WorldWideScience

Sample records for foraging pattern colony

  1. Variation in daily flight activity and foraging patterns in colonies of uruçu - Melipona scutellaris Latreille (Apidae, Meliponini

    Directory of Open Access Journals (Sweden)

    Leonardo Monteiro Pierrot

    2003-12-01

    Full Text Available The flight activities of five colonies of Melipona (Michmelia scutellaris Latreille, 1811 kept among mixed fruit crop plantations in within fragments of Atlantic Rainforest in Pernambuco, NE-Brazil was examined. The daily deployment of foragers to collect pollen, nectar, resin and mud was observed. The colonies performed between 2,640 and 14,250 flights per day. Variations in the number of total daily flights were similar between colonies on all observation days. Proportional allocation of foragers to the different resources also among colonies showed similar variation. More than 90% of the pollen collection flights were made early in the morning. Nectar was collected in similar proportional frequencies with a reduction in activity at noon. On a single day, was observed atypical intense pollen foraging during the afternoon by all colonies. This indicates a high plasticity in foraging behaviour and efficient recruitment to resources which are presented by mass flowering trees with synchronised big bang or multiple bang flowering. Resource availability of the surrounding vegetation, therefore, seems to be the major factor in defining the forager activities on a given day.

  2. The regulation of ant colony foraging activity without spatial information.

    Directory of Open Access Journals (Sweden)

    Balaji Prabhakar

    Full Text Available Many dynamical networks, such as the ones that produce the collective behavior of social insects, operate without any central control, instead arising from local interactions among individuals. A well-studied example is the formation of recruitment trails in ant colonies, but many ant species do not use pheromone trails. We present a model of the regulation of foraging by harvester ant (Pogonomyrmex barbatus colonies. This species forages for scattered seeds that one ant can retrieve on its own, so there is no need for spatial information such as pheromone trails that lead ants to specific locations. Previous work shows that colony foraging activity, the rate at which ants go out to search individually for seeds, is regulated in response to current food availability throughout the colony's foraging area. Ants use the rate of brief antennal contacts inside the nest between foragers returning with food and outgoing foragers available to leave the nest on the next foraging trip. Here we present a feedback-based algorithm that captures the main features of data from field experiments in which the rate of returning foragers was manipulated. The algorithm draws on our finding that the distribution of intervals between successive ants returning to the nest is a Poisson process. We fitted the parameter that estimates the effect of each returning forager on the rate at which outgoing foragers leave the nest. We found that correlations between observed rates of returning foragers and simulated rates of outgoing foragers, using our model, were similar to those in the data. Our simple stochastic model shows how the regulation of ant colony foraging can operate without spatial information, describing a process at the level of individual ants that predicts the overall foraging activity of the colony.

  3. Foraging Activity in Plebeia remota, a Stingless Bees Species, Is Influenced by the Reproductive State of a Colony

    Directory of Open Access Journals (Sweden)

    Patrícia Nunes-Silva

    2010-01-01

    Full Text Available Colonies of the Brazilian stingless bee Plebeia remota show a reproductive diapause in autumn and winter. Therefore, they present two distinct reproductive states, during which colony needs are putatively different. Consequently, foraging should be adapted to the different needs. We recorded the foraging activity of two colonies for 30 days in both phases. Indeed, it presented different patterns during the two phases. In the reproductive diapause, the resource predominantly collected by the foragers was nectar. The majority of the bees were nectar foragers, and the peak of collecting activity occurred around noon. Instead, in the reproductive phase, the predominantly collected resource was pollen, and the peak of activity occurred around 10:00 am. Although the majority of the foragers were not specialized in this phase, there were a larger number of pollen foragers compared to the phase of reproductive diapause. The temperature and relative humidity also influenced the foraging activity.

  4. The Role of Non-Foraging Nests in Polydomous Wood Ant Colonies.

    Science.gov (United States)

    Ellis, Samuel; Robinson, Elva J H

    2015-01-01

    A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.

  5. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior.

    Directory of Open Access Journals (Sweden)

    Alison A Bockoven

    Full Text Available Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior.

  6. Genetic diversity within honeybee colonies increases signal production by waggle-dancing foragers

    Science.gov (United States)

    Mattila, Heather R; Burke, Kelly M; Seeley, Thomas D

    2008-01-01

    Recent work has demonstrated considerable benefits of intracolonial genetic diversity for the productivity of honeybee colonies: single-patriline colonies have depressed foraging rates, smaller food stores and slower weight gain relative to multiple-patriline colonies. We explored whether differences in the use of foraging-related communication behaviour (waggle dances and shaking signals) underlie differences in foraging effort of genetically diverse and genetically uniform colonies. We created three pairs of colonies; each pair had one colony headed by a multiply mated queen (inseminated by 15 drones) and one colony headed by a singly mated queen. For each pair, we monitored the production of foraging-related signals over the course of 3 days. Foragers in genetically diverse colonies had substantially more information available to them about food resources than foragers in uniform colonies. On average, in genetically diverse colonies compared with genetically uniform colonies, 36% more waggle dances were identified daily, dancers performed 62% more waggle runs per dance, foragers reported food discoveries that were farther from the nest and 91% more shaking signals were exchanged among workers each morning prior to foraging. Extreme polyandry by honeybee queens enhances the production of worker–worker communication signals that facilitate the swift discovery and exploitation of food resources. PMID:18198143

  7. Pollen foraging in colonies of Melipona bicolor (Apidae, Meliponini): effects of season, colony size and queen number.

    Science.gov (United States)

    Hilário, S D; Imperatriz-Fonseca, V L

    2009-01-01

    We evaluated the ratio between the number of pollen foragers and the total number of bees entering colonies of Melipona bicolor, a facultative polygynous species of stingless bees. The variables considered in our analysis were: seasonality, colony size and the number of physogastric queens in each colony. The pollen forager ratios varied significantly between seasons; the ratio was higher in winter than in summer. However, colony size and number of queens per colony had no significant effect. We conclude that seasonal differences in pollen harvest are related to the production of sexuals and to the number of individuals and their body size.

  8. Changes in learning and foraging behaviour within developing bumble bee (Bombus terrestris colonies.

    Directory of Open Access Journals (Sweden)

    Lisa J Evans

    Full Text Available Organisation in eusocial insect colonies emerges from the decisions and actions of its individual members. In turn, these decisions and actions are influenced by the individual's behaviour (or temperament. Although there is variation in the behaviour of individuals within a colony, we know surprisingly little about how (or indeed if the types of behaviour present in a colony change over time. Here, for the first time, we assessed potential changes in the behavioural type of foragers during colony development. Using an ecologically relevant foraging task, we measured the decision speed and learning ability of bumble bees (Bombus terrestris at different stages of colony development. We determined whether individuals that forage early in the colony life cycle (the queen and early emerging workers behaved differently from workers that emerge and forage at the end of colony development. Whilst we found no overall change in the foraging behaviour of workers with colony development, there were strong differences in foraging behaviour between queens and their workers. Queens appeared to forage more cautiously than their workers and were also quicker to learn. These behaviours could allow queens to maximise their nectar collecting efficiency whilst avoiding predation. Because the foundress queen is crucial to the survival and success of a bumble bee colony, more efficient foraging behaviour in queens may have strong adaptive value.

  9. Fearful foragers: honey bees tune colony and individual foraging to multi-predator presence and food quality.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Fear can have strong ecosystem effects by giving predators a role disproportionate to their actual kill rates. In bees, fear is shown through foragers avoiding dangerous food sites, thereby reducing the fitness of pollinated plants. However, it remains unclear how fear affects pollinators in a complex natural scenario involving multiple predator species and different patch qualities. We studied hornets, Vespa velutina (smaller and V. tropica (bigger preying upon the Asian honey bee, Apis cerana in China. Hornets hunted bees on flowers and were attacked by bee colonies. Bees treated the bigger hornet species (which is 4 fold more massive as more dangerous. It received 4.5 fold more attackers than the smaller hornet species. We tested bee responses to a three-feeder array with different hornet species and varying resource qualities. When all feeders offered 30% sucrose solution (w/w, colony foraging allocation, individual visits, and individual patch residence times were reduced according to the degree of danger. Predator presence reduced foraging visits by 55-79% and residence times by 17-33%. When feeders offered different reward levels (15%, 30%, or 45% sucrose, colony and individual foraging favored higher sugar concentrations. However, when balancing food quality against multiple threats (sweeter food corresponding to higher danger, colonies exhibited greater fear than individuals. Colonies decreased foraging at low and high danger patches. Individuals exhibited less fear and only decreased visits to the high danger patch. Contrasting individual with emergent colony-level effects of fear can thus illuminate how predators shape pollination by social bees.

  10. Colony-level behavioural variation correlates with differences in expression of the foraging gene in red imported fire ants.

    Science.gov (United States)

    Bockoven, Alison A; Coates, Craig J; Eubanks, Micky D

    2017-11-01

    Among social insects, colony-level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire ant foraging gene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony-level behavioural variation. Colonies with higher sifor expression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression of sifor was also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of the foraging gene may provide an important tool for understanding and predicting the ecological consequences of colony-level behavioural variation. © 2017 John Wiley & Sons Ltd.

  11. Foraging responses of black-legged kittiwakes to prolonged food-shortages around colonies on the Bering Sea shelf.

    Directory of Open Access Journals (Sweden)

    Rosana Paredes

    Full Text Available We hypothesized that changes in southeastern Bering Sea foraging conditions for black-legged kittiwakes (Rissa tridactyla have caused shifts in habitat use with direct implications for population trends. To test this, we compared at-sea distribution, breeding performance, and nutritional stress of kittiwakes in three years (2008-2010 at two sites in the Pribilof Islands, where the population has either declined (St. Paul or remained stable (St. George. Foraging conditions were assessed from changes in (1 bird diets, (2 the biomass and distribution of juvenile pollock (Theragra chalcogramma in 2008 and 2009, and (3 eddy kinetic energy (EKE; considered to be a proxy for oceanic prey availability. In years when biomass of juvenile pollock was low and patchily distributed in shelf regions, kittiwake diets included little or no neritic prey and a much higher occurrence of oceanic prey (e.g. myctophids. Birds from both islands foraged on the nearby shelves, or made substantially longer-distance trips overnight to the basin. Here, feeding was more nocturnal and crepuscular than on the shelf, and often occurred near anticyclonic, or inside cyclonic eddies. As expected from colony location, birds from St. Paul used neritic waters more frequently, whereas birds from St. George typically foraged in oceanic waters. Despite these distinctive foraging patterns, there were no significant differences between colonies in chick feeding rates or fledging success. High EKE in 2010 coincided with a 63% increase in use of the basin by birds from St. Paul compared with 2008 when EKE was low. Nonetheless, adult nutritional stress, which was relatively high across years at both colonies, peaked in birds from St. Paul in 2010. Diminishing food resources in nearby shelf habitats may have contributed to kittiwake population declines at St Paul, possibly driven by increased adult mortality or breeding desertion due to high foraging effort and nutritional stress.

  12. Effects of clothianidin on Bombus impatiens (Hymenoptera: Apidae) colony health and foraging ability.

    Science.gov (United States)

    Franklin, Michelle T; Winston, Mark L; Morandin, Lora A

    2004-04-01

    We conducted laboratory experiments to investigate the lethal and sublethal effects of clothianidin on bumble bee, Bombus impatiens Cresson, colony health and foraging ability. Bumble bee colonies were exposed to 6 ppb clothianidin, representing the highest residue levels found in field studies on pollen, and a higher dose of 36 ppb clothianidin in pollen. Clothianidin did not effect pollen consumption, newly emerged worker weights, amount of brood or the number of workers, males, and queens at either dose. The foraging ability of worker bees tested on an artificial array of complex flowers also did not differ among treatments. These results suggest that clothianidin residues found in seed-treated canola and possibly other crops will not adversely affect the health of bumble bee colonies or the foraging ability of workers.

  13. Quantifying the effect of colony size and food distribution on harvester ant foraging.

    Directory of Open Access Journals (Sweden)

    Tatiana P Flanagan

    Full Text Available Desert seed-harvester ants, genus Pogonomyrmex, are central place foragers that search for resources collectively. We quantify how seed harvesters exploit the spatial distribution of seeds to improve their rate of seed collection. We find that foraging rates are significantly influenced by the clumpiness of experimental seed baits. Colonies collected seeds from larger piles faster than randomly distributed seeds. We developed a method to compare foraging rates on clumped versus random seeds across three Pogonomyrmex species that differ substantially in forager population size. The increase in foraging rate when food was clumped in larger piles was indistinguishable across the three species, suggesting that species with larger colonies are no better than species with smaller colonies at collecting clumped seeds. These findings contradict the theoretical expectation that larger groups are more efficient at exploiting clumped resources, thus contributing to our understanding of the importance of the spatial distribution of food sources and colony size for communication and organization in social insects.

  14. Complex scaling behavior in animal foraging patterns

    Science.gov (United States)

    Premachandra, Prabhavi Kaushalya

    This dissertation attempts to answer questions from two different areas of biology, ecology and neuroscience, using physics-based techniques. In Section 2, suitability of three competing random walk models is tested to describe the emergent movement patterns of two species of primates. The truncated power law (power law with exponential cut off) is the most suitable random walk model that characterizes the emergent movement patterns of these primates. In Section 3, an agent-based model is used to simulate search behavior in different environments (landscapes) to investigate the impact of the resource landscape on the optimal foraging movement patterns of deterministic foragers. It should be noted that this model goes beyond previous work in that it includes parameters such as spatial memory and satiation, which have received little consideration to date in the field of movement ecology. When the food availability is scarce in a tropical forest-like environment with feeding trees distributed in a clumped fashion and the size of those trees are distributed according to a lognormal distribution, the optimal foraging pattern of a generalist who can consume various and abundant food types indeed reaches the Levy range, and hence, show evidence for Levy-flight-like (power law distribution with exponent between 1 and 3) behavior. Section 4 of the dissertation presents an investigation of phase transition behavior in a network of locally coupled self-sustained oscillators as the system passes through various bursting states. The results suggest that a phase transition does not occur for this locally coupled neuronal network. The data analysis in the dissertation adopts a model selection approach and relies on methods based on information theory and maximum likelihood.

  15. Longitudinal effects of supplemental forage on the honey bee (Apis 1 mellifera) microbiota and inter- and intra-colony variability

    Science.gov (United States)

    Honey bee colonies obtain much of their gut bacteria (gut microbiota) from fresh nectar and pollen collected from flowering plants (forage). Honey bee colonies often go for long periods of time without fresh forage during winter and early spring. We examined the effects of mid-winter supplemental fo...

  16. Growth pattern of the surface of fungus Aspergillus colony

    Science.gov (United States)

    Matsuura, Shu; Miyazima, Sasuke

    1992-05-01

    Aspergillus oryzae colonies were grown under various glucose concentrations, temperatures, and agar concentrations, and the effects on the pattern were investigated. Patterns of colony were found to vary from uniform to diffusion-limited aggregation type.

  17. Colonial army recruitment patterns and post-colonial Military Coups ...

    African Journals Online (AJOL)

    Since time immemorial, societies, states and state builders have been challenged and transformed by the need and quest for military manpower. European states relied on conscript armies to 'pacify' and retain colonies in parts of the non-European world. These facts underscore the meticulous attention paid by the British to ...

  18. Foraging segregation and genetic divergence between geographically proximate colonies of a highly mobile seabird

    Science.gov (United States)

    Wiley, Anne E.; Welch, Andreanna J.; Ostrom, P.H.; James, Helen F.; Stricker, C.A.; Fleischer, R.C.; Gandhi, H.; Adams, J.; Ainley, D.G.; Duvall, F.; Holmes, N.; Hu, D.; Judge, S.; Penniman, J.; Swindle, K.A.

    2012-01-01

    Foraging segregation may play an important role in the maintenance of animal diversity, and is a proposed mechanism for promoting genetic divergence within seabird species. However, little information exists regarding its presence among seabird populations. We investigated genetic and foraging divergence between two colonies of endangered Hawaiian petrels (Pterodroma sandwichensis) nesting on the islands of Hawaii and Kauai using the mitochondrial Cytochrome b gene and carbon, nitrogen and hydrogen isotope values (?? 13C, ?? 15N and ??D, respectively) of feathers. Genetic analyses revealed strong differentiation between colonies on Hawaii and Kauai, with ?? ST = 0. 50 (p Feather ??D varied from -69 to 53???. This variation cannot be related solely to an isotopically homogeneous ocean water source or evaporative water loss. Instead, we propose the involvement of salt gland excretion. Our data demonstrate the presence of foraging segregation between proximately nesting seabird populations, despite high species mobility. This ecological diversity may facilitate population coexistence, and its preservation should be a focus of conservation strategies. ?? 2011 Springer-Verlag (outside the USA).

  19. Colony-level variation in pollen collection and foraging preferences among wild-caught bumble bees (Hymenoptera: Apidae).

    Science.gov (United States)

    Saifuddin, Mustafa; Jha, Shalene

    2014-04-01

    Given that many pollinators have exhibited dramatic declines related to habitat destruction, an improved understanding of pollinator resource collection across human-altered landscapes is essential to conservation efforts. Despite the importance of bumble bees (Bombus spp.) as global pollinators, little is known regarding how pollen collection patterns vary between individuals, colonies, and landscapes. In this study, Vosnesensky bumble bees (Bombus vosnesenskii Radoszkowski) were collected from a range of human-altered and natural landscapes in northern California. Extensive vegetation surveys and Geographic Information System (GIS)-based habitat classifications were conducted at each site, bees were genotyped to identify colony mates, and pollen loads were examined to identify visited plants. In contrast to predictions based on strong competitive interactions, pollen load composition was significantly more similar for bees captured in a shared study region compared with bees throughout the research area but was not significantly more similar for colony mates. Preference analyses revealed that pollen loads were not composed of the most abundant plant species per study region. The majority of ranked pollen preference lists were significantly correlated for pairwise comparisons of colony mates and individuals within a study region, whereas the majority of pairwise comparisons of ranked pollen preference lists between individuals located at separate study regions were uncorrelated. Results suggest that pollen load composition and foraging preferences are similar for bees throughout a shared landscape regardless of colony membership. The importance of native plant species in pollen collection is illustrated through preference analyses, and we suggest prioritization of specific rare native plant species for enhanced bumble bee pollen collection.

  20. A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus.

    Science.gov (United States)

    Ratti, Vardayani; Kevan, Peter G; Eberl, Hermann J

    2017-06-01

    We incorporate a mathematical model of Varroa destructor and the Acute Bee Paralysis Virus with an existing model for a honeybee colony, in which the bee population is divided into hive bees and forager bees based on tasks performed in the colony. The model is a system of five ordinary differential equations with dependent variables: uninfected hive bees, uninfected forager bees, infected hive bees, virus-free mites and virus-carrying mites. The interplay between forager loss and disease infestation is studied. We study the stability of the disease-free equilibrium of the bee-mite-virus model and observe that the disease cannot be fought off in the absence of varroacide treatment. However, the disease-free equilibrium can be stable if the treatment is strong enough and also if the virus-carrying mites become virus-free at a rate faster than the mite birth rate. The critical forager loss due to homing failure, above which the colony fails, is calculated using simulation experiments for disease-free, treated and untreated mite-infested, and treated virus-infested colonies. A virus-infested colony without varroacide treatment fails regardless of the forager mortality rate.

  1. Foraging areas, offshore habitat use, and colony overlap by incubating Leach's storm-petrels Oceanodroma leucorhoa in the Northwest Atlantic.

    Directory of Open Access Journals (Sweden)

    April Hedd

    Full Text Available Despite their importance in marine food webs, much has yet to be learned about the spatial ecology of small seabirds. This includes the Leach's storm-petrel Oceanodroma leucorhoa, a species that is declining throughout its Northwest Atlantic breeding range. In 2013 and 2014, we used global location sensors to track foraging movements of incubating storm-petrels from 7 eastern Canadian breeding colonies. We determined and compared the foraging trip and at-sea habitat characteristics, analysed spatial overlap among colonies, and determined whether colony foraging ranges intersected with offshore oil and gas operations. Individuals tracked during the incubation period made 4.0 ± 1.4 day foraging trips, travelling to highly pelagic waters over and beyond continental slopes which ranged, on average, 400 to 830 km from colonies. Cumulative travel distances ranged from ~900 to 2,100 km among colonies. While colony size did not influence foraging trip characteristics or the size of areas used at sea, foraging distances tended to be shorter for individuals breeding at the southern end of the range. Core areas did not overlap considerably among colonies, and individuals from all sites except Kent Island in the Bay of Fundy foraged over waters with median depths > 1,950 m and average chlorophyll a concentrations ≤ 0.6 mg/m3. Sea surface temperatures within colony core areas varied considerably (11-23°C, coincident with the birds' use of cold waters of the Labrador Current or warmer waters of the Gulf Stream Current. Offshore oil and gas operations intersected with the foraging ranges of 5 of 7 colonies. Three of these, including Baccalieu Island, Newfoundland, which supports the species' largest population, have experienced substantial declines in the last few decades. Future work should prioritize modelling efforts to incorporate information on relative predation risk at colonies, spatially explicit risks at-sea on the breeding and wintering grounds

  2. Loading pattern optimization using ant colony algorithm

    International Nuclear Information System (INIS)

    Hoareau, Fabrice

    2008-01-01

    Electricite de France (EDF) operates 58 nuclear power plants (NPP), of the Pressurized Water Reactor type. The loading pattern optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R and D has developed automatic optimization tools that assist the experts. LOOP is an industrial tool, developed by EDF R and D and based on a simulated annealing algorithm. In order to improve the results of such automatic tools, new optimization methods have to be tested. Ant Colony Optimization (ACO) algorithms are recent methods that have given very good results on combinatorial optimization problems. In order to evaluate the performance of such methods on loading pattern optimization, direct comparisons between LOOP and a mock-up based on the Max-Min Ant System algorithm (a particular variant of ACO algorithms) were made on realistic test-cases. It is shown that the results obtained by the ACO mock-up are very similar to those of LOOP. Future research will consist in improving these encouraging results by using parallelization and by hybridizing the ACO algorithm with local search procedures. (author)

  3. Resilience of honeybee colonies via common stomach: A model of self-regulation of foraging.

    Directory of Open Access Journals (Sweden)

    Thomas Schmickl

    Full Text Available We propose a new regulation mechanism based on the idea of the "common stomach" to explain several aspects of the resilience and homeostatic regulation of honeybee colonies. This mechanism exploits shared pools of substances (pollen, nectar, workers, brood that modulate recruitment, abandonment and allocation patterns at the colony-level and enable bees to perform several survival strategies to cope with difficult circumstances: Lack of proteins leads to reduced feeding of young brood, to early capping of old brood and to regaining of already spent proteins through brood cannibalism. We modeled this system by linear interaction terms and mass-action law. To test the predictive power of the model of this regulatory mechanism we compared our model predictions to experimental data of several studies. These comparisons show that the proposed regulation mechanism can explain a variety of colony level behaviors. Detailed analysis of the model revealed that these mechanisms could explain the resilience, stability and self-regulation observed in honeybee colonies. We found that manipulation of material flow and applying sudden perturbations to colony stocks are quickly compensated by a resulting counter-acting shift in task selection. Selective analysis of feedback loops allowed us to discriminate the importance of different feedback loops in self-regulation of honeybee colonies. We stress that a network of simple proximate mechanisms can explain significant colony-level abilities that can also be seen as ultimate reasoning of the evolutionary trajectory of honeybees.

  4. Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability.

    Science.gov (United States)

    Rothman, Jason A; Carroll, Mark J; Meikle, William G; Anderson, Kirk E; McFrederick, Quinn S

    2018-02-03

    Honey bees (Apis mellifera) provide vital pollination services for a variety of agricultural crops around the world and are known to host a consistent core bacterial microbiome. This symbiotic microbial community is essential to many facets of bee health, including likely nutrient acquisition, disease prevention and optimal physiological function. Being that the bee microbiome is likely involved in the digestion of nutrients, we either provided or excluded honey bee colonies from supplemental floral forage before being used for almond pollination. We then used 16S rRNA gene sequencing to examine the effects of forage treatment on the bees' microbial gut communities over four months. In agreement with previous studies, we found that the honey bee gut microbiota is quite stable over time. Similarly, we compared the gut communities of bees from separate colonies and sisters sampled from within the same hive over four months. Surprisingly, we found that the gut microbial communities of individual sisters from the same colony can exhibit as much variation as bees from different colonies. Supplemental floral forage had a subtle effect on the composition of the microbiome during the month of March only, with strains of Gilliamella apicola, Lactobacillus, and Bartonella being less proportionally abundant in bees exposed to forage in the winter. Collectively, our findings show that there is unexpected longitudinal variation within the gut microbial communities of sister honey bees and that supplemental floral forage can subtly alter the microbiome of managed honey bees.

  5. Colony Diet Influences Ant Worker Foraging and Attendance of Myrmecophilous Lycaenid Caterpillars

    Directory of Open Access Journals (Sweden)

    Sebastian Pohl

    2016-09-01

    Full Text Available Foraging animals regulate their intake of macronutrients such as carbohydrates and proteins. However, regulating the intake of these two macronutrients can be constrained by the nutrient content of available food sources. Compensatory foraging is a method to adjust nutrient intake under restricted nutrient availability by preferentially exploiting food sources that contain limiting nutrients. Here we studied the potential for compensatory foraging in the dolichoderine ant Iridomyrmex mayri, which is commonly found in associations with caterpillars of the obligatorily ant-associated lycaenid butterfly Jalmenus evagoras. The caterpillars receive protection against predators and parasites, and reward the ants with nutritional secretions from specialized exocrine glands. These secretions contain a mixture of sugars and free amino acids, particularly serine. We tested the influence of nutrient-deficient diets on foraging patterns in I. mayri by recording the intake of test solutions containing single types of macronutrients during food preference tests. We also investigated the level of ant attendance on fifth instar J. evagoras caterpillars to evaluate how changes in diet influenced ant tending of caterpillars and foraging on their secretions. Foragers on a protein diet compensated for the nutritional deficit by increasing the intake of test solutions that contained sucrose, compared to their counterparts on a non-restricted diet. Ants on a sugar diet, however, did not show a corresponding increased consumption of test solutions containing the amino acid serine. Additionally, compared with their counterparts on a mixed diet, ants on limited nutrient diets showed an increase in the number of caterpillar-tending workers, suggesting that the caterpillars’ secretions are suitable to compensate for the ants’ nutritional deficit.

  6. Laser-induced speckle scatter patterns in Bacillus colonies

    Directory of Open Access Journals (Sweden)

    Huisung eKim

    2014-10-01

    Full Text Available Label-free bacterial colony phenotyping technology called BARDOT (BActerial Rapid Detection using Optical scattering Technology provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 μm to 900 μm, average speckles area decreased 2-fold and the number of small speckles increased 7-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony.

  7. Using Colony Monitoring Devices to Evaluate the Impacts of Land Use and Nutritional Value of Forage on Honey Bee Health

    Directory of Open Access Journals (Sweden)

    Matthew Smart

    2017-12-01

    Full Text Available Colony monitoring devices used to track and assess the health status of honey bees are becoming more widely available and used by both beekeepers and researchers. These devices monitor parameters relevant to colony health at frequent intervals, often approximating real time. The fine-scale record of hive condition can be further related to static or dynamic features of the landscape, such as weather, climate, colony density, land use, pesticide use, vegetation class, and forage quality. In this study, we fit commercial honey bee colonies in two apiaries with pollen traps and digital scales to monitor floral resource use, pollen quality, and honey production. One apiary was situated in low-intensity agriculture; the other in high-intensity agriculture. Pollen traps were open for 72 h every two weeks while scales recorded weight every 15 min throughout the growing season. From collected pollen, we determined forage quantity per day, species identity using DNA sequencing, pesticide residues, amino acid content, and total protein content. From scales, we determined the accumulated hive weight change over the growing season, relating to honey production and final colony weight going into winter. Hive scales may also be used to identify the occurrence of environmental pollen and nectar dearth, and track phenological changes in plant communities. We provide comparisons of device-derived data between two apiaries over the growing season and discuss the potential for employing apiary monitoring devices to infer colony health in the context of divergent agricultural land use conditions.

  8. Using colony monitoring devices to evaluate the impacts of land use and nutritional value of forage on honey bee health

    Science.gov (United States)

    Smart, Matthew; Otto, Clint R.; Cornman, Robert S.; Iwanowicz, Deborah

    2018-01-01

    Colony monitoring devices used to track and assess the health status of honey bees are becoming more widely available and used by both beekeepers and researchers. These devices monitor parameters relevant to colony health at frequent intervals, often approximating real time. The fine-scale record of hive condition can be further related to static or dynamic features of the landscape, such as weather, climate, colony density, land use, pesticide use, vegetation class, and forage quality. In this study, we fit commercial honey bee colonies in two apiaries with pollen traps and digital scales to monitor floral resource use, pollen quality, and honey production. One apiary was situated in low-intensity agriculture; the other in high-intensity agriculture. Pollen traps were open for 72 h every two weeks while scales recorded weight every 15 min throughout the growing season. From collected pollen, we determined forage quantity per day, species identity using DNA sequencing, pesticide residues, amino acid content, and total protein content. From scales, we determined the accumulated hive weight change over the growing season, relating to honey production and final colony weight going into winter. Hive scales may also be used to identify the occurrence of environmental pollen and nectar dearth, and track phenological changes in plant communities. We provide comparisons of device-derived data between two apiaries over the growing season and discuss the potential for employing apiary monitoring devices to infer colony health in the context of divergent agricultural land use conditions.

  9. Social Learning in Bumblebees (Bombus impatiens: Worker Bumblebees Learn to Manipulate and Forage at Artificial Flowers by Observation and Communication within the Colony

    Directory of Open Access Journals (Sweden)

    Hamida B. Mirwan

    2013-01-01

    Full Text Available Social learning occurs when one individual learns from another, mainly conspecific, often by observation, imitation, or communication. Using artificial flowers, we studied social learning by allowing test bumblebees to (a see dead bumblebees arranged in foraging positions or (b watch live bumblebees actually foraging or (c communicate with nestmates within their colony without having seen foraging. Artificial flowers made from 1.5 mL microcentrifuge tubes with closed caps were inserted through the centres of blue 7 cm plastic discs as optical signals through which the bees could not forage. The reinforcer reward syrup was accessible only through holes in the sides of the tubes beneath the blue discs. Two colonies (A and B were used in tandem along with control (C and D colonies. No bee that was not exposed (i.e., from the control colonies (C and D to social learning discovered the access holes. Inside colony B, we imprisoned a group of bees that were prevented from seeing or watching. Bees that saw dead bumblebees in foraging positions, those that watched nest-mates foraging, and those that had only in-hive communication with successful foragers all foraged successfully. The means of in-hive communication are not understood and warrant intense investigation.

  10. Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-01-01

    Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.

  11. Bringing home the trash: do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses?

    Science.gov (United States)

    Young, Lindsay C; Vanderlip, Cynthia; Duffy, David C; Afanasyev, Vsevolod; Shaffer, Scott A

    2009-10-28

    When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been 'optimal' foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to differences in plastic

  12. Bringing home the trash: do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses?

    Directory of Open Access Journals (Sweden)

    Lindsay C Young

    Full Text Available When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been 'optimal' foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to

  13. [Activity patterns and foraging behavior of Apis cerana cerana in the urban gardens in winter].

    Science.gov (United States)

    Chen, Fa-jun; Yang, Qing-qing; Long, Li; Hu, Hong-mei; Duan, Bin; Chen, Wen-nian

    2016-01-01

    Bees and other pollinating insects are the important parts of biodiversity due to their great role in plant reproduction and crop production. To explore the role of city garden in native bees conservation, activity patterns, visiting behaviors and flowering plants with nectar or pollen were recorded in south Sichuan in winter. The results showed that, worker bees (Apis cerana cerana) were active to collect food out hive under suitable weather conditions, the duration of working was long. Peaks of the number of outgoing, entrance and foragers without pollen appeared at 14:00-15:00, and bimodal patterns were observed. While, peak of bees with pollen appeared at 11:00, and a unimodal pattern was observed. Time significantly affected the activity of workers. The workload of honey bees on nectar and pollen collection were different, just less than twenty percent foragers carrying pollen. Temperature and humidity also affected flights of bees to some degree, and bee activities showed similar patterns on different days. However, the activities had diverse characteristics in some time. Though a less number of plants were in flowering, most of them could be utilized by A. cerana cerana, and colonies could effectively get the food resource by behavior adjustment. In addition, visiting activities of bees on the flowers of main garden plants, such as Camellia japonica, showed obvious rhythm. Increasing the flowering plants with nectar and pollen in winter by scientific management of urban gardens would facilitate the creation of suitable habitats for A. cerana cerana and maintaining the wild population.

  14. GPS-tracking and colony observations reveal variation in offshore habitat use and foraging ecology of breeding Sandwich Terns

    Science.gov (United States)

    Fijn, R. C.; de Jong, J.; Courtens, W.; Verstraete, H.; Stienen, E. W. M.; Poot, M. J. M.

    2017-09-01

    Breeding success of seabirds critically depends on their foraging success offshore. However, studies combining at-sea tracking and visual provisioning observations are scarce, especially for smaller species of seabirds. This study is the first in which breeding Sandwich Terns were tracked with GPS-loggers to collect detailed data on foraging habitat use in four breeding seasons. The maximum home range of individual Sandwich Terns comprised approximately 1900 km2 and the average foraging range was 27 km. Trip durations were on average 135 min with average trip lengths of 67 km. Actual foraging behaviour comprised 35% of the time budget of a foraging trip. Substantial year-to-year variation was found in habitat use and trip variables, yet with the exception of 2012, home range size remained similar between years. Food availability, chick age and environmental conditions are proposed as the main driving factors between inter- and intra-annual variations in trip variables. Our multi-method approach also provided geo-referenced information on prey presence and we conclude that future combining of colony observations and GPS-loggers deployments can potentially provide a near complete insight into the feeding ecology of breeding Sandwich Terns, including the behaviour of birds at sea.

  15. Foraging

    NARCIS (Netherlands)

    Ydenberg, R.C.; Prins, H.H.T.

    2012-01-01

    This chapter describes the role played by behavioural adjustments to foraging behaviour in accommodating rapid environmental change. It looks into the adjustments of foraging behaviour to predation danger as a result of changes in the type and array of food available. It investigates the effects of

  16. Do inter-colony differences in Cape fur seal foraging behaviour ...

    African Journals Online (AJOL)

    We investigated how such environmental variability may impact foraging behaviour of the Cape fur seal Arctocephalus pusillus pusillus, using satellite telemetry on animals in northern, central and southern Namibia. We expected that seal foraging behaviour would reflect a gradient of deteriorating feeding conditions from ...

  17. Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens.

    Directory of Open Access Journals (Sweden)

    Jamison Scholer

    Full Text Available In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin, 10 (14 I, 9 C, 20 (16 I, 17C, 50 (71 I, 39 C and 100 (127 I, 76 C ppb imidacloprid or clothianidin in sugar syrup (50%. These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower. At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb-100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C ppb was the statistically significant reduction in queen survival (37% I, 56% C ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14 ppb I and 50 (39 ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage that result in detrimental effects on colonies (queen survival and colony weight. Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb.

  18. Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens.

    Science.gov (United States)

    Scholer, Jamison; Krischik, Vera

    2014-01-01

    In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin), 10 (14 I, 9 C), 20 (16 I, 17C), 50 (71 I, 39 C) and 100 (127 I, 76 C) ppb imidacloprid or clothianidin in sugar syrup (50%). These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower). At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb-100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C) ppb was the statistically significant reduction in queen survival (37% I, 56% C) ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14) ppb I and 50 (39) ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage) that result in detrimental effects on colonies (queen survival and colony weight). Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb.

  19. Chronic Exposure of Imidacloprid and Clothianidin Reduce Queen Survival, Foraging, and Nectar Storing in Colonies of Bombus impatiens

    Science.gov (United States)

    Scholer, Jamison; Krischik, Vera

    2014-01-01

    In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin), 10 (14 I, 9 C), 20 (16 I, 17C), 50 (71 I, 39 C) and 100 (127 I, 76 C) ppb imidacloprid or clothianidin in sugar syrup (50%). These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower). At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb–100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C) ppb was the statistically significant reduction in queen survival (37% I, 56% C) ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14) ppb I and 50 (39) ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage) that result in detrimental effects on colonies (queen survival and colony weight). Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb. PMID:24643057

  20. Temporal pattern of foraging and microhabitat use by Galápagos marine iguanas, Amblyrhynchus cristatus.

    Science.gov (United States)

    Buttemer, William A; Dawson, William R

    1993-10-01

    We observed a colony of marine iguanas (Amblyrhynchus cristatus) on Isla Fernandina, Galápagos, Ecuador, while measuring local micrometeorological and tidal conditions. We found size-related differences in foraging mode, with smaller iguanas feeding intertidally during daytime low tides and larger iguanas feeding subtidally. Despite having greater opportunity, subtidal foragers did not time their foraging bouts or exploit their environment in ways that optimized their period at high body temperature. Instead, the foraging schedule of these iguanas served to maximize their rate of rewarming following emergence from the cool sea. Intertidal feeders, by contrast, showed much greater behavioral flexibility in attempting to exploit their thermal environment. We suggest that size-ordered differences in marine iguana thermoregulatory behavior reflect underlying ontogenetic changes in costs and benefits of thermoregulation due to differences in predator pressure, quantity of food and electrolytes taken at each feeding, mode of foraging, and agonistic tendencies.

  1. Foraging habitat quality constrains effectiveness of artificial nest-site provisioning in reversing population declines in a colonial cavity nester.

    Directory of Open Access Journals (Sweden)

    Inês Catry

    Full Text Available Among birds, breeding numbers are mainly limited by two resources of major importance: food supply and nest-site availability. Here, we investigated how differences in land-use and nest-site availability affected the foraging behaviour, breeding success and population trends of the colonial cavity-dependent lesser kestrel Falco naumanni inhabiting two protected areas. Both areas were provided with artificial nests to increase nest-site availability. The first area is a pseudo-steppe characterized by traditional extensive cereal cultivation, whereas the second area is a previous agricultural zone now abandoned or replaced by forested areas. In both areas, lesser kestrels selected extensive agricultural habitats, such as fallows and cereal fields, and avoided scrubland and forests. In the second area, tracked birds from one colony travelled significantly farther distances (6.2 km ± 1.7 vs. 1.8 km ± 0.4 and 1.9 km ± 0.6 and had significant larger foraging-ranges (144 km(2 vs. 18.8 and 14.8 km(2 when compared to the birds of two colonies in the extensive agricultural area. Longer foraging trips were reflected in lower chick feeding rates, lower fledging success and reduced chick fitness. Availability and occupation of artificial nests was high in both areas but population followed opposite trends, with a positive increment recorded exclusively in the first area with a large proportion of agricultural areas. Progressive habitat loss around the studied colony in the second area (suitable habitat decreased from 32% in 1990 to only 7% in 2002 is likely the main driver of the recorded population decline and suggests that the effectiveness of bird species conservation based on nest-site provisioning is highly constrained by habitat quality in the surrounding areas. Therefore, the conservation of cavity-dependent species may be enhanced firstly by finding the best areas of remaining habitat and secondly by increasing the carrying capacity of high

  2. Extreme Effects of Season on the Foraging Activities and Colony Productivity of a Stingless Bee (Melipona asilvai Moure, 1971 in Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Daniela Lima do Nascimento

    2012-01-01

    Full Text Available This study reports the influence of season on foraging activities and internal colonial parameters of Melipona asilvai in an Atlantic forest area of northeast Brazil. We used video cameras connected to a PC to monitor all departures and returns of foragers and the types of materials they carried. Foraging activities decreased almost 90% from dry to rainy seasons, but temperature and humidity were not the main factors influencing departures. Observed honey storage and an extreme cutback in activities during the rainy period suggest a seasonal diapause in this species.

  3. Evidence of Levy walk foraging patterns in human hunter-gatherers.

    Science.gov (United States)

    Raichlen, David A; Wood, Brian M; Gordon, Adam D; Mabulla, Audax Z P; Marlowe, Frank W; Pontzer, Herman

    2014-01-14

    When searching for food, many organisms adopt a superdiffusive, scale-free movement pattern called a Lévy walk, which is considered optimal when foraging for heterogeneously located resources with little prior knowledge of distribution patterns [Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters]. Although memory of food locations and higher cognition may limit the benefits of random walk strategies, no studies to date have fully explored search patterns in human foraging. Here, we show that human hunter-gatherers, the Hadza of northern Tanzania, perform Lévy walks in nearly one-half of all foraging bouts. Lévy walks occur when searching for a wide variety of foods from animal prey to underground tubers, suggesting that, even in the most cognitively complex forager on Earth, such patterns are essential to understanding elementary foraging mechanisms. This movement pattern may be fundamental to how humans experience and interact with the world across a wide range of ecological contexts, and it may be adaptive to food distribution patterns on the landscape, which previous studies suggested for organisms with more limited cognition. Additionally, Lévy walks may have become common early in our genus when hunting and gathering arose as a major foraging strategy, playing an important role in the evolution of human mobility.

  4. Foraging Behavior of Odontomachus bauri on Barro Colorado Island, Panama

    Directory of Open Access Journals (Sweden)

    Birgit Ehmer

    1995-01-01

    Full Text Available Foraging behavior and partitioning of foraging areas of Odonomachus bauri were investigated on Barro Colorado Island in Panama. The activity of the ants did not show any daily pattern; foragers were active day and night. The type of prey captured by O. bauri supports the idea that in higher Odontomachus and Anochetus species, the high speed of mandible closure serves more for generating power than capturing elusive prey. Polydomous nests may enable O. bauri colonies to enlarge their foraging areas.

  5. Foraging Activity Pattern Is Shaped by Water Loss Rates in a Diurnal Desert Rodent.

    Science.gov (United States)

    Levy, Ofir; Dayan, Tamar; Porter, Warren P; Kronfeld-Schor, Noga

    2016-08-01

    Although animals fine-tune their activity to avoid excess heat, we still lack a mechanistic understanding of such behaviors. As the global climate changes, such understanding is particularly important for projecting shifts in the activity patterns of populations and communities. We studied how foraging decisions vary with biotic and abiotic pressures. By tracking the foraging behavior of diurnal desert spiny mice in their natural habitat and estimating the energy and water costs and benefits of foraging, we asked how risk management and thermoregulatory requirements affect foraging decisions. We found that water requirements had the strongest effect on the observed foraging decisions. In their arid environment, mice often lose water while foraging for seeds and cease foraging even at high energetic returns when water loss is high. Mice also foraged more often when energy expenditure was high and for longer times under high seed densities and low predation risks. Gaining insight into both energy and water balance will be crucial to understanding the forces exerted by changing climatic conditions on animal energetics, behavior, and ecology.

  6. Foraging pattern and harvesting of resources of subterranean stingless bee Geotrigona subterranea (Friese, 1901 (Hymenoptera: Apidae: Meliponini

    Directory of Open Access Journals (Sweden)

    Fernando Mendes Barbosa

    Full Text Available ABSTRACT Flight activity of bees is influenced both by environmental factors and by internal condition of the colonies. Information about external activity of bees is very important, because it provides data of the species biology, supplying subsidies for the use of these insects in the pollination of crops. The present work aim to evaluate the flight activity of Geotrigona subterranea (Friese, 1901 (Hymenoptera: Apidae in natural environment. This study was performed on the Instituto Federal do Norte de Minas Gerais, in the municipality Januária, Minas Gerais State. Two natural nests were observed. The activities of bees of the colonies were recorded three days each month, during the period of December 2011 to November 2012, totaling 924 observations. It was recorded the number of bees leaving and entering the nest, and the type of material transported by them for ten minutes each hour from 5 a.m. to 7 p.m. The bees entered the colony carrying pollen, resin, detritus and also without apparent material. The bees began external activities by 6 a.m. at 20°C and finished at 6 p.m. at 28.8°C. The peak of activity of G. subterranea occurs on schedule from 1 to 2 p.m. Even though G. subterranea makes their nests in underground, their foraging activities are very similar to others stingless bee species that usually nest on tree cavities or aerial places. This indicate that despite their particular nesting way the external factors as climatic ones will significantly modulate their foraging pattern in a daily and seasonal way.

  7. Study on ant colony optimization for fuel loading pattern problem

    International Nuclear Information System (INIS)

    Kishi, Hironori; Kitada, Takanori

    2013-01-01

    Modified ant colony optimization (ACO) was applied to the in-core fuel loading pattern (LP) optimization problem to minimize the power peaking factor (PPF) in the modeled 1/4 symmetry PWR core. Loading order was found to be important in ACO. Three different loading orders with and without the adjacent effect between fuel assemblies (FAs) were compared, and it was found that the loading order from the central core is preferable because many selections of FAs to be inserted are available in the core center region. LPs were determined from pheromone trail and heuristic information, which is a priori knowledge based on the feature of the problem. Three types of heuristic information were compared to obtain the desirable performance of searching LPs with low PPF. Moreover, mutation operation, such as the genetic algorithm (GA), was introduced into the ACO algorithm to avoid searching similar LPs because heuristic information used in ACO tends to localize the searching space in the LP problem. The performance of ACO with some improvement was compared with those of simulated annealing and GA. In conclusion, good performance can be achieved by setting proper heuristic information and mutation operation parameter in ACO. (author)

  8. Local behavioral rules sustain the cell allocation pattern in the combs of honey bee colonies (Apis mellifera).

    Science.gov (United States)

    Montovan, Kathryn J; Karst, Nathaniel; Jones, Laura E; Seeley, Thomas D

    2013-11-07

    In the beeswax combs of honey bees, the cells of brood, pollen, and honey have a consistent spatial pattern that is sustained throughout the life of a colony. This spatial pattern is believed to emerge from simple behavioral rules that specify how the queen moves, where foragers deposit honey/pollen and how honey/pollen is consumed from cells. Prior work has shown that a set of such rules can explain the formation of the allocation pattern starting from an empty comb. We show that these rules cannot maintain the pattern once the brood start to vacate their cells, and we propose new, biologically realistic rules that better sustain the observed allocation pattern. We analyze the three resulting models by performing hundreds of simulation runs over many gestational periods and a wide range of parameter values. We develop new metrics for pattern assessment and employ them in analyzing pattern retention over each simulation run. Applied to our simulation results, these metrics show alteration of an accepted model for honey/pollen consumption based on local information can stabilize the cell allocation pattern over time. We also show that adding global information, by biasing the queen's movements towards the center of the comb, expands the parameter regime over which pattern retention occurs. © 2013 Published by Elsevier Ltd. All rights reserved.

  9. Foraging task specialisation and foraging labour allocation in stingless bees

    NARCIS (Netherlands)

    Hofstede, Frouke Elisabeth

    2006-01-01

    Social bees collect nectar and pollen from flowering plants for energy of the adult bees and for feeding the larvae in the colony. The flowering patterns of plants imply that periods of high food availability are often followed by periods of meagre foraging conditions. Being dependent on such a

  10. Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    Luan D. Lima

    2013-12-01

    Full Text Available Foraging strategies of the ant Ectatomma vizottoi (Hymenoptera, Formicidae. Foraging activity may be limited by temperature, humidity, radiation, wind, and other abiotic factors, all of which can affect energy costs during foraging. Ectatomma vizottoi's biology has only recently been studied, and no detailed information is available on its foraging patterns or diet in the field. For this reason, and because foraging activity is an important part of the ecological success of social insects, the present study aimed to investigate E. vizottoi's foraging strategies and dietary habits. First, we determined how abiotic factors constrained E. vizottoi's foraging patterns in the field by monitoring the foraging activity of 16 colonies on eight different days across two seasons. Second, we characterized E. vizottoi's diet by monitoring another set of 26 colonies during peak foraging activity. Our results show that E. vizottoi has foraging strategies that are similar to those of congeneric species. In spite of having a low efficiency index, colonies adopted strategies that allowed them to successfully obtain food resources while avoiding adverse conditions. These strategies included preying on other ant species, a foraging tactic that could arise if a wide variety of food items are not available in the environment or if E. vizottoi simply prefers, regardless of resource availability, to prey on other invertebrates and especially on other ant species.

  11. Scavengers on the move: behavioural changes in foraging search patterns during the annual cycle.

    Directory of Open Access Journals (Sweden)

    Pascual López-López

    Full Text Available BACKGROUND: Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention. METHODOLOGY/PRINCIPAL FINDINGS: We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding. Our results show that vultures followed a brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years. CONCLUSIONS/SIGNIFICANCE: Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals' behaviour but also individuals' cognitive abilities (e.g., memory effects could play an important role. Our results support the growing

  12. Spatio-Temporal Patterns in Colonies of Rod-Shaped Bacteria

    Science.gov (United States)

    Kitsunezaki, S.

    In incubation experiments of bacterial colonies of Proteus Mirabilis, macroscopic spatio-temporal patterns, such as turbulent and unidirectional spiral patterns, appear in colonies. Considering only kinetic propeties of rod-shaped bacteria, we propose a phenomenological model for the directional and positional distributions. As the average density increases, homogeneous states bifurcate sub-critically into nonuniform states exhibiting localized collective motion, and spiral patterns appear for sufficiently large density. These patterns result from interactions between the local bacteria densities and the order parameter representing collective motion. Our model can be described by reduced equations using a perturbative method for large density. The unidirectionality of sprial rotation is also discussed.

  13. Bringing home the trash: Do colony-based differences in foraging distribution lead to increased plastic ingestion in Laysan albatrosses?

    OpenAIRE

    Young, Lindsay C.; Vanderlip, Cynthia; Duffy, David C.; Afanasyev, Vsevolod; Shaffer, Scott A.

    2009-01-01

    When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been 'optimal' foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their...

  14. Element patterns in albatrosses and petrels: Influence of trophic position, foraging range, and prey type

    International Nuclear Information System (INIS)

    Anderson, O.R.J.; Phillips, R.A.; Shore, R.F.; McGill, R.A.R.; McDonald, R.A.; Bearhop, S.

    2010-01-01

    We investigated the concentrations of 22 essential and non-essential elements among a community of Procellariiformes (and their prey) to identify the extent to which trophic position and foraging range governed element accumulation. Stable isotope analysis (SIA) was used to characterise trophic (δ 15 N) and spatial patterns (δ 13 C) among species. Few consistent patterns were observed in element distributions among species and diet appeared to be highly influential in some instances. Arsenic levels in seabird red blood cells correlated with δ 15 N and δ 13 C, demonstrating the importance of trophic position and foraging range for arsenic distribution. Arsenic concentrations in prey varied significantly across taxa, and in the strength of association with δ 15 N values (trophic level). In most instances, element patterns in Procellariiformes showed the clearest separation among species, indicating that a combination of prey selection and other complex species-specific characteristics (e.g. moult patterns) were generally more important determining factors than trophic level per se. - Trophic position, foraging range, and prey type were found to influence element compositions and concentrations in Procellariiformes from South Georgia.

  15. Population Growth of Varroa destructor (Acari: Varroidae) in Colonies of Russian and Unselected Honey Bee (Hymenoptera: Apidae) Stocks as Related to Numbers of Foragers With Mites.

    Science.gov (United States)

    DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Danka, Robert; Chambers, Mona; DeJong, Emily Watkins; Hidalgo, Geoff

    2017-06-01

    Varroa (Varroa destructor Anderson and Trueman) is an external parasite of honey bees (Apis mellifera L.) and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite-resistant stocks such as the Russian honey bee (RHB) also are available. Russian honey bee and other mite-resistant stocks limit Varroa population growth by affecting factors that contribute to mite reproduction. However, mite population growth is not entirely due to reproduction. Numbers of foragers with mites (FWM) entering and leaving hives also affect the growth of mite populations. If FWM significantly contribute to Varroa population growth, mite numbers in RHB colonies might not differ from unselected lines (USL). Foragers with mites were monitored at the entrances of RHB and USL hives from August to November, 2015, at two apiary sites. At site 1, RHB colonies had fewer FWM than USL and smaller phoretic mite populations. Russian honey bee also had fewer infested brood cells and lower percentages with Varroa offspring than USL. At site 2, FWM did not differ between RHB and USL, and phoretic mite populations were not significantly different. At both sites, there were sharp increases in phoretic mite populations from September to November that corresponded with increasing numbers of FWM. Under conditions where FWM populations are similar between RHB and USL, attributes that contribute to mite resistance in RHB may not keep Varroa population levels below that of USL. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  16. Giant panda foraging and movement patterns in response to bamboo shoot growth.

    Science.gov (United States)

    Zhang, Mingchun; Zhang, Zhizhong; Li, Zhong; Hong, Mingsheng; Zhou, Xiaoping; Zhou, Shiqiang; Zhang, Jindong; Hull, Vanessa; Huang, Jinyan; Zhang, Hemin

    2018-03-01

    Diet plays a pivotal role in dictating behavioral patterns of herbivorous animals, particularly specialist species. The giant panda (Ailuropoda melanoleuca) is well-known as a bamboo specialist. In the present study, the response of giant pandas to spatiotemporal variation of bamboo shoots was explored using field surveys and GPS collar tracking. Results show the dynamics in panda-bamboo space-time relationships that have not been previously articulated. For instance, we found a higher bamboo stump height of foraged bamboo with increasing elevation, places where pandas foraged later in spring when bamboo shoots become more fibrous and woody. The time required for shoots to reach optimum height for foraging was significantly delayed as elevation increased, a pattern which corresponded with panda elevational migration patterns beginning from the lower elevational end of Fargesia robusta distribution and gradually shifting upward until the end of the shooting season. These results indicate that giant pandas can respond to spatiotemporal variation of bamboo resources, such as available shoots. Anthropogenic interference of low-elevation F. robusta habitat should be mitigated, and conservation attention and increased monitoring should be given to F. robusta areas at the low- and mid-elevation ranges, particularly in the spring shooting season.

