3), and qA further only interacts with gluons via normal quark-gluon vertices. qA-line propagators are interpreted as iℓ̸1/(2ℓ1ṡp), and are diagonal in color space. Sum the squared amplitude over helicities of the auxiliary photon. For one helicity, simultaneously assign to the external qA-quark and to γA the spinor and polarization vector |ℓ1], {, {}. Multiply the amplitude with √{-x1k12/2}. For the rest, normal Feynman rules apply.Some remarks are at order. Regarding the momentum flow, we stress, as in [20], that momentum components proportional to k1 do not contribute in the eikonal propagators, and there is a freedom in the choice of the momenta flowing through qA-lines.Regarding the sum over helicities, one might argue that only one of them leads to a non-zero result for given helicity of the final-state quark, but there may, for example, be several identical such quarks in the final state with different helicities.In case of more than one quark in the final state with the same flavor as the off-shell quark, the rules as such admit graphs with γA-propagators. These must be omitted. They do not survive the limit Λ→∞ in the derivation, since the γA-propagators are suppressed by 1/Λ.The rules regarding the qA-line could be elaborated further like in [20], leading to simplified vertices for gluons attached to this line and reducing the numerator of the eikonal propagators to 1. Formulated as above, however, the prescription is more straightforward and
DEFF Research Database (Denmark)
Nøjgaard, Nikolai; Geiß, Manuela; Merkle, Daniel
2017-01-01
tree T with a species trees S, relative to the reconciliation problem without prior knowledge of the event types. It is well-known that optimal reconciliations in the unlabeled case may violate time-consistency and thus are not biologically feasible. Here we investigate the mathematical structure...... of the event labeled reconciliation problem with horizontal transfer. Results: We investigate the issue of time-consistency for the event-labeled version of the reconciliation problem, provide a convenient axiomatic framework, and derive a complete characterization of time-consistent reconciliations....... This characterization depends on certain weak conditions on the event-labeled gene trees that reflect conditions under which evolutionary events are observable at least in principle. We give an O(|V (T)| log(|V (S)|))-time algorithm to decide whether a time-consistent reconciliation map exists. It does not require...
Formation region and amplitude of colour superconductivity in an instanton-induced model
Liao Jin Feng
2002-01-01
Colour superconductivity is investigated in the frame of a two flavour instanton-induced model. The ratio of diquark to quark-antiquark coupling constants is restricted to be c/(N sub c -1) with 1 <=c <=2.87 and controls the formation region and amplitude of colour superconductivity. While the finite current quark mass changes the chiral transition significantly, it does not considerably change the colour superconductivity
A Logarithmic-Amplitude Polar Diagram
Directory of Open Access Journals (Sweden)
Trond Andresen
2001-04-01
Full Text Available A polar diagram where the amplitude of the transfer function is on a logarithmic scale, is presented. This gives a one-size-fits-all diagram with no need for zooming in and out, and no need for additional reasoning about infinite-radius encirclements when there are poles on the imaginary axis - as opposed to what is usually neccessary with the standard polar (Nyquist- diagram. All properties needed for stability considerations are upheld, such as encirclements, gain and phase margins. The path for s in the loop transfer function is carefully chosen with regard to possible poles on the imaginary axis. Small excursions into the right half plane in the form of arcs of different-sized logarithmic spirals result in corresponding large but finite arcs that do not overlap in the logarithmic polar plots.
Subleading soft graviton theorem for loop amplitudes
Sen, Ashoke
2017-11-01
Superstring field theory gives expressions for heterotic and type II string loop amplitudes that are free from ultraviolet and infrared divergences when the number of non-compact space-time dimensions is five or more. We prove the subleading soft graviton theorem in these theories to all orders in perturbation theory for S-matrix elements of arbitrary number of finite energy external states but only one external soft graviton. We also prove the leading soft graviton theorem for arbitrary number of finite energy external states and arbitrary number of soft gravitons. Since our analysis is based on general properties of one particle irreducible effective action, the results are valid in any theory of quantum gravity that gives finite result for the S-matrix order by order in perturbation theory without violating general coordinate invariance.
Geological characteristics of low-amplitude faults
Energy Technology Data Exchange (ETDEWEB)
Matveyev, A.K.; Kozel' skiy, I.T.; Mazor, Yu.R.; Shimorina, Ye.F.; Stefanova, Ye.I.
1982-01-01
It is indicated that the faults which developed in the coal mass of the Kuznetsk Basin change the mineralogical-petrographic properties of the sedimentary rocks and coals. This results in a corresponding change in physical properties. The established local transformations of rocks associated with the formation of a fault (intensification of microfracturing in the quartz grains, increase in the content of quartz with structural defect, change in structural-textural features of rocks; decrease in the quantity of swelling blocks in mixed-stratified formations of the series montmorillonite-hydromica; change in the inner structure of coal, etc.) can be used to create new methods and techniques aimed at finding low amplitude disorders.
Polynomial structures in one-loop amplitudes
International Nuclear Information System (INIS)
Britto, Ruth; Feng Bo; Yang Gang
2008-01-01
A general one-loop scattering amplitude may be expanded in terms of master integrals. The coefficients of the master integrals can be obtained from tree-level input in a two-step process. First, use known formulas to write the coefficients of (4-2ε)-dimensional master integrals; these formulas depend on an additional variable, u, which encodes the dimensional shift. Second, convert the u-dependent coefficients of (4-2ε)-dimensional master integrals to explicit coefficients of dimensionally shifted master integrals. This procedure requires the initial formulas for coefficients to have polynomial dependence on u. Here, we give a proof of this property in the case of massless propagators. The proof is constructive. Thus, as a byproduct, we produce different algebraic expressions for the scalar integral coefficients, in which the polynomial property is apparent. In these formulas, the box and pentagon contributions are separated explicitly.
More on the duality correlators/amplitudes
Energy Technology Data Exchange (ETDEWEB)
Eden, Burkhard [Durham University, Science Laboratories, South Rd, Durham DH1 3LE (United Kingdom); Korchemsky, Gregory P., E-mail: gregory.korchemsky@cea.fr [Institut de Physique Theorique (Unite de Recherche Associee au CNRS URA 2306), CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Sokatchev, Emery [LAPTH (Laboratoire d' Annecy-le-Vieux de Physique Theorique, UMR 5108), Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux (France)
2012-03-19
We continue the study of n-point correlation functions of half-BPS protected operators in N=4 super-Yang-Mills theory, in the limit where the positions of the adjacent operators become light-like separated. We compute the l-loop corrections by making l Lagrangian insertions. We argue that there exists a simple relation between the (n+l)-point Born-level correlator with l Lagrangian insertions and the integrand of the n-particle l-loop MHV scattering amplitude, as obtained by the recent momentum twistor construction of Arkani-Hamed et al. We present several examples of this new duality, at one and two loops.
Amplitude correlations for inelastic proton scattering from 48Ti
International Nuclear Information System (INIS)
Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.
1981-01-01
The magnitudes and relative signs of inelastic proton channel amplitudes were determined for three decay channels for 45 5/2 + resonances in 49 V. The reduced widths in each channel follow a Porter-Thomas distribution, but extremely large amplitude correlations are observed - for one pair of channel amplitudes the relative sign is positive for 43 of 45 resonances. These results provide the first direct test of the Krieger-Porter reduced width amplitude distribution. (orig.)
Correlations for reduced-width amplitudes in 49V
International Nuclear Information System (INIS)
Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.
1980-01-01
Measurement of the relative sign of inelastic proton-channel amplitudes permits the determination of amplitude correlations. Data were obtained for 45 5/2 + resonances in 49 V. Although the reduced widths in each channel followed a Porter-Thomas distribution, large amplitude correlations were observed. The results are compared with the reduced-width--amplitude distribution of Krieger and Porter. This is the first direct test of the Krieger-Porter distribution
Czech Academy of Sciences Publication Activity Database
Mandado, M.; Ponec, Robert
2009-01-01
Roč. 22, č. 12 (2009), s. 1225-1232 ISSN 0894-3230 R&D Projects: GA ČR GA203/09/0118 Institutional research plan: CEZ:AV0Z40720504 Keywords : pericycli reactions * aromaticity * multicenter bond indices Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.602, year: 2009
MHV Vertices And Tree Amplitudes In Gauge Theory
Energy Technology Data Exchange (ETDEWEB)
Cachazo, Freddy; Svrcek, Peter; Witten, Edward E-mail: witten@ias.edu
2004-09-01
As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space. (author)
MHV Vertices And Tree Amplitudes In Gauge Theory
International Nuclear Information System (INIS)
Cachazo, Freddy; Svrcek, Peter; Witten, Edward
2004-01-01
As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space. (author)
Sazonov, Andrew; Meven, Martin; Roth, Georg; Georgii, Robert; Kézsmárki, István; Kocsis, Vilmos; Hutanu, Vladimir
2015-01-01
For a symmetry consistent theoretical description of the multiferroic phase of Ba$_2$CoGe$_2$O$_7$ a precise knowledge of its crystal structure is a prerequisite. In our previous synchrotron X-ray diffraction experiment on multiferroic Ba$_2$CoGe$_2$O$_7$ at room temperature we found forbidden reflections that favour the tetragonal-to-orthorhombic symmetry lowering of the titled compound. Here, we report the results of room-temperature single-crystal diffraction studies with both hot and cold...
Orso, Giuliano
2017-03-01
We investigate the metal-insulator transition occurring in two-dimensional (2D) systems of noninteracting atoms in the presence of artificial spin-orbit interactions and a spatially correlated disorder generated by laser speckles. Based on a high order discretization scheme, we calculate the precise position of the mobility edge and verify that the transition belongs to the symplectic universality class. We show that the mobility edge depends strongly on the mixing angle between Rashba and Dresselhaus spin-orbit couplings. For equal couplings a non-power-law divergence is found, signaling the crossing to the orthogonal class, where such a 2D transition is forbidden.
Study of the phase transition dynamics of the L to H transition
International Nuclear Information System (INIS)
Moyer, R.A.; Rhodes, T.L.; Rettig, C.L.
1997-12-01
A highly radiating zone (MARFE) just above the divertor X-point has been used to access the marginal transition regime P sep ∼ P thres to study the existence of a critical point for the L to H transition. Phase transition models predict that at the critical point, the transition duration increases and the plasma parameters vary continuously between L-mode and H-mode. In these experiments, the L to H transition duration increased 50--100 times over fast transitions. However, the evolution of E r shear, edge density gradient, H-mode pedestal, and fluctuations is essentially unchanged from that in fast transitions. The only difference is in the speed with which and the degree to which the fluctuation amplitudes are transiently reduced. This difference is understandable in terms of the time scales for fluctuation amplitude reduction (≤ 100 micros) and edge pressure gradient increase (several ms), provided the edge fluctuations are pressure-gradient driven
Branching ratios of radiative transitions in O VI
International Nuclear Information System (INIS)
Sur, Chiranjib; Chaudhuri, Rajat K
2007-01-01
We study the branching ratios of the allowed and forbidden radiative transitions among the first few (9) fine structure levels of O VI using relativistic coupled-cluster theory. We find irregular patterns for a number of transitions within n-complexes with n ≤ 4. We have used the existing values of the allowed electric dipole (E1) transition as a benchmark of our theory. Good agreement with the existing values establish accuracies of not only the theoretical method but the basis function as well. In general, the electric quadrupole (E2) transition probabilities are greater in magnitude than magnetic dipole (M1) transition probabilities, whereas for medium atomic transition frequencies they are of the same order of magnitude. On the other hand, if the transitions involved are in between two fine-structure components of the same term, then the M1 transition probability is more probable than that of E2. The results presented here in tabular and graphical form are compared with the available theoretical and observed data. Graphical analysis helps to understand the trends of electric and magnetic transitions for the decay channels presented here. Our calculated values of the lifetimes of the excited states are in very good agreement with the available results
Monodromies and the structure of gauge and gravity amplitudes
Energy Technology Data Exchange (ETDEWEB)
Vanhove, Pierre [IPhT - Institut de Physique Theorique, Orme des Merisiers bat. 774, PC 136, CEA/DSM/IPhT, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Institut des Hautes Etudes Scientifiques - IHES, Le Bois-Marie 35, route de Chartres 91440 Bures-sur-Yvette (France)
2010-07-01
We show that different color-ordered tree-level amplitudes in gauge theories satisfy monodromy relations. These relations imply the existence of minimal basis of amplitude and provide the numerator factors of the amplitude for a parametrisation of the tree-level amplitude using only cubic vertices. Applications to supergravity amplitudes follow straightforwardly through the KLT-relations. Through the cuts, these tree-level relations give rise to non-trivial identities at loop level. At higher loop this constrains the critical ultraviolet behaviour of the four-graviton amplitude in N=8 supergravity to all order in perturbation. We argue this implies that the four-graviton N=8 amplitudes has a seven-loop logarithmic divergence in four dimensions. (author)
Effects of amplitude modulation on perception of wind turbine noise
Energy Technology Data Exchange (ETDEWEB)
Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Seong, Yeol Wan [Ammunition Engineering Team, Defense Agency for Technology and Quality, Daejeon (Korea, Republic of); Lee, Seung Hoon [Aerodynamics Research Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Hong, Ji Young [Transportation Environmental Research Team, Green Transport and Logistics Institute, Korea Railroad Research Institute, Uiwang (Korea, Republic of)
2016-10-15
Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation.
Effects of amplitude modulation on perception of wind turbine noise
International Nuclear Information System (INIS)
Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young; Seong, Yeol Wan; Lee, Seung Hoon; Hong, Ji Young
2016-01-01
Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation
DEFF Research Database (Denmark)
Gissel, Line Engbo
This presentation builds on an earlier published article, 'Contemporary Transitional Justice: Normalising a Politics of Exception'. It argues that the field of transitional justice has undergone a shift in conceptualisation and hence practice. Transitional justice is presently understood...... to be the provision of ordinary criminal justice in contexts of exceptional political transition....
Vacuum transitions in dual models
International Nuclear Information System (INIS)
Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.
1976-01-01
The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions
The pulsed amplitude unit for the SLC
International Nuclear Information System (INIS)
Rolfe, J.; Browne, M.J.; Jobe, R.K.
1987-02-01
There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed
Gearbox Vibration Signal Amplitude and Frequency Modulation
Directory of Open Access Journals (Sweden)
Fakher Chaari
2012-01-01
Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.
An amplitude modulated radio frequency plasma generator
Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo
2017-04-01
A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.
Effective anisotropy through traveltime and amplitude matching
Wang, Hui
2014-08-05
Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.
Open string topological amplitudes and gaugino masses
International Nuclear Information System (INIS)
Antoniadis, I.; Narain, K.S.; Taylor, T.R.
2005-09-01
We discuss the moduli-dependent couplings of the higher derivative F-terms (TrW 2 ) h-1 , where W is the gauge N =1 chiral superfield. They are determined by the genus zero topological partition function F (0,h) , on a world-sheet with h boundaries. By string duality, these terms are also related to heterotic topological amplitudes studied in the past, with the topological twist applied only in the left-moving supersymmetric sector of the internal N =(2,0) superconformal field theory. The holomorphic anomaly of these couplings relates them to terms of the form Π n (TrW 2 ) h-2 , where Π's represent chiral projections of non-holomorphic functions of chiral superfields. An important property of these couplings is that they violate R-symmetry for h ≥ 3. As a result, once supersymmetry is broken by D-term expectation values, (TrW 2 ) 2 generates gaugino masses that can be hierarchically smaller than the scalar masses, behaving as m 1/2 ∼ m 0 4 in string units. Similarly, ΠTrW 2 generates Dirac masses for non-chiral brane fermions, of the same order of magnitude. This mechanism can be used for instance to obtain fermion masses at the TeV scale for scalar masses as high as m 0 ∼ O (10 13 ) GeV. We present explicit examples in toroidal string compactifications with intersecting D-branes. (author)
Efficient reverse time migration with amplitude encoding
Hu, Jiangtao; Wang, Huazhong; Zhao, Lei; Shao, Yu; Wang, Meixia; Osen, Are
2015-08-01
Reverse time migration (RTM) is an accurate seismic imaging method for imaging the complex subsurface structure. Traditional common shot RTM suffers from low efficiency due to the large number of single shot gathers, especially for marine seismic data. Phase encoding is commonly used to reduce the computational cost of RTM. Phase encoding in the frequency domain is usually related to time shift in the time domain. Therefore, phase-encoding-based RTM needs time padding to avoid information loss which degrades the efficiency of the time-domain wavefield extrapolator. In this paper, an efficient time-domain RTM scheme based on the amplitude encoding is proposed. This scheme uses the orthogonal cosine basis as the encoding function, which has similar physical meaning to plane wave encoding (i.e. plane-wave components with different surface shooting angles). The proposed scheme can generate a qualified imaging result as well as common shot RTM but with less computational cost. Since this scheme does not need time padding, it is more efficient than the phase encoding schemes and can be conveniently implemented in the time domain. Numerical examples on the Sigsbee2a synthetic dataset demonstrate the feasibility of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Aguilar Benitez de Lugo, M.
1979-07-01
In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used In processes having a pure spin configuration, as well as the more relevant results obtained with data from K{sup p} and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of.the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs.
Energy Technology Data Exchange (ETDEWEB)
Saeki, T. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center
1997-10-22
Discussions were given on seismic exploration from the ground surface using the reflection method, for surface consistent amplitude correction from among effects imposed from the ground surface and a surface layer. Amplitude distribution on the reflection wave zone is complex. Therefore, items to be considered in making an analysis are multiple, such as estimation of spherical surface divergence effect and exponential attenuation effect, not only amplitude change through the surface layer. If all of these items are taken into consideration, burden of the work becomes excessive. As a method to solve this problem, utilization of amplitude in initial movement of a diffraction wave may be conceived. Distribution of the amplitude in initial movement of the diffraction wave shows a value relatively close to distribution of the vibration transmitting and receiving points. The reason for this is thought because characteristics of the vibration transmitting and receiving points related with waveline paths in the vicinity of the ground surface have no great difference both on the diffraction waves and on the reflection waves. The lecture described in this paper introduces an attempt of improving the efficiency of the surface consistent amplitude correction by utilizing the analysis of amplitude in initial movement of the diffraction wave. 4 refs., 2 figs.
Helicity amplitudes of the Λ(1670) and two Λ(1405) as dynamically generated resonances
Döring, M.; Jido, D.; Oset, E.
2010-09-01
We determine the helicity amplitudes A 1/2 and radiative decay widths in the transition Λ(1670) rightarrow γ Y ( Y = Λ or Σ^{{0}}_{} . The Λ(1670) is treated as a dynamically generated resonance in meson-baryon chiral dynamics. We obtain the radiative decay widths of the Λ(1670) to γ Λ as 2±1 keV and to γ Σ^{{0}}_{} as 120±50 keV. Also, the Q2-dependence of the helicity amplitudes A 1/2 is calculated. We find that the K Ξ component in the Λ(1670) structure, mainly responsible for the dynamical generation of this resonance, is also responsible for the significant suppression of the decay ratio Γ_{{γΛ}}^{}/ Γ_{{γ Σ0}}^{} . A measurement of the ratio would, thus, provide direct access to the nature of the Λ(1670) . To compare the result for the Λ(1670) , we calculate the helicity amplitudes A 1/2 for the two states of the Λ(1405) . Also, the analytic continuation of Feynman parameterized integrals of more complicated loop amplitudes to the complex plane is developed which allows for an internally consistent evaluation of A 1/2.
The attenuation of Fourier amplitudes for rock sites in eastern North America
Atkinson, Gail M.; Boore, David M.
2014-01-01
We develop an empirical model of the decay of Fourier amplitudes for earthquakes of M 3–6 recorded on rock sites in eastern North America and discuss its implications for source parameters. Attenuation at distances from 10 to 500 km may be adequately described using a bilinear model with a geometric spreading of 1/R1.3 to a transition distance of 50 km, with a geometric spreading of 1/R0.5 at greater distances. For low frequencies and distances less than 50 km, the effective geometric spreading given by the model is perturbed using a frequency‐ and hypocentral depth‐dependent factor defined in such a way as to increase amplitudes at lower frequencies near the epicenter but leave the 1 km source amplitudes unchanged. The associated anelastic attenuation is determined for each event, with an average value being given by a regional quality factor of Q=525f 0.45. This model provides a match, on average, between the known seismic moment of events and the inferred low‐frequency spectral amplitudes at R=1 km (obtained by correcting for the attenuation model). The inferred Brune stress parameters from the high‐frequency source terms are about 600 bars (60 MPa), on average, for events of M>4.5.
Tensor exchange amplitudes in K +- N charge exchange reactions
International Nuclear Information System (INIS)
Svec, M.
1979-01-01
Tensor (A 2 ) exchange amplitudes in K +- N charge exchange (CEX) are constructed from the K +- N CEX data supplemented by information on the vector (rho) exchange amplitudes from πN sca tering. We observed new features in the t-structure of A 2 exchange amplitudes which contradict the t-de pendence anticipated by most of the Regge models. The results also provide evidence for violation of weak exchange degeneracy
Improved pion pion scattering amplitude from dispersion relation formalism
International Nuclear Information System (INIS)
Cavalcante, I.P.; Coutinho, Y.A.; Borges, J. Sa
2005-01-01
Pion-pion scattering amplitude is obtained from Chiral Perturbation Theory at one- and two-loop approximations. Dispersion relation formalism provides a more economic method, which was proved to reproduce the analytical structure of that amplitude at both approximation levels. This work extends the use of the formalism in order to compute further unitarity corrections to partial waves, including the D-wave amplitude. (author)
Efficient analytic computation of higher-order QCD amplitudes
International Nuclear Information System (INIS)
Bern, Z.; Chalmers, G.; Dunbar, D.C.; Kosower, D.A.
1995-01-01
The authors review techniques simplifying the analytic calculation of one-loop QCD amplitudes with many external legs, for use in next-to-leading-order corrections to multi-jet processes. Particularly useful are the constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an arbitrary number of external gluons have been obtained using these constraints
Ambitwistor strings and reggeon amplitudes in N=4 SYM
Directory of Open Access Journals (Sweden)
L.V. Bork
2017-11-01
Full Text Available We consider the description of reggeon amplitudes (Wilson lines form factors in N=4 SYM within the framework of four dimensional ambitwistor string theory. The latter is used to derive scattering equations representation for reggeon amplitudes with multiple reggeized gluons present. It is shown, that corresponding tree-level string correlation function correctly reproduces previously obtained Grassmannian integral representation of reggeon amplitudes in N=4 SYM.