  17. Loading pattern optimization of PWR reactors using Artificial Bee Colony

    International Nuclear Information System (INIS)

    Safarzadeh, O.; Zolfaghari, A.; Norouzi, A.; Minuchehr, H.

    2011-01-01

    Highlights: → ABC algorithm is comparable to the canonical GA algorithm and PSO. → The performance of ABC shows that the algorithm is quiet promising. → The final band width of search fitness values by ABC is narrow. → The ABC algorithm is relatively easy to implement. - Abstract: In this paper a core reloading technique using Artificial Bee Colony algorithm, ABC, is presented in the context of finding an optimal configuration of fuel assemblies. The proposed method can be used for in-core fuel management optimization problems in pressurized water reactors. To evaluate the proposed technique, the power flattening of a VVER-1000 core is considered as an objective function although other variables such as K eff , power peaking factor, burn up and cycle length can also be taken into account. The proposed optimization method is applied to a core design optimization problem previously solved with Genetic and Particle Swarm Intelligence Algorithm. The results, convergence rate and reliability of the new method are quite promising and show that the ABC algorithm performs very well and is comparable to the canonical Genetic Algorithm and Particle Swarm Intelligence, hence demonstrating its potential for other optimization applications in nuclear engineering field as, for instance, the cascade problems.

  18. Movement patterns for a critically endangered species, the leatherback turtle (Dermochelys coriacea), linked to foraging success and population status.

    Science.gov (United States)

    Bailey, Helen; Fossette, Sabrina; Bograd, Steven J; Shillinger, George L; Swithenbank, Alan M; Georges, Jean-Yves; Gaspar, Philippe; Strömberg, K H Patrik; Paladino, Frank V; Spotila, James R; Block, Barbara A; Hays, Graeme C

    2012-01-01

    Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic.

  19. Dietary composition and spatial patterns of polar bear foraging on land in western Hudson Bay.

    Science.gov (United States)

    Gormezano, Linda J; Rockwell, Robert F

    2013-12-21

    Flexible foraging strategies, such as prey switching, omnivory and food mixing, are key to surviving in a labile and changing environment. Polar bears (Ursus maritimus) in western Hudson Bay are versatile predators that use all of these strategies as they seasonally exploit resources across trophic levels. Climate warming is reducing availability of their ice habitat, especially in spring when polar bears gain most of their annual fat reserves by consuming seal pups before coming ashore in summer. How polar bears combine these flexible foraging strategies to obtain and utilize terrestrial food will become increasingly important in compensating for energy deficits from lost seal hunting opportunities. We evaluated patterns in the composition of foods in scat to characterize the foraging behaviors that underpin the diet mixing and omnivory observed in polar bears on land in western Hudson Bay. Specifically, we measured diet richness, proportions of plant and animal foods, patterns in co-occurrence of foods, spatial composition and an index of temporal composition. Scats contained between 1 and 6 foods, with an average of 2.11 (SE = 0.04). Most scats (84.9%) contained at least one type of plant, but animals (35.4% of scats) and both plants and animals occurring together (34.4% of scats) were also common. Certain foods, such as Lyme grass seed heads (Leymus arenarius), berries and marine algae, were consumed in relatively higher proportions, sometimes to the exclusion of others, both where and when they occurred most abundantly. The predominance of localized vegetation in scats suggests little movement among habitat types between feeding sessions. Unlike the case for plants, no spatial patterns were found for animal remains, likely due the animals' more vagile and ubiquitous distribution. Our results suggest that polar bears are foraging opportunistically in a manner consistent with maximizing intake while minimizing energy expenditure associated with movement. The

  20. Seasonal and diel patterns in cetacean use and foraging at a potential marine renewable energy site.

    Science.gov (United States)

    Nuuttila, Hanna K; Bertelli, Chiara M; Mendzil, Anouska; Dearle, Nessa

    2018-04-01

    Marine renewable energy (MRE) developments often coincide with sites frequented by small cetaceans. To understand habitat use and assess potential impact from development, echolocation clicks were recorded with acoustic click loggers (C-PODs) in Swansea Bay, Wales (UK). General Additive Models (GAMs) were applied to assess the effects of covariates including month, hour, tidal range and temperature. Analysis of inter-click intervals allowed the identification of potential foraging events as well as patterns of presence and absence. Data revealed year-round presence of porpoise, with distinct seasonal and diel patterns. Occasional acoustic encounters of dolphins were also recorded. This study provides further evidence of the need for assessing temporal trends in cetacean presence and habitat use in areas considered for development. These findings could assist MRE companies to monitor and mitigate against disturbance from construction, operation and decommissioning activities by avoiding times when porpoise presence and foraging activity is highest in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dynamical Properties of Transient Spatio-Temporal Patterns in Bacterial Colony of Proteus mirabilis

    Science.gov (United States)

    Watanabe, Kazuhiko; Wakita, Jun-ichi; Itoh, Hiroto; Shimada, Hirotoshi; Kurosu, Sayuri; Ikeda, Takemasa; Yamazaki, Yoshihiro; Matsuyama, Tohey; Matsushita, Mitsugu

    2002-02-01

    Spatio-temporal patterns emerged inside a colony of bacterial species Proteus mirabilis on the surface of nutrient-rich semisolid agar medium have been investigated. We observed various patterns composed of the following basic types: propagating stripe, propagating stripe with fixed dislocation, expanding and shrinking target, and rotating spiral. The remarkable point is that the pattern changes immediately when we alter the position for observation, but it returns to the original if we restore the observing position within a few minutes. We further investigated mesoscopic and microscopic properties of the spatio-temporal patterns. It turned out that whenever the spatio-temporal patterns are observed in a colony, the areas are composed of two superimposed monolayers of elongated bacterial cells. In each area they are aligned almost parallel with each other like a two-dimensional nematic liquid crystal, and move collectively and independently of another layer. It has been found that the observed spatio-temporal patterns are explained as the moiré effect.

  2. Movement of foraging Tundra Swans explained by spatial pattern in cryptic food densities.

    Science.gov (United States)

    Klaassen, Raymond H G; Nolet, Bart A; Bankert, Daniëlle

    2006-09-01

    We tested whether Tundra Swans use information on the spatial distribution of cryptic food items (below ground Sago pondweed tubers) to shape their movement paths. In a continuous environment, swans create their own food patches by digging craters, which they exploit in several feeding bouts. Series of short (1 m). Tuber biomass densities showed a positive spatial auto-correlation at a short distance (25 g/m2) and to a more distant patch (at 7-8 m) if the food density in the current patch had been low (3 m) from a low-density patch and a short distance (<3 m) from a high-density patch. The quantitative agreement between prediction and observation was greater for swans feeding in pairs than for solitary swans. The result of this movement strategy is that swans visit high-density patches at a higher frequency than on offer and, consequently, achieve a 38% higher long-term gain rate. Swans also take advantage of spatial variance in food abundance by regulating the time in patches, staying longer and consuming more food from rich than from poor patches. We can conclude that the shape of the foraging path is a reflection of the spatial pattern in the distribution of tuber densities and can be understood from an optimal foraging perspective.

  3. Habitat use and foraging patterns of molting male Long-tailed Ducks in lagoons of the central Beaufort Sea, Alaska

    Science.gov (United States)

    Flint, Paul L.; Reed, John; Deborah Lacroix,; Richard Lanctot,

    2016-01-01

    From mid-July through September, 10 000 to 30 000 Long-tailed Ducks (Clangula hyemalis) use the lagoon systems of the central Beaufort Sea for remigial molt. Little is known about their foraging behavior and patterns of habitat use during this flightless period. We used radio transmitters to track male Long-tailed Ducks through the molt period from 2000 to 2002 in three lagoons: one adjacent to industrial oil field development and activity and two in areas without industrial activity. We found that an index to time spent foraging generally increased through the molt period. Foraging, habitat use, and home range size showed similar patterns, but those patterns were highly variable among lagoons and across years. Even with continuous daylight during the study period, birds tended to use offshore areas during the day for feeding and roosted in protected nearshore waters at night. We suspect that variability in behaviors associated with foraging, habitat use, and home range size are likely influenced by availability of invertebrate prey. Proximity to oil field activity did not appear to affect foraging behaviors of molting Long-tailed Ducks.

  4. The influence of pigmentation patterning on bumblebee foraging from flowers of Antirrhinum majus

    Science.gov (United States)

    Whitney, Heather M.; Milne, Georgina; Rands, Sean A.; Vignolini, Silvia; Martin, Cathie; Glover, Beverley J.

    2013-03-01

    Patterns of pigmentation overlying the petal vasculature are common in flowering plants and have been postulated to play a role in pollinator attraction. Previous studies report that such venation patterning is significantly more attractive to bee foragers in the field than ivory or white flowers without veins. To dissect the ways in which venation patterning of pigment can influence bumblebee behaviour, we investigated the response of flower-naïve individuals of Bombus terrestris to veined, ivory and red near-isogenic lines of Antirrhinum majus. We find that red venation shifts flower colour slightly, although the ivory background is the dominant colour. Bees were readily able to discriminate between ivory and veined flowers under differential conditioning but showed no innate preference when presented with a free choice of rewarding ivory and veined flowers. In contrast, both ivory and veined flowers were selected significantly more often than were red flowers. We conclude that advantages conferred by venation patterning might stem from bees learning of their use as nectar guides, rather than from any innate preference for striped flowers.

  5. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    Science.gov (United States)

    Kwon, H.; Lall, U.; Engel, V.

    2007-12-01

    A goal of the Everglades National Park (ENP) restoration project is to ensure that the ecological health of the ENP improves as a direct result of management activities. Achieving hydrologic targets through the proper timing and amount of releases from control structures is a first step in the management process. Significant climate and weather variations in the region influence the ability to make releases and also determine the ecological outcomes. An assessment of the relative impact of climate variations and water releases to ENP in determining ecological outcomes is consequently a key to the evaluation of the success or failure of any restoration plan. Seasonal water depths in ENP depend on managed surface water releases from control structures and on direct rainfall. Here we link wading bird foraging patterns - a fundamental aspect of Everglades' ecology - to hydrologic management and climate variability in the National Park. Our objective is multifold. First, we relate the water levels at P33 and Shark Slough to the synoptic hydrologic conditions. Second, we develop a statistical model relating water levels at a station in central Shark Slough (P33) to wading birds foraging patterns throughout ENP. We attempt to apply a Hierarchical Bayesian scheme to a time series of wading bird to provide an uncertainty distribution of the population over specified time periods given hydrologic condition. Third, we develop a set of hydrologic index derived by recorded water level at P33 for a use of the statistical model of wading birds as an input. Our study will focus on great egret and white ibis that are major species among wading birds in the ENP. The great egret and white ibis prediction predicted by the model using the proposed predictors exhibits strong correlation with the observed streamflow, with an correlation 0.8.

  6. Foraging range and habitat use by Cape Vulture Gyps coprotheres from the Msikaba colony, Eastern Cape province, South Africa

    Directory of Open Access Journals (Sweden)

    Morgan B. Pfeiffer

    2015-05-01

    Full Text Available Despite the extent of subsistence farmland in Africa, little is known about endangered species that persist within them. The Cape Vulture (Gyps coprotheres is regionally endangered in southern Africa and at least 20% of the population breeds in the subsistence farmland area previously known as the Transkei in the Eastern Cape province of South Africa. To understand their movement ecology, adult Cape Vultures (n = 9 were captured and fitted with global positioning system/global system for mobile transmitters. Minimum convex polygons (MCPs,and 99% and 50% kernel density estimates (KDEs were calculated for the breeding and non breeding seasons of the Cape Vulture. Land use maps were constructed for each 99% KDE and vulture locations were overlaid. During the non-breeding season, ranges were slightly larger(mean [± SE] MCP = 16 887 km2 ± 366 km2 than the breeding season (MCP = 14 707 km2 ± 2155 km2. Breeding and non-breeding season MCPs overlapped by a total of 92%. Kernel density estimates showed seasonal variability. During the breeding season, Cape Vultures used subsistence farmland, natural woodland and protected areas more than expected. In the non-breeding season, vultures used natural woodland and subsistence farmland more than expected, and protected areas less than expected. In both seasons, human-altered landscapes were used less, except for subsistence farmland. Conservation implications: These results highlight the importance of subsistence farm land to the survival of the Cape Vulture. Efforts should be made to minimise potential threats to vultures in the core areas outlined, through outreach programmes and mitigation measures.The conservation buffer of 40 km around Cape Vulture breeding colonies should be increased to 50 km.

  7. Contrasting Patterns of Gene Flow for Amazonian Snakes That Actively Forage and Those That Wait in Ambush.

    Science.gov (United States)

    de Fraga, Rafael; Lima, Albertina P; Magnusson, William E; Ferrão, Miquéias; Stow, Adam J

    2017-07-01

    Knowledge of genetic structure, geographic distance and environmental heterogeneity can be used to identify environmental features and natural history traits that influence dispersal and gene flow. Foraging mode is a trait that might predict dispersal capacity in snakes, because actively foragers typically have greater movement rates than ambush predators. Here, we test the hypothesis that 2 actively foraging snakes have higher levels of gene flow than 2 ambush predators. We evaluated these 4 co-distributed species of snakes in the Brazilian Amazon. Snakes were sampled along an 880 km transect from the central to the southwest of the Amazon basin, which covered a mosaic of vegetation types and seasonal differences in climate. We analyzed thousands of single nucleotide polymorphisms to compare patterns of neutral gene flow based on isolation by geographic distance (IBD) and environmental resistance (IBR). We show that IBD and IBR were only evident in ambush predators, implying lower levels of dispersal than the active foragers. Therefore, gene flow was high enough in the active foragers analyzed here to prevent any build-up of spatial genotypic structure with respect to geographic distance and environmental heterogeneity. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Comparative Sucrose Responsiveness in Apis mellifera and A. cerana Foragers

    Science.gov (United States)

    Yang, Wenchao; Kuang, Haiou; Wang, Shanshan; Wang, Jie; Liu, Wei; Wu, Zhenhong; Tian, Yuanyuan; Huang, Zachary Y.; Miao, Xiaoqing

    2013-01-01

    In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources. PMID:24194958

  9. Comparative sucrose responsiveness in Apis mellifera and A. cerana foragers.

    Science.gov (United States)

    Yang, Wenchao; Kuang, Haiou; Wang, Shanshan; Wang, Jie; Liu, Wei; Wu, Zhenhong; Tian, Yuanyuan; Huang, Zachary Y; Miao, Xiaoqing

    2013-01-01

    In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.

  10. Comparative sucrose responsiveness in Apis mellifera and A. cerana foragers.

    Directory of Open Access Journals (Sweden)

    Wenchao Yang

    Full Text Available In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.

  11. Movement patterns for a critically endangered species, the leatherback turtle (Dermochelys coriacea, linked to foraging success and population status.

    Directory of Open Access Journals (Sweden)

    Helen Bailey

    Full Text Available Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d(-1 and transit at high speeds (20-45 km d(-1. Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d(-1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic.

  12. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    Directory of Open Access Journals (Sweden)

    Alexandria Wenninger

    2016-06-01

    Full Text Available Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers, and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation.

  13. Colony shape as a genetic trait in the pattern-forming Bacillus mycoides

    Directory of Open Access Journals (Sweden)

    Pisaneschi Giuseppe

    2002-11-01

    Full Text Available Abstract Background Bacillus mycoides Flügge, a Gram-positive, non-motile soil bacterium assigned to Bacillus cereus group, grows on agar as chains of cells linked end to end, forming radial filaments curving clock- or counter-clockwise (SIN or DX morphotypes. The molecular mechanism causing asymmetric curving is not known: our working hypothesis considers regulation of filamentous growth as the prerequisite for these morphotypes. Results SIN and DX strains isolated from the environment were classified as B. mycoides by biochemical and molecular biology tests. Growth on agar of different hardness and nutrient concentration did not abolish colony patterns, nor was conversion between SIN and DX morphotypes ever noticed. A number of morphotype mutants, all originating from one SIN strain, were obtained. Some lost turn direction becoming fluffy, others became round and compact. All mutants lost wild type tight aggregation in liquid culture. Growth on agar was followed by microscopy, exploring the process of colony formation and details of cell divisions. A region of the dcw (division cell wall cluster, including ftsQ, ftsA, ftsZ and murC, was sequenced in DX and SIN strains as a basis for studying cell division. This confirmed the relatedness of DX and SIN strains to the B. cereus group. Conclusions DX and SIN asymmetric morphotypes stem from a close but not identical genomic context. Asymmetry is established early during growth on agar. Wild type bacilli construct mostly uninterrupted filaments with cells dividing at the free ends: they "walk" longer distances compared to mutants, where enhanced frequency of cell separation produces new growing edges resulting in round compact colonies.

  14. Breeding short-tailed shearwaters buffer local environmental variability in south-eastern Australia by foraging in Antarctic waters.

    Science.gov (United States)

    Berlincourt, Maud; Arnould, John P Y

    2015-01-01

    Establishing patterns of movements of free-ranging animals in marine ecosystems is crucial for a better understanding of their feeding ecology, life history traits and conservation. As central place foragers, the habitat use of nesting seabirds is heavily influenced by the resources available within their foraging range. We tested the prediction that during years with lower resource availability, short-tailed shearwaters (Puffinus tenuirostris) provisioning chicks should increase their foraging effort, by extending their foraging range and/or duration, both when foraging in neritic (short trips) and distant oceanic waters (long trips). Using both GPS and geolocation data-loggers, at-sea movements and habitat use were investigated over three breeding seasons (2012-14) at two colonies in southeastern Australia. Most individuals performed daily short foraging trips over the study period and inter-annual variations observed in foraging parameters where mainly due to few individuals from Griffith Island, performing 2-day trips in 2014. When performing long foraging trips, this study showed that individuals from both colonies exploited similar zones in the Southern Ocean. The results of this study suggest that individuals could increase their foraging range while exploiting distant feeding zones, which could indicate that short-tailed shearwaters forage in Antarctic waters not only to maintain their body condition but may also do so to buffer against local environmental stochasticity. Lower breeding performances were associated with longer foraging trips to distant oceanic waters in 2013 and 2014 indicating they could mediate reductions in food availability around the breeding colonies by extending their foraging range in the Southern Ocean. This study highlights the importance of foraging flexibility as a fundamental aspect of life history in coastal/pelagic marine central place foragers living in highly variable environments and how these foraging strategies are use to

  15. Urban gardens promote bee foraging over natural habitats and plantations.

    Science.gov (United States)

    Kaluza, Benjamin F; Wallace, Helen; Heard, Tim A; Klein, Alexandra-Maria; Leonhardt, Sara D

    2016-03-01

    Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.

  16. Herbaceous forage and selection patterns by ungulates across varying herbivore assemblages in a South African savanna

    NARCIS (Netherlands)

    Treydte, A.C.; Baumgartner, S.; Heitkonig, I.M.A.; Grant, C.C.; Getz, W.M.

    2013-01-01

    Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African

  17. Migration, foraging, and residency patterns for Northern Gulf loggerheads: implications of local threats and international movements.

    Directory of Open Access Journals (Sweden)

    Kristen M Hart

    Full Text Available Northern Gulf of Mexico (NGoM loggerheads (Caretta caretta make up one of the smallest subpopulations of this threatened species and have declining nest numbers. We used satellite telemetry and a switching state-space model to identify distinct foraging areas used by 59 NGoM loggerheads tagged during 2010-2013. We tagged turtles after nesting at three sites, 1 in Alabama (Gulf Shores; n = 37 and 2 in Florida (St. Joseph Peninsula; n = 20 and Eglin Air Force Base; n = 2. Peak migration time was 22 July to 9 August during which >40% of turtles were in migration mode; the mean post-nesting migration period was 23.0 d (±13.8 d SD. After displacement from nesting beaches, 44 turtles traveled to foraging sites where they remained resident throughout tracking durations. Selected foraging locations were variable distances from tagging sites, and in 5 geographic regions; no turtles selected foraging sites outside the Gulf of Mexico (GoM. Foraging sites delineated using 50% kernel density estimation were located a mean distance of 47.6 km from land and in water with mean depth of -32.5 m; other foraging sites, delineated using minimum convex polygons, were located a mean distance of 43.0 km from land and in water with a mean depth of -24.9 m. Foraging sites overlapped with known trawling activities, oil and gas extraction activities, and the footprint of surface oiling during the 2010 Deepwater Horizon oil spill (n = 10. Our results highlight the year-round use of habitats in the GoM by loggerheads that nest in the NGoM. Our findings indicate that protection of females in this subpopulation requires both international collaborations and management of threats that spatially overlap with distinct foraging habitats.

  18. Geographic profiling and animal foraging.

    Science.gov (United States)

    Le Comber, Steven C; Nicholls, Barry; Rossmo, D Kim; Racey, Paul A

    2006-05-21

    Geographic profiling was originally developed as a statistical tool for use in criminal cases, particularly those involving serial killers and rapists. It is designed to help police forces prioritize lists of suspects by using the location of crime scenes to identify the areas in which the criminal is most likely to live. Two important concepts are the buffer zone (criminals are less likely to commit crimes in the immediate vicinity of their home) and distance decay (criminals commit fewer crimes as the distance from their home increases). In this study, we show how the techniques of geographic profiling may be applied to animal data, using as an example foraging patterns in two sympatric colonies of pipistrelle bats, Pipistrellus pipistrellus and P. pygmaeus, in the northeast of Scotland. We show that if model variables are fitted to known roost locations, these variables may be used as numerical descriptors of foraging patterns. We go on to show that these variables can be used to differentiate patterns of foraging in these two species.

  19. Effects of resource distribution patterns on ungulate foraging behaviour: a modelling approach.

    NARCIS (Netherlands)

    Wallis de Vries, M.F.

    1996-01-01

    The food resources of forest ungulates typically are patchily distributed. Research on foraging behaviour has often focused on habitat selection but has rarely taken into account the influence of the spatial distribution of different food patches in two dimensions. However, especially when

  20. Automatic boiling water reactor loading pattern design using ant colony optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-D. [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China); Nuclear Engineering Division, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)], E-mail: jdwang@iner.gov.tw; Lin Chaung [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2009-08-15

    An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.

  1. The influence of reproductive condition and concurrent environmental factors on torpor and foraging patterns in female big brown bats (Eptesicus fuscus).

    Science.gov (United States)

    Rintoul, Jody L P; Brigham, R Mark

    2014-08-01

    Unlike many other mammals, bats in temperate regions employ short bouts of torpor throughout the reproductive period to maintain a positive energy balance. In addition to decreasing energy expenditure during the day, they typically alter foraging patterns as well. It is well known that various environmental conditions influence both torpor and foraging patterns, but studies of these factors often have focussed on one element in isolation thus it is not known how the two behaviours are collectively influencing temperate bats. The objective of our study was to assess how reproductive condition and environmental factors concurrently affect energy balance in female big brown bats (Eptesicus fuscus). We equipped pregnant and lactating bats in southwest Saskatchewan, Canada with temperature-sensitive radio-transmitters. While transmitters were active, skin temperature data were collected and foraging patterns were determined using triangulation. Of the various environmental and physiological parameters used to model torpor characteristics, roost type was the most important factor. Bats roosting in trees used deeper and longer torpor bouts than those roosting in buildings. Lactating bats had a tendency to forage for longer durations than pregnant bats, and often made more foraging trips. When taken together, we found that foraging duration and torpor duration were not directly related during pregnancy, but exhibited an inverse relationship during lactation. This provides support for the hypothesis that there are physiological trade-offs for reproductive bats and suggests that how bats compensate is not entirely predictable based on current environmental conditions.

  2. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    Science.gov (United States)

    Kwon, H.; Lall, U.; Engel, V.

    2008-05-01

    The ability to map the relationship between ecological outcomes and hydrologic conditions in the Everglades National Park is a key building block for the restoration program, a primary goal of which is to improve habitat for wading bird species and to promote nesting. This paper reports on a model linking wading bird foraging numbers to hydrologic conditions in the Park We demonstrate that seasonal hydrologic statistics derived from a single water level recording site are a) well correlated with water depths throughout most areas of the Park, and b) are effective as predictors of Great Egret and White Ibis foraging numbers at the end of the nesting season when using a nonlinear Bayesian Hierarchical model that permits the estimation of a conditional distribution of bird populations given the seasonal statistics of stage at the index location. Model parameters are estimated using a Markov Chain Monte Carlo procedure. Parameter and model uncertainty are both assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the recession rate, and the numbers of reversals in the recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the seasonal production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of wading bird foraging numbers showing low frequency oscillations in response to decadal and multi-decadal fluctuations in hydroclimatic conditions.

  3. Element patterns in feathers of nestling Black-Crowned Night-Herons, Nycticorax nycticorax L., from four colonies in Delaware, Maryland, and Minnesota

    Science.gov (United States)

    Custer, Thomas W.; Golden, Nancy H.; Rattner, Barnett A.

    2008-01-01

    The pattern of elements in nestling black-crowned night-heron feathers from a rural Minnesota colony differed from colonies in industrialized regions of Maryland and Delaware. Except for chromium, however, the differences did not reflect the elements associated with waters and sediments of the Maryland and Delaware colonies. Therefore, elements in water and sediment do not necessarily bioaccumulate in night-heron feathers in relation to potential exposure. Although trace element patterns in feathers indicated differences among geographical locations, they did not separate all locations well and their usefulness as an indicator of natal colony location may be limited.

  4. Patterns of surface burrow plugging in a colony of black-tailed prairie dogs occupied by black-footed ferrets

    Science.gov (United States)

    Eads, David E.; Biggins, Dean E.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) can surface-plug openings to a burrow occupied by a black-footed ferret (Mustela nigripes). At a coarse scale, surface plugs are more common in colonies of prairie dogs occupied by ferrets than in colonies without ferrets. However, little is known about spatial and temporal patterns of surface plugging in a colony occupied by ferrets. In a 452-ha colony of black-tailed prairie dogs in South Dakota, we sampled burrow openings for surface plugs and related those data to locations of ferrets observed during spotlight surveys. Of 67,574 burrow openings in the colony between June and September 2007, 3.7% were plugged. In a colony-wide grid of 80 m × 80 m cells, the occurrence of surface plugging (≥1 opening plugged) was greater in cells used by ferrets (93.3% of cells) than in cells not observably used by ferrets (70.6%). Rates of surface plugging (percentages of openings plugged) were significantly higher in cells used by ferrets (median = 3.7%) than in cells without known ferret use (median = 3.2%). Also, numbers of ferret locations in cells correlated positively with numbers of mapped surface plugs in the cells. To investigate surface plugging at finer temporal and spatial scales, we compared rates of surface plugging in 20-m-radius circle-plots centered on ferret locations and in random plots 1–4 days after observing a ferret (Jun–Oct 2007 and 2008). Rates of surface plugging were greater in ferret-plots (median = 12.0%) than in random plots (median = 0%). For prairie dogs and their associates, the implications of surface plugging could be numerous. For instance, ferrets must dig to exit or enter plugged burrows (suggesting energetic costs), and surface plugs might influence microclimates in burrows and consequently influence species that cannot excavate soil (e.g., fleas that transmit the plague bacterium Yersinia pestis).

  5. A methodology for obtaining the control rods patterns in a BWR using systems based on ants colonies

    International Nuclear Information System (INIS)

    Ortiz S, J.J.; Requena R, I.

    2003-01-01

    In this work the AZCATL-PBC system based on a technique of ants colonies for the search of control rods patterns of those reactors of the Nuclear Power station of Laguna Verde (CNLV) is presented. The technique was applied to a transition cycle and one of balance. For both cycles they were compared the k ef values obtained with a Haling calculation and the control rods pattern proposed by AZCATL-PBC for a burnt one fixed. It was found that the methodology is able to extend the length of the cycle with respect to the Haling prediction, maintaining sure to the reactor. (Author)

  6. Population growth of Varroa destructor (Acari: Varroidae) in colonies of Russian and unselected honey bee (Hymenoptera: Apidae) stock as related to numbers of foragers with mites

    Science.gov (United States)

    Varroa mites are an external parasite of honey bees and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite resistant stocks such as the Russian honey bee (RHB) also are available. RHB and other mite resistant stock limit Varroa population growth...

  7. Colony stage and not facultative policing explains pattern of worker reproduction in the Saxon wasp

    DEFF Research Database (Denmark)

    Bonckaert, W.; van Zweden, Jelle Stijn; D'Ettorre, Patrizia

    2011-01-01

    Inclusive fitness theory predicts that in colonies of social Hymenoptera headed by a multiple-mated queen, workers should benefit from policing eggs laid by other workers. Foster & Ratnieks provided evidence that in the vespine wasp Dolichovespula saxonica, workers police other workers’ eggs only...

  8. Temporal and Spatial Foraging Behavior of the Larvae of the Fall Webworm Hyphantria cunea

    Directory of Open Access Journals (Sweden)

    Terrence D. Fitzgerald

    2015-01-01

    Full Text Available During their first three larval stadia, caterpillars of Hyphantria cunea (Lepidoptera: Arctiidae are patch-restricted foragers, confining their activity to a web-nest they construct in the branches of the host tree. Activity recordings of eight field colonies made over 46 colony-days showed that the later instars become central place foragers, leaving their nests at dusk to feed at distant sites and then returning to their nests in the morning. Colonies maintained in the laboratory showed that same pattern of foraging. In Y-choice laboratory experiments, caterpillars were slow to abandon old, exhausted feeding sites in favor of new food finds. An average of approximately 40% of the caterpillars in five colonies still selected pathways leading to exhausted sites at the onset of foraging bouts over those leading to new sites after feeding exclusively at the new sites on each of the previous four days. On returning to their nests in the morning, approximately 23% of the caterpillars erred by selecting pathways that led them away from the nest rather than toward it and showed no improvement over the course of the study. The results of these Y-choice studies indicate that, compared to other previously studied species of social caterpillars, the webworm employs a relatively simple system of collective foraging.

  9. Black howler monkey (Alouatta pigra) activity, foraging and seed dispersal patterns in shaded cocoa plantations versus rainforest in southern Mexico.

    Science.gov (United States)

    Zárate, Diego A; Andresen, Ellen; Estrada, Alejandro; Serio-Silva, Juan Carlos

    2014-09-01

    Recent evidence has shown that primates worldwide use agroecosystems as temporary or permanent habitats. Detailed information on how these primates are using these systems is scant, and yet their role as seed dispersers is often implied. The main objective of this study was to compare the activity, foraging patterns and seed dispersal role of black howler monkeys (Alouatta pigra) inhabiting shaded cocoa plantations and rainforest in southern Chiapas, Mexico. We gathered data on three monkey groups living in shaded cocoa plantations and three groups living in rainforest, using focal sampling, and collecting fecal samples. General activity and foraging patterns were similar in both habitats, with the exception that monkeys in the cocoa habitat spent more time feeding on petioles. Monkeys in shaded cocoa plantations dispersed 51,369 seeds (4% were seeds ≥3 mm width) of 16 plant species. Monkeys in the rainforest dispersed 6,536 seeds (78% were seeds ≥3 mm width) of 13 plant species. Our data suggest that the difference between habitats in the proportion of large versus small seeds dispersed reflects differences in fruit species abundance and availability in cocoa versus forest. Mean seed dispersal distances were statistically similar in both habitats (cocoa = 149 m, forest = 86 m). We conclude that the studied cocoa plantations provide all elements necessary to constitute a long-term permanent habitat for black howler monkeys. In turn, howler monkeys living in these plantations are able to maintain their functional role as seed dispersers for those native tree and liana species present within their areas of activities. © 2014 Wiley Periodicals, Inc.

  10. Effects of Nautical Traffic and Noise on Foraging Patterns of Mediterranean Damselfish (Chromis chromis)

    Science.gov (United States)

    Bracciali, Claudia; Campobello, Daniela; Giacoma, Cristina; Sarà, Gianluca

    2012-01-01

    Chromis chromis is a key species in the Mediterranean marine coastal ecosystems where, in summer, recreational boating and its associated noise overlap. Anthropogenic noise could induce behavioural modifications in marine organisms, thereby affecting population dynamics. In the case of an important species for the ecosystem like C. chromis, this could rebound on the community structure. Here, we measured nautical traffic during the summer of 2007 in a Southern Mediterranean Marine Protected Area (MPA) and simultaneously the feeding behaviour of C. chromis was video-recorded, within both the no-take A-zone and the B-zone where recreational use is allowed. Feeding frequencies, escape reaction and school density were analysed. C. chromis specimens were also collected from 2007 to 2008 to evaluate their physiological state using the Body Condition Index as a proxy of feeding efficiency. The MPA was more exploited by nautical tourism during holidays than on weekdays, particularly in the middle of the day. Greater traffic volume corresponded with lower feeding frequencies. The escape reaction was longer in duration (>1 min) when boat passed nearby, while moored boats did not induce an escape response. We found no differences in density between schools in the A- and B-zones and worse body conditions among those individuals inhabiting the B-zone in one area only. Overall, our findings revealed a significant modification of the daily foraging habits of C. chromis due to boat noise, which was slightly buffered by no-take zones established within the MPA. PMID:22792375

  11. Differential regulation of the foraging gene associated with task behaviors in harvester ants

    Directory of Open Access Journals (Sweden)

    Kleeman Lindsay

    2011-08-01

    Full Text Available Abstract Background The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Results Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor, we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. Conclusions The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among

  12. Individual lifetime pollen and nectar foraging preferences in bumble bees

    Science.gov (United States)

    Hagbery, Jessica; Nieh, James C.

    2012-10-01

    Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16-36 % of individuals specialized (≥90 % of visits) on nectar or pollen only. On its first day of foraging, an individual's foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.

  13. Diet-related buccal dental microwear patterns in Central African Pygmy foragers and Bantu-speaking farmer and pastoralist populations.

    Directory of Open Access Journals (Sweden)

    Alejandro Romero

    Full Text Available Pygmy hunter-gatherers from Central Africa have shared a network of socioeconomic interactions with non-Pygmy Bantu speakers since agropastoral lifestyle spread across sub-Saharan Africa. Ethnographic studies have reported that their diets differ in consumption of both animal proteins and starch grains. Hunted meat and gathered plant foods, especially underground storage organs (USOs, are dietary staples for pygmies. However, scarce information exists about forager-farmer interaction and the agricultural products used by pygmies. Since the effects of dietary preferences on teeth in modern and past pygmies remain unknown, we explored dietary history through quantitative analysis of buccal microwear on cheek teeth in well-documented Baka pygmies. We then determined if microwear patterns differ among other Pygmy groups (Aka, Mbuti, and Babongo and between Bantu-speaking farmer and pastoralist populations from past centuries. The buccal dental microwear patterns of Pygmy hunter-gatherers and non-Pygmy Bantu pastoralists show lower scratch densities, indicative of diets more intensively based on nonabrasive foodstuffs, compared with Bantu farmers, who consume larger amounts of grit from stoneground foods. The Baka pygmies showed microwear patterns similar to those of ancient Aka and Mbuti, suggesting that the mechanical properties of their preferred diets have not significantly changed through time. In contrast, Babongo pygmies showed scratch densities and lengths similar to those of the farmers, consistent with sociocultural contacts and genetic factors. Our findings support that buccal microwear patterns predict dietary habits independent of ecological conditions and reflect the abrasive properties of preferred or fallback foods such as USOs, which may have contributed to the dietary specializations of ancient human populations.

  14. Azcatl-CRP: An ant colony-based system for searching full power control rod patterns in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Juan Jose [Dpto. Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Salazar, Edo. de Mexico (Mexico)]. E-mail: jjortiz@nuclear.inin.mx; Requena, Ignacio [Dpto. Ciencias Computacion e I.A. ETSII Informatica, University of Granada, C. Daniel Saucedo Aranda s/n, 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es

    2006-01-15

    We show a new system named AZCATL-CRP to design full power control rod patterns in BWRs. Azcatl-CRP uses an ant colony system and a reactor core simulator for this purpose. Transition and equilibrium cycles of Laguna Verde Nuclear Power Plant (LVNPP) reactor core in Mexico were used to test Azcatl-CRP. LVNPP has 109 control rods grouped in four sequences and currently uses control cell core (CCC) strategy in its fuel reload design. With CCC method only one sequence is employed for reactivity control at full power operation. Several operation scenarios are considered, including core water flow variation throughout the cycle, target different axial power distributions and Haling conditions. Azcatl-CRP designs control rod patterns (CRP) taking into account safety aspects such as k {sub eff} core value and thermal limits. Axial power distributions are also adjusted to a predetermined power shape.

  15. Foraging strategy of little auks during chick rearing in northwest Greenland

    DEFF Research Database (Denmark)

    Mosbech, Anders; Møller, Eva Friis; Johansen, Kasper Lambert

    of the ongoing warming of the Arctic. Here we present the first results from GPS tracking of breeding little auks in northwest Greenland, involving data from four different breeding colonies. We examine time budgets, foraging trip patterns and habitat preferences at foraging areas, including comparison......Foraging strategy of little auks during chick rearing in northwest Greenland Anders Mosbech, Kasper Johansen, Eva Friis Møller & Peter Lyngs Department of Biology and Arctic Center, Aarhus University, Denmark An estimated 80 % of the global little auk population breeds in the coastal landscape...... bordering the north water polynya in high Arctic northwest Greenland, and from this main breeding area very little is known on foraging behavior. Little auks are feeding on lipid-rich copepods associated with cold artic waters, and are potentially important for monitoring and assessing the impact...

  16. Roosting patterns in a captive colony of short-nosed fruit bat Cynopterus sphinx (Vahl).

    Science.gov (United States)

    Gopukumar, N; Manikandan, M; Arivarignan, G

    2002-10-01

    Development of roosting patterns under a limited resource was studied in the short-nosed fruit bat C. sphinx in captivity. Spatial fidelity during the resting period (day time) and the individual male bat's presence/absence in the roost (occupancy index) were estimated during the active period (night time). Results show the presence of three groups on the basis of spatial fidelity. The first group was associated with the tent consisting of a harem male and seven females. The second group stayed near to the harem. The third group consisting of two males showed little occupancy index and no spatial fidelity. Female turnover between the first and second groups, and harem male replacement were observed. These findings of male groupings and female loyalty on the basis of "resource", suggest that resource defence polygyny is the primary mating strategy in C. sphinx.

  17. Linking foraging strategies of marine calanoid copepods to patterns of nitrogen stable isotope signatures in a mesocosm study

    DEFF Research Database (Denmark)

    Sommer, Frank; Saage, A.; Santer, B.

    2005-01-01

    foraging mode and, further, with its nitrogen stable isotope signature (delta(15)N). This is because a more carnivorous diet may be expected to result in a higher delta(15)N. We tested this hypothesis in a mesocosm study using a density gradient (0 to 80 ind. 1(-1)) of calanoid copepods. We expected......The foraging modes of calanoid copepods differ in that stationary suspension-feeding is more easily detected by prey with strong escape responses (ciliates) than is 'cruising' or 'ambushing' feeding. Thus, the ability of a copepod to include heterotrophic prey in its diet may be associated with its...

  18. Evidence for foraging -site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the gulf of Alaska

    Science.gov (United States)

    Kotzerka, J.; Hatch, Shyla A.; Garthe, S.

    2011-01-01

    The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.

  19. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Caroline L Poli

    Full Text Available During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra, in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level, the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance

  20. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    Science.gov (United States)

    Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  1. A quantification of predation rates, indirect positive effects on plants, and foraging variation of the giant tropical ant, Paraponera clavata

    Directory of Open Access Journals (Sweden)

    Lee A. Dyer

    2002-09-01

    Full Text Available While a clear consensus is emerging that predators can play a major role in shaping terrestrial communities, basic natural history observations and simple quantifications of predation rates in complex terrestrial systems are lacking. The potential indirect effect of a large predatory ant, Paraponera clavata Fabricius (Formicidae: Ponerinae, on herbivores was determined on rainforest trees at La Selva Biological Station in Costa Rica and Barro Colorado Island in Panama. Prey and other food brought back to nests by 75 colonies of P. clavata were quantified, taking into account temporal, seasonal, and microhabitat variation for both foraging activity and composition of foraging booty. The dispersion and density of ant colonies and combined density with the mean amounts of prey retrieval were used to calculate rates of predation per hectare in the two forests. In addition, herbivory was measured on trees containing P. clavata and on trees where the ants were not foraging. Colonies at La Selva brought back significantly more nectar plus prey than those at Barro Colorado Island, but foraging patterns were similar in the two forests. At both forests, the ants were more active at night, and there was no significant seasonal or colonial variation in consumption of nectar, composition of foraging booty, and overall activity of the colonies. At La Selva, trees containing P. clavata colonies had the same levels of folivory as nearest neighbor trees without P. clavata but had significantly lower folivory than randomly selected trees. Predation by this ant was high in both forests, despite its omnivorous diet. This insect predator is part of potentially important top-down controls in these wet and moist forests.

  2. PCB concentrations and metabolism patterns in common terns (Sterna hirundo) from different breeding colonies in the Netherlands

    NARCIS (Netherlands)

    Brink, van den N.W.; Bosveld, A.T.C.

    2001-01-01

    PCB levels in blood of common terns (Sterna hirundo) from Terneuzen, a breeding colony in The Netherlands with relatively low breeding success, were significantly higher than in birds from two Dutch reference colonies, one nearby (Oesterdam) and one further away (the Isle of Griend). However, a

  3. Branch to colony trajectory in a modular organism: pattern formation in the Indo-Pacific coral Stylophora pistillata.

    Science.gov (United States)

    Shaish, Lee; Abelson, Avigdor; Rinkevich, Baruch

    2006-08-01

    The architecture of the colony in a branching coral is an iterative process in which new layers of calcium carbonate compile atop existing structures that remain unchanged. Colony growth and development, known as astogeny, is believed to be a continuous process, characterized by replication of lower rank unites, polyps, and branches. This study seeks to explore the genetic blueprint of branch-to-colony developmental trajectory in the branching coral Stylophora pistillata, within an astogeny period of 1 year. One hundred small branches (initially 2-4 cm long) were sampled from 10 colonies. A year later, 63 remaining colonies were analyzed for their architectural rules by using 15 morphometric parameters. Multivariate statistical tests were preformed. Cluster and two-dimensional nonmetric Multi-Dimensional Scaling analyses revealed that the 10 genotypes could be divided into two major morphometric groups and two intermediate groups, whereas SIMPER analyses (a similarity percentage test) on within-genet similarities showed high similarity between the ramets developed from each of the 10 genotypes. Although, at first, it seemed that different colonies exhibited variable and different architectural designs (each characterized by specific morphometric parameters), a comprehensive analysis revealed that all 10 coral genotypes exhibited a single common developmental plan that was characterized by a continuum of architectural design with several distinct stages. Each stage is marked by its own characteristic morphometric parameters. Changing of developmental rules during the trajectory from branch to coral colony may help the colony to cope better with environmental constraints.

  4. A hybrid artificial bee colony algorithm and pattern search method for inversion of particle size distribution from spectral extinction data

    Science.gov (United States)

    Wang, Li; Li, Feng; Xing, Jian

    2017-10-01

    In this paper, a hybrid artificial bee colony (ABC) algorithm and pattern search (PS) method is proposed and applied for recovery of particle size distribution (PSD) from spectral extinction data. To be more useful and practical, size distribution function is modelled as the general Johnson's ? function that can overcome the difficulty of not knowing the exact type beforehand encountered in many real circumstances. The proposed hybrid algorithm is evaluated through simulated examples involving unimodal, bimodal and trimodal PSDs with different widths and mean particle diameters. For comparison, all examples are additionally validated by the single ABC algorithm. In addition, the performance of the proposed algorithm is further tested by actual extinction measurements with real standard polystyrene samples immersed in water. Simulation and experimental results illustrate that the hybrid algorithm can be used as an effective technique to retrieve the PSDs with high reliability and accuracy. Compared with the single ABC algorithm, our proposed algorithm can produce more accurate and robust inversion results while taking almost comparative CPU time over ABC algorithm alone. The superiority of ABC and PS hybridization strategy in terms of reaching a better balance of estimation accuracy and computation effort increases its potentials as an excellent inversion technique for reliable and efficient actual measurement of PSD.

  5. Population regulation in Magellanic penguins: what determines changes in colony size?

    Directory of Open Access Journals (Sweden)

    Luciana M Pozzi

    Full Text Available Seabirds are often studied at individual colonies, but the confounding effects of emigration and mortality processes in open populations may lead to inappropriate conclusions on the mechanisms underlying population changes. Magellanic penguin (Spheniscus magellanicus colonies of variable population sizes are distributed along the Argentine coastline. In recent decades, several population and distributional changes have occurred, with some colonies declining and others newly established or increasing. We integrated data of eight colonies scattered along ∼600 km in Northern Patagonia (from 41°26´S, 65°01´W to 45°11´S, 66°30´W, Rio Negro and Chubut provinces and conducted analysis in terms of their growth rates, production of young and of the dependence of those vital rates on colony age, size, and location. We contrasted population trends estimated from abundance data with those derived from population modeling to understand if observed growth rates were attainable under closed population scenarios. Population trends were inversely related to colony size, suggesting a density dependent growth pattern. All colonies located in the north--which were established during the last decades--increased at high rates, with the smallest, recently established colonies growing at the fastest rate. In central-southern Chubut, where colonies are the oldest, the largest breeding aggregations declined, but smaller colonies remained relatively stable. Results provided strong evidence that dispersal played a major role in driving local trends. Breeding success was higher in northern colonies, likely mediated by favorable oceanographic conditions. However, mean foraging distance and body condition of chicks at fledging were influenced by colony size. Recruitment of penguins in the northern area may have been triggered by a combination of density dependence, likely exacerbated by less favorable oceanographic conditions in the southern sector. Our results

  6. The effect of four user interface concepts on visual scan pattern similarity and information foraging in a complex decision making task.

    Science.gov (United States)

    Starke, Sandra D; Baber, Chris

    2018-07-01

    User interface (UI) design can affect the quality of decision making, where decisions based on digitally presented content are commonly informed by visually sampling information through eye movements. Analysis of the resulting scan patterns - the order in which people visually attend to different regions of interest (ROIs) - gives an insight into information foraging strategies. In this study, we quantified scan pattern characteristics for participants engaging with conceptually different user interface designs. Four interfaces were modified along two dimensions relating to effort in accessing information: data presentation (either alpha-numerical data or colour blocks), and information access time (all information sources readily available or sequential revealing of information required). The aim of the study was to investigate whether a) people develop repeatable scan patterns and b) different UI concepts affect information foraging and task performance. Thirty-two participants (eight for each UI concept) were given the task to correctly classify 100 credit card transactions as normal or fraudulent based on nine transaction attributes. Attributes varied in their usefulness of predicting the correct outcome. Conventional and more recent (network analysis- and bioinformatics-based) eye tracking metrics were used to quantify visual search. Empirical findings were evaluated in context of random data and possible accuracy for theoretical decision making strategies. Results showed short repeating sequence fragments within longer scan patterns across participants and conditions, comprising a systematic and a random search component. The UI design concept showing alpha-numerical data in full view resulted in most complete data foraging, while the design concept showing colour blocks in full view resulted in the fastest task completion time. Decision accuracy was not significantly affected by UI design. Theoretical calculations showed that the difference in achievable

  7. Forage quantity and quality

    Science.gov (United States)

    Jorgenson, Janet C.; Udevitz, Mark S.; Felix, Nancy A.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    The Porcupine caribou herd has traditionally used the coastal plain of the Arctic National Wildlife Refuge, Alaska, for calving. Availability of nutritious forage has been hypothesized as one of the reasons the Porcupine caribou herd migrates hundreds of kilometers to reach the coastal plain for calving (Kuropat and Bryant 1980, Russell et al. 1993).Forage quantity and quality and the chronology of snowmelt (which determines availability and phenological stages of forage) have been suggested as important habitat attributes that lead calving caribou to select one area over another (Lent 1980, White and Trudell 1980, Eastland et al. 1989). A major question when considering the impact of petroleum development is whether potential displacement of the caribou from the 1002 Area to alternate calving habitat will limit access to high quantity and quality forage.Our study had the following objectives: 1) quantify snowmelt patterns by area; 2) quantify relationships among phenology, biomass, and nutrient content of principal forage species by vegetation type; and 3) determine if traditional concentrated calving areas differ from adjacent areas with lower calving densities in terms of vegetation characteristics.

  8. Quitting time: When do honey bee foragers decide to stop foraging on natural resources?

    Directory of Open Access Journals (Sweden)

    Michael eRivera

    2015-05-01

    Full Text Available Honey bee foragers may use both personal and social information when making decisions about when to visit resources. In particular, foragers may stop foraging at resources when their own experience indicates declining resource quality, or when social information, namely the delay to being able to unload nectar to receiver bees, indicates that the colony has little need for the particular resource being collected. Here we test the relative importance of these two factors in a natural setting, where colonies are using many dynamically changing resources. We recorded detailed foraging histories of individually marked bees, and identified when they appeared to abandon any resources (such as flower patches that they had previously been collecting from consistently. As in previous studies, we recorded duration of trophallaxis events (unloading nectar to receiver bees as a proxy for resource quality and the delays before returning foragers started trophallaxis as a proxy for social need for the resource. If these proxy measures accurately reflect changes in resource quality and social need, they should predict whether bees continue foraging or not. However, neither factor predicted when individuals stopped foraging on a particular resource, nor did they explain changes in colony-level foraging activity. This may indicate that other, as yet unstudied processes also affect individual decisions to abandon particular resources.

  9. Interactions Increase Forager Availability and Activity in Harvester Ants.

    Directory of Open Access Journals (Sweden)

    Evlyn Pless

    Full Text Available Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the 'entrance chamber'. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.

  10. Optimal Foraging by Birds: Experiments for Secondary & Postsecondary Students

    Science.gov (United States)

    Pecor, Keith W.; Lake, Ellen C.; Wund, Matthew A.

    2015-01-01

    Optimal foraging theory attempts to explain the foraging patterns observed in animals, including their choice of particular food items and foraging locations. We describe three experiments designed to test hypotheses about food choice and foraging habitat preference using bird feeders. These experiments can be used alone or in combination and can…

  11. HONEY BEE COLONY PHEROMONES

    Directory of Open Access Journals (Sweden)

    M Dražić

    2001-09-01

    Full Text Available ABSTRACT Pheromones are chemicals produced as liquids by specialised cells or glands and transmitted into the environment as liquids or gases. In contrary to hormones, which are excreted in organism and have effect exclusively on organism that produced them, pheromones are excreted outside organism and effect on different individuals of the same species. Pheromones mediate nearly all aspects of honeybee colony life including social defence, brood care, mating, orientation, foraging and reproduction. Pheromone investigation has high economic importance. With use of pheromones it is possible to manipulate with pest insects on crops or to direct honeybees during pollination on target plants.

  12. Land use in the Northern Great Plains region of the U.S. influences the survival and productivity of honey bee colonies

    Science.gov (United States)

    Smart, Matthew; Pettis, Jeff S.; Euliss, Ned H. Jr.; Spivak, Marla S.

    2016-01-01

    The Northern Great Plains region of the US annually hosts a large portion of commercially managed U.S. honey bee colonies each summer. Changing land use patterns over the last several decades have contributed to declines in the availability of bee forage across the region, and the future sustainability of the region to support honey bee colonies is unclear. We examined the influence of varying land use on the survivorship and productivity of honey bee colonies located in six apiaries within the Northern Great Plains state of North Dakota, an area of intensive agriculture and high density of beekeeping operations. Land use surrounding the apiaries was quantified over three years, 2010–2012, and survival and productivity of honey bee colonies were determined in response to the amount of bee forage land within a 3.2-km radius of each apiary. The area of uncultivated forage land (including pasture, USDA conservation program fields, fallow land, flowering woody plants, grassland, hay land, and roadside ditches) exerted a positive impact on annual apiary survival and honey production. Taxonomic diversity of bee-collected pollen and pesticide residues contained therein varied seasonally among apiaries, but overall were not correlated to large-scale land use patterns or survival and honey production. The predominant flowering plants utilized by honey bee colonies for pollen were volunteer species present in unmanaged (for honey bees), and often ephemeral, lands; thus placing honey bee colonies in a precarious situation for acquiring forage and nutrients over the entire growing season. We discuss the implications for land management, conservation, and beekeeper site selection in the Northern Great Plains to adequately support honey bee colonies and insure long term security for pollinator-dependent crops across the entire country.

  13. Evaluating patterns of a white-band disease (WBD outbreak in Acropora palmata using spatial analysis: a comparison of transect and colony clustering.

    Directory of Open Access Journals (Sweden)

    Jennifer A Lentz

    Full Text Available BACKGROUND: Despite being one of the first documented, there is little known of the causative agent or environmental stressors that promote white-band disease (WBD, a major disease of Caribbean Acropora palmata. Likewise, there is little known about the spatiality of outbreaks. We examined the spatial patterns of WBD during a 2004 outbreak at Buck Island Reef National Monument in the US Virgin Islands. METHODOLOGY/PRINCIPAL FINDINGS: Ripley's K statistic was used to measure spatial dependence of WBD across scales. Localized clusters of WBD were identified using the DMAP spatial filtering technique. Statistics were calculated for colony- (number of A. palmata colonies with and without WBD within each transect and transect-level (presence/absence of WBD within transects data to evaluate differences in spatial patterns at each resolution of coral sampling. The Ripley's K plots suggest WBD does cluster within the study area, and approached statistical significance (p = 0.1 at spatial scales of 1100 m or less. Comparisons of DMAP results suggest the transect-level overestimated the prevalence and spatial extent of the outbreak. In contrast, more realistic prevalence estimates and spatial patterns were found by weighting each transect by the number of individual A. palmata colonies with and without WBD. CONCLUSIONS: As the search for causation continues, surveillance and proper documentation of the spatial patterns may inform etiology, and at the same time assist reef managers in allocating resources to tracking the disease. Our results indicate that the spatial scale of data collected can drastically affect the calculation of prevalence and spatial distribution of WBD outbreaks. Specifically, we illustrate that higher resolution sampling resulted in more realistic disease estimates. This should assist in selecting appropriate sampling designs for future outbreak investigations. The spatial techniques used here can be used to facilitate other

  14. Evaluating patterns of a white-band disease (WBD) outbreak in Acropora palmata using spatial analysis: a comparison of transect and colony clustering.

    Science.gov (United States)

    Lentz, Jennifer A; Blackburn, Jason K; Curtis, Andrew J

    2011-01-01

    Despite being one of the first documented, there is little known of the causative agent or environmental stressors that promote white-band disease (WBD), a major disease of Caribbean Acropora palmata. Likewise, there is little known about the spatiality of outbreaks. We examined the spatial patterns of WBD during a 2004 outbreak at Buck Island Reef National Monument in the US Virgin Islands. Ripley's K statistic was used to measure spatial dependence of WBD across scales. Localized clusters of WBD were identified using the DMAP spatial filtering technique. Statistics were calculated for colony- (number of A. palmata colonies with and without WBD within each transect) and transect-level (presence/absence of WBD within transects) data to evaluate differences in spatial patterns at each resolution of coral sampling. The Ripley's K plots suggest WBD does cluster within the study area, and approached statistical significance (p = 0.1) at spatial scales of 1100 m or less. Comparisons of DMAP results suggest the transect-level overestimated the prevalence and spatial extent of the outbreak. In contrast, more realistic prevalence estimates and spatial patterns were found by weighting each transect by the number of individual A. palmata colonies with and without WBD. As the search for causation continues, surveillance and proper documentation of the spatial patterns may inform etiology, and at the same time assist reef managers in allocating resources to tracking the disease. Our results indicate that the spatial scale of data collected can drastically affect the calculation of prevalence and spatial distribution of WBD outbreaks. Specifically, we illustrate that higher resolution sampling resulted in more realistic disease estimates. This should assist in selecting appropriate sampling designs for future outbreak investigations. The spatial techniques used here can be used to facilitate other coral disease studies, as well as, improve reef conservation and management.

  15. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    Directory of Open Access Journals (Sweden)

    David T Peck

    Full Text Available Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  16. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees

    Science.gov (United States)

    Smith, Michael L.; Seeley, Thomas D.

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation. PMID:27942015

  17. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    Science.gov (United States)

    Peck, David T; Smith, Michael L; Seeley, Thomas D

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  18. Immune gene expression in Bombus terrestris: signatures of infection despite strong variation among populations, colonies, and sister workers.

    Directory of Open Access Journals (Sweden)

    Franziska S Brunner

    Full Text Available Ecological immunology relies on variation in resistance to parasites. Colonies of the bumblebee Bombus terrestris vary in their susceptibility to the trypanosome gut parasite Crithidia bombi, which reduces colony fitness. To understand the possible origin of this variation in resistance we assayed the expression of 28 immunologically important genes in foraging workers. We deliberately included natural variation of the host "environment" by using bees from colonies collected in two locations and sampling active foraging workers that were not age controlled. Immune gene expression patterns in response to C. bombi showed remarkable variability even among genetically similar sisters. Nevertheless, expression varied with parasite exposure, among colonies and, perhaps surprisingly, strongly among populations (collection sites. While only the antimicrobial peptide abaecin is universally up regulated upon exposure, linear discriminant analysis suggests that the overall exposure effect is driven by a combination of several immune pathways and further immune functions such as ROS regulation. Also, the differences among colonies in their immune gene expression profiles provide clues to the mechanistic basis of well-known inter-colony variation in susceptibility to this parasite. Our results show that transcriptional responses to parasite exposure can be detected in ecologically heterogeneous groups despite strong background noise.

  19. Patterns of proliferation and differentiation of irradiated haemopoietic stem cells cultured on normal 'stromal' cell colonies in vitro

    International Nuclear Information System (INIS)

    Mori, K.J.

    1981-01-01

    Experiments were designed to elucidate whether or not the irradiated bone marrow cells receive any stimulation for the self-replication and differentiation from normal 'stromal' cell colonies in the bone marrow cell culture in vitro. When irradiated or unirradiated bone marrow cells were overlaid on the normal adherent cell colonies, the proliferation of haemopoietic stem cells was supported, the degree of the stimulation depending on the starting cellular concentration. There was, however, no significant changes in the concentration of either CFUs or CFUc regardless of the dose of irradiation on the bone marrow cells overlaid. This was a great contrast to the dose-dependent decrease of CFUs or CFUc within the culture in which both the stem cells and stromal cells were simultaneously irradiated. These results suggest that the balance of self-replication and differentiation of the haemopoietic stem cells is affected only when haemopoietic microenvironment is perturbed. (author)

  20. Manipulation of colony environment modulates honey bee aggression and brain gene expression.

    Science.gov (United States)

    Rittschof, C C; Robinson, G E

    2013-11-01

    The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression. In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat. Previous research has showed social effects on both aggression and aggression-related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype. For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive-like brain gene expression profiles. We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive-like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results show that bee aggression and associated molecular processes are subject to complex social influences. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. The ontogeny of bumblebee flight trajectories: from naïve explorers to experienced foragers.

    Directory of Open Access Journals (Sweden)

    Juliet L Osborne

    Full Text Available Understanding strategies used by animals to explore their landscape is essential to predict how they exploit patchy resources, and consequently how they are likely to respond to changes in resource distribution. Social bees provide a good model for this and, whilst there are published descriptions of their behaviour on initial learning flights close to the colony, it is still unclear how bees find floral resources over hundreds of metres and how these flights become directed foraging trips. We investigated the spatial ecology of exploration by radar tracking bumblebees, and comparing the flight trajectories of bees with differing experience. The bees left the colony within a day or two of eclosion and flew in complex loops of ever-increasing size around the colony, exhibiting Lévy-flight characteristics constituting an optimal searching strategy. This mathematical pattern can be used to predict how animals exploring individually might exploit a patchy landscape. The bees' groundspeed, maximum displacement from the nest and total distance travelled on a trip increased significantly with experience. More experienced bees flew direct paths, predominantly flying upwind on their outward trips although forage was available in all directions. The flights differed from those of naïve honeybees: they occurred at an earlier age, showed more complex looping, and resulted in earlier returns of pollen to the colony. In summary bumblebees learn to find home and food rapidly, though phases of orientation, learning and searching were not easily separable, suggesting some multi-tasking.

  2. Evidence that tufted puffins Fratercula cirrhata use colony overflights to reduce kleptoparasitism risk

    NARCIS (Netherlands)

    Blackburn, G.S.; Hipfner, J.M.; Ydenberg, R.C.

    2009-01-01

    Predation, foraging and mating costs are critical factors shaping life histories. Among colonial seabirds, colony overflights may enhance foraging or mating success, or diminish the risk of predation and kleptoparasitism. The latter possibility is difficult to test because low predation or

  3. Interactions with combined chemical cues inform harvester ant foragers' decisions to leave the nest in search of food.

    Directory of Open Access Journals (Sweden)

    Michael J Greene

    Full Text Available Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food.

  4. Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal.

    Directory of Open Access Journals (Sweden)

    Patrick W Robinson

    Full Text Available The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species' range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean.

  5. Workers' Extra-Nest Behavioral Changes During Colony Fission in Dinoponera quadriceps (Santschi).

    Science.gov (United States)

    Medeiros, J; Araújo, A

    2014-04-01

    Ant colonies can reproduce by two strategies: independent foundation, wherein the queen starts a new colony alone, and dependent foundation, in which workers assist the queen. In the queenless species Dinoponera quadriceps (Santschi), the colony reproduces obligatorily by fission, a type of dependent foundation, but this process is not well understood. This study describes a colony fission event of D. quadriceps in the field and analyzes the influence of the fission process on workers' extra-nest behavior. Based on observations of workers outside the nest, five distinct stages were identified: monodomic stage, polydomic stage, split stage, conflict stage, and post-conflict stage. The colony was initially monodomic and then occupied a second nest before it split into two independent colonies, indicating a gradual and opportunistic dependent foundation. After the fission event, the daughter colony had aggressive conflicts with the parental colony, resulting in the latter's disappearance. Colony fission affected workers' extra-nest behavior by increasing the frequency of rubbing the gaster against the substrate (which probably has a chemical marking function) and by decreasing the frequency of foraging during the split stage. After the fission event, the number of foragers was halved and foragers remained nearer to the nest during extra-nest activity. The spatial closeness of the parental and daughter colonies led to competition that caused the extinction or migration of the parental colony. Intraspecific competition was indicated by foraging directionality at the colony level, whereby areas of neighbor colonies were avoided; this directionality was stronger while both colonies coexisted.

  6. Efficiency in pollen foraging by honey bees: Time, motion and pollen depletion on flowers of Sisyrinchium palmifolium Linnaeus (Asparagales: Iridaceae

    Directory of Open Access Journals (Sweden)

    Breno M. Freitas

    2013-10-01

    Full Text Available Honey bees depend on flower resources (nectar and pollen to supply individual and colony needs. Although behavioural studies already assessed optimum foraging patterns of bumblebees, honey bees foraging behavioural patterns have been poorly assessed. We used Sysirinchium palmifolium L. (Iridaceae, a low-growing, abundant and anthophilous grassland flower to test the hypotheses that Apis mellifera workers would i spend more time, ii visit a greater number of flowers, and iii travel greater distances within patches of S. palmifolium which were newly opened or not been visited by other pollinators when compared to foraging on patches that were available to pollinators during its whole blooming period (only one day. In two different sunny days, we measured bee activities in an area opened for visitation during the whole anthesis (OP plot treatment and another opened for visitation only half of anthesis (CL plot treatment. We observed bees spending more time, visiting more flowers and travelling more in S. palmifolium CL treatment than the OP plot treatment. Previous studies already showed bees alter their foraging behaviour in the lack of resources. Honey bees are able to remember the period of the day when resources are usually the higher, they probably detect the most promising period to gather resources on S. palmifolium flowers. Since A. mellifera is a pollinator with a wide-distribution and is considered an important cause of changes on native pollinator communities, we support additional studies evaluating its foraging behaviours to better understand how it explores flower resources.

  7. Subalpine bumble bee foraging distances and densities in relation to flower availability.

    Science.gov (United States)

    Elliott, Susan E

    2009-06-01

    Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.

  8. Patterns of foraging and distribution of bluegill sunfish in a Mississippi River backwater: Influence of macrophytes and predation

    Science.gov (United States)

    Dewey, M.R.; Richardson, W.B.; Zigler, S.J.

    1997-01-01

    We studied the trophic interactions and spatial distributions of bluegills Lepomis macrochirus and largemouth bass Micropterus salmoides in a macrophyte bed in Lake Onalaska, a backwater lake in the upper Mississippi River. The diets of adult and age-0 bluegills were similar and changed seasonally probably in response to changes in life stages of macroinvertebrates (i.e. emergence of winged adults). Diets and diel patterns of abundance of bluegill suggest that age-0 and adults were feeding in the vegetated, littoral zone. Predation by age-0 largemouth bass appears to influence use of vegetated habitat by age-0 bluegills. In summer, when most age-0 bluegills were vulnerable to predation by age-0 largemouth bass, bluegill abundance was strongly correlated with vegetation biomass. In October and November, piscivory by age-0 largemouth bass was limited by gape. Consequently, the relationship between the abundance of age-0 bluegills and vegetation biomass was weakened because predation risk by age-0 largemouth bass was reduced.

  9. Colonial Institutions

    DEFF Research Database (Denmark)

    McAtackney, Laura; Palmer, Russell

    2016-01-01

    and the USA which reveal that the study of colonial institutions should not be limited to the functional life of these institutions—or solely those that take the form of monumental architecture—but should include the long shadow of “imperial debris” (Stoler 2008) and immaterial institutions....

  10. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Science.gov (United States)

    Kokubun, Nobuo; Yamamoto, Takashi; Kikuchi, Dale M; Kitaysky, Alexander; Takahashi, Akinori

    2015-01-01

    Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris) is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting) occurred over the ocean basin (bottom depth >1,000 m). Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1) flight, characterized by regular wing flapping, (2) resting on water, characterized by non-active behavior, and (3) foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3%) compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%). The mean duration of foraging (2.4 ± 2.9 min) was shorter than that of flight between prey patches (24.2 ± 53.1 min). Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight). Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  11. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    Directory of Open Access Journals (Sweden)

    Nobuo Kokubun

    Full Text Available Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting occurred over the ocean basin (bottom depth >1,000 m. Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1 flight, characterized by regular wing flapping, (2 resting on water, characterized by non-active behavior, and (3 foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3% compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%. The mean duration of foraging (2.4 ± 2.9 min was shorter than that of flight between prey patches (24.2 ± 53.1 min. Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight. Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  12. Visual Foraging With Fingers and Eye Gaze

    Directory of Open Access Journals (Sweden)

    Ómar I. Jóhannesson

    2016-03-01

    Full Text Available A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a The fact that a sizeable number of observers (in particular during gaze foraging had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints.

  13. Worker life tables, survivorship, and longevity in colonies of Bombus (Fervidobombus atratus (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Eunice Vieira da Silva-Matos

    2000-06-01

    Full Text Available Survivorship curves and longevity of workers were studied in two queenright and two queenless colonies of Bombus (Fervidobombus atratus. Survivorship curves for workers of all colonies were, in general, convex, indicating an increasing mortality rate with increasing age. The mean longevity for the workers from queenright colonies, 24.3 days and 17.6 days, was not significantly different from that in queenless colonies, 21.2 days and 20.2 days. In all colonies workers started foraging activities when aged 0-5 days, and the potential forager rates rose progressively with increasing age. Mortality rates within each age interval were significantly correlated with the foraging worker rates in all colonies. Only in two of the colonies (one queenright and one queenless longevity was significantly correlated with worker size. The duration of brood development period seems to be one of the most important factors influencing adult worker longevity in this bumble bee species.

  14. A novel comprehensive learning artificial bee colony optimizer for dynamic optimization biological problems

    Directory of Open Access Journals (Sweden)

    Weixing Su

    2017-03-01

    Full Text Available There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell’s pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.

  15. A novel comprehensive learning artificial bee colony optimizer for dynamic optimization biological problems.

    Science.gov (United States)

    Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei

    2017-03-01

    There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.

  16. Nutritional status influences socially regulated foraging ontogeny in honey bees.

    Science.gov (United States)

    Toth, Amy L; Kantarovich, Sara; Meisel, Adam F; Robinson, Gene E

    2005-12-01

    In many social insects, including honey bees, worker energy reserve levels are correlated with task performance in the colony. Honey bee nest workers have abundant stored lipid and protein while foragers are depleted of these reserves; this depletion precedes the shift from nest work to foraging. The first objective of this study was to test the hypothesis that lipid depletion has a causal effect on the age at onset of foraging in honey bees (Apis mellifera L.). We found that bees treated with a fatty acid synthesis inhibitor (TOFA) were more likely to forage precociously. The second objective of this study was to determine whether there is a relationship between social interactions, nutritional state and behavioral maturation. Since older bees are known to inhibit the development of young bees into foragers, we asked whether this effect is mediated nutritionally via the passage of food from old to young bees. We found that bees reared in social isolation have low lipid stores, but social inhibition occurs in colonies in the field, whether young bees are starved or fed. These results indicate that although social interactions affect the nutritional status of young bees, social and nutritional factors act independently to influence age at onset of foraging. Our findings suggest that mechanisms linking internal nutritional physiology to foraging in solitary insects have been co-opted to regulate altruistic foraging in a social context.

  17. Maternal Territoriality Achieved Through Shaking and Lunging: An Investigation of Patterns in Associated Behaviors and Substrate Vibrations in a Colonial Embiopteran, Antipaluria urichi

    Science.gov (United States)

    Dejan, Khaaliq A.; Fresquez, John M.; Meyer, Annika M.; Edgerly, Janice S.

    2013-01-01

    Substrate vibration communication is displayed by a variety of insects that rely on silk for shelter. Such signaling is often associated with territoriality and social interactions. The goal in this study was to explore the use of substrate vibration by subsocial insects of the little-studied order Embioptera (also known as Embiidina). Antipaluria urichi (Saussure) (Embioptera: Clothodidae) from Trinidad and Tobago, a large embiopteran, exhibits maternal care and facultatively colonial behavior. Previous observations suggested that they were aggressive while guarding eggs but gregarious when not. Egg-guarders in particular have been observed shaking and lunging their bodies, but to date these putative signals have not been recorded nor were their contexts known. Staged interactions were conducted in the laboratory using residents that had established silk domiciles enveloping piezo-electric film used to detect vibrations. Predictions from two competing hypotheses, the maternal territoriality hypothesis and the group cohesion hypothesis, were erected to explain the occurrence of signaling. Experiments pitted pre-reproductive and egg-guarding residents against female and male intruders, representing social partners that ranged from potentially threatening to innocuous or even helpful. Behavioral acts were identified and scored along with associated substrate vibrations, which were measured for associated body movements, duration, and frequency spectra. Signals, sorted by the distinct actions used to generate them, were lunge, shake, push up, and snapback. Egg-guarding females produced most signals in response to female intruders, a result that supported the maternal territoriality hypothesis. Female intruders generally responded to such signaling by moving away from egg-guarding residents. In contrast, pre-reproductive residents did not signal much, and intruders settled beside them. Theme software was used to analyze the behavioral event recordings to seek patterns

  18. Heat Damaged Forages: Effects on Forage Quality

    Science.gov (United States)

    Traditionally, heat damage in forages has been associated with alterations in forage protein quality as a result of Maillard reactions, and most producers and nutritionists are familiar with this concept. However, this is not necessarily the most important negative consequence of spontaneous heating...

  19. Cognitive plasticity in foraging Vespula germanica wasps.

    Science.gov (United States)

    D'Adamo, Paola; Lozada, Mariana

    2011-01-01

    Vespula germanica (F.) (Hymenoptera: Vespidae) is a highly invasive social wasp that exhibits a rich behavioral repertoire in which learning and memory play a fundamental role in foraging. The learning abilities of these wasps were analyzed while relocating a food source and whether V. germanica foragers are capable of discriminating between different orientation patterns and generalizing their choice to a new pattern. Foraging wasps were trained to associate two different stripe orientation patterns with their respective food locations. Their response to a novel configuration that maintained the orientation of one of the learned patterns but differed in other aspects (e.g. width of stripes) was then evaluated. The results support the hypothesis that V. germanica wasps are able to associate a particular oriented pattern with the location of a feeder and to generalize their choice to a new pattern, which differed in quality, but presented the same orientation.

  20. Seasonal Food Scarcity Prompts Long-Distance Foraging by a Wild Social Bee.

    Science.gov (United States)

    Pope, Nathaniel S; Jha, Shalene

    2018-01-01

    Foraging is an essential process for mobile animals, and its optimization serves as a foundational theory in ecology and evolution; however, drivers of foraging are rarely investigated across landscapes and seasons. Using a common bumblebee species from the western United States (Bombus vosnesenskii), we ask whether seasonal decreases in food resources prompt changes in foraging behavior and space use. We employ a unique integration of population genetic tools and spatially explicit foraging models to estimate foraging distances and rates of patch visitation for wild bumblebee colonies across three study regions and two seasons. By mapping the locations of 669 wild-caught individual foragers, we find substantial variation in colony-level foraging distances, often exhibiting a 60-fold difference within a study region. Our analysis of visitation rates indicates that foragers display a preference for destination patches with high floral cover and forage significantly farther for these patches, but only in the summer, when landscape-level resources are low. Overall, these results indicate that an increasing proportion of long-distance foraging bouts take place in the summer. Because wild bees are pollinators, their foraging dynamics are of urgent concern, given the potential impacts of global change on their movement and services. The behavioral shift toward long-distance foraging with seasonal declines in food resources suggests a novel, phenologically directed approach to landscape-level pollinator conservation and greater consideration of late-season floral resources in pollinator habitat management.

  1. Hive Relocation Does Not Adversely Affect Honey Bee (Hymenoptera: Apidae Foraging

    Directory of Open Access Journals (Sweden)

    Fiona C. Riddell Pearce

    2013-01-01

    Full Text Available Honey bees, Apis mellifera, face major challenges including diseases and reduced food availability due to agricultural intensification. Additionally, migratory beekeeping may subject colonies to a moving stress, both during the move itself and after the move, from the bees having to forage in a novel environment where they have no knowledge of flower locations. This study investigated the latter. We moved three colonies housed in observation hives onto the campus from a site 26 km away and compared their foraging performance to three similarly sized colonies at the same location that had not been moved. We obtained data on (1 foraging performance by calculating distance by decoding waggle dances, (2 hive foraging rate by counting forager departure rate, (3 forage quality by assessing sugar content of nectar from returning foragers, and (4 forager success by calculating the proportion of bees returning to the nest entrance with nectar in their crop. We repeated this 3 times (August 2010, October 2010, and June 2011 to encompass any seasonal effects. The data show no consistent difference in foraging performance of moved versus resident hives. Overall the results suggest that moving to a new location does not adversely affect the foraging success of honey bees.

  2. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche

    DEFF Research Database (Denmark)

    Kronauer, Daniel J C; Schöning, Caspar; Vilhelmsen, Lars

    2007-01-01

    in the leaf-litter and some as conspicuous swarm raiders on the forest floor and in the lower vegetation (the infamous driver ants). Here we use a combination of nuclear and mitochondrial DNA sequences to reconstruct the phylogeny of the Dorylus s.l. army ants and to infer the evolutionary transitions...... in foraging niche and associated morphological adaptations. RESULTS: Underground foraging is basal and gave rise to leaf-litter foraging. Leaf-litter foraging in turn gave rise to two derived conditions: true surface foraging (the driver ants) and a reversal to subterranean foraging (a clade with most......BACKGROUND: Army ants are the prime arthropod predators in tropical forests, with huge colonies and an evolutionary derived nomadic life style. Five of the six recognized subgenera of Old World Dorylus army ants forage in the soil, whereas some species of the sixth subgenus (Anomma) forage...

  3. Division of labor associated with brood rearing in the honey bee: how does it translate to colony fitness?

    Directory of Open Access Journals (Sweden)

    Ramesh R Sagili

    2011-02-01

    Full Text Available Division of labor is a striking feature observed in honey bees and many other social insects. Division of labor has been claimed to benefit fitness. In honey bees, the adult work force may be viewed as divided between non-foraging hive bees that rear brood and maintain the nest, and foragers that collect food outside the nest. Honey bee brood pheromone is a larval pheromone that serves as an excellent empirical tool to manipulate foraging behaviors and thus division of labor in the honey bee. Here we use two different doses of brood pheromone to alter the foraging stimulus environment, thus changing demographics of colony division of labor, to demonstrate how division of labor associated with brood rearing affects colony growth rate. We examine the effects of these different doses of brood pheromone on individual foraging ontogeny and specialization, colony level foraging behavior, and individual glandular protein synthesis. Low brood pheromone treatment colonies exhibited significantly higher foraging population, decreased age of first foraging and greater foraging effort, resulting in greater colony growth compared to other treatments. This study demonstrates how division of labor associated with brood rearing affects honey bee colony growth rate, a token of fitness.

  4. Forage fish, their fisheries, and their predators: who drives whom?

    DEFF Research Database (Denmark)

    Engelhard, Georg H.; Peck, Myron A.; Rindorf, Anna

    2014-01-01

    exist, as in the North Sea. Sandeel appears to be the most important prey forage fish. Seabirds are most dependent on forage fish, due to specialized diet and distributional constraints (breeding colonies). Other than fisheries, key predators of forage fish are a few piscivorous fish species including...... saithe, whiting, mackerel, and horse-mackerel, exploited in turn by fisheries; seabirds and seals have a more modest impact. Size-based foodwebmodelling suggests that reducing fishing mortality may not necessarily lead to larger stocks of piscivorous fish, especially if their early life stages compete...

  5. Work or sleep? : honeybee foragers opportunistically nap during the day when forage is not available

    OpenAIRE

    Klein, Barrett; Seeley, Thomas D.

    2011-01-01

    Shifts in work schedules test humans’ capacity to be flexible in the timing of both work and sleep. Honeybee, Apis mellifera, foragers also shift their work schedules, but how flexible they are in the timing of sleep as they shift the timing of work is unknown, despite the importance of colony-level plasticity in the face of a changing environment. We hypothesized that sleep schedules of foragers are not fixed and instead vary depending on the time when food is available. We trained bees to v...

  6. Habitat-specific foraging strategies in Australasian gannets

    Directory of Open Access Journals (Sweden)

    Melanie R. Wells

    2016-07-01

    Full Text Available Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26, in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change.

  7. Variation in zooplankton prey distribution determines marine foraging distributions of breeding Cassin's Auklet

    Science.gov (United States)

    Bertram, Douglas F.; Mackas, David L.; Welch, David W.; Boyd, W. Sean; Ryder, John L.; Galbraith, Moira; Hedd, April; Morgan, Ken; O'Hara, Patrick D.

    2017-11-01

    To investigate the causal basis for patterns of seabird foraging distributions during breeding we integrated data from ship-board seabird and zooplankton surveys, aerial radio telemetry, and colony-based research programs. We examined the marine distributions of Cassin's Auklet (Ptychoramphus aleuticus) breeding on Triangle Island, in the Northeast Pacific off the coast of B.C., Canada using surveys conducted in 1999, 2000, and 2001. Concurrently, we sampled zooplankton at 16 stations along a cross shelf transect in the vicinity of Triangle Island. In 1999 and 2000, when populations of the preferred copepod prey Neocalanus cristatus were available at deep-water stations (1000-2000 m), the majority of the auklets were concentrated SW of the colony 40-75 km offshore and parallel to, but 35 -50 km beyond the shelf break in deep water (1200-2000 m). Birds did not fly farther out to sea to where prey was five times more abundant when N. cristatus could be found at lower abundance levels, closer to the colony. In 2001, N. cristatus were virtually absent at the deep-water stations, likely as a result of massive salp (family Salpidae) aggregations which may have consumed and displaced the seabirds' preferred prey. We demonstrate that while birds were still able to locate and provision chicks with N. cristatus in 2001, they had to forage farther away from the colony in order to do so. Our telemetry results are generally consistent with analyses of at-sea distributions of Cassin's Auklets derived from ship-board surveys (1990-2010) both of which have contributed to the design of the proposed Scott Islands marine National Wildlife Area, the first of its kind in Canada.

  8. Is there an endogenous tidal foraging rhythm in marine iguanas?

    Science.gov (United States)

    Wikelski, M; Hau, M

    1995-12-01

    As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related

  9. Optimally frugal foraging

    Science.gov (United States)

    Bénichou, O.; Bhat, U.; Krapivsky, P. L.; Redner, S.

    2018-02-01

    We introduce the frugal foraging model in which a forager performs a discrete-time random walk on a lattice in which each site initially contains S food units. The forager metabolizes one unit of food at each step and starves to death when it last ate S steps in the past. Whenever the forager eats, it consumes all food at its current site and this site remains empty forever (no food replenishment). The crucial property of the forager is that it is frugal and eats only when encountering food within at most k steps of starvation. We compute the average lifetime analytically as a function of the frugality threshold and show that there exists an optimal strategy, namely, an optimal frugality threshold k* that maximizes the forager lifetime.

  10. Season and landscape composition affect pollen foraging distances and habitat use of honey bees.

    Science.gov (United States)

    Danner, Nadja; Molitor, Anna Maria; Schiele, Susanne; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2016-09-01

    Honey bees (Apis mellifera L.) show a large variation in foraging distances and use a broad range of plant species as pollen resources, even in regions with intensive agriculture. However, it is unknown how increasing areas of mass-flowering crops like oilseed rape (Brassica napus; OSR) or a decrease of seminatural habitats (SNH) change the temporal and spatial availability of pollen resources for honey bee colonies, and thus foraging distances and frequency in different habitat types. We studied pollen foraging of honey bee colonies in 16 agricultural landscapes with independent gradients of OSR and SNH area within 2 km and used waggle dances and digital geographic maps with major land cover types to reveal the distance and visited habitat type on a landscape level. Mean pollen foraging distance of 1347 decoded bee dances was 1015 m (± 26 m; SEM). In spring, increasing area of flowering OSR within 2 km reduced mean pollen foraging distances from 1324 m to only 435 m. In summer, increasing cover of SNH areas close to the colonies (within 200 m radius) reduced mean pollen foraging distances from 846 to 469 m. Frequency of pollen foragers per habitat type, measured as the number of dances per hour and hectare, was equally high for SNH, grassland, and OSR fields, but lower for other crops and forests. In landscapes with a small proportion of SNH a significantly higher density of pollen foragers on SNH was observed, indicating that pollen resources in such simple agricultural landscapes are more limited. Overall, we conclude that SNH and mass-flowering crops can reduce foraging distances of honey bee colonies at different scales and seasons with possible benefits for the performance of honey bee colonies. Further, mixed agricultural landscapes with a high proportion of SNH reduce foraging densities of honey bees in SNH and thus possible competition for pollen resources. © 2016 by the Ecological Society of America.

  11. Morphological Diversity of the Colony Produced by Bacteria Proteus mirabilis

    Science.gov (United States)

    Nakahara, Akio; Shimada, Yuji; Wakita, Jun-ichi; Matsushita, Mitsugu; Matsuyama, Tohey

    1996-08-01

    Morphological changes of colonies have been investigatedfor a bacterial strain of Proteus mirabilis, which is a famous speciesfor producing concentric-ring-like colonies. It was found that colony patterns can be classified into three types,i.e., cyclic spreading, diffusion-limited growth (DLA-like)and three-dimensional growth (inside the agar medium) patterns. Cyclic spreading patterns can further be classifiedinto three subgroups, i.e., concentric-ring, homogeneous and spatiotemporal patterns. These subgroups were classified by examining the development of colony structure after colonies spread all over petri-dishes. Comparison of the results with thoseof another bacterial species Bacillus subtilis is also discussed.

  12. A methodology for obtaining the control rods patterns in a BWR using systems based on ants colonies; Una metodologia para obtener los patrones de barras de control en un BWR usando sistemas basados en colonias de hormigas

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J. [Depto. de Sistemas Nucleares, ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Requena R, I. [Universidad de Granada, 18071 Granada (Spain)]. e-mail: jjortiz@nuclear.inin.mx

    2003-07-01

    In this work the AZCATL-PBC system based on a technique of ants colonies for the search of control rods patterns of those reactors of the Nuclear Power station of Laguna Verde (CNLV) is presented. The technique was applied to a transition cycle and one of balance. For both cycles they were compared the k{sub ef} values obtained with a Haling calculation and the control rods pattern proposed by AZCATL-PBC for a burnt one fixed. It was found that the methodology is able to extend the length of the cycle with respect to the Haling prediction, maintaining sure to the reactor. (Author)

  13. Activity time budget during foraging trips of emperor penguins.

    Directory of Open Access Journals (Sweden)

    Shinichi Watanabe

    Full Text Available We developed an automated method using depth and one axis of body acceleration data recorded by animal-borne data loggers to identify activities of penguins over long-term deployments. Using this technique, we evaluated the activity time budget of emperor penguins (n = 10 both in water and on sea ice during foraging trips in chick-rearing season. During the foraging trips, emperor penguins alternated dive bouts (4.8 ± 4.5 h and rest periods on sea ice (2.5 ± 2.3 h. After recorder deployment and release near the colony, the birds spent 17.9 ± 8.4% of their time traveling until they reached the ice edge. Once at the ice edge, they stayed there more than 4 hours before the first dive. After the first dive, the mean proportions of time spent on the ice and in water were 30.8 ± 7.4% and 69.2 ± 7.4%, respectively. When in the water, they spent 67.9 ± 3.1% of time making dives deeper than 5 m. Dive activity had no typical diurnal pattern for individual birds. While in the water between dives, the birds had short resting periods (1.2 ± 1.7 min and periods of swimming at depths shallower than 5 m (0.25 ± 0.38 min. When the birds were on the ice, they primarily used time for resting (90.3 ± 4.1% of time and spent only 9.7 ± 4.1% of time traveling. Thus, it appears that, during foraging trips at sea, emperor penguins traveled during dives >5 m depth, and that sea ice was primarily used for resting. Sea ice probably provides refuge from natural predators such as leopard seals. We also suggest that 24 hours of sunlight and the cycling of dive bouts with short rest periods on sea ice allow emperor penguins to dive continuously throughout the day during foraging trips to sea.

  14. Recruitment strategies and colony size in social insects

    NARCIS (Netherlands)

    Planque, R.; van den Berg, G.J.B.; Franks, N.R.

    2010-01-01

    Ants use a great variety of recruitment methods to forage for food or find new nests, including tandem running, group recruitment and scent trails. It has been known for some time that there is a loose correlation across many taxa between species-specific mature colony size and recruitment method.

  15. Does supplemental feeding affect behaviour and foraging of ...

    African Journals Online (AJOL)

    In response to the provision of high-quality pods of Acacia albida, animals reduced foraging time in 2008 and allocated it to resting. This pattern corresponds to the animals' behaviour in captivity without foraging versus vigilance trade-offs and with predictable (in time and space) access to food. In 2009, supplemental ...

  16. Floral odor learning within the hive affects honeybees' foraging decisions

    Science.gov (United States)

    Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.

    2007-03-01

    Honeybees learn odor cues quickly and efficiently when visiting rewarding flowers. Memorization of these cues facilitates the localization and recognition of food sources during foraging flights. Bees can also use information gained inside the hive during social interactions with successful foragers. An important information cue that can be learned during these interactions is food odor. However, little is known about how floral odors learned in the hive affect later decisions of foragers in the field. We studied the effect of food scent on foraging preferences when this learning is acquired directly inside the hive. By using in-hive feeders that were removed 24 h before the test, we showed that foragers use the odor information acquired during a 3-day stimulation period with a scented solution during a food-choice situation outside the nest. This bias in food preference is maintained even 24 h after the replacement of all the hive combs. Thus, without being previously collected outside by foragers, food odors learned within the hive can be used during short-range foraging flights. Moreover, correct landings at a dual-choice device after replacing the storing combs suggests that long-term memories formed within the colony can be retrieved while bees search for food in the field.

  17. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    Directory of Open Access Journals (Sweden)

    Deborah M Gordon

    Full Text Available The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  18. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.

    Science.gov (United States)

    Gordon, Deborah M

    2012-01-01

    The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.

  19. Bumble bee nest abundance, foraging distance, and host-plant reproduction: implications for management and conservation.

    Science.gov (United States)

    Geib, Jennifer C; Strange, James P; Galenj, Candace

    2015-04-01

    Recent reports of global declines in pollinator species imply an urgent need to assess the abundance of native pollinators and density-dependent benefits for linked plants. In this study, we investigated (1) pollinator nest distributions and estimated colony abundances, (2) the relationship between abundances of foraging workers and the number of nests they represent, (3) pollinator foraging ranges, and (4) the relationship between pollinator abundance and plant reproduction. We examined these questions in an alpine ecosystem in the Colorado Rocky Mountains, focusing on four alpine bumble bee species (Bombus balteatus, B. flavifrons, B. bifarius, and B. sylvicola), and two host plants that differ in their degrees of pollinator specialization (Trifolium dasyphyllum and T. parryi). Using microsatellites, we found that estimated colony abundances among Bombus species ranged from ~18 to 78 colonies/0.01 km2. The long-tongued species B. balteatus was most common, especially high above treeline, but the subalpine species B. bifarius was unexpectedly abundant for this elevation range. Nests detected among sampled foragers of each species were correlated with the number of foragers caught. Foraging ranges were smaller than expected for all Bombus species, ranging from 25 to 110 m. Fruit set for the specialized plant, Trifolium parryi, was positively related to the abundance of its Bombus pollinator. In contrast, fruit set for the generalized plant, T. dasyphyllum, was related to abundance of all Bombus species. Because forager abundance was related to nest abundance of each Bombus species and was an equally effective predictor of plant fecundity, forager inventories are probably suitable for assessing the health of outcrossing plant populations. However, nest abundance, rather than forager abundance, better reflects demographic and genetic health in populations of eusocial pollinators such as bumble bees. Development of models incorporating the parameters we have measured

  20. Neural Mechanisms of Foraging

    OpenAIRE

    Kolling, Nils; Behrens, Timothy EJ; Mars, Rogier B; Rushworth, Matthew FS

    2012-01-01

    Behavioural economic studies, involving limited numbers of choices, have provided key insights into neural decision-making mechanisms. By contrast, animals’ foraging choices arise in the context of sequences of encounters with prey/food. On each encounter the animal chooses to engage or whether the environment is sufficiently rich that searching elsewhere is merited. The cost of foraging is also critical. We demonstrate humans can alternate between two modes of choice, comparative decision-ma...

  1. Early Developmental Program Shapes Colony Morphology in Bacteria

    Directory of Open Access Journals (Sweden)

    Gideon Mamou

    2016-03-01

    Full Text Available When grown on a solid surface, bacteria form highly organized colonies, yet little is known about the earliest stages of colony establishment. Following Bacillus subtilis colony development from a single progenitor cell, a sequence of highly ordered spatiotemporal events was revealed. Colony was initiated by the formation of leading-cell chains, deriving from the colony center and extending in multiple directions, typically in a “Y-shaped” structure. By eradicating particular cells during these early stages, we could influence the shape of the resulting colony and demonstrate that Y-arm extension defines colony size. A mutant in ymdB encoding a phosphodiesterase displayed unordered developmental patterns, indicating a role in guiding these initial events. Finally, we provide evidence that intercellular nanotubes contribute to proper colony formation. In summary, we reveal a “construction plan” for building a colony and provide the initial molecular basis for this process.

  2. On colonial grounds

    NARCIS (Netherlands)

    Dommelen, Peter Alexander René van

    1998-01-01

    As a study of the colonial situations of first millennium BC Sardinia, this book is as much an investigation into colonialism as a sociological category, as it explores the specific historical conditions of a particular region. Taking a fresh look at colonialism in Mediterranean archaeology from a

  3. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird.

    Science.gov (United States)

    Burke, Chantelle M; Montevecchi, William A; Regular, Paul M

    2015-01-01

    Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge), where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15) and males (n = 9) during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior.

  4. Seasonal Variation in Parental Care Drives Sex-Specific Foraging by a Monomorphic Seabird.

    Directory of Open Access Journals (Sweden)

    Chantelle M Burke

    Full Text Available Evidence of sex-specific foraging in monomorphic seabirds is increasing though the underlying mechanisms remain poorly understood. We investigate differential parental care as a mechanism for sex-specific foraging in monomorphic Common Murres (Uria aalge, where the male parent alone provisions the chick after colony departure. Using a combination of geolocation-immersion loggers and stable isotopes, we assess two hypotheses: the reproductive role specialization hypothesis and the energetic constraint hypothesis. We compare the foraging behavior of females (n = 15 and males (n = 9 during bi-parental at the colony, post-fledging male-only parental care and winter when parental care is absent. As predicted by the reproductive role specialization hypothesis, we found evidence of sex-specific foraging during post-fledging only, the stage with the greatest divergence in parental care roles. Single-parenting males spent almost twice as much time diving per day and foraged at lower quality prey patches relative to independent females. This implies a potential energetic constraint for males during the estimated 62.8 ± 8.9 days of offspring dependence at sea. Contrary to the predictions of the energetic constraint hypothesis, we found no evidence of sex-specific foraging during biparental care, suggesting that male parents did not forage for their own benefit before colony departure in anticipation of post-fledging energy constraints. We hypothesize that unpredictable prey conditions at Newfoundland colonies in recent years may limit male parental ability to allocate additional time and energy to self-feeding during biparental care, without compromising chick survival. Our findings support differential parental care as a mechanism for sex-specific foraging in monomorphic murres, and highlight the need to consider ecological context in the interpretation of sex-specific foraging behavior.

  5. Terrestrial and Marine Foraging Strategies of an Opportunistic Seabird Species Breeding in the Wadden Sea.

    Directory of Open Access Journals (Sweden)

    Stefan Garthe

    Full Text Available Lesser black-backed gulls Larus fuscus are considered to be mainly pelagic. We assessed the importance of different landscape elements (open sea, tidal flats and inland by comparing marine and terrestrial foraging behaviours in lesser black-backed gulls breeding along the coast of the southern North Sea. We attached GPS data loggers to eight incubating birds and collected information on diet and habitat use. The loggers recorded data for 10-19 days to allow flight-path reconstruction. Lesser black-backed gulls foraged in both offshore and inland areas, but rarely on tidal flats. Targets and directions were similar among all eight individuals. Foraging trips (n = 108 lasted 0.5-26.4 h (mean 8.7 h, and ranges varied from 3.0-79.9 km (mean 30.9 km. The total distance travelled per foraging trip ranged from 7.5-333.6 km (mean 97.9 km. Trips out to sea were significantly more variable in all parameters than inland trips. Presence in inland areas was closely associated with daylight, whereas trips to sea occurred at day and night, but mostly at night. The most common items in pellets were grass (48%, insects (38%, fish (28%, litter (26% and earthworms (20%. There was a significant relationship between the carbon and nitrogen isotope signals in blood and the proportional time each individual spent foraging at sea/land. On land, gulls preferentially foraged on bare ground, with significantly higher use of potato fields and significantly less use of grassland. The flight patterns of lesser black-backed gulls at sea overlapped with fishing-vessel distribution, including small beam trawlers fishing for shrimps in coastal waters close to the colony and large beam-trawlers fishing for flatfish at greater distances. Our data show that individuals made intensive use of the anthropogenic landscape and seascape, indicating that lesser black-backed gulls are not a predominantly marine species during the incubation period.

  6. Effects of the juvenile hormone analogue methoprene on rate of behavioural development, foraging performance and navigation in honey bees (Apis mellifera).

    Science.gov (United States)

    Chang, Lun-Hsien; Barron, Andrew B; Cheng, Ken

    2015-06-01

    Worker honey bees change roles as they age as part of a hormonally regulated process of behavioural development that ends with a specialised foraging phase. The rate of behavioural development is highly plastic and responsive to changes in colony condition such that forager losses, disease or nutritional stresses accelerate behavioural development and cause an early onset of foraging in workers. It is not clear to what degree the behavioural development of workers can be accelerated without there being a cost in terms of reduced foraging performance. Here, we compared the foraging performance of bees induced to accelerate their behavioural development by treatment with the juvenile hormone analogue methoprene with that of controls that developed at a normal rate. Methoprene treatment accelerated the onset of both flight and foraging behaviour in workers, but it also reduced foraging span, the total time spent foraging and the number of completed foraging trips. Methoprene treatment did not alter performance in a short-range navigation task, however. These data indicate a limitation to the physiological plasticity of bees, and a trade off between forager performance and the speed at which bees begin foraging. Chronic stressors will be expected to reduce the mean age of the foraging force, and therefore also reduce the efficiency of the foraging force. This interaction may explain why honey bee colonies react to sustained stressors with non-linear population decline. © 2015. Published by The Company of Biologists Ltd.

  7. Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species.

    Science.gov (United States)

    Redhead, John W; Dreier, Stephanie; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2016-04-01

    Bumble bees (Bombus spp.) are important pollinators of both crops and wildflowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures, it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumble bees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics, and fine resolution remote sensing to estimate the locations of wild bumble bee nests and to infer foraging distances across a 20-km² agricultural landscape in southern England, UK. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius, and B. ruderatus exhibited significantly greater mean foraging distances (551, 536, and 501 m, respectively) than B. hortorum and B. pascuorum (336 and 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest

  8. Dynamic optimal foraging theory explains vertical migrations of bigeye tuna

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Sommer, Lene; Evans, Karen

    2016-01-01

    Bigeye tuna are known for remarkable daytime vertical migrations between deep water, where food is abundant but the water is cold, and the surface, where water is warm but food is relatively scarce. Here we investigate if these dive patterns can be explained by dynamic optimal foraging theory...... behaves such as to maximize its energy gains. The model therefore provides insight into the processes underlying observed behavioral patterns and allows generating predictions of foraging behavior in unobserved environments...

  9. Temporal effects of hunting on foraging behavior of an apex predator: Do bears forego foraging when risk is high?

    Science.gov (United States)

    Hertel, Anne G; Zedrosser, Andreas; Mysterud, Atle; Støen, Ole-Gunnar; Steyaert, Sam M J G; Swenson, Jon E

    2016-12-01

    Avoiding predators most often entails a food cost. For the Scandinavian brown bear (Ursus arctos), the hunting season coincides with the period of hyperphagia. Hunting mortality risk is not uniformly distributed throughout the day, but peaks in the early morning hours. As bears must increase mass for winter survival, they should be sensitive to temporal allocation of antipredator responses to periods of highest risk. We expected bears to reduce foraging activity at the expense of food intake in the morning hours when risk was high, but not in the afternoon, when risk was low. We used fine-scale GPS-derived activity patterns during the 2 weeks before and after the onset of the annual bear hunting season. At locations of probable foraging, we assessed abundance and sugar content, of bilberry (Vaccinium myrtillus), the most important autumn food resource for bears in this area. Bears decreased their foraging activity in the morning hours of the hunting season. Likewise, they foraged less efficiently and on poorer quality berries in the morning. Neither of our foraging measures were affected by hunting in the afternoon foraging bout, indicating that bears did not allocate antipredator behavior to times of comparably lower risk. Bears effectively responded to variation in risk on the scale of hours. This entailed a measurable foraging cost. The additive effect of reduced foraging activity, reduced forage intake, and lower quality food may result in poorer body condition upon den entry and may ultimately reduce reproductive success.

  10. Seasonal flight and resource collection patterns of colonies of the stingless bee Melipona bicolor schencki Gribodo (Apidae, Meliponini in an Araucaria forest area in southern Brazil

    Directory of Open Access Journals (Sweden)

    Ney Telles Ferreira Junior

    2010-01-01

    Full Text Available Melipona bicolor schencki occurs in southern Brazil and at high elevations in southeastern Brazil. It has potential for use in meliponiculture but this stingless bee species is vulnerable to extinction and we have little knowledge about its ecology. In order to gather essential information for species conservation and management, we made a study of seasonal flight activities in its natural environment. We sampled bees entering the nests with pollen, nectar/water and resin/mud, in five colonies during each season. In parallel, we analyzed the influence of hour of the day and meteorological factors on flight activity. Flights were most intense during spring and summer, with daily mean estimates of 2,100 and 2,333 flights respectively, while in fall and winter the daily flight estimate was reduced to 612 and 1,104 flights, respectively. Nectar and water were the most frequently-collected resources, followed by pollen and building materials. This preference occurred in all seasons, but with variations in intensity. During spring, daily flight activity lasted over 14 hours; this period was reduced in the other seasons, reaching eight hours in winter. Meteorological factors were associated with 40.2% of the variation in flight and resource collection activity. Apparently, other factors that we did not measure, such as colony needs and availability of floral resources, also strongly influence the intensity of resource collection.

  11. Winter active bumblebees (Bombus terrestris achieve high foraging rates in urban Britain.

    Directory of Open Access Journals (Sweden)

    Ralph J Stelzer

    2010-03-01

    Full Text Available Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect?To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7 in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008 and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer.B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinator phenology.

  12. Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain.

    Science.gov (United States)

    Stelzer, Ralph J; Chittka, Lars; Carlton, Marc; Ings, Thomas C

    2010-03-05

    Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect? To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7) in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID) technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008) and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer. B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinator phenology.

  13. Ovary activation does not correlate with pollen and nectar foraging specialization in the bumblebee Bombus impatiens

    Directory of Open Access Journals (Sweden)

    Meagan A. Simons

    2018-02-01

    Full Text Available Social insect foragers may specialize on certain resource types. Specialization on pollen or nectar among honeybee foragers is hypothesized to result from associations between reproductive physiology and sensory tuning that evolved in ancestral solitary bees (the Reproductive Ground-Plan Hypothesis; RGPH. However, the two non-honeybee species studied showed no association between specialization and ovary activation. Here we investigate the bumblebee B. impatiens because it has the most extensively studied pollen/nectar specialization of any bumblebee. We show that ovary size does not differ between pollen specialist, nectar specialist, and generalist foragers, contrary to the predictions of the RGPH. However, we also found mixed support for the second prediction of the RGPH, that sensory sensitivity, measured through proboscis extension response (PER, is greater among pollen foragers. We also found a correlation between foraging activity and ovary size, and foraging activity and relative nectar preference, but no correlation between ovary size and nectar preference. In one colony non-foragers had larger ovaries than foragers, supporting the reproductive conflict and work hypothesis, but in the other colony they did not.

  14. Foraging behavior of stingless bee Heterotrigona itama (Cockerell, 1918) (Hymenoptera : Apidae : Meliponini)

    Science.gov (United States)

    Jaapar, Mohd Fahimee; Jajuli, Rosliza; Mispan, Muhamad Radzali; Ghani, Idris Abd

    2018-04-01

    A study to investigate the foraging behavior of Heterotrigona itama (Cockerell, 1918) was conducted on three colonies between January 2016 and June 2016. A digital single-lens reflex (DSLR) with macro lens attached, and action camera (SJCAM) was used to record foraging behavior of H. itama in its colonies for 5 min per hour between 0800 to 1700 h for a day per 6 months. In addition, three data loggers (Watchdog B100 2K) has been installed adjacent to the observation nest for collect temperature and humidity in the study areas. Result showed that the numbers of return foragers was significantly different from January to June also with outgoing forager. The returning forager between hours showed significant different from 8 am to 5 pm also for outgoing forager. The ideal temperature related to foraging behavior for H. itama was 29°C to 32 °C Our finding also, helps to guide researcher to expand the knowledge in foraging behavior by stingless bee as well as encouraging more small farmers to start rearing at least for their own consumption. In addition, these findings also guide the farmers to manage their chemical toxic inside the meliponiculture.

  15. Ovary activation does not correlate with pollen and nectar foraging specialization in the bumblebee Bombus impatiens.

    Science.gov (United States)

    Simons, Meagan A; Smith, Adam R

    2018-01-01

    Social insect foragers may specialize on certain resource types. Specialization on pollen or nectar among honeybee foragers is hypothesized to result from associations between reproductive physiology and sensory tuning that evolved in ancestral solitary bees (the Reproductive Ground-Plan Hypothesis; RGPH). However, the two non-honeybee species studied showed no association between specialization and ovary activation. Here we investigate the bumblebee B. impatiens because it has the most extensively studied pollen/nectar specialization of any bumblebee. We show that ovary size does not differ between pollen specialist, nectar specialist, and generalist foragers, contrary to the predictions of the RGPH. However, we also found mixed support for the second prediction of the RGPH, that sensory sensitivity, measured through proboscis extension response (PER), is greater among pollen foragers. We also found a correlation between foraging activity and ovary size, and foraging activity and relative nectar preference, but no correlation between ovary size and nectar preference. In one colony non-foragers had larger ovaries than foragers, supporting the reproductive conflict and work hypothesis, but in the other colony they did not.

  16. Colony size-frequency distributions among different populations of the scleractinan coral Siderastrea stellata in Southwestern Atlantic: implications for life history patterns

    Directory of Open Access Journals (Sweden)

    Monica Moraes Lins de Barros

    2006-12-01

    Full Text Available Colony size-frequency distributions of reef corals may be used to infer growth potential and population responses upon environmental changes. The present paper compares the size structure of colonies of Siderastrea stellata Verrill, 1868,among 11 sites, six of them distributed along a gradient of sediment deposition in Abrolhos, Bahia, Brazil (18º S. Results indicated that the population structure is likely to be influenced by local conditions, rather than large scale factors, such as latitude. The 11 distributions, however, showed higher frequencies of small size classes. Class 1 (up to 2.5 cm diameter was always present and the frequency of colonies from size class 3 (10 cm diameter tended to decrease in all sites. Comparison among the six Abrolhos sites showed that S. stellata has advantages at sites with intermediate sedimentation, where colonies attain larger sizes, probably, reflecting a higher survivorship over time. The present study showed that, despite the influence of environmental conditions on parameters of the populations such as size of colony, the life history strategy of S. stellata reflects a local adaptation that allows its development and survivorship in shallow waters and horizontal substrates, sites characterized by high mortality rates.Distribuições de freqüências de classes de tamanho de colônias de corais recifais, associadas a dados de fecundidade e crescimento, podem ser utilizadas para inferir o potencial de crescimento e respostas da população frente às variações ambientais. Apresentamos análise da estrutura de tamanho de colônias do coral Siderastrea stellata Verrill, 1868, em 11 locais, seis desses distribuídos ao longo de um gradiente de sedimentação em Abrolhos, Bahia, Brasil (18ºS. Os resultados demonstraram ausência de um padrão latitudinal, indicando maior influência de fatores locais. Em Abrolhos, locais com taxas de deposição de sedimento intermediárias apresentaram os maiores

  17. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  18. GPS tracking devices reveal foraging strategies of black-legged kittiwakes

    Science.gov (United States)

    Kotzerka, Jana; Garthe, Stefan; Hatch, Scott A.