Energy Technology Data Exchange (ETDEWEB)
Volotka, A.V.
2006-07-01
Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be
International Nuclear Information System (INIS)
Volotka, A.V.
2006-01-01
Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be
Phase and amplitude control system for Stanford Linear Accelerator
International Nuclear Information System (INIS)
Yoo, S.J.
1983-01-01
The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system
Analytic all-plus-helicity gluon amplitudes in QCD
Dunbar, David C.; Godwin, John H.; Jehu, Guy R.; Perkins, Warren B.
2017-12-01
We detail the calculation of two-loop all-plus-helicity amplitudes for pure Yang-Mills theory. The four-dimensional unitarity methods and augmented recursion techniques we have developed, together with a knowledge of the singular structure of the amplitudes, allow us to compute these in compact analytic forms. Specifically we present the computation and analytic results for the six- and seven-gluon leading color two-loop amplitudes, these being the first QCD two-loop amplitudes beyond five points.
Proof of the fundamental BCJ relations for QCD amplitudes
International Nuclear Information System (INIS)
Cruz, Leonardo de la; Kniss, Alexander; Weinzierl, Stefan
2015-01-01
The fundamental BCJ-relation is a linear relation between primitive tree amplitudes with different cyclic orderings. The cyclic orderings differ by the insertion place of one gluon. The coefficients of the fundamental BCJ-relation are linear in the Lorentz invariants 2p i p j . The BCJ-relations are well established for pure gluonic amplitudes as well as for amplitudes in N=4 super-Yang-Mills theory. Recently, it has been conjectured that the BCJ-relations hold also for QCD amplitudes. In this paper we give a proof of this conjecture. The proof is valid for massless and massive quarks.
Amplitude dependent damping in single crystalline high purity molybdenum
International Nuclear Information System (INIS)
Zelada-Lambri, G.I; Lambri, O.A; Garcia, J.A; Lomer, J.N
2004-01-01
Amplitude dependent damping measurements were performed on high purity single crystalline molybdenum at several different constant temperatures between room temperature and 1273K. The employed samples were single crystals with the orientation, having a residual resistivity ratio of about 8000. Previously to the amplitude dependent damping tests, the samples were subjected to different thermomechanical histories. Amplitude dependent damping effects appear only during the first heating run in temperature where the samples have the thermomechanical state of the deformation process at room temperature. In the subsequent run-ups in temperature, i.e, after subsequent annealings, amplitude dependent damping effects were not detected (au)
Simon, M. K.
1975-01-01
Much has been said in the literature regarding the problem of establishing symbol synchronization in binary baseband digital communication systems. By comparison, the literature contains little information relating to the extraction of symbol sync from multilevel baseband data. With the recent interest in multilevel amplitude-shift keying (MASK) and quadrature amplitude-shift keying (QASK) as signaling techniques for multilevel digital communications systems, the problem of providing symbol synchronization in the receivers of such systems becomes paramount. This paper presents a technique for extracting symbol sync from a MASK or QASK signal which has been transmitted over an infinite-bandwidth white Gaussian noise channel. The scheme is essentially a generalization of the data transition tracking loop (DTTL) which has heretofore been used in PSK systems. The performance of the loop is analyzed in terms of its mean-squared symbol sync jitter and its effects on the data detection process in MASK and QASK systems.
Qureshi, Asima; Petrucco, James
2018-01-01
Meadowbrook Primary School has explored the use of The Teacher Assessment in Primary Science (TAPS) to support transition, initially for transfer to secondary school and now for transition from Early Years Foundation Stage (EYFS) into Key Stage 1 (ages 5-7). This article will consider an example of a secondary transition project and discuss the…
Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus
Directory of Open Access Journals (Sweden)
Oliver Zobay
2015-01-01
Full Text Available The thalamocortical dysrhythmia (TCD model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz. The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz oscillations (“edge effect” giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC was computed within the auditory cortices for frequencies (f1,f2 between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1,f230 Hz frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL, tinnitus handicap and duration, and HL at tinnitus frequency, we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus.
Gauge theory amplitudes in twistor space and holomorphic anomaly
Energy Technology Data Exchange (ETDEWEB)
Cachazo, Freddy [School of Natural Sciences, Institute for Advanced Study, Princeton NJ 08540 (United States)]. E-mail: cachazo@ias.edu; Witten, Edward [School of Natural Sciences, Institute for Advanced Study, Princeton NJ 08540 (United States); Svrcek, Peter [Department of Physics, Joseph Henry Laboratories, Princeton NJ 08540 (United States)
2004-10-01
We show that, in analyzing differential equations obeyed by one-loop gauge theory amplitudes, one must take into account a certain holomorphic anomaly. When this is done, the results are consistent with the simplest twistor-space picture of the available one-loop amplitudes. (author)
Automated force controller for amplitude modulation atomic force microscopy
Energy Technology Data Exchange (ETDEWEB)
Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)
2016-05-15
Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.
Online measurement method for pulse amplitude in pulsed extraction columns
International Nuclear Information System (INIS)
Wang Xinghai; Li Shichang; Chen Jing
2009-01-01
Online measurement of pulse amplitude by air purge was studied. The pulse amplitude in a pulsed extraction column was calculated online by measurement of characteristic parameters of the signal's curve. The method can be used for calculation of different pulsed extraction columns. (authors)
Time-varying interaction leads to amplitude death in coupled ...
Indian Academy of Sciences (India)
2013-09-05
Sep 5, 2013 ... phenomenon called amplitude death even in diffusively coupled identical oscillators. ... [16] or by using conjugate coupling [11], amplitude death can occur without mismatch in oscillators. Several ..... [2] K Kaneko, Theory and applications of coupled map lattices (John Wiley and Sons, New York,. 1993).
Coupled Higgs field equation and Hamiltonian amplitude equation ...
Indian Academy of Sciences (India)
Abstract. In this paper, coupled Higgs field equation and Hamiltonian amplitude equation are studied using the Lie classical method. Symmetry reductions and exact solutions are reported for Higgs equation and Hamiltonian amplitude equation. We also establish the travelling wave solutions involving parameters of the ...
Investigating the amplitude of interactive footstep sounds and soundscape reproduction
DEFF Research Database (Denmark)
Turchet, Luca; Serafin, Stefania
2013-01-01
In this paper, we study the perception of amplitude of soundscapes and interactively generated footstep sounds provided both through headphones and a surround sound system. In particular, we investigate whether there exists a value for the amplitude of soundscapes and footstep sounds which is con...
Abnormal Selective Attention Normalizes P3 Amplitudes in PDD
Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman
2006-01-01
This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…
Miracles in Scattering Amplitudes: from QCD to Gravity
Energy Technology Data Exchange (ETDEWEB)
Volovich, Anastasia [Brown Univ., Providence, RI (United States)
2016-10-09
The goal of my research project "Miracles in Scattering Amplitudes: from QCD to Gravity" involves deepening our understanding of gauge and gravity theories by exploring hidden structures in scattering amplitudes and using these rich structures as much as possible to aid practical calculations.
Multiphoton states and amplitude k-th power squeezing
International Nuclear Information System (INIS)
Buzek, V.; Jex, I.
1991-01-01
On the basis of the work of d'Ariano and coworkers a new type of multiphoton states is introduced. Amplitude k-th power squeezing of the multiphoton states are analysed. In particular, it is shown that even if the multiphoton states do not exhibit ordinary squeezing they can be amplitude k-th power squeezed
Double logarithmic asymptotics of quark amplitudes with flavour exchange
International Nuclear Information System (INIS)
Kirschner, R.
1982-01-01
Results on the quark scattering and annihilation amplitudes in the Regge region are presented. The perturbative contribution to those amplitudes in the double logarithmic approximation are calculated. In the calculations a method based on dispersion relations and gauge invariance is used. (M.F.W.)
Energy Technology Data Exchange (ETDEWEB)
Airapetian, A. [Justus-Liebig Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); University of Michigan, Randall Laboratory of Physics, Ann Arbor, MI (United States); Akopov, N.; Elbakian, G.; Gharibyan, V.; Marukyan, H.; Petrosyan, A. [Yerevan Physics Institute, Yerevan (Armenia); Akopov, Z.; Borissov, A.; Deconinck, W.; Holler, Y.; Rostomyan, A.; Zihlmann, B. [DESY, Hamburg (Germany); Aschenauer, E.C.; Nowak, W.D. [DESY, Zeuthen (Germany); Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P. [National Centre for Nuclear Research, Warsaw (Poland); Belostotski, S.; Kisselev, A.; Manaenkov, S.I.; Veretennikov, D.; Vikhrov, V. [B.P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region (Russian Federation); Blok, H.P. [National Institute for Subatomic Physics (Nikhef), Amsterdam (Netherlands); VU University, Department of Physics and Astronomy, Amsterdam (Netherlands); Bryzgalov, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y. [Institute for High Energy Physics, Moscow Region (Russian Federation); Capitani, G.P.; De Sanctis, E.; Muccifora, V.; Reolon, A.R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy); Ciullo, G.; Lenisa, P.; Pappalardo, L.L.; Statera, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); Contalbrigo, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); De Leo, R.; Lagamba, L.; Vilardi, I. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Dueren, M. [Justus-Liebig Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Ellinghaus, F. [University of Colorado, Nuclear Physics Laboratory, Boulder, CO (United States); Felawka, L. [TRIUMF, Vancouver, BC (Canada); Frullani, S.; Garibaldi, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Gruppo Collegato Sanita, Rome (Italy); Istituto Superiore di Sanita, Rome (Italy); Gavrilov, G. [DESY, Hamburg (Germany); B.P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region (Russian Federation); TRIUMF, Vancouver, BC (Canada); Goloskokov, S.V.; Shutov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Jackson, H.E.; Reimer, P.E. [Argonne National Laboratory, Physics Division, Argonne, IL (United States); Joosten, S. [Ghent University, Department of Physics and Astronomy, Gent (Belgium); University of Illinois, Department of Physics, Urbana, IL (United States); Kaiser, R.; Lehmann, I.; Rosner, G.; Seitz, B. [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Karyan, G. [DESY, Hamburg (Germany); Yerevan Physics Institute, Yerevan (Armenia); Kozlov, V.; Terkulov, A. [Lebedev Physical Institute, Moscow (Russian Federation); Kravchenko, P. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); B.P. Konstantinov Petersburg Nuclear Physics Institute, Leningrad Region (Russian Federation); Kroll, P.; Schaefer, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Lapikas, L. [National Institute for Subatomic Physics (Nikhef), Amsterdam (Netherlands); Lorenzon, W. [University of Michigan, Randall Laboratory of Physics, Ann Arbor, MI (United States); Miyachi, Y.; Shibata, T.A. [Tokyo Institute of Technology, Department of Physics, Tokyo (Japan); Movsisyan, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, Ferrara (Italy); Yerevan Physics Institute, Yerevan (Armenia); Nass, A.; Rith, K. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Riedl, C. [DESY, Zeuthen (Germany); University of Illinois, Department of Physics, Urbana, IL (United States); Ryckbosch, D.; Tytgat, M.; Haarlem, Y. van [Ghent University, Department of Physics and Astronomy, Gent (Belgium); Schnell, G. [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); Basque Foundation for Science, IKERBASQUE, Bilbao (Spain); Ghent University, Department of Physics and Astronomy, Gent (Belgium); Truty, R. [University of Illinois, Department of Physics, Urbana, IL (United States); Hulse, C. van [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); Ghent University, Department of Physics and Astronomy, Gent (Belgium); Yaschenko, S. [DESY, Hamburg (Germany); Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Collaboration: The HERMES Collaboration
2017-06-15
Exclusive ρ{sup 0}-meson electroproduction is studied by the HERMES experiment, using the 27.6 GeV longitudinally polarized electron/positron beam of HERA and a transversely polarized hydrogen target, in the kinematic region 1.0 GeV{sup 2} < Q{sup 2} < 7.0 GeV{sup 2}, 3.0 GeV < W < 6.3 GeV, and -t{sup '} < 0.4 GeV{sup 2}. Using an unbinned maximum-likelihood method, 25 parameters are extracted. These determine the real and imaginary parts of the ratios of several helicity amplitudes describing ρ{sup 0}-meson production by a virtual photon. The denominator of those ratios is the dominant amplitude, the nucleon-helicity-non-flip amplitude F{sub 0(1)/(2)0(1)/(2)}, which describes the production of a longitudinal ρ{sup 0}-meson by a longitudinal virtual photon. The ratios of nucleon-helicity-non-flip amplitudes are found to be in good agreement with those from the previous HERMES analysis. The transverse target polarization allows for the first time the extraction of ratios of a number of nucleon-helicity-flip amplitudes to F{sub 0(1)/(2)0(1)/(2)}. Results obtained in a handbag approach based on generalized parton distributions taking into account the contribution from pion exchange are found to be in good agreement with these ratios. Within the model, the data favor a positive sign for the π - ρ transition form factor. By also exploiting the longitudinal beam polarization, a total of 71 ρ{sup 0} spin-density matrix elements is determined from the extracted 25 parameters, in contrast to only 53 elements as directly determined in earlier analyses. (orig.)
Conformal higher spin scattering amplitudes from twistor space
Energy Technology Data Exchange (ETDEWEB)
Adamo, Tim [Blackett Laboratory, Imperial College, London, SW7 2AZ (United Kingdom); Hähnel, Philipp; McLoughlin, Tristan [School of Mathematics, Trinity College Dublin, College Green, Dublin 2 (Ireland)
2017-04-04
We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point (MHV)-bar amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.
Planar amplitudes in maximally supersymmetric Yang-Mills theory.
Anastasiou, C; Dixon, L; Bern, Z; Kosower, D A
2003-12-19
The collinear factorization properties of two-loop scattering amplitudes in dimensionally regulated N=4 super-Yang-Mills theory suggest that, in the planar ('t Hooft) limit, higher-loop contributions can be expressed entirely in terms of one-loop amplitudes. We demonstrate this relation explicitly for the two-loop four-point amplitude and, based on the collinear limits, conjecture an analogous relation for n-point amplitudes. The simplicity of the relation is consistent with intuition based on the anti-de Sitter/conformal field theory correspondence that the form of the large-N(c) L-loop amplitudes should be simple enough to allow a resummation to all orders.
New formulas for amplitudes from higher-dimensional operators
He, Song; Zhang, Yong
2017-02-01
In this paper we study tree-level amplitudes from higher-dimensional operators, including F 3 operator of gauge theory, and R 2, R 3 operators of gravity, in the Cachazo-He-Yuan formulation. As a generalization of the reduced Pfaffian in Yang-Mills theory, we find a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of F 3, and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, the new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet R 2 term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for F 3 and R 3 amplitudes.
High Frequency Amplitude Detector for GMI Magnetic Sensors
Directory of Open Access Journals (Sweden)
Aktham Asfour
2014-12-01
Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.
Simplicity in the structure of QED and gravity amplitudes
Energy Technology Data Exchange (ETDEWEB)
Badger, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bjerrum-Bohr, N.E.J. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Vanhove, Pierre [Institut des Hautes Etudes Scientifiques IHES, Bures sur Yvette (France); CEA, IPhT, CNRS, URA, Gif-sur-Yvette, (France). Inst. de Physique Theorique
2008-11-15
We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. This QED 'no-triangle' property is true for all helicity configurations and has similarities to the 'notriangle' property found in the case of maximal N=8 supergravity. Results are derived both via a world-line formalism as well as using on-shell unitarity methods. We show that the simple structure of the loop amplitude originates from the extremely good BCFW scaling behaviour of the QED tree-amplitude. (orig.)
Conformal higher spin scattering amplitudes from twistor space
Adamo, Tim; Hähnel, Philipp; McLoughlin, Tristan
2017-04-01
We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point \\overline{MHV} amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.
Gauge and Gravity Amplitudes from Trees to Loops
DEFF Research Database (Denmark)
Huang, Rijun
This thesis describes two subjects that I mainly work on during my PhD study. They are both about scattering amplitudes, covering gravity and gauge theories, tree and loop level, with or without supersymmetry. The rst subject is Kawai-Lewellen-Tye(KLT) relation in field theory, which mysteriously...... relates Yang-Mills amplitudes to gravity amplitudes. Based on many known works about KLT and super-KLT relations, we provide a complete map between super-gravity amplitudes and super-Yang-Mills amplitudes for any number of supersymmetry that allowed in 4-dimensional theory. We also provide an explanation...... a special type of two-loop and three-loop diagrams where equations of maximal unitarity cut de ne complex curve. Geometry genus of complex curve is a topological invariant, and characterizes the property of curve. We compute the genus of complex curve for some two-loop and three-loop diagrams from...
International Nuclear Information System (INIS)
Sagawa, Hiroyuki; Holzwarth, G.
1978-01-01
Small amplitude vibrations of spherical nuclei are considered in microscopic (RPA) and fluid-dynamical description. Assuming the concentration of transition strength into one collective state, the microscopic result can be brought into close analogy to constrained fluid-dynamical motion. The decisive difference occurs in the contribution of the microscopic kinetic energy to the collective potential energy. It is shown that extension of fluid dynamics to include dynamical distortions of the local Fermi surface is sufficient to reproduce the microscopic results. Numerical examples are given for L=0 and L=2 isoscalar modes for a Skyrme-type nucleon-nucleon force. (auth.)
International Nuclear Information System (INIS)
Suarez Antola, R.
2008-11-01
The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may produce changes in density. Changes in density modify the reactivity. Changes in reactivity modify thermal power. Modifications in thermal power produce variations in temperature fields. Variations in temperature produce variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small amplitude. A recently constructed, simple mathematical model of nuclear reactor kinetics, that improves the one due to A.S. Thompson, is reviewed. It was constructed in order to study, in a first approximation, the stability of the reactor: a nonlinear nuclear-thermal oscillator (that corresponds to reactor point kinetics with thermal-elastic feedback and with frozen delayed neutron effects) is coupled nonlinearly with a linear mechanical-thermal oscillator (that corresponds to the first normal mode of mechanical vibrations excited by thermo-elastic effects). This mathematical model is studied here from the standpoint of mechanical vibrations. It is shown how, under certain conditions, a suitable mechanical perturbation could elicit fast and growing oscillatory instabilities in the reactor power. Applying the asymptotic method due to Krylov, Bogoliubov and Mitropolsky, analytical formulae that may be used in the calculation of the time varying amplitude and phase of the mechanical oscillations are given, as functions of the mechanical, thermal and nuclear parameters of the reactor. The consequences for the mechanical integrity of the reactor are assessed. Some conditions, mainly, but not exclusively
Variation of the energy gap of the SbSI crystals at ferroelectric phase transition
International Nuclear Information System (INIS)
Audzijonis, A.; Zaltauskas, R.; Zigas, L.; Vinokurova, I.V.; Farberovich, O.V.; Pauliukas, A.; Kvedaravicius, A.
2006-01-01
Variation of the forbidden gap of SbSI crystals in the phase transition region is analyzed on the pseudopotential method for antiferroelectric and ferroelectric phase. The band gap at several special points of the Brillouin zone and some characteristic parameters of the band are considered. During the phase transition, the most significant changes are observed with the valence band top at points Q, C, R, H, E and with the conduction band bottom at points H, T and E of the Brillouin zone. At the ferroelectric phase transition, the valence and conduction bands change due to displacement of Sb and S atoms with respect to I and with respect to each other as a result of order-disorder and displacement-type transition. The obtained band gap values agree quite well with the experiment. This is apparently due to application of neutral rather than ionic atomic functions and inclusion of sufficiently many plane waves in the basis set for calculation
Absolute Transition Probabilities from the 453.1 keV Level in {sup 183}W
Energy Technology Data Exchange (ETDEWEB)
Malmskog, S.G.
1966-10-15
The half life of the 453.1 keV level in {sup 183}W has been measured by the delayed coincidence method to 18.4 {+-} 0.5 nsec. This determines twelve absolute M1 and E2 transition probabilities, out of which nine are K-forbidden. All transition probabilities are compared with the single particle estimate. The three K-allowed E2, {delta}K = 2 transition rates to the 1/2{sup -} (510) rotational band are furthermore compared with the Nilsson model. An attempt to give a quantitative explanation of the observed transition rates has been made by including the effects from admixtures into the single particle wave functions.
Absolute Transition Probabilities from the 453.1 keV Level in 183W
International Nuclear Information System (INIS)
Malmskog, S.G.
1966-10-01
The half life of the 453.1 keV level in 183 W has been measured by the delayed coincidence method to 18.4 ± 0.5 nsec. This determines twelve absolute M1 and E2 transition probabilities, out of which nine are K-forbidden. All transition probabilities are compared with the single particle estimate. The three K-allowed E2, ΔK = 2 transition rates to the 1/2 - (510) rotational band are furthermore compared with the Nilsson model. An attempt to give a quantitative explanation of the observed transition rates has been made by including the effects from admixtures into the single particle wave functions
f{r_reversible}f electric dipole transitions; old problems in a new light
Energy Technology Data Exchange (ETDEWEB)
Smentek, Lidia, E-mail: lidia.smentek@vanderbilt.ed [Department of Physics, Nicolaus Copernicus University, ul. Grudziadzka 5, 87-100 Torun (Poland); Kedziorski, A. [Department of Physics, Nicolaus Copernicus University, ul. Grudziadzka 5, 87-100 Torun (Poland)
2009-12-04
Very well known difficulties of the theoretical description of the f{r_reversible}f electric dipole transitions of lanthanides are addressed in the old language of the standard Judd-Ofelt (J-O) theory, which has been widely applied for more than 45 years. New light is shed on a competitive physical mechanism of these transitions, which is presented to complement the existing J-O model. Possible new solutions are given for the old problems of the negative intensity parameters obtained from the adjusting procedure. An alternative scheme for the reproduction of the hypersensitive transitions is discussed and a theoretical description of highly forbidden transitions 0-0 and 0-1 observed for Eu{sup 3+} and Sm{sup 2+} ions is presented.
Transition radiation and transition scattering
International Nuclear Information System (INIS)
Ginzburg, V.L.
1982-01-01
Transition radiation is a process of a rather general character. It occurs when some source, which does not have a proper frequency (for example, a charge) moves at a constant velocity in an inhomogeneous and (or) nonstationary medium or near such a medium. The simplest type of transition radiation takes place when a charge crosses a boundary between two media (the role of one of the media may be played by vacuum). In the case of periodic variation of the medium, transition radiation possesses some specific features (resonance transition radiation or transition scattering). Transition scattering occurs, in particular, when a permittivity wave falls onto an nonmoving (fixed) charge. Transition scattering is closely connected with transition bremsstrahlung radiation. All these transition processes are essential for plasma physics. Transition radiation and transition scattering have analogues outside the framework of electrodynamics (like in the case of Vavilov-Cherenkov radiation). In the present report the corresponding range of phenomena is elucidated, as far as possible, in a generally physical aspect. (Auth.)