    2010-01-01

    The Black-legged Kittiwake Rissa tridactyla is the most abundant gull species in the world, but some populations have declined in recent years, apparently due to food shortage. Kittiwakes are surface feeders and thus can compensate for low food availability only by increasing their foraging range and/or devoting more time to foraging. The species is widely studied in many respects, but long-distance foraging and the limitations of conventional radio telemetry have kept its foraging behavior largely out of view. The development of Global Positioning System (GPS) loggers is advancing rapidly. With devices as small as 8 g now available, it is possible to use this technology for tracking relatively small species of oceanic birds like kittiwakes. Here we present the first results of GPS telemetry applied to Black-legged Kittiwakes in 2007 in the North Pacific. All but one individual foraged in the neritic zone north of the island. Three birds performed foraging trips only close to the colony (within 13 km), while six birds had foraging ranges averaging about 40 km. The maximum foraging range was 59 km, and the maximum distance traveled was 165 km. Maximum trip duration was 17 h (mean 8 h). An apparently bimodal distribution of foraging ranges affords new insight on the variable foraging behaviour of Black-legged Kittiwakes. Our successful deployment of GPS loggers on kittiwakes holds much promise for telemetry studies on many other bird species of similar size and provides an incentive for applying this new approach in future studies.

  19. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  20. Stingless bees (Melipona subnitida) adjust brood production rather than foraging activity in response to changes in pollen stores.

    Science.gov (United States)

    Maia-Silva, Camila; Hrncir, Michael; Imperatriz-Fonseca, Vera Lucia; Schorkopf, Dirk Louis P

    2016-10-01

    Highly eusocial bees (honey bees and stingless bees) sustain their colonies through periods of resource scarcity by food stored within the nest. The protein supply necessary for successful brood production is ensured through adjustments of the colonies' pollen foraging according to the availability of this resource in the environment. In honey bees Apis mellifera, in addition, pollen foraging is regulated through the broods' demand for this resource. Here, we investigated the influence of the colony's pollen store level on pollen foraging and brood production in stingless bees (Melipona subnitida). When pollen was added to the nests, colonies increased their brood production and reduced their pollen foraging within 24 h. On the other hand, when pollen reserves were removed, colonies significantly reduced their brood production. In strong contrast to A. mellifera; however, M. subnitida did not significantly increase its pollen foraging activity under poor pollen store conditions. This difference concerning the regulation of pollen foraging may be due to differences regarding the mechanism of brood provisioning. Honey bees progressively feed young larvae and, consequently, require a constant pollen supply. Stingless bees, by contrast, mass-provision their brood cells and temporary absence of pollen storage will not immediately result in substantial brood loss.

  1. Colony social organization and population genetic structure of an introduced population of formosan subterranean termite from New Orleans, Louisiana.

    Science.gov (United States)

    Husseneder, Claudia; Messenger, Matthew T; Su, Nan-Yao; Grace, J Kenneth; Vargo, Edward L

    2005-10-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species in many parts of the world, including the U.S. mainland. The reasons for its invasive success may have to do with the flexible social and spatial organization of colonies. We investigated the population and breeding structure of 14 C. formosanus colonies in Louis Armstrong Park, New Orleans, LA. This population has been the focus of extensive study for many years, providing the opportunity to relate aspects of colony breeding structure to previous findings on colony characteristics such as body weight and number of workers, wood consumption, and intercolony aggression. Eight colonies were headed by a single pair of outbred reproductives (simple families), whereas six colonies were headed by low numbers of multiple kings and/or queens that were likely the neotenic descendants of the original colony (extended families). Within the foraging area of one large extended family colony, we found genetic differentiation among different collection sites, suggesting the presence of separate reproductive centers. No significant difference between simple family colonies and extended family colonies was found in worker body weight, soldier body weight, foraging area, population size, or wood consumption. However, level of inbreeding within colonies was negatively correlated with worker body weight and positively correlated with wood consumption. Also, genetic distance between colonies was positively correlated with aggression levels, suggesting a genetic basis to nestmate discrimination cues in this termite population. No obvious trait associated with colony reproductive structure was found that could account for the invasion success of this species.

  2. Valuation of pollinator forage services provided by Eucalyptus Cladocalyx

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2013-08-01

    Full Text Available legislation does not allow the importation of bees for pollination services from outside the province, the risk of unsecured forage is increased. Pollination replacement option All insect pollinators Managed pollinators Wild pollinators US$ millions...). Furthermore, colony collapse disorder outbreaks along with increases in sightings of predatory Vespula Germanica (German wasp or “yellow jackets”) in the Western Cape not only add to the pressure on the beekeeping industry, but also the wild pollinator...

  3. New Developments in Forage Varieties

    Science.gov (United States)

    Forage crops harvested for hay or haylage or grazed support dairy, beef, sheep and horse production. Additional livestock production from reduced forage acreage supports the need for forage variety improvement. The Consortium for Alfalfa Improvement is a partnership model of government, private no...

  4. Optimal Foraging in Semantic Memory

    Science.gov (United States)

    Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.

    2012-01-01

    Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…

  5. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche

    Directory of Open Access Journals (Sweden)

    Vilhelmsen Lars B

    2007-04-01

    Full Text Available Abstract Background Army ants are the prime arthropod predators in tropical forests, with huge colonies and an evolutionary derived nomadic life style. Five of the six recognized subgenera of Old World Dorylus army ants forage in the soil, whereas some species of the sixth subgenus (Anomma forage in the leaf-litter and some as conspicuous swarm raiders on the forest floor and in the lower vegetation (the infamous driver ants. Here we use a combination of nuclear and mitochondrial DNA sequences to reconstruct the phylogeny of the Dorylus s.l. army ants and to infer the evolutionary transitions in foraging niche and associated morphological adaptations. Results Underground foraging is basal and gave rise to leaf-litter foraging. Leaf-litter foraging in turn gave rise to two derived conditions: true surface foraging (the driver ants and a reversal to subterranean foraging (a clade with most of the extant Dorylus s.s. species. This means that neither the subgenus Anomma nor Dorylus s.s. is monophyletic, and that one of the Dorylus s.s. lineages adopted subterranean foraging secondarily. We show that this latter group evolved a series of morphological adaptations to underground foraging that are remarkably convergent to the basal state. Conclusion The evolutionary transitions in foraging niche were more complex than previously thought, but our comparative analysis of worker morphology lends strong support to the contention that particular foraging niches have selected for very specific worker morphologies. The surprising reversal to underground foraging is therefore a striking example of convergent morphological evolution.

  6. California Least Tern Foraging Ecology in Southern California: A Review of Foraging Behavior Relative to Proposed Dredging Locations

    Science.gov (United States)

    2016-05-01

    additional data are necessary to understand the relationship among turbidity plumes, behavior of CLT prey fish , and CLT foraging behavior. KBC...activities. Fish actively seek out or avoid turbid waters for a number of reasons, including predator avoidance and food resources, and this...Birds 14:57-72. Atwood, J. L., and P. R. Kelly. 1984. Fish dropped on breeding colonies as indicators of Least Tern food habits. Wilson Bulletin 96: 34

  7. An artificial bee colony algorithm for the capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Szeto, W.Y.; Wu, Yongzhong; Ho, Sin C.

    2011-01-01

    This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also...... proposed to improve the solution quality of the original version. The performance of the enhanced heuristic is evaluated on two sets of standard benchmark instances, and compared with the original artificial bee colony heuristic. The computational results show that the enhanced heuristic outperforms...

  8. A Breath of Fresh Air in Foraging Theory: The Importance of Wind for Food Size Selection in a Central-Place Forager.

    Science.gov (United States)

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2017-09-01

    Empirical data about food size carried by central-place foragers do not often fit with the optimum predicted by classical foraging theory. Traditionally, biotic constraints such as predation risk and competition have been proposed to explain this inconsistency, leaving aside the possible role of abiotic factors. Here we documented how wind affects the load size of a central-place forager (leaf-cutting ants) through a mathematical model including the whole foraging process. The model showed that as wind speed at ground level increased from 0 to 2 km/h, load size decreased from 91 to 30 mm 2 , a prediction that agreed with empirical data from windy zones, highlighting the relevance of considering abiotic factors to predict foraging behavior. Furthermore, wind reduced the range of load sizes that workers should select to maintain a similar rate of food intake and decreased the foraging rate by ∼70% when wind speed increased 1 km/h. These results suggest that wind could reduce the fitness of colonies and limit the geographic distribution of leaf-cutting ants. The developed model offers a complementary explanation for why load size in central-place foragers may not fit theoretical predictions and could serve as a basis to study the effects of other abiotic factors that influence foraging.

  9. Influence of feeding bee colonies on colony strenght and honey authenticity

    Directory of Open Access Journals (Sweden)

    Andreja KANDOLF BOROVŠAK

    2015-12-01

    Full Text Available For the natural development of bee colonies, there is the need for appropriate nutrition. Lack of natural honey flow must be supplemented by feeding bee colonies with sugar syrups or candy paste. This supplementary feeding encourages brood breeding and forage activity, whereby stronger colonies collect more honey. Sugar syrups can cause honey adulteration, which is more frequent with the reversing of the brood combs with the bee food, with the combs moved from the brood chamber to the upper chamber. Authentication of honey from the standpoint of the presence of sugar syrup is very complex, because there is no single method by which honey adulteration can be reliably confirmed. Feeding the colonies in spring should result in stronger colonies and hence the collection of more honey in the brood chambers. The objective of the present study was to determine whether this has effects also on honey authenticity, and to discover a simple method for detection of honey adulteration. The colonies were fed with candy paste that had added yeast and blue dye, to provide markers for detection of honey adulteration. The strength of the colonies and quantity of honey in the brood chambers were monitored. The results of the analysis of stable isotope and activity of foreign enzymes were compared with the results of yeast quantity and colour of the honey (absorbance, L*, a*, b* parameters. Detection of yeast in the honey samples and presence of colour as a consequence of added dye appear to be appropriate methods to follow honey adulteration, and further studies are ongoing.

  10. Is Bumblebee Foraging Efficiency Mediated by Morphological Correspondence to Flowers?

    Directory of Open Access Journals (Sweden)

    Ikumi Dohzono

    2011-01-01

    Full Text Available Preference for certain types of flowers in bee species may be an adaptation for efficient foraging, and they often prefer flowers whose shape fits their mouthparts. However, it is unclear whether such flowers are truly beneficial for them. We address this issue by experimentally measuring foraging efficiency of bumblebees, the volume of sucrose solution consumed over handling time (μL/second, using long-tongued Bombus diversus Smith and short-tongued B. honshuensis Tkalcu that visit Clematis stans Siebold et Zuccarini. The corolla tube length of C. stans decreases during a flowering period, and male flowers are longer than female flowers. Long- and short-tongued bumblebees frequently visited longer and shorter flowers, respectively. Based on these preferences, we hypothesized that bumblebee foraging efficiency is higher when visiting flowers that show a good morphological fit between the proboscis and the corolla tube. Foraging efficiency of bumblebees was estimated using flowers for which nectar quality and quantity were controlled, in an experimental enclosure. We show that 1 the foraging efficiency of B. diversus was enhanced when visiting younger, longer flowers, and that 2 the foraging efficiency of B. honshuensis was higher when visiting shorter female flowers. This suggests that morphological correspondence between insects and flowers is important for insect foraging efficiency. However, in contradiction to our prediction, 3 short-tongued bumblebees B. honshuensis sucked nectar more efficiently when visiting younger, longer flowers, and 4 there was no significant difference in the foraging efficiency of B. diversus between flower sexes. These results suggest that morphological fit between the proboscis and the corolla tube is not a sole determinant of foraging efficiency. Bumblebees may adjust their sucking behavior in response to available rewards, and competition over rewards between bumblebee species might change visitation patterns

  11. Skill ontogeny among Tsimane forager-horticulturalists.

    Science.gov (United States)

    Schniter, Eric; Gurven, Michael; Kaplan, Hillard S; Wilcox, Nathaniel T; Hooper, Paul L

    2015-09-01

    We investigate whether age profiles of Tsimane forager-horticulturalists' reported skill development are consistent with predictions derived from life history theory about the timing of productivity and reproduction. Previous studies of forager skill development have often focused on a few abilities (e.g. hunting), and neglected the broad range of skills and services typical of forager economies (e.g. childcare, craft production, music performance, story-telling). By systematically examining age patterns in reported acquisition, proficiency, and expertise across a broad range of activities including food production, childcare, and other services, we provide the most complete skill development study of a traditional subsistence society to date. Our results show that: (1) most essential skills are acquired prior to first reproduction, then developed further so that their productive returns meet the increasing demands of dependent offspring during adulthood; (2) as postreproductive adults age beyond earlier years of peak performance, they report developing additional conceptual and procedural proficiency, and despite greater physical frailty than younger adults, are consensually regarded as the most expert (especially in music and storytelling), consistent with their roles as providers and educators. We find that adults have accurate understandings of their skillsets and skill levels -an important awareness for social exchange, comparison, learning, and pedagogy. These findings extend our understanding of the evolved human life history by illustrating how changes in embodied capital and the needs of dependent offspring predict the development of complementary skills and services in a forager-horticulturalist economy. © 2015 Wiley Periodicals, Inc.

  12. Optimal search behavior and classic foraging theory

    International Nuclear Information System (INIS)

    Bartumeus, F; Catalan, J

    2009-01-01

    Random walk methods and diffusion theory pervaded ecological sciences as methods to analyze and describe animal movement. Consequently, statistical physics was mostly seen as a toolbox rather than as a conceptual framework that could contribute to theory on evolutionary biology and ecology. However, the existence of mechanistic relationships and feedbacks between behavioral processes and statistical patterns of movement suggests that, beyond movement quantification, statistical physics may prove to be an adequate framework to understand animal behavior across scales from an ecological and evolutionary perspective. Recently developed random search theory has served to critically re-evaluate classic ecological questions on animal foraging. For instance, during the last few years, there has been a growing debate on whether search behavior can include traits that improve success by optimizing random (stochastic) searches. Here, we stress the need to bring together the general encounter problem within foraging theory, as a mean for making progress in the biological understanding of random searching. By sketching the assumptions of optimal foraging theory (OFT) and by summarizing recent results on random search strategies, we pinpoint ways to extend classic OFT, and integrate the study of search strategies and its main results into the more general theory of optimal foraging.

  13. Foraging behavior analysis of swarm robotics system

    Directory of Open Access Journals (Sweden)

    Sakthivelmurugan E.

    2018-01-01

    Full Text Available Swarm robotics is a number of small robots that are synchronically works together to accomplish a given task. Swarm robotics faces many problems in performing a given task. The problems are pattern formation, aggregation, Chain formation, self-assembly, coordinated movement, hole avoidance, foraging and self-deployment. Foraging is most essential part in swarm robotics. Foraging is the task to discover the item and get back into the shell. The researchers conducted foraging experiments with random-movement of robots and they have end up with unique solutions. Most of the researchers have conducted experiments using the circular arena. The shell is placed at the centre of the arena and environment boundary is well known. In this study, an attempt is made to different strategic movements like straight line approach, parallel line approach, divider approach, expanding square approach, and parallel sweep approach. All these approaches are to be simulated by using player/stage open-source simulation software based on C and C++ programming language in Linux operating system. Finally statistical comparison will be done with task completion time of all these strategies using ANOVA to identify the significant searching strategy.

  14. Define Colony Number of Subterranean Termites Coptotermes gestroi (Isoptera: Rhinotermitidae) in Selected Infested Structures

    International Nuclear Information System (INIS)

    Abdul Hafiz Abdul Majid; Abu Hassan Ahmad

    2015-01-01

    Termites are one of the social insects living in large colonies that can cause economic loss. The objective of this study was to estimate foraging territory of infested subterranean termites on building structure. A mark-recapture study was conducted on eight Coptotermes gestroi colonies located at selected infested building structures in Penang, Malaysia. From the foraging study, the population of C. gestroi was estimated to be within the range of 106,592±6,968 to 4,185,000±2,127,328. Additionally, the foraging territory was from 13 to 300 m 2 of the infested building structures. Meanwhile the maximum foraging distance was from 4 to 30 m of the infested structures. The results indicated that each of the building structures was infested by a single colony. This study also showed that the triple mark recapture technique used to estimate the population size of the termite colony was capable of providing rough estimates of foraging population of C. gestroi. (author)

  15. Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm

    OpenAIRE

    T. Vigneswari; M. A. Maluk Mohamed

    2015-01-01

    Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Hete...

  16. Roosting and foraging social structure of the endangered Indiana bat (Myotis sodalis.

    Directory of Open Access Journals (Sweden)

    Alexander Silvis

    Full Text Available Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.

  17. Avian predator buffers against variability in marine habitats with flexible foraging behavior

    Science.gov (United States)

    Schoen, Sarah K.; Piatt, John F.; Arimitsu, Mayumi L.; Heflin, Brielle; Madison, Erica N.; Drew, Gary S.; Renner, Martin; Rojek, Nora A.; Douglas, David C.; DeGange, Anthony R.

    2018-01-01

    How well seabirds compensate for variability in prey abundance and composition near their breeding colonies influences their distribution and reproductive success. We used tufted puffins (Fratercula cirrhata) as forage fish samplers to study marine food webs from the western Aleutian Islands (53°N, 173°E) to Kodiak Island (57°N, 153°W), Alaska, during August 2012–2014. Around each colony we obtained data on: environmental characteristics (sea surface temperature and salinity, seafloor depth and slope, tidal range, and chlorophyll-a), relative forage fish biomass (hydroacoustic backscatter), and seabird community composition and density at-sea. On colonies, we collected puffin chick-meals to characterize forage communities and determine meal energy density, and measured chicks to obtain a body condition index. There were distinct environmental gradients from west to east, and environmental variables differed by ecoregions: the (1) Western-Central Aleutians, (2) Eastern Aleutians, and, (3) Alaska Peninsula. Forage fish biomass, species richness, and community composition all differed markedly between ecoregions. Forage biomass was strongly correlated with environmental gradients, and environmental gradients and forage biomass accounted for ~ 50% of the variability in at-sea density of tufted puffins and all seabird taxa combined. Despite the local and regional variability in marine environments and forage, the mean biomass of prey delivered to puffin chicks did not differ significantly between ecoregions, nor did chick condition or puffin density at-sea. We conclude that puffins can adjust their foraging behavior to produce healthy chicks across a wide range of environmental conditions. This extraordinary flexibility enables their overall success and wide distribution across the North Pacific Ocean.

  18. Spatial patterns of hydro-social metrics in the Northeastern United States from the Colonial Era through the Industrial Revolution (1600-1920)

    Science.gov (United States)

    Witherell, B. B.; Bain, D. J.; Salant, N.; Aloysius, N. R.

    2009-12-01

    Humans impact the hydrologic cycle at local, regional and global scales. Understanding how spatial patterns of human water use and hydrologic impact have changed over time is important to future water management in an era of increasing water constraints and globalization of high water-use resources. This study investigates spatial dependence and spatial patterns of hydro-social metrics for the Northeastern United States from 1600 to 1920 through the use of spatial statistical techniques. Several relevant hydro-social metrics, including water residence time, surface water storage (natural and human engineered) and per capita water availability, are analyzed. This study covers a region and period of time that saw significant population growth, landscape change, and industrial growth. These changes had important impacts on water availability. Although some changes such as the elimination of beavers, and the resulting loss of beaver ponds on low-order streams, are felt at a regional scale, preliminary analysis indicates that humans responded to water constraints by acting locally (e.g., mill ponds for water power and water supply reservoirs for public health). This 320-year historical analysis of spatial patterns of hydro-social metrics provides unique insight into long-term changes in coupled human-water systems.

  19. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults.

    Directory of Open Access Journals (Sweden)

    Hailey N Scofield

    Full Text Available The negative effects on adult behavior of juvenile undernourishment are well documented in vertebrates, but relatively poorly understood in invertebrates. We examined the effects of larval nutritional stress on the foraging and recruitment behavior of an economically important model invertebrate, the honey bee (Apis mellifera. Pollen, which supplies essential nutrients to developing workers, can become limited in colonies because of seasonal dearths, loss of foraging habitat, or intensive management. However, the functional consequences of being reared by pollen-stressed nestmates remain unclear, despite growing concern that poor nutrition interacts with other stressors to exacerbate colony decline. We manipulated nurse bees' access to pollen and then assessed differences in weight, longevity, foraging activity, and waggle-dance behavior of the workers that they reared (who were co-fostered as adults. Pollen stress during larval development had far-reaching physical and behavioral effects on adult workers. Workers reared in pollen-stressed colonies were lighter and shorter lived than nestmates reared with adequate access to pollen. Proportionally fewer stressed workers were observed foraging and those who did forage started foraging sooner, foraged for fewer days, and were more likely to die after only a single day of foraging. Pollen-stressed workers were also less likely to waggle dance than their unstressed counterparts and, if they danced, the information they conveyed about the location of food was less precise. These performance deficits may escalate if long-term pollen limitation prevents stressed foragers from providing sufficiently for developing workers. Furthermore, the effects of brief pollen shortages reported here mirror the effects of other environmental stressors that limit worker access to nutrients, suggesting the likelihood of their synergistic interaction. Honey bees often experience the level of stress that we created, thus

  20. Effect of forage quality in faeces from different ruminant species fed high and low quality forage

    DEFF Research Database (Denmark)

    Jalali, A R; Nørgaard, P; Nielsen, M O

    2010-01-01

    Effect of forage quality in faeces from different ruminant species fed high and low quality forage......Effect of forage quality in faeces from different ruminant species fed high and low quality forage...

  1. Foraging Habitat and Chick Diets of Roseate Tern, Sterna dougallii, Breeding on Country Island, Nova Scotia

    Directory of Open Access Journals (Sweden)

    Jennifer C. Rock

    2007-06-01

    Full Text Available Breeding seabirds are threatened by human activities that affect nesting and foraging habitat. In Canada, one of the seabirds most at risk of extirpation is the Roseate Tern, Sterna dougallii. Although critical nesting habitat has been identified for the Roseate Tern in Canada, its foraging locations and the diet of its chicks are unknown. Therefore, our goal was to determine the foraging locations and diet of chicks of Roseate Tern breeding on Country Island, Nova Scotia, which is one of Canada's two main breeding colonies. In 2003 and 2004, we radio-tracked the Roseate Tern by plane to locate foraging areas and conducted feeding watches to determine the diet of chicks. Roseate Tern foraged approximately 7 km from the breeding colony over shallow water < 5 m deep. In both years, sand lance, Ammodytes spp., was the most common prey item delivered to chicks, followed by hake, Urophycis spp. Our results are consistent with previous work at colonies in the northeastern United States, suggesting that throughout its range, this species may be restricted in both habitat use and prey selection. The reliance on a specific habitat type and narrow range of prey species makes the Roseate Tern generally susceptible to habitat perturbations and reductions in the availability of prey.

  2. Nectar profitability, not empty honey stores, stimulate recruitment and foraging in Melipona scutellaris (Apidae, Meliponini).

    Science.gov (United States)

    Schorkopf, Dirk Louis P; de Sá Filho, Geovan Figueirêdo; Maia-Silva, Camila; Schorkopf, Martina; Hrncir, Michael; Barth, Friedrich G

    2016-10-01

    In stingless bees (Meliponini) like in many other eusocial insect colonies food hoarding plays an important role in colony survival. However, very little is known on how Meliponini, a taxon restricted to tropical and subtropical regions, respond to different store conditions. We studied the impact of honey removal on nectar foraging activity and recruitment behaviour in Melipona scutellaris and compared our results with studies of the honey bee Apis mellifera. As expected, foraging activity increased significantly during abundance of artificial nectar and when increasing its profitability. Foraging activity on colony level could thereby frequently increase by an order of magnitude. Intriguingly, however, poor honey store conditions did not induce increased nectar foraging or recruitment activity. We discuss possible reasons explaining why increasing recruitment and foraging activity are not used by meliponines to compensate for poor food conditions in the nest. Among these are meliponine specific adaptations to climatic and environmental conditions, as well as physiology and brood rearing, such as mass provisioning of the brood.

  3. Can communication disruption of red imported fire ants reduce foraging success

    Science.gov (United States)

    Invasive pest ants often coordinate resource retrieval and colony expansion through the use of recruitment pheromones for information sharing to optimise their foraging; we argue that the potential for disruption of trail pheromone communication deserves investigation as a new and benign ecologicall...

  4. Modelling collective foraging by means of individual behaviour rules in honey-bees

    NARCIS (Netherlands)

    Vries, Han de; Biesmeijer, J.C.

    1998-01-01

    An individual-oriented model is constructed which simulates the collective foraging behaviour of a colony of honey-bees, Apis mellifera. Each bee follows the same set of behavioural rules. Each rule consists of a set of conditions followed by the behavioural act to be performed if the

  5. Modelling collective foraging by means of individual behaviour rules in honey-bees

    NARCIS (Netherlands)

    de Vries, H; Biesmeijer, JC

    1998-01-01

    An individual-oriented model is constructed which simulates the collective foraging behaviour of a colony of honey-bees, Apis mellifera. Each bee follows the same set of behavioural rules. Each rule consists of a set of conditions followed by the behavioural act to be performed if the conditions are

  6. Variability in individual activity bursts improves ant foraging success.

    Science.gov (United States)

    Campos, Daniel; Bartumeus, Frederic; Méndez, Vicenç; Andrade, José S; Espadaler, Xavier

    2016-12-01

    Using experimental and computational methods, we study the role of behavioural variability in activity bursts (or temporal activity patterns) for individual and collective regulation of foraging in A. senilis ants. First, foraging experiments were carried out under special conditions (low densities of ants and food and absence of external cues or stimuli) where individual-based strategies are most prevalent. By using marked individuals and recording all foraging trajectories, we were then able to precisely quantify behavioural variability among individuals. Our main conclusions are that (i) variability of ant trajectories (turning angles, speed, etc.) is low compared with variability of temporal activity profiles, and (ii) this variability seems to be driven by plasticity of individual behaviour through time, rather than the presence of fixed behavioural stereotypes or specialists within the group. The statistical measures obtained from these experimental foraging patterns are then used to build a general agent-based model (ABM) which includes the most relevant properties of ant foraging under natural conditions, including recruitment through pheromone communication. Using the ABM, we are able to provide computational evidence that the characteristics of individual variability observed in our experiments can provide a functional advantage (in terms of foraging success) to the group; thus, we propose the biological basis underpinning our observations. Altogether, our study reveals the potential utility of experiments under simplified (laboratory) conditions for understanding information-gathering in biological systems. © 2016 The Author(s).

  7. A Novel Plant Root Foraging Algorithm for Image Segmentation Problems

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a new type of biologically-inspired global optimization methodology for image segmentation based on plant root foraging behavior, namely, artificial root foraging algorithm (ARFO. The essential motive of ARFO is to imitate the significant characteristics of plant root foraging behavior including branching, regrowing, and tropisms for constructing a heuristic algorithm for multidimensional and multimodal problems. A mathematical model is firstly designed to abstract various plant root foraging patterns. Then, the basic process of ARFO algorithm derived in the model is described in details. When tested against ten benchmark functions, ARFO shows the superiority to other state-of-the-art algorithms on several benchmark functions. Further, we employed the ARFO algorithm to deal with multilevel threshold image segmentation problem. Experimental results of the new algorithm on a variety of images demonstrated the suitability of the proposed method for solving such problem.

  8. A comparison of postburn woodpecker foraging use of white fir (Abies concolor) and Jeffrey Pine (Pinus jeffreyi)

    Science.gov (United States)

    Kerry L. Farris; Steve Zack

    2008-01-01

    We examined the temporal patterns of the structural decay, insect infestation and woodpecker foraging patterns on white-fir and yellow pine following a prescribed burn in Lassen National Park, CA. Our objectives were to: 1) describe how pine and fir differ in their decay patterns and insect activity, and 2) determine how these differences reflect woodpecker foraging...

  9. Diversity and abundance of invertebrate epifaunal assemblages associated with gorgonians are driven by colony attributes

    KAUST Repository

    Curdia, Joao; Carvalho, Susana; Pereira, Fá bio R.; Guerra-Garcí a, José Manuel; Santos, Miguel Neves Dos; Cunha, Marina R.

    2015-01-01

    The present study aimed to explicitly quantify the link between the attributes of shallow-water gorgonian colonies (Octocorallia: Alcyonacea) and the ecological patterns of associated non-colonial epifaunal invertebrates. Based on multiple

  10. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini)

    Science.gov (United States)

    Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy

    Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.

  11. Foraging in corallivorous butterflyfish varies with wave exposure

    Science.gov (United States)

    Noble, Mae M.; Pratchett, Morgan S.; Coker, Darren J.; Cvitanovic, Christopher; Fulton, Christopher J.

    2014-06-01

    Understanding the foraging patterns of reef fishes is crucial for determining patterns of resource use and the sensitivity of species to environmental change. While changes in prey availability and interspecific competition have been linked to patterns of prey selection, body condition, and survival in coral reef fishes, rarely has the influence of abiotic environmental conditions on foraging been considered. We used underwater digital video to explore how prey availability and wave exposure influence the behavioural time budgets and prey selectivity of four species of obligate coral-feeding butterflyfishes. All four species displayed high selectivity towards live hard corals, both in terms of time invested and frequency of searching and feeding events. However, our novel analysis revealed that such selectivity was sensitive to wave exposure in some species, despite there being no significant differences in the availability of each prey category across exposures. In most cases, these obligate corallivores increased their selectivity towards their most favoured prey types at sites of high wave exposure. This suggests there are costs to foraging under different wave environments that can shape the foraging patterns of butterflyfishes in concert with other conditions such as prey availability, interspecific competition, and territoriality. Given that energy acquisition is crucial to the survival and fitness of fishes, we highlight how such environmental forcing of foraging behaviour may influence the ecological response of species to the ubiquitous and highly variable wave climates of shallow coral reefs.

  12. Rapid elimination of field colonies of subterranean termites (Isoptera: Rhinotermitidae) using bistrifluron solid bait pellets.

    Science.gov (United States)

    Evans, Theodore A

    2010-04-01

    The efficacy of bistrifluron, a chitin synthesis inhibitor, in cellulose bait pellets was evaluated on the mound-building subterranean termite, Coptotermes acinaciformis (Froggatt). Three concentrations of the bistrifluron were used: 0 (untreated control), 0.5, and 1.0% over an 8 wk period. Both doses of bistrifluron bait eliminated (viz. termites absent from nest or mound) termite colonies: 83% of colonies (10 of 12) were either eliminated or moribund (viz. colony had no reproductive capacity and decreased workforce) after 8 wk, compared with none of the control colonies. The remaining two treated colonies were deemed to be in decline. Early signs that bistrifluron was affecting the colonies included: 3 wk after baiting mound temperatures showed a loss of metabolic heat, 4 wk after baiting foraging activity in feeding stations was reduced or absent, and dissection of two mounds at 4 wk showed they were moribund. Colony elimination was achieved in around half or less the time, and with less bait toxicant, than other bait products tested under similar conditions in the field, because of either the active ingredient, the high surface area of the pellets, or a combination of both. This suggests the sometimes long times reported for control using baits may be reduced significantly. The use of a mound building species demonstrated clearly colony level effects before and after termites stopped foraging in bait stations.

  13. forage systems mixed with forage legumes grazed by lactating cows

    Directory of Open Access Journals (Sweden)

    Clair Jorge Olivo

    2017-02-01

    Full Text Available Current research evaluates productivity, stocking and nutritional rates of three forage systems with Elephant Grass (EG + Italian Ryegrass (IR + Spontaneous Growth Species (SGS, without forage legumes; EG + IR + SGS + Forage Peanut (FP, mixed with FP; and EG + IR + SGS + Red Clover (RC, mixed with RC, in rotational grazing method by lactating cows. IR developed between rows of EG. FP was maintained, whilst RC was sow to respective forage systems. The experimental design was completely randomized, with three treatments and two replication, subdivided into parcels over time. Mean rate for forage yield and average stocking rate were 10.6, 11.6 and 14.4 t ha-1; 3.0, 2.8 and 3.1 animal unit ha-1 day-1, for the respective systems. Levels of crude protein and total digestible nutrients were 17.8, 18.7 and 17.5%; 66.5, 66.8 and 64.8%, for the respective forage systems. The presence of RC results in better and higher forage yield in the mixture, whilst FP results in greater control of SGS. The inclusion of forage legumes in pasture systems provides better nutritional rates.

  14. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  15. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L. were investigated based on proboscis extension response (PER assays and radio frequency identification (RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  16. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  17. Forage evaluation by analysis after

    African Journals Online (AJOL)

    by forages, can be estimated by amino acid analysis of the products of fermentation in vitro. Typical results of such analyses are presented in Table 1. These results indicate that after fermentation the amino acid balance of forages is not optimal for either milk or meat production, with histidine usually being the first limiting.

  18. Dance communication affects consistency, but not breadth, of resource use in pollen-foraging honey bees.

    Directory of Open Access Journals (Sweden)

    Matina Donaldson-Matasci

    Full Text Available In groups of cooperatively foraging individuals, communication may improve the group's performance by directing foraging effort to where it is most useful. Honey bees (Apis mellifera use a specialized dance to communicate the location of floral resources. Because honey bees dance longer for more rewarding resources, communication may shift the colony's foraging effort towards higher quality resources, and thus narrow the spectrum of resource types used. To test the hypothesis that dance communication changes how much honey bee colonies specialize on particular resources, we manipulated their ability to communicate location, and assessed the relative abundance of different pollen taxa they collected. This was repeated across five natural habitats that differed in floral species richness and spatial distribution. Contrary to expectation, impairing communication did not change the number or diversity of pollen (resource types used by individual colonies per day. However, colonies with intact dance communication were more consistent in their resource use, while those with impaired communication were more likely to collect rare, novel pollen types. This suggests that communication plays an important role in shaping how much colonies invest in exploring new resources versus exploiting known ones. Furthermore, colonies that did more exploration also tended to collect less pollen overall, but only in environments with greater floral abundance per patch. In such environments, the ability to effectively exploit highly rewarding resources may be especially important-and dance communication may help colonies do just that. This could help explain how communication benefits honey bee colonies, and also why it does so only under certain environmental conditions.

  19. Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption

    Science.gov (United States)

    Saritha, R.; Vinod Chandra, S. S.

    2017-10-01

    In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.

  20. Optic disc detection using ant colony optimization

    Science.gov (United States)

    Dias, Marcy A.; Monteiro, Fernando C.

    2012-09-01

    The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.

  1. Brood temperature, task division and colony survival in honeybees : A model

    NARCIS (Netherlands)

    Becher, Matthias A.; Hildenbrandt, Hanno; Hemelrijk, Charlotte K.; Moritz, Robin F. A.

    2010-01-01

    One of the mechanisms by which honeybees regulate division of labour among their colony members is age polyethism. Here the younger bees perform in-hive tasks such as heating and the older ones carry out tasks outside the hive such as foraging. Recently it has been shown that the higher

  2. Nest Relocation and Colony Founding in the Australian Desert Ant, Melophorus bagoti Lubbock (Hymenoptera: Formicidae

    Directory of Open Access Journals (Sweden)

    Patrick Schultheiss

    2010-01-01

    Full Text Available Even after years of research on navigation in the Red Honey Ant, Melophorus bagoti, much of its life history remains elusive. Here, we present observations on nest relocation and the reproductive and founding stages of colonies. Nest relocation is possibly aided by trail laying behaviour, which is highly unusual for solitary foraging desert ants. Reproduction occurs in synchronised mating flights, which are probably triggered by rain. Queens may engage in multiple matings, and there is circumstantial evidence that males are chemically attracted to queens. After the mating flight, the queens found new colonies independently and singly. Excavation of these founding colonies reveals first insights into their structure.

  3. Application of the artificial bee colony algorithm for solving the set covering problem.

    Science.gov (United States)

    Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem.

  4. Competition and facilitation between a native and a domestic herbivore: trade-offs between forage quantity and quality.

    Science.gov (United States)

    Augustine, David J; Springer, Tim L

    2013-06-01

    Potential competition between native and domestic herbivores is a major consideration influencing the management and conservation of native herbivores in rangeland ecosystems. In grasslands of the North American Great Plains, black-tailed prairie dogs (Cynomys ludovicianus) are widely viewed as competitors with cattle but are also important for biodiversity conservation due to their role in creating habitat for other native species. We examined spatiotemporal variation in prairie dog effects on growing-season forage quality and quantity using measurements from three colony complexes in Colorado and South Dakota and from a previous study of a fourth complex in Montana. At two complexes experiencing below-average precipitation, forage availability both on and off colonies was so low (12-54 g/m2) that daily forage intake rates of cattle were likely constrained by instantaneous intake rates and daily foraging time. Under these dry conditions, prairie dogs (1) substantially reduced forage availability, thus further limiting cattle daily intake rates, and (2) had either no or a small positive effect on forage digestibility. Under such conditions, prairie dogs are likely to compete with cattle in direct proportion to their abundance. For two complexes experiencing above-average precipitation, forage quantity on and off colonies (77-208 g/m2) was sufficient for daily forage intake of cattle to be limited by digestion rather than instantaneous forage intake. At one complex where prairie dogs enhanced forage digestibility and [N] while having no effect on forage quantity, prairie dogs are predicted to facilitate cattle mass gains regardless of prairie dog abundance. At the second complex where prairie dogs enhanced digestibility and [N] but reduced forage quantity, effects on cattle can vary from competition to facilitation depending on prairie dog abundance. Our findings show that the high spatiotemporal variation in vegetation dynamics characteristic of semiarid grasslands

  5. Does the Waggle Dance Help Honey Bees to Forage at Greater Distances than Expected for their Body Size?

    Directory of Open Access Journals (Sweden)

    Francis L.W. Ratnieks

    2015-04-01

    Full Text Available A honey bee colony has been likened to an oil company. Some members of the company or colony prospect for valuable liquid resources. When these are discovered other group members can be recruited to exploit the resource. The recruitment of nestmates to a specific location where there is a patch of flowers should change the economics of scouting, that is, the search for new resource patches. In particular, communication is predicted to make scouting at longer distances worthwhile because a profitable resource patch, once discovered, will enhance the foraging not only of the discoverer but also of nestmates that can be directed to the patch. By virtue of having large colonies and dance communication, honey bees are predicted to be able to profitably scout, and hence forage, at greater distances from the nest than either solitary bees or social bees without communication. We test this hypothesis by first examining existing data on foraging distance to evaluate whether honey bees do indeed forage at greater distances than other bees given their body size. Second, we present a simple cost-benefit analysis of scouting which indicates that communication causes longer range scouting to be more profitable. Overall, our analyses are supportive, but not conclusive, that honey bees forage further than would be expected given their size and that the waggle dance is a cause of the honey bee’s exceptional foraging range.

  6. The influence of daily variation in foraging cost on the activity of small carnivores

    Science.gov (United States)

    William J. Zielinski

    1988-01-01

    The daily activity of some predators is correlated with the activity pattern of their prey. If capture efficiency varies as a function of prey activity, a predator that synchronizes its foraging activity with the time of day that prey are most vulnerable should capture more prey, and at lower cost, than a predator that initiates foraging at random. Mink, ...

  7. Behavioural environments and niche construction: the evolution of dim-light foraging in bees.

    Science.gov (United States)

    Wcislo, William T; Tierney, Simon M

    2009-02-01

    Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 10(8), and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis, facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species (Megalopta genalis) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.

  8. Attention in Urban Foraging

    Directory of Open Access Journals (Sweden)

    Malcolm McCullough

    2013-05-01

    Full Text Available This position paper argues how there has to be much more to smart city learning than just wayshowing, and something better as augmented reality than covering the world with instructions. Attention has become something for many people to know better in an age of information superabundance. Embodied cognition explains how the work-ings of attention are not solely a foreground task, as if attention is something to pay. As digital media appear in ever more formats and contexts, their hybrids with physical form increasing influence how habitual engagement with persistent situations creates learning. Ambient information can just add to the distraction by multitasking, or it can support more favorable processes of shifting among different kinds of information with a particular intent. As one word for this latter process, foraging deserves more consideration in smart city learning

  9. The forager oral tradition and the evolution of prolonged juvenility.

    Science.gov (United States)

    Scalise Sugiyama, Michelle

    2011-01-01

    The foraging niche is characterized by the exploitation of nutrient-rich resources using complex extraction techniques that take a long time to acquire. This costly period of development is supported by intensive parental investment. Although human life history theory tends to characterize this investment in terms of food and care, ethnographic research on foraging skill transmission suggests that the flow of resources from old-to-young also includes knowledge. Given the adaptive value of information, parents may have been under selection pressure to invest knowledge - e.g., warnings, advice - in children: proactive provisioning of reliable information would have increased offspring survival rates and, hence, parental fitness. One way that foragers acquire subsistence knowledge is through symbolic communication, including narrative. Tellingly, oral traditions are characterized by an old-to-young transmission pattern, which suggests that, in forager groups, storytelling might be an important means by which adults transfer knowledge to juveniles. In particular, by providing juveniles with vicarious experience, storytelling may expand episodic memory, which is believed to be integral to the generation of possible future scenarios (i.e., planning). In support of this hypothesis, this essay reviews evidence that: mastery of foraging knowledge and skill sets takes a long time to acquire; foraging knowledge is transmitted from parent to child; the human mind contains adaptations specific to social learning; full assembly of learning mechanisms is not complete in early childhood; and forager oral traditions contain a wide range of information integral to occupation of the foraging niche. It concludes with suggestions for tests of the proposed hypothesis.

  10. The forager oral tradition and the evolution of prolonged juvenility

    Directory of Open Access Journals (Sweden)

    Michelle Scalise Sugiyama

    2011-08-01

    Full Text Available The foraging niche is characterized by the exploitation of nutrient-rich resources using complex extraction techniques that take a long time to acquire. This costly period of development is supported by intensive parental investment. Although human life history theory tends to characterize this investment in terms of food and care, ethnographic research on foraging skill transmission suggests that the flow of resources from old to young also includes knowledge. Given the adaptive value of information, parents may have been under selection pressure to invest knowledge—e.g., warnings, advice--in children: proactive provisioning of reliable information would have increased offspring survival rates and, hence, parental fitness. One way that foragers acquire subsistence knowledge is through symbolic communication, including narrative. Tellingly, oral traditions are characterized by an old-to-young transmission pattern, which suggests that, in forager groups, storytelling might be an important means by which adults transfer knowledge to juveniles. In particular, by providing juveniles with vicarious experience, storytelling may expand episodic memory, which is believed to be integral to the generation of possible future scenarios (i.e., planning. In support of this hypothesis, this essay reviews evidence that: mastery of foraging knowledge and skill sets takes a long time to acquire; foraging knowledge is transmitted from parent to child; the human mind contains adaptations specific to social learning; full assembly of learning mechanisms is not complete in early childhood; and forager oral traditions contain a wide range of information integral to occupation of the foraging niche. It concludes with suggestions for tests of the proposed hypothesis.

  11. Corticosterone and foraging behavior in a diving seabird: the Adélie penguin, Pygoscelis adeliae.

    Science.gov (United States)

    Angelier, Frédéric; Bost, Charles-André; Giraudeau, Mathieu; Bouteloup, Guillaume; Dano, Stéphanie; Chastel, Olivier

    2008-03-01

    Because hormones mediate physiological or behavioral responses to intrinsic or extrinsic stimuli, they can help us understand how animals adapt their foraging decisions to energetic demands of reproduction. Thus, the hormone corticosterone deserves specific attention because of its influence on metabolism, food intake and locomotor activities. We examined the relationships between baseline corticosterone levels and foraging behavior or mass gain at sea in a diving seabird, the Adélie penguin, Pygoscelis adeliae. Data were obtained from free-ranging penguins during the brooding period (Adélie Land, Antarctica) by using satellite transmitters and time-depth-recorders. The birds were weighed and blood sampled before and after a foraging trip (pre-trip and post-trip corticosterone levels, respectively). Penguins with elevated pre-trip corticosterone levels spent less time at sea and stayed closer to the colony than penguins with low pre-trip corticosterone levels. These short trips were associated with a higher foraging effort in terms of diving activity and a lower mass gain at sea than long trips. According to previous studies conducted on seabird species, these results suggest that penguins with elevated pre-trip corticosterone levels might maximize the rate of energy delivery to the chicks at the expense of their body reserves. Moreover, in all birds, corticosterone levels were lower post-foraging than pre-foraging. This decrease could result from either the restoration of body reserves during the foraging trip or from a break in activity at the end of the foraging trip. This study demonstrates for the first time in a diving predator the close relationships linking foraging behavior and baseline corticosterone levels. We suggest that slight elevations in pre-trip corticosterone levels could play a major role in breeding effort by facilitating foraging activity in breeding seabirds.

  12. The Müller-Lyer illusion in ant foraging.

    Directory of Open Access Journals (Sweden)

    Tomoko Sakiyama

    Full Text Available The Müller-Lyer illusion is a classical geometric illusion in which the apparent (perceived length of a line depends on whether the line terminates in an arrow tail or arrowhead. This effect may be caused by economic compensation for the gap between the physical stimulus and visual fields. Here, we show that the Müller-Lyer illusion can also be produced by the foraging patterns of garden ants (Lasius niger and that the pattern obtained can be explained by a simple, asynchronously updated foraging ant model. Our results suggest that the geometric illusion may be a byproduct of the foraging process, in which local interactions underlying efficient exploitation can also give rise to global exploration, and that visual information processing in human could implement similar modulation between local efficient processing and widespread computation.

  13. Specters of Colonialism

    DEFF Research Database (Denmark)

    Muhr, Sara Louise; Azad, Salam

    2013-01-01

    at the same time they always are bound to fail to become ‘Swedish’ because of the same foreign origins. Although Swedish culture – partly by distancing itself from having a colonial past – has successfully built up an image of openness, we argue that without acknowledging and confronting the role...

  14. Sublethal Effects of Imidacloprid on Honey Bee Colony Growth and Activity at Three Sites in the U.S.

    Science.gov (United States)

    Meikle, William G; Adamczyk, John J; Weiss, Milagra; Gregorc, Ales; Johnson, Don R; Stewart, Scott D; Zawislak, Jon; Carroll, Mark J; Lorenz, Gus M

    2016-01-01

    Imidacloprid is a neonicotinoid pesticide heavily used by the agricultural industry and shown to have negative impacts on honey bees above certain concentrations. We evaluated the effects of different imidacloprid concentrations in sugar syrup using cage and field studies, and across different environments. Honey bee colonies fed sublethal concentrations of imidicloprid (0, 5, 20 and 100 ppb) over 6 weeks in field trials at a desert site (Arizona), a site near intensive agriculture (Arkansas) and a site with little nearby agriculture but abundant natural forage (Mississippi) were monitored with respect to colony metrics, such as adult bee and brood population sizes, as well as pesticide residues. Hive weight and internal hive temperature were monitored continuously over two trials in Arizona. Colonies fed 100 ppb imidacloprid in Arizona had significantly lower adult bee populations, brood surface areas and average frame weights, and reduced temperature control, compared to colonies in one or more of the other treatment groups, and consumption rates of those colonies were lower compared to other colonies in Arizona and Arkansas, although no differences in capped brood or average frame weight were observed among treatments in Arkansas. At the Mississippi site, also rich in alternative forage, colonies fed 5 ppb imidacloprid had less capped brood than control colonies, but contamination of control colonies was detected. In contrast, significantly higher daily hive weight variability among colonies fed 5 ppb imidacloprid in Arizona suggested greater foraging activity during a nectar flow post treatment, than any other treatment group. Imidacloprid concentrations in stored honey corresponded well with the respective syrup concentrations fed to the colonies and remained stable within the hive for at least 7 months after the end of treatment.

  15. Chronic exposure of a honey bee colony to 2.45 GHz continuous wave microwaves

    Science.gov (United States)

    Westerdahl, B. B.; Gary, N. E.

    1981-01-01

    A honey bee colony (Apis mellifera L.) was exposed 28 days to 2.45 GHz continuous wave microwaves at a power density (1 mW/sq cm) expected to be associated with rectennae in the solar power satellite power transmission system. Differences found between the control and microwave-treated colonies were not large, and were in the range of normal variation among similar colonies. Thus, there is an indication that microwave treatment had little, if any, effect on (1) flight and pollen foraging activity, (2) maintenance of internal colony temperature, (3) brood rearing activity, (4) food collection and storage, (5) colony weight, and (6) adult populations. Additional experiments are necessary before firm conclusions can be made.

  16. Mathematical Modeling the Geometric Regularity in Proteus Mirabilis Colonies

    Science.gov (United States)

    Zhang, Bin; Jiang, Yi; Minsu Kim Collaboration

    Proteus Mirabilis colony exhibits striking spatiotemporal regularity, with concentric ring patterns with alternative high and low bacteria density in space, and periodicity for repetition process of growth and swarm in time. We present a simple mathematical model to explain the spatiotemporal regularity of P. Mirabilis colonies. We study a one-dimensional system. Using a reaction-diffusion model with thresholds in cell density and nutrient concentration, we recreated periodic growth and spread patterns, suggesting that the nutrient constraint and cell density regulation might be sufficient to explain the spatiotemporal periodicity in P. Mirabilis colonies. We further verify this result using a cell based model.

  17. Enzyme activities and antibiotic susceptibility of colonial variants of Bacillus subtilis and Bacillus licheniformis.

    OpenAIRE

    Carlisle, G E; Falkinham, J O

    1989-01-01

    A nonmucoid colonial variant of a mucoid Bacillus subtilis strain produced less amylase activity and a transparent colonial variant of a B. licheniformis strain produced less protease activity compared with their parents. Antibiotic susceptibility patterns of the colonial variants differed, and increased resistance to beta-lactam antibiotics was correlated with increased production of extracellular beta-lactamase.

  18. Globalization as Continuing Colonialism: Critical Global Citizenship Education in an Unequal World

    Science.gov (United States)

    Mikander, Pia

    2016-01-01

    In an unequal world, education about global inequality can be seen as a controversial but necessary topic for social science to deal with. Even though the world no longer consists of colonies and colonial powers, many aspects of the global economy follow the same patterns as during colonial times, with widening gaps between the world's richest and…

  19. All you can eat: is food supply unlimited in a colonially breeding bird?

    Science.gov (United States)

    Hoi, Herbert; Krištofík, Ján; Darolová, Alžbeta

    2015-01-01

    Food availability is generally considered to determine breeding site selection and therefore plays an important role in hypotheses explaining the evolution of colony formation. Hypotheses trying to explain why birds join a colony usually assume that food is not limited, whereas those explaining variation in colony size suggest that food is under constraint. In this study, we investigate the composition and amount of food items not eaten by the nestlings and found in nest burrows of colonially nesting European bee-eaters (Merops apiaster). We aimed to determine whether this unconsumed food is an indicator of unlimited food supply, the result of mistakes during food transfer between parents and chicks or foraging selectivity of chicks. Therefore, we investigated the amount of dropped food for each nest in relation to reproductive performance and parameters reflecting parental quality. Our data suggest that parents carry more food to the nest than chicks can eat and, hence, food is not limited. This assumption is supported by the facts that there is a positive relationship between dropped food found in a nest and the number of fledglings, nestling age, and chick health condition and that the amount of dropped food is independent of colony size. There is variation in the amount of dropped food within colonies, suggesting that parent foraging efficiency may also be an important determinant. Pairs nesting in the center of a colony performed better than those nesting on the edge, which supports the assumption that quality differences between parents are important as well. However, dropped food cannot be used as an indicator of local food availability as (1) within-colony variation in dropped food is larger than between colony variation and, (2) the average amount of dropped food is not related to colony size.

  20. Cumulative Effects of Foraging Behavior and Social Dominance on Brain Development in a Facultatively Social Bee (Ceratina australensis).

    Science.gov (United States)

    Rehan, Sandra M; Bulova, Susan J; O'Donnell, Sean

    2015-01-01

    In social insects, both task performance (foraging) and dominance are associated with increased brain investment, particularly in the mushroom bodies. Whether and how these factors interact is unknown. Here we present data on a system where task performance and social behavior can be analyzed simultaneously: the small carpenter bee Ceratina australensis. We show that foraging and dominance have separate and combined cumulative effects on mushroom body calyx investment. Female C. australensis nest solitarily and socially in the same populations at the same time. Social colonies comprise two sisters: the social primary, which monopolizes foraging and reproduction, and the social secondary, which is neither a forager nor reproductive but rather remains at the nest as a guard. We compare the brains of solitary females that forage and reproduce but do not engage in social interactions with those of social individuals while controlling for age, reproductive status, and foraging experience. Mushroom body calyx volume was positively correlated with wing wear, a proxy for foraging experience. We also found that, although total brain volume did not vary among reproductive strategies (solitary vs. social nesters), socially dominant primaries had larger mushroom body calyx volumes (corrected for both brain and body size variation) than solitary females; socially subordinate secondaries (that are neither dominant nor foragers) had the least-developed mushroom body calyces. These data demonstrate that sociality itself does not explain mushroom body volume; however, achieving and maintaining dominance status in a group was associated with mushroom body calyx enlargement. Dominance and foraging effects were cumulative; dominant social primary foragers had larger mushroom body volumes than solitary foragers, and solitary foragers had larger mushroom body volumes than nonforaging social secondary guards. This is the first evidence for cumulative effects on brain development by

  1. Kant's Second Thoughts on Colonialism

    NARCIS (Netherlands)

    Kleingeld, Pauline; Flikschuh, Katrin; Ypi, Lea

    2014-01-01

    Kant is widely regarded as a fierce critic of colonialism. In Toward Perpetual Peace and the Metaphysics of Morals, for example, he forcefully condemns European conduct in the colonies as a flagrant violation of the principles of right. His earlier views on colonialism have not yet received much

  2. Foraging ecology of least terns and piping plovers nesting on Central Platte River sandpits and sandbars

    Science.gov (United States)

    Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.

    2012-01-01

    Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.

  3. Assessment of Chronic Sublethal Effects of Imidacloprid on Honey Bee Colony Health

    Science.gov (United States)

    Dively, Galen P.; Embrey, Michael S.; Kamel, Alaa; Hawthorne, David J.; Pettis, Jeffery S.

    2015-01-01

    Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 μg/kg over multiple brood cycles. Various endpoints of colony performance and foraging behavior were measured during and after exposure, including winter survival. Imidacloprid residues became diluted or non-detectable within colonies due to the processing of beebread and honey and the rapid metabolism of the chemical. Imidacloprid exposure doses up to 100 μg/kg had no significant effects on foraging activity or other colony performance indicators during and shortly after exposure. Diseases and pest species did not affect colony health but infestations of Varroa mites were significantly higher in exposed colonies. Honey stores indicated that exposed colonies may have avoided the contaminated food. Imidacloprid dose effects was delayed later in the summer, when colonies exposed to 20 and 100 μg/kg experienced higher rates of queen failure and broodless periods, which led to weaker colonies going into the winter. Pooled over two years, winter survival of colonies averaged 85.7, 72.4, 61.2 and 59.2% in the control, 5, 20 and 100 μg/kg treatment groups, respectively. Analysis of colony survival data showed a significant dose effect, and all contrast tests comparing survival between control and treatment groups were significant, except for colonies exposed to 5 μg/kg. Given the weight of evidence, chronic exposure to imidacloprid at the higher range of field doses (20 to 100 μg/kg) in pollen of certain treated crops could cause negative impacts on honey bee colony health and reduced overwintering success, but the most likely encountered high range of field doses relevant for seed-treated crops (5 μg/kg) had negligible effects on colony health and are unlikely a sole cause of colony declines. PMID:25786127

  4. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes

    OpenAIRE

    Appler, R.; Frank, Steven; Tarpy, David

    2015-01-01

    Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect imm...

  5. Does greed help a forager survive?

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-06-01

    We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is food averse.

  6. Children's Play and Culture Learning in an Egalitarian Foraging Society.

    Science.gov (United States)

    Boyette, Adam H

    2016-05-01

    Few systematic studies of play in foragers exist despite their significance for understanding the breadth of contexts for human development and the ontogeny of cultural learning. Forager societies lack complex social hierarchies, avenues for prestige or wealth accumulation, and formal educational institutions, and thereby represent a contrast to the contexts of most play research. Analysis of systematic observations of children's play among Aka forest foragers (n = 50, ages 4-16, M = 9.5) and Ngandu subsistence farmers (n = 48, ages 4-16, M = 9.1) collected in 2010 illustrates that while play and work trade off during development in both groups, and consistent patterns in sex-role development are evident, Aka children engage in significantly less rough-and-tumble play and competitive games than children among their socially stratified farming neighbors. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  7. Corticosterone predicts foraging behavior and parental care in macaroni penguins.

    Science.gov (United States)

    Crossin, Glenn T; Trathan, Phil N; Phillips, Richard A; Gorman, Kristen B; Dawson, Alistair; Sakamoto, Kentaro Q; Williams, Tony D

    2012-07-01

    Corticosterone has received considerable attention as the principal hormonal mediator of allostasis or physiological stress in wild animals. More recently, it has also been implicated in the regulation of parental care in breeding birds, particularly with respect to individual variation in foraging behavior and provisioning effort. There is also evidence that prolactin can work either inversely or additively with corticosterone to achieve this. Here we test the hypothesis that endogenous corticosterone plays a key physiological role in the control of foraging behavior and parental care, using a combination of exogenous corticosterone treatment, time-depth telemetry, and physiological sampling of female macaroni penguins (Eudyptes chrysolophus) during the brood-guard period of chick rearing, while simultaneously monitoring patterns of prolactin secretion. Plasma corticosterone levels were significantly higher in females given exogenous implants relative to those receiving sham implants. Increased corticosterone levels were associated with significantly higher levels of foraging and diving activity and greater mass gain in implanted females. Elevated plasma corticosterone was also associated with an apparent fitness benefit in the form of increased chick mass. Plasma prolactin levels did not correlate with corticosterone levels at any time, nor was prolactin correlated with any measure of foraging behavior or parental care. Our results provide support for the corticosterone-adaptation hypothesis, which predicts that higher corticosterone levels support increased foraging activity and parental effort.

  8. A Clustering Approach Using Cooperative Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2010-01-01

    Full Text Available Artificial Bee Colony (ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. This paper presents an extended ABC algorithm, namely, the Cooperative Article Bee Colony (CABC, which significantly improves the original ABC in solving complex optimization problems. Clustering is a popular data analysis and data mining technique; therefore, the CABC could be used for solving clustering problems. In this work, first the CABC algorithm is used for optimizing six widely used benchmark functions and the comparative results produced by ABC, Particle Swarm Optimization (PSO, and its cooperative version (CPSO are studied. Second, the CABC algorithm is used for data clustering on several benchmark data sets. The performance of CABC algorithm is compared with PSO, CPSO, and ABC algorithms on clustering problems. The simulation results show that the proposed CABC outperforms the other three algorithms in terms of accuracy, robustness, and convergence speed.

  9. Ant colony search algorithm for optimal reactive power optimization

    Directory of Open Access Journals (Sweden)

    Lenin K.

    2006-01-01

    Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.

  10. A neural coding scheme reproducing foraging trajectories

    Science.gov (United States)

    Gutiérrez, Esther D.; Cabrera, Juan Luis

    2015-12-01

    The movement of many animals may follow Lévy patterns. The underlying generating neuronal dynamics of such a behavior is unknown. In this paper we show that a novel discovery of multifractality in winnerless competition (WLC) systems reveals a potential encoding mechanism that is translatable into two dimensional superdiffusive Lévy movements. The validity of our approach is tested on a conductance based neuronal model showing WLC and through the extraction of Lévy flights inducing fractals from recordings of rat hippocampus during open field foraging. Further insights are gained analyzing mice motor cortex neurons and non motor cell signals. The proposed mechanism provides a plausible explanation for the neuro-dynamical fundamentals of spatial searching patterns observed in animals (including humans) and illustrates an until now unknown way to encode information in neuronal temporal series.

  11. Honeybees learn floral odors while receiving nectar from foragers within the hive

    Science.gov (United States)

    Farina, Walter M.; Grüter, Christoph; Acosta, Luis; Mc Cabe, Sofía

    2007-01-01

    Recent studies showed that nectar odors brought back by honeybee foragers can be learned associatively inside the hive. In the present study, we focused on the learning abilities of bees, which directly interact via trophallaxis with the incoming nectar foragers: the workers that perform nectar-receiving tasks inside the hive. Workers that have received food directly from foragers coming back from a feeder offering either unscented or scented sugar solution [phenylacetaldehyde (PHE) or nonanal diluted] were captured from two observational hives, and their olfactory memories were tested using the proboscis extension response paradigm. Bees that have received scented solution from incoming foragers showed significantly increased response frequencies for the corresponding solution odor in comparison with those that have received unscented solution. No differences in the response frequencies were found between food odors and colonies. The results indicate that first-order receivers learn via trophallaxis the association between the scent and the sugar solution transferred by incoming foragers. The implications of these results should be considered at three levels: the operational cohesion of bees involved in foraging-related tasks, the information propagation inside the hive related to the floral type exploited, and the putative effect of these memories on future preferences for resources.

  12. Bee Swarm Optimization for Medical Web Information Foraging.

    Science.gov (United States)

    Drias, Yassine; Kechid, Samir; Pasi, Gabriella

    2016-02-01

    The present work is related to Web intelligence and more precisely to medical information foraging. We present here a novel approach based on agents technology for information foraging. An architecture is proposed, in which we distinguish two important phases. The first one is a learning process for localizing the most relevant pages that might interest the user. This is performed on a fixed instance of the Web. The second takes into account the openness and the dynamicity of the Web. It consists on an incremental learning starting from the result of the first phase and reshaping the outcomes taking into account the changes that undergoes the Web. The whole system offers a tool to help the user undertaking information foraging. We implemented the system using a group of cooperative reactive agents and more precisely a colony of artificial bees. In order to validate our proposal, experiments were conducted on MedlinePlus, a benchmark dedicated for research in the domain of Health. The results are promising either for those related to Web regularities and for the response time, which is very short and hence complies the real time constraint.

  13. Foraging behavior of Melipona rufiventris Lepeletier (Apinae; Meliponini in Ubatuba, SP, Brazil

    Directory of Open Access Journals (Sweden)

    AO. Fidalgo

    Full Text Available This study describes how the foraging activity of Melipona rufiventris is influenced by the environment and/or by the state of a colony. Two colonies were studied in Ubatuba, SP (44° 48’ W and 23° 22’ S from July/2000 to June/2001. These colonies were classified as strong (Colony 1 and intermediate (Colony 2 according to their general conditions: population and brood comb size and number of food pots. The bees were active from dawn to dusk. The number of pollen loads presented a positive correlation with relative humidity (r s = 0.401; p <0.01 and was highest between 70 and 90%. However, it was negatively correlated with temperature (r s = -0.228; p <0.01 showing a peak between 18 and 23 °C. The number of nectar loads presented a positive correlation with temperature (r s = 0.244; p <0.01 and light intensity (r s = 0.414; p <0.01; it was greater between 50 and 90% of relative humidity and 20 and 30 °C of temperature. They collected more nectar than pollen throughout the day, and were more active between 6 and 9 hours. Workers from Colony 1 (strong collected nectar in greater amounts and earlier than those from Colony 2 (intermediate. The number of pollen, nectar and resin loads varied considerably between the study days. Peaks of pollen collection occurred earlier in months with longer days and in a hotter and more humid climate. The foraging behavior of M. rufiventris is probably affected by the state of the colony and by environmental conditions, notably temperature, relative humidity, light intensity and length of the day.

  14. Ant Foraging Behavior for Job Shop Problem

    Directory of Open Access Journals (Sweden)

    Mahad Diyana Abdul

    2016-01-01

    Full Text Available Ant Colony Optimization (ACO is a new algorithm approach, inspired by the foraging behavior of real ants. It has frequently been applied to many optimization problems and one such problem is in solving the job shop problem (JSP. The JSP is a finite set of jobs processed on a finite set of machine where once a job initiates processing on a given machine, it must complete processing and uninterrupted. In solving the Job Shop Scheduling problem, the process is measure by the amount of time required in completing a job known as a makespan and minimizing the makespan is the main objective of this study. In this paper, we developed an ACO algorithm to minimize the makespan. A real set of problems from a metal company in Johor bahru, producing 20 parts with jobs involving the process of clinching, tapping and power press respectively. The result from this study shows that the proposed ACO heuristics managed to produce a god result in a short time.

  15. Breeding success of a marine central place forager in the context of climate change: A modeling approach.

    Directory of Open Access Journals (Sweden)

    Lauriane Massardier-Galatà

    Full Text Available In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS, including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella, which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups' growth and survival while female body length should increase.

  16. Predation of artificial ground nests on white-tailed prairie dog colonies

    Science.gov (United States)

    Baker, B.W.; Stanley, T.R.; Sedgwick, J.A.

    1999-01-01

    Prairie dog (Cynomys spp.) colonies are unique to prairie and shrub-steppe landscapes. However, widespread eradication, habitat loss, and sylvatic plague (Yersinia pestis) have reduced their numbers by 98% since historical times. Birds associated with prairie dogs also are declining. Potential nest predators, such as coyotes (Canis latrans), swift foxes (Vulpes velox), and badgers (Taxidea taxus), may be attracted to colonies where a high concentration of prairie dogs serve as available prey. Increased abundance of small mammals, including prairie dogs, also may increase the risk of predation for birds nesting on colonies. Finally, because grazing by prairie dogs may decrease vegetation height and canopy cover, bird nests may be easier for predators to locate. In this study, we placed 1,444 artificial ground nests on and off 74 white-tailed prairie dog (C. leucurus) colonies to test the hypothesis that nest predation rates are higher on colonies than at nearby off sites (i.e., uncolonized habitat). We sampled colonies from 27 May to 16 July 1997 at the following 3 complexes: Coyote Basin, Utah and Colorado; Moxa Arch, Wyoming; and Shirley Basin, Wyoming. Differences in daily predation rates between colonies and paired off sites averaged 1.0% (P = 0.060). When converted to a typical 14-day incubation period, predation rates averaged 14% higher on colonies (57.7 ?? 2.7%; ?? ?? SE) than at off sites (50.4 ?? 3.1%). Comparisons of habitat variables on colonies to off sites showed percent canopy cover of vegetation was similar (P = 0.114), percent bare ground was higher on colonies (P 0.288). Although we found the risk of nest predation was higher on white-tailed prairie dog colonies than at off sites, fitness of birds nesting on colonies might depend on other factors that influence foraging success, reproductive success, or nestling survival.

  17. How much is too much? Assessment of prey consumption by Magellanic penguins in Patagonian colonies.

    Directory of Open Access Journals (Sweden)

    Juan E Sala

    Full Text Available Penguins are major consumers in the southern oceans although quantification of this has been problematic. One suggestion proposes the use of points of inflection in diving profiles ('wiggles' for this, a method that has been validated for the estimation of prey consumption by Magellanic penguins (Spheniscus magellanicus by Simeone and Wilson (2003. Following them, we used wiggles from 31 depth logger-equipped Magellanic penguins foraging from four Patagonian colonies; Punta Norte (PN, Bahía Bustamente (BB, Puerto Deseado (PD and Puerto San Julián (PSJ, all located in Argentina between 42-49° S, to estimate the prey captured and calculate the catch per unit time (CPUT for birds foraging during the early chick-rearing period. Numbers of prey caught and CPUT were significantly different between colonies. Birds from PD caught the highest number of prey per foraging trip, with CPUT values of 68±19 prey per hour underwater (almost two times greater than for the three remaining colonies. We modeled consumption from these data and calculate that the world Magellanic penguin population consumes about 2 million tons of prey per year. Possible errors in this calculation are discussed. Despite this, the analysis of wiggles seems a powerful and simple tool to begin to quantify prey consumption by Magellanic penguins, allowing comparison between different breeding sites. The total number of wiggles and/or CPUT do not reflect, by themselves, the availability of food for each colony, as the number of prey consumed by foraging trip is strongly associated with the energy content and wet mass of each colony-specific 'prey type'. Individuals consuming more profitable prey could be optimizing the time spent underwater, thereby optimizing the energy expenditure associated with the dives.

  18. Are Dispersal Mechanisms Changing the Host-Parasite Relationship and Increasing the Virulence of Varroa destructor (Mesostigmata: Varroidae) in Managed Honey Bee (Hymenoptera: Apidae) Colonies?

    Science.gov (United States)

    DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Graham, Henry

    2017-08-01

    Varroa (Varroa destructor Anderson and Trueman) are a serious pest of European honey bees (Apis mellifera L.), and difficult to control in managed colonies. In our 11-mo longitudinal study, we applied multiple miticide treatments, yet mite numbers remained high and colony losses exceeded 55%. High mortality from varroa in managed apiaries is a departure from the effects of the mite in feral colonies where bees and varroa can coexist. Differences in mite survival strategies and dispersal mechanisms may be contributing factors. In feral colonies, mites can disperse through swarming. In managed apiaries, where swarming is reduced, mites disperse on foragers robbing or drifting from infested hives. Using a honey bee-varroa population model, we show that yearly swarming curtails varroa population growth, enabling colony survival for >5 yr. Without swarming, colonies collapsed by the third year. To disperse, varroa must attach to foragers that then enter other hives. We hypothesize that stress from parasitism and virus infection combined with effects that viruses have on cognitive function may contribute to forager drift and mite and virus dispersal. We also hypothesize that drifting foragers with mites can measurably increase mite populations. Simulations initialized with field data indicate that low levels of drifting foragers with mites can create sharp increases in mite populations in the fall and heavily infested colonies in the spring. We suggest new research directions to investigate factors leading to mite dispersal on foragers, and mite management strategies with consideration of varroa as a migratory pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  19. Padrão de atividade e comportamento de forrageamento do morcego-pescador Noctilio leporinus (Linnaeus (Chiroptera, Noctilionidae na Baía de Guaratuba, Paraná, Brasil Activity pattern and foraging behavior of bulldog-bat Noctilio leporinus (Linnaeus, (Chiroptera, Noctilionidae in Guaratuba Bay, Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo O. Bordignon

    2006-03-01

    Full Text Available Entre 18 de janeiro a 16 de dezembro de 1999 foi estudado o comportamento de forrageamento e o padrão de atividade do morcego-pescador Noctilio leporinus (Linnaeus, 1758, em uma área de manguezal na Baía de Guaratuba, Sul do Brasil. Os grupos de N. leporinus observados permaneceram em atividade ao longo de todo o período noturno, mas com um aparente padrão bimodal. Durante os meses de abril a setembro, N. leporinus inicia a sua atividade geralmente às 18:00 h, uma hora mais cedo do que durante os meses de outubro a março, quando inicia sua atividade geralmente às 19:00 h. O comportamento de predação sobre os cardumes de peixes mostrou variações quanto ao local de forrageamento ao longo do período de atividade. Em baixos níveis de maré, os grupos de morcegos pescaram longe da margem em águas mais profundas, mas nos níveis de maré alta os grupos de morcegos permaneceram pescando sempre junto à margem, em águas mais rasas. Este padrão de comportamento em N. leporinus parece ser determinado pelo padrão de deslocamento dos cardumes de peixes na área de estudo.From January 18 to December 16 of 1999 the foraging behavior and activity pattern of fishing bat Noctilio leporinus (Linnaeus, 1758 were studied in mangrove ecosystem of Guaratuba Bay, southern Brazil. The groups of N. leporinus observed remained active during all nightly period but showed an apparent bimodal pattern. During April and September N. leporinus generally begin their activity at 18:00h, one hour earlier than October to March months, when their activity started at 19:00 h. The foraging behavior on fish shoal varied spatially along all the activity period. During low tide level the bat groups remained fishing distant from margin on deeper water, but during high tide level the bats were always observed fishing close to the margin on flat water. This pattern in foraging behavior of N. leporinus appears to be determined by the fish shoal displacement pattern in

  20. Long bone cross-sectional geometric properties of Later Stone Age foragers and herder�foragers

    Directory of Open Access Journals (Sweden)

    Michelle E. Cameron

    2014-09-01

    Full Text Available Diaphyseal cross-sectional geometry can be used to infer activity patterns in archaeological populations. We examined the cross-sectional geometric (CSG properties of adult Later Stone Age (LSA herder-forager long bones from the inland lower Orange River Valley of South Africa (n=5 m, 13 f. We then compared their CSG properties to LSA forager adults from the coastal fynbos (n=23 m, 14 f and forest (n=17 m, 19 f regions, building on a previous report (Stock and Pfeiffer, 2004. The periosteal mould method was used to quantify total subperiosteal area, torsional strength, bilateral asymmetry and diaphyseal circularity (Imax/Imin at the mid-distal (35% location of upper arms (humeri and the mid-shaft (50% location of upper legs (femora. Maximum humerus and femur lengths were similar among the three samples, suggesting that adult stature was similar in all three regions. When compared to the previous study, CSG property values obtained using the periosteal mould method correlated well, and there were no significant differences between data collected using the different methods. No statistically significant differences were found among the humerus or femur CSG properties from the different regions. This finding suggests that all individuals undertook similar volitional habitual activities in regard to their upper limbs, and also had similar degrees of terrestrial mobility. These results indicate relative behavioural homogeneity among LSA foragers and herder foragers from South Africa. The small degree of regional variation apparent among the three samples may reflect local ecology and the subsistence demands affecting populations in these different regions.

  1. Analysis of Colonial Currency

    Science.gov (United States)

    Kurkowski, Michael; Cangany, Catherine; Jordan, Louis; Manukyan, Khachatur; Schultz, Zachary; Wiescher, Michael

    2017-09-01

    This project entailed studying the cellulose in paper, the ink, colorants, and other materials used to produce American colonial currency. The technique primarily used in this project was X-Ray Fluorescence Spectroscopy (XRF). XRF mapping was used to provide both elemental analysis of large-scale objects as well as microscopic examination of individual pigment particles in ink, in addition to the inorganic additives used to prepare paper. The combination of elemental mapping with Fourier Transform Infrared (FTIR) and Raman Spectroscopies permits an efficient analysis of the currency. These spectroscopic methods help identify the molecular composition of the pigments. This combination of atomic and molecular analytical techniques provided an in-depth characterization of the paper currency on the macro, micro, and molecular levels. We have identified several of pigments that were used in the preparation of inks and colorants. Also, different inorganic crystals, such as alumina-silicates, have been detected in different papers. The FTIR spectroscopy allowed us to determine the type of cellulose fiber used in the production of paper currency. Our future research will be directed toward revealing important historical relationships between currencies printed throughout the colonies. ISLA Da Vinci Grant.

  2. Seabird Colonies in Western Greenland

    DEFF Research Database (Denmark)

    Boertmann, D.; Mosbech, A.; Falk, K.

    About 1 million seabirds (indvs) breed in 1032 colonies distributed along the coasts of western Greenland (Fig. 1). However, this figure does not include the little auk colonies in Avanersuaq. These colonies are roughly estimated to hold about 20 mill. pairs. All the basic information on seabird...... colonies in Greenland is compiled in a database maintained by NERI-AE. This report presents data on distribution, population numbers and population trends of 19 species of breeding colonial seabirds in western Greenland. Distributions are depicted on maps in Fig. 18-39. It is apparent that the major...... colonies are found in the northern part of the region, viz. Upernavik and Avanersuaq. The numbers of birds recorded in the database for each species are presented in Tab. 4, and on the basis of these figures estimates of the populations in western Greenland are given (Tab. 5). The most numerous species...

  3. Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen.

    Directory of Open Access Journals (Sweden)

    Nadja Danner

    Full Text Available The availability of pollen in agricultural landscapes is essential for the successful growth and reproduction of honey bee colonies (Apis mellifera L.. The quantity and diversity of collected pollen can influence the growth and health of honey bee colonies, but little is known about the influence of landscape structure on pollen diet. In a field experiment, we rotated 16 honey bee colonies across 16 agricultural landscapes, used traps to collect samples of collected pollen and observed intra-colonial dance communication to gain information about foraging distances. DNA metabarcoding was applied to analyze mixed pollen samples. Neither the amount of collected pollen nor pollen diversity was related to landscape diversity. However, we found a strong seasonal variation in the amount and diversity of collected pollen in all sites independent of landscape diversity. The observed increase in foraging distances with decreasing landscape diversity suggests that honey bees compensated for lower landscape diversity by increasing their pollen foraging range in order to maintain pollen amount and diversity. Our results underscore the importance of a diverse pollen diet for honey bee colonies. Agri-environmental schemes aiming to support pollinators should focus on possible spatial and temporal gaps in pollen availability and diversity in agricultural landscapes.

  4. Artificial bee colony in neuro - Symbolic integration

    Science.gov (United States)

    Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf

    2017-08-01

    Swarm intelligence is a research area that models the population of the swarm based on natural computation. Artificial bee colony (ABC) algorithm is a swarm based metaheuristic algorithm introduced by Karaboga to optimize numerical problem. Pattern-SAT is a pattern reconstruction paradigm that utilized 2SAT logical rule in representing the behavior of the desired pattern. The information of the desired pattern in terms of 2SAT logic is embedded to Hopfield neural network (HNN-P2SAT) and the desired pattern is reconstructed during the retrieval phase. Since the performance of HNN-P2SAT in Pattern-SAT deteriorates when the number of 2SAT clause increased, newly improved ABC is used to reduce the computation burden during the learning phase of HNN-P2SAT (HNN-P2SATABC). The aim of this study is to investigate the performance of Pattern-SAT produced by ABC incorporated with HNN-P2SAT and compare it with conventional standalone HNN. The comparison is examined by using Microsoft Visual Basic C++ 2013 software. The detailed comparison in doing Pattern-SAT is discussed based on global Pattern-SAT, ratio of activated clauses and computation time. The result obtained from computer simulation indicates the beneficial features of HNN-P2SATABC in doing Pattern-SAT. This finding is expected to result in a significant implication on the choice of searching method used to do Pattern-SAT.

  5. Comparative Effect of Sole Forage and Mixed Concentrate-Forage ...

    African Journals Online (AJOL)

    There was no statistical (P>0.05) difference in average intake of forage between the two treatment groups. Economically, Treatment 1 proves to be better for the enhancement of body weight in growing rabbits than Treatment 2. Key words: Weaner rabbits,Poultry grower mesh, Tridax procumbens, Feed intake,Body weight ...

  6. Friends and foes from an ant brain's point of view--neuronal correlates of colony odors in a social insect.

    Science.gov (United States)

    Brandstaetter, Andreas Simon; Rössler, Wolfgang; Kleineidam, Christoph Johannes

    2011-01-01

    Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like "friend" and "foe" are attributed to colony odors. Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge

  7. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    Science.gov (United States)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  8. A modified scout bee for artificial bee colony algorithm and its performance on optimization problems

    Directory of Open Access Journals (Sweden)

    Syahid Anuar

    2016-10-01

    Full Text Available The artificial bee colony (ABC is one of the swarm intelligence algorithms used to solve optimization problems which is inspired by the foraging behaviour of the honey bees. In this paper, artificial bee colony with the rate of change technique which models the behaviour of scout bee to improve the performance of the standard ABC in terms of exploration is introduced. The technique is called artificial bee colony rate of change (ABC-ROC because the scout bee process depends on the rate of change on the performance graph, replace the parameter limit. The performance of ABC-ROC is analysed on a set of benchmark problems and also on the effect of the parameter colony size. Furthermore, the performance of ABC-ROC is compared with the state of the art algorithms.

  9. Colony Dimorphism in Bradyrhizobium Strains

    Science.gov (United States)

    Sylvester-Bradley, Rosemary; Thornton, Philip; Jones, Peter

    1988-01-01

    Ten isolates of Bradyrhizobium spp. which form two colony types were studied; the isolates originated from a range of legume species. The two colony types differed in the amount of gum formed or size or both, depending on the strain. Whole 7-day-old colonies of each type were subcultured to determine the proportion of cells which had changed to the other type. An iterative computerized procedure was used to determine the rate of switching per generation between the two types and to predict proportions reached at equilibrium for each strain. The predicted proportions of the wetter (more gummy) or larger colony type at equilibrium differed significantly between strains, ranging from 0.9999 (strain CIAT 2383) to 0.0216 (strain CIAT 2469), because some strains switched faster from dry to wet (or small to large) and others switched faster from wet to dry (or large to small). Predicted equilibrium was reached after about 140 generations in strain USDA 76. In all but one strain (CIAT 3030) the growth rate of the wetter colony type was greater than or similar to that of the drier type. The mean difference in generation time between the two colony types was 0.37 h. Doubling times calculated for either colony type after 7 days of growth on the agar surface ranged from 6.0 to 7.3 h. The formation of two persistent colony types by one strain (clonal or colony dimorphism) may be a common phenomenon among Bradyrhizobium strains. Images PMID:16347599

  10. Resource diversity and landscape-level homogeneity drive native bee foraging.

    Science.gov (United States)

    Jha, Shalene; Kremen, Claire

    2013-01-08

    Given widespread declines in pollinator communities and increasing global reliance on pollinator-dependent crops, there is an acute need to develop a mechanistic understanding of native pollinator population and foraging biology. Using a population genetics approach, we determine the impact of habitat and floral resource distributions on nesting and foraging patterns of a critical native pollinator, Bombus vosnesenskii. Our findings demonstrate that native bee foraging is far more plastic and extensive than previously believed and does not follow a simple optimal foraging strategy. Rather, bumble bees forage further in pursuit of species-rich floral patches and in landscapes where patch-to-patch variation in floral resources is less, regardless of habitat composition. Thus, our results reveal extreme foraging plasticity and demonstrate that floral diversity, not density, drives bee foraging distance. Furthermore, we find a negative impact of paved habitat and a positive impact of natural woodland on bumble bee nesting densities. Overall, this study reveals that natural and human-altered landscapes can be managed for increased native bee nesting and extended foraging, dually enhancing biodiversity and the spatial extent of pollination services.

  11. Shearwater foraging in the Southern Ocean: the roles of prey availability and winds.

    Directory of Open Access Journals (Sweden)

    Ben Raymond

    Full Text Available BACKGROUND: Sooty (Puffinus griseus and short-tailed (P. tenuirostris shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. METHODOLOGY/PRINCIPAL FINDINGS: Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140 degrees E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. CONCLUSIONS/SIGNIFICANCE: The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem.

  12. Information needs at the beginning of foraging: grass-cutting ants trade off load size for a faster return to the nest.

    Directory of Open Access Journals (Sweden)

    Martin Bollazzi

    2011-03-01

    Full Text Available Acquisition of information about food sources is essential for animals that forage collectively like social insects. Foragers deliver two commodities to the nest, food and information, and they may favor the delivery of one at the expenses of the other. We predict that information needs should be particularly high at the beginning of foraging: the decision to return faster to the nest will motivate a grass-cutting ant worker to reduce its loading time, and so to leave the source with a partial load.Field results showed that at the initial foraging phase, most grass-cutting ant foragers (Acromyrmex heyeri returned unladen to the nest, and experienced head-on encounters with outgoing workers. Ant encounters were not simply collisions in a probabilistic sense: outgoing workers contacted in average 70% of the returning foragers at the initial foraging phase, and only 20% at the established phase. At the initial foraging phase, workers cut fragments that were shorter, narrower, lighter and tenderer than those harvested at the established one. Foragers walked at the initial phase significantly faster than expected for the observed temperatures, yet not at the established phase. Moreover, when controlling for differences in the fragment-size carried, workers still walked faster at the initial phase. Despite the higher speed, their individual transport rate of vegetable tissue was lower than that of similarly-sized workers foraging later at the same patch.At the initial foraging phase, workers compromised their individual transport rates of material in order to return faster to the colony. We suggest that the observed flexible cutting rules and the selection of partial loads at the beginning of foraging are driven by the need of information transfer, crucial for the establishment and maintenance of a foraging process to monopolize a discovered resource.

  13. Monitoring Forage Production of California Rangeland Using Remote Sensing Observations

    Science.gov (United States)

    Liu, H.; Jin, Y.; Dahlgren, R. A.; O'Geen, A. T.; Roche, L. M.; Smith, A. M.; Flavell, D.

    2016-12-01

    Pastures and rangeland cover more than 10 million hectares in California's coastal and inland foothill regions, providing feeds to livestock and important ecosystem services. Forage production in California has a large year-to-year variation due to large inter-annual and seasonal variabilities in precipitation and temperature. It also varies spatially due to the variability in climate and soils. Our goal is to develop a robust and cost-effective tool to map the near-real-time and historical forage productivity in California using remote sensing observations from Landsat and MODIS satellites. We used a Monteith's eco-physiological plant growth theory: the aboveground net primary production (ANPP) is determined by (i) the absorbed photosynthetically active radiation (APAR) and the (ii) light use efficiency (LUE): ANPP = APAR * LUEmax * f(T) * f(SM), where LUEmax is the maximum LUE, and f(T) and f(SM) are the temperature and soil moisture constrains on LUE. APAR was estimated with Landsat and MODIS vegetation index (VI), and LUE was calibrated with a statewide point dataset of peak forage production measurements at 75 annual rangeland sites. A non-linear optimization was performed to derive maximum LUE and the parameters for temperature and soil moisture regulation on LUE by minimizing the differences between the estimated and measured ANPP. Our results showed the satellite-derived annual forage production estimates correlated well withcontemporaneous in-situ forage measurements and captured both the spatial and temporal productivity patterns of forage productivity well. This remote sensing algorithm can be further improved as new field measurements become available. This tool will have a great importance in maintaining a sustainable range industry by providing key knowledge for ranchers and the stakeholders to make managerial decisions.

  14. Execution Plans for Cyber Foraging

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø

    2008-01-01

    Cyber foraging helps small devices perform heavy tasks by opportunistically discovering and utilising available resources (such as computation, storage, bandwidth, etc.) held by larger, nearby peers. This offloading is done in an ad-hoc manner, as larger machines will not always be within reach...

  15. Triticale for dairy forage systems

    Science.gov (United States)

    Triticale forages have become increasingly important components of dairy-cropping systems. In part, this trend has occurred in response to environmental pressures, specifically a desire to capture N and other nutrients from land-applied manure, and/or to improve stewardship of the land by providing ...

  16. Execution Plans for Cyber Foraging

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø

    2008-01-01

    Cyber foraging helps small devices perform heavy tasks by opportunistically discovering and utilising available resources (such as computation, storage, bandwidth, etc.) held by larger, nearby peers. This offloading is done in an ad-hoc manner, as larger machines will not always be within reach. ...

  17. Similar patterns of frequency-dependent selection on animal personalities emerge in three species of social spiders.

    Science.gov (United States)

    Lichtenstein, J L L; Pruitt, J N

    2015-06-01

    Frequency-dependent selection is thought to be a major contributor to the maintenance of phenotypic variation. We tested for frequency-dependent selection on contrasting behavioural strategies, termed here 'personalities', in three species of social spiders, each thought to represent an independent evolutionary origin of sociality. The evolution of sociality in the spider genus Anelosimus is consistently met with the emergence of two temporally stable discrete personality types: an 'aggressive' or 'docile' form. We assessed how the foraging success of each phenotype changes as a function of its representation within a colony. We did this by creating experimental colonies of various compositions (six aggressives, three aggressives and three dociles, one aggressive and five dociles, six dociles), maintaining them in a common garden for 3 weeks, and tracking the mass gained by individuals of either phenotype. We found that both the docile and aggressive phenotypes experienced their greatest mass gain in mixed colonies of mostly docile individuals. However, the performance of both phenotypes decreased as the frequency of the aggressive phenotype increased. Nearly identical patterns of phenotype-specific frequency dependence were recovered in all three species. Naturally occurring colonies of these spiders exhibit mixtures dominated by the docile phenotype, suggesting that these spiders may have evolved mechanisms to maintain the compositions that maximize the success of the colony without compromising the expected reproductive output of either phenotype. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  18. Risso's dolphins plan foraging dives.

    Science.gov (United States)

    Arranz, Patricia; Benoit-Bird, Kelly J; Southall, Brandon L; Calambokidis, John; Friedlaender, Ari S; Tyack, Peter L

    2018-02-28

    Humans remember the past and use that information to plan future actions. Lab experiments that test memory for the location of food show that animals have a similar capability to act in anticipation of future needs, but less work has been done on animals foraging in the wild. We hypothesized that planning abilities are critical and common in breath-hold divers who adjust each dive to forage on prey varying in quality, location and predictability within constraints of limited oxygen availability. We equipped Risso's dolphins with sound-and-motion recording tags to reveal where they focus their attention through their externally observable echolocation and how they fine tune search strategies in response to expected and observed prey distribution. The information from the dolphins was integrated with synoptic prey data obtained from echosounders on an underwater vehicle. At the start of the dives, whales adjusted their echolocation inspection ranges in ways that suggest planning to forage at a particular depth. Once entering a productive prey layer, dolphins reduced their search range comparable to the scale of patches within the layer, suggesting that they were using echolocation to select prey within the patch. On ascent, their search range increased, indicating that they decided to stop foraging within that layer and started searching for prey in shallower layers. Information about prey, learned throughout the dive, was used to plan foraging in the next dive. Our results demonstrate that planning for future dives is modulated by spatial memory derived from multi-modal prey sampling (echoic, visual and capture) during earlier dives. © 2018. Published by The Company of Biologists Ltd.

  19. Ambient Air Temperature Does Not Predict whether Small or Large Workers Forage in Bumble Bees (Bombus impatiens

    Directory of Open Access Journals (Sweden)

    Margaret J. Couvillon

    2010-01-01

    Full Text Available Bumble bees are important pollinators of crops and other plants. However, many aspects of their basic biology remain relatively unexplored. For example, one important and unusual natural history feature in bumble bees is the massive size variation seen between workers of the same nest. This size polymorphism may be an adaptation for division of labor, colony economics, or be nonadaptive. It was also suggested that perhaps this variation allows for niche specialization in workers foraging at different temperatures: larger bees might be better suited to forage at cooler temperatures and smaller bees might be better suited to forage at warmer temperatures. This we tested here using a large, enclosed growth chamber, where we were able to regulate the ambient temperature. We found no significant effect of ambient or nest temperature on the average size of bees flying to and foraging from a suspended feeder. Instead, bees of all sizes successfully flew and foraged between 16∘C and 36∘C. Thus, large bees foraged even at very hot temperatures, which we thought might cause overheating. Size variation therefore could not be explained in terms of niche specialization for foragers at different temperatures.

  20. Growth Mechanism of Microbial Colonies

    Science.gov (United States)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  1. Adélie penguin foraging location predicted by tidal regime switching.

    Science.gov (United States)

    Oliver, Matthew J; Irwin, Andrew; Moline, Mark A; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh

    2013-01-01

    Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.

  2. Brood pheromone effects on colony protein supplement consumption and growth in the honey bee (Hymenoptera: Apidae) in a subtropical winter climate.

    Science.gov (United States)

    Pankiw, Tanya; Sagili, Ramesh R; Metz, Bradley N

    2008-12-01

    Fatty acid esters extractable from the surface of honey bee, Apis mellifera L. (Hymenoptera: Apidae), larvae, called brood pheromone, significantly increase rate of colony growth in the spring and summer when flowering plant pollen is available in the foraging environment. Increased colony growth rate occurs as a consequence of increased pollen intake through mechanisms such as increasing number of pollen foragers and pollen load weights returned. Here, we tested the hypothesis that addition of brood pheromone during the winter pollen dearth period of a humid subtropical climate increases rate of colony growth in colonies provisioned with a protein supplement. Experiments were conducted in late winter (9 February-9 March 2004) and mid-winter (19 January-8 February 2005). In both years, increased brood area, number of bees, and amount of protein supplement consumption were significantly greater in colonies receiving daily treatments of brood pheromone versus control colonies. Amount of extractable protein from hypopharyngeal glands measured in 2005 was significantly greater in bees from pheromone-treated colonies. These results suggest that brood pheromone may be used as a tool to stimulate colony growth in the southern subtropical areas of the United States where the package bee industry is centered and a large proportion of migratory colonies are overwintered.

  3. Territorial biodiversity and consequences on physico-chemical characteristics of pollen collected by honey bee colonies

    OpenAIRE

    Odoux, Jean Francois; Feuillet, Dalila; Aupinel, Pierrick; Loublier, Yves; Tasei, Jean Noel; Mateescu, Cristina

    2012-01-01

    International audience; Pollen resources may become a constraint for the honey bee in cereal farming agrosystems and thus influence honey bee colony development. This survey intended to increase knowledge on bee ecology in order to understand how farming systems can provide bee forage throughout the year. We conducted a 1-year study to investigate the flower range exploited in an agrarian environment in western France, the physico-chemical composition of honey bee-collected pollen, the territ...

  4. Survey on Recent Research and Implementation of Ant Colony Optimization in Various Engineering Applications

    Directory of Open Access Journals (Sweden)

    Mohan B. Chandra

    2011-08-01

    Full Text Available Ant colony optimization (ACO takes inspiration from the foraging behaviour of real ant species. This ACO exploits a similar mechanism for solving optimization problems for the various engineering field of study. Many successful implementations using ACO are now available in many applications. This paper reviewing varies systematic approach on recent research and implementation of ACO. Finally it presents the experimental result of ACO which is applied for routing problem and compared with existing algorithms.

  5. Corn in consortium with forages

    Directory of Open Access Journals (Sweden)

    Cássia Maria de Paula Garcia

    2013-12-01

    Full Text Available The basic premises for sustainable agricultural development with focus on rural producers are reducing the costs of production and aggregation of values through the use crop-livestock system (CLS throughout the year. The CLS is based on the consortium of grain crops, especially corn with tropical forages, mainly of the genus Panicum and Urochloa. The study aimed to evaluate the grain yield of irrigated corn crop intercropped with forage of the genus Panicum and Urochloa. The experiment was conducted at the Fazenda de Ensino, Pesquisa e Extensão – FEPE  of the Faculdade de Engenharia - UNESP, Ilha Solteira in an Oxisol in savannah conditions and in the autumn winter of 2009. The experimental area was irrigated by a center pivot and had a history of no-tillage system for 8 years. The corn hybrid used was simple DKB 390 YG at distances of 0.90 m. The seeds of grasses were sown in 0.34 m spacing in the amount of 5 kg ha-1, they were mixed with fertilizer minutes before sowing  and placed in a compartment fertilizer seeder and fertilizers were mechanically deposited in the soil at a depth of 0.03 m. The experimental design used was a randomized block with four replications and five treatments: Panicum maximum cv. Tanzania sown during the nitrogen fertilization (CTD of the corn; Panicum maximum cv. Mombaça sown during the nitrogen fertilization (CMD of the corn; Urochloa brizantha cv. Xaraés sown during the occasion of nitrogen fertilization (CBD of the corn; Urochloa ruziziensis cv. Comumsown during the nitrogen fertilization (CRD of the corn and single corn (control. The production components of corn: plant population per hectare (PlPo, number of ears per hectare (NE ha-1, number of rows per ear (NRE, number of kernels per row on the cob (NKR, number of grain in the ear (NGE and mass of 100 grains (M100G were not influenced by consortium with forage. Comparing grain yield (GY single corn and maize intercropped with forage of the genus Panicum

  6. Parasites and Pathogens of the Honeybee (Apis mellifera and Their Influence on Inter-Colonial Transmission.

    Directory of Open Access Journals (Sweden)

    Nadège Forfert

    Full Text Available Pathogens and parasites may facilitate their transmission by manipulating host behavior. Honeybee pathogens and pests need to be transferred from one colony to another if they are to maintain themselves in a host population. Inter-colony transmission occurs typically through honeybee workers not returning to their home colony but entering a foreign colony ("drifting". Pathogens might enhance drifting to enhance transmission to new colonies. We here report on the effects infection by ten honeybee viruses and Nosema spp., and Varroa mite infestation on honeybee drifting. Genotyping of workers collected from colonies allowed us to identify genuine drifted workers as well as source colonies sending out drifters in addition to sink colonies accepting them. We then used network analysis to determine patterns of drifting. Distance between colonies in the apiary was the major factor explaining 79% of drifting. None of the tested viruses or Nosema spp. were associated with the frequency of drifting. Only colony infestation with Varroa was associated with significantly enhanced drifting. More specifically, colonies with high Varroa infestation had a significantly enhanced acceptance of drifters, although they did not send out more drifting workers. Since Varroa-infested colonies show an enhanced attraction of drifting workers, and not only those infected with Varroa and its associated pathogens, infestation by Varroa may also facilitate the uptake of other pests and parasites.

  7. Social Learning in Vespula Germanica Wasps: Do They Use Collective Foraging Strategies?

    OpenAIRE

    Lozada, Mariana; D? Adamo, Paola; Buteler, Micaela; Kuperman, Marcelo N.

    2016-01-01

    Vespula germanica is a social wasp that has become established outside its native range in many regions of the world, becoming a major pest in the invaded areas. In the present work we analyze social communication processes used by V. germanica when exploiting un-depleted food sources. For this purpose, we investigated the arrival pattern of wasps at a protein bait and evaluated whether a forager recruited conspecifics in three different situations: foragers were able to return to the nest (f...

  8. Understanding the Foraging Ecology of Beaked and Short-Finned Pilot Whales in Hawaiian Waters

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Understanding the Foraging Ecology of Beaked and Short...SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Understanding the Foraging Ecology of Beaked and Short...and Hildebrand, J. (2008). “Temporal pattern in the acoustic signals of beaked whales at Cross Seamount .” Biol. Lett. 4, 208-211. Lammers, M.O

  9. Conduct Research on the Foraging Ecology of Beaked Whales in Hawaiian Waters

    Science.gov (United States)

    2012-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Conduct Research on the Foraging Ecology of Beaked...number. 1. REPORT DATE 2012 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Conduct Research on the Foraging Ecology of...R., Wiggins, S., and Hildebrand, J. (2008). “Temporal pattern in the acoustic signals of beaked whales at Cross Seamount .” Biol. Lett. 4, 208-211

  10. Extreme precipitation variability, forage quality and large herbivore diet selection in arid environments

    Science.gov (United States)

    Cain, James W.; Gedir, Jay V.; Marshal, Jason P.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Jansen, Brian; Morgart, John R.

    2017-01-01

    Nutritional ecology forms the interface between environmental variability and large herbivore behaviour, life history characteristics, and population dynamics. Forage conditions in arid and semi-arid regions are driven by unpredictable spatial and temporal patterns in rainfall. Diet selection by herbivores should be directed towards overcoming the most pressing nutritional limitation (i.e. energy, protein [nitrogen, N], moisture) within the constraints imposed by temporal and spatial variability in forage conditions. We investigated the influence of precipitation-induced shifts in forage nutritional quality and subsequent large herbivore responses across widely varying precipitation conditions in an arid environment. Specifically, we assessed seasonal changes in diet breadth and forage selection of adult female desert bighorn sheep Ovis canadensis mexicana in relation to potential nutritional limitations in forage N, moisture and energy content (as proxied by dry matter digestibility, DMD). Succulents were consistently high in moisture but low in N and grasses were low in N and moisture until the wet period. Nitrogen and moisture content of shrubs and forbs varied among seasons and climatic periods, whereas trees had consistently high N and moderate moisture levels. Shrubs, trees and succulents composed most of the seasonal sheep diets but had little variation in DMD. Across all seasons during drought and during summer with average precipitation, forages selected by sheep were higher in N and moisture than that of available forage. Differences in DMD between sheep diets and available forage were minor. Diet breadth was lowest during drought and increased with precipitation, reflecting a reliance on few key forage species during drought. Overall, forage selection was more strongly associated with N and moisture content than energy content. Our study demonstrates that unlike north-temperate ungulates which are generally reported to be energy-limited, N and moisture

  11. Feeding-Related Traits Are Affected by Dosage of the foraging Gene in Drosophila melanogaster.

    Science.gov (United States)

    Allen, Aaron M; Anreiter, Ina; Neville, Megan C; Sokolowski, Marla B

    2017-02-01

    Nutrient acquisition and energy storage are critical parts of achieving metabolic homeostasis. The foraging gene in Drosophila melanogaster has previously been implicated in multiple feeding-related and metabolic traits. Before foraging's functions can be further dissected, we need a precise genetic null mutant to definitively map its amorphic phenotypes. We used homologous recombination to precisely delete foraging, generating the for 0 null allele, and used recombineering to reintegrate a full copy of the gene, generating the {for BAC } rescue allele. We show that a total loss of foraging expression in larvae results in reduced larval path length and food intake behavior, while conversely showing an increase in triglyceride levels. Furthermore, varying foraging gene dosage demonstrates a linear dose-response on these phenotypes in relation to foraging gene expression levels. These experiments have unequivocally proven a causal, dose-dependent relationship between the foraging gene and its pleiotropic influence on these feeding-related traits. Our analysis of foraging's transcription start sites, termination sites, and splicing patterns using rapid amplification of cDNA ends (RACE) and full-length cDNA sequencing, revealed four independent promoters, pr1-4, that produce 21 transcripts with nine distinct open reading frames (ORFs). The use of alternative promoters and alternative splicing at the foraging locus creates diversity and flexibility in the regulation of gene expression, and ultimately function. Future studies will exploit these genetic tools to precisely dissect the isoform- and tissue-specific requirements of foraging's functions and shed light on the genetic control of feeding-related traits involved in energy homeostasis. Copyright © 2017 by the Genetics Society of America.

  12. Prey fish returned to Forster's tern colonies suggest spatial and temporal differences in fish composition and availability.

    Science.gov (United States)

    Peterson, Sarah H; Ackerman, Joshua T; Eagles-Smith, Collin A; Herzog, Mark P; Hartman, C Alex

    2018-01-01

    Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster's tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster's terns are limited in the distance they forage; thus, changes in the prey species returned to Forster's tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available habitat.

  13. Prey fish returned to Forster’s tern colonies suggest spatial and temporal differences in fish composition and availability

    Science.gov (United States)

    Peterson, Sarah; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark; Hartman, C. Alex

    2018-01-01

    Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster’s tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster’s terns are limited in the distance they forage; thus, changes in the prey species returned to Forster’s tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available

  14. Pheromone-modulated behavioral suites influence colony growth in the honey bee (Apis mellifera)

    Science.gov (United States)

    Pankiw, Tanya; Roman, Roman; Sagili, Ramesh R.; Zhu-Salzman, Keyan

    2004-12-01

    The success of a species depends on its ability to assess its environment and to decide accordingly which behaviors are most appropriate. Many animal species, from bacteria to mammals, are able to communicate using interspecies chemicals called pheromones. In addition to exerting physiological effects on individuals, for social species, pheromones communicate group social structure. Communication of social structure is important to social insects for the allocation of its working members into coordinated suites of behaviors. We tested effects of long-term treatment with brood pheromone on suites of honey bee brood rearing and foraging behaviors. Pheromone-treated colonies reared significantly greater brood areas and more adults than controls, while amounts of stored pollen and honey remained statistically similar. Brood pheromone increased the number of pollen foragers and the pollen load weights they returned. It appeared that the pheromone-induced increase in pollen intake was directly canalized into more brood rearing. A two-way pheromone priming effect was observed, such that some workers from the same age cohorts showed an increased and extended capacity to rear larvae, while others were recruited at significantly younger ages into pollen-specific foraging. Brood pheromone affected suites of nursing and foraging behaviors allocating worker and pollen resources associated with an important fitness trait, colony growth.

  15. Honey Bee Inhibitory Signaling Is Tuned to Threat Severity and Can Act as a Colony Alarm Signal.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    2016-03-01

    Full Text Available Alarm communication is a key adaptation that helps social groups resist predation and rally defenses. In Asia, the world's largest hornet, Vespa mandarinia, and the smaller hornet, Vespa velutina, prey upon foragers and nests of the Asian honey bee, Apis cerana. We attacked foragers and colony nest entrances with these predators and provide the first evidence, in social insects, of an alarm signal that encodes graded danger and attack context. We show that, like Apis mellifera, A. cerana possesses a vibrational "stop signal," which can be triggered by predator attacks upon foragers and inhibits waggle dancing. Large hornet attacks were more dangerous and resulted in higher bee mortality. Per attack at the colony level, large hornets elicited more stop signals than small hornets. Unexpectedly, stop signals elicited by large hornets (SS large hornet had a significantly higher vibrational fundamental frequency than those elicited by small hornets (SS small hornet and were more effective at inhibiting waggle dancing. Stop signals resulting from attacks upon the nest entrance (SS nest were produced by foragers and guards and were significantly longer in pulse duration than stop signals elicited by attacks upon foragers (SS forager. Unlike SS forager, SS nest were targeted at dancing and non-dancing foragers and had the common effect, tuned to hornet threat level, of inhibiting bee departures from the safe interior of the nest. Meanwhile, nest defenders were triggered by the bee alarm pheromone and live hornet presence to heat-ball the hornet. In A. cerana, sophisticated recruitment communication that encodes food location, the waggle dance, is therefore matched with an inhibitory/alarm signal that encodes information about the context of danger and its threat level.

  16. Honey Bee Inhibitory Signaling Is Tuned to Threat Severity and Can Act as a Colony Alarm Signal.

    Science.gov (United States)

    Tan, Ken; Dong, Shihao; Li, Xinyu; Liu, Xiwen; Wang, Chao; Li, Jianjun; Nieh, James C

    2016-03-01

    Alarm communication is a key adaptation that helps social groups resist predation and rally defenses. In Asia, the world's largest hornet, Vespa mandarinia, and the smaller hornet, Vespa velutina, prey upon foragers and nests of the Asian honey bee, Apis cerana. We attacked foragers and colony nest entrances with these predators and provide the first evidence, in social insects, of an alarm signal that encodes graded danger and attack context. We show that, like Apis mellifera, A. cerana possesses a vibrational "stop signal," which can be triggered by predator attacks upon foragers and inhibits waggle dancing. Large hornet attacks were more dangerous and resulted in higher bee mortality. Per attack at the colony level, large hornets elicited more stop signals than small hornets. Unexpectedly, stop signals elicited by large hornets (SS large hornet) had a significantly higher vibrational fundamental frequency than those elicited by small hornets (SS small hornet) and were more effective at inhibiting waggle dancing. Stop signals resulting from attacks upon the nest entrance (SS nest) were produced by foragers and guards and were significantly longer in pulse duration than stop signals elicited by attacks upon foragers (SS forager). Unlike SS forager, SS nest were targeted at dancing and non-dancing foragers and had the common effect, tuned to hornet threat level, of inhibiting bee departures from the safe interior of the nest. Meanwhile, nest defenders were triggered by the bee alarm pheromone and live hornet presence to heat-ball the hornet. In A. cerana, sophisticated recruitment communication that encodes food location, the waggle dance, is therefore matched with an inhibitory/alarm signal that encodes information about the context of danger and its threat level.