International Nuclear Information System (INIS)
Sushilov, N.V.; Kholodkevich, E.D.
1995-01-01
An analytical expression is derived for the polarization induced by a weak probe field with periodically modulated amplitude in a two-level medium saturated by a strong amplitude-and phase-modulated resonance field. It is shown that the absorption spectrum of the probe field includes parametric resonances, the maxima corresponding to the condition δ= 2nΓ-Ω w and the minima to that of δ= (2n + 1)Γ- w , where δ is the probe-field detuning front the resonance frequency, Ω w is the modulation frequency of the probe-field amplitude, and Γ is the transition line width, n = 1, 2, 3, hor-ellipsis. At the specific modulation parameters, a substantial region of negative values (i.e., the region of amplification without the population inversion) exists in the absorption spectrum of the probe field
N to Delta electromagnetic transition form factors from Lattice QCD
Alexandrou, C; Lippert, T; Neff, H; Negele, J W; Schilling, K; Tsapalis, A; Forcrand, Ph. de; Lippert, Th.
2004-01-01
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition $\\gamma N\\to \\Delta$ are evaluated in lattice QCD. Unquenching effects are studied using two dynamical Wilson fermions. The dipole transition form factor is accurately determined at several values of momentum transfer. The electric quadrupole amplitude is found to be non-zero yielding a negative value for the ratio,$ R_{EM}$, of electric quadrupole to magnetic dipole amplitudes given in the chiral limit at three values of momenta transfer.
Electric Monopole Transition Strengths in the Stable Nickel Isotopes
Evitts, Lee John
A series of measurements of stable nickel isotopes were performed at the Australian National University in Canberra. Excited states in 58,60,62Ni were populated via inelastic scattering of proton beams delivered by the 14UD Pelletron accelerator. Multiple setups were used in order to determine the structure of low-lying states. The CAESAR array of Compton-suppressed HPGe detectors was used to measure the (E2/M1) mixing ratio of transitions from angular distributions of gamma rays. The Super-e spectrometer was used to measure conversion coefficients for a number of J to J transitions. The data obtained from both devices was combined with previously measured parent lifetimes and branching ratios to determine E0 transition strengths between J-pi transitions. The E0 transition strength for the second 0+ to first 0+ transitions in 60,62Ni have been measured for the first time through internal conversion electron detection. The experimental value of 132(+59,-70) for 62Ni agrees within 2 sigma of the previous result obtained from internal pair formation. However it is likely that the previous experimental results used an outdated theoretical model for internal pair formation emission. This work also represents the first measurements of E0 transition strengths between 2+ states in Ni isotopes. There is generally large E0 strength between the 2+ states, particularly in the second 2+ to first 2+ transition, however there is also a large uncertainty in the measurements owing to the difficulties involved in measuring conversion coefficients. In 62Ni, the E0 transition strength of 172(+62,-77) for the second 2+ to first 2+ transition gives further weight to the argument against the spherical vibrator model, as an E0 transition is forbidden if there is a change of only one phonon. The large measurement also indicates the presence of shape coexistence, complementing the recent experimental work carried out in the neutron-rich Ni isotopes.
'String amplitudes': What can we do about the divergent integrals?
International Nuclear Information System (INIS)
Amano, Kaoru
1990-01-01
The rules for perturbative construction of scattering amplitude constitute the most well-established part of the string theory. They lead to neat integral expressions that represent the amplitude as the sum over the geometry of the string world sheet. However, if one really tries to evaluate the expression, one has to go a long way from there, for the integral does not represent the amplitude in any direct way. The present report focuses on this problem. A study is made to show that the traditional integrals purporting to be string amplitudes are divergent and to identify a remedy. Obviously, any divergent amplitude is not acceptable in a case like the one-loop four-point amplitude. Although the origin of the divergences seems to relate to physical singularities, the integral fails to give imaginary part required for unitarity but only gives infinities which are not desired. Respecting the observation that the integral representation corresponds to the Euclidean Feynman integral, one may modify the integral by postulating an offshell integral for a certain Euclidean, then continuing the function analytically, and defining the physical amplitude by the limit value of the function. This would take one to the correct Minkowskian expression. Some examples are also shown. (N.K.)
Fringe image analysis based on the amplitude modulation method.
Gai, Shaoyan; Da, Feipeng
2010-05-10
A novel phase-analysis method is proposed. To get the fringe order of a fringe image, the amplitude-modulation fringe pattern is carried out, which is combined with the phase-shift method. The primary phase value is obtained by a phase-shift algorithm, and the fringe-order information is encoded in the amplitude-modulation fringe pattern. Different from other methods, the amplitude-modulation fringe identifies the fringe order by the amplitude of the fringe pattern. In an amplitude-modulation fringe pattern, each fringe has its own amplitude; thus, the order information is integrated in one fringe pattern, and the absolute fringe phase can be calculated correctly and quickly with the amplitude-modulation fringe image. The detailed algorithm is given, and the error analysis of this method is also discussed. Experimental results are presented by a full-field shape measurement system where the data has been processed using the proposed algorithm. (c) 2010 Optical Society of America.
Near gap excitation of a CDW amplitude mode by time-resolved photoelectron spectroscopy
Leuenberger, Dominik; Yang, Shuolong; Sobota, Jonathan; Giraldo, Paula; Kirchmann, Patrick; Fisher, Ian; Shen, Zhi-Xun
2014-03-01
We present time-, angle- and energy-resolved photoelectron spectroscopy data from the light rear-earth tritelluride compound CeTe3. An in-plane Peierls distortion in the tellurium slabs leads to the formation of an incommensurate Charge Density Wave (CDW), accompanied by a CDW gap at the Fermi level. Ultrafast optical laser excitation and subsequent relaxation by means of electron-phonon coupling can coherently excite a periodic modulation of the CDW band position and the gap size in rear-earth tritellurides. In this work, the use of tuneable near infrared laser pulses allows for optical excitation slightly above and below the measured gap value of 570 meV. The smaller excitation phase space not only leads to cleaner amplitude mode signal but also helps to pin down the optical transitions, which are the driving mechanisms for the transient CDW phase transition. Financial support by the Swiss National Science Foundation is duly acknowledged.
Amplitude Modulation in the δ Sct star KIC 7106205
Directory of Open Access Journals (Sweden)
Bowman Dominic. M.
2015-01-01
Full Text Available The δ Sct star KIC 7106205 showed amplitude modulation in a single p mode, whilst all other p and g modes remained stable in amplitude and phase over 1470 d of the Kepler dataset. The data were divided into 30 time bins of equal length and a series of consecutive Fourier transforms was calculated. A fixed frequency, calculated from a least-squares fit of all data, allowed amplitude and phase for every mode in each time bin to be tracked. The missing p mode energy was not transferred to any other visible modes.
Renormalization Scale-Fixing for Complex Scattering Amplitudes
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; Llanes-Estrada, Felipe J.; /Madrid U.
2005-12-21
We show how to fix the renormalization scale for hard-scattering exclusive processes such as deeply virtual meson electroproduction by applying the BLM prescription to the imaginary part of the scattering amplitude and employing a fixed-t dispersion relation to obtain the scale-fixed real part. In this way we resolve the ambiguity in BLM renormalization scale-setting for complex scattering amplitudes. We illustrate this by computing the H generalized parton distribution at leading twist in an analytic quark-diquark model for the parton-proton scattering amplitude which can incorporate Regge exchange contributions characteristic of the deep inelastic structure functions.
Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis
Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.
Einstein-Yang-Mills from pure Yang-Mills amplitudes
Nandan, Dhritiman; Plefka, Jan; Schlotterer, Oliver; Wen, Congkao
2016-01-01
We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton ca...
Scattering Amplitudes: The Most Perfect Microscopic Structures in the Universe
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance J.; /CERN /SLAC
2011-11-04
This article gives an overview of many of the recent developments in understanding the structure of relativistic scattering amplitudes in gauge theories ranging from QCD to N = 4 super-Yang-Mills theory, as well as (super)gravity. I also provide a pedagogical introduction to some of the basic tools used to organize and illuminate the color and kinematic structure of amplitudes. This article is an invited review introducing a special issue of Journal of Physics A devoted to 'Scattering Amplitudes in Gauge Theories'.
μ+e-↔μ-e+ transitions via neutral scalar bosons
International Nuclear Information System (INIS)
Hou, W.; Wong, G.
1996-01-01
With μ→eγ decay forbidden by multiplicative lepton number conservation, we study muonium-antimuonium transitions induced by neutral scalar bosons. Pseudoscalars do not induce conversion for triplet muonium, while, for singlet muonium, pseudoscalar and scalar contributions add constructively. This is in contrast with the usual case of doubly charged scalar exchange, where the conversion rate is the same for both singlet and triplet muonium. Complementary to muonium conversion studies, high energy μ + e - →μ - e + and e - e - →μ - μ - collisions could reveal spectacular resonance peaks for the cases of neutral and doubly charged scalars, respectively. copyright 1996 The American Physical Society
Optimal control of vibrational transitions of HCl
Indian Academy of Sciences (India)
Control of fundamental and overtone transitions of a vibration are studied for the diatomic molecule, HCl. Specifically, the results of the effect of variation of the penalty factor on the physical attributes of the system (i.e., probabilities) and pulse (i.e., amplitudes) considering three different pulse durations for each value of the ...
One-loop transition amplitudes in the D1D5 CFT
Energy Technology Data Exchange (ETDEWEB)
Carson, Zaq; Hampton, Shaun; Mathur, Samir D. [Department of Physics, The Ohio State University,191 West Woodruff Ave, Columbus, OH 43210 (United States)
2017-01-02
We consider the issue of thermalization in the D1D5 CFT. Thermalization is expected to correspond to the formation of a black hole in the dual gravity theory. We start from the orbifold point, where the theory is essentially free, and does not thermalize. In earlier work it was noted that there was no clear thermalization effect when the theory was deformed off the orbifold point to first order in the relevant twist perturbation. In this paper we consider the deformation to second order in the twist, where we do find effects that can cause thermalization of an initial perturbation. We consider a 1-loop process where two untwisted copies of the CFT are twisted to one copy and then again untwisted to two copies. We start with a single oscillator excitation on the initial CFT, and compute the effect of the two twists on this state. We find simple approximate expressions for the Bogoliubov coefficients and the behavior of the single oscillator excitation in the continuum limit, where the mode numbers involved are taken to be much larger than unity. We also prove a number of useful relationships valid for processes with an arbitrary number of twist insertions.
Multi-channel 1-to-2 transition amplitudes in a finite volume
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul [JLAB; Hansen, Maxwell [Helmholtz Institute Mainz; Walker-Loud, Andre P [W& M. JLAB
2015-04-01
We derive a model-independent expression for finite-volume matrix elements. Specifically, we present a relativistic, non-perturbative analysis of the matrix element of an external current between a one-scalar in-state and a two-scalar out-state. Our result, which is valid for energies below higher-particle inelastic thresholds, generalizes the Lellouch-Luscher formula in two ways: we allow the external current to inject arbitrary momentum into the system and we allow for the final state to be composed an arbitrary number of strongly coupled two-particle states with arbitrary partial waves (including partial-wave mixing induced by the volume). We also illustrate how our general result can be applied to some key examples, such as heavy meson decays and meson photo production. Finally, we point out complications that arise involving unstable resonance states, such as B to K*+l+l when staggered or mixed-action/partially-quenched calculations are performed.
Single-Molecule Analysis of Protein Large-Amplitude Conformational Transitions
Yang, Haw
2011-03-01
Proteins have evolved to harness thermal fluctuations, rather than frustrated by them, to carry out chemical transformations and mechanical work. What are, then, the operation and design principles of protein machines? To frame the problem in a tractable way, several basic questions have been formulated to guide the experimental design: (a) How many conformational states can a protein sample on the functionally important timescale? (b) What are the inter-conversion rates between states? (c) How do ligand binding or interactions with other proteins modulate the motions? (d) What are the structural basis of flexibility and its underlying molecular mechanics? Guided by this framework, we have studied protein tyrosine phosphatase B, PtpB, from M. tuberculosis (a virulence factor of tuberculosis and a potential drug target) and adenylate kinase, AK, from E. coli (a ubiquitous energy-balancing enzyme in cells). These domain movements have been followed in real time on their respective catalytic timescales using high-resolution single-molecule Förster resonance energy transfer (FRET) spectroscopy. It is shown quantitatively that both PtpB and AK are capable of dynamically sampling two distinct states that correlate well with those observed by x-ray crystallography. Integrating these microscopic dynamics into macroscopic kinetics allows us to place the experimentally measured free-energy landscape in the context of enzymatic turnovers.
A pulse amplitude discriminator with very low-power consuming
International Nuclear Information System (INIS)
Deng Changming; Liu Zhengshan; Zhang Zhiyong; Cheng Chang
2000-01-01
A low-power pulse amplitude discriminator is described. The discriminator circuit is mainly composed of an integrated voltage comparator, MAX921, and owns the characters of very low-power and low operating voltage
Interaction amplitudes of hadrons as composite superconformal strings
International Nuclear Information System (INIS)
Kudryavtsev, V.A.
1995-01-01
Construction of hadron interaction amplitudes is discussed in terms of the recently proposed new string dynamics. Inclusion of the nucleon and the flavor characterizing hadron quantum numbers into dynamics of composite superconformal strings is discussed
Bessel–Gauss resonator with internal amplitude filter
CSIR Research Space (South Africa)
Litvin, IA
2008-05-01
Full Text Available The authors investigate a conventional resonator configuration, using only spherical curvature optical elements, for the generation of Bessel–Gauss beams. This is achieved through the deployment of a suitable amplitude filter at a Fourier plane...
OCT Amplitude and Speckle Statistics of Discrete Random Media
Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.
2017-01-01
Speckle, amplitude fluctuations in optical coherence tomography (OCT) images, contains information on sub-resolution structural properties of the imaged sample. Speckle statistics could therefore be utilized in the characterization of biological tissues. However, a rigorous theoretical framework
Some tree-level string amplitudes in the NSR formalism
International Nuclear Information System (INIS)
Becker, Katrin; Becker, Melanie; Melnikov, Ilarion V.; Robbins, Daniel; Royston, Andrew B.
2015-01-01
We calculate tree level scattering amplitudes for open strings using the NSR formalism. We present a streamlined symmetry-based and pedagogical approach to the computations, which we first develop by checking two-, three-, and four-point functions involving bosons and fermions. We calculate the five-point amplitude for massless gluons and find agreement with an earlier result by Brandt, Machado and Medina. We then compute the five-point amplitudes involving two and four fermions respectively, the general form of which has not been previously obtained in the NSR formalism. The results nicely confirm expectations from the supersymmetric F 4 effective action. Finally we use the prescription of Kawai, Lewellen and Tye (KLT) to compute the amplitudes for the closed string sector.
Amplitudes, recursion relations and unitarity in the Abelian Higgs model
Kleiss, Ronald; Luna, Oscar Boher
2017-12-01
The Abelian Higgs model forms an essential part of the electroweak standard model: it is the sector containing only Z0 and Higgs bosons. We present a diagram-based proof of the tree-level unitarity of this model inside the unitary gauge, where only physical degrees of freedom occur. We derive combinatorial recursion relations for off-shell amplitudes in the massless approximation, which allows us to prove the cancellation of the first two orders in energy of unitarity-violating high-energy behaviour for any tree-level amplitude in this model. We describe a deformation of the amplitudes by extending the physical phase space to at least 7 spacetime dimensions, which leads to on-shell recursion relations à la BCFW. These lead to a simple proof that all on-shell tree amplitudes obey partial-wave unitarity.
The zerology of kaon-nucleon forward scattering amplitudes
International Nuclear Information System (INIS)
Dumbrajs, O.
1981-01-01
It has been realized for a long time that zeros of the forward kaon-nucleon scattering amplitudes are useful in correlating different low and high-energy scattering parameters and in providing a consistency test of available data. The simplest possibility of exploring zeros is to evaluate the ordinary dispersion relations in the complex energy plane. The more natural way of bringing zeros of amplitudes into play is to consider either one of the more sophisticated forms of dispersion relations: i) phase dispersion relations, ii) inverse-amplitude dispersion relations, iii) logarithmic dispersion relations, or to apply the maximum modulus theorem and a factorization theorem. The author concentrates on the use of logarithmic dispersion relations because this approach seems to be the most convenient one for future extensions to nonforward scattering data analyses based on the zeros of the amplitude. (Auth.)
Laser beam complex amplitude measurement by phase diversity.
Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph
2014-02-24
The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
Energy Technology Data Exchange (ETDEWEB)
Carbonell, J. [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Frederico, T. [Instituto Tecnologico de Aeronautica, DCTA, Sao Jose dos Campos (Brazil); Karmanov, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)
2017-01-15
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
International Nuclear Information System (INIS)
Carbonell, J.; Frederico, T.; Karmanov, V.A.
2017-01-01
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
Stora's fine notion of divergent amplitudes
International Nuclear Information System (INIS)
Várilly, Joseph C.; Gracia-Bondía, José M.
2016-01-01
Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
The super-correlator/super-amplitude duality: Part II
Eden, Burkhard; Korchemsky, Gregory P; Sokatchev, Emery
2013-01-01
We continue the study of the duality between super-correlators and scattering super-amplitudes in planar N=4 SYM. We provide a number of further examples supporting the conjectured duality relation between these two seemingly different objects. We consider the five- and six-point one-loop NMHV and the six-point tree-level NNMHV amplitudes, obtaining them from the appropriate correlators of strength tensor multiplets in N=4 SYM. In particular, we find exact agreement between the rather non-trivial parity-odd sector of the integrand of the six-point one-loop NMHV amplitude, as obtained from the correlator or from BCFW recursion relations. Together these results lead to the conjecture that the integrands of any N^kMHV amplitude at any loop order in planar N=4 SYM can be described by the correlators of stress-tensor multiplets.
Stora's fine notion of divergent amplitudes
Energy Technology Data Exchange (ETDEWEB)
Várilly, Joseph C., E-mail: joseph.varilly@ucr.ac.cr [Escuela de Matemática, Universidad de Costa Rica, San José 11501 (Costa Rica); Gracia-Bondía, José M. [Departamento de Física Teórica, Universidad de Zaragoza, Zaragoza 50009 (Spain); Departamento de Física, Universidad de Costa Rica, San Pedro 11501 (Costa Rica)
2016-11-15
Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
Sole, Ricard V; Solé, Ricard V; SolÃ©, Ricard V; Sol, Ricard V; Solé, Ricard V
2011-01-01
Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of ...
Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding
DEFF Research Database (Denmark)
Christensen, M. G.; Jacobson, A.; Andersen, S. V.
2006-01-01
In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....
Examining the time dependence of DAMA's modulation amplitude
Kelso, Chris; Savage, Christopher; Sandick, Pearl; Freese, Katherine; Gondolo, Paolo
2018-03-01
If dark matter is composed of weakly interacting particles, Earth's orbital motion may induce a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with ˜ 7 years of observations. This data is well fit by a constant modulation amplitude for the two iterations of the experiment. We statistically examine the time dependence of the modulation amplitudes, which "by eye" appear to be decreasing with time in certain energy ranges. We perform a chi-squared goodness of fit test of the average modulation amplitudes measured by the two detector iterations which rejects the hypothesis of a consistent modulation amplitude at greater than 80, 96, and 99.6% for the 2-4, 2-5 and 2-6 keVee energy ranges, respectively. We also find that among the 14 annual cycles there are three ≳ 3σ departures from the average in our estimated data in the 5-6 keVee energy range. In addition, we examined several phenomenological models for the time dependence of the modulation amplitude. Using a maximum likelihood test, we find that descriptions of the modulation amplitude as decreasing with time are preferred over a constant modulation amplitude at anywhere between 1σ and 3σ , depending on the phenomenological model for the time dependence and the signal energy range considered. A time dependent modulation amplitude is not expected for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. New data from DAMA/LIBRA-phase2 will certainly aid in determining whether any apparent time dependence is a real effect or a statistical fluctuation.
Superstring vertex operators and scattering amplitudes on arbitrary Riemann surfaces
International Nuclear Information System (INIS)
Aldazabel, G.; Nunez, C.; Iengo, R.; Bonini, M.
1987-12-01
The construction of scattering amplitudes involving arbitrary bosonic mass level states is considered in both the closed superstring and in the heterotic string theories, at any order of perturbation. From massless particle scattering on a general Riemann surface, the super-covariant form of the vertex operators is derived via factorization. The super-covariant rules, including the normal ordering prescriptions, to be used in computing amplitudes, are automatically given by this procedure. (author). 22 refs, 1 fig
Schwinger's effective Lagrangian from reflection and transmission amplitudes
International Nuclear Information System (INIS)
Warke, C.S.
1992-01-01
The reflection and transmission amplitudes are defined from the asymptotic form of the solution of Dirac equation of a charged fermion in the presence of uniform time independent external electromagnetic field (E, H). Schwinger's effective Lagrangian is derived from the reflection and transmission amplitudes. It is found that both the real and imaginary parts of the effective Lagrangian agree with Schwinger's expressions derived from the elegant method of proper time formalism. (author). 14 refs
Lectures on scattering amplitudes via AdS/CFT
Energy Technology Data Exchange (ETDEWEB)
Alday, L.F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University (Netherlands)
2008-08-05
We review recent progress on computing scattering amplitudes of planar N=4 super Yang-Mills at strong coupling by using the AdS/CFT duality. We consider in detail the scattering of four gluons and do explicit computations by using both, dimensional regularization and a cut-off in the radial direction. The later scheme is particularly appropriate for understanding the conformal properties of the amplitudes. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Three Point Tree Level Amplitude in Superstring Theory
Hatefi, Ehsan
2011-01-01
In order to check the definite amplitude and the exact zero result of the amplitude of three massless points $(CAA)$ in both string theory and field theory side for $p=n$ case and to find all gauge field couplings to R-R closed string, we investigate the disk level S-matrix element of one Ramond-Ramond field and two gauge field vertex operators in the world volume of BPS branes.
Multiple pole in the electron--hydrogen-atom scattering amplitude
International Nuclear Information System (INIS)
Amusia, M.Y.; Kuchiev, M.Y.