  17. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  18. Starvation dynamics of a greedy forager

    Science.gov (United States)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-07-01

    We investigate the dynamics of a greedy forager that moves by random walking in an environment where each site initially contains one unit of food. Upon encountering a food-containing site, the forager eats all the food there and can subsequently hop an additional S steps without food before starving to death. Upon encountering an empty site, the forager goes hungry and comes one time unit closer to starvation. We investigate the new feature of forager greed; if the forager has a choice between hopping to an empty site or to a food-containing site in its nearest neighborhood, it hops preferentially towards food. If the neighboring sites all contain food or are all empty, the forager hops equiprobably to one of these neighbors. Paradoxically, the lifetime of the forager can depend non-monotonically on greed, and the sense of the non-monotonicity is opposite in one and two dimensions. Even more unexpectedly, the forager lifetime in one dimension is substantially enhanced when the greed is negative; here the forager tends to avoid food in its local neighborhood. We also determine the average amount of food consumed at the instant when the forager starves. We present analytic, heuristic, and numerical results to elucidate these intriguing phenomena.

  19. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use.

    Science.gov (United States)

    Smart, Matthew; Pettis, Jeff; Rice, Nathan; Browning, Zac; Spivak, Marla

    2016-01-01

    We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments.

  20. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use

    Science.gov (United States)

    Smart, Matthew; Pettis, Jeff; Rice, Nathan; Browning, Zac; Spivak, Marla

    2016-01-01

    We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering) and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments. PMID:27027871

  1. Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use.

    Directory of Open Access Journals (Sweden)

    Matthew Smart

    Full Text Available We previously characterized and quantified the influence of land use on survival and productivity of colonies positioned in six apiaries and found that colonies in apiaries surrounded by more land in uncultivated forage experienced greater annual survival, and generally more honey production. Here, detailed metrics of honey bee health were assessed over three years in colonies positioned in the same six apiaries. The colonies were located in North Dakota during the summer months and were transported to California for almond pollination every winter. Our aim was to identify relationships among measures of colony and individual bee health that impacted and predicted overwintering survival of colonies. We tested the hypothesis that colonies in apiaries surrounded by more favorable land use conditions would experience improved health. We modeled colony and individual bee health indices at a critical time point (autumn, prior to overwintering and related them to eventual spring survival for California almond pollination. Colony measures that predicted overwintering apiary survival included the amount of pollen collected, brood production, and Varroa destructor mite levels. At the individual bee level, expression of vitellogenin, defensin1, and lysozyme2 were important markers of overwinter survival. This study is a novel first step toward identifying pertinent physiological responses in honey bees that result from their positioning near varying landscape features in intensive agricultural environments.

  2. Benefits of collective intelligence: Swarm intelligent foraging, an ethnographic research

    Directory of Open Access Journals (Sweden)

    Sivave Mashingaidze

    2014-12-01

    Full Text Available Wisdom of crowds; bees, colonies of ants, schools of fish, flocks of birds, and fireflies flashing synchronously are all examples of highly coordinated behaviors that emerge from collective, decentralized intelligence. This article is an ethnographic study of swarm intelligence foraging of swarms and the benefits derived from collective decision making. The author used using secondary data analysis to look at the benefits of swarm intelligence in decision making to achieve intended goals. Concepts like combined decision making and consensus were discussed and four principles of swarm intelligence were also discussed viz; coordination, cooperation, deliberation and collaboration. The research found out that collective decision making in swarms is the touchstone of achieving their goals. The research further recommended corporate to adopt collective intelligence for business sustainability.

  3. Stochastic recruitment leads to symmetry breaking in foraging populations

    Science.gov (United States)

    Biancalani, Tommaso; Dyson, Louise; McKane, Alan

    2014-03-01

    When an ant colony is faced with two identical equidistant food sources, the foraging ants are found to concentrate more on one source than the other. Analogous symmetry-breaking behaviours have been reported in various population systems, (such as queueing or stock market trading) suggesting the existence of a simple universal mechanism. Past studies have neglected the effect of demographic noise and required rather complicated models to qualitatively reproduce this behaviour. I will show how including the effects of demographic noise leads to a radically different conclusion. The symmetry-breaking arises solely due to the process of recruitment and ceases to occur for large population sizes. The latter fact provides a testable prediction for a real system.

  4. Colonial Figures: Memories of Street Traders in the Colonial and Early Post-colonial Periods

    Directory of Open Access Journals (Sweden)

    Sheri Lynn Gibbings

    2012-12-01

    Full Text Available This article explores post-colonial memories about street traders among individuals who lived in the former colony of the Dutch East Indies. It argues that these narratives romanticize the relationship between Europeans and indigenous peoples. Street vendors are also used to differentiate between periods within colonial and post-colonial history. The nostalgic representation of interracial contact between Europeans and traders is contrasted with representations of other figures such as the Japanese and the nationalist. A recurring feature of these representations is the ability of Europeans to speak with street traders and imagine what they wanted and needed. The traders are remembered as a social type that transgressed politics and represented the neutrality of the economic sphere as a place for shared communication. The article concludes that the figure of the street vendor contributes to the nostalgic reinvention of the colony but is also used in narratives to differentiate between and mark changes across the colonial and post-colonial periods.

  5. Food and foraging preferences of three pteropodid bats in southern India

    Directory of Open Access Journals (Sweden)

    M.R Sudhakaran

    2012-01-01

    Full Text Available A study on the food, foraging and flight height in three species of pteropodid bats, namely Cynopterus sphinx, Rousettus leschenaultii and Pteropus giganteus was conducted in Tirunelveli and Tuticorin districts of southern Tamil Nadu, India. A total of 37 species of plants were identified as potential food plants of the pteropodid bats. The preference for fruits by pteropodids varied according to the developmental stages of fruits namely, immature, unripe and ripe. There is a relationship between the foraging activities of bats and the moon phase. Bats exhibit a varied foraging pattern and flight height. A variation in the foraging flight height was observed in C. sphinx and R. leschenaultii. R. leschenaultii was observed to have a higher foraging echelon than that of the C. sphinx. In our study we found that the C. sphinx forages normally at canopy level (up to 3.5m, R. leschenaultii forages at upper canopy levels (up to 9m and P. giganteus at a height above the canopy area (>9m.

  6. Preparation of Single-cohort Colonies and Hormone Treatment of Worker Honeybees to Analyze Physiology Associated with Role and/or Endocrine System.

    Science.gov (United States)

    Ueno, Takayuki; Kawasaki, Kiyoshi; Kubo, Takeo

    2016-09-06

    Honeybee workers are engaged in various tasks related to maintaining colony activity. The tasks of the workers change according to their age (age-related division of labor). Young workers are engaged in nursing the brood (nurse bees), while older workers are engaged in foraging for nectar and pollen (foragers). The physiology of the workers changes in association with this role shift. For example, the main function of the hypopharyngeal glands (HPGs) changes from the secretion of major royal jelly proteins (MRJPs) to the secretion of carbohydrate-metabolizing enzymes. Because worker tasks change as the workers age in typical colonies, it is difficult to discriminate the physiological changes that occur with aging from those that occur with the role shift. To study the physiological changes in worker tissues, including the HPGs, in association with the role shift, it would be useful to manipulate the honeybee colony population by preparing single-cohort colonies in which workers of almost the same age perform different tasks. Here we describe a detailed protocol for preparing single-cohort colonies for this analysis. Six to eight days after single-cohort colony preparation, precocious foragers that perform foraging tasks earlier than usual appear in the colony. Representative results indicated role-associated changes in HPG gene expression, suggesting role-associated HPG function. In addition to manipulating the colony population, analysis of the endocrine system is important for investigating role-associated physiology. Here, we also describe a detailed protocol for treating workers with 20-hydroxyecdysone (20E), an active form of ecdysone, and methoprene, a juvenile hormone analogue. The survival rate of treated bees was sufficient to examine gene expression in the HPGs. Gene expression changes were observed in response to 20E- and/or methoprene-treatment, suggesting that hormone treatments induce physiological changes of the HPGs. The protocol for hormone

  7. The Future Lunar Flora Colony

    Science.gov (United States)

    Goel, E. G.; Guven, U. G.

    2017-10-01

    A constructional design for the primary establishment for a lunar colony using the micrometeorite rich soil is proposed. It highlights the potential of lunar regolith combined with Earth technology for water and oxygen for human outposts on the Moon.

  8. Assessing insecticide hazard to bumble bees foraging on flowering weeds in treated lawns.

    Directory of Open Access Journals (Sweden)

    Jonathan L Larson

    Full Text Available Maintaining bee-friendly habitats in cities and suburbs can help conserve the vital pollination services of declining bee populations. Despite label precautions not to apply them to blooming plants, neonicotinoids and other residual systemic insecticides may be applied for preventive control of lawn insect pests when spring-flowering weeds are present. Dietary exposure to neonicotinoids adversely affects bees, but the extent of hazard from field usage is controversial. We exposed colonies of the bumble bee Bombus impatiens to turf with blooming white clover that had been treated with clothianidin, a neonicotinoid, or with chlorantraniliprole, the first anthranilic diamide labeled for use on lawns. The sprays were applied at label rate and lightly irrigated. After residues had dried, colonies were confined to forage for six days, and then moved to a non-treated rural site to openly forage and develop. Colonies exposed to clothianidin-treated weedy turf had delayed weight gain and produced no new queens whereas those exposed to chlorantraniliprole-treated plots developed normally compared with controls. Neither bumble bees nor honey bees avoided foraging on treated white clover in open plots. Nectar from clover blooms directly contaminated by spray residues contained 171±44 ppb clothianidin. Notably, neither insecticide adversely impacted bee colonies confined on the treated turf after it had been mown to remove clover blooms present at the time of treatment, and new blooms had formed. Our results validate EPA label precautionary statements not to apply neonicotinoids to blooming nectar-producing plants if bees may visit the treatment area. Whatever systemic hazard through lawn weeds they may pose appears transitory, however, and direct hazard can be mitigated by adhering to label precautions, or if blooms inadvertently are contaminated, by mowing to remove them. Chlorantraniliprole usage on lawns appears non-hazardous to bumble bees.

  9. Assessing Insecticide Hazard to Bumble Bees Foraging on Flowering Weeds in Treated Lawns

    Science.gov (United States)

    Larson, Jonathan L.; Redmond, Carl T.; Potter, Daniel A.

    2013-01-01

    Maintaining bee-friendly habitats in cities and suburbs can help conserve the vital pollination services of declining bee populations. Despite label precautions not to apply them to blooming plants, neonicotinoids and other residual systemic insecticides may be applied for preventive control of lawn insect pests when spring-flowering weeds are present. Dietary exposure to neonicotinoids adversely affects bees, but the extent of hazard from field usage is controversial. We exposed colonies of the bumble bee Bombus impatiens to turf with blooming white clover that had been treated with clothianidin, a neonicotinoid, or with chlorantraniliprole, the first anthranilic diamide labeled for use on lawns. The sprays were applied at label rate and lightly irrigated. After residues had dried, colonies were confined to forage for six days, and then moved to a non-treated rural site to openly forage and develop. Colonies exposed to clothianidin-treated weedy turf had delayed weight gain and produced no new queens whereas those exposed to chlorantraniliprole-treated plots developed normally compared with controls. Neither bumble bees nor honey bees avoided foraging on treated white clover in open plots. Nectar from clover blooms directly contaminated by spray residues contained 171±44 ppb clothianidin. Notably, neither insecticide adversely impacted bee colonies confined on the treated turf after it had been mown to remove clover blooms present at the time of treatment, and new blooms had formed. Our results validate EPA label precautionary statements not to apply neonicotinoids to blooming nectar-producing plants if bees may visit the treatment area. Whatever systemic hazard through lawn weeds they may pose appears transitory, however, and direct hazard can be mitigated by adhering to label precautions, or if blooms inadvertently are contaminated, by mowing to remove them. Chlorantraniliprole usage on lawns appears non-hazardous to bumble bees. PMID:23776667

  10. The bacterial communities associated with honey bee (Apis mellifera foragers.

    Directory of Open Access Journals (Sweden)

    Vanessa Corby-Harris

    Full Text Available The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop, a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1 despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2 corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3 the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae, highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation.

  11. Boa constrictor (Boa constrictor): foraging behavior

    Science.gov (United States)

    Sorrell, G.G.; Boback, M.S.; Reed, R.N.; Green, S.; Montgomery, Chad E.; DeSouza, L.S.; Chiaraviglio, M.

    2011-01-01

    Boa constrictor is often referred to as a sit-and-wait or ambush forager that chooses locations to maximize the likelihood of prey encounters (Greene 1983. In Janzen [ed.], Costa Rica Natural History, pp. 380-382. Univ. Chicago Press, Illinois). However, as more is learned about the natural history of snakes in general, the dichotomy between active versus ambush foraging is becoming blurred. Herein, we describe an instance of diurnal active foraging by a B. constrictor, illustrating that this species exhibits a range of foraging behaviors.

  12. U.S. DAIRY FORAGE RESEARCH CENTER

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  13. U.S. Dairy Forage Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — Vision: Leading the world in integrated dairy forage systems research. Mission: Providing dairy industry solutions for food security, environmental sustainability,...

  14. Characterization of tropical forage grass development pattern through the morphogenetic and structural characteristics Caracterização do padrão de desenvolvimento de gramíneas forrageiras tropicais por meio das características morfogênicas e estruturais

    Directory of Open Access Journals (Sweden)

    Carlindo Santos Rodrigues

    2011-03-01

    Full Text Available An experiment was carried out with the objective to evaluate growth pattern of tropical forage grass under free growth by using morphogenetic and structural characteristics with the expectation of using this study for forage grass evaluation protocol. The experimental area was established with two cultivars of Panicum maximum Jacq. (Mombaca and Aruana, a hybrid cultivar of P. maximum Jacq. and P. Infestum BRA-7102 (Massai, two cultivars of Brachiaria brizantha (A. Rich. Stapf (Marandu and Xaraes and Molasses grass (Melinis minutiflora Beauv. and jaragua grass (Hyparrhenia rufa (Nees Stapf.. The grasses were planted in 1.0-m² experimental units with 24 plants arranged in a completely randomized block design with three replications. Growth pattern of the grasses was evaluated through mass development, tiller mortality, development stage and leaf longevity. Development patterns differed significantly among groups of grasses, indicating that the same available resources can be used in different manners by grasses from the same genus and/or species.Um experimento foi conduzido com o objetivo de avaliar o padrão de desenvolvimento de gramíneas forrageiras tropicais em crescimento livre por meio das características morfogênicas e estruturais, com expectativa de uso desse estudo no protocolo de avaliação de gramíneas forrageiras. A área experimental foi estabelecida com dois cultivares de Panicum maximum Jacq. (Mombaça e Aruana, um cultivar híbrido de P. maximum Jacq. e P. infestum BRA-7102 (Massai, dois cultivares de Brachiaria brizantha (A. Rich. Stapf (Marandu e Xaraés e com os capins gordura (Melinis minutiflora Beauv. e jaraguá (Hyparrhenia rufa (Nees Stapf.. As gramíneas foram plantadas em unidades experimentais de 1,0 m² com 24 plantas arranjadas em delineamento de blocos completos casualizados com três repetições. O padrão de desenvolvimento das gramíneas foi avaliado por meio do desenvolvimento de massa, da mortalidade de

  15. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini) in temperate climate of Jalisco, México.

    Science.gov (United States)

    Macías-Macías, J O; Tapia-Gonzalez, J M; Contreras-Escareño, F

    2017-01-01

    Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.

  16. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini in temperate climate of Jalisco, México

    Directory of Open Access Journals (Sweden)

    J. O. Macías-Macías

    Full Text Available Abstract Melipona colimana Ayala is an endemic species inhabiting temperate forests of pine and oak of south of Jalisco in Mexico. During a year, it was recorded every 15 days foraging activity, environmental parameters and the development of colonies of M. colimana in its wild habitat. For five minutes every hour from 7:00 to 21:00, the bees that entered and left the hive and bringing pollen and resin were registered. Every hour the relative humidity, temperature, wind speed and light intensity was recorded and related to foraging activity. Additionally, the weight of the colonies recently transferred to wooden boxes, the number of brood combs, honey pots and pollen were registered. The time of beginning and ending of the foraging activity differs from the reports of stingless bees of tropical weather and the same happens with the pollen collection. The environmental parameters that affect other tropical stingless bees in the foraging activity also affect M. colimana in temperate climate. It was determined that the major activity season and the presence of more pollen pots in the colony is from November through February, for what it could be the best time of the year for the division and obtainance of new colonies, while the critical period of minor activity and pollen flow was during rainy season. These data may be useful for the future sustainable use of this species in temperate climate.

  17. Integrating Forage, Wildlife, Water, and Fish Projections with Timber Projections at the Regional Level: A Case Study in Southern United States

    Science.gov (United States)

    Linda A. Joyce; Curtis H. Flather; Patricia A. Flebbe; Thomas W. Hoekstra; Stan J. Ursic

    1990-01-01

    The impact of timber management and land-use change on forage production, turkey and deer abundance, red-cockaded woodpecker colonies, water yield, and trout abundance was projected as part of a policy study focusing on the southern United States. The multiresource modeling framework used in this study linked extant timber management and land-area policy models with...

  18. Maize forage aptitude: Combining ability of inbred lines and stability of hybrids

    Directory of Open Access Journals (Sweden)

    Luis Máximo Bertoia

    2014-12-01

    Full Text Available Breeding of forage maize should combine improvement achieved for grain with the specific needs of forage hybrids. Production stability is important when maize is used for silage if the planting area is not in the ideal agronomic environment. The objectives of the present research were: (i to quantify environmental and genetic and their interaction effects on maize silage traits; (ii to identify possible heterotic groups for forage aptitude and suggest the formation of potential heterotic patterns, and (iii to identify suitable inbred line combinations for producing hybrids with forage aptitude. Forty-five hybrids derived from diallelic crosses (without reciprocals among ten inbred lines of maize were evaluated in this study. Combined ANOVA over environments showed differences between genotypes (G, environments (E, and their interactions (GEI. Heritability (H2, and genotypic and phenotypic correlations were estimated to evaluate the variation in and relationships between forage traits. Postdictive and predictive AMMI models were fitted to determine the importance of each source of variation, G, E, and GEI, and to select genotypes simultaneously on yield, quality and stability. A predominance of additive effects was found in the evaluated traits. The heterotic pattern Reid-BSSS × Argentine flint was confirmed for ear yield (EY and harvest index (HI. High and broad genetic variation was found for stover and whole plant traits. Some inbred lines had genes with differential breeding aptitude for ear and stover. Stover and ear yield should be the main breeding objectives in maize forage breeding.

  19. Inductive foraging: improving the diagnostic yield of primary care consultations.

    Science.gov (United States)

    Donner-Banzhoff, Norbert; Hertwig, Ralph

    2014-03-01

    Physicians attempting to make a diagnosis arrive at specific hypotheses early in their encounter with patients. Further data are collected in the light of these early hypotheses. While this hypothetico-deductive model has been accepted as both a description of physicians' data gathering and a norm, little attention has been paid to the preceding stage of the consultation. It is suggested that 'inductive foraging' is a relevant and appropriate mode of data acquisition for the first part of the patient encounter. Research evidence from cognitive psychology and medical reasoning research is discussed. With inductive foraging, 'pattern failure' rather than 'pattern recognition' is the mode of discovery. Largely, guidance should be left to the patient to lead the clinician into areas where departures from normality are to be found. This is in contrast to active and focused 'deductive inquiry,' which should be used only after most aetiologies, but a few have eliminated. Especially when the prevalence of serious disease is low, and a wide range of diagnoses must be evaluated, such as in General Practice, inductive foraging is a rational and efficient diagnostic strategy. Previously, too little attention has been paid to the initial stage of the consultation. Premature closure at this point may result in diagnostic error.

  20. Primary versus secondary drivers of foraging activity in sandeel schools (Ammodytes tobianus)

    DEFF Research Database (Denmark)

    Deurs, Mikael van; Behrens, Jane; Warnar, Thomas

    2011-01-01

    to fishery biologists and has consequences for a wide range of predators ranging from birds and mammals to commercially important species. However, experimental studies that shed light on the primary drivers of foraging activity in fish are rare. In the present study, whole schools of sandeel (A. tobianus......The commercially and ecologically valuable sandeel (Ammodytes ssp.) make distinct vertical shifts between an inactive stage, during which they seek refuge in the sand, and a pelagic schooling stage, during which they forage. This characteristic discontinuous foraging pattern constitutes a challenge......) were caught in August in east Denmark (65A degrees 02'30N; 12A degrees 37'00E) and kept in large tanks in the laboratory. It was found that the amount of food ingested and memory of past days feeding history are primary drivers of foraging activity at the level of the entire school, whereas external...

  1. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats

    Directory of Open Access Journals (Sweden)

    Annette eDenzinger

    2013-07-01

    Full Text Available Throughout evolution the foraging and echolocation behaviors as well as the motor systems of bats have been adapted to the tasks they have to perform while searching and acquiring food. When bats exploit the same class of environmental resources in a similar way, they perform comparable tasks and thus share similar adaptations independent of their phylogeny. Species with similar adaptations are assigned to guilds or functional groups. Habitat type and foraging mode mainly determine the foraging tasks and thus the adaptations of bats. Therefore we use habitat type and foraging mode to define seven guilds. The habitat types open, edge and narrow space are defined according to the bats’ echolocation behavior in relation to the distance between bat and background or food item and background. Bats foraging in the aerial, trawling, flutter detecting, or active gleaning mode use only echolocation to acquire their food. When foraging in the passive gleaning mode bats do not use echolocation but rely on sensory cues from the food item to find it. Bat communities often comprise large numbers of species with a high diversity in foraging areas, foraging modes, and diets. The assignment of species living under similar constraints into guilds identifies pattern of community structure and helps to understand the factors that underlie the organization of highly diverse bat communities. Bat species from different guilds do not compete for food as they differ in their foraging behavior and in the environmental resources they use. However, sympatric living species belonging to the same guild often exploit the same class of resources. To avoid competition they should differ in their niche dimensions. The fine grain structure of bat communities below the rather coarse classification into guilds is determined by mechanisms that result in niche partitioning.

  2. Benefits of Group Foraging Depend on Prey Type in a Small Marine Predator, the Little Penguin.

    Science.gov (United States)

    Sutton, Grace J; Hoskins, Andrew J; Arnould, John P Y

    2015-01-01

    Group foraging provides predators with advantages in over-powering prey larger than themselves or in aggregating small prey for efficient exploitation. For group-living predatory species, cooperative hunting strategies provide inclusive fitness benefits. However, for colonial-breeding predators, the benefit pay-offs of group foraging are less clear due to the potential for intra-specific competition. We used animal-borne cameras to determine the prey types, hunting strategies, and success of little penguins (Eudyptula minor), a small, colonial breeding air-breathing marine predator that has recently been shown to display extensive at-sea foraging associations with conspecifics. Regardless of prey type, little penguins had a higher probability of associating with conspecifics when hunting prey that were aggregated than when prey were solitary. In addition, success was greater when individuals hunted schooling rather than solitary prey. Surprisingly, however, success on schooling prey was similar or greater when individuals hunted on their own than when with conspecifics. These findings suggest individuals may be trading-off the energetic gains of solitary hunting for an increased probability of detecting prey within a spatially and temporally variable prey field by associating with conspecifics.

  3. Reflected scatterometry for noninvasive interrogation of bacterial colonies

    Science.gov (United States)

    A phenotyping of bacterial colonies on agar plates using forward-scattering diffraction-pattern analysis provided promising classification of several different bacteria such as Salmonella, Vibrio, Listeria, and E. coli. Since the technique is based on forward-scattering phenomena, light transmittanc...

  4. Expression of the Foraging Gene Is Associated with Age Polyethism, Not Task Preference, in the Ant Cardiocondyla obscurior.

    Directory of Open Access Journals (Sweden)

    Jan Oettler

    Full Text Available One of the fundamental principles of social organization, age polyethism, describes behavioral maturation of workers leading to switches in task preference. Here we present a system that allows for studying division of labor (DOL by taking advantage of the relative short life of Cardiocondyla obscurior workers and thereby the pace of behavioral transitions. By challenging same-age young and older age cohorts to de novo establish DOL into nurse and foraging tasks and by forcing nurses to precociously become foragers and vice versa we studied expression patterns of one of the best known candidates for social insect worker behavior, the foraging gene. Contrary to our expectations we found that foraging gene expression correlates with age, but not with the task foraging per se. This suggests that this nutrition-related gene, and the pathways it is embedded in, correlates with physiological changes over time and potentially primes, but not determines task preference of individual workers.

  5. Analysis of Inter- and Intra-individual Variation in Foraging Habits of the Endangered Hawaiian Petrel Using Stables Isotopes

    Science.gov (United States)

    Morra, K. E.; Ostrom, P. H.; Wiley, A. E.; James, H. F.; Stricker, C. A.; Gandhi, H.

    2014-12-01

    Stable isotope analysis of the endangered Hawaiian petrel's (Pterodroma sandwichensis, HAPE) feathers provides otherwise intractable information regarding non-breeding season foraging habits. Adult HAPE spend 3.5-6 months at sea during the non-breeding season, at which time they sequentially molt their flight feathers. Because feathers are metabolically inert once synthesized, they capture isotopic signals while they are grown, providing an opportunity to study foraging habits over time. Here we use stable hydrogen (δD), carbon (δ13C) and nitrogen (δ15N) isotopes to assess variation in foraging habits within and between individuals, and among four breeding colonies. δD is an indicator of prevalence of fish vs. invertebrates in the diet. In one analysis, we observed large variation in feather δD (125‰), with adults from Maui and Kauai having significantly higher δD values than corresponding hatch-year birds, indicating significant dietary differences between age groups. In a second analysis, we utilized δ13C and δ15N of Hawaii, Maui and Lanai adults, values which vary with trophic level and also at the base of the food web across HAPE's foraging range, potentially revealing information about feeding location, as well as diet. Furthermore, because the sequence of molt is known, we are able to determine whether individual foraging specialization (continued use of the same foraging behavior over time) exists in this species. To do this, we analyzed two primary feathers, P1 and P6, which reflect the beginning and the middle of the non-breeding season, respectively. We did not find significant differences in δ13C or δ15N between P1 and P6, suggesting consistent foraging habits within individuals over time. This provides evidence that individual foraging specialization exists within these populations. Analysis of a secondary feather grown late in the molt sequence would further illuminate the extent of foraging specialization. Finally, δ15N differs

  6. Protein structure prediction using bee colony optimization metaheuristic

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Paluszewski, Martin; Winter, Pawel

    2010-01-01

    of the proteins structure, an energy potential and some optimization algorithm that ¿nds the structure with minimal energy. Bee Colony Optimization (BCO) is a relatively new approach to solving opti- mization problems based on the foraging behaviour of bees. Several variants of BCO have been suggested......Predicting the native structure of proteins is one of the most challenging problems in molecular biology. The goal is to determine the three-dimensional struc- ture from the one-dimensional amino acid sequence. De novo prediction algorithms seek to do this by developing a representation...... our BCO method to generate good solutions to the protein structure prediction problem. The results show that BCO generally ¿nds better solutions than simulated annealing which so far has been the metaheuristic of choice for this problem....

  7. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2011-01-01

    Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.

  8. Expression patterns of a circadian clock gene are associated with age-related polyethism in harvester ants, Pogonomyrmex occidentalis

    Directory of Open Access Journals (Sweden)

    Ingram Krista K

    2009-04-01

    Full Text Available Abstract Background Recent advances in sociogenomics allow for comparative analyses of molecular mechanisms regulating the development of social behavior. In eusocial insects, one key aspect of their sociality, the division of labor, has received the most attention. Age-related polyethism, a derived form of division of labor in ants and bees where colony tasks are allocated among distinct behavioral phenotypes, has traditionally been assumed to be a product of convergent evolution. Previous work has shown that the circadian clock is associated with the development of behavior and division of labor in honeybee societies. We cloned the ortholog of the clock gene, period, from a harvester ant (Pogonomyrmex occidentalis and examined circadian rhythms and daily activity patterns in a species that represents an evolutionary origin of eusociality independent of the honeybee. Results Using real time qPCR analyses, we determined that harvester ants have a daily cyclic expression of period and this rhythm is endogenous (free-running under dark-dark conditions. Cyclic expression of period is task-specific; foragers have strong daily fluctuations but nest workers inside the nest do not. These patterns correspond to differences in behavior as activity levels of foragers show a diurnal pattern while nest workers tend to exhibit continuous locomotor activity at lower levels. In addition, we found that foragers collected in the early fall (relative warm, long days exhibit a delay in the nightly peak of period expression relative to foragers collected in the early spring (relative cold, short days. Conclusion The association of period mRNA expression levels with harvester ant task behaviors suggests that the development of circadian rhythms is associated with the behavioral development of ants. Thus, the circadian clock pathway may represent a conserved 'genetic toolkit' that has facilitated the parallel evolution of age-related polyethism and task allocation in

  9. Developing Cyber Foraging Applications for Portable Devices

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2008-01-01

    This paper presents the Locusts cyber foraging framework. Cyber foraging is the opportunistic use of computing resources available in the nearby environment, and using such resources thus fall into the category of distributed computing. Furthermore, for the resources to be used efficiently, paral...

  10. Escaping the oligotrophic gyre? The year-round movements, foraging behaviour and habitat preferences of Murphy’s petrels

    OpenAIRE

    Clay, Thomas A.; Phillips, Richard A.; Manica, Andrea; Jackson, Hazel A.; Brooke, M. de L.

    2017-01-01

    The South Pacific Gyre is the world’s largest expanse of oligotrophic ocean and supports communities of endemic gadfly petrels Pterodroma spp., yet little is known about their foraging ecology in this nutrient-poor environment. We tracked Murphy’s petrels Pterodroma ultima with geolocators from Henderson Island, Pitcairn Islands, for 2 consecutive years (2011 to 2013). During pre-laying exodus, petrels travelled south and southwest of the colony, with males travelling further than females to ...

  11. Foraging loads of red wood ants: Formica aquilonia (Hymenoptera: Formicidae in relation to tree characteristics and stand age

    Directory of Open Access Journals (Sweden)

    Heloise Gibb

    2016-05-01

    Full Text Available Background. Foraging efficiency is critical in determining the success of organisms and may be affected by a range of factors, including resource distance and quality. For social insects such as ants, outcomes must be considered at the level of both the individual and the colony. It is important to understand whether anthropogenic disturbances, such as forestry, affect foraging loads, independent of effects on the quality and distribution of resources. We asked if ants harvest greater loads from more distant and higher quality resources, how individual efforts scale to the colony level, and whether worker loads are affected by stand age. Methods. First, we performed a fine-scale study examining the effect of distance and resource quality (tree diameter and species on harvesting of honeydew by red wood ants, Formica aquilonia, in terms of crop load per worker ant and numbers of workers walking up and down each tree (ant activity (study 1. Second, we modelled what the combination of load and worker number responses meant for colony-level foraging loads. Third, at a larger scale, we asked whether the relationship between worker load and resource quality and distance depended on stand age (study 2. Results. Study 1 revealed that seventy percent of ants descending trees carried honeydew, and the percentage of workers that were honeydew harvesters was not related to tree species or diameter, but increased weakly with distance. Distance positively affected load mass in both studies 1 and 2, while diameter had weak negative effects on load. Relationships between load and distance and diameter did not differ among stands of different ages. Our model showed that colony-level loads declined much more rapidly with distance for small diameter than large diameter trees. Discussion. We suggest that a negative relationship between diameter and honeydew load detected in study 1 might be a result of crowding on large diameter trees close to nests, while the

  12. Colonial Bilingual Heritage and Post-Colonial Myths in Cameroon's ...

    African Journals Online (AJOL)

    Thus, the study traces and shows that an uncritical support of the existing school bilingualism, a aspect of the general political objective of national unity and integration, hinges on a fictitious collective post-colonial dream about using the bilingual heritage of French and English, and the cultures that lie behind them, ...

  13. Detection of fungi colony growth on bones by dynamic speckle

    Science.gov (United States)

    Vincitorio, F. M.; Budini, N.; Mulone, C.; Spector, M.; Freyre, C.; López Díaz, A. J.; Ramil, A.

    2013-11-01

    In this work we have studied the dynamic speckle patterns of mucor fungi colonies, which were inoculated on different samples. We were interested in analyzing the development of fungi colonies in bones, since during the last two years, a series of infections by mucor fungi have been reported on patients from different hospitals in Argentina. Coincidentally, all of these infections appeared on patients that were subjected to a surgical intervention for implantation of a titanium prosthesis. Apparently, the reason of the infection was a deficient sterilization process in conjunction with an accidental contamination. We observed that fungi growth, activity and death can be distinguished by means of the dynamic speckle technique.

  14. Chinstrap penguin foraging area associated with a seamount in Bransfield Strait, Antarctica

    Science.gov (United States)

    Kokubun, Nobuo; Lee, Won Young; Kim, Jeong-Hoon; Takahashi, Akinori

    2015-12-01

    Identifying marine features that support high foraging performance of predators is useful to determine areas of ecological importance. This study aimed to identify marine features that are important for foraging of chinstrap penguins (Pygoscelis antarcticus), an abundant upper-trophic level predator in the Antarctic Peninsula region. We investigated the foraging locations of penguins breeding on King George Island using GPS-depth loggers. Tracking data from 18 birds (4232 dives), 11 birds (2095 dives), and 19 birds (3947 dives) were obtained in 2007, 2010, and 2015, respectively. In all three years, penguins frequently visited an area near a seamount (Orca Seamount) in Bransfield Strait. The percentage of dives (27.8% in 2007, 36.1% in 2010, and 19.1% in 2015) and depth wiggles (27.1% in 2007, 37.2% in 2010, and 22.3% in 2015) performed in this area was higher than that expected from the size of the area and distance from the colony (8.4% for 2007, 14.7% for 2010, and 6.3% for 2015). Stomach content analysis showed that the penguins fed mainly on Antarctic krill. These results suggest that the seamount provided a favorable foraging area for breeding chinstrap penguins, with high availability of Antarctic krill, possibly related to local upwelling.

  15. Foraging-Based Enrichment Promotes More Varied Behaviour in Captive Australian Fur Seals (Arctocephalus pusillus doriferus)

    Science.gov (United States)

    Hocking, David P.; Salverson, Marcia; Evans, Alistair R.

    2015-01-01

    During wild foraging, Australian fur seals (Arctocephalus pusillus doriferus) encounter many different types of prey in a wide range of scenarios, yet in captive environments they are typically provided with a narrower range of opportunities to display their full repertoire of behaviours. This study aimed to quantitatively explore the effect of foraging-based enrichment on the behaviour and activity patterns displayed by two captive Australian fur seals at Melbourne Zoo, Australia. Food was presented as a scatter in open water, in a free-floating ball device, or in a static box device, with each treatment separated by control trials with no enrichment. Both subjects spent more time interacting with the ball and static box devices than the scatter feed. The total time spent pattern swimming was reduced in the enrichment treatments compared to the controls, while the time spent performing random swimming behaviours increased. There was also a significant increase in the total number of bouts of behaviour performed in all three enrichment treatments compared to controls. Each enrichment method also promoted a different suit of foraging behaviours. Hence, rather than choosing one method, the most effective way to increase the diversity of foraging behaviours, while also increasing variation in general activity patterns, is to provide seals with a wide range of foraging scenarios where food is encountered in different ways. PMID:25946412

  16. Emergence of polymorphic mating strategies in robot colonies.

    Directory of Open Access Journals (Sweden)

    Stefan Elfwing

    Full Text Available Polymorphism has fascinated evolutionary biologists since the time of Darwin. Biologists have observed discrete alternative mating strategies in many different species. In this study, we demonstrate that polymorphic mating strategies can emerge in a colony of hermaphrodite robots. We used a survival and reproduction task where the robots maintained their energy levels by capturing energy sources and physically exchanged genotypes for the reproduction of offspring. The reproductive success was dependent on the individuals' energy levels, which created a natural trade-off between the time invested in maintaining a high energy level and the time invested in attracting mating partners. We performed experiments in environments with different density of energy sources and observed a variety in the mating behavior when a robot could see both an energy source and a potential mating partner. The individuals could be classified into two phenotypes: 1 forager, who always chooses to capture energy sources, and 2 tracker, who keeps track of potential mating partners if its energy level is above a threshold. In four out of the seven highest fitness populations in different environments, we found subpopulations with distinct differences in genotype and in behavioral phenotype. We analyzed the fitnesses of the foragers and the trackers by sampling them from each subpopulation and mixing with different ratios in a population. The fitness curves for the two subpopulations crossed at about 25% of foragers in the population, showing the evolutionary stability of the polymorphism. In one of those polymorphic populations, the trackers were further split into two subpopulations: (strong trackers and (weak trackers. Our analyses show that the population consisting of three phenotypes also constituted several stable polymorphic evolutionarily stable states. To our knowledge, our study is the first to demonstrate the emergence of polymorphic evolutionarily stable

  17. Analysis of lead concentration in forager stingless bees Trigona sp. (hymenoptera: Apidae) and propolis at Cilutung and Maribaya, West Java

    Energy Technology Data Exchange (ETDEWEB)

    Safira, Nabila, E-mail: safira.nabila@ymail.com; Anggraeni, Tjandra, E-mail: tjandra@sith.itb.ac.id [School of Life Science and Technology, Institut Teknologi Bandung – Jalan Ganesha 10, Bandung (Indonesia)

    2015-09-30

    Several studies had shown that lead (Pb) in the environment could accumulate in bees, which in turn could affect the quality of the resulting product. In this study, forager stingless bees (Trigona sp.) and its product (propolis) collected from a stingless bees apiculture. This apiculture had two apiary sites which were distinguished by its environmental setting. Apiary site in Cilutung had a forest region environmental setting, while apiary site in Maribaya was located beside the main road. The objective of this study was to determine the extent of lead concentration in propolis originated from both apiary sites and establish the correlation between lead concentration in propolis and lead level in forager stingless bees. Forager bees and propolis samples were originated from 50 bees colonies (Cilutung) and 44 bees colonies (Maribaya). They were analyzed using AAS-GF (Atomic Absorption Spectrometre–Graphite Furnace) to determine the level of lead concentration. The results showed that the average level of lead in propolis originated from Cilutung (298.08±73.71 ppb) was lower than the average level of lead in forager bees which originated from Maribaya (330.64±156.34 ppb). However, these values did not show significant difference (p>0.05). There was no significant difference (p>0.05) between the average level of lead in forager bees which originated from Cilutung (118.08±30.46 ppb) and Maribaya (128.82±39.66 ppb). However, these values did not show significant difference (p>0.05). In conclusion, the average level of lead concentration in propolis in both sites had passed the maximum permission standard of lead for food in Indonesia. There was no correlation between lead concentration in propolis and forager stingless bees.

  18. Stable Isotopes Reveal Long-Term Fidelity to Foraging Grounds in the Galapagos Sea Lion (Zalophus wollebaeki.

    Directory of Open Access Journals (Sweden)

    Massimiliano Drago

    Full Text Available Most otariids have colony-specific foraging areas during the breeding season, when they behave as central place foragers. However, they may disperse over broad areas after the breeding season and individuals from different colonies may share foraging grounds at that time. Here, stable isotope ratios in the skull bone of adult Galapagos sea lions (Zalophus wollebaeki were used to assess the long-term fidelity of both sexes to foraging grounds across the different regions of the Galapagos archipelago. Results indicated that the stable isotope ratios (δ(13C and δ(15N of sea lion bone significantly differed among regions of the archipelago, without any significant difference between sexes and with a non significant interaction between sex and region. Moreover, standard ellipses, estimated by Bayesian inference and used as a measure of the isotopic resource use area at the population level, overlapped widely for the sea lions from the southern and central regions, whereas the overlap of the ellipses for sea lions from the central and western regions was small and non-existing for those from the western and southern regions. These results suggest that males and females from the same region within the archipelago use similar foraging grounds and have similar diets. Furthermore, they indicate that the exchange of adults between regions is limited, thus revealing a certain degree of foraging philopatry at a regional scale within the archipelago. The constraints imposed on males by an expanded reproductive season (~ 6 months, resulting from the weak reproductive synchrony among females, and those imposed on females by a very long lactation period (at least one year but up to three years, may explain the limited mobility of adult Galapagos sea lions of both sexes across the archipelago.

  19. Dietary variation and stress among prehistoric Jomon foragers from Japan.

    Science.gov (United States)

    Temple, Daniel H

    2007-08-01

    Current archaeological evidence indicates that greater dietary reliance on marine resources is recorded among the eastern Jomon, while plant dependence prevailed in western/inland Japan. The hypothesis that the dietary choices of the western/inland Jomon will be associated with greater systemic stress is tested by comparing carious tooth and enamel hypoplasia frequencies between the eastern and western/inland Jomon. Demographic collapse coincides with climate change during the Middle to Late Jomon period, suggesting dwindling resource availability. It is hypothesized that this change was associated with greater systemic stress and/or dietary change among the Middle to Late Jomon. This hypothesis is tested by comparing enamel hypoplasia and carious tooth frequencies between Middle to Late and Late to Final Jomon foragers. Enamel hypoplasia was significantly more prevalent among the western/inland Jomon. Such findings are consistent with archaeological studies that argue for greater plant consumption and stresses associated with seasonal resource depletion among the western/inland Jomon. Approximately equivalent enamel hypoplasia frequencies between Middle to Late and Late to Final Jomon foragers argues against a demographic collapse in association with diminished nutritional returns. Significant differences in carious tooth frequencies are, however, observed between Middle to Late and Late to Final Jomon foragers. These results suggest a subsistence shift during the Middle to Late Jomon period, perhaps in response to a changed climate. The overall patterns of stress documented by this study indicate wide-spread environmentally directed biological variation among the prehistoric Jomon. (c) 2007 Wiley-Liss, Inc.

  20. Resource heterogeneity and foraging behaviour of cattle across spatial scales

    Directory of Open Access Journals (Sweden)

    Demment Montague W

    2009-04-01

    Full Text Available Abstract Background Understanding the mechanisms that influence grazing selectivity in patchy environments is vital to promote sustainable production and conservation of cultivated and natural grasslands. To better understand how patch size and spatial dynamics influence selectivity in cattle, we examined grazing selectivity under 9 different treatments by offering alfalfa and fescue in patches of 3 sizes spaced with 1, 4, and 8 m between patches along an alley. We hypothesized that (1 selectivity is driven by preference for the forage species that maximizes forage intake over feeding scales ranging from single bites to patches along grazing paths, (2 that increasing patch size enhances selectivity for the preferred species, and that (3 increasing distances between patches restricts selectivity because of the aggregation of scale-specific behaviours across foraging scales. Results Cows preferred and selected alfalfa, the species that yielded greater short-term intake rates (P Conclusion We conclude that patch size and spacing affect components of intake rate and, to a lesser extent, the selectivity of livestock at lower hierarchies of the grazing process, particularly by enticing livestock to make more even use of the available species as patches are spaced further apart. Thus, modifications in the spatial pattern of plant patches along with reductions in the temporal and spatial allocation of grazing may offer opportunities to improve uniformity of grazing by livestock and help sustain biodiversity and stability of plant communities.

  1. Dutch Colonial Nostalgia Across Decolonisation

    NARCIS (Netherlands)

    Bijl, P.

    2013-01-01

    This article argues that nostalgia for colonialism in the Netherlands, the so called tempo doeloe culture, is not a specifically postcolonial phenomenon caused by the collapse of the Dutch empire in Asia. In fact, nostalgia for the Dutch East Indies can be traced back to the nineteenth century, when

  2. Colonial adventures in tropical agriculture

    NARCIS (Netherlands)

    Buelens, Frans; Frankema, Ewout

    2016-01-01

    How profitable were foreign investments in plantation agriculture in the Netherlands Indies during the late colonial era? We use a new dataset of monthly quoted stock prices and dividends of international companies at the Brussels stock exchange to estimate the returns to investment in tropical

  3. Affective Politics and Colonial Heritage

    DEFF Research Database (Denmark)

    Knudsen, Britta Timm; Andersen, Casper

    2017-01-01

    The article analyses the spatial entanglement of colonial heritage struggles through a study of the Rhodes Must Fall student movement at the University of Cape Town and the University of Oxford. We explore affective politics and the role heritage can play in the landscape of body politics. We aim...

  4. Ant Colony Optimization for Control

    NARCIS (Netherlands)

    Van Ast, J.M.

    2010-01-01

    The very basis of this thesis is the collective behavior of ants in colonies. Ants are an excellent example of how rather simple behavior on a local level can lead to complex behavior on a global level that is beneficial for the individuals. The key in the self-organization of ants is communication

  5. Queen introduction into the queenright honey bee colony

    Directory of Open Access Journals (Sweden)

    Antonín Přidal

    2010-01-01

    Full Text Available One of the actual elementary biologic principles of the introduction of queen is that the recipient co­lo­ny has to be queenless. We accidentally found that a queen can be accepted also in queenright co­lo­ny with using of the queen excluder. Therefore, we conducted two experiments with the introduction of queen in queenright colony.Under defined conditions of the experiment and with application of the queen excluder as a separator of queens we successfully introduced queen in the queenright colony. This result is discussed in relation to the general principle that a queen should be introduced only in a queenless colony. It is possible that there are some exceptions advert to the existence of some unknown biologic patterns in the honey bee biology and pheromones.

  6. Red-cockaded woodpecker male/female foraging differences in young forest stands.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2010-07-01

    ABSTRACT The Red-cockaded Woodpecker (Picoides borealis) is an endangered species endemic to pine (Pinus spp.) forests of the southeastern United States. I examined Red-cockaded Woodpecker foraging behavior to learn if there were male/female differences at the Savannah River Site, South Carolina. The study was conducted in largely young forest stands (,50 years of age) in contrast to earlier foraging behavior studies that focused on more mature forest. The Redcockaded Woodpecker at the Savannah River site is intensively managed including monitoring, translocation, and installation of artificial cavity inserts for roosting and nesting. Over a 3-year period, 6,407 foraging observations covering seven woodpecker family groups were recorded during all seasons of the year and all times of day. The most striking differences occurred in foraging method (males usually scaled [45% of observations] and females mostly probed [47%]),substrate used (females had a stronger preference [93%] for the trunk than males [79%]), and foraging height from the ground (mean 6 SE foraging height was higher for males [11.1 6 0.5 m] than females [9.8 6 0.5 m]). Niche overlap between males and females was lowest for substrate (85.6%) and foraging height (87.8%), and highest for tree species (99.0%), tree condition (98.3%), and tree height (96.4%). Both males and females preferred to forage in older, large pine trees. The habitat available at the Savannah River Site was considerably younger than at most other locations, but the pattern of male/female habitat partitioning observed was similar to that documented elsewhere within the range attesting to the species’ ability to adjust behaviorally.

  7. A global comparison of the nutritive values of forage plants grown in contrasting environments.

    Science.gov (United States)

    Lee, Mark A

    2018-03-17

    Forage plants are valuable because they maintain wild and domesticated herbivores, and sustain the delivery of meat, milk and other commodities. Forage plants contain different quantities of fibre, lignin, minerals and protein, and vary in the proportion of their tissue that can be digested by herbivores. These nutritive components are important determinants of consumer growth rates, reproductive success and behaviour. A dataset was compiled to quantify variation in forage plant nutritive values within- and between-plant species, and to assess variation between plant functional groups and bioclimatic zones. 1255 geo-located records containing 3774 measurements of nutritive values for 136 forage plant species grown in 30 countries were obtained from published articles. Spatial variability in forage nutritive values indicated that climate modified plant nutritive values. Forage plants grown in arid and equatorial regions generally contained less digestible material than those grown in temperate and tundra regions; containing more fibre and lignin, and less protein. These patterns may reveal why herbivore body sizes, digestion and migration strategies are different in warmer and drier regions. This dataset also revealed the capacity for variation in the nutrition provided by forage plants, which may drive consumer species coexistence. The proportion of the plant tissue that was digestible ranged between species from 2 to 91%. The amount of fibre contained within plant material ranged by 23-90%, protein by 2-36%, lignin by 1-21% and minerals by 2-22%. On average, grasses and tree foliage contained the most fibre, whilst herbaceous legumes contained the most protein and tree foliage contained the most lignin. However, there were individual species within each functional group that were highly nutritious. This dataset may be used to identify forage plant species or mixtures of species from different functional groups with useful nutritional traits which can be cultivated

  8. Between Past and Present: The Sociopsychological Constructs of Colonialism, Coloniality and Postcolonialism.

    Science.gov (United States)

    Tomicic, Ana; Berardi, Filomena

    2018-03-01

    If one of the major aspirations of postcolonial theory is to re-establish a balance in the relationship between the (former) colonizer and the colonized by engaging the voices of the "subaltern", and on the other hand to illuminate how power relations of the present are embedded in history (Mills 2007), we argue that important theoretical insights might inform research by anchoring post-colonial theory within a sociopsychological framework. While there is a growing corpus of sociopsychological research articles focusing on how major geopolitical events and historical processes bear on people's lives, we aim to investigate the theoretical potential of postcolonial theory within the disciplines aiming at a sociopsychological approach. By focusing on the social dynamics of power imbalances, post-colonial theory finds its operational meaning: the feelings stemming from actions committed in the past are indeed crucial in determining reparatory attitudes and policies towards members of former colonized groups. Firstly, drawing from the sociopsychological scientific production related to consequences of colonial past, seen in recent years as a growing research interest in the field, we will explore patterns and trends through a thematic analysis of literature. Social Psychology as well as adjacent disciplines can greatly benefit from this theoretical fertilization, especially in the way post-colonial ideologies relate to the symbolic promotion versus exclusion of indigenous culture (Sengupta et al., International Journal of Intercultural Relations, 36(4), 506-517, 2012). Furthermore, by comparing and contrasting the ideological cosmologies relating to this particular topic, this study aims to establish the state of knowledge in the field, to identify how research methods and thematic fields are paired, to find "gaps" and create spaces for research that become integrative of postcolonial theory. While focusing on academic production, we also hope to contribute to develop

  9. Selective sweeps in growing microbial colonies

    International Nuclear Information System (INIS)

    Korolev, Kirill S; Müller, Melanie J I; Murray, Andrew W; Nelson, David R; Karahan, Nilay; Hallatschek, Oskar

    2012-01-01

    Evolutionary experiments with microbes are a powerful tool to study mutations and natural selection. These experiments, however, are often limited to the well-mixed environments of a test tube or a chemostat. Since spatial organization can significantly affect evolutionary dynamics, the need is growing for evolutionary experiments in spatially structured environments. The surface of a Petri dish provides such an environment, but a more detailed understanding of microbial growth on Petri dishes is necessary to interpret such experiments. We formulate a simple deterministic reaction–diffusion model, which successfully predicts the spatial patterns created by two competing species during colony expansion. We also derive the shape of these patterns analytically without relying on microscopic details of the model. In particular, we find that the relative fitness of two microbial strains can be estimated from the logarithmic spirals created by selective sweeps. The theory is tested with strains of the budding yeast Saccharomyces cerevisiae for spatial competitions with different initial conditions and for a range of relative fitnesses. The reaction–diffusion model also connects the microscopic parameters like growth rates and diffusion constants with macroscopic spatial patterns and predicts the relationship between fitness in liquid cultures and on Petri dishes, which we confirmed experimentally. Spatial sector patterns therefore provide an alternative fitness assay to the commonly used liquid culture fitness assays. (paper)

  10. Selective sweeps in growing microbial colonies

    Science.gov (United States)

    Korolev, Kirill S.; Müller, Melanie J. I.; Karahan, Nilay; Murray, Andrew W.; Hallatschek, Oskar; Nelson, David R.

    2012-04-01

    Evolutionary experiments with microbes are a powerful tool to study mutations and natural selection. These experiments, however, are often limited to the well-mixed environments of a test tube or a chemostat. Since spatial organization can significantly affect evolutionary dynamics, the need is growing for evolutionary experiments in spatially structured environments. The surface of a Petri dish provides such an environment, but a more detailed understanding of microbial growth on Petri dishes is necessary to interpret such experiments. We formulate a simple deterministic reaction-diffusion model, which successfully predicts the spatial patterns created by two competing species during colony expansion. We also derive the shape of these patterns analytically without relying on microscopic details of the model. In particular, we find that the relative fitness of two microbial strains can be estimated from the logarithmic spirals created by selective sweeps. The theory is tested with strains of the budding yeast Saccharomyces cerevisiae for spatial competitions with different initial conditions and for a range of relative fitnesses. The reaction-diffusion model also connects the microscopic parameters like growth rates and diffusion constants with macroscopic spatial patterns and predicts the relationship between fitness in liquid cultures and on Petri dishes, which we confirmed experimentally. Spatial sector patterns therefore provide an alternative fitness assay to the commonly used liquid culture fitness assays.

  11. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    Science.gov (United States)

    Zhang, Jun; Dolg, Michael

    2015-10-07

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.

  12. Social Learning in Vespula Germanica Wasps: Do They Use Collective Foraging Strategies?

    Science.gov (United States)

    Lozada, Mariana; D' Adamo, Paola; Buteler, Micaela; Kuperman, Marcelo N

    2016-01-01

    Vespula germanica is a social wasp that has become established outside its native range in many regions of the world, becoming a major pest in the invaded areas. In the present work we analyze social communication processes used by V. germanica when exploiting un-depleted food sources. For this purpose, we investigated the arrival pattern of wasps at a protein bait and evaluated whether a forager recruited conspecifics in three different situations: foragers were able to return to the nest (full communication), foragers were removed on arrival (communication impeded), or only one forager was allowed to return to the nest (local enhancement restricted). Results demonstrated the existence of recruitment in V. germanica, given that very different patterns of wasp arrivals and a higher frequency of wasp visits to the resource were observed when communication flow between experienced and naive foragers was allowed. Our findings showed that recruitment takes place at a distance from the food source, in addition to local enhancement. When both local enhancement and distant recruitment were occurring simultaneously, the pattern of wasp arrival was exponential. When recruitment occurred only distant from the feeder, the arrival pattern was linear, but the number of wasps arriving was twice as many as when neither communication nor local enhancement was allowed. Moreover, when return to the nest was impeded, wasp arrival at the bait was regular and constant, indicating that naive wasps forage individually and are not spatially aggregated. In conclusion, this is the first study to demonstrate recruitment in V. germanica at a distance from the food source by modelling wasps' arrival to a protein-based resource. In addition, the existence of correlations when communication was allowed and reflected in tandem arrivals indicates that we were not in the presence of random processes.

  13. Social Learning in Vespula Germanica Wasps: Do They Use Collective Foraging Strategies?

    Directory of Open Access Journals (Sweden)

    Mariana Lozada

    Full Text Available Vespula germanica is a social wasp that has become established outside its native range in many regions of the world, becoming a major pest in the invaded areas. In the present work we analyze social communication processes used by V. germanica when exploiting un-depleted food sources. For this purpose, we investigated the arrival pattern of wasps at a protein bait and evaluated whether a forager recruited conspecifics in three different situations: foragers were able to return to the nest (full communication, foragers were removed on arrival (communication impeded, or only one forager was allowed to return to the nest (local enhancement restricted. Results demonstrated the existence of recruitment in V. germanica, given that very different patterns of wasp arrivals and a higher frequency of wasp visits to the resource were observed when communication flow between experienced and naive foragers was allowed. Our findings showed that recruitment takes place at a distance from the food source, in addition to local enhancement. When both local enhancement and distant recruitment were occurring simultaneously, the pattern of wasp arrival was exponential. When recruitment occurred only distant from the feeder, the arrival pattern was linear, but the number of wasps arriving was twice as many as when neither communication nor local enhancement was allowed. Moreover, when return to the nest was impeded, wasp arrival at the bait was regular and constant, indicating that naive wasps forage individually and are not spatially aggregated. In conclusion, this is the first study to demonstrate recruitment in V. germanica at a distance from the food source by modelling wasps' arrival to a protein-based resource. In addition, the existence of correlations when communication was allowed and reflected in tandem arrivals indicates that we were not in the presence of random processes.

  14. Sympatric cattle grazing and desert bighorn sheep foraging

    Science.gov (United States)

    Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2015-01-01

    Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by

  15. Queen promiscuity lowers disease within honeybee colonies

    Science.gov (United States)

    Seeley, Thomas D; Tarpy, David R

    2006-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. Later, we inoculated these colonies with spores of Paenibacillus larvae, the bacterium that causes a highly virulent disease of honeybee larvae (American foulbrood). We found that, on average, colonies headed by multiple-drone inseminated queens had markedly lower disease intensity and higher colony strength at the end of the summer relative to colonies headed by single-drone inseminated queens. These findings support the hypothesis that polyandry by social insect queens is an adaptation to counter disease within their colonies. PMID:17015336

  16. BEE FORAGE MAPPING BASED ON MULTISPECTRAL IMAGES LANDSAT

    Directory of Open Access Journals (Sweden)

    A. Moskalenko

    2016-10-01

    Full Text Available Possibilities of bee forage identification and mapping based on multispectral images have been shown in the research. Spectral brightness of bee forage has been determined with the use of satellite images. The effectiveness of some methods of image classification for mapping of bee forage is shown. Keywords: bee forage, mapping, multispectral images, image classification.

  17. Colonies of Bumble Bees (Bombus impatiens Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure

    Directory of Open Access Journals (Sweden)

    Olivia M. Bernauer

    2015-06-01

    Full Text Available Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens. Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  18. The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees

    International Nuclear Information System (INIS)

    Meindl, George A.; Ashman, Tia-Lynn

    2013-01-01

    Metals in soil are known to negatively affect the health of many groups of organisms, but it is unclear whether they can affect plant-pollinator interactions, and whether pollinators that visit plants growing on contaminated soils are at risk of ingesting potentially toxic resources. We address whether the presence of metals in nectar alters foraging behavior by bumblebees by manipulating nectar with one of two common soil contaminants (Al or Ni) in flowers of Impatiens capensis (Balsaminaceae). While the presence of Al in nectar did not influence foraging patterns by bumblebees, flowers containing Ni nectar solutions were visited for shorter time periods relative to controls, and discouraged bees from visiting nearby Ni-contaminated flowers. However, because bumblebees still visited these flowers, they likely ingested a potentially toxic resource. Our findings suggest that soil metals could cascade to negatively affect pollinators in metal contaminated environments. -- Highlights: ► We address whether metals in nectar alter foraging behavior by bumblebees. ► Al in nectar did not influence foraging patterns by bumblebees. ► Ni nectar solutions were visited for shorter time periods relative to controls. ► Ni nectar solutions discouraged bees from visiting nearby Ni-contaminated flowers. ► Our findings suggest soil metals could cascade to negatively affect pollinators. -- We extend current understanding of the effects of plant chemistry on plant-pollinator interactions by describing the effects of metals in nectar on bee foraging

  19. Environmental characterization of seasonal trends and foraging habitat of bottlenose dolphins (Tursiops truncatus) in northern Gulf of Mexico bays

    OpenAIRE

    Miller, Cara E.; Baltz, Donald M.

    2010-01-01

    A description of the foraging habitat of a cetacean species is critical for conservation and effective management. We used a fine-scale microhabitat approach to examine patterns in bottlenose dolphin (Tursiops truncatus) foraging distribution in relation to dissolved oxygen, turbidity, salinity, water depth, water temperature, and distance from shore measurements in a highly turbid estuary on the northern Gulf of Mexico. In general, environmental variation in the Barataria Basin marine env...

  20. Investigation of multimodal forward scatter phenotyping from bacterial colonies

    Science.gov (United States)

    Kim, Huisung

    A rapid, label-free, and elastic light scattering (ELS) based bacterial colony phenotyping technology, bacterial rapid detection using optical scattering technology (BARDOT) provides a successful classification of several bacterial genus and species. For a thorough understanding of the phenomena and overcoming the limitations of the previous design, five additional modalities from a bacterial colony: 3D morphology, spatial optical density (OD) distribution, spectral forward scattering pattern, spectral OD, and surface backward reflection pattern are proposed to enhance the classification/identification ratio, and the feasibilities of each modality are verified. For the verification, three different instruments: integrated colony morphology analyzer (ICMA), multi-spectral BARDOT (MS-BARDOT) , and multi-modal BARDOT (MM-BARDOT) are proposed and developed. The ICMA can measure 3D morphology and spatial OD distribution of the colony simultaneously. A commercialized confocal displacement meter is used to measure the profiles of the bacterial colonies, together with a custom built optical density measurement unit to interrogate the biophysics behind the collective behavior of a bacterial colony. The system delivers essential information related to the quantitative growth dynamics (height, diameter, aspect ratio, optical density) of the bacterial colony, as well as, a relationship in between the morphological characteristics of the bacterial colony and its forward scattering pattern. Two different genera: Escherichia coli O157:H7 EDL933, and Staphylococcus aureus ATCC 25923 are selected for the analysis of the spatially resolved growth dynamics, while, Bacillus spp. such as B. subtilis ATCC 6633, B. cereus ATCC 14579, B. thuringiensis DUP6044, B. polymyxa B719W, and B. megaterium DSP 81319, are interrogated since some of the Bacillus spp. provides strikingly different characteristics of ELS patterns, and the origin of the speckle patterns are successfully correlated with

  1. Group foraging increases foraging efficiency in a piscivorous diver, the African penguin

    Science.gov (United States)

    McGeorge, Cuan; Ginsberg, Samuel; Pichegru, Lorien; Pistorius, Pierre A.

    2017-01-01

    Marine piscivores have evolved a variety of morphological and behavioural adaptations, including group foraging, to optimize foraging efficiency when targeting shoaling fish. For penguins that are known to associate at sea and feed on these prey resources, there is nonetheless a lack of empirical evidence to support improved foraging efficiency when foraging with conspecifics. We examined the hunting strategies and foraging performance of breeding African penguins equipped with animal-borne video recorders. Individuals pursued both solitary as well as schooling pelagic fish, and demonstrated independent as well as group foraging behaviour. The most profitable foraging involved herding of fish schools upwards during the ascent phase of a dive where most catches constituted depolarized fish. Catch-per-unit-effort was significantly improved when targeting fish schools as opposed to single fish, especially when foraging in groups. In contrast to more generalist penguin species, African penguins appear to have evolved specialist hunting strategies closely linked to their primary reliance on schooling pelagic fish. The specialist nature of the observed hunting strategies further limits the survival potential of this species if Allee effects reduce group size-related foraging efficiency. This is likely to be exacerbated by diminishing fish stocks due to resource competition and environmental change. PMID:28989785

  2. Study of budding yeast colony formation and its characterizations by using circular granular cell

    Science.gov (United States)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  3. Forage: a sensitive indicator of airborne radioactivity

    International Nuclear Information System (INIS)

    Jackson, W.M.; Noakes, J.E.; Spaulding, J.D.

    1981-01-01

    This paper presents the results of using Ge(Li) γ-ray spectroscopy to measure radioactivity concentration of forage in the vicinity of the Joseph M. Farley Nuclear Plant, Houston County, AL., over a 31/2 yr period. The report period includes 2 yr of pre-operational and 11/2 yr of operational sampling. Although the objective of forage sampling was the measurement of manmade airborne fallout radioactivity, several natural radioisotopes were also found to be present. A summary of natural radioactivity data for all samples measured during the period from August 1975 to December 1978 is given. Approximately 10 days after each of four Chinese atmospheric nuclear tests conducted during the sampling period fresh fission product fallout was measured on the forage. The information from these nuclear tests shows forage sampling to be a convenient and sensitive monitoring tool for airborne fallout radioactivity. (author)

  4. Cell Wall Diversity in Forage Maize

    NARCIS (Netherlands)

    Torres, A.F.; Noordam-Boot, C.M.M.; Dolstra, Oene; Weijde, van der Tim; Combes, Eliette; Dufour, Philippe; Vlaswinkel, Louis; Visser, R.G.F.; Trindade, L.M.

    2015-01-01

    Genetic studies are ideal platforms for assessing the extent of genetic diversity, inferring the genetic architecture, and evaluating complex trait interrelations for cell wall compositional and bioconversion traits relevant to bioenergy applications. Through the characterization of a forage

  5. African Journal of Range and Forage Science

    African Journals Online (AJOL)

    The African Journal of Range & Forage Science is the leading rangeland and pastoral journal in Africa. The Journal is dedicated to publishing quality original material that advances rangeland ecology and pasture management in Africa. Read more abou the journal here.

  6. Three-dimensional foraging habitat use and niche partitioning in two sympatric seabird species, Phalacrocorax auritus and P. penicillatus

    Science.gov (United States)

    Peck-Richardson, Adam G.; Lyons, Donald E.; Roby, Daniel D.; Cushing, Daniel A.; Lerczak, James A.

    2018-01-01

    Ecological theory predicts that co-existing, morphologically similar species will partition prey resources when faced with resource limitations. We investigated local movements, foraging dive behavior, and foraging habitat selection by breeding adults of 2 closely related cormorant species, double-crested cormorants Phalacrocorax auritus and Brandt’s cormorants P. penicillatus. These species nest sympatrically at East Sand Island in the Columbia River estuary at the border of Oregon and Washington states, USA. Breeding individuals of each species were tracked using GPS tags with integrated temperature and depth data-loggers. The overall foraging areas and core foraging areas (defined as the 95% and 50% kernel density estimates of dive locations, respectively) of double-crested cormorants were much larger and covered a broader range of riverine, mixed-estuarine, and nearshore marine habitats. Brandt’s cormorant foraging areas were less expansive, were exclusively marine, and mostly overlapped with double-crested cormorant foraging areas. Within these areas of overlap, Brandt’s cormorants tended to dive deeper (median depth = 6.48 m) than double-crested cormorants (median depth = 2.67 m), and selected dive locations where the water was deeper. Brandt’s cormorants also utilized a deeper, more benthic portion of the water column than did double-crested cormorants. Nevertheless, the substantial overlap in foraging habitat between the 2 cormorant species in the Columbia River estuary, particularly for Brandt’s cormorants, suggests that superabundant prey resources allow these 2 large and productive cormorant colonies to coexist on a single island near the mouth of the Columbia River.

  7. The importance of distance to resources in the spatial modelling of bat foraging habitat.

    Directory of Open Access Journals (Sweden)

    Ana Rainho

    Full Text Available Many bats are threatened by habitat loss, but opportunities to manage their habitats are now increasing. Success of management depends greatly on the capacity to determine where and how interventions should take place, so models predicting how animals use landscapes are important to plan them. Bats are quite distinctive in the way they use space for foraging because (i most are colonial central-place foragers and (ii exploit scattered and distant resources, although this increases flying costs. To evaluate how important distances to resources are in modelling foraging bat habitat suitability, we radio-tracked two cave-dwelling species of conservation concern (Rhinolophus mehelyi and Miniopterus schreibersii in a Mediterranean landscape. Habitat and distance variables were evaluated using logistic regression modelling. Distance variables greatly increased the performance of models, and distance to roost and to drinking water could alone explain 86 and 73% of the use of space by M. schreibersii and R. mehelyi, respectively. Land-cover and soil productivity also provided a significant contribution to the final models. Habitat suitability maps generated by models with and without distance variables differed substantially, confirming the shortcomings of maps generated without distance variables. Indeed, areas shown as highly suitable in maps generated without distance variables proved poorly suitable when distance variables were also considered. We concluded that distances to resources are determinant in the way bats forage across the landscape, and that using distance variables substantially improves the accuracy of suitability maps generated with spatially explicit models. Consequently, modelling with these variables is important to guide habitat management in bats and similarly mobile animals, particularly if they are central-place foragers or depend on spatially scarce resources.

  8. Can foraging ecology drive the evolution of body size in a diving endotherm?

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  9. Friends and Foes from an Ant Brain's Point of View – Neuronal Correlates of Colony Odors in a Social Insect

    Science.gov (United States)

    Brandstaetter, Andreas Simon; Rössler, Wolfgang; Kleineidam, Christoph Johannes

    2011-01-01

    Background Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like “friend” and “foe” are attributed to colony odors. Methodology/Principal Findings Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Conclusions Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor

  10. Annual forage cropping-systems for midwestern ruminant livestock production

    OpenAIRE

    McMillan, John Ernest

    2016-01-01

    Annual forage cropping systems are a vital aspect of livestock forage production. One area where this production system can be enhanced is the integration of novel annual forages into conventional cropping systems. Two separate projects were conducted to investigate alternative forage options in annual forage production. In the first discussed research trial, two sets of crops were sown following soft red winter wheat (Triticum aestivum L.) grain harvest, at two nitrogen application rates 56 ...

  11. Agronomic and forage characteristics of Guazuma ulmifolia Lam.

    OpenAIRE

    Manríquez-Mendoza, Leonor Yalid; López-Ortíz, Silvia; Pérez-Hernández, Ponciano; Ortega- Jiménez, Eusebio; López-Tecpoyotl, Zenón Gerardo; Villarruel-Fuentes, Manuel

    2011-01-01

    Native trees are an important source of forage for livestock, particularly in regions having prolonged dry periods. Some tree species have fast growth rates, good nutritional quality, and the ability to produce forage during dry periods when the need for forage is greater. Guazuma ulmifolia Lam. is a tree native to tropical America that has a high forage potential. This species is mentioned in a number of studies assessing the forage potential of trees in a diverse array of environments and v...

  12. Recent Honey Bee Colony Declines

    Science.gov (United States)

    2007-06-20

    podcasts.psu.edu/taxonomy/term/62]. Staple crops such as wheat , corn, and rice do not rely on insect pollination and are mostly wind pollinated...are interacting to weaken bee colonies and are allowing stress-related pathogens, such as fungi , thus causing a final collapse.27 Others note the...possible role of miticide resistance in bees. High levels of bacteria, viruses, and fungi have been found in the guts of the recoverable dead bees

  13. Honeybee immunity and colony losses

    Directory of Open Access Journals (Sweden)

    F. Nazzi

    2014-10-01

    Full Text Available The decline of honeybee colonies and their eventual collapse is a widespread phenomenon in the Northern hemisphere of the globe, which severely limits the beekeeping industry. This dramatic event is associated with an enhanced impact of parasites and pathogens on honeybees, which is indicative of reduced immunocompetence. The parasitic mite Varroa destructor and the vectored viral pathogens appear to play a key-role in the induction of this complex syndrome. In particular, the Deformed Wing Virus (DWV is widespread and is now considered, along with Varroa, one of the major causes of bee colony losses. Several lines of evidence indicate that this mite/DWV association severely affects the immune system of honeybees and makes them more sensitive to the action of other stress factors. The molecular mechanisms underpinning these complex interactions are currently being investigated and the emerging information has allowed the development of a new functional model, describing how different stress factors may synergistically concur in the induction of bee immune alteration and health decline. This provides a new logical framework in which to interpret the proposed multifactorial origin of bee colony losses and sets the stage for a more comprehensive and integrated analysis of the effect that multiple stress agents may have on honeybees.

  14. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.)

    Science.gov (United States)

    Lucas, Hannah M.; Webster, Thomas C.; Sagili, Ramesh R.

    2016-01-01

    Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected) and intensity (number of spores per bee) of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis). Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony) were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland protein content and

  15. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L..

    Directory of Open Access Journals (Sweden)

    Cameron J Jack

    Full Text Available Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected and intensity (number of spores per bee of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis. Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland

  16. The neglected bee trees: European beech forests as a home for feral honey bee colonies

    Directory of Open Access Journals (Sweden)

    Patrick Laurenz Kohl

    2018-04-01

    Full Text Available It is a common belief that feral honey bee colonies (Apis mellifera L. were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L. forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique, and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11–0.14 colonies/km2. Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m. We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species’ perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.

  17. The neglected bee trees: European beech forests as a home for feral honey bee colonies.

    Science.gov (United States)

    Kohl, Patrick Laurenz; Rutschmann, Benjamin

    2018-01-01

    It is a common belief that feral honey bee colonies ( Apis mellifera L.) were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech ( Fagus sylvatica L.) forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique), and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11-0.14 colonies/km 2 . Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m). We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species' perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.

  18. Evidence of trapline foraging in honeybees.

    Science.gov (United States)

    Buatois, Alexis; Lihoreau, Mathieu

    2016-08-15

    Central-place foragers exploiting floral resources often use multi-destination routes (traplines) to maximise their foraging efficiency. Recent studies on bumblebees have showed how solitary foragers can learn traplines, minimising travel costs between multiple replenishing feeding locations. Here we demonstrate a similar routing strategy in the honeybee (Apis mellifera), a major pollinator known to recruit nestmates to discovered food resources. Individual honeybees trained to collect sucrose solution from four artificial flowers arranged within 10 m of the hive location developed repeatable visitation sequences both in the laboratory and in the field. A 10-fold increase of between-flower distances considerably intensified this routing behaviour, with bees establishing more stable and more efficient routes at larger spatial scales. In these advanced social insects, trapline foraging may complement cooperative foraging for exploiting food resources near the hive (where dance recruitment is not used) or when resources are not large enough to sustain multiple foragers at once. © 2016. Published by The Company of Biologists Ltd.

  19. No apparent correlation between honey bee forager gut microbiota and honey production.

    Science.gov (United States)

    Horton, Melissa A; Oliver, Randy; Newton, Irene L

    2015-01-01

    One of the best indicators of colony health for the European honey bee (Apis mellifera) is its performance in the production of honey. Recent research into the microbial communities naturally populating the bee gut raise the question as to whether there is a correlation between microbial community structure and colony productivity. In this work, we used 16S rRNA amplicon sequencing to explore the microbial composition associated with forager bees from honey bee colonies producing large amounts of surplus honey (productive) and compared them to colonies producing less (unproductive). As supported by previous work, the honey bee microbiome was found to be dominated by three major phyla: the Proteobacteria, Bacilli and Actinobacteria, within which we found a total of 23 different bacterial genera, including known "core" honey bee microbiome members. Using discriminant function analysis and correlation-based network analysis, we identified highly abundant members (such as Frischella and Gilliamella) as important in shaping the bacterial community; libraries from colonies with high quantities of these Orbaceae members were also likely to contain fewer Bifidobacteria and Lactobacillus species (such as Firm-4). However, co-culture assays, using isolates from these major clades, were unable to confirm any antagonistic interaction between Gilliamella and honey bee gut bacteria. Our results suggest that honey bee colony productivity is associated with increased bacterial diversity, although this mechanism behind this correlation has yet to be determined. Our results also suggest researchers should not base inferences of bacterial interactions solely on correlations found using sequencing. Instead, we suggest that depth of sequencing and library size can dramatically influence statistically significant results from sequence analysis of amplicons and should be cautiously interpreted.

  20. Differences in forage-acquisition and fungal enzyme activity contribute to niche segregation in Panamanian leaf-cutting ants.

    Directory of Open Access Journals (Sweden)

    Pepijn W Kooij

    Full Text Available The genera Atta and Acromyrmex are often grouped as leaf-cutting ants for pest management assessments and ecological surveys, although their mature colony sizes and foraging niches may differ substantially. Few studies have addressed such interspecific differences at the same site, which prompted us to conduct a comparative study across six sympatric leaf-cutting ant species in Central Panama. We show that foraging rates during the transition between dry and wet season differ about 60 fold between genera, but are relatively constant across species within genera. These differences appear to match overall differences in colony size, especially when Atta workers that return to their nests without leaves are assumed to carry liquid food. We confirm that Panamanian Atta specialize primarily on tree-leaves whereas Acromyrmex focus on collecting flowers and herbal leaves and that species within genera are similar in these overall foraging strategies. Species within genera tended to be spaced out over the three habitat categories that we distinguished (forest, forest edge, open grassland, but each of these habitats normally had only a single predominant Atta and Acromyrmex species. We measured activities of twelve fungus garden decomposition enzymes, belonging to the amylases, cellulases, hemicellulases, pectinases and proteinases, and show that average enzyme activity per unit of fungal mass in Atta gardens is lower than in Acromyrmex gardens. Expression profiles of fungal enzymes in Atta also appeared to be more specialized than in Acromyrmex, possibly reflecting variation in forage material. Our results suggest that species- and genus-level identities of leaf-cutting ants and habitat-specific foraging profiles may give predictable differences in the expression of fungal genes coding for decomposition enzymes.

  1. Movements and foraging effort of Steller's Eiders and Harlequin Ducks wintering near Dutch Harbor, Alaska

    Science.gov (United States)

    Reed, J.A.; Flint, Paul L.

    2007-01-01

    We studied the movements and foraging effort of radio-marked Steller's Eiders (Polysticta stelleri) and Harlequin Ducks (Histrionicus histrionicus) to evaluate habitat quality in an area impacted by industrial activity near Dutch Harbor, Alaska. Foraging effort was relatively low, with Steller's Eiders foraging only 2.7 ± 0.6 (SE) hours per day and Harlequin Ducks 4.1 ± 0.5 hours per day. Low-foraging effort during periods of high-energetic demand generally suggests high food availability, and high food availability frequently corresponds with reductions in home range size. However, the winter ranges of Harlequin Ducks did not appear to be smaller than usual, with the mean range size in our study (5.5 ± 1.1 km2) similar to that reported by previous investigators. The mean size of the winter ranges of Steller's Eiders was similar (5.1 ± 1.3 km2), but no comparable estimates are available. Eutrophication of the waters near Dutch Harbor caused by seafood processing and municipal sewage effluent may have increased populations of the invertebrate prey of these sea ducks and contributed to their low-foraging effort. The threat of predation by Bald Eagles (Haliaeetus leucocephalus) that winter near Dutch Harbor may cause Steller's Eiders and Harlequin Ducks to move further offshore when not foraging, contributing to an increase in range sizes. Thus, the movement patterns and foraging behavior of these ducks likely represent a balance between the cost and benefits of wintering in a human-influenced environment.

  2. Factors influencing local ecological knowledge of forage resources: Ethnobotanical evidence from West Africa's savannas.

    Science.gov (United States)

    Naah, John-Baptist S N; Guuroh, Reginald T

    2017-03-01

    Recording local ecological knowledge (LEK) is a useful approach to understanding interactions of the complex social-ecological systems. In spite of the recent growing interest in LEK studies on the effects of climate and land use changes, livestock mobility decisions and other aspects of agro-pastoral systems, LEK on forage plants has still been vastly under-documented in the West African savannas. Using a study area ranging from northern Ghana to central Burkina Faso, we thus aimed at exploring how aridity and socio-demographic factors drive the distributional patterns of forage-related LEK among its holders. With stratified random sampling, we elicited LEK among 450 informants in 15 villages (seven in Ghana and eight in Burkina Faso) via free list tasks coupled with ethnobotanical walks and direct field observations. We performed generalized linear mixed-effects models (aridity- and ethnicity-based models) and robust model selection procedures. Our findings revealed that LEK for woody and herbaceous forage plants was strongly influenced by the ethnicity-based model, while aridity-based model performed better for LEK on overall forage resources and crop-related forage plants. We also found that climatic aridity had negative effect on the forage-related LEK across gender and age groups, while agro- and floristic diversity had positive effect on the body of LEK. About 135 species belonging to 95 genera and 52 families were cited. Our findings shed more light on how ethnicity and environmental harshness can markedly shape the body of LEK in the face of global climate change. Better understanding of such a place-based knowledge system is relevant for sustainable forage plants utilization and livestock production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities.

    Science.gov (United States)

    Leal, Isabela Carolina Silva; de Araújo, Maria Elisabeth; da Cunha, Simone Rabelo; Pereira, Pedro Henrique Cipresso

    2015-07-01

    invertebrate feeders. To our knowledge, the present study provides the first evidence that through habitat competition, the presence of S. fuscus may affect reef fish communities associated with M. alcicornis coral colonies. Our findings also indicate that S. fuscus uses M. alcicornis coral colonies as part of their territory for shelter and foraging. In conclusion, M. alcicornis fire-coral colonies are extremely important habitats for reef fishes and the size and presence of a territorial damselfish are relevant variables for associated reef fish community. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Availability of environmental radioactivity to honey bee colonies at Los Alamos

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Bostick, K.V.

    1976-01-01

    Data are presented on the availability of tritium, cesium 137, and plutonium to honey bee colonies foraging in the environment surrounding the Los Alamos Scientific Laboratory. Sources of these radionuclides in the laboratory environs include liquid and atmospheric effluents and buried solid waste. Honey bee colonies were placed in three canyon liquid waste disposal areas and were sampled frequently, along with honey, surface water, and surrounding vegetation, to qualitatively determine the availability of these radionuclides to bees (Apis mellifera) and to identify potential food chain sources of the elements. Tritium concentrations in bee and honey samples from the canyons increased rapidly from initial values of 137 Cs in the environs. The existence of at least three radionuclide sources in the Los Alamos Scientific Laboratory (LASL) environs complicates the interpretation of the data. However, it is apparent that honey bees can acquire 3 H, 137 Cs, and Pu from multiple sources in the environs

  5. A Modified Artificial Bee Colony Algorithm for p-Center Problems

    Directory of Open Access Journals (Sweden)

    Alkın Yurtkuran

    2014-01-01

    Full Text Available The objective of the p-center problem is to locate p-centers on a network such that the maximum of the distances from each node to its nearest center is minimized. The artificial bee colony algorithm is a swarm-based meta-heuristic algorithm that mimics the foraging behavior of honey bee colonies. This study proposes a modified ABC algorithm that benefits from a variety of search strategies to balance exploration and exploitation. Moreover, random key-based coding schemes are used to solve the p-center problem effectively. The proposed algorithm is compared to state-of-the-art techniques using different benchmark problems, and computational results reveal that the proposed approach is very efficient.

  6. Dynamic population artificial bee colony algorithm for multi-objective optimal power flow

    Directory of Open Access Journals (Sweden)

    Man Ding

    2017-03-01

    Full Text Available This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP, which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII and multi-objective ABC (MOABC, are presented to illustrate the effectiveness and robustness of the proposed method.

  7. Foraging patch selection in winter: a balance between predation risk and thermoregulation benefit.

    Directory of Open Access Journals (Sweden)

    Sara Villén-Pérez

    Full Text Available In winter, foraging activity is intended to optimize food search while minimizing both thermoregulation costs and predation risk. Here we quantify the relative importance of thermoregulation and predation in foraging patch selection of woodland birds wintering in a Mediterranean montane forest. Specifically, we account for thermoregulation benefits related to temperature, and predation risk associated with both illumination of the feeding patch and distance to the nearest refuge provided by vegetation. We measured the amount of time that 38 marked individual birds belonging to five small passerine species spent foraging at artificial feeders. Feeders were located in forest patches that vary in distance to protective cover and exposure to sun radiation; temperature and illumination were registered locally by data loggers. Our results support the influence of both thermoregulation benefits and predation costs on feeding patch choice. The influence of distance to refuge (negative relationship was nearly three times higher than that of temperature (positive relationship in determining total foraging time spent at a patch. Light intensity had a negligible and no significant effect. This pattern was generalizable among species and individuals within species, and highlights the preponderance of latent predation risk over thermoregulation benefits on foraging decisions of birds wintering in temperate Mediterranean forests.

  8. Aerobic fungi in the rumen fluid from dairy cattle fed different sources of forage

    Directory of Open Access Journals (Sweden)

    Patrícia Natalicia Mendes de Almeida

    2012-11-01

    Full Text Available The objective of this study was to evaluate the aerobic microbiota of the rumen fluid from Holstein cows and heifers fed different tropical forage in the north of Minas Gerais, Brazil. A total of 30 samples of rumen fluid from cows fed with sorghum silage were collected: 32 from cows fed Brachiaria brizantha, 12 from heifers that received sorghum silage and 11 from calves fed sugar cane foliage. The culture was carried out using the agar Sabouraud medium and the solid C medium, containing microcrystalline cellulose. The isolated mycelial fungi were identified by microculture technique and yeasts by micromorphological and physical-chemical analysis. Specific identification for yeasts was confirmed by ribosomal DNA sequence analysis. The presence of fungal colonies was confirmed on the Sabouraud medium for 100% of the samples. No significant differences were observed comparing the concentrations of mycelia fungi in the rumen fluid from cows fed different forages and for the two categories evaluated, fed sorghum silage. Yeast populations in the rumen fluid from heifers fed sugarcane were higher compared with those receiving sorghum silage. The yeast Pichia kudriavzevii (Candida krusei was the most frequent and among the mycelial fungi, the genus Aspergillus was the most frequently observed, corresponding to 56% of the samples. Future studies should elucidate the variations in the populations of these microorganisms considering the carbohydrate sources in the tropical forages and the animal categories. The ecological or pathogenic role of these microorganisms should also be considered, aiming at improved productivity and health of cattle.

  9. Alternative Modernities for Colonial Korea

    Directory of Open Access Journals (Sweden)

    Steven Lee

    2016-06-01

    Full Text Available Sunyoung Park. The Proletarian Wave: Literature and Leftist Culture in Colonial Korea, 1910–1945. Cambridge, MA: Harvard University Asia Center, 2015. 348 pp. $50 (cloth. Vladimir Tikhonov. Modern Korea and Its Others: Perceptions of the Neighbouring Countries and Korean Modernity. London: Routledge, 2016. 218 pp. $160 (cloth. It has become a global scholarly undertaking: how to rethink modernity so as to decouple it from Westernization (Chakrabarty 2000. Strategies have included foregrounding the plurality of history to disrupt linear progress; positing non-Western centers of modernity in, say, Moscow or Shanghai; and tracing anticolonial circuits connecting Asia to Africa to Latin America. The two recent books under review here add colonial-era Korea to such far-reaching discussions by situating the country across national boundaries. Interestingly, one connecting thread here is the alternative world system provided by the interwar, Soviet-oriented Left. The result is an unsettling of binaries that subsequently became entrenched during the Cold War: for example, north-south, socialist-nationalist, and, for literature, realist-modernist. But more broadly, pervading both books is the sense that history could have turned out differently—that revisiting northeast Asia’s porous borders in the early twentieth century reveals the Korean peninsula’s lost, internationalist potential...

  10. Escalated convergent artificial bee colony

    Science.gov (United States)

    Jadon, Shimpi Singh; Bansal, Jagdish Chand; Tiwari, Ritu

    2016-03-01

    Artificial bee colony (ABC) optimisation algorithm is a recent, fast and easy-to-implement population-based meta heuristic for optimisation. ABC has been proved a rival algorithm with some popular swarm intelligence-based algorithms such as particle swarm optimisation, firefly algorithm and ant colony optimisation. The solution search equation of ABC is influenced by a random quantity which helps its search process in exploration at the cost of exploitation. In order to find a fast convergent behaviour of ABC while exploitation capability is maintained, in this paper basic ABC is modified in two ways. First, to improve exploitation capability, two local search strategies, namely classical unidimensional local search and levy flight random walk-based local search are incorporated with ABC. Furthermore, a new solution search strategy, namely stochastic diffusion scout search is proposed and incorporated into the scout bee phase to provide more chance to abandon solution to improve itself. Efficiency of the proposed algorithm is tested on 20 benchmark test functions of different complexities and characteristics. Results are very promising and they prove it to be a competitive algorithm in the field of swarm intelligence-based algorithms.

  11. Prior knowledge about spatial pattern affects patch assessment rather than movement between patches in tactile-feeding Mallard

    NARCIS (Netherlands)

    Klaassen, R.H.G.; Nolet, B.A.; Van Leeuwen, C.H.A.

    2007-01-01

    1. Heterogeneity in food abundance allows a forager to concentrate foraging effort in patches that are rich in food. This might be problematic when food is cryptic, as the content of patches is unknown prior to foraging. In such case knowledge about the spatial pattern in the distribution of food

  12. Forage production in mixed grazing systems of elephant grass with arrowleaf clover or forage peanut

    Directory of Open Access Journals (Sweden)

    Daiane Cristine Seibt

    Full Text Available ABSTRACT Most dairy production systems are pasture-based, usually consisting of sole grass species. This system facilitates pasture management, but results in high production costs, mainly because of nitrogen fertilizers. An alternative to making forage systems more sustainable is to introduce legumes into the pasture. Mixed pastures allow better forage distribution over time and reduce fertilization costs. Thus, the objective of this study was to evaluate, throughout the year, three forage systems (FS: FS1 (control - elephant grass (EG, ryegrass (RG, and spontaneous species (SS; FS2 - EG + RG + SS + arrowleaf clover; and FS3 - EG + RG + SS + forage peanut. Elephant grass was planted in rows spaced 4 m apart. Ryegrass was sown between the EG lines, in the winter. Arrowleaf clover was sown according to the respective treatments and forage peanut was preserved. Evaluation was carried out using Holstein cows. The experiment was arranged in a completely randomized design, with three treatments (FS, and three repetitions (paddocks with repeated measurements (grazing cycles. Forage mass achieved 3.46, 3.80, and 3.91 t ha-1 for the treatments FS1, FS2 and FS3, respectively. The forage systems intercropped with legumes produced the best results.

  13. Queen promiscuity lowers disease within honeybee colonies

    OpenAIRE

    Seeley, Thomas D; Tarpy, David R

    2006-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. ...

  14. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    Science.gov (United States)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in

  15. Estimating Rangeland Forage Production Using Remote Sensing Data from a Small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Liu, H.; Jin, Y.; Devine, S.; Dahlgren, R. A.; Covello, S.; Larsen, R.; O'Geen, A. T.

    2017-12-01

    whole study area during the 2017 growing season. The forage maps captured similar seasonal and spatial patterns of forage production as ground measured dry biomass. This study demonstrated a near real-time monitoring tool for ranchers to estimate forage production with sUAS technology and improved watershed-scale rangeland management.

  16. Information Foraging Theory: A Framework for Intelligence Analysis

    Science.gov (United States)

    2014-11-01

    oceanographic information, human intelligence (HUMINT), open-source intelligence ( OSINT ), and information provided by other governmental departments [1][5...Human Intelligence IFT Information Foraging Theory LSA Latent Semantic Similarity MVT Marginal Value Theorem OFT Optimal Foraging Theory OSINT

  17. A properly adjusted forage harvester can save time and money

    Science.gov (United States)

    A properly adjusted forage harvester can save fuel and increase the realizable milk per ton of your silage. This article details the adjustments necessary to minimize energy while maximizing productivity and forage quality....

  18. Social foraging by waterbirds in shallow coastal lagoons in Ghana

    NARCIS (Netherlands)

    Battley, PF; Poot, M; Wiersma, P; Gordon, C; Ntiamoa-Baidu, Y; Piersma, T; Battley, Phil F.

    Social foraging in waterbirds in Ghanaian coastal lagoons was studied during October and November 1994. Two types of foraging were social: directionally synchronized flocks (often involving distinctive feeding methods used in unison) and dense pecking aggregations. Social flocks were typically

  19. Foraging parameters influencing the detection and interpretation of area-restricted search behaviour in marine predators: a case study with the masked booby.

    Directory of Open Access Journals (Sweden)

    Julia Sommerfeld

    Full Text Available Identification of Area-restricted search (ARS behaviour is used to better understand foraging movements and strategies of marine predators. Track-based descriptive analyses are commonly used to detect ARS behaviour, but they may be biased by factors such as foraging trip duration or non-foraging behaviours (i.e. resting on the water. Using first-passage time analysis we tested if (I daylight resting at the sea surface positions falsely increase the detection of ARS behaviour and (II short foraging trips are less likely to include ARS behaviour in Masked Boobies Sula dactylatra. We further analysed whether ARS behaviour may be used as a proxy to identify important feeding areas. Depth-acceleration and GPS-loggers were simultaneously deployed on chick-rearing adults to obtain (1 location data every 4 minutes and (2 detailed foraging activity such as diving rates, time spent sitting on the water surface and in flight. In 82% of 50 foraging trips, birds adopted ARS behaviour. In 19.3% of 57 detected ARS zones, birds spent more than 70% of total ARS duration resting on the water, suggesting that these ARS zones were falsely detected. Based on generalized linear mixed models, the probability of detecting false ARS zones was 80%. False ARS zones mostly occurred during short trips in close proximity to the colony, with low or no diving activity. This demonstrates the need to account for resting on the water surface positions in marine animals when determining ARS behaviour based on foraging locations. Dive rates were positively correlated with trip duration and the probability of ARS behaviour increased with increasing number of dives, suggesting that the adoption of ARS behaviour in Masked Boobies is linked to enhanced foraging activity. We conclude that ARS behaviour may be used as a proxy to identify important feeding areas in this species.

  20. Importance of the 2014 Colorado River Delta pulse flow for migratory songbirds: Insights from foraging behavior

    Science.gov (United States)

    Darrah, Abigail J.; Greeney, Harold F.; van Riper, Charles

    2017-01-01

    The Lower Colorado River provides critical riparian areas in an otherwise arid region and is an important stopover site for migrating landbirds. In order to reverse ongoing habitat degradation due to drought and human-altered hydrology, a pulse flow was released from Morelos Dam in spring of 2014, which brought surface flow to dry stretches of the Colorado River in Mexico. To assess the potential effects of habitat modification resulting from the pulse flow, we used foraging behavior of spring migrants from past and current studies to assess the relative importance of different riparian habitats. We observed foraging birds in 2000 and 2014 at five riparian sites along the Lower Colorado River in Mexico to quantify prey attack rates, prey attack maneuvers, vegetation use patterns, and degree of preference for fully leafed-out or flowering plants. Prey attack rate was highest in mesquite (Prosopis spp.) in 2000 and in willow (Salix gooddingii) in 2014; correspondingly, migrants predominantly used mesquite in 2000 and willow in 2014 and showed a preference for willows in flower or fruit in 2014. Wilson’s warbler (Cardellina pusilla) used relatively more low-energy foraging maneuvers in willow than in tamarisk (Tamarix spp.) or mesquite. Those patterns in foraging behavior suggest native riparian vegetation, and especially willow, are important resources for spring migrants along the lower Colorado River. Willow is a relatively short-lived tree dependent on spring floods for dispersal and establishment and thus spring migrants are likely to benefit from controlled pulse flows.

  1. Ingestive behavior, performance and forage intake by beef heifers on tropical pasture systems

    Directory of Open Access Journals (Sweden)

    Renato Alves de Oliveira Neto

    2013-08-01

    Full Text Available The experiment was carried out to evaluate forage intake, performance and ingestive behavior of beef heifers. Productive, structural and chemical characteristics of the pasture were also evaluated. The experimental design was completely randomized in a 3 × 2 factorial arrangement, with three pasture systems (Alexandergrass [Urochloa plantaginea Link.] with and without supplement to heifers and Coastcross [Cynodon dactylon (L. Pers.] and two phenological stages: vegetative and flowering. The grazing method was put-and-take stocking. Grazing, ruminating and idle activities, feeding stations, displacement patterns, bite mass and bite rate were evaluated. The forage intake was estimated using chromic oxide as an indicator of fecal output. The heifers modified the use of feeding stations and displacement patterns between phenological stages and pasture systems. Heifers consumed more forage in the vegetative stage (2.81% of body weight in dry matter than in the flowering stage (1.92% of body weight in dry matter. Average daily gain, body condition and stocking rate were similar for heifers in the evaluated systems. Beef heifers receiving protein supplement on Alexandergrass pasture consumed more forage than heifers fed Coastcross exclusively. Regardless of the species, no difference was observed when the heifers were exclusively on pasture. Pasture systems on Alexandergrass or Coastcross provide suitable nutrient intake for heifers to be mated at 18 months of age.

  2. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

    Directory of Open Access Journals (Sweden)

    Matthew Betti

    2017-03-01

    Full Text Available We present a model and associated simulation package (www.beeplusplus.ca to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++ and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers.

  3. Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin.

    Science.gov (United States)

    Horswill, Cat; Trathan, Philip N; Ratcliffe, Norman

    2017-01-01

    Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography.

  4. Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin.

    Directory of Open Access Journals (Sweden)

    Cat Horswill

    Full Text Available Understanding the mechanisms that link prey availability to predator behaviour and population change is central to projecting how a species may respond to future environmental pressures. We documented the behavioural responses and breeding investment of macaroni penguins Eudyptes chrysolophus across five breeding seasons where local prey density changed by five-fold; from very low to highly abundant. When prey availability was low, foraging trips were significantly longer and extended overnight. Birds also foraged farther from the colony, potentially in order to reach more distant foraging grounds and allow for increased search times. These extended foraging trips were also linked to a marked decrease in fledgling weights, most likely associated with reduced rates of provisioning. Furthermore, by comparing our results with previous work on this population, it appears that lowered first-year survival rates associated, at least partially, with fledging masses were also evident for this cohort. This study integrates a unique set of prey density, predator behaviour and predator breeding investment data to highlight a possible behavioural mechanism linking perturbations in prey availability to population demography.

  5. Metal contaminant accumulation in the hive: Consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.).

    Science.gov (United States)

    Hladun, Kristen R; Di, Ning; Liu, Tong-Xian; Trumble, John T

    2016-02-01

    Metal pollution has been increasing rapidly over the past century, and at the same time, the human population has continued to rise and produce contaminants that may negatively impact pollinators. Honey bees (Apis mellifera L.) forage over large areas and can collect contaminants from the environment. The primary objective of the present study was to determine whether the metal contaminants cadmium (Cd), copper (Cu), lead (Pb), and selenium (Se) can have a detrimental effect on whole-colony health in the managed pollinator A. mellifera. The authors isolated small nucleus colonies under large cages and fed them an exclusive diet of sugar syrup and pollen patty spiked with Cd, Cu, Pb, and Se or a control (no additional metal). Treatment levels were based on concentrations in honey and pollen from contaminated hives around the world. They measured whole-colony health including wax, honey, and brood production; colony weight; brood survival; and metal accumulation in various life stages. Colonies treated with Cd or Cu contained more dead pupae within capped cells compared with control, and Se-treated colonies had lower total worker weights compared to control. Lead had a minimal effect on colony performance, although many members of the hive accumulated significant quantities of the metal. By examining the honey bee as a social organism through whole-colony assessments of toxicity, the authors found that the distribution of toxicants throughout the colony varied from metal to metal, some caste members were more susceptible to certain metals, and the colony's ability to grow over time may have been reduced in the presence of Se. Apiaries residing near metal-contaminated areas may be at risk and can suffer changes in colony dynamics and survival. © 2015 SETAC.

  6. Understanding Long-Run African Growth : Colonial Institutions or Colonial Education?

    NARCIS (Netherlands)

    Bolt, J.; Bezemer, D.J.

    2009-01-01

    Long-term growth in developing countries has been explained in four frameworks: 'extractive colonial institutions' (Acemoglu et al., 2001), 'colonial legal origin' (La Porta et al., 2004), 'geography' (Gallup et al., 1998) and 'colonial human capital' (Glaeser et al., 2004). In this paper we test

  7. Warring arthropod societies: Social spider colonies can delay annihilation by predatory ants via reduced apparency and increased group size.

    Science.gov (United States)

    Keiser, Carl N; Wright, Colin M; Pruitt, Jonathan N

    2015-10-01

    Sociality provides individuals with benefits via collective foraging and anti-predator defense. One of the costs of living in large groups, however, is increased apparency to natural enemies. Here, we test how the individual-level and collective traits of spider societies can increase the risk of discovery and death by predatory ants. We transplanted colonies of the social spider Stegodyphus dumicola into a habitat dense with one of their top predators, the pugnacious ant Anoplolepis custodiens. With three different experiments, we test how colony-wide survivorship in a predator-dense habitat can be altered by colony apparency (i.e., the presence of a capture web), group size, and group composition (i.e., the proportion of bold and shy personality types present). We also test how spiders' social context (i.e., living solitarily vs. among conspecifics) modifies their behaviour toward ants in their capture web. Colonies with capture webs intact were discovered by predatory ants on average 25% faster than colonies with the capture web removed, and all discovered colonies eventually collapsed and succumbed to predation. However, the lag time from discovery by ants to colony collapse was greater for colonies containing more individuals. The composition of individual personality types in the group had no influence on survivorship. Spiders in a social group were more likely to approach ants caught in their web than were isolated spiders. Isolated spiders were more likely to attack a safe prey item (a moth) than they were to attack ants and were more likely to retreat from ants after contact than they were after contact with moths. Together, our data suggest that the physical structures produced by large animal societies can increase their apparency to natural enemies, though larger groups can facilitate a longer lag time between discovery and demise. Lastly, the interaction between spiders and predatory ants seems to depend on the social context in which spiders reside

  8. Scheduling and development support in the Scavenger cyber foraging system

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2010-01-01

    Cyber foraging is a pervasive computing technique where small mobile devices offload resource intensive tasks to stronger computing machinery in the vicinity. One of the main challenges within cyber foraging is that it is very difficult to develop cyber foraging enabled applications. An applicati...

  9. Evaluation of nutritional value some forage species available in Iran ...

    African Journals Online (AJOL)

    Novin

    2012-07-17

    Jul 17, 2012 ... and chemical composition of forage species was estimated. MATERIALS AND METHODS ... head per day at 8.00 a.m. and 6.00 p.m. Forage samples (2 g DM with 2 mm screen ) were weighed into nylon bags ..... methods to study the kinetics of degradation of forage species, instead of the in situ technique, ...

  10. 7 CFR 407.13 - Group risk plan for forage.

    Science.gov (United States)

    2010-01-01

    ... acres of hay in the county, as specified in the actuarial documents. The actuarial documents will... a period for forage regrowth. 2. Crop Insured The insured crop will be the forage types shown on the... the Group Risk Plan Common Policy, acreage seeded to forage after July 1 of the previous crop year...

  11. 7 CFR 457.117 - Forage production crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117 Forage..., or a mixture thereof, or other species as shown in the Actuarial Documents. Harvest—Removal of forage... different price elections by type, in which case you may select one price election for each forage type...

  12. Blue Oak Canopy Effect on Seasonal Forage Production and Quality

    Science.gov (United States)

    William E. Frost; Neil K. McDougald; Montague W. Demment

    1991-01-01

    Forage production and forage quality were measured seasonally beneath the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range. At the March and peak standing crop sampling dates forage production was significantly greater (p=.05) beneath blue oak compared to open grassland. At most sampling dates, the...

  13. A Simple and Efficient Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunfeng Xu

    2013-01-01

    Full Text Available Artificial bee colony (ABC is a new population-based stochastic algorithm which has shown good search abilities on many optimization problems. However, the original ABC shows slow convergence speed during the search process. In order to enhance the performance of ABC, this paper proposes a new artificial bee colony (NABC algorithm, which modifies the search pattern of both employed and onlooker bees. A solution pool is constructed by storing some best solutions of the current swarm. New candidate solutions are generated by searching the neighborhood of solutions randomly chosen from the solution pool. Experiments are conducted on a set of twelve benchmark functions. Simulation results show that our approach is significantly better or at least comparable to the original ABC and seven other stochastic algorithms.

  14. Effects of Wintering Environment and Parasite-Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions.

    Directory of Open Access Journals (Sweden)

    Suresh D Desai

    Full Text Available Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV, black queen cell virus (BQCV, and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV, Kashmir bee virus (KBV, and Chronic bee paralysis virus (CBPV increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated

  15. Puffins reveal contrasting relationships between forage fish and ocean climate in the North Pacific

    Science.gov (United States)

    Sydeman, William J.; Piatt, John F.; Thompson, Sarah Ann; Garcia-Reyes, Marisol; Hatch, Scott A.; Arimitsu, Mayumi L.; Slater, Leslie; Williams, Jeffrey C.; Rojek, Nora A.; Zador, Stephani G.; Renner, Heather M.

    2017-01-01

    Long-term studies of predator food habits (i.e., ‘predator-based sampling’) are useful for identifying patterns of spatial and temporal variability of forage nekton in marine ecosystems. We investigated temporal changes in forage fish availability and relationships to ocean climate by analyzing diet composition of three puffin species (horned puffin Fratercula corniculata, tufted puffin Fratercula cirrhata, and rhinoceros auklet Cerorhinca monocerata) from five sites in the North Pacific from 1978–2012. Dominant forage species included squids and hexagrammids in the western Aleutians, gadids and Pacific sand lance (Ammodytes personatus) in the eastern Aleutians and western Gulf of Alaska (GoA), and sand lance and capelin (Mallotus villosus) in the northern and eastern GoA. Interannual fluctuations in forage availability dominated variability in the western Aleutians, whereas lower-frequency shifts in forage fish availability dominated elsewhere. We produced regional multivariate indicators of sand lance, capelin, and age-0 gadid availability by combining data across species and sites using Principal Component Analysis, and related these indices to environmental factors including sea level pressure (SPL), winds, and sea surface temperature (SST). There was coherence in the availability of sand lance and capelin across the study area. Sand lance availability increased linearly with environmental conditions leading to warmer ocean temperatures, whereas capelin availability increased in a non-linear manner when environmental changes led to lower ocean temperatures. Long-term studies of puffin diet composition appear to be a promising tool for understanding the availability of these difficult-to-survey forage nekton in remote regions of the North Pacific.

  16. Project CONVERGE: Impacts of local oceanographic processes on Adélie penguin foraging ecology

    Science.gov (United States)

    Kohut, J. T.; Bernard, K. S.; Fraser, W.; Oliver, M. J.; Statscewich, H.; Patterson-Fraser, D.; Winsor, P.; Cimino, M. A.; Miles, T. N.

    2016-02-01

    During the austral summer of 2014-2015, project CONVERGE deployed a multi-platform network to sample the Adélie penguin foraging hotspot associated with Palmer Deep Canyon along the Western Antarctic Peninsula. The focus of CONVERGE was to assess the impact of prey-concentrating ocean circulation dynamics on Adélie penguin foraging behavior. Food web links between phytoplankton and zooplankton abundance and penguin behavior were examined to better understand the within-season variability in Adélie foraging ecology. Since the High Frequency Radar (HFR) network installation in November 2014, the radial component current data from each of the three sites were combined to provide a high resolution (0.5 km) surface velocity maps. These hourly maps have revealed an incredibly dynamic system with strong fronts and frequent eddies extending across the Palmer Deep foraging area. A coordinated fleet of underwater gliders were used in concert with the HFR fields to sample the hydrography and phytoplankton distributions associated with convergent and divergent features. Three gliders mapped the along and across canyon variability of the hydrography, chlorophyll fluorescence and acoustic backscatter in the context of the observed surface currents and simultaneous penguin tracks. This presentation will highlight these synchronized measures of the food web in the context of the observed HFR fronts and eddies. The location and persistence of these features coupled with ecological sampling through the food web offer an unprecedented view of the Palmer Deep ecosystem. Specific examples will highlight how the vertical structure of the water column beneath the surface features stack the primary and secondary producers relative to observed penguin foraging behavior. The coupling from the physics through the food web as observed by our multi-platform network gives strong evidence for the critical role that distribution patterns of lower trophic levels have on Adélie foraging.

  17. Adaptive foraging and flexible food web topology

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Schmitz, O.