1982-01-01
It is demonstrated that the amplitude for electron--hydrogen-atom forward scattering has the third-order pole at the point E = -13.6 eV, E being the energy of the incident electron. The coefficients which characterize the pole are calculated exactly. The invalidity of the Born approximation is proved. The contribution of the pole singularity to the dispersion relation for the scattering amplitude is discussed
Fatigue life assessment under multiaxial variable amplitude loading
International Nuclear Information System (INIS)
Morilhat, P.; Kenmeugne, B.; Vidal-Salle, E.; Robert, J.L.
1996-06-01
A variable amplitude multiaxial fatigue life prediction method is presented in this paper. It is based on a stress as input data are the stress tensor histories which may be calculated by FEM analysis or measured directly on the structure during the service loading. The different steps of he method are first presented then its experimental validation is realized for log and finite fatigue lives through biaxial variable amplitude loading tests using cruciform steel samples. (authors). 9 refs., 7 figs
Dark excitons in transition metal dichalcogenides
Malic, Ermin; Selig, Malte; Feierabend, Maja; Brem, Samuel; Christiansen, Dominik; Wendler, Florian; Knorr, Andreas; Berghäuser, Gunnar
2018-01-01
Monolayer transition metal dichalcogenides (TMDs) exhibit a remarkably strong Coulomb interaction that manifests in tightly bound excitons. Due to the complex electronic band structure exhibiting several spin-split valleys in the conduction and valence band, dark excitonic states can be formed. They are inaccessibly by light due to the required spin-flip and/or momentum transfer. The relative position of these dark states with respect to the optically accessible bright excitons has a crucial impact on the emission efficiency of these materials and thus on their technological potential. Based on the solution of the Wannier equation, we present the excitonic landscape of the most studied TMD materials including the spectral position of momentum- and spin-forbidden excitonic states. We show that the knowledge of the electronic dispersion does not allow to conclude about the nature of the material's band gap since excitonic effects can give rise to significant changes. Furthermore, we reveal that an exponentially reduced photoluminescence yield does not necessarily reflect a transition from a direct to a nondirect gap material, but can be ascribed in most cases to a change of the relative spectral distance between bright and dark excitonic states.
International Nuclear Information System (INIS)
Santamarina, Carole
1975-01-01
The present paper deals with the real-time speech synthesis implemented on a minicomputer. A first program translates the orthographic text into a string of phonetic codes, which is then processed by the synthesis program itself. The method used, a synthesis by rules, directly computes the speech signal in its amplitude-time representation. Emphasis has been put on special cases (diphthongs, 'e muet', consonant-consonant transition) and the implementation of the rhythm and of the melody. (author) [fr
Mapping Pn amplitude spreading and attenuation in Asia
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaoning [Los Alamos National Laboratory; Phillips, William S [Los Alamos National Laboratory; Stead, Richard J [Los Alamos National Laboratory
2010-12-06
Pn travels most of its path in the mantle lid. Mapping the lateral variation of Pn amplitude attenuation sheds light on material properties and dynamics of the uppermost region of the mantle. Pn amplitude variation depends on the wavefront geometric spreading as well as material attenuation. We investigated Pn geometric spreading, which is much more complex than a traditionally assumed power-law spreading model, using both synthetic and observed amplitude data collected in Asia. We derived a new Pn spreading model based on the formulation that was proposed previously to account for the spherical shape of the Earth (Yang et. al., BSSA, 2007). New parameters derived for the spreading model provide much better correction for Pn amplitudes in terms of residual behavior. Because we used observed Pn amplitudes to construct the model, the model incorporates not only the effect of the Earth's spherical shape, but also the effect of potential upper-mantle velocity gradients in the region. Using the new spreading model, we corrected Pn amplitudes measured at 1, 2, 4 and 6 Hz and conducted attenuation tomography. The resulting Pn attenuation model correlates well with the regional geology. We see high attenuation in regions such as northern Tibetan Plateau and the western Pacific subduction zone, and low attenuation for stable blocks such as Sichuan and Tarim basins.
Scattering amplitudes and Wilson loops in twistor space
Adamo, Tim; Bullimore, Mathew; Mason, Lionel; Skinner, David
2011-11-01
This paper reviews the recent progress in twistor approaches to Wilson loops, amplitudes and their duality for {N}=4 super-Yang-Mills. Wilson loops and amplitudes are derived from first principles using the twistor action for maximally supersymmetric Yang-Mills theory. We start by deriving the MHV rules for gauge theory amplitudes from the twistor action in an axial gauge in twistor space, and show that this gives rise to the original momentum space version given by Cachazo, Svrček and Witten. We then go on to obtain from these the construction of the momentum twistor space loop integrand using (planar) MHV rules and show how it arises as the expectation value of a holomorphic Wilson loop in twistor space. We explain the connection between the holomorphic Wilson loop and certain light-cone limits of correlation functions. We give a brief review of other ideas in connection with amplitudes in twistor space: twistor-strings, recursion in twistor space, the Grassmannian residue formula for leading singularities and amplitudes as polytopes. This paper is an invited review for a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Scattering amplitudes in gauge theories’.
A proposed physical analog for a quantum probability amplitude
Boyd, Jeffrey
What is the physical analog of a probability amplitude? All quantum mathematics, including quantum information, is built on amplitudes. Every other science uses probabilities; QM alone uses their square root. Why? This question has been asked for a century, but no one previously has proposed an answer. We will present cylindrical helices moving toward a particle source, which particles follow backwards. Consider Feynman's book QED. He speaks of amplitudes moving through space like the hand of a spinning clock. His hand is a complex vector. It traces a cylindrical helix in Cartesian space. The Theory of Elementary Waves changes direction so Feynman's clock faces move toward the particle source. Particles follow amplitudes (quantum waves) backwards. This contradicts wave particle duality. We will present empirical evidence that wave particle duality is wrong about the direction of particles versus waves. This involves a paradigm shift; which are always controversial. We believe that our model is the ONLY proposal ever made for the physical foundations of probability amplitudes. We will show that our ``probability amplitudes'' in physical nature form a Hilbert vector space with adjoints, an inner product and support both linear algebra and Dirac notation.
String scattering amplitudes and deformed cubic string field theory
Directory of Open Access Journals (Sweden)
Sheng-Hong Lai
2018-01-01
Full Text Available We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz–Christoffel mapping.
Mapping Pn Amplitude Spreading and Attenuation in Asia (Invited)
Yang, X.; Phillips, W. S.; Stead, R. J.
2010-12-01
Pn travels most of its path in the mantle lid. Mapping the lateral variation of Pn amplitude attenuation sheds light on material properties and dynamics of the uppermost region of the mantle. Pn amplitude variation depends on the wavefront geometric spreading as well as material attenuation. We investigated Pn geometric spreading, which is much more complex than a traditionally assumed power-law spreading model, using both synthetic and observed amplitude data collected in Asia. We derived a new Pn spreading model based on the formulation that was proposed previously to account for the spherical shape of the Earth (Yang et. al., BSSA, 2007). New parameters derived for the spreading model provide much better correction for Pn amplitudes in terms of residual behavior. Because we used observed Pn amplitudes to construct the model, the model incorporates not only the effect of the Earth's spherical shape, but also the effect of potential upper-mantle velocity gradients in the region. Using the new spreading model, we corrected Pn amplitudes measured at 1, 2, 4 and 6 Hz and conducted attenuation tomography. The resulting Pn attenuation model correlates well with the regional geology. We see high attenuation in regions such as northern Tibetan Plateau and the western Pacific subduction zone, and low attenuation for stable blocks such as Sichuan and Tarim basins.
Scattering amplitudes and Wilson loops in twistor space
Energy Technology Data Exchange (ETDEWEB)
Adamo, Tim; Mason, Lionel [Mathematical Institute, 24-29 St. Giles' , Oxford OX1 3LB (United Kingdom); Bullimore, Mathew [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Skinner, David, E-mail: adamo@maths.ox.ac.uk [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2 L 2Y5 (Canada)
2011-11-11
This paper reviews the recent progress in twistor approaches to Wilson loops, amplitudes and their duality for N=4 super-Yang-Mills. Wilson loops and amplitudes are derived from first principles using the twistor action for maximally supersymmetric Yang-Mills theory. We start by deriving the MHV rules for gauge theory amplitudes from the twistor action in an axial gauge in twistor space, and show that this gives rise to the original momentum space version given by Cachazo, Svrcek and Witten. We then go on to obtain from these the construction of the momentum twistor space loop integrand using (planar) MHV rules and show how it arises as the expectation value of a holomorphic Wilson loop in twistor space. We explain the connection between the holomorphic Wilson loop and certain light-cone limits of correlation functions. We give a brief review of other ideas in connection with amplitudes in twistor space: twistor-strings, recursion in twistor space, the Grassmannian residue formula for leading singularities and amplitudes as polytopes. This paper is an invited review for a special issue of Journal of Physics A: Mathematical and Theoretical devoted to 'Scattering amplitudes in gauge theories'. (review)
Energy Technology Data Exchange (ETDEWEB)
Saeki, T. [Japan National Oil Corporation, Tokyo (Japan). Technology Research Center
1996-10-01
For the seismic reflection method conducted on the ground surface, generator and geophone are set on the surface. The observed waveforms are affected by the ground surface and surface layer. Therefore, it is required for discussing physical properties of the deep underground to remove the influence of surface layer, preliminarily. For the surface consistent amplitude correction, properties of the generator and geophone were removed by assuming that the observed waveforms can be expressed by equations of convolution. This is a correction method to obtain records without affected by the surface conditions. In response to analysis and correction of waveforms, wavelet conversion was examined. Using the amplitude patterns after correction, the significant signal region, noise dominant region, and surface wave dominant region would be separated each other. Since the amplitude values after correction of values in the significant signal region have only small variation, a representative value can be given. This can be used for analyzing the surface consistent amplitude correction. Efficiency of the process can be enhanced by considering the change of frequency. 3 refs., 5 figs.
Energy Technology Data Exchange (ETDEWEB)
Zulu, Leo Charles [Michigan State University, Department of Geography, 103 Geography Building, East Lansing, MI 48823 (United States)
2010-07-15
This article examines woodfuel policy challenges and opportunities in Malawi two decades after woodfuel-crisis narratives and counter-narratives. A nuanced examination of woodfuel supply, demand, use, and markets illuminated options to turn stagnant policies based on charcoal 'bans' and fuel-substitution into proactive, realistic ones acknowledging woodfuel dominance and its socio-economic importance. Findings revealed growing, spatially differentiated woodfuel deficits in southern and central Malawi and around Blantyre, Zomba and Lilongwe cities. Poverty, limited electricity access, reliability and generation exacerbated by tariff subsidies, and complex fuel-allocation decisions restricted energy-ladder transitions from woodfuels to electricity, producing an enduring urban-energy mix dominated by charcoal, thereby increasing wood consumption. Diverse socio-political interests prevented lifting of the charcoal 'ban' despite progressive forest laws. Despite implementation challenges, lessons already learnt, efficiency and poverty-reduction arguments, limited government capacity, growing illegal production of charcoal in forest reserves, and its staying power, make targeted community-based forest management (CBFM) approaches more practical for regulated, commercial production of woodfuels than the status quo. New differentiated policies should include commercial woodfuel production and licensing for revenue and ecological sustainability under CBFM or concessions within and outside selected reserves, an enterprise-based approaches for poverty reduction, smallholder/private tree-growing, woodfuel-energy conserving technologies, improved electricity supply and agricultural productivity. (author)
Energy Technology Data Exchange (ETDEWEB)
Zulu, Leo Charles, E-mail: zulu@msu.ed [Michigan State University, Department of Geography, 103 Geography Building, East Lansing, MI 48823 (United States)
2010-07-15
This article examines woodfuel policy challenges and opportunities in Malawi two decades after woodfuel-crisis narratives and counter-narratives. A nuanced examination of woodfuel supply, demand, use, and markets illuminated options to turn stagnant policies based on charcoal 'bans' and fuel-substitution into proactive, realistic ones acknowledging woodfuel dominance and its socio-economic importance. Findings revealed growing, spatially differentiated woodfuel deficits in southern and central Malawi and around Blantyre, Zomba and Lilongwe cities. Poverty, limited electricity access, reliability and generation exacerbated by tariff subsidies, and complex fuel-allocation decisions restricted energy-ladder transitions from woodfuels to electricity, producing an enduring urban-energy mix dominated by charcoal, thereby increasing wood consumption. Diverse socio-political interests prevented lifting of the charcoal 'ban' despite progressive forest laws. Despite implementation challenges, lessons already learnt, efficiency and poverty-reduction arguments, limited government capacity, growing illegal production of charcoal in forest reserves, and its staying power, make targeted community-based forest management (CBFM) approaches more practical for regulated, commercial production of woodfuels than the status quo. New differentiated policies should include commercial woodfuel production and licensing for revenue and ecological sustainability under CBFM or concessions within and outside selected reserves, an enterprise-based approaches for poverty reduction, smallholder/private tree-growing, woodfuel-energy conserving technologies, improved electricity supply and agricultural productivity.
International Nuclear Information System (INIS)
Zulu, Leo Charles
2010-01-01
This article examines woodfuel policy challenges and opportunities in Malawi two decades after woodfuel-crisis narratives and counter-narratives. A nuanced examination of woodfuel supply, demand, use, and markets illuminated options to turn stagnant policies based on charcoal 'bans' and fuel-substitution into proactive, realistic ones acknowledging woodfuel dominance and its socio-economic importance. Findings revealed growing, spatially differentiated woodfuel deficits in southern and central Malawi and around Blantyre, Zomba and Lilongwe cities. Poverty, limited electricity access, reliability and generation exacerbated by tariff subsidies, and complex fuel-allocation decisions restricted energy-ladder transitions from woodfuels to electricity, producing an enduring urban-energy mix dominated by charcoal, thereby increasing wood consumption. Diverse socio-political interests prevented lifting of the charcoal 'ban' despite progressive forest laws. Despite implementation challenges, lessons already learnt, efficiency and poverty-reduction arguments, limited government capacity, growing illegal production of charcoal in forest reserves, and its staying power, make targeted community-based forest management (CBFM) approaches more practical for regulated, commercial production of woodfuels than the status quo. New differentiated policies should include commercial woodfuel production and licensing for revenue and ecological sustainability under CBFM or concessions within and outside selected reserves, an enterprise-based approaches for poverty reduction, smallholder/private tree-growing, woodfuel-energy conserving technologies, improved electricity supply and agricultural productivity.
Observations of short large-amplitude magnetic structures at a quasi-parallel shock
International Nuclear Information System (INIS)
Schwartz, S.J.; Burgess, D.; Wilkinson, W.P.; Kessel, R.L.; Dunlop, M.; Luehr, H.
1992-01-01
The authors have conducted a detailed analysis of a set of events termed short large-amplitude magnetic structures (SLAMS) observed at an encounter of the quasi-parallel bow shock by the AMPTE UKS and IRM satellites. They have identified isolated SLAMS, surrounded by solar wind conditions, and embedded SLAMS, which lie within or form the boundary with regions of significant heating and deceleration. The duration, polarization, and other characteristics of SLAMS are all consistent with their growth directly out of the ULF wave field, including the common occurrence of an attached whistler as found in ULF shocklets. The plasma rest frame propagation speeds, where they can be determined, and two-spacecraft time delays for all cases show that the SLAMS attempt to propagate upstream against the oncoming flow, but are convected back downstream. The speeds and delays vary systematically with SLAMS amplitude in the way anticipated from nonlinear wave theory, as do their polarization features. Inter-SLAMS regions, and boundary regions with the solar wind, contain hot deflected ion of lesser density than within the SLAMS. The amplitude of the SLAMS requires an active growth mechanism. Following earlier inferences about the limited transverse extent of SLAMS, they highlight the importance of determining the thickness of the transition zone over which SLAMS grow and the bulk heating and deceleration is effected. From this case study it appears that, at least under some circumstances, the quasi-parallel shock cannot be regarded as an undulating, cyclically re-forming simply connected surface. Instead, the transition zone is better represented as a set of ULF waves, some of which grow to become SLAMS which gradually decelerate and merge to form the downstream state
Descotes-Genon, S
2003-01-01
We study the radiative decay B -> gamma l nu_l in the framework of QCD factorization. We demonstrate explicitly that, in the heavy-quark limit and at one-loop order in perturbation theory, the amplitude does factorize, i.e. that it can be written as a convolution of a perturbatively calculable hard-scattering amplitude with the (non-perturbative) light-cone distribution amplitude of the B-meson. We evaluate the hard-scattering amplitude at one-loop order and verify that the large logarithms are those expected from a study of the b->u transition in the Soft-Collinear Effective Theory. Assuming that this is also the case at higher orders, we resum the large logarithms and perform an exploratory phenomenological analysis. The questions addressed in this study are also relevant for the applications of the QCD factorization formalism to two-body non-leptonic B-decays, in particular to the component of the amplitude arising from hard spectator interactions.
Decadal amplitude modulation of two types of ENSO and its relationship with the mean state
Energy Technology Data Exchange (ETDEWEB)
Choi, Jung; An, Soon-Il [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea, Republic of); Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea, Republic of)
2012-06-15
In this study, we classified two types of El Nino-Southern Oscillation (ENSO) events within the decadal ENSO amplitude modulation cycle using a long-term coupled general circulation model simulation. We defined two climate states - strong and weak ENSO amplitude periods - and separated the characteristics of ENSO that occurred in both periods. There are two major features in the characteristics of ENSO: the first is the asymmetric spatial structure between El Nino and La Nina events; the second is that the El Nino-La Nina asymmetry is reversed during strong and weak ENSO amplitude periods. El Nino events during strong (weak) ENSO amplitude periods resemble the Eastern Pacific (Central Pacific) El Nino in terms of the spatial distribution of sea surface temperature anomalies (SSTA) and physical characteristics based on heat budget analysis. The spatial pattern of the thermocline depth anomaly for strong (weak) El Nino is identical to that for weak (strong) La Nina, but for an opposite sign and slightly different amplitude. The accumulated residuals of these asymmetric anomalies dominated by an east-west contrast structure could feed into the tropical Pacific mean state. Moreover, the residual pattern associated with El Nino-La Nina asymmetry resembles the first principal component analysis (PCA) mode of tropical Pacific decadal variability, indicating that the accumulated residuals could generate the change in climate state. Thus, the intensified ENSO amplitude yields the warm residuals due to strong El Nino and weak La Nina over the eastern tropical Pacific. This linear relationship between ENSO and the mean state is strong during the mature phases of decadal oscillation, but it is weak during the transition phases. Furthermore, the second PCA mode of tropical Pacific decadal variability plays an important role in changing the phase of the first mode. Consequently, the feedback between ENSO and the mean state is positive feedback to amplify the first PCA mode
Energy Technology Data Exchange (ETDEWEB)
Kim, Juntae; Helgeson, Matthew E., E-mail: helgeson@engineering.ucsb.edu [Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106 (United States); Merger, Dimitri; Wilhelm, Manfred [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)
2014-09-01
We investigate yielding in a colloidal gel that forms a heterogeneous structure, consisting of a two-phase bicontinuous network of colloid-rich domains of fractal clusters and colloid-poor domains. Combining large amplitude oscillatory shear measurements with simultaneous small and ultra-small angle neutron scattering (rheo-SANS/USANS), we characterize both the nonlinear mechanical processes and strain amplitude-dependent microstructure underlying yielding. We observe a broad, three-stage yielding process that evolves over an order of magnitude in strain amplitude between the onset of nonlinearity and flow. Analyzing the intracycle response as a sequence of physical processes reveals a transition from elastic straining to elastoplastic thinning (which dominates in region I) and eventually yielding (which evolves through region II) and flow (which saturates in region III), and allows quantification of instantaneous nonlinear parameters associated with yielding. These measures exhibit significant strain rate amplitude dependence above a characteristic frequency, which we argue is governed by poroelastic effects. Correlating these results with time-averaged rheo-USANS measurements reveals that the material passes through a cascade of structural breakdown from large to progressively smaller length scales. In region I, compression of the fractal domains leads to the formation of large voids. In regions II and III, cluster-cluster correlations become increasingly homogeneous, suggesting breakage and eventually depercolation of intercluster bonds at the yield point. All significant structural changes occur on the micron-scale, suggesting that large-scale rearrangements of hundreds or thousands of particles, rather than the homogeneous rearrangement of particle-particle bonds, dominate the initial yielding of heterogeneous colloidal gels.
International Nuclear Information System (INIS)
Kim, Juntae; Helgeson, Matthew E.; Merger, Dimitri; Wilhelm, Manfred
2014-01-01
We investigate yielding in a colloidal gel that forms a heterogeneous structure, consisting of a two-phase bicontinuous network of colloid-rich domains of fractal clusters and colloid-poor domains. Combining large amplitude oscillatory shear measurements with simultaneous small and ultra-small angle neutron scattering (rheo-SANS/USANS), we characterize both the nonlinear mechanical processes and strain amplitude-dependent microstructure underlying yielding. We observe a broad, three-stage yielding process that evolves over an order of magnitude in strain amplitude between the onset of nonlinearity and flow. Analyzing the intracycle response as a sequence of physical processes reveals a transition from elastic straining to elastoplastic thinning (which dominates in region I) and eventually yielding (which evolves through region II) and flow (which saturates in region III), and allows quantification of instantaneous nonlinear parameters associated with yielding. These measures exhibit significant strain rate amplitude dependence above a characteristic frequency, which we argue is governed by poroelastic effects. Correlating these results with time-averaged rheo-USANS measurements reveals that the material passes through a cascade of structural breakdown from large to progressively smaller length scales. In region I, compression of the fractal domains leads to the formation of large voids. In regions II and III, cluster-cluster correlations become increasingly homogeneous, suggesting breakage and eventually depercolation of intercluster bonds at the yield point. All significant structural changes occur on the micron-scale, suggesting that large-scale rearrangements of hundreds or thousands of particles, rather than the homogeneous rearrangement of particle-particle bonds, dominate the initial yielding of heterogeneous colloidal gels
The open superstring 6-point amplitude with manifest symmetries
International Nuclear Information System (INIS)
Barreiro, Luiz Antonio; Medina, Ricardo; Stieberger, Stephan
2011-01-01
Full text: The general tree level amplitude for massless bosons states of open superstrings has been known for a long time ago. It is clear how to obtain this general formula using vertex operators in the Ramond-Neveu-Schwarz formalism. From the beginning of the eighties the explicit expression for this formula has been known in the case of 3 and 4-point amplitudes. In that decade an attempt (with partial success) was done, by Kitazawa, to obtain the corresponding 5-point amplitude. Only in 2002 a complete and correct expression for this amplitude was obtained. Its low energy expansion was compared to the corresponding one from the low energy effective Lagrangian of the open superstring, finding a perfect match. A few years later, in 2005, it was realized that the 5-point formula could be written in a very much compact form, as a sum of two terms: each of them consisting of a momentum factor and a kinematic expression. This constituted a generalization of the 4-point amplitude case, which had been known to be cast in only one momentum factor multiplied by one kinematic expression. For this simplification to happen, known symmetries of the (tree level) scattering amplitudes were implemented in a manifest form. These symmetries are (on-shell) gauge symmetry, cyclic symmetry and twisting symmetry (or world sheet parity). In the recent years it has been realized that the N-point amplitude can be written as a sum of (N - 3)! terms (where N > 3). This result not only agrees with the 3, 4 and 5-point results, but also with the 6-point result which had been obtained by 2005, written as a sum of six terms. The expression that up to now has been obtained for the 6-point amplitude is quite complicated and, besides knowing that it consists of six terms, is not very illuminating. In this work we report on the recent result of writing the 6-point amplitude with gauge, cyclic and twisting symmetries manifest. Not only because of the manifest symmetries this result is important
McCaslin, Devin L; Fowler, Andrea; Jacobson, Gary P
2014-03-01
The cervical vestibular evoked myogenic potential (cVEMP) is an acoustically synchronized, signal averaged, brief inhibitory response of a contracted muscle usually resulting from an acoustic stimulus. The cVEMP is recorded from the tonically contracted sternocleidomastoid muscle (SCM). The presence and amplitude of the cVEMP is related to both the integrity of the sacculo-collic pathway and magnitude of electromyographic (EMG) activity at the time of recording. Measurement variables include the absolute latency of the primary positive going component (referred to as P13) and interaural (i.e., left versus right) latency differences. Also measured is the peak-to-peak interaural amplitude asymmetry (IAA; percent difference in amplitude, left versus right). It is known that the amplitude of the cVEMP is positively correlated with the magnitude of tonic EMG from which the evoked potential is extracted. Thus, if EMG amplitude is uncontrolled, one cannot determine whether cVEMP asymmetries are occurring due to unilateral end organ disease or asymmetric tonic EMG activity. Two methods have been suggested to control for tonic EMG activity. These include (1) patient self-monitoring of EMG activity with biofeedback and (2) mathematical correction (i.e., amplitude normalization) of the left and right cVEMP waveforms. Currently, it is unknown how effective amplitude normalization techniques are at reducing cVEMP amplitude asymmetry in the presence of varying levels of EMG. The purpose of this investigation was to determine whether the use of amplitude correction techniques would reduce significantly the P13-N23 IAA data in otologically and neurologically intact adults when the level of EMG was varied between right and left sides. A prospective, repeated measures design was used for three different investigations in which cVEMPs were recorded and then processed using amplitude correction. Subjects were 20 otologically and neurologically health young adults between 21 and 29 yr
2012-07-01
Public transit agencies have employed intelligent systems for determining : schedules and routes and for monitoring the real-time location and status of their : vehicle fleets for nearly two decades. But until recently, the data generated by : daily ...
Lecce, Raffaele; Regazzoni, Luca; Mustazza, Carlo; Incarnato, Giampaolo; Porrà, Rita; Panusa, Alessia
2016-06-05
Commission regulation (EU) No 358/2014 amending the new regulation (EC) No 1223/2009 on cosmetics has prohibited the use of isopropyl-, isobutyl-, phenyl-, benzyl- and pentylparaben. Furthermore, Commission regulation (EU) No 1004/2014 has lowered the maximum permitted concentration of butyl- and propylparaben in cosmetics and it has also banned them in leave-on products designed for application on the nappy area of children under three years of age. A HPLC-PDA-ESI/MS method has been developed herein for the detection of seventeen preservatives, both the most utilised and the recently forbidden by the new EU regulations. The separation of these compounds, including benzoic acid and its derivatives in a 1.10 - 3.04 log Pow range, has been performed with a gradient elution on a Symmetry(®) C18 column (250×4.6mm i.d., particle size 5μm) with water and acetonitrile (0.1% formic acid) as mobile phase. Quantification has been carried out by HPLC-PDA. The method has been validated and successfully applied to the analysis of a large number of cosmetics with different functions like rinse-off and leave-on, or composition like skin, hair, face and oral products. Copyright © 2016 Elsevier B.V. All rights reserved.
Kuijer, Roeline G; Boyce, Jessica A; Marshall, Emma M
2015-01-01
The increase in obesity and the many educational messages prompting us to eat a healthy diet have heightened people's concerns about the effects of food choice on health and weight. An unintended side effect may be that such awareness fuels feelings of guilt and worry about food. Although guilt has the potential to motivate behaviour change, it may also lead to feelings of helplessness and loss of control. The current study examined the relationship between a default association of either 'guilt' or 'celebration' with a prototypical forbidden food item (chocolate cake), indicators of healthy eating and choosing food for mood regulation reasons. Following a 'diathesis-stress' perspective, the moderating roles of depressive symptoms and stress were examined. Although a default association of guilt was found to be harmless under some circumstances (i.e. under low stress), those who associated chocolate cake with guilt (vs. celebration) reported unhealthier eating habits and lower levels of perceived behavioural control over healthy eating when under stress, rated mood regulation reasons for food choice as important irrespective of their current affective state, and did not have more positive attitudes towards healthy eating. Implications for public health messages and interventions will be discussed.
Retrieving impulse response function amplitudes from the ambient seismic field
Viens, Loïc; Denolle, Marine; Miyake, Hiroe; Sakai, Shin'ichi; Nakagawa, Shigeki
2017-07-01
Seismic interferometry is now widely used to retrieve the impulse response function of the Earth between two distant seismometers. The phase information has been the focus of most passive imaging studies, as conventional seismic tomography uses traveltime measurements. The amplitude information, however, is harder to interpret because it strongly depends on the distribution of ambient seismic field sources and on the multitude of processing methods. Our study focuses on the latter by comparing the amplitudes of the impulse response functions calculated between seismic stations in the Kanto sedimentary basin, Japan, using several processing techniques. This region provides a unique natural laboratory to test the reliability of the amplitudes with complex wave propagation through the basin, and dense observations from the Metropolitan Seismic Observation network. We compute the impulse response functions using the cross correlation, coherency and deconvolution techniques of the raw ambient seismic field and the cross correlation of 1-bit normalized data. To validate the amplitudes of the impulse response functions, we use a shallow Mw 5.8 earthquake that occurred on the eastern edge of Kanto Basin and close to a station that is used as the virtual source. Both S and surface waves are retrieved in the causal part of the impulse response functions computed with all the different techniques. However, the amplitudes obtained from the deconvolution method agree better with those of the earthquake. Despite the expected wave attenuation due to the soft sediments of the Kanto Basin, seismic amplification caused by the basin geometry dominates the amplitudes of S and surface waves and is captured by the ambient seismic field. To test whether or not the anticausal part of the impulse response functions from deconvolution also contains reliable amplitude information, we use another virtual source located on the western edge of the basin. We show that the surface wave amplitudes
An overlooked effect of systemic anticholinergics: alteration on accommodation amplitude
Directory of Open Access Journals (Sweden)
Mehmet Ali Sekeroglu
2016-05-01
Full Text Available AIM: To investigate the effect of oral solifenacin succinate, tolterodine-L-tartarate and oxybutinin hydrochloride (HCl on accommodation amplitude. METHODS: Female overactive bladder syndrome (OAB patients who were planned to use oral anticholinergics, patients that uses solifenacin succinate 5 mg (Group I, n=25, tolterodine-L-tartarate 4 mg (Group II, n=25, and oxybutinin HCl 5 mg b.i.d (Group III, n=25 and age matched healthy female subjects (Group IV, n=25 were recruited and complete ophthalmological examination and accommodation amplitude assessment were done at baseline and 4wk after initiation of treatment. RESULTS: The mean age of 100 consecutive female subjects was 51.6±5.7 (40-60y and there were no statistically significant difference with regard to the mean age (P=0.107 and baseline accommodation amplitude (P=0.148 between study groups. All treatment groups showed a significant decrease in accommodation amplitude following a 4-week course of anticholinergic treatment (P=0.008 in Group I, P=0.002 in Group II, P=0.001 in Group III, but there was no statistically significant difference in Group IV (P=0.065. CONCLUSION: A 4-week course of oral anticholinergic treatment have statistically significant effect on accommodation amplitude. Clinicians should avoid both overestimating this result, as this would unnecessarily restrict therapeutic possibilities, and also underestimating it which may lead to drug intolerance.
New formulas for amplitudes from higher-dimensional operators
Energy Technology Data Exchange (ETDEWEB)
He, Song [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No.19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China)
2017-02-06
In this paper we study tree-level amplitudes from higher-dimensional operators, including F{sup 3} operator of gauge theory, and R{sup 2}, R{sup 3} operators of gravity, in the Cachazo-He-Yuan formulation. As a generalization of the reduced Pfaffian in Yang-Mills theory, we find a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of F{sup 3}, and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, the new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet R{sup 2} term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for F{sup 3} and R{sup 3} amplitudes.
T-wave amplitude is related to physical fitness status.
Arbel, Yaron; Birati, Edo Y; Shapira, Itzhak; Topilsky, Yan; Wirguin, Michal; Canaani M D, Jonathan
2012-07-01
Abnormalities in repolarization may reflect underlying myocardial pathology and play a prominent role in arrhythmogenesis The T-wave amplitude has been associated with cardiovascular outcome in patients with acute myocardial infarction (MI) Additionally, T-wave amplitude is considered a predictor of arrhythmias, as well as being related to an individual's inflammatory status. The combined influence of different variables, such as inflammation, cardiovascular risk factors and physical fitness status, on the T-wave amplitude has not been evaluated to date. The aim of this study was to identify factors that affect the T-wave amplitude. Data from 255 consecutive apparently healthy individuals included in the Tel Aviv Medical Center Inflammation Survey (TAMCIS) were reviewed. All patients had undergone a physical examination and an exercise stress test, and different inflammatory and metabolic biomarkers (fibrinogen, potassium, and high-sensitivity C-reactive protein) were measured. Multivariate stepwise analysis revealed that the body mass index and the resting heart rate were significantly associated with the T-wave amplitude (β=-0.34, P physical fitness and not to his/her inflammatory status. ©2012, Wiley Periodicals, Inc.
All Tree-level Amplitudes in Massless QCD
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance J.; /CERN /SLAC; Henn, Johannes M.; Plefka, Jan; Schuster, Theodor; /Humboldt U., Berlin
2010-10-25
We derive compact analytical formulae for all tree-level color-ordered gauge theory amplitudes involving any number of external gluons and up to three massless quark-anti-quark pairs. A general formula is presented based on the combinatorics of paths along a rooted tree and associated determinants. Explicit expressions are displayed for the next-to-maximally helicity violating (NMHV) and next-to-next-to-maximally helicity violating (NNMHV) gauge theory amplitudes. Our results are obtained by projecting the previously-found expressions for the super-amplitudes of the maximally supersymmetric Yang-Mills theory (N = 4 SYM) onto the relevant components yielding all gluon-gluino tree amplitudes in N = 4 SYM. We show how these results carry over to the corresponding QCD amplitudes, including massless quarks of different flavors as well as a single electroweak vector boson. The public Mathematica package GGT is described, which encodes the results of this work and yields analytical formulae for all N = 4 SYM gluon-gluino trees. These in turn yield all QCD trees with up to four external arbitrary-flavored massless quark-anti-quark-pairs.
Estimates of the number of large amplitude gusts
Energy Technology Data Exchange (ETDEWEB)
Ramsdell, J.V.
1978-03-01
Preliminary estimates are presented of the number of occurrences of large amplitude gusts for use in the design of wind energy conversion systems. Existing turbulence information has been combined with an assumed wind speed distribution to arrive at the estimates. The number of large amplitude gusts per year is treated as a function of the annual mean wind speed and terrain roughness. This treatment is based upon the assumptions that the atmosphere has neutral stability during high winds and that the gustiness is induced by flow over surface roughness elements. Large gusts during thunderstorms and other severe weather phenomena are not treated. The results of the study are presented in tabular form as a function of gust amplitude and hourly average wind speed.
Mammalian cycles: internally defined periods and interaction-driven amplitudes
Krebs, CJ
2015-01-01
The cause of mammalian cycles—the rise and fall of populations over a predictable period of time—has remained controversial since these patterns were first observed over a century ago. In spite of extensive work on observable mammalian cycles, the field has remained divided upon what the true cause is, with a majority of opinions attributing it to either predation or to intra-species mechanisms. Here we unite the eigenperiod hypothesis, which describes an internal, maternal effect-based mechanism to explain the cycles’ periods with a recent generalization explaining the amplitude of snowshoe hare cycles in northwestern North America based on initial predator abundance. By explaining the period and the amplitude of the cycle with separate mechanisms, a unified and consistent view of the causation of cycles is reached. Based on our suggested theory, we forecast the next snowshoe hare cycle (predicted peak in 2016) to be of extraordinarily low amplitude. PMID:26339557
Einstein-Yang-Mills from pure Yang-Mills amplitudes
International Nuclear Information System (INIS)
Nandan, Dhritiman; Plefka, Jan; Schlotterer, Oliver; Wen, Congkao
2016-01-01
We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton case with a single color trace. As the derivation is made in the dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external bosons in any number of spacetime dimensions. Moreover, they generalize to the superamplitudes in theories with 16 supercharges.
BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes
Bartels, J; Sabio Vera, Agustin
2009-01-01
After a brief review of the BFKL approach to Regge processes in QCD and in supersymmetric (SUSY) gauge theories we propose a strategy for calculating the next-to-next-to-leading order corrections to the BFKL kernel. They can be obtained in terms of various cross-sections for Reggeized gluon interactions. The corresponding amplitudes can be calculated in the framework of the effective action for high energy scattering. In the case of N=4 SUSY it is also possible to use the Bern-Dixon-Smirnov (BDS) ansatz. For this purpose the analytic properties of the BDS amplitudes at high energies are investigated, in order to verify their self-consistency. It is found that, for the number of external particles being larger than five, these amplitudes, beyond one loop, are not in agreement with the BFKL approach which predicts the existence of Regge cuts in some physical channels.
One-Loop BPS amplitudes as BPS-state sums
Angelantonj, Carlo; Pioline, Boris
2012-01-01
Recently, we introduced a new procedure for computing a class of one-loop BPS-saturated amplitudes in String Theory, which expresses them as a sum of one-loop contributions of all perturbative BPS states in a manifestly T-duality invariant fashion. In this paper, we extend this procedure to all BPS-saturated amplitudes of the form \\int_F \\Gamma_{d+k,d} {\\Phi}, with {\\Phi} being a weak (almost) holomorphic modular form of weight -k/2. We use the fact that any such {\\Phi} can be expressed as a linear combination of certain absolutely convergent Poincar\\'e series, against which the fundamental domain F can be unfolded. The resulting BPS-state sum neatly exhibits the singularities of the amplitude at points of gauge symmetry enhancement, in a chamber-independent fashion. We illustrate our method with concrete examples of interest in heterotic string compactifications.
arXiv New relations for graviton-matter amplitudes
Plefka, Jan
We present new relations for scattering amplitudes of color ordered gluons, massive quarks and scalars minimally coupled to gravity. Tree-level amplitudes of arbitrary matter and gluon multiplicities involving one graviton are reduced to partial amplitudes in QCD or scalar QCD. The obtained relations are a direct generalization of the recently found Einstein-Yang-Mills relations. The proof of the new relation employs a simple diagrammatic argument trading the graviton-matter couplings to an `upgrade' of a gluon coupling with a color-kinematic replacement rule enforced. The use of the Melia-Johansson-Ochirov color basis is a key element of the reduction. We comment on the generalization to multiple gravitons in the single color trace case.
Einstein-Yang-Mills from pure Yang-Mills amplitudes
Energy Technology Data Exchange (ETDEWEB)
Nandan, Dhritiman; Plefka, Jan [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, D-12489 Berlin (Germany); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Potsdam (Germany); Wen, Congkao [I.N.F.N. Sezione di Roma Tor Vergata,Via della Ricerca Scientifica, 00133 Roma (Italy)
2016-10-14
We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton case with a single color trace. As the derivation is made in the dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external bosons in any number of spacetime dimensions. Moreover, they generalize to the superamplitudes in theories with 16 supercharges.
Simplifying one-loop amplitudes in superstring theory
Energy Technology Data Exchange (ETDEWEB)
Bianchi, Massimo; Consoli, Dario [Dipartimento di Fisica, Università di Roma “Tor Vergata”,INFN Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, 00133 Roma (Italy)
2016-01-08
We show that 4-point vector boson one-loop amplitudes, computed in http://dx.doi.org/10.1088/1126-6708/2006/12/010 in the RNS formalism, around vacuum configurations with open unoriented strings, preserving at least N=1 SUSY in D=4, satisfy the correct supersymmetry Ward identities, in that they vanish for non MHV configurations (++++) and (−+++). In the MHV case (−−++) we drastically simplify their expressions. We then study factorisation and the limiting IR and UV behaviours and find some unexpected results. In particular no massless poles are exposed at generic values of the modular parameter. Relying on the supersymmetric properties of our bosonic amplitudes, we extend them to manifestly supersymmetric super-amplitudes and compare our results with those obtained in the D=4 hybrid formalism, pointing out difficulties in reconciling the two approaches for contributions from N=1,2 sectors.
Expression of relativistic amplitudes in terms of wave functions
International Nuclear Information System (INIS)
Karmanov, V.A.
1978-01-01
The conditions under which relativistic amplitudes may be expressed in terms of the wave functions are analyzed within the framework of the invariant diagram technique which appears on formulation of field theory on the light front. The amplitudes depend on the 4-vector ω which defines the surface of the light front. A rule is formulated for the determination of those values of the 4-vector ω for which the diagram contribution, which cannot be expressed in terms of the wave functions, is minimum. The present investigation is equivalent to a study of the dependence of the amplitudes of the old fashioned perburbation theory in the infinite momentum depending on the direction of the infinite momentum
Anomalous Amplitude Attenuation Method to Enhance Seismic Resolution
Directory of Open Access Journals (Sweden)
Muchlis .
2015-05-01
Full Text Available Anomalous Amplitude Attenuation (AAA is a method to process seismic data with multilevel processing (multi step flow. AAA is indicated for identifying anomalous seismic amplitude (amplitude noise such as: spike noise, noise and noised trace. AAA is a filter applied to the data in the frequency domain, range, both in CMP/CDP, offset or gather shot. Processing of the data depends on how the sensor (the geophone receives seismic waves, and then set the data back into the format demultiplex (SEG-Y and then processed according to the rules (flowchart seismic reflection processing.This method has been applied to improve the old seismic data of an exploration company in prospecting the unseen structure in prospecting the hydrocarbon trapped within sedimentary rock subsurface.
Amplitude analysis of the B+/--->phiK*(892)+/- decay.
Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Ronan, M T; Tackmann, K; Wenzel, W A; del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G
2007-11-16
We perform an amplitude analysis of B+/--->phi(1020)K*(892)+/- decay with a sample of about 384 x 10(6) BB[over ] pairs recorded with the BABAR detector. Overall, twelve parameters are measured, including the fractions of longitudinal fL and parity-odd transverse f perpendicular amplitudes, branching fraction, strong phases, and six parameters sensitive to CP violation. We use the dependence on the Kpi invariant mass of the interference between the JP=1(-) and 0+ Kpi components to resolve the discrete ambiguity in the determination of the strong and weak phases. Our measurements of fL=0.49+/-0.05+/-0.03, f perpendicular=0.21+/-0.05+/-0.02, and the strong phases point to the presence of a substantial helicity-plus amplitude from a presently unknown source.
Amplitude saturation of MEMS resonators explained by autoparametric resonance
International Nuclear Information System (INIS)
Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M; Van der Hout, R; Hulshof, J; Fey, R H B
2010-01-01
This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators
Electromagnetic energies of nuclei and the nuclear Compton amplitude
International Nuclear Information System (INIS)
Friar, J.L.
1976-01-01
The electromagnetic energy of a nucleus is derived in perturbation theory, which relates this quantity to the amplitude for the forward scattering of virtual photons on a nucleus (nuclear Compton amplitude). Through the use of the gauge invariance of this amplitude, the energy is separated into Coulomb and transverse components. Our formalism, although basically nonrelativistic, admits corrections of order (v/c) 2 to the nuclear charge operator. The energy is further separated into one-body terms, related to the n--p mass difference, and two-body terms which lead to the Breit interaction and the nuclear Lamb shift. These results are then related to electron scattering sum rules in the manner of Cottingham. Mesonic contributions to the electromagnetic energy are also discussed
Amplitude Noise Reduction of Ion Lasers with Optical Feedback
Herring, Gregory C.
2011-01-01
A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.
String amplitudes: from field theories to number theory
CERN. Geneva
2017-01-01
In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...
Mammalian cycles: internally defined periods and interaction-driven amplitudes
Directory of Open Access Journals (Sweden)
LR Ginzburg
2015-08-01
Full Text Available The cause of mammalian cycles—the rise and fall of populations over a predictable period of time—has remained controversial since these patterns were first observed over a century ago. In spite of extensive work on observable mammalian cycles, the field has remained divided upon what the true cause is, with a majority of opinions attributing it to either predation or to intra-species mechanisms. Here we unite the eigenperiod hypothesis, which describes an internal, maternal effect-based mechanism to explain the cycles’ periods with a recent generalization explaining the amplitude of snowshoe hare cycles in northwestern North America based on initial predator abundance. By explaining the period and the amplitude of the cycle with separate mechanisms, a unified and consistent view of the causation of cycles is reached. Based on our suggested theory, we forecast the next snowshoe hare cycle (predicted peak in 2016 to be of extraordinarily low amplitude.
PASTA - An RF Phase and Amplitude Scan and Tuning Application
Galambos, J; Deibele, C; Henderson, S
2005-01-01
To assist the beam commissioning in the Spallation Neutron Source (SNS) linac, a general purpose RF tuning application has been written to help set RF phase and amplitude. It follows the signature matching procedure described in Ref.* The method involves varying an upstream Rf cavity amplitude and phase settings and comparing the measured downstream beam phase responses to model predictions. The model input for cavity phase and amplitude calibration and for the beam energy are varied to best match observations. This scheme has advantages over other RF tuning techniques of not requiring intercepting devices (e.g. Faraday Cups), and not being restricted to a small linear response regime near the design values. The application developed here is general and can be applied to different RF structure types in the SNS linac. Example applications in the SNS Drift Tube Linac (DTL) and Coupled Cavity Linac (CCL) structures will be shown.
Large-amplitude Longitudinal Oscillations in a Solar Filament
Zhang, Q. M.; Li, T.; Zheng, R. S.; Su, Y. N.; Ji, H. S.
2017-06-01
In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based Hα telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°-36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100-4400 s) have a spatial dependence, implying that the curvature radii (R) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4-133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s-1. Interestingly, the filament experienced mass drainage southward at a speed of ˜27 km s-1. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between -9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.
Scattering amplitudes and contact interactions in Witten's superstring field theory
International Nuclear Information System (INIS)
Wendt, C.
1989-01-01
The four-massless-particle scattering amplitudes are calculated for Witten's covariant superstring field theory. The picture-changing effects of the Ramond sector propagator and of the three-boson vertex are displayed. The results agree with the first-quantized prescription of Friedan, Martinec and Shenker except for the four-boson amplitude, where an extra divergent contact term appears. The addition of a four-boson counterterm to Witten's action cancels the extra term, and is also necessary for gauge invariance of the action to order g 2 . (orig.)
Photoacoustic microbeam-oscillator with tunable resonance direction and amplitude
Wu, Qingjun; Li, Fanghao; Wang, Bo; Yi, Futing; Jiang, J. Z.; Zhang, Dongxian
2018-01-01
We successfully design one photoacoustic microbeam-oscillator actuated by nanosecond laser, which exhibits tunable resonance direction and amplitude. The mechanism of laser induced oscillation is systematically analyzed. Both simulation and experimental results reveal that the laser induced acoustic wave propagates in a multi-reflected mode, resulting in resonance in the oscillator. This newly-fabricated micrometer-sized beam-oscillator has an excellent actuation function, i.e., by tuning the laser frequency, the direction and amplitude of actuation can be efficiently altered, which will have potential industrial applications.
Large Amplitude Oscillatory Extension of Soft Polymeric Networks
DEFF Research Database (Denmark)
Bejenariu, Anca Gabriela; Rasmussen, Henrik K.; Skov, Anne Ladegaard
2010-01-01
sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly(dimethylsilox......sing a filament stretching rheometer (FSR) surrounded by a thermostatic chamber and equipped with a micrometric laser it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly...
Amplitudes do calor específico para sistemas competitivos
Isidorio de Sena Junior, Marcone
2010-01-01
Neste trabalho, usamos téecnicas de teoria de campos escalares e argumentos de grupo de renormalização para determinarmos a razão entre as amplitudes críticas do calor específico para sistemas competitivos arbitrários. Os resultados são obtidos pela primeira vez na literatura em primeira ordem na expansão em loops. Utilizamos um campo (parâmetro de ordem) de N componentes com simetria O(N). Calculamos as amplitudes críticas primeiramente para os casos anisotrópicos e isotrópico...
Numerical construction of 'optimal' nonoscillating amplitude and phase functions
International Nuclear Information System (INIS)
Matzkin, A.; Lombardi, M.
2002-01-01
A numerical recipe for the construction of nonoscillating amplitude and phase functions for potentials with a single minimum is given. We give different examples illustrating the recipe, showing the usefulness of the procedure for the construction of basis functions in bound-state scattering processes, such as those described by quantum defect theory. The resulting amplitude and accumulated phase functions are coined as 'optimal' nonoscillating (as a function of the space and energy variables) because they are the counterpart for the quantum problem of the classical action for the analog semiclassical problem
From maximal to minimal supersymmetry in string loop amplitudes
Berg, Marcus; Buchberger, Igor; Schlotterer, Oliver
2017-04-01
We calculate one-loop string amplitudes of open and closed strings with N = 1 , 2 , 4 supersymmetry in four and six dimensions, by compactification on Calabi-Yau and K3 orbifolds. In particular, we develop a method to combine contributions from all spin structures for arbitrary number of legs at minimal supersymmetry. Each amplitude is cast into a compact form by reorganizing the kinematic building blocks and casting the worldsheet integrals in a basis. Infrared regularization plays an important role to exhibit the expected factorization limits. We comment on implications for the one-loop string effective action.
Asymptotic behaviour of physical amplitudes in a finite field theory
International Nuclear Information System (INIS)
Helayel Neto, J.A.; Rajpoot, S.; Smith, A.W.
1987-01-01
Using the N=4 super-Yang-Mills theory softly broken by supersymmetric N=1 mass terms for matter superfields, we compute the one-loop chiral + chiral → antichiral + antichiral scattering amplitude directly in superspace. By suitable choices of the mass parameters, on can endow the model with a hierarchy of light and heavy particles, and the decoupling of the heavy sector from light-light physical amplitude is studied. We also analyze the high-energy limit of the cross-section for a two physical scalar scattering and find a (logs) behaviour, which then respects the Froissart bound. (author) [pt
Amplitude of primeval fluctuations from cosmological mass density reconstructions
Seljak, Uros; Bertschinger, Edmund
1994-01-01
We use the POTENT reconstruction of the mass density field in the nearby universe to estimate the amplitude of the density fluctuation power spectrum for various cosmological models. We find that sigma(sub 8) Omega(sub m sup 0.6) = 1.3(sub -0.3 sup +0.4), almost independently of the power spectrum. This value agrees well with the Cosmic Background Explorer (COBE) normalization for the standard cold dark matter model, while alternative models predict an excessive amplitude compared with COBE. Flat, low Omega(sub m) models and tilted models with spectral index n less than 0.8 are particularly discordant.
Combining fixed-order helicity amplitudes with resummation using SCET
Energy Technology Data Exchange (ETDEWEB)
Stewart, Ian W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Waalewijn, Wouter J. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics
2012-11-15
We discuss how to construct a simple and easy-to-use helicity operator basis in Soft-Collinear Effective Theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of the color-ordered QCD helicity amplitudes. This provides an interface to seamlessly combine fixed-order helicity amplitudes, which are the basic building blocks of state-of-the-art next-to-leading order calculations for multileg processes, with a resummation of higher-order logarithmic corrections using SCET.
On tree amplitudes of supersymmetric Einstein-Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Adamo, Tim; Casali, Eduardo; Roehrig, Kai A.; Skinner, David [Department of Applied Mathematics & Theoretical Physics, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA United Kingdom (United Kingdom)
2015-12-29
We present a new formula for all single trace tree amplitudes in four dimensional super Yang-Mills coupled to Einstein supergravity. Like the Cachazo-He-Yuan formula, our expression is supported on solutions of the scattering equations, but with momenta written in terms of spinor helicity variables. Supersymmetry and parity are both manifest. In the pure gravity and pure Yang-Mills sectors, it reduces to the known twistor-string formulae. We show that the formula behaves correctly under factorization and sketch how these amplitudes may be obtained from a four-dimensional (ambi)twistor string.
Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.
2009-04-01
This paper uncovers novel and specific dynamical mechanisms that initiate large-amplitude collective motions in polyatomic molecules. These mechanisms are understood in terms of intramolecular energy transfer between modes and driving forces. Structural transition dynamics of a six-atom cluster between a symmetric and an elongated isomer is highlighted as an illustrative example of what is a general message. First, we introduce a general method of hyperspherical mode analysis to analyze the energy transfer among internal modes of polyatomic molecules. In this method, the (3n-6) internal modes of an n-atom molecule are classified generally into three coarse level gyration-radius modes, three fine level twisting modes, and (3n-12) fine level shearing modes. We show that a large amount of kinetic energy flows into the gyration-radius modes when the cluster undergoes structural transitions by changing its mass distribution. Based on this fact, we construct a reactive mode as a linear combination of the three gyration-radius modes. It is shown that before the reactive mode acquires a large amount of kinetic energy, activation or inactivation of the twisting modes, depending on the geometry of the isomer, plays crucial roles for the onset of a structural transition. Specifically, in a symmetric isomer with a spherical mass distribution, activation of specific twisting modes drives the structural transition into an elongated isomer by inducing a strong internal centrifugal force, which has the effect of elongating the mass distribution of the system. On the other hand, in an elongated isomer, inactivation of specific twisting modes initiates the structural transition into a symmetric isomer with lower potential energy by suppressing the elongation effect of the internal centrifugal force and making the effects of the potential force dominant. This driving mechanism for reactions as well as the present method of hyperspherical mode analysis should be widely applicable to
Goel, R.; Rosenberg, M. J.; De Dios, Y. E.; Cohen, H. S.; Bloomberg, J. J.; Mulavara, A. P.
2016-01-01
Sensorimotor changes such as posture and gait instabilities can affect the functional performance of astronauts after gravitational transitions. Sensorimotor Adaptability (SA) training can help alleviate decrements on exposure to novel sensorimotor environments based on the concept of 'learning to learn' by exposure to varying sensory challenges during posture and locomotion tasks (Bloomberg 2015). Supra-threshold Stochastic Vestibular Stimulation (SVS) can be used to provide one of many challenges by disrupting vestibular inputs. In this scenario, the central nervous system can be trained to utilize veridical information from other sensory inputs, such as vision and somatosensory inputs, for posture and locomotion control. The minimum amplitude of SVS to simulate the effect of deterioration in vestibular inputs for preflight training or for evaluating vestibular contribution in functional tests in general, however, has not yet been identified. Few studies (MacDougall 2006; Dilda 2014) have used arbitrary but fixed maximum current amplitudes from 3 to 5 mA in the medio-lateral (ML) direction to disrupt balance function in healthy adults. Giving this high level of current amplitude to all the individuals has a risk of invoking side effects such as nausea and discomfort. The goal of this study was to determine the minimum SVS level that yields an equivalently degraded balance performance. Thirteen subjects stood on a compliant foam surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in the ML direction. Duration of time they could stand on the foam surface was also measured. The minimum SVS dosage was defined to be that level which significantly degraded balance performance such that any further increase in stimulation level did not lead to further balance degradation. The minimum SVS level was determined by performing linear fits on the performance variable
Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology
International Nuclear Information System (INIS)
Mekaru, Harutaka; Takahashi, Masaharu
2009-01-01
We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc–10 kHz and 0–4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, T g = 69 °C), whose the glass transition temperature (T g ) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not
Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology
Mekaru, Harutaka; Takahashi, Masaharu
2009-12-01
We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc-10 kHz and 0-4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, Tg = 69 °C), whose the glass transition temperature (Tg) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not observed
$K_{13}$ transition form factors
Chueng Ryong Ji
2001-01-01
The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the meson bound state amplitudes and the dressed quark-W vertex in a manifestly covariant calculation of the K/sub l3/ transition form factors and decay width in the impulse approximation. With model gluon parameters previously fixed by the chiral condensate, the pion mass and decay constant, and the kaon mass, our results for the K/sub l3/ form factors and the kaon semileptonic decay width are in good agreement with the experimental data. (37 refs).
Mirror symmetry, toric branes and topological string amplitudes as polynomials
International Nuclear Information System (INIS)
Alim, Murad
2009-01-01
The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)
Mimicking an amplitude damping channel for Laguerre Gaussian Modes
CSIR Research Space (South Africa)
Dudley, Angela L
2010-10-01
Full Text Available amplitude damping channel for single photons, given by Eq. 1, is verified by means of classical light carrying OAM. The evolution of the classical electric field in the interferometer can be described similarly to Eq. 1. Therefore, by measuring the power...
Acute Effect of Caffeine on Amplitude of Accommodation and Near ...
African Journals Online (AJOL)
Caffeine is widely consumed in kola nuts and in other products in Sub-Saharan Africa. We examined the acute effect of caffeine on the amplitude of accommodation and near point of convergence of healthy Nigerians. Forty volunteers between ages of 20 and 27 years with refractive power± 0.50 DS were employed.
Statistical amplitude scale estimation for quantization-based watermarking
Shterev, I.D.; Lagendijk, I.L.; Heusdens, R.
2004-01-01
Quantization-based watermarking schemes are vulnerable to amplitude scaling. Therefore the scaling factor has to be accounted for either at the encoder, or at the decoder, prior to watermark decoding. In this paper we derive the marginal probability density model for the watermarked and attacked
Path integral approach to the quantum fidelity amplitude.
Vaníček, Jiří; Cohen, Doron
2016-06-13
The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact. © 2016 The Authors.
Time-varying interaction leads to amplitude death in coupled ...
Indian Academy of Sciences (India)
A new form of time-varying interaction in coupled oscillators is introduced. In this interaction, each individual oscillator has always time-independent self-feedback while its interaction with other oscillators are modulated with time-varying function. This interaction gives rise to a phenomenon called amplitude death even in ...
A pulse amplitude dividing circuit for nuclear applications
International Nuclear Information System (INIS)
Ediss, C.; McQuarrie, S.A.
1981-01-01
A pulse dividing circuit has been developed to provide analogue and digital outputs proportional to the ratio of the amplitudes of two nuclear pulses. Input pulses ranging from 200 mV to 10 V may be processed by the device. The pulse dividing circuit has been successfully incorporated as part of a small gamma camera. (orig.)
Coupled Higgs field equation and Hamiltonian amplitude equation ...
Indian Academy of Sciences (India)
(G /G)-expansion method for finding exact travelling wave solutions of Higgs field equa- tion. Section 3.2 is devoted to find travelling wave solutions of Hamiltonian amplitude equation. In §4, some conclusions are given. 2. Lie symmetry analysis. Lie's method [8–10] is an effective method and is the simplest among group ...
Monodromy relations in higher-loop string amplitudes
Hohenegger, S.; Stieberger, S.
2017-12-01
New monodromy relations of loop amplitudes are derived in open string theory. We particularly study N-point (planar and non-planar) one-loop amplitudes described by a world-sheet cylinder and derive a set of relations between subamplitudes of different color orderings. Various consistency checks are performed by matching α‧-expansions of planar and non-planar amplitudes involving elliptic iterated integrals with the resulting periods giving rise to two sets of multiple elliptic zeta values. The latter refer to the two homology cycles on the once-punctured complex elliptic curve and the monodromy equations provide relations between these two sets of multiple elliptic zeta values. Furthermore, our monodromy relations involve new objects for which we present a tentative interpretation in terms of open string scattering amplitudes in the presence of a non-trivial gauge field flux. Finally, we provide an outlook on how to generalize the new monodromy relations to the non-oriented case and beyond the one-loop level. Comparing a subset of our results with recent findings in the literature we find therein several serious issues related to the structure and significance of monodromy phases and the relevance of missed contributions from contour integrations.
Multisensory interaction in vibrotactile detection and discrimination of amplitude modulation
DEFF Research Database (Denmark)
Teodorescu, Kinneret; Bouchigny, Sylvain; Hoffmann, Pablo F.
2011-01-01
Perception of vibration during drilling demands integration of haptic and auditory information with force information. In this study we explored the ability to detect and discriminate changes in vibrotactile stimuli amplitude based either on purely haptic feedback or together with congruent synth...
Displaced phase-amplitude variables for waves on finite background
van Groesen, Embrecht W.C.; Andonowati, A.; Karjanto, N.
2006-01-01
Wave amplification in nonlinear dispersive wave equations may be caused by nonlinear focussing of waves from a certain background. In the model of nonlinear Schrödinger equation we will introduce a transformation to displaced phase-amplitude variables with respect to a background of monochromatic
Monodromy relations in higher-loop string amplitudes
Directory of Open Access Journals (Sweden)
S. Hohenegger
2017-12-01
Full Text Available New monodromy relations of loop amplitudes are derived in open string theory. We particularly study N-point (planar and non-planar one-loop amplitudes described by a world-sheet cylinder and derive a set of relations between subamplitudes of different color orderings. Various consistency checks are performed by matching Î±â²-expansions of planar and non-planar amplitudes involving elliptic iterated integrals with the resulting periods giving rise to two sets of multiple elliptic zeta values. The latter refer to the two homology cycles on the once-punctured complex elliptic curve and the monodromy equations provide relations between these two sets of multiple elliptic zeta values. Furthermore, our monodromy relations involve new objects for which we present a tentative interpretation in terms of open string scattering amplitudes in the presence of a non-trivial gauge field flux. Finally, we provide an outlook on how to generalize the new monodromy relations to the non-oriented case and beyond the one-loop level. Comparing a subset of our results with recent findings in the literature we find therein several serious issues related to the structure and significance of monodromy phases and the relevance of missed contributions from contour integrations.
Quantum computation of scattering amplitudes in scalar quantum electrodynamics
Yeter-Aydeniz, Kübra; Siopsis, George
2018-02-01
We present a quantum algorithm for the calculation of scattering amplitudes of massive charged scalar particles in scalar quantum electrodynamics. Our algorithm is based on continuous-variable quantum computing architecture resulting in exponential speedup over classical methods. We derive a simple form of the Hamiltonian including interactions and a straightforward implementation of the constraint due to gauge invariance.
Gauge and Gravity Amplitudes from Trees to Loops
DEFF Research Database (Denmark)
Huang, Rijun
This thesis describes two subjects that I mainly work on during my PhD study. They are both about scattering amplitudes, covering gravity and gauge theories, tree and loop level, with or without supersymmetry. The rst subject is Kawai-Lewellen-Tye(KLT) relation in field theory, which mysteriously...
Multiloop amplitudes for the bosonic string in the operator formalism
International Nuclear Information System (INIS)
Russo, J.
1989-01-01
Scattering amplitudes for the bosonic closed string theory are computed at arbitrary genus in the operator formalism. The equivalence with the formulas provided by the Polyakov approach (in the critical dimension d=26) is demonstrated. A discussion about the residual U(1)xU(1) symmetry of the torus is given. (orig.)
Remote identification of the vibration amplitude of ship hull
Directory of Open Access Journals (Sweden)
A. N. Pinchuk
2014-01-01
Full Text Available The aim is to develop the methodological support to determine vibration amplitude of the ship hull remotely using a coherent radar centimeter range based on the variation of the Doppler signal spectrum reflected from a vibrating surface.The paper presents a synthesized mathematical model of the radio signal reflected from the vibrating surface. It is the signal of coherent radar of continuous radiation with a known carrier frequency and the amplitude of the radiated signal. In the synthesis it was believed that the displacement in the radial direction with respect to the vibrating surface radar was sinusoidal.The dependences of the vibration amplitude on the value of the normalized Doppler radio signal spectrum at the second harmonic frequency are obtained. Cycle results of field experiments to study the variability of the sea surface, determining the level of its roughness, allows us to establish that the energy of surface waves of gravitational-capillary range has a high correlation with the wind speed. It is proved that the ratio of the spectral density levels at vibration frequency and its multiple frequencies is specified by the index of phase modulation linearly related to the amplitude of vibration of the ship hull.The results are significant for radar (radar detection of water targets using the coherent radar of centimeter range, ensuring the correct records of noise generated by the scattering of radio waves from the water surface.
influence of electromagnetic waves produced by an amplitude ...
African Journals Online (AJOL)
PROF EKWUEME
This article presents a one dimensional modeling of the influence of electromagnetic waves on the electric power delivered by a silicon solar cell under monochromatic illumination in steady state. The electromagnetic waves are produced by an amplitude modulation radio antenna of 2MW power of radiation and located at a ...
Influence of electromagnetic waves produced by an amplitude ...
African Journals Online (AJOL)
This article presents a one dimensional modeling of the influence of electromagnetic waves on the electric power delivered by a silicon solar cell under monochromatic illumination in steady state. The electromagnetic waves are produced by an amplitude modulation radio antenna of 2MW power of radiation and located at a ...
Fatique of Copper Polycrystals at Low Plastic Strain Amplitudes
DEFF Research Database (Denmark)
Rasmussen, K. V.; Pedersen, Ole Bøcker
1980-01-01
Single crystals and polycrystals of pure copper were fatigued in tension-compression at constant low amplitudes of plastic strain and low cycling frequencies at room temperature in air. Surface patterns of persistent slip bands were quantitatively examined by optical microscopy. Bulk dislocation...
Measuring the local pressure amplitude in microchannel acoustophoresis
DEFF Research Database (Denmark)
Barnkob, Rune; Augustsson, Per; Laurell, Thomas
2010-01-01
A new method is reported on how to measure the local pressure amplitude and the Q factor of ultrasound resonances in microfluidic chips designed for acoustophoresis of particle suspensions. The method relies on tracking individual polystyrene tracer microbeads in straight water-filled silicon/gla...
Amplitude analysis of D-0 -> K- pi(+) pi(+) pi(-)
Haddadi, Z.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Löhner, H.; Messchendorp, J.; Tiemens, M.
2017-01-01
We present an amplitude analysis of the decay D-0 -> K- pi(+)pi(+)pi(-) based on a data sample of 2.93 fb(-1) acquired by the BESIII detector at the psi(3770) resonance. With a nearly background free sample of about 16000 events, we investigate the substructure of the decay and determine the
Nonlinear analysis of a reaction-diffusion system: Amplitude equations
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)
2012-10-15
A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.
HELAS: HELicity Amplitude Subroutines for Feynman diagram evaluations
International Nuclear Information System (INIS)
Murayama, H.; Watanabe, I.; Hagiwara, K.
1992-01-01
HELAS is a set of the FORTRAN 77 subroutines which enable to compute the helicity amplitude of an arbitrary tree level Feynman diagram with a simple sequence of CALL SUBROUTINE statements. It is easy to write down a FORTRAN program to calculate the helicity amplitude of a given process by calling the HELAS subroutines. The example of evaluating the helicity amplitude of the process W + W - →t anti-t is shown. The compactness of the helicity amplitude programs is the main advantage of using the HELAS. Another advantage is that it is very easy to allow external heavy particles to decay into light quarks and leptons without losing the spin correlation. The procedure of calculating the cross section of an arbitrary process with the help of the HELAS and noteworthy characteristics of the HELAS system are shown. How to use the HELAS package is explained about the above example. The HELAS subroutines are grouped in wave functions, nine vertices and tools and standard model coupling constants. HELAS CHECK messages makes the job to find mistake easy. (K.I.)
Macroscopic Loop Amplitudes in Two-Dimensional Dilaton Gravity
Matsumura, Yoichro; Sakai, Norisuke; Shirokura, Hiroshi
1993-01-01
Macroscopic loop amplitudes are obtained for the dilation gravity in two-dimensions. The dependence on the macroscopic loop length $l$ is completely determined by using the Wheeler-DeWitt equation in the mini-superspace approximation. The dependence on the cosmological constant $\\Lambda$ is also determined by using the scaling argument in addition.
Large amplitude forced vibration analysis of cross-beam system ...
African Journals Online (AJOL)
user
energy method. A. Mitra. *. ,P. Sahoo, K. N. Saha. Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, INDIA. *Corresponding Author: e-mail: samik893@gmail.com. Abstract. Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the.
Amplitude Effects on Thrust Production for Undulatory Swimmers
Gater, Brittany; Bayandor, Javid
2017-11-01
Biological systems offer novel and efficient solutions to many engineering applications, including marine propulsion. It is of interest to determine how fish interact with the water around them, and how best to utilize the potential their methods offer. A stingray-like fin was chosen for analysis due to the maneuverability and versatility of stingrays. The stingray fin was modeled in 2D as a sinusoidal wave with an amplitude increasing from zero at the leading edge to a maximum at the trailing edge. Using this model, a parametric study was performed to examine the effects of the fin on surrounding water in CFD simulations. The results were analyzed both qualitatively, in terms of the pressure contours on the fin and vorticity in the trailing wake, and quantitatively, in terms of the resultant forces on the fin. The amplitude was found to have no effect on the average thrust during steady swimming, when the wave speed on the fin was approximately equal to the swimming speed. However, amplitude was shown to have a significant effect on thrust production when the fin was accelerating. This finding suggests that for undulatory swimmers, amplitude is less useful for controlling swimming speed, but can be used to great effect for augmenting thrust during acceleration.
Accuracy of averaged auditory brainstem response amplitude and latency estimates
DEFF Research Database (Denmark)
Madsen, Sara Miay Kim; M. Harte, James; Elberling, Claus
2017-01-01
Objective: The aims were to 1) establish which of the four algorithms for estimating residual noise level and signal-to-noise ratio (SNR) in auditory brainstem responses (ABRs) perform better in terms of post-average wave-V peak latency and amplitude errors and 2) determine whether SNR or noise...
Large amplitude forced vibration analysis of cross-beam system ...
African Journals Online (AJOL)
Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is assumed to satisfy the force equilibrium condition at peak load value, thus ...
Coupled Higgs field equation and Hamiltonian amplitude equation ...
Indian Academy of Sciences (India)
In this paper, coupled Higgs field equation are studied using the Lie classical method. Symmetry reductions and exact solutions are reported for Higgs equation and Hamiltonian amplitude equation. We also establish the travelling wave solutions involving parameters of the coupled Higgs equation and Hamiltonian ...
Mirror symmetry, toric branes and topological string amplitudes as polynomials
Energy Technology Data Exchange (ETDEWEB)
Alim, Murad
2009-07-13
The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)
Maximum human objectively measured pharmacologically stimulated accommodative amplitude
Directory of Open Access Journals (Sweden)
Grzybowski A
2018-01-01
Full Text Available Andrzej Grzybowski,1,2 Ronald A Schachar,3 Magdalena Gaca-Wysocka,2 Ira H Schachar,4 Barbara K Pierscionek5 1Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, 2Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland; 3Department of Physics, University of Texas, Arlington, TX, 4Byers Eye Institute of Stanford University, Palo Alto, CA, USA; 5School of Science and Technology, Nottingham Trent University, Nottingham, UK Purpose: To measure the maximum, objectively measured, accommodative amplitude, produced by pharmacologic stimulation.Methods: Thirty-seven healthy subjects were enrolled, with a mean age of 20.2±1.1 years, corrected visual acuity of 20/20, and mean spherical equivalent refraction (SER =–0.83±1.60 diopters. For each subject, the right pupil was dilated with phenylephrine 10%. After 30 minutes, the pupil was measured, the left eye was patched, and the right eye was autorefracted. Pilocarpine 4% was then instilled in the right eye, followed by phenylephrine. At 45 minutes after the pilocarpine, autorefraction and pupil size were again measured.Results: Mean pupil size pre- and postpilocarpine was 8.0±0.8 mm and 4.4±1.9 mm, respectively. Pre- and postpilocarpine, the mean SER was –0.83±1.60 and –10.55±4.26 diopters, respectively. The mean pilocarpine-induced accommodative amplitude was 9.73±3.64 diopters. Five subjects had accommodative amplitudes ≥14.00 diopters. Accommodative amplitude was not significantly related to baseline SER (p-value =0.24, pre- or postpilocarpine pupil size (p-values =0.13 and 0.74, or change in pupil size (p-value =0.37. Iris color did not statistically significantly affect accommodative amplitude (p-value =0.83.Conclusion: Following topically applied pilocarpine, the induced objectively measured accommodation in the young eye is greater than or equal to the reported subjectively measured voluntary maximum accommodative
Directory of Open Access Journals (Sweden)
S. Han
2017-08-01
Full Text Available This paper explores the BIM-based route map and workflows for documentation of condition inspection for architectural heritage, exemplified by an on-going conservation project of three Duty Rooms in Yangxin Hall complex in the Forbidden City, Beijing. Since intensive, multi-disciplinary inspection work for architectural heritage will result in huge amount and categories of data and information, the 2D-based traditional way of documentation is abandoned, while HBIM was introduced for information management and presentation. In respond to multi-disciplinary collaboration, a duel-route workflow is specially developed for the combination of BIM and non-BIM teams, in which the BIM team is responsible for BIM models’ creation and maintenance, and for information management and presentation, while the non-BIM team carry out the survey and inspection in their own established way without any requirements for BIM skills, making a little adjustment where necessary, with interactive models as links between them. The practice following the workflows mentioned in this paper proves that condition inspection based on HBIM is applicable, compatible and flexible, providing the possibility to improve the traceability and sustainability of heritage information, and to generate visualized, thematic and integrated presentation in high efficiency and consistency. This paper also provides some solutions to the specific problems encountered during actual operation. For example，the defects keynote dictionary offers a sound tie between the BIM team and non-BIM team, and between site survey and final presentation; the application of shadow elements helps to improve the information management between whole and parts, ideal and actual, 2D and 3D.
Han, S.; Wu, C.; Li, D.; Li, J.; Liu, Y.; Feng, K.; Di, Y.
2017-08-01
This paper explores the BIM-based route map and workflows for documentation of condition inspection for architectural heritage, exemplified by an on-going conservation project of three Duty Rooms in Yangxin Hall complex in the Forbidden City, Beijing. Since intensive, multi-disciplinary inspection work for architectural heritage will result in huge amount and categories of data and information, the 2D-based traditional way of documentation is abandoned, while HBIM was introduced for information management and presentation. In respond to multi-disciplinary collaboration, a duel-route workflow is specially developed for the combination of BIM and non-BIM teams, in which the BIM team is responsible for BIM models' creation and maintenance, and for information management and presentation, while the non-BIM team carry out the survey and inspection in their own established way without any requirements for BIM skills, making a little adjustment where necessary, with interactive models as links between them. The practice following the workflows mentioned in this paper proves that condition inspection based on HBIM is applicable, compatible and flexible, providing the possibility to improve the traceability and sustainability of heritage information, and to generate visualized, thematic and integrated presentation in high efficiency and consistency. This paper also provides some solutions to the specific problems encountered during actual operation. For example, the defects keynote dictionary offers a sound tie between the BIM team and non-BIM team, and between site survey and final presentation; the application of shadow elements helps to improve the information management between whole and parts, ideal and actual, 2D and 3D.
Directory of Open Access Journals (Sweden)
Anna Dubovoy
2017-01-01
Full Text Available Purpose: Up to 53% of cardiac surgery patients experience postoperative neurocognitive decline. Cerebral oximetry is designed to detect changes in cerebral tissue saturation and therefore may be useful to predict which patients are at risk of developing neurocognitive decline. Methods: This is a retrospective analysis of a prospective study originally designed to determine if treatment of cerebral oximetry desaturation is associated with improvement in postoperative cognitive dysfunction in patients undergoing aortic reconstruction under deep hypothermic circulatory arrest. Cognitive function was measured, preoperatively and 3 months postoperatively, with 15 neuropsychologic tests administered by a psychologist; the individual test scores were summed and normalized. Bilateral cerebral oximetry data were stored and analyzed using measures of entropy. Cognitive decline was defined as any decrease in the summed normalized score from baseline to 3 months. Results: Seven of 17 (41% patients suffered cognitive decline. There was no association between baseline cerebral oximetry and postoperative cognitive dysfunction. Nor were changes in oximetry values associated with cognitive decline. However, cognitive decline was associated with loss of forbidden word entropy (FwEn (correlation: Rho ρ = 0.51, P = 0.037 for left cerebral oximetry FwEn and ρ = 0.54, P = 0.025 for right cerebral oximetry FwEn. Conclusion: Postoperative cognitive decline was associated with loss of complexity of the time series as shown by a decrease in FwEn from beginning to end of the case. This suggests that regulation of cerebral oximetry is different between those who do and those who do not develop cognitive decline.
Variation of structural damping with response amplitude in piping systems
International Nuclear Information System (INIS)
Ware, A.G.
1986-01-01
From tests conducted over the last several years, it has become apparent that structural damping is not a single number applicable to all piping systems, but is highly dependent on piping system parameters such as supports, response amplitude, and insulation. As a result, there is considerable scatter in the available data. Furthermore, the relationships between the parameters and damping are often highly complex, interrelated, and difficult to predict. From tests of piping supported by various typical methods, two basic types of energy dissipation in the supports can be observed. The first is friction such as between spring hangers and their housings or in the internal mechanisms of constant force hangers. The second is impacting such as occurs in snubbers, rigid struts, and rod hangers. Overall, these effects lead to a wide variety of possibilities that can occur at low vibration levels and can change with only a slight perturbation of vibration amplitude. This can account for much of the scatter in the data at low strain levels. Thus damping is almost impossible to predict at low amplitudes, and extrapolation of this type data to higher amplitudes is cautioned. However, once strain levels rise above 100 to 200 micro in/in, the damping trend becomes easier to characterize. From the 100 to 200 micro in/in to 800 to 1000 micro in/in range the damping is fairly constant and is induced primarily by the supports. At the upper end of this range a threshold is reached in which damping increases with increasing strain amplitude. Data in the high strain (plastic range) is sparse since the test usually renders the pipe unsuitable for further use. 15 refs
The Correlation between Electroencephalography Amplitude and Interictal Abnormalities: Audit study
Directory of Open Access Journals (Sweden)
Sami F. Al-Rawas
2014-10-01
Full Text Available Objectives: The aim of this study was to establish the relationship between background amplitude and interictal abnormalities in routine electroencephalography (EEG. Methods: This retrospective audit was conducted between July 2006 and December 2009 at the Department of Clinical Physiology at Sultan Qaboos University Hospital (SQUH in Muscat, Oman. A total of 1,718 electroencephalograms (EEGs were reviewed. All EEGs were from patients who had been referred due to epilepsy, syncope or headaches. EEGs were divided into four groups based on their amplitude: group one ≤20 μV; group two 21–35 μV; group three 36–50 μV, and group four >50 μV. Interictal abnormalities were defined as epileptiform discharges with or without associated slow waves. Abnormalities were identified during periods of resting, hyperventilation and photic stimulation in each group. Results: The mean age ± standard deviation of the patients was 27 ± 12.5 years. Of the 1,718 EEGs, 542 (31.5% were abnormal. Interictal abnormalities increased with amplitude in all four categories and demonstrated a significant association (P <0.05. A total of 56 EEGs (3.3% had amplitudes that were ≤20 μV and none of these showed interictal epileptiform abnormalities. Conclusion: EEG amplitude is an important factor in determining the presence of interictal epileptiform abnormalities in routine EEGs. This should be taken into account when investigating patients for epilepsy. A strong argument is made for considering long-term EEG monitoring in order to identify unexplained seizures which may be secondary to epilepsy. It is recommended that all tertiary institutions provide EEG telemetry services.
A Global Model for Regional Phase Amplitude Prediction
Phillips, W. S.; Fisk, M. D.; Stead, R. J.; Begnaud, M. L.; Yang, X.; Ballard, S.; Rautian, T. G.
2013-12-01
We use two-dimensional (2-D) models of regional phase attenuation, and absolute site effects, to predict amplitudes for use in high frequency discrimination and yield estimation schemes. We have shown that 2-D corrections reduce scatter in P/S ratios, thus improve discrimination power. This is especially important for intermediate frequencies (2-6 Hz), which travel further than the higher frequencies that are typically used for discrimination. Previous work has focused on national priorities; however, for use by the international community, attenuation and site models must cover as much of the globe as possible. New amplitude quality control (QC) methods facilitate this effort. The most important step is to cluster events spatially, take ratios to remove path and site effects, and require the relative amplitudes to match predictions from an earthquake source model with variable moment and corner frequency. Data can then be stacked to form summary amplitudes for each cluster. We perform similar QC and stacking operations for multiple channels at each station, and for closely spaced stations. Data are inverted using a simultaneous multi-band, multi-phase approach that employs absolute spectral constraints on well-studied earthquakes. Global parameterization is obtained using publically available GeoTess software that allows for variable grid spacing. Attenuation results show remarkable, high-resolution correlation with regional geology and heat flow. Our data set includes regional explosion amplitudes from many sources, including LLNL and Leo Brady data for North America, and Borovoye Archive and ChISS data for Asia. We see dramatic improvement in high frequency P/S discrimination, world wide, after correcting for 2-D path and site effects.
Attributing varying ENSO amplitudes in climate model ensembles
Watanabe, M.; Kug, J.-S.; Jin, F.-F.; Collins, M.; Ohba, M.; Wittenberg, A.
2012-04-01
Realistic simulation of the El Niño-Southern Oscillation (ENSO) phenomenon, which has a great impact on the global weather and climate, is of primary importance in the coupled atmosphere-ocean modeling. Nevertheless, the ENSO amplitude is known to vary considerably in a multi-model ensemble (MME) archived in the coupled model inter-comparison project phase 3 (CMIP3). Given a large uncertainty in the atmospheric processes having a substantial influence to the models' ENSO intensity, we constructed physics parameter ensembles (PPEs) based on four climate models (two of them are included in the CMIP5 archive) in which parameters in the atmospheric parameterization schemes have been perturbed. Analysis to the 33-member PPEs reveals a positive relationship between the ENSO amplitude and the mean precipitation over the eastern equatorial Pacific in each model. This relationship is explained by the mean state difference controling the ENSO activity but not by the ENSO rectification of the mean state. The wetter mean state in the eastern equatorial Pacific favors an eastward shift in the equatorial zonal wind stress response to El Niño/La Niña, which acts to increase the ENSO amplitude due to enhanced coupled instability. Such a relationship, however, cannot be seen in both CMIP3 and CMIP5 MMEs, indicating that the above mechanism does not explain the diversity in ENSO amplitude across the models. Yet, ensemble historical runs available for some of the CMIP5 models show the positive relationship between the ENSO amplitude and the mean precipitation, providing a useful insight into the ENSO changes under the global warming in individual models.
DEFF Research Database (Denmark)
Raahauge, Kirsten Marie
2008-01-01
and the interaction of cultural, social, and spatial organizations, as seen from the point of view of people living in Skåde Bakker and Fedet. The focus is on the city dwellers’ representations of the central district of Århus with specific reference to the concept of transit space. When applied to various Århusian...
Analysis tools for precision studies of hadronic three-body decays and transition form factors
Energy Technology Data Exchange (ETDEWEB)
Schneider, Sebastian Philipp
2013-02-14
parameters that may be determined in future high-precision measurements of {omega}{yields}3{pi} and present a calculation of the {pi}{pi} P-wave inelasticity from {omega}{pi} intermediate states. Finally, we extend the framework and discuss the {omega}/{phi}{yields}{pi}{sup 0}{gamma}{sup *} transition form factor. For that we use the previously determined {omega}/{phi}{yields}3{pi} partial-wave amplitude and the well-known pion vector form factor as input. Our findings are compared to recent measurements of {omega}{yields}{pi}{sup 0}{mu}{sup +}{mu}{sup -} by the NA60 collaboration. We also suggest that a precise measurement of the Okubo-Zweig-Iizuka-forbidden {phi}{yields}{pi}{sup 0}l{sup +}l{sup -} decay may help to understand the strong deviations found between recent theoretical determinations and transition form factor data.
Physical description of boundary-layer transition: Experimental evidence
Saric, William S.
1994-01-01
The problems of understanding the origins of turbulent flow and transition to turbulent flow are the most important unsolved problems of fluid mechanics and aerodynamics. It is well known that the stability, transition, and turbulent characteristics of bounded shear layers are fundamentally different from those of free shear layers. Likewise, the stability, transition, and turbulent characteristics of open systems are fundamentally different from those of closed systems. Because of the influence of indigenous disturbances, surface geometry and roughness, sound, heat transfer, and ablation, it is not possible to develop general prediction schemes for transition location and the nature of turbulent structures in boundary-layer flows. At the present time no mathematical model exists that can predict the transition Reynolds number on a flat plate. The recent progress in this area is encouraging, in that a number of distinct transition mechanisms have been found experimentally. The theoretical work finds them to be amplitude and Reynolds-number dependent. The theory remains rather incomplete with regard to predicting transition. Amplitude and spectral characteristics of the disturbances inside the laminar viscous layer strongly influence which type of transition occurs. The major need in this area is to understand how freestream disturbances are entrained into the boundary layer, i.e., to answer the question of receptivity. We refer receptivity to the mechanism(s) that cause freestream disturbances to enter the boundary layer and create the initial amplitudes for unstable waves.
The Joint Position-Amplitude Formulation for Hurricane State Estimation
Ravela, S.; Williams, J.; Emanuel, K.
2008-12-01
Classical formulations of data assimilation, whether sequential, ensemble-based or variational, are amplitude adjustment methods. Such approaches can perform poorly when forecast locations of weather systems are displaced from their observations. Compensating position errors by adjusting amplitudes can produce unacceptably 'distorted' states, adversely affecting analysis, verification and subsequent forecasts. There are many sources of position error. It is non-trivial to decompose position error into constituent sources and yet correcting position errors during assimilation can be essential for operationally predicting strong, localized weather events such as tropical cyclones. We will argue and show that if we assume a perfect world where forecast errors do not have position errors and have a Gaussian uncertainty, then in the real world, the bias or variance induced by position errors is the only reason for suboptimal performance of contemporary assimilation methods. Therefore, we propose a method that accounts for both position and amplitude errors using a variational approach. We show that the objective can be solved for position and amplitude decision variables using stochastic methods, thus corresponding with ensemble data assimilation. We then show that if an Euler-Lagrange approximation is made, can solve the objective nearly as well in two steps. This approach is entirely consistent with contemporary data assimilation practice. In the two-step approach, the first step is field alignment, where the current model state is aligned with observations by adjusting a continuous field of local displacements, subject to certain constraints. The second step is amplitude adjustment, where contemporary assimilation approaches are used. We will then demonstrate several choices of constraints on the displacement field, first starting with fluid-like viscous constraints and then proceeding to a multiscale wavelet representation that allows better balance in the
Large-amplitude Longitudinal Oscillations in a Solar Filament
Energy Technology Data Exchange (ETDEWEB)
Zhang, Q. M.; Su, Y. N.; Ji, H. S. [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Li, T. [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing 100012 (China); Zheng, R. S., E-mail: zhangqm@pmo.ac.cn [Institute of Space Sciences, Shandong University, Weihai 264209 (China)
2017-06-10
In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based H α telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory . The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°–36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100–4400 s) have a spatial dependence, implying that the curvature radii ( R ) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4–133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s{sup −1}. Interestingly, the filament experienced mass drainage southward at a speed of ∼27 km s{sup −1}. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between −9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.
The effect of music amplitude on the relaxation response.
Staum, M J; Brotons, M
2000-01-01
The purposes of this study were (a) to ascertain how 3 different volume levels of music affect the relaxation response both psychologically (preference scores and self-report) and physiologically (heart rate), (b) to determine the amplitude preference for relaxation among young adults, and (c) to compare differences in preference response between music and nonmusic majors and between the genders. One hundred forty-four college-age music and nonmusic majors were participants in this study. Subjects listened to 27 minutes of music while relaxing. The amplitude of the music was changed every 3 minutes in a randomized order so that each subject received loud (80-90 dB) medium (70-80 dB) or soft (60-70 dB) music 3 times each during the experimental period for a total of 9 amplitude changes. A sample of subjects wore a small heart rate monitor on their wrist and chest during the procedure. Simultaneously with the selected listening, they were encouraged to turn a dial on a Continuous Response Digital Interface (CRDI) indicating their amplitude preference for relaxation. Self-report information was gathered at the beginning and end of the experiment. Results of the CRDI analyses indicate that overall, subjects showed overwhelming preference for the soft music in comparison to medium or loud. Males, however, preferred the loud music more than females, and music majors preferred softer music over non-majors who preferred louder music. There were no differences attributed to amplitude level in the analysis of heart rate data. Analysis of the self report data yielded a wide variety of responses concerning their individual preferences, not always consistent with the empirical measures. Overall, there was an increase in relaxation reported over the duration of the experiment. Response differentiation to loudness levels indicates a long line of useful research not only on relaxation and stress reduction in health related fields, but also on the effects of background amplitude of
On the gyro resonance electron-whistler interaction in transition layers of near-earth plasma
International Nuclear Information System (INIS)
Erokhin, N.S.; Zol'nikova, N.N.; Mikhajlovskaya, L.A.
1996-01-01
Gyro resonance interaction of electrons with low amplitude triggered whistler in the transition layers of the ionospheric and magnetospheric plasma that correspond to the blurred jumps of the magnetic field and plasma concentration was studied
$\\gamma N \\to \\Delta$ transition form factors in Quenched and $N_F=2$ QCD
Alexandrou, C; Lippert, T; Neff, H; Negele, J W; Schilling, K; Schroers, W; Tsapalis, A; Forcrand, Ph. de; Lippert, Th.
2003-01-01
Calculations of the magnetic dipole, electric quadrupole and Coulomb quadrupole amplitudes for the transition $\\gamma N\\to \\Delta$ are presented both in quenched QCD and with two flavours of degenerate dynamical quarks.
DEFF Research Database (Denmark)
Hansen, Ole Erik; Søndergård, Bent
2014-01-01
What. The chapter addresses designing for sustainability as interventions in socio-technical systems and social practices of users and communities. It calls for reflexive design practices challenging dominant regimes and shaping alternative design spaces. The specific case is the reconfiguration...... of agendas/vision, technologies, actors and institutions in the emergent design of an urban mobility system based on an electric car sharing system. Why. Designing for sustainability is a fundamental challenge for future design practices; designers have to obtain an ability to contribute to sustainable...... transition processes. Where. Addresses design processes aimed at sustainable transition enacted in complex social settings, socio-technical systems involving many different actors and agendas. How. The chapter outlines a conceptual and analytic framework for a reflexive design practice for sustainability...
2006-06-09
done to facilitate the transition.52 CRS-12 53 David T. Stanley, Changing Administrations (Washington: Brookings Institution, 1965), p. 6. 54 “Pre...Conference of Mayors; Sharleen Hirsch, an educational administrator; and Jule Sugarman , a public administrator. Staff members were assigned to task forces...Issues,” Washington Post, Nov. 13, 1980, p. Al. 77 David Hoffman, “Bush Names Baker Secretary of State,” Washington Post, Nov. 10, 1988, pp. Al and
Amplitude Modulation of Pulsation Modes in Delta Scuti Stars
Bowman, Dominic M.
2017-10-01
The pulsations in δ Sct stars are excited by a heat engine driving mechanism caused by increased opacity in their surface layers, and have pulsation periods of order a few hours. Space based observations in the last decade have revealed a diverse range of pulsational behaviour in these stars, which is investigated using an ensemble of 983 δ Sct stars observed continuously for 4 yr by the Kepler Space Telescope. A statistical search for amplitude modulation of pulsation modes is carried out and it is shown that 61.3 per cent of the 983 δ Sct stars exhibit significant amplitude modulation in at least a single pulsation mode, and that this is uncorrelated with effective temperature and surface gravity. Hence, the majority of δ Sct stars exhibit amplitude modulation, with time-scales of years and longer demonstrated to be significant in these stars both observationally and theoretically. An archetypal example of amplitude modulation in a δ Sct star is KIC 7106205, which contains only a single pulsation mode that varies significantly in amplitude whilst all other pulsation modes stay constant in amplitude and phase throughout the 4-yr Kepler data set. Therefore, the visible pulsational energy budget in this star, and many others, is not conserved over 4 yr. Models of beating of close-frequency pulsation modes are used to identify δ Sct stars with frequencies that lie closer than 0.001 d^{-1}, which are barely resolved using 4 yr of Kepler observations, and maintain their independent identities over 4 yr. Mode coupling models are used to quantify the strength of coupling and distinguish between non-linearity in the form of combination frequencies and non-linearity in the form of resonant mode coupling for families of pulsation modes in several stars. The changes in stellar structure caused by stellar evolution are investigated for two high amplitude δ Sct (HADS) stars in the Kepler data set, revealing a positive quadratic change in phase for the fundamental and
Analytic Evolution of Singular Distribution Amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, Anatoly V. [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tandogan Kunkel, Asli [Old Dominion University, Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
2014-03-01
We describe a method of analytic evolution of distribution amplitudes (DA) that have singularities, such as non-zero values at the end-points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a flat (constant) DA, anti-symmetric at DA and then use it for evolution of the two-photon generalized distribution amplitude. Our approach has advantages over the standard method of expansion in Gegenbauer polynomials, which requires infinite number of terms in order to accurately reproduce functions in the vicinity of singular points, and over a straightforward iteration of an initial distribution with evolution kernel. The latter produces logarithmically divergent terms at each iteration, while in our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve, with only one or two iterations needed afterwards in order to get rather precise results.
Long-distance singularities in multi-leg scattering amplitudes
Gardi, Einan; Duhr, Claude
2016-01-01
We report on the recent completion of the three-loop calculation of the soft anomalous dimension in massless gauge-theory scattering amplitudes. This brings the state-of-the-art knowledge of long-distance singularities in multi-leg QCD amplitudes with any number of massless particles to three loops. The result displays some novel features: this is the first time non-dipole corrections appear, which directly correlate the colour and kinematic degrees of freedom of four coloured partons. We find that non-dipole corrections appear at three loops also for three coloured partons, but these are independent of the kinematics. The final result is remarkably simple when expressed in terms of single-valued harmonic polylogarithms, and it satisfies several non-trivial constraints. In particular, it is consistent with the high-energy limit behaviour and it satisfies the expected factorization properties in two-particle collinear limits.
Modeling amplitude SAR image with the Cauchy-Rayleigh mixture
Peng, Qiangqiang; Du, Qingyu; Yao, Yinwei; Huang, Huang
2017-10-01
In this paper, we introduce a novel mixture model of the SAR amplitude image, which is proposed as an approximation to the heavy-tailed Rayleigh model. The limitation of the heavy-tailed Rayleigh model in SAR image application is discussed. We also present an expectation-maximization (EM) algorithm based parameter estimation method for the Cauchy-Rayleigh mixture. We test the new model on some simulated data in order to confirm that is appropriate to the heavy-tailed Rayleigh model. The performance is evaluated by some statistic values (cumulative square errors (CSE) 0.99 and Kolmogorov-Smirnov distance (K-S) the performance of the proposed mixture model is tested on some real SAR images and compared with other models, including the heavy-tailed Rayleigh and Nakagami mixture models. The result indicates that the proposed model can be an optional statistical model for amplitude SAR images.
Analytic amplitudes for hadronic forward scattering: COMPETE update
Energy Technology Data Exchange (ETDEWEB)
Nicolescu, B.; Cudell, J.R.; Ezhela, V.V.; Gauron, P.; Kang, K.; Kuyanov, Yu.V.; Lugovsky, S.B.; Martynov, E.; Razuvaev, E.A.; Tkachenko, N.P
2003-04-01
We consider several classes of analytic parametrizations of hadronic scattering amplitudes, and compare their predictions to all available forward data (pp, p-bar p, {pi}p, Kp, {gamma}p, {gamma}{gamma}, {sigma}p). Although these parametrizations are very close for {radical}s {>=} 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term {approx} ln{sup 2} s enables one to extend the fit down to {radical}s = 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude ({rho} parameter) for present and future pp and p-bar p colliders, and on the total cross sections for {gamma}p {yields} hadrons at cosmic-ray energies and for {gamma}{gamma} {yields} hadrons up to {radical}s = 1 TeV.
Ratios of helicity amplitudes for exclusive ρ0 electroproduction
International Nuclear Information System (INIS)
Airapetian, A.; Akopov, Z.
2010-12-01
Exclusive ρ 0 -meson electroproduction is studied in the HERMES experiment, using a 27.6 GeV longitudinally polarized electron/positron beam and unpolarized hydrogen and deuterium targets in the kinematic region 0.5 GeV 2 2 2 , 3.0 GeV ' 2 . Real and imaginary parts of the ratios of the natural-parity-exchange helicity amplitudes T 11 (γ T * → ρ T ), T 01 (γ T * → ρ L ), T 10 (γ L * → ρ T ), and T 1-1 (γ -T * → ρ T ) to T 00 (γ L * → ρ L ) are extracted from the data. For the unnatural-parity-exchange amplitude U 11 , the ratio vertical stroke U 11 /T 00 vertical stroke is obtained. The Q 2 and t ' dependences of these ratios are presented and compared with perturbative QCD predictions. (orig.)
On-shell diagrams for N=8 supergravity amplitudes
Energy Technology Data Exchange (ETDEWEB)
Heslop, Paul; Lipstein, Arthur E. [Department of Mathematical Sciences, Durham University,Lower Mountjoy, Stockton Road, Durham, DH1 3LE (United Kingdom)
2016-06-10
We define recursion relations for N=8 supergravity amplitudes using a generalization of the on-shell diagrams developed for planar N=4 super-Yang-Mills. Although the recursion relations generically give rise to non-planar on-shell diagrams, we show that at tree-level the recursion can be chosen to yield only planar diagrams, the same diagrams occurring in the planar N=4 theory. This implies non-trivial identities for non-planar diagrams as well as interesting relations between the N=4 and N=8 theories. We show that the on-shell diagrams of N=8 supergravity obey equivalence relations analogous to those of N=4 super-Yang-Mills, and we develop a systematic algorithm for reading off Grassmannian integral formulae directly from the on-shell diagrams. We also show that the 1-loop 4-point amplitude of N=8 supergravity can be obtained from on-shell diagrams.
Towards an amplitude analysis of exclusive γγ processes
International Nuclear Information System (INIS)
Pennington, M.R.
1988-06-01
The potential of two photon processes to shed light on the parton content of resonances, we maintain, can only be realized in practice by moving towards an Amplitude Analysis of experimental data. By using the process γγ → ππ as an example, the way to do this is discussed. Presently claimed uncertainties in the γγ width of even the well-known f 2 (1270) are shown to be over-optimistic and the fitted couplings of the overlapping scalar states in the 1 GeV region meaningless. Only the use of Amplitude Analysis techniques on the new higher statistics data from SLAC and DESY can resolve these uncertainties and lead to definite and significant results. 37 refs., 18 figs
Frequency and amplitude stabilization in MEMS and NEMS oscillators
Chen, Changyao; Lopez, Omar Daniel; Czaplewski, David A.
2017-06-14
This invention comprises a nonlinear micro- and nano-mechanical resonator that can maintain frequency of operation and amplitude of operation for a period of time after all external power has been removed from the device. Utilizing specific nonlinear dynamics of the micromechanical resonator, mechanical energy at low frequencies can be input and stored in higher frequencies modes, thus using the multiple degrees of freedom of the resonator to extend its energy storage capacity. Furthermore, the energy stored in multiple vibrational modes can be used to maintain the resonator oscillating for a fixed period of time, even without an external power supply. This is the first demonstration of an "autonomous" frequency source that can maintain a constant frequency and vibrating amplitude when no external power is provided, making it ideal for applications requiring an oscillator in low power, or limited and intermittent power supplies.
Covariant superstring fermionic amplitudes. Vertex operators and picture changing
International Nuclear Information System (INIS)
Aldazabal, G.; Nunez, C.; Bonini, M.
1988-07-01
Massive Ramond and Neveu-Schwarz vertex operators in the -1/2 and -1 ghost representations respectively are obtained from the factorization of the scattering amplitude of an arbitrary number of bosonic and fermionic massless states on general Riemann surfaces. The correlators for the ghost field of charge -1 and its derivatives are given as well as the normal ordering prescriptions to be used in computing scattering amplitudes. The vertex operators for the massless and the first two excited levels, both of the Ramond and the Neveu-Schwarz sector are given explicitly. The picture changing mechanism is considered and applied to relate the Neveu-Schwarz vertices in different representations. (author). 22 refs
Comparison of properties of amplitude-to-digital converters
International Nuclear Information System (INIS)
Dryak, P.; Tluchor, D.; JIranek, V.
1986-01-01
Integral linearity and the profile of the channel were measured for amplitude-to-digital converters manufactured by CANBERRA, ORTEC, NUCLEAR DATA, TRACOR and TESLA. For some of them differential linearity was also measured. Pulse generator ORTEC 448 was used for determining the parameters. The channel profile was determined only for a short stretch of ca 10 channels in the region of half the range of input amplitudes. The same shape of pulses with a leading edge of 500 ns and a time constant of 5 μs was always used. Graphs are presented of the deviations of the tested converters from linearity and of channel profiles. (M.D.) 2 tabs., 25 figs
Full colour for loop amplitudes in Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Ochirov, Alexander [Higgs Centre for Theoretical Physics, School of Physics and Astronomy,The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Page, Ben [Albert-Ludwigs-Universität Freiburg, Physikalisches Institut,D-79104 Freiburg (Germany)
2017-02-20
We present a general method to account for full colour dependence Yang-Mills amplitudes at loop level. The method fits most naturally into the framework of multi-loop integrand reduction and in a nutshell amounts to consistently retaining the colour structures of the unitarity cuts from which the integrand is gradually constructed. This technique has already been used in the recent calculation of the two-loop five-gluon amplitude in pure Yang-Mills theory with all positive helicities, (DOI: 10.1007/JHEP10(2015)064). In this note, we give a careful exposition of the method and discuss its connection to loop-level Kleiss-Kuijf relations. We also explore its implications for cancellation of nontrivial symmetry factors at two loops. As an example of its generality, we show how it applies to the three-loop case in supersymmetric Yang-Mills case.
QCD-based pion distribution amplitudes confronting experimental data
International Nuclear Information System (INIS)
Bakulev, A.P.; Mikhajlov, S.V.; Stefanis, N.G.
2001-01-01
We use QCD sum rules with nonlocal condensates to recalculate more accurately the moments and their confidence intervals of the twist-2 pion distribution amplitude including radiative corrections. We are thus able to construct an admissible set of pion distribution amplitudes which define a reliability region in the a 2 , a 4 plane of the Gegenbauer polynomial expansion coefficients. We emphasize that models like that of Chernyak and Zhitnitsky, as well as the asymptotic solution, are excluded from this set. We show that the determined a 2 , a 4 region strongly overlaps with that extracted from the CLEO data by Schmedding and Yakovlev and that this region is also not far from the results of the first direct measurement of the pion valence quark momentum distribution by the Fermilab E791 collaboration. Comparisons with recent lattice calculations and instanton-based models are briefly discussed
Cosmophysical Factors in the Fluctuation Amplitude Spectrum of Brownian Motion
Directory of Open Access Journals (Sweden)
Kaminsky A. V.
2010-04-01
Full Text Available Phenomenon of the regular variability of the fine structure of the fluctuation in the amplitude distributions (shapes of related histograms for the case of Brownian motion was investigated. We took an advantage of the dynamic light scattering method (DLS to get a stochastically fluctuated signal determined by Brownian motion. Shape of the histograms is most likely to vary, synchronous, in two proximally located independent cells containing Brownian particles. The synchronism persists in the cells distant at 2m from each other, and positioned meridionally. With a parallel-wise positioning of the cells, high probability of the synchronous variation in the shape of the histograms by local time has been observed. This result meets the previous conclusion about the dependency of histogram shapes ("fluctuation amplitudes" of the spectra of stochastic processes upon rotation of the Earth.
Pulse amplitude and frequency effects in a pulsed packed column
International Nuclear Information System (INIS)
Russell, S.H.
1954-04-01
A study has been made of the effect on the efficiency and capacity of applying pulses of varying amplitude and frequency to a packed column. In the efficiency studies, the maximum efficiency was obtained with a pulse having an amplitude of 3/8'' and a frequency of 140 cycles per minute. Under these conditions, the column was about five times as efficient as a simple packed column. Two general types of results were obtained in the capacity studies. Under certain conditions, the capacity increased over that of a simple packed column, but under others, it decreased. Some of the factors causing this were investigated but the fundamental reasons were not determined due to a lack of personnel for the necessary experiments. (author)
Ward Identity and Scattering Amplitudes for Nonlinear Sigma Models.
Low, Ian; Yin, Zhewei
2018-02-09
We present a Ward identity for nonlinear sigma models using generalized nonlinear shift symmetries, without introducing current algebra or coset space. The Ward identity constrains correlation functions of the sigma model such that the Adler's zero is guaranteed for S-matrix elements, and gives rise to a subleading single soft theorem that is valid at the quantum level and to all orders in the Goldstone decay constant. For tree amplitudes, the Ward identity leads to a novel Berends-Giele recursion relation as well as an explicit form of the subleading single soft factor. Furthermore, interactions of the cubic biadjoint scalar theory associated with the single soft limit, which was previously discovered using the Cachazo-He-Yuan representation of tree amplitudes, can be seen to emerge from matrix elements of conserved currents corresponding to the generalized shift symmetry.
Dynamic response function and large-amplitude dissipative collective motion
International Nuclear Information System (INIS)
Wu Xizhen; Zhuo Yizhong; Li Zhuxia; Sakata, Fumihiko.
1993-05-01
Aiming at exploring microscopic dynamics responsible for the dissipative large-amplitude collective motion, the dynamic response and correlation functions are introduced within the general theory of nuclear coupled-master equations. The theory is based on the microscopic theory of nuclear collective dynamics which has been developed within the time-dependent Hartree-Fock (TDHF) theory for disclosing complex structure of the TDHF-manifold. A systematic numerical method for calculating the dynamic response and correlation functions is proposed. By performing numerical calculation for a simple model Hamiltonian, it is pointed out that the dynamic response function gives an important information in understanding the large-amplitude dissipative collective motion which is described by an ensemble of trajectories within the TDHF-manifold. (author)
Amplitude analysis of resonant production in three pions
Energy Technology Data Exchange (ETDEWEB)
Jackura, Andrew [Indiana Univ., Bloomington, IN (United States); Mikhasenko, Mikhail [Univ. of Bonn (Germany); Szczepaniak, Adam [Indiana Univ., Bloomington, IN (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-11-29
We present some results on the analysis of three pion resonances. The analyses are motivated by the recent release of the largest data set on diffractively produced three pions by the COMPASS collaboration. We construct reaction amplitudes that satisfy fundamental $S$-matrix principles, which allows the use of models that have physical constraints to be used in fitting data. The models are motivated by the isobar model that satisfy unitarity constraints. The model consist of a Deck production amplitude with which final state interactions are constrained by unitarity. We employ the isobar model where two of the pions form a quasi-stable particle. The analysis is performed in the high-energy, single Regge limit. We specifically discuss the examples of the three pion $J^{PC}=2^{-+}$ resonance in the $\\rho\\pi$ and $f_2\\pi$ channels.
Optimisation of amplitude distribution of magnetic Barkhausen noise
Pal'a, Jozef; Jančárik, Vladimír
2017-09-01
The magnetic Barkhausen noise (MBN) measurement method is a widely used non-destructive evaluation technique used for inspection of ferromagnetic materials. Besides other influences, the excitation yoke lift-off is a significant issue of this method deteriorating the measurement accuracy. In this paper, the lift-off effect is analysed mainly on grain oriented Fe-3%Si steel subjected to various heat treatment conditions. Based on investigation of relationship between the amplitude distribution of MBN and lift-off, an approach to suppress the lift-off effect is proposed. Proposed approach utilizes the digital feedback optimising the measurement based on the amplitude distribution of MBN. The results demonstrated that the approach can highly suppress the lift-off effect up to 2 mm.
Infrared singularities of scattering amplitudes in perturbative QCD
Energy Technology Data Exchange (ETDEWEB)
Becher, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Neubert, Matthias [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany)
2013-11-01
An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.
Geomagnetic Activity Indicates Large Amplitude for Sunspot Cycle 24
Hathaway, David H.
2006-01-01
The level of geomagnetic activity near the time of solar activity minimum has been shown to be a reliable indicator for the amplitude of the following solar activity maximum. The geomagnetic activity index aa can be split into two components: one associated with solar flares, prominence eruptions, and coronal mass ejections which follows the solar activity cycle and a second component associated with recurrent high speed solar wind streams which is out of phase with the solar activity cycle. This second component often peaks before solar activity minimum and has been one of the most reliable indicators for the amplitude of the following maximum. The size of the recent maximum in this second component indicates that solar activity cycle 24 will be much higher than average - similar in size to cycles 21 and 22 with a peak smoothed sunspot number of 160 plus or minus 25.
Ward Identity and Scattering Amplitudes for Nonlinear Sigma Models
Low, Ian; Yin, Zhewei
2018-02-01
We present a Ward identity for nonlinear sigma models using generalized nonlinear shift symmetries, without introducing current algebra or coset space. The Ward identity constrains correlation functions of the sigma model such that the Adler's zero is guaranteed for S -matrix elements, and gives rise to a subleading single soft theorem that is valid at the quantum level and to all orders in the Goldstone decay constant. For tree amplitudes, the Ward identity leads to a novel Berends-Giele recursion relation as well as an explicit form of the subleading single soft factor. Furthermore, interactions of the cubic biadjoint scalar theory associated with the single soft limit, which was previously discovered using the Cachazo-He-Yuan representation of tree amplitudes, can be seen to emerge from matrix elements of conserved currents corresponding to the generalized shift symmetry.
Harmonic R-matrices for scattering amplitudes and spectral regularization
Energy Technology Data Exchange (ETDEWEB)
Ferro, Livia; Plefka, Jan [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Lukowski, Tomasz [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Univ. Berlin (Germany). IRIS Adlershof; Meneghelli, Carlo [Hamburg Univ. (Germany). Fachbereich 11 - Mathematik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Staudacher, Matthias [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany)
2012-12-15
Planar N=4 super Yang-Mills appears to be integrable. While this allows to find this theory's exact spectrum, integrability has hitherto been of no direct use for scattering amplitudes. To remedy this, we deform all scattering amplitudes by a spectral parameter. The deformed tree-level four-point function turns out to be essentially the one-loop R-matrix of the integrable N=4 spin chain satisfying the Yang-Baxter equation. Deformed on-shell three-point functions yield novel three-leg R-matrices satisfying bootstrap equations. Finally, we supply initial evidence that the spectral parameter might find its use as a novel symmetry-respecting regulator replacing dimensional regularization. Its physical meaning is a local deformation of particle helicity, a fact which might be useful for a much larger class of non-integrable four-dimensional field theories.
Forbidden immisions and environmental protection
Directory of Open Access Journals (Sweden)
Popov Danica
2012-01-01
Full Text Available In the Serbian Law and in the most of jurisdictions, there are limits on exercising the right of property. A real estate owner must refrain from activities by which the use of other real estate is being imploded through the emission of excessive gasses, vapors, smoke, heat, noise, the draining of waste water, etc. Neighboring real estate owners must endure such harmful effects if they do not exceed the limit of usual endurance, taking into account the nature and purpose of such real estate, as well as local conditions. The property owner who is affected by emissions exceeding the set limit, has the right to request a stop of emissions which exceeded the allowed volume of emissions. If the imissions originate from some industrial plants, within the activity allowed by a state authority, one cannot request a cessation of such activities, but can simply seek damages. The issue of the environmental protection in the Republic of Serbia is regulated by a number of particular substantive laws, with a Law of environmental protection of 2009. as fundamental Law.
Okamoto, Ryuichi; Onuki, Akira
2012-03-21
We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line. © 2012 American Institute of Physics
Minijets and the real part of the elastic amplitudes
International Nuclear Information System (INIS)
Innocente, V.; Capella, A.; Van, J.T.T.
1988-01-01
In the framework of the perturbative reggeon calculus, including a hard pomeron, we perform a fit of pp and anti pp total, elastic and diffractive cross section data and the ratio ρ. The parameters of the hard pomeron are deduced from the minijet cross section measured by the UA1 Collaboration. We obtain a value of the real part of the anti pp elastic amplitude compatible with the recent UA4 measurement. (orig.)