    2003-01-01

    Roč. 5, - (2003), s. 623-652 ISSN 1522-0613 R&D Projects: GA ČR GA201/03/0091 Institutional research plan: CEZ:AV0Z5007907 Keywords : adaptive foraging * food chain * food web structure Subject RIV: EH - Ecology, Behaviour Impact factor: 1.587, year: 2003

  18. Improving tree establishment with forage crops

    Science.gov (United States)

    Eric J. Holzmueller; Carl W. Mize

    2003-01-01

    Tree establishment in Iowa can be difficult without adequate weed control. Although herbicides are effective at controlling weeds, they may not be desirable in riparian settings and some landowners are opposed to using them. An alternative to herbicides is the use of forage crops to control weeds. A research project was established in 1998 to evaluate the influence of...

  19. Information Foraging in E-Voting

    DEFF Research Database (Denmark)

    Vatrapu, Ravi; Robertson, Scott

    2009-01-01

    with others. Interaction analysis of the case study data consisted of applying Information Foraging Theory to understand participant specific behaviors in searching and browsing. Case study results show skewed time allocation to activities, a tradeoff between enrichment vs. exploitation of search results...

  20. Foraging strategies of Antarctic Fulmarine petrels

    NARCIS (Netherlands)

    Creuwels, J.C.S.; Engelhard, G.A.; Franeker, van J.A.; Veer, van der W.; Hasperhoven, J.G.; Ruiterman, W.

    2010-01-01

    During breeding, procellariiform seabirds are typical central-place foragers, depending on distant pelagic resources. Especially in polar environments, where there is only a short time window to complete the breeding season, high chick provisioning rates are needed to allow chicks to fledge

  1. Field and Forage Crop Pests. MEP 310.

    Science.gov (United States)

    Morgan, Omar, D.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests that can be found in field and forage crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the…

  2. Alternatives for forage evaluation in ruminants

    NARCIS (Netherlands)

    Gosselink, J.M.J.

    2004-01-01

    The objective of this thesis was to validate and to compare in situ and in vitro techniques with in vivo data. These techniques were also evaluated for future and practical use in feed evaluation for ruminants. The techniques were compared using the digestion data of 98 forages and the energy

  3. Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging.

    Science.gov (United States)

    Kotler, Burt P; Brown, Joel; Mukherjee, Shomen; Berger-Tal, Oded; Bouskila, Amos

    2010-05-22

    Foraging animals have several tools for managing the risk of predation, and the foraging games between them and their predators. Among these, time allocation is foremost, followed by vigilance and apprehension. Together, their use influences a forager's time allocation and giving-up density (GUD) in depletable resource patches. We examined Allenby's gerbils (Gerbilus andersoni allenbyi) exploiting seed resource patches in a large vivarium under varying moon phases in the presence of a red fox (Vulpes vulpes). We measured time allocated to foraging patches electronically and GUDs from seeds left behind in resource patches. From these, we estimated handling times, attack rates and quitting harvest rates (QHRs). Gerbils displayed greater vigilance (lower attack rates) at brighter moon phases (full full > new > wane). Finally, gerbils displayed higher QHRs at new and waxing moon phases. Differences across moon phases not only reflect changing time allocation and vigilance, but changes in the state of the foragers and their marginal value of energy. Early in the lunar cycle, gerbils rely on vigilance and sacrifice state to avoid risk; later they defend state at the cost of increased time allocation; finally their state can recover as safe opportunities expand. In the predator-prey foraging game, foxes may contribute to these patterns of behaviours by modulating their own activity in response to the opportunities presented in each moon phase.

  4. Post-Colonialism Perspectives on Educational Competition

    Science.gov (United States)

    Yeh, Chuan-Rong

    2016-01-01

    Educational competition has always been the puzzle issue of educational researches. In this article, I analyze several aspects of educational competition within the perspective of post-colonialism discourse. In the political aspect, Taiwanese education is linked with political power, to present the post-colonial spirit by continuing dynastic…

  5. [Notes about other epidemics in Colonial Chile].

    Science.gov (United States)

    Laval, Enrique

    2015-10-01

    In chronicles or in the historiography of the Colony in Chile there are few references about epidemics different to smallpox; like typhus, typhoid fever, dysentery, etc. Almost all, fast spreading in the country and some with high lethality, which led to overflowing the capacity of hospitals in the Chilean colonial period.

  6. Trapline foraging by bumble bees: VII. Adjustments for foraging success following competitor removal

    OpenAIRE

    Kazuharu Ohashi; Alison Leslie; James D. Thomson

    2013-01-01

    Animals collecting food from renewable resource patches scattered in space often establish small foraging areas to which they return faithfully. Such area fidelity offers foraging advantages through selection of profitable patches, route minimization, and regular circuit visits to these patches (“trapline foraging”). Resource distribution under field conditions may often vary in time, however, especially when competitors suddenly vanish and a number of patches become available for their neigh...

  7. How can bee colony algorithm serve medicine?

    Science.gov (United States)

    Salehahmadi, Zeinab; Manafi, Amir

    2014-07-01

    Healthcare professionals usually should make complex decisions with far reaching consequences and associated risks in health care fields. As it was demonstrated in other industries, the ability to drill down into pertinent data to explore knowledge behind the data can greatly facilitate superior, informed decisions to ensue the facts. Nature has always inspired researchers to develop models of solving the problems. Bee colony algorithm (BCA), based on the self-organized behavior of social insects is one of the most popular member of the family of population oriented, nature inspired meta-heuristic swarm intelligence method which has been proved its superiority over some other nature inspired algorithms. The objective of this model was to identify valid novel, potentially useful, and understandable correlations and patterns in existing data. This review employs a thematic analysis of online series of academic papers to outline BCA in medical hive, reducing the response and computational time and optimizing the problems. To illustrate the benefits of this model, the cases of disease diagnose system are presented.

  8. Hegemony and Accommodation in the History Curriculum in Colonial Botswana

    Science.gov (United States)

    Mafela, Lily

    2014-01-01

    A reanalysis of colonial education is necessary in order to highlight its multifaceted and hybrid nature in specific colonial contexts. Although in general, colonial education served the socio-political needs of the colonial machinery, the colonial government's hegemonic authority over the school curriculum did not operate as a totalising project.…

  9. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Science.gov (United States)

    Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  10. Effects of tidal cycles on shorebird distribution and foraging behaviour in a coastal tropical wetland: Insights for carrying capacity assessment

    Science.gov (United States)

    Fonseca, Juanita; Basso, Enzo; Serrano, David; Navedo, Juan G.

    2017-11-01

    Wetland loss has driven negative effects on biodiversity by a reduction in potential available habitats, directly impacting wetland-dependent species such as migratory shorebirds. At coastal areas where tidal cycles can restrict food access, the degree to which density of foraging birds is mediated by conspecific abundance or by the available areas is crucial to understanding patterns of bird distribution and wetland carrying capacity. We used the bathymetry of two sectors modeled with two numerical matrices to determine the availability of intertidal foraging areas in relation to tidal level (spring and neap tides), and this information was used to estimate shorebird density and foraging activity throughout the low-tide cycle in a tropical coastal lagoon in northwestern Mexico. Relative to spring tides, an 80% reduction in available foraging areas occurred during neap tides. Overall shorebird abundance was significantly reduced during neap tide periods, with differences between species. Densities of shorebirds increased during neap tides, particularly in one sector, and remained similar throughout the low-tide period (i.e. 4 h) either during spring or neap tides. Time spent foraging was consistently lower during neap-tides relative to spring-tides, especially for Long-billed curlew (44% reduction), Willet (37% reduction) and Black-necked stilt (29% reduction). These decreases in foraging activity when available habitats became reduced can hamper the opportunities of migratory shorebirds to reach their daily energy requirements to survive during the non-breeding season. This study shows that when intertidal habitats are severely reduced an important fraction of shorebird populations would probably be forced to find alternative areas to forage or increase foraging time during the night. Serving an essential function as top-predators, these results can have important implications on carrying capacity assessment for shorebirds at coastal wetlands.

  11. Potential Foraging Decisions by a Desert Ungulate to Balance Water and Nutrient Intake in a Water-Stressed Environment.

    Directory of Open Access Journals (Sweden)

    Jay V Gedir

    Full Text Available Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons and moisture (autumn and winter during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains, female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental

  12. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    Science.gov (United States)

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  13. A hybrid artificial bee colony algorithm for numerical function optimization

    Science.gov (United States)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  14. ADAPTIVE ANT COLONY OPTIMIZATION BASED GRADIENT FOR EDGE DETECTION

    Directory of Open Access Journals (Sweden)

    Febri Liantoni

    2014-08-01

    Full Text Available Ant Colony Optimization (ACO is a nature-inspired optimization algorithm which is motivated by ants foraging behavior. Due to its favorable advantages, ACO has been widely used to solve several NP-hard problems, including edge detection. Since ACO initially distributes ants at random, it may cause imbalance ant distribution which later affects path discovery process. In this paper an adaptive ACO is proposed to optimize edge detection by adaptively distributing ant according to gradient analysis. Ants are adaptively distributed according to gradient ratio of each image regions. Region which has bigger gradient ratio, will have bigger number of ant distribution. Experiments are conducted using images from various datasets. Precision and recall are used to quantitatively evaluate performance of the proposed algorithm. Precision and recall of adaptive ACO reaches 76.98 % and 96.8 %. Whereas highest precision and recall for standard ACO are 69.74 % and 74.85 %. Experimental results show that the adaptive ACO outperforms standard ACO which randomly distributes ants.

  15. Spatial variation in age structure among colonies of a marine snake: the influence of ectothermy.

    Science.gov (United States)

    Bonnet, Xavier; Brischoux, François; Pinaud, David; Michel, Catherine Louise; Clobert, Jean; Shine, Richard; Fauvel, Thomas

    2015-07-01

    Several tetrapod lineages that have evolved to exploit marine environments (e.g. seals, seabirds, sea kraits) continue to rely upon land for reproduction and, thus, form dense colonies on suitable islands. In birds and mammals (endotherms), the offspring cannot survive without their parents. Terrestrial colonies contain all age classes. In reptiles (ectotherms), this constraint is relaxed, because offspring are independent from birth. Hence, each age class has the potential to select sites with characteristics that favour them. Our studies of sea snakes (sea kraits) in the lagoon of New Caledonia reveal marked spatial heterogeneity in age structure among colonies. Sea krait colonies exhibit the endothermic 'seal-seabird' pattern (mixed-age classes within populations) only where the lagoon is narrow. Where the lagoon is wide, most snake colonies are comprised primarily of a single age cohort. Nurseries are located near the coast, adult colonies offshore and mixed colonies in-between. We suggest that ectothermy allows individuals to utilize habitats that are best suited to their own ecological requirements, a flexibility not available to endothermic marine taxa with obligate parental care. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  16. E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Alban Maisonnasse

    Full Text Available BACKGROUND: In honey bee colony, the brood is able to manipulate and chemically control the workers in order to sustain their own development. A brood ester pheromone produced primarily by old larvae (4 and 5 days old larvae was first identified as acting as a contact pheromone with specific effects on nurses in the colony. More recently a new volatile brood pheromone has been identified: E-β-ocimene, which partially inhibits ovary development in workers. METHODOLOGY AND PRINCIPAL FINDING: Our analysis of E-β-ocimene production revealed that young brood (newly hatched to 3 days old produce the highest quantity of E-β-ocimene relative to their body weight. By testing the potential action of this molecule as a non-specific larval signal, due to its high volatility in the colony, we demonstrated that in the presence of E-β-ocimene nest workers start to forage earlier in life, as seen in the presence of real brood. CONCLUSIONS/SIGNIFICANCE: In this way, young larvae are able to assign precedence to the task of foraging by workers in order to increase food stores for their own development. Thus, in the complexity of honey bee chemical communication, E-β-ocimene, a pheromone of young larvae, provides the brood with the means to express their nutritional needs to the workers.

  17. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera).

    Science.gov (United States)

    Zanni, Virginia; Galbraith, David A; Annoscia, Desiderato; Grozinger, Christina M; Nazzi, Francesco

    2017-08-01

    Extensive annual losses of honey bee colonies (Apis mellifera L.) reported in the northern hemisphere represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor, in association with deformed wing virus (DWV), plays a key role in this phenomenon, but the underlying mechanisms are still unclear. To elucidate these mechanisms, we analyzed the gene expression profile of uninfested and mite infested bees, under laboratory and field conditions, highlighting the effects of parasitization on the bee's transcriptome under a variety of conditions and scenarios. Parasitization was significantly correlated with higher viral loads. Honey bees exposed to mite infestation exhibited an altered expression of genes related to stress response, immunity, nervous system function, metabolism and behavioural maturation. Additionally, mite infested young bees showed a gene expression profile resembling that of forager bees. To identify potential molecular markers of colony decline, the expression of genes that were commonly regulated across the experiments were subsequently assessed in colonies experiencing increasing mite infestation levels. These studies suggest that PGRP-2, hymenoptaecin, a glucan recognition protein, UNC93 and a p450 cytocrome maybe suitable general biomarkers of Varroa-induced colony decline. Furthermore, the reliability of vitellogenin, a yolk protein previously identified as a good marker of colony survival, was confirmed here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Levy Foraging in a Dynamic Environment – Extending the Levy Search

    Directory of Open Access Journals (Sweden)

    Vincenzo Fioriti

    2015-07-01

    Full Text Available A common task for robots is the patrolling of an unknown area with inadequate information about target locations. Under these circumstances it has been suggested that animal foraging could provide an optimal or at least sub-optimal search methodology, namely the Levy flight search. Although still in debate, it seems that predators somehow follow this search pattern when foraging, because it avoids being trapped in a local search if the food is beyond the sensory range. A Levy flight is a particular case of the random walk. Its displacements on a 2-D surface are drawn from the Pareto-Levy probability distribution, characterized by power law tails. The Levy flight search has many applications in optical material, ladars, optics, large database search, earthquake data analysis, location of DNA sites, human mobility, stock return analysis, online auctions, astronomy, ecology and biology. Almost all studies and simulations concerning the Levy flight foraging examine static or slowly moving (with respect to the forager uniformly distributed resources. Moreover, in recent works a small swarm of underwater autonomous vehicles has been used to test the standard Levy search in the underwater environment, with good results. In this paper we extend the classical Levy foraging framework taking into consideration a moving target allocated on a 2-D surface according to a radial probability distribution and comparing its performance with the random walk search. The metric used in the numerical simulations is the detection rate. Simulations include the sensor resolution, intended as the maximum detection distance of the forager from the target. Furthermore, contrarily to the usual Levy foraging framework, we use only one target. Results show that Levy flight outperforms the random walk if the sensor detection radius is not too small or too large. We also find the Levy flight in the velocity of the center of mass model of a fish school according the Kuramoto

  19. By the Light of the Moon: North Pacific Dolphins Optimize Foraging with the Lunar Cycle

    Science.gov (United States)

    Simonis, Anne Elizabeth

    The influence of the lunar cycle on dolphin foraging behavior was investigated in the productive, southern California Current Ecosystem and the oligotrophic Hawaiian Archipelago. Passive acoustic recordings from 2009 to 2015 were analyzed to document the presence of echolocation from four dolphin species that demonstrate distinct foraging preferences and diving abilities. Visual observations of dolphins, cloud coverage, commercial landings of market squid (Doryteuthis opalescens) and acoustic backscatter of fish were also considered in the Southern California Bight. The temporal variability of echolocation is described from daily to annual timescales, with emphasis on the lunar cycle as an established behavioral driver for potential dolphin prey. For dolphins that foraged at night, the presence of echolocation was reduced during nights of the full moon and during times of night that the moon was present in the night sky. In the Southern California Bight, echolocation activity was reduced for both shallow- diving common dolphins (Delphinus delphis) and deeper-diving Risso's dolphins (Grampus griseus) during times of increased illumination. Seasonal differences in acoustic behavior for both species suggest a geographic shift in dolphin populations, shoaling scattering layers or prey switching behavior during warm months, whereby dolphins target prey that do not vertically migrate. In the Hawaiian Archipelago, deep-diving short-finned pilot whales (Globicephala macrorhynchus) and shallow-diving false killer whales (Pseudorca crassidens) also showed reduced echolocation behavior during periods of increased lunar illumination. In contrast to nocturnal foraging in the northwestern Hawaiian Islands, false killer whales in the main Hawaiian Islands mainly foraged during the day and the lunar cycle showed little influence on their nocturnal acoustic behavior. Different temporal patterns in false killer whale acoustic behavior between the main and northwestern Hawaiian

  20. Social facilitation revisited: increase in foraging efforts and synchronization of running in domestic chicks

    Directory of Open Access Journals (Sweden)

    Yukiko eOgura

    2011-07-01

    Full Text Available Social influences on foraging efforts were examined in domestic chicks by investigating the frequency of runs made to feeders and the amount of pecking to gain food. Single or paired chicks foraged in an I-shaped maze equipped with a millet feeder on each end, that distributed one or two grains at variable intervals. Regardless of when the grain(s were dispensed, chicks ran back and forth between the feeders. Analyses of their movement patterns revealed: (1 running patterns were not directly synchronized with the dispensing of grain(s, (2 running distance was longer in paired chicks than in single chicks, (3 paired chicks partially synchronized their runs between feeders, and (4 social effects were immediate but cumulative after repeated blocks. We further examined the social effects on running by dividing the I-maze into two parallel lanes separated by a transparent wall, so that kleptoparasitic interference of food did not occur. Again, the chicks increased their running speed and were even more synchronized with their partner’s movements, indicating that food competition alone was not responsible for increased foraging effort. The number of pecks to get grains was also assessed under conditions where the food tray was gradually replaced, from an easy one to more difficult ones. When tested in the separated I-maze, paired chicks pecked more in the difficult food situation without increase in the number of gained grains. Results suggest that (i social facilitation leads to increased foraging efforts and (ii the presence of a conspecific is alone may lead to enhanced foraging efforts in chicks. These findings are discussed in terms of possible ecological background of social facilitation.

  1. Hidden Markov models: the best models for forager movements?

    Science.gov (United States)

    Joo, Rocio; Bertrand, Sophie; Tam, Jorge; Fablet, Ronan

    2013-01-01

    One major challenge in the emerging field of movement ecology is the inference of behavioural modes from movement patterns. This has been mainly addressed through Hidden Markov models (HMMs). We propose here to evaluate two sets of alternative and state-of-the-art modelling approaches. First, we consider hidden semi-Markov models (HSMMs). They may better represent the behavioural dynamics of foragers since they explicitly model the duration of the behavioural modes. Second, we consider discriminative models which state the inference of behavioural modes as a classification issue, and may take better advantage of multivariate and non linear combinations of movement pattern descriptors. For this work, we use a dataset of >200 trips from human foragers, Peruvian fishermen targeting anchovy. Their movements were recorded through a Vessel Monitoring System (∼1 record per hour), while their behavioural modes (fishing, searching and cruising) were reported by on-board observers. We compare the efficiency of hidden Markov, hidden semi-Markov, and three discriminative models (random forests, artificial neural networks and support vector machines) for inferring the fishermen behavioural modes, using a cross-validation procedure. HSMMs show the highest accuracy (80%), significantly outperforming HMMs and discriminative models. Simulations show that data with higher temporal resolution, HSMMs reach nearly 100% of accuracy. Our results demonstrate to what extent the sequential nature of movement is critical for accurately inferring behavioural modes from a trajectory and we strongly recommend the use of HSMMs for such purpose. In addition, this work opens perspectives on the use of hybrid HSMM-discriminative models, where a discriminative setting for the observation process of HSMMs could greatly improve inference performance.

  2. Adaptive intertemporal preferences in foraging-style environments

    Directory of Open Access Journals (Sweden)

    Michael T. Bixter

    2013-06-01

    Full Text Available Decision makers often face choices between smaller more immediate rewards and larger more delayed rewards. For example, when foraging for food, animals must choose between actions that have varying costs (e.g., effort, duration, energy expenditure and varying benefits (e.g., amount of food intake. The combination of these costs and benefits determine what optimal behavior is. In the present study, we employ a foraging-style task to study how humans make reward-based choices in response to the real-time constraints of a dynamic environment. On each trial participants were presented with two rewards that differed in magnitude and in the delay until their receipt. Because the experiment was of a fixed duration, maximizing earnings required decision makers to determine how to trade off the magnitude and the delay associated with the two rewards on each trial. To evaluate the extent to which participants could adapt to the decision environment, specific task characteristics were manipulated, including reward magnitudes (Experiment 1 and the delay between trials (Experiment 2. Each of these manipulations was designed to alter the pattern of choices made by an optimal decision maker. Several findings are of note. First, different choice strategies were observed with the manipulated environmental constraints. Second, despite contextually-appropriate shifts in behavior between conditions in each experiment, choice patterns deviated from theoretical optimality. In particular, the delays associated with the rewards did not exert a consistent influence on choices as required by exponential discounting. Third, decision makers nevertheless performed surprisingly well in all task environments with any deviations from strict optimality not having particularly deleterious effects on earnings. Taken together, these results suggest that human decision makers are capable of exhibiting intertemporal preferences that reflect a variety of environmental constraints.

  3. Hidden Markov models: the best models for forager movements?

    Directory of Open Access Journals (Sweden)

    Rocio Joo

    Full Text Available One major challenge in the emerging field of movement ecology is the inference of behavioural modes from movement patterns. This has been mainly addressed through Hidden Markov models (HMMs. We propose here to evaluate two sets of alternative and state-of-the-art modelling approaches. First, we consider hidden semi-Markov models (HSMMs. They may better represent the behavioural dynamics of foragers since they explicitly model the duration of the behavioural modes. Second, we consider discriminative models which state the inference of behavioural modes as a classification issue, and may take better advantage of multivariate and non linear combinations of movement pattern descriptors. For this work, we use a dataset of >200 trips from human foragers, Peruvian fishermen targeting anchovy. Their movements were recorded through a Vessel Monitoring System (∼1 record per hour, while their behavioural modes (fishing, searching and cruising were reported by on-board observers. We compare the efficiency of hidden Markov, hidden semi-Markov, and three discriminative models (random forests, artificial neural networks and support vector machines for inferring the fishermen behavioural modes, using a cross-validation procedure. HSMMs show the highest accuracy (80%, significantly outperforming HMMs and discriminative models. Simulations show that data with higher temporal resolution, HSMMs reach nearly 100% of accuracy. Our results demonstrate to what extent the sequential nature of movement is critical for accurately inferring behavioural modes from a trajectory and we strongly recommend the use of HSMMs for such purpose. In addition, this work opens perspectives on the use of hybrid HSMM-discriminative models, where a discriminative setting for the observation process of HSMMs could greatly improve inference performance.

  4. Redox state, reactive oxygen species and adaptive growth in colonial hydroids.

    Science.gov (United States)

    Blackstone, N W

    2001-06-01

    colonies 24h after the usual, colony-wide feeding. At this time, a single polyp was fed, and this polyp was compared with an otherwise similar polyp from the same colony. A pattern similar to the whole-colony experiments was obtained: the just-fed polyp, as it begins contracting shortly after feeding, appears to be relatively oxidized, with low levels of peroxide compared with the polyp that was not fed. These data are consistent with the hypothesis that adaptive colony development in response to a variable food supply is mediated by redox state or reactive oxygen species or both, although alternative hypotheses are also discussed.

  5. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    Directory of Open Access Journals (Sweden)

    Igor Buzalewicz

    Full Text Available The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH, which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an

  6. Novel Perspectives on the Characterization of Species-Dependent Optical Signatures of Bacterial Colonies by Digital Holography.

    Science.gov (United States)

    Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina

    2016-01-01

    The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach

  7. Comparative metabolite fingerprinting of the rumen system during colonisation of three forage grass (Lolium perenne L. varieties.

    Directory of Open Access Journals (Sweden)

    Alison H Kingston-Smith

    Full Text Available The rumen microbiota enable ruminants to degrade complex ligno-cellulosic compounds to produce high quality protein for human consumption. However, enteric fermentation by domestic ruminants generates negative by-products: greenhouse gases (methane and environmental nitrogen pollution. The current lack of cultured isolates representative of the totality of rumen microbial species creates an information gap about the in vivo function of the rumen microbiota and limits our ability to apply predictive biology for improvement of feed for ruminants. In this work we took a whole ecosystem approach to understanding how the metabolism of the microbial population responds to introduction of its substrate. Fourier Transform Infra Red (FTIR spectroscopy-based metabolite fingerprinting was used to discriminate differences in the plant-microbial interactome of the rumen when using three forage grass varieties (Lolium perenne L. cv AberDart, AberMagic and Premium as substrates for microbial colonisation and fermentation. Specific examination of spectral regions associated with fatty acids, amides, sugars and alkanes indicated that although the three forages were apparently similar by traditional nutritional analysis, patterns of metabolite flux within the plant-microbial interactome were distinct and plant genotype dependent. Thus, the utilisation pattern of forage nutrients by the rumen microbiota can be influenced by subtleties determined by forage genotypes. These data suggest that our interactomic approach represents an important means to improve forages and ultimately the livestock environment.

  8. Subterranean termite open-air foraging and tolerance to desiccation: Comparative water relation of two sympatric Macrotermes spp. (Blattodea: Termitidae).

    Science.gov (United States)

    Hu, Jian; Neoh, Kok-Boon; Appel, Arthur G; Lee, Chow-Yang

    2012-02-01

    The foraging patterns of termites are strongly related to physiological limits in overcoming desiccation stress. In this study, we examined moisture preferences and physiological characteristics of Macrotermes carbonarius (Hagen) and M. gilvus (Hagen) as both exhibit conspicuous patterns of foraging activity. Despite both species showing no significant differences in calculated cuticular permeability, and percentage of total body water, they differed greatly in rate of water loss and surface area to volume ratio. For example, M. carbonarius which had a lower surface area to volume ratio (29.26-53.66) showed lower rate of water loss and percentage of total body water loss. This also resulted in higher LT(50) when exposed to extreme conditions (≈2% RH). However, contrasting observations were made in M. gilvus that has smaller size with higher surface area to volume ratio of 40.28-69.75. It is likely that the standard equation for calculating insect surface areas is inadequate for these termite species. The trend was further supported by the result of a moisture preference bioassay that indicated M. carbonarius had a broader range of moisture preference (between 5% and 20%) than M. gilvus which had a relatively narrow moisture preference (only 20%). These results explain why M. carbonarius can tolerate desiccation stress for a longer period foraging above-ground in the open air; while M. gilvus only forages below ground or concealed within foraging mud tubes. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Combined influence of meso-scale circulation and bathymetry on the foraging behaviour of a diving predator, the king penguin (Aptenodytes patagonicus)

    Science.gov (United States)

    Scheffer, Annette; Trathan, Philip N.; Edmonston, Johnnie G.; Bost, Charles-André

    2016-02-01

    Investigating the responses of marine predators to environmental features is of key importance for understanding their foraging behaviour and reproductive success. In this study we examined the foraging behaviour of king penguins breeding at Kerguelen (southern Indian Ocean) in relation to oceanographic and bathymetric features within their foraging ambit. We used ARGOS and Global Positioning System tracking together with Time-Depth-Temperature-Recorders (TDR) to follow the at-sea movements of incubating and brooding king penguins. Combining the penguin behaviour with oceanographic data at the surface through satellite data and at depth through in-situ recordings by the TDRs enabled us to explore how these predators adjusted their horizontal and vertical foraging movements in response to their physical environment. Relating the observed behaviour and oceanographic patterns to local bathymetry lead to a comprehensive picture of the combined influence of bathymetry and meso-scale circulation on the foraging behaviour of king penguins. During both breeding stages king penguins foraged in the area to the south-east of Kerguelen, where they explored an influx of cold waters of southern origin interacting with the Kerguelen Plateau bathymetry. Foraging in the Polar Front and at the thermocline was associated with high prey capture rates. However, foraging trip orientation and water mass utilization suggested that bathymetrically entrained cold-water features provided the most favourable foraging locations. Our study explicitly reports the exploration of bathymetry-related oceanographic features by foraging king penguins. It confirms the presence of Areas of Ecological Significance for marine predators on the Kerguelen Plateau, and suggests the importance of further areas related to the cold-water flow along the shelf break of the Kerguelen Plateau.

  10. Climate and foraging mode explain interspecific variation in snake metabolic rates.

    Science.gov (United States)

    Dupoué, Andréaz; Brischoux, François; Lourdais, Olivier

    2017-11-29

    The energy cost of self-maintenance is a critical facet of life-history strategies. Clarifying the determinant of interspecific variation in metabolic rate (MR) at rest is important to understand and predict ecological patterns such as species distributions or responses to climatic changes. We examined variation of MR in snakes, a group characterized by a remarkable diversity of activity rates and a wide distribution. We collated previously published MR data ( n = 491 observations) measured in 90 snake species at different trial temperatures. We tested for the effects of metabolic state (standard MR (SMR) versus resting MR (RMR)), foraging mode (active versus ambush foragers) and climate (temperature and precipitation) while accounting for non-independence owing to phylogeny, body mass and thermal dependence. We found that RMR was 40% higher than SMR, and that active foragers have higher MR than species that ambush their prey. We found that MR was higher in cold environments, supporting the metabolic cold adaptation hypothesis. We also found an additive and positive effect of precipitation on MR suggesting that lower MR in arid environments may decrease dehydration and energetic costs. Altogether, our findings underline the complex influences of climate and foraging mode on MR and emphasize the relevance of these facets to understand the physiological impact of climate change. © 2017 The Author(s).

  11. Migrations of green turtles (Chelonia mydas between nesting and foraging grounds across the Coral Sea.

    Directory of Open Access Journals (Sweden)

    Tyffen C Read

    Full Text Available Marine megafauna tend to migrate vast distances, often crossing national borders and pose a significant challenge to managers. This challenge is particularly acute in the Pacific, which contains numerous small island nations and thousands of kilometers of continental margins. The green sea turtle, Chelonia mydas, is one such megafauna that is endangered in Pacific waters due to the overexploitation of eggs and adults for human consumption. Data from long-term tagging programs in Queensland (Australia and New Caledonia were analysed to investigate the migrations by C. mydas across the Coral Sea between their nesting site and their feeding grounds. A review of data collected over the last 50 years by different projects identified multiple migrations of C. mydas to and from New Caledonia (n = 97 and indicate that turtles foraging in New Caledonia nest in the Great Barrier Reef (Australia and vice versa. Several explanations exist for turtles exhibiting this energetically costly movement pattern from breeding to distant foraging grounds (1200-2680 km away despite viable foraging habitat being available in the local vicinity. These include hatchling drift, oceanic movements and food abundance predictability. Most of the tag recoveries in New Caledonia belonged to females from the south Great Barrier Reef genetic stock. Some females (n = 2 even showed fidelity to foraging sites located 1200 km away from the nesting site located in New Caledonia. This study also reveals previously unknown migrations pathways of turtles within the Coral Sea.

  12. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis

    Directory of Open Access Journals (Sweden)

    Nuru Adgaba

    2017-07-01

    Full Text Available In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi, Acacia tortilis, Acacia origina, Acacia asak, Lavandula dentata, and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (<30% with low Shannon’s species diversity indices (H′ of 0.5–1.52 for different sites. Based on the eco-climatological factors and the variations in their flowering period, these major bee forage species were found to form eight distinct spatiotemporal categories which allow beekeepers to migrate their colonies to exploit the resources at different seasons and place. The Remote Sensed Satellite Image analysis confirmed the spatial

  13. 21 CFR 866.2170 - Automated colony counter.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony counter. (a) Identification. An automated colony counter is a mechanical device intended for medical...

  14. Visual perception and social foraging in birds.

    Science.gov (United States)

    Fernández-Juricic, Esteban; Erichsen, Jonathan T; Kacelnik, Alex

    2004-01-01

    Birds gather information about their environment mainly through vision by scanning their surroundings. Many prevalent models of social foraging assume that foraging and scanning are mutually exclusive. Although this assumption is valid for birds with narrow visual fields, these models have also been applied to species with wide fields. In fact, available models do not make precise predictions for birds with large visual fields, in which the head-up, head-down dichotomy is not accurate and, moreover, do not consider the effects of detection distance and limited attention. Studies of how different types of visual information are acquired as a function of body posture and of how information flows within flocks offer new insights into the costs and benefits of living in groups.

  15. Variations in the Foraging Behaviour and Burrow Structures of the Damara Molerat Cryptomys damarensis in the Kalahari Gemsbok National Park

    Directory of Open Access Journals (Sweden)

    B.G. Lovegrove

    1987-10-01

    Full Text Available Aspects of two habitat-specific foraging behaviours of the social subterranean rodent Cryptomys damarensis, are discussed in terms of burrow structure, resource dispersion patterns, sand moisture content, burrow temperature regimes, and predatory pressures, in the Kalahari Gemsbok National Park, South Africa.

  16. Gender Segregation in Early-Childhood Social Play among the Bofi Foragers and Bofi Farmers in Central Africa

    Science.gov (United States)

    Fouts, Hillary N.; Hallam, Rena A.; Purandare, Swapna

    2013-01-01

    Gender segregation in early-childhood social play is a pervasive pattern in North America, and child-development scholars have suggested it is a human universal. But very few researchers have looked at gender segregation in small-scale societies, particularly those of hunter-gatherers, whom the authors here call foragers. The authors present their…

  17. Comment on "Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds" by Savoca et al.

    NARCIS (Netherlands)

    dell'Ariccia, Gaia; Phillips, Richard A.; Franeker, van J.A.; Gaidet, Nicolas; Catrey, Paulo; Granadeiro, Jose P.; Ryan, Peter G.; Bonadonna, Franceso

    2017-01-01

    In their recent paper, Savoca and collaborators (2016) showed that plastic debris in the ocean may acquire a dimethyl sulfide (DMS) signature from biofouling developing on their surface. According to them, DMS emission may represent an olfactory trap for foraging seabirds, which explains patterns of

  18. First report of sacbrood virus in honey bee (Apis mellifera) colonies in Brazil.

    Science.gov (United States)

    Freiberg, M; De Jong, D; Message, D; Cox-Foster, D

    2012-09-13

    Sacbrood disease, an affliction of honey bees (Apis mellifera) characterized by brood that fails to pupate and subsequently dies, is an important threat to honey bee health. The disease is caused by the sacbrood virus (SBV), a positive-, single-stranded RNA virus in the order Picornavirales. Because of the economic importance of honey bees for both pollination and honey production, it is vital to understand and monitor the spread of viruses such as SBV. This virus has been found in many places across the globe, including recently in some South American countries, and it is likely that it will continue to spread. We performed a preliminary study to search for SBV in two apiaries of Africanized honey bees in the State of São Paulo, Brazil, using RT-PCR and Sanger sequencing and found the first evidence of SBV in honey bee colonies in Brazil. The virus was detected in larvae, foraging and nurse bees from two colonies, one of which had symptoms of sacbrood disease, at the beginning of the winter season in June 2011. No SBV was found in samples from nine other nearby colonies.

  19. Ant Colony Optimization ACO For The Traveling Salesman Problem TSP Using Partitioning

    Directory of Open Access Journals (Sweden)

    Alok Bajpai

    2015-08-01

    Full Text Available Abstract An ant colony optimization is a technique which was introduced in 1990s and which can be applied to a variety of discrete combinatorial optimization problem and to continuous optimization. The ACO algorithm is simulated with the foraging behavior of the real ants to find the incremental solution constructions and to realize a pheromone laying-and-following mechanism. This pheromone is the indirect communication among the ants. In this paper we introduces the partitioning technique based on the divide and conquer strategy for the traveling salesman problem which is one of the most important combinatorial problem in which the original problem is partitioned into the group of sub problems. And then we apply the ant colony algorithm using candidate list strategy for each smaller sub problems. After that by applying the local optimization and combining the sub problems to find the good solution for the original problem by improving the exploration efficiency of the ants. At the end of this paper we have also be presented the comparison of result with the normal ant colony system for finding the optimal solution to the traveling salesman problem.

  20. Developing nondestructive techniques for managing conflicts between fisheries and double-crested cormorant colonies

    Science.gov (United States)

    Suzuki, Yasuko; Roby, Daniel D.; Lyons, Donald E.; Courtot, Karen; Collis, Ken

    2015-01-01

    Double-crested cormorants (Phalacrocorax auritus) have been identified as the source of significant mortality to juvenile salmonids (Oncorhynchus spp.) in the Columbia River Basin. Management plans for reducing the size of a large colony on East Sand Island (OR, USA) in the Columbia River estuary are currently being developed. We evaluated habitat enhancement and social attraction as nondestructive techniques for managing cormorant nesting colonies during 2004–2007. We tested these techniques on unoccupied plots adjacent to the East Sand Island cormorant colony. Cormorants quickly colonized these plots and successfully raised young. Cormorants also were attracted to nest and raised young on similar plots at 2 islands approximately 25 km from East Sand Island; 1 island had a history of successful cormorant nesting whereas the other was a site where cormorants had previously nested unsuccessfully. On a third island with no history of cormorant nesting or nesting attempts, these techniques were unsuccessful at attracting cormorants to nest. Our results suggest that some important factors influencing attraction of nesting cormorants using these techniques include history of cormorant nesting, disturbance, and presence of breeding cormorants nearby. These techniques may be effective in redistributing nesting cormorants away from areas where fish stocks of conservation concern are susceptible to predation, especially if sites with a recent history of cormorant nesting are available within their foraging or dispersal range. Published 2015. Wiley Periodicals, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America.

  1. Utilization of 15N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    International Nuclear Information System (INIS)

    Peschke, H.

    1981-01-01

    After systematic application of 15 N-ammonium nitrate, the change of the dinuclidic composition and 15 N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative 15 N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The 15 N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are 15 N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors. (author)

  2. Hybrid value foraging: How the value of targets shapes human foraging behavior.

    Science.gov (United States)

    Wolfe, Jeremy M; Cain, Matthew S; Alaoui-Soce, Abla

    2018-04-01

    In hybrid foraging, observers search visual displays for multiple instances of multiple target types. In previous hybrid foraging experiments, although there were multiple types of target, all instances of all targets had the same value. Under such conditions, behavior was well described by the marginal value theorem (MVT). Foragers left the current "patch" for the next patch when the instantaneous rate of collection dropped below their average rate of collection. An observer's specific target selections were shaped by previous target selections. Observers were biased toward picking another instance of the same target. In the present work, observers forage for instances of four target types whose value and prevalence can vary. If value is kept constant and prevalence manipulated, participants consistently show a preference for the most common targets. Patch-leaving behavior follows MVT. When value is manipulated, observers favor more valuable targets, though individual foraging strategies become more diverse, with some observers favoring the most valuable target types very strongly, sometimes moving to the next patch without collecting any of the less valuable targets.

  3. Utilization of /sup 15/N in the sequence of mineral fertilizer - forage - animal - slurry - forage

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, H [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Pflanzenproduktion

    1981-12-01

    After systematic application of /sup 15/N-ammonium nitrate, the change of the dinuclidic composition and /sup 15/N quantity was studied by isotope analysis of several open systems in the sequence mineral fertilizer - (soil) - forage - (animal) - slurry - (soil) - forage. The relative /sup 15/N isotope frequency of 50 atom% in the mineral fertilizer declined to 12.2 to 21.4 atom% in the forage (beet, oats, hay) and went down to 3.15 atom% in the slurry of a dairy cow fed on this forage. Silage maize manured with the slurry of the dairy cow only showed 1.98 atom %, green oats grown after the silage maize on the same area was found to have 0.45 atom%. The /sup 15/N quantity of 104.5 g N in the fertilizer gradually decreased to 41.6 g N in the forage, 30.5 g N in the slurry and 22.6 g N in the silage maize. The causes discussed are /sup 15/N isotope dilution as qualitative factor and productive and unproductive N losses as quantitative factors.

  4. Protein Binding Capacity of Different Forages Tannin

    Science.gov (United States)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  5. Mercury in San Francisco Bay forage fish

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Ben K., E-mail: ben@sfei.or [San Francisco Estuary Institute, 7770 Pardee Lane, Oakland, CA 94621 (United States); Jahn, Andrew, E-mail: andyjahn@mac.co [1000 Riverside Drive, Ukiah, CA 95482 (United States)

    2010-08-15

    In the San Francisco Estuary, management actions including tidal marsh restoration could change fish mercury (Hg) concentrations. From 2005 to 2007, small forage fish were collected and analyzed to identify spatial and interannual variation in biotic methylmercury (MeHg) exposure. The average whole body total Hg concentration was 0.052 {mu}g g{sup -1} (wet-weight) for 457 composite samples representing 13 fish species. MeHg constituted 94% of total Hg. At a given length, Hg concentrations were higher in nearshore mudflat and wetland species (Clevelandia ios, Menidia audens, and Ilypnus gilberti), compared to species that move offshore (e.g., Atherinops affinis and Lepidogobius lepidus). Gut content analysis indicated similar diets between Atherinops affinis and Menidia audens, when sampled at the same locations. Hg concentrations were higher in sites closest to the Guadalupe River, which drains a watershed impacted by historic Hg mining. Results demonstrate that despite differences among years and fish species, nearshore forage fish exhibit consistent Hg spatial gradients. - Total mercury in estuarine forage fish varies with species, habitat, and proximity to a historic mercury mine.

  6. Nutritional characteristics of forages from Niger

    Directory of Open Access Journals (Sweden)

    F. Infascelli

    2010-04-01

    Full Text Available In the production systems of the semi-arid areas low quality forages are commonly used as the basal diet (Wilkins, 2000 and, as a consequence, the nutritional status of ruminants depends mainly on the ability of rumen fermentation to yield nutrients such as the short chain fatty acids and microbial biomass (Preston and Leng, 1987. The forages browsed by the livestock can be classified into two main groups: ephemeral annual plants, which germinate and remain green for only a few weeks after rain, perennial shrubs and tree fodders. Despite their potential as feeds, little research has determined their nutritive value. In vivo evaluation is the best estimation method of feed’s nutritional value, however it is very laborious and difficult to standardize with browsing animals. O the contrary, in vitro methods are less expensive, less time consuming and allow a better control of experimental conditions than in vivo experiments. The in vitro gas production technique (IVGPT appears to be the most suitable method for use in developing countries where resources may be limited (Makkar, 2004. Increased interest in use of non-conventional feed resources has led to an increase in use of this technique, since IVGPT can provide useful data on digestion kinetics of both the soluble and insoluble fractions of feedstuffs. The aim of the present research was to evaluate twelve forages from the arid zone of Niger using the IVGPT.

  7. Mercury in San Francisco Bay forage fish

    International Nuclear Information System (INIS)

    Greenfield, Ben K.; Jahn, Andrew

    2010-01-01

    In the San Francisco Estuary, management actions including tidal marsh restoration could change fish mercury (Hg) concentrations. From 2005 to 2007, small forage fish were collected and analyzed to identify spatial and interannual variation in biotic methylmercury (MeHg) exposure. The average whole body total Hg concentration was 0.052 μg g -1 (wet-weight) for 457 composite samples representing 13 fish species. MeHg constituted 94% of total Hg. At a given length, Hg concentrations were higher in nearshore mudflat and wetland species (Clevelandia ios, Menidia audens, and Ilypnus gilberti), compared to species that move offshore (e.g., Atherinops affinis and Lepidogobius lepidus). Gut content analysis indicated similar diets between Atherinops affinis and Menidia audens, when sampled at the same locations. Hg concentrations were higher in sites closest to the Guadalupe River, which drains a watershed impacted by historic Hg mining. Results demonstrate that despite differences among years and fish species, nearshore forage fish exhibit consistent Hg spatial gradients. - Total mercury in estuarine forage fish varies with species, habitat, and proximity to a historic mercury mine.

  8. The Effects of Forage Policy on Feed Costs in Korea

    Directory of Open Access Journals (Sweden)

    Jae Bong Chang

    2018-05-01

    Full Text Available Feeding operations are substantial on livestock farms, besides being potentially expensive. Feeding efficiency has been considered a major influence on profits in the livestock industry. Indeed, feed costs are shown to be the largest single item of production cost in Korea. To promote production and use of domestic forage, the Korean government has enforced the forage base expansion program that strengthens the competitiveness of the livestock industry by reducing the production cost. The forage base expansion program includes three main policies: subsidized forage production, support for processing and distribution, and expanding land for forage production. This paper investigates the influence of the government’s policies often conjectured to have pronounced effects on forage production. To evaluate the forage policies, this paper uses a path-analysis approach linking government spending on forage base expansion programs and feed costs. Results indicate that the Korean government’s spending on supporting domestic forage production results in a decrease in the ratio of forage expenses to total feed cost.

  9. Colonial Taxation, Corruption and Resistance in Igbominaland ...

    African Journals Online (AJOL)

    Colonial Taxation, Corruption and Resistance in Igbominaland. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL · RESOURCES ... While taxation definitely stimulated economic activities in Igbominaland at ...

  10. Post-colonial identity in Greenland?

    DEFF Research Database (Denmark)

    Gad, Ulrik Pram

    2009-01-01

    could be furthered by bringing politics back in. Based on a discourse analysis of the Greenlandic debate on language, this paper makes three claims: First, the identity projects promoted in Greenland are based on an essentialist conception of identity. Secondly, Greenlandic identity discourse combines......In the gradual unravelling of Greenland’s colonial relationship to Denmark, an essentialist conceptualization of Greenlandic identity has played a significant role. However, both our scholarly understanding of post-colonial Greenlandic identity and the process towards independence for Greenland...... elements of traditional Inuit culture and elements of colonial modernity. Thirdly, monolingual Greenlanders are those with the most to gain from abandoning the dichotomy of essentialist identities. Strategically, the paper suggests a post-post-colonial Greenlandic identity as a means of avoiding...

  11. Post-Colonial Theory and Action Research

    Directory of Open Access Journals (Sweden)

    Jim Parsons

    2011-02-01

    Full Text Available This essay explores connections between post-colonial theory and action research. Post-colonial theory is committed to addressing the plague of colonialism. Action research, at its core, promises to problematize uncontested ‘colonial’ hegemonies of any form. Both post-colonial theory and action research engage dialogic, critically reflective and collaborative values to offer a fuller range of human wisdom. The authors contend that post-colonialism theory calls for justice and seeks to speak to social and psychological suffering, exploitation, violence and enslavement done to the powerless victims of colonization around the world by challenging the superiority of dominant perspectives and seeking to re-position and empower the marginalized and subordinated. In similar ways, action research works to eradicate oppression, powerlessness and worthlessness by affirming solidarity with the oppressed, helping humans move from passive to active and by fundamentally reshaping power. Because both post-colonial theory and action research position the insider or oppressed in an ethic of efficacy, it values community, relationships, communication and equality, and is committed to reciprocity, reflexivity and reflection. Thus, both hold the potential to help reconstruct conditions for a more democratic and just society

  12. Post-Colonial Theory and Action Research

    Directory of Open Access Journals (Sweden)

    Jim B. Parsons

    2011-04-01

    Full Text Available This essay explores connections between post-colonial theory and action research. Post-colonial theory is committed to addressing the plague of colonialism. Action research, at its core, promises to problematize uncontested ‘colonial’ hegemonies of any form. Both post-colonial theory and action research engage dialogic, critically reflective and collaborative values to offer a fuller range of human wisdom. The authors contend that post-colonialism theory calls for justice and seeks to speak to social and psychological suffering, exploitation, violence and enslavement done to the powerless victims of colonization around the world by challenging the superiority of dominant perspectives and seeking to re-position and empower the marginalized and subordinated. In similar ways, action research works to eradicate oppression, powerlessness and worthlessness by affirming solidarity with the oppressed, helping humans move from passive to active and by fundamentally reshaping power. Because both post-colonial theory and action research position the insider or oppressed in an ethic of efficacy, it values community, relationships, communication and equality, and is committed to reciprocity, reflexivity and reflection. Thus, both hold the potential to help reconstruct conditions for a more democratic and just society.

  13. Intensive use of an intertidal mudflat by foraging adult American horseshoe crabs Limulus polyphemus in the Great Bay estuary, New Hampshire

    Directory of Open Access Journals (Sweden)

    Wan-Jean LEE

    2010-10-01

    Full Text Available Although concerns about harvesting levels of the American Horseshoe Crab, Limulus polyphemus have prompted increased research into its ecology, current understanding of the species’ foraging ecology is mostly limited to mid-Atlantic populations. This study elucidates the spatial and temporal pattern of Limulus foraging on an intertidal mudflat of a northern New England estuary. A novel survey method was used to monitor Limulus foraging activity without disturbing the sediment. A fixed 50 m´2 m transect was monitored with monthly surveys of the number of Limulus feeding pits from June to October 2009, May and June 2010. Snorkelling surveys were also carried out to observe individual behavior and examine the spatial scale of activity of individual animals. Results showed frequent and intensive use of the mudflat by foraging Limulus. Limulus were actively foraging within the survey area during all months surveyed. Foraging patterns exhibited a seasonal pattern with activity levels peaking in August 2009 and increased significantly towards the end of the study in June 2010. It was also shown that Limulus intertidal foraging persisted and peaked after the spring breeding season. Observations of foraging Limulus revealed that individual predators dig multiple pits within a single high tide, with little disturbance to the sediment in between. In addition to altering the perception of Limulus as a subtidal predator outside of the breeding season, findings from this study suggests a segregation of spawning and feeding habitats, thus underscoring the need to consider a wider range of critical habitats in the management of Limulus populations [Current Zoology 56 (5: 611–617, 2010].

  14. Isotopic Differences between Forage Consumed by a Large Herbivore in Open, Closed, and Coastal Habitats: New Evidence from a Boreal Study System.

    Directory of Open Access Journals (Sweden)

    Marie-Andrée Giroux

    Full Text Available Documenting habitat-related patterns in foraging behaviour at the individual level and over large temporal scales remains challenging for large herbivores. Stable isotope analysis could represent a valuable tool to quantify habitat-related foraging behaviour at the scale of individuals and over large temporal scales in forest dwelling large herbivores living in coastal environments, because the carbon (δ13C or nitrogen (δ15N isotopic signatures of forage can differ between open and closed habitats or between terrestrial and littoral forage, respectively. Here, we examined if we could detect isotopic differences between the different assemblages of forage taxa consumed by white-tailed deer that can be found in open, closed, supralittoral, and littoral habitats. We showed that δ13C of assemblages of forage taxa were 3.0 ‰ lower in closed than in open habitats, while δ15N were 2.0 ‰ and 7.4 ‰ higher in supralittoral and littoral habitats, respectively, than in terrestrial habitats. Stable isotope analysis may represent an additional technique for ecologists interested in quantifiying the consumption of terrestrial vs. marine autotrophs. Yet, given the relative isotopic proximity and the overlap between forage from open, closed, and supralittoral habitats, the next step would be to determine the potential to estimate their contribution to herbivore diet.

  15. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis.

    Science.gov (United States)

    Adgaba, Nuru; Alghamdi, Ahmed; Sammoud, Rachid; Shenkute, Awraris; Tadesse, Yilma; Ansari, Mahammad J; Sharma, Deepak; Hepburn, Colleen

    2017-07-01

    In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi , Acacia tortilis , Acacia origina , Acacia asak , Lavandula dentata , and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (GIS and satellite image processing techniques could be an important tool for characterizing and mapping the available bee forage resources leading to their efficient and sustainable utilization.

  16. Examining short-term nutritional status among BaAka foragers in transitional economies.

    Science.gov (United States)

    Remis, Melissa J; Jost Robinson, Carolyn A

    2014-07-01

    Foragers in transitioning economies are at an increased risk of negative health outcomes as they undergo changes in subsistence patterns and diet. Here, we provide anthropometric data and examine the nutrition and health of adult BaAka foragers in relationship to declining wildlife and economic change in the Dzanga Sangha Protected Areas (APDS), Central African Republic. From June to August 2012, we collected biological data and dietary recall surveys from individuals in Mossapoula (MS) and Yandoumbé (YDBE) villages using standard anthropometric techniques and a single capillary blood finger prick. In our analysis, we identified variation in anthropometric measurements and hemoglobin levels by village (MS = 66, YDBE = 75) and gender (64 men, 77 women). Immigration, increased gun hunting and wildlife trades have reduced forager reliance on forest resources. These changes are evidenced in the marginal health of contemporary BaAka foragers of APDS. Although anthropometric measures of nutritional status do not significantly differ between communities, hemoglobin data highlight inequities in access to forest products between villages with different proximity to community hunting zones. Further, poor dietary diversity and low frequency of purchased foods in the diet indicate that the transition to a market economy has not been fully realized and diets are impoverished. Economic changes appear to have had the most impact at MS village, where forest use is most restricted and consumption of meat and forest products was reduced. This work highlights the nutritional and health needs of foragers in rapidly transitioning economies; especially those impacted by conservation management and zoning policies. © 2014 Wiley Periodicals, Inc.

  17. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs

    Science.gov (United States)

    Stone, Bram W. G.; Faillace, Cara A.; Lafond, Jonathan J.; Baumgarten, Joni M.; Mozdzer, Thomas J.; Dighton, John; Meiners, Scott J.; Grabosky, Jason C.; Ehrenfeld, Joan G.

    2017-01-01

    Background and Aims Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Methods Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Key Results Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. Conclusions In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory

  18. Estimating the net electricity energy generation and demand using the ant colony optimization approach. Case of Turkey

    International Nuclear Information System (INIS)

    Toksari, M. Duran

    2009-01-01

    This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linear A COEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadratic A COEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios. (author)

  19. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    Directory of Open Access Journals (Sweden)

    Tinggui Chen

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA, artificial colony optimization (ACO, and particle swarm optimization (PSO. However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.

  20. Discrete bacteria foraging optimization algorithm for graph based problems - a transition from continuous to discrete

    Science.gov (United States)

    Sur, Chiranjib; Shukla, Anupam

    2018-03-01

    Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching