WorldWideScience

Sample records for foot rotation angle

  1. The effects of transverse rotation angle on compression and effective lever arm of prosthetic feet during simulated stance.

    Science.gov (United States)

    Major, Matthew J; Howard, David; Jones, Rebecca; Twiste, Martin

    2012-06-01

    Unlike sagittal plane prosthesis alignment, few studies have observed the effects of transverse plane alignment on gait and prosthesis behaviour. Changes in transverse plane rotation angle will rotate the points of loading on the prosthesis during stance and may alter its mechanical behaviour. This study observed the effects of increasing the external transverse plane rotation angle, or toe-out, on foot compression and effective lever arm of three commonly prescribed prosthetic feet. The roll-over shape of a SACH, Flex and single-axis foot was measured at four external rotation angle conditions (0°, 5°, 7° and 12° relative to neutral). Differences in foot compression between conditions were measured as average distance between roll-over shapes. Increasing the transverse plane rotation angle did not affect foot compression. However, it did affect the effective lever arm, which was maximized with the 5° condition, although differences between conditions were small. Increasing the transverse plane rotation angle of prosthetic feet by up to 12° beyond neutral has minimal effects on their mechanical behaviour in the plane of walking progression during weight-bearing.

  2. Effects on foot external rotation of the modified ankle-foot orthosis on post-stroke hemiparetic gait.

    Science.gov (United States)

    Kim, Ha Jeong; Chun, Min Ho; Kim, Hong Min; Kim, Bo Ryun

    2013-08-01

    To evaluate the effects of heel-opened ankle foot orthosis (HOAFO) on hemiparetic gait after stroke, especially on external foot rotation, and to compare the effects of HOAFO with conventional plastic-AFO (pAFO) and barefoot during gait. This cross-over observational study involved 15 hemiparetic patients with external rotation of the affected foot. All subjects were able to walk independently, regardless of their usual use of a single cane, and had a less than fair-grade in ankle dorsiflexion power. Each patient was asked to walk in three conditions with randomized sequences: 1) barefoot, 2) with a pAFO, and 3) with an HOAFO. Their gait patterns were analyzed using a motion analysis system. Fifteen patients consisted of nine males and six females. On gait analysis, hip and foot external rotation were significantly greater in pAFO (-3.35° and -23.68°) than in barefoot and HOAFO conditions (pexternal rotation compared with pAFO; although there was no significant difference between HOAFO and barefoot walking. Walking speed and percentage of single limb support were significantly greater for HOAFO than in barefoot walking. HOAFO was superior to pAFO in reducing hip and foot external rotation during the stance phase in patients with post-stroke hemiparesis. HOAFO may, therefore, be useful in patients with excessive external rotation of the foot during conventional pAFO.

  3. Femoral anteversion and tibial torsion only explain 25% of variance in regression analysis of foot progression angle in children with diplegic cerebral palsy

    Science.gov (United States)

    2013-01-01

    Background The relationship between torsional bony deformities and rotational gait parameters has not been sufficiently investigated. This study was to investigate the degree of contribution of torsional bony deformities to rotational gait parameters in patients with diplegic cerebral palsy (CP). Methods Thirty three legs from 33 consecutive ambulatory patients (average age 9.5 years, SD 6.9 years; 20 males and 13 females) with diplegic CP who underwent preoperative three dimensional gait analysis, foot radiographs, and computed tomography (CT) were included. Adjusted foot progression angle (FPA) was retrieved from gait analysis by correcting pelvic rotation from conventional FPA, which represented the rotational gait deviation of the lower extremity from the tip of the femoral head to the foot. Correlations between rotational gait parameters (FPA, adjusted FPA, average pelvic rotation, average hip rotation, and average knee rotation) and radiologic measurements (acetabular version, femoral anteversion, knee torsion, tibial torsion, and anteroposteriortalo-first metatarsal angle) were analyzed. Multiple regression analysis was performed to identify significant contributing radiographic measurements to adjusted FPA. Results Adjusted FPA was significantly correlated with FPA (r=0.837, pregression analysis, femoral anteversion (p=0.026) and tibial torsion (p=0.034) were found to be the significant contributing structural deformities to the adjusted FPA (R2=0.247). Conclusions Femoral anteversion and tibial torsion were found to be the significant structural deformities that could affect adjusted FPA in patients with diplegic CP. Femoral anteversion and tibial torsion could explain only 24.7% of adjusted FPA. PMID:23767833

  4. No association between q-angle and foot posture with running-related injuries

    DEFF Research Database (Denmark)

    Ramskov, Daniel; Jensen, M L; Obling, K

    2013-01-01

    There is a paucity of knowledge on the association between different foot posture quantified by Foot Posture Index (FPI) and Quadriceps angle (Q-angle) with development of running-related injuries. Earlier studies investigating these associations did not include an objective measure of the amount...... of running performed. Therefore, the purpose of this study was to investigate if kilometers to running-related injury (RRI) differ among novice runners with different foot postures and Q-angles when running in a neutral running shoe....

  5. Improper trunk rotation sequence is associated with increased maximal shoulder external rotation angle and shoulder joint force in high school baseball pitchers.

    Science.gov (United States)

    Oyama, Sakiko; Yu, Bing; Blackburn, J Troy; Padua, Darin A; Li, Li; Myers, Joseph B

    2014-09-01

    In a properly coordinated throwing motion, peak pelvic rotation velocity is reached before peak upper torso rotation velocity, so that angular momentum can be transferred effectively from the proximal (pelvis) to distal (upper torso) segment. However, the effects of trunk rotation sequence on pitching biomechanics and performance have not been investigated. The aim of this study was to investigate the effects of trunk rotation sequence on ball speed and on upper extremity biomechanics that are linked to injuries in high school baseball pitchers. The hypothesis was that pitchers with improper trunk rotation sequence would demonstrate lower ball velocity and greater stress to the joint. Descriptive laboratory study. Three-dimensional pitching kinematics data were captured from 72 high school pitchers. Subjects were considered to have proper or improper trunk rotation sequences when the peak pelvic rotation velocity was reached either before or after the peak upper torso rotation velocity beyond the margin of error (±3.7% of the time from stride-foot contact to ball release). Maximal shoulder external rotation angle, elbow extension angle at ball release, peak shoulder proximal force, shoulder internal rotation moment, and elbow varus moment were compared between groups using independent t tests (α ways that may influence injury risk. As such, exercises that reinforce the use of a proper trunk rotation sequence during the pitching motion may reduce the stress placed on the structures around the shoulder joint and lead to the prevention of injuries. © 2014 The Author(s).

  6. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    OpenAIRE

    Luo Jun; Wang Zhiqian; Shen Chengwu; Wen Zhuoman; Liu Shaojin; Cai Sheng; Li Jianrong

    2015-01-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendic...

  7. Non-contact measurement of rotation angle with solo camera

    Science.gov (United States)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  8. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Shen, Chengwu; Wen, Zhuoman; Liu, Shaojin; Cai, Sheng; Li, Jianrong

    2015-10-01

    This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  9. Rotating Shaft Tilt Angle Measurement Using an Inclinometer

    Directory of Open Access Journals (Sweden)

    Luo Jun

    2015-10-01

    Full Text Available This paper describes a novel measurement method to accurately measure the rotating shaft tilt angle of rotating machine for alignment or compensation using a dual-axis inclinometer. A model of the rotating shaft tilt angle measurement is established using a dual-axis inclinometer based on the designed mechanical structure, and the calculation equation between the rotating shaft tilt angle and the inclinometer axes outputs is derived under the condition that the inclinometer axes are perpendicular to the rotating shaft. The reversal measurement method is applied to decrease the effect of inclinometer drifts caused by temperature, to eliminate inclinometer and rotating shaft mechanical error and inclinometer systematic error to attain high measurement accuracy. The uncertainty estimation shows that the accuracy of rotating shaft tilt angle measurement depends mainly on the inclinometer uncertainty and its uncertainty is almost the same as the inclinometer uncertainty in the simulation. The experimental results indicate that measurement time is 4 seconds; the range of rotating shaft tilt angle is 0.002° and its standard deviation is 0.0006° using NS-5/P2 inclinometer, whose precision and resolution are ±0.01° and 0.0005°, respectively.

  10. Reliability of the Phi angle to assess rotational alignment of the talar component in total ankle replacement.

    Science.gov (United States)

    Manzi, Luigi; Villafañe, Jorge Hugo; Indino, Cristian; Tamini, Jacopo; Berjano, Pedro; Usuelli, Federico Giuseppe

    2017-11-08

    The purpose of this study was to investigate the test-retest reliability of the Phi angle in patients undergoing total ankle replacement (TAR) for end stage ankle osteoarthritis (OA) to assess the rotational alignment of the talar component. Retrospective observational cross-sectional study of prospectively collected data. Post-operative anteroposterior radiographs of the foot of 170 patients who underwent TAR for the ankle OA were evaluated. Three physicians measured Phi on the 170 randomly sorted and anonymized radiographs on two occasions, one week apart (test and retest conditions), inter and intra-observer agreement were evaluated. Test-retest reliability of Phi angle measurement was excellent for patients with Hintegra TAR (ICC=0.995; pPhi angle measurement between patients with Hintegra vs. Zimmer implants (p>0.05). Measurement of Phi angle on weight-bearing dorsoplantar radiograph showed an excellent reliability among orthopaedic surgeons in determining the position of the talar component in the axial plane. Level II, cross sectional study. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  11. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Sen; Li, Guangjun; Wang, Maojie; Jiang, Qinfeng; Zhang, Yingjie [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Wei, Yuquan, E-mail: yuquawei@vip.sina.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2013-07-01

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors were 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.

  12. Repeatability of a 3D multi-segment foot model protocol in presence of foot deformities.

    Science.gov (United States)

    Deschamps, Kevin; Staes, Filip; Bruyninckx, Herman; Busschots, Ellen; Matricali, Giovanni A; Spaepen, Pieter; Meyer, Christophe; Desloovere, Kaat

    2012-07-01

    Repeatability studies on 3D multi-segment foot models (3DMFMs) have mainly considered healthy participants which contrasts with the widespread application of these models to evaluate foot pathologies. The current study aimed at establishing the repeatability of the 3DMFM described by Leardini et al. in presence of foot deformities. Foot kinematics of eight adult participants were analyzed using a repeated-measures design including two therapists with different levels of experience. The inter-trial variability was higher compared to the kinematics of healthy subjects. Consideration of relative angles resulted in the lowest inter-session variability. The absolute 3D rotations between the Sha-Cal and Cal-Met seem to have the lowest variability in both therapists. A general trend towards higher σ(sess)/σ(trial) ratios was observed when the midfoot was involved. The current study indicates that not only relative 3D rotations and planar angles can be measured consistently in patients, also a number of absolute parameters can be consistently measured serving as basis for the decision making process. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach

    Science.gov (United States)

    Graf, Eveline S.; Wright, Ian C.; Stefanyshyn, Darren J.

    2012-01-01

    The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of flexion. As the finite helical axis method is susceptible to error due to noise with small helical rotations, a minimal amount of rotation was defined in order to accurately determine the torsion axis location. Using simulation, the location of the axis based on data containing noise was compared to the axis location of data without noise with a one-sample t-test and Fisher's combined probability score. When using only data with helical rotation of seven degrees or more, the location of the torsion axis based on the data with noise was within 0.2 mm of the reference location. Therefore, the proposed method allowed an accurate calculation of the foot torsion axis location. PMID:22666303

  14. Effect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach

    Directory of Open Access Journals (Sweden)

    Eveline S. Graf

    2012-01-01

    Full Text Available The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of flexion. As the finite helical axis method is susceptible to error due to noise with small helical rotations, a minimal amount of rotation was defined in order to accurately determine the torsion axis location. Using simulation, the location of the axis based on data containing noise was compared to the axis location of data without noise with a one-sample t-test and Fisher's combined probability score. When using only data with helical rotation of seven degrees or more, the location of the torsion axis based on the data with noise was within 0.2 mm of the reference location. Therefore, the proposed method allowed an accurate calculation of the foot torsion axis location.

  15. Impact of foot progression angle on the distribution of plantar pressure in normal children.

    Science.gov (United States)

    Lai, Yu-Cheng; Lin, Huey-Shyan; Pan, Hui-Fen; Chang, Wei-Ning; Hsu, Chien-Jen; Renn, Jenn-Huei

    2014-02-01

    Plantar pressure distribution during walking is affected by several gait factors, most especially the foot progression angle which has been studied in children with neuromuscular diseases. However, this relationship in normal children has only been reported in limited studies. The purpose of this study is to clarify the correlation between foot progression angle and plantar pressure distribution in normal children, as well as the impacts of age and sex on this correlation. This study retrospectively reviewed dynamic pedobarographic data that were included in the gait laboratory database of our institution. In total, 77 normally developed children aged 5-16 years who were treated between 2004 and 2009 were included. Each child's footprint was divided into 5 segments: lateral forefoot, medial forefoot, lateral midfoot, medial midfoot, and heel. The percentages of impulse exerted at the medial foot, forefoot, midfoot, and heel were calculated. The average foot progression angle was 5.03° toe-out. Most of the total impulse was exerted on the forefoot (52.0%). Toe-out gait was positively correlated with high medial (r = 0.274; P plantar pressure as part of the treatment of various foot pathologies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. ANALYSIS OF ANKLE ALIGNMENT ABNORMALITIES AS A RISK FACTOR FOR PEDIATRIC FLEXIBLE FLAT FOOT

    Directory of Open Access Journals (Sweden)

    Dr. Ajai Singh

    2010-01-01

    Full Text Available Majority of paediatric flat feet are flexible and asymptomatic; less than 0.1% of all flat feet are rigid. If these can be diagnosed and managed early, then various complications can be prevented and they will remain asymptomatic. This study was conducted to analyse the ankle rotational mal-alignments in the natural course of flexible flat foot in children. Seventy-six patients of flexible flat foot and one hundred controls were included in this study. The height of foot arches was judged clinically by inspecting the height of the medial arch and by measuring the arch index on weight-bearing podograms. Tibial torsion and bimalleolar angle were assessed in all subjects. Tibial torsion was assessed in the first twenty subjects (ten cases and ten controls both by clinical methods (foot-thigh angle and CT. As no statistical difference in the two methods was observed, tibial torsion was measured by clinical methods only in the remaining subjects. Bimalleolar angle was measured on weight-bearing podograms in all subjects. For a minimum of two years, cases were followed up regularly with a standard conservative protocol and the height of the arches observed. Majority of cases of flexible flat foot were found to have increased tibial torsion and increased foot-bimalleolar angle (high talar spin. The severity of collapse of the medial arch and the response to conservative treatment was found to correlate with these rotational mal-alignments of the ankle. Ankle rotational mal-alignments were seen to make these flexible flat foot deformities more complex and less responsive to conservative treatment.

  17. Correlation between transverse plan kinematics and foot progression angle in children with spastic diplegia.

    Science.gov (United States)

    Presedo, Ana; Simon, Anne-Laure; Mallet, Cindy; Ilharreborde, Brice; Mazda, Keyvan; Pennecot, Georges-François

    2017-05-01

    In diplegic patients, the orientation of foot progression depends on multiple factors. We investigated the relationship between foot progression alignment, hip and pelvic rotations during gait, femoral anteversion, and tibial torsion. Kinematic and clinical parameters were evaluated for 114 children who walked independently and had not undergone previous surgery. Causes of intoeing presented combined in 72% of cases. Internal foot progression correlated with internal hip rotation and showed an inverse correlation with tibial torsion. Our results indicate that data from clinical examination and gait analysis should be evaluated carefully before making treatment recommendations, especially in terms of the correction of torsional problems, in patients with cerebral palsy.

  18. A novel method of measuring spatial rotation angle using MEMS tilt sensors

    International Nuclear Information System (INIS)

    Cao, Jian’an; Zhu, Xin; Zhang, Leping; Wu, Hao

    2017-01-01

    This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α , the sensor’s swing angle on the measuring plane; β , the angle between the rotation axis and the horizontal plane; and γ , the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of  ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°. (paper)

  19. Knee Angle and Stride Length in Association with Ball Speed in Youth Baseball Pitchers

    Directory of Open Access Journals (Sweden)

    Bart van Trigt

    2018-05-01

    Full Text Available The purpose of this study was to determine whether stride length and knee angle of the leading leg at foot contact, at the instant of maximal external rotation of the shoulder, and at ball release are associated with ball speed in elite youth baseball pitchers. In this study, fifty-two elite youth baseball pitchers (mean age 15.2 SD (standard deviation 1.7 years pitched ten fastballs. Data were collected with three high-speed video cameras at a frequency of 240 Hz. Stride length and knee angle of the leading leg were calculated at foot contact, maximal external rotation, and ball release. The associations between these kinematic variables and ball speed were separately determined using generalized estimating equations. Stride length as percentage of body height and knee angle at foot contact were not significantly associated with ball speed. However, knee angles at maximal external rotation and ball release were significantly associated with ball speed. Ball speed increased by 0.45 m/s (1 mph with an increase in knee extension of 18 degrees at maximal external rotation and 19.5 degrees at ball release. In conclusion, more knee extension of the leading leg at maximal external rotation and ball release is associated with higher ball speeds in elite youth baseball pitchers.

  20. Transperineal ultrasonography in stress urinary incontinence: The significance of urethral rotation angles.

    Science.gov (United States)

    Al-Saadi, Wasan Ismail

    2016-03-01

    To assess, using transperineal ultrasonography (TPUS), the numerical value of the rotation of the bladder neck [represented by the difference in the anterior (α angle) and posterior urethral anglesangle)] at rest and straining, in continent women and women with stress urinary incontinence (SUI), to ascertain if there are significant differences in the angles of rotation (Rα and Rβ) between the groups. In all, 30 women with SUI (SUI group) and 30 continent women (control group) were included. TPUS was performed at rest and straining (Valsalva manoeuver), and the threshold value for the urethral angles (α and β angles) for each group were estimated. The degree of rotation for each angle was calculated and was considered as the angle of rotation. Both the α and β angles were significantly different between the groups at rest and straining, and there was a significant difference in the mean increment in the value of each angle. Higher values of increment (higher rotation angles) were reported in the SUI group for both the α and β angles compared with those of the control group [mean (SD) Rα SUI group 19.43 (12.76) vs controls 10.53 (2.98) °; Rβ SUI group 28.30 (12.96) vs controls 16.33 (10.8) °; P < 0.001]. Urethral rotation angles may assist in the assessment and diagnosis of patients with SUI, which may in turn reduce the need for more sophisticated urodynamic studies.

  1. Emission-angle and polarization-rotation effects in the lensed CMB

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Antony [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Hall, Alex [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-08-01

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Born field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.

  2. Path integral of the angular momentum eigenstates evolving with the parameter linked with rotation angle under the space rotation transformation

    International Nuclear Information System (INIS)

    Zhang Zhongcan; Hu Chenguo; Fang Zhenyun

    1998-01-01

    The authors study the method which directly adopts the azimuthal angles and the rotation angle of the axis to describe the evolving process of the angular momentum eigenstates under the space rotation transformation. The authors obtain the angular momentum rotation and multi-rotation matrix elements' path integral which evolves with the parameter λ(0→θ,θ the rotation angle), and establish the general method of treating the functional (path) integral as a normal multi-integrals

  3. The new INRIM rotating encoder angle comparator (REAC)

    International Nuclear Information System (INIS)

    Pisani, Marco; Astrua, Milena

    2017-01-01

    A novel angle comparator has been built and tested at INRIM. The device is based on a double air bearing structure embedding a continuously rotating encoder, which is read by two heads: one fixed to the base of the comparator and a second fixed to the upper moving part of the comparator. The phase measurement between the two heads’ signals is proportional to the relative angle suspended between them (and, therefore, the angle between the base and the upper, movable part of the comparator). The advantage of this solution is to reduce the encoder graduation errors and to cancel the cyclic errors due to the interpolation of the encoder lines. By using only two pairs of reading heads, we have achieved an intrinsic accuracy of  ±0.04″ (rectangular distribution) that can be reduced through self-calibration. The residual cyclic errors have shown to be less than 0.01″ peak-to-peak. The random fluctuations are less than 0.01″ rms on a 100 s time interval. A further advantage of the rotating encoder is the intrinsic knowledge of the absolute position without the need of a zeroing procedure. Construction details of the rotating encoder angle comparator (REAC), characterization tests, and examples of practical use are given. (paper)

  4. Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation.

    Science.gov (United States)

    Wei, Feng; Hunley, Stanley C; Powell, John W; Haut, Roger C

    2011-02-01

    Recent studies, using two different manners of foot constraint, potted and taped, document altered failure characteristics in the human cadaver ankle under controlled external rotation of the foot. The posterior talofibular ligament (PTaFL) was commonly injured when the foot was constrained in potting material, while the frequency of deltoid ligament injury was higher for the taped foot. In this study an existing multibody computational modeling approach was validated to include the influence of foot constraint, determine the kinematics of the joint under external foot rotation, and consequently obtain strains in various ligaments. It was hypothesized that the location of ankle injury due to excessive levels of external foot rotation is a function of foot constraint. The results from this model simulation supported this hypothesis and helped to explain the mechanisms of injury in the cadaver experiments. An excessive external foot rotation might generate a PTaFL injury for a rigid foot constraint, and an anterior deltoid ligament injury for a pliant foot constraint. The computational models may be further developed and modified to simulate the human response for different shoe designs, as well as on various athletic shoe-surface interfaces, so as to provide a computational basis for optimizing athletic performance with minimal injury risk.

  5. Kinoform design with an optimal-rotation-angle method.

    Science.gov (United States)

    Bengtsson, J

    1994-10-10

    Kinoforms (i.e., computer-generated phase holograms) are designed with a new algorithm, the optimalrotation- angle method, in the paraxial domain. This is a direct Fourier method (i.e., no inverse transform is performed) in which the height of the kinoform relief in each discrete point is chosen so that the diffraction efficiency is increased. The optimal-rotation-angle algorithm has a straightforward geometrical interpretation. It yields excellent results close to, or better than, those obtained with other state-of-the-art methods. The optimal-rotation-angle algorithm can easily be modified to take different restraints into account; as an example, phase-swing-restricted kinoforms, which distribute the light into a number of equally bright spots (so called fan-outs), were designed. The phase-swing restriction lowers the efficiency, but the uniformity can still be made almost perfect.

  6. THE INFLUENCE OF A FOOT ORTHOTIC ON LOWER EXTREMITY TRANSVERSE PLANE KINEMATICS IN COLLEGIATE FEMALE ATHLETES WITH PES PLANUS

    Directory of Open Access Journals (Sweden)

    Christopher R. Carcia

    2006-12-01

    Full Text Available Non-contact anterior cruciate ligament (ACL injuries in female athletes remain prevalent. Athletes with excessive foot pronation have been identified to be at greater risk for non-contact ACL injury. Excessive foot pronation has been linked to increased medial tibial rotation. Increased medial tibial rotation heightens ACL strain and has been observed at or near the time of ACL injury. Foot orthotics have been shown to decrease medial tibial rotation during walking and running tasks. The effect of a foot orthotic on activities that simulate a non-contact ACL injury mechanism (i.e. landing however is unknown. Therefore, the objective of this study was to determine whether a foot orthotic was capable of altering transverse plane lower extremity kinematics in female athletes during landing. Twenty uninjured collegiate female athletes participating in the sports of basketball, soccer or volleyball with pes planus volunteered. Utilizing a repeated measures counterbalanced design, subjects completed two landing tasks with and without a foot orthotic using standardized footwear. The prefabricated orthotic had a rigid shell and a 6 extrinsic rear-foot varus post. Dependent measures included initial contact angle, peak angle, excursion and time to peak angle for both the tibia and femur. Statistical analysis suggested that the selected foot orthosis had little influence over lower extremity transverse plane kinematics. Several factors including: the limitation of a static measure to predict dynamic movement, inter-subject variability and the physical characteristics of the orthotic device likely account for the results. Future research should examine the influence of different types of foot orthotics not only on lower extremity kinematics but also tibiofemoral kinetics

  7. A Vision-Based Dynamic Rotational Angle Measurement System for Large Civil Structures

    Science.gov (United States)

    Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han

    2012-01-01

    In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system. PMID:22969348

  8. Inter-segment foot motion in girls using a three-dimensional multi-segment foot model.

    Science.gov (United States)

    Jang, Woo Young; Lee, Dong Yeon; Jung, Hae Woon; Lee, Doo Jae; Yoo, Won Joon; Choi, In Ho

    2018-05-06

    Several multi-segment foot models (MFMs) have been introduced for in vivo analyses of dynamic foot kinematics. However, the normal gait patterns of healthy children and adolescents remain uncharacterized. We sought to determine normal foot kinematics according to age in clinically normal female children and adolescents using a Foot 3D model. Fifty-eight girls (age 7-17 years) with normal function and without radiographic abnormalities were tested. Three representative strides from five separate trials were analyzed. Kinematic data of foot segment motion were tracked and evaluated using an MFM with a 15-marker set (Foot 3D model). As controls, 50 symptom-free female adults (20-35 years old) were analyzed. In the hindfoot kinematic analysis, plantar flexion motion in the pre-swing phase was significantly greater in girls aged 11 years or older than in girls aged foot progression angle showed mildly increased internal rotation in the loading response phase and the swing phase in girls aged foot motion in girls aged 11 years or older showed low-arch kinematic characteristics, whereas those in girls aged 11 years or older were more similar to the patterns in young adult women. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Effect of Foot Progression Angle on Knee Joint Compression Force during Walking

    DEFF Research Database (Denmark)

    Baldvinsson, Henrik Koblauch; Heilskov-Hansen, Thomas; Alkjær, Tine

    2013-01-01

    males walked at a fixed speed of 4.5 km/h under three conditions: Normal walking, internally rotated and externally rotated. All gait-trials were recorded by six infrared cameras. Net joint moments were calculated by 3D inverse dynamics. The results revealed that the medial knee joint compartment......It is unclear how rotations of the lower limb affect the knee joint compression forces during walking. Increases in the frontal plane knee moment have been reported when walking with internally rotated feet and a decrease when walking with externally rotated feet. The aim of this study...... was to investigate the knee joint compressive forces during walking with internal, external and normal foot rotation and to determine if the frontal plane knee joint moment is an adequate surrogate for the compression forces in the medial and lateral knee joint compartments under such gait modifications. Ten healthy...

  10. Heat transfer from rotating finned heat exchangers with different orientation angles

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Adel Abdalla [Suez Canal University, Marine Engineering and Naval Architecture Department, Faculty of Engineering, Port Said (Egypt)

    2010-03-15

    The local and average heat transfer characteristics of spoke like fins that extend outward from a rotating shaft have been determined experimentally. The experiments encompassed a number of geometrical parameters, including the length and chord of the fins, the number of fins deployed around the circumference of the shaft and the orientation angles of the fin. The experiments cover a wider range of rotational speeds, which varies from 25 up to 2,000 rpm. Three wire heat flux sensors have been used in conjunction with a slip ring apparatus to evaluate the local and average heat transfer coefficients. The output results indicated that, the heat transfer transition on rotating fins occurs at Reynolds number lower than encountered on the stationary rectangular fins in crossflow. In general, with non zero incidence angle, the rotating system acts as a fan and creates axial air motion, which enhance the heat transfer rate. However, the effect of orientation angle reduces with increasing the rotational speed. The Nusselt number data are independent of the number of fins in the circumferential array at high rotational speed and are weakly dependent at low Reynolds numbers. To facilitate the use of the results for design, correlations were developed which represent the fin heat transfer coefficient as a continuous function of the investigated independent parameters. (orig.)

  11. Improving Zernike moments comparison for optimal similarity and rotation angle retrieval.

    Science.gov (United States)

    Revaud, Jérôme; Lavoué, Guillaume; Baskurt, Atilla

    2009-04-01

    Zernike moments constitute a powerful shape descriptor in terms of robustness and description capability. However the classical way of comparing two Zernike descriptors only takes into account the magnitude of the moments and loses the phase information. The novelty of our approach is to take advantage of the phase information in the comparison process while still preserving the invariance to rotation. This new Zernike comparator provides a more accurate similarity measure together with the optimal rotation angle between the patterns, while keeping the same complexity as the classical approach. This angle information is particularly of interest for many applications, including 3D scene understanding through images. Experiments demonstrate that our comparator outperforms the classical one in terms of similarity measure. In particular the robustness of the retrieval against noise and geometric deformation is greatly improved. Moreover, the rotation angle estimation is also more accurate than state-of-the-art algorithms.

  12. Rotational foot placement specifies the lever arm of the ground reaction force during the push-off phase of walking initiation.

    Science.gov (United States)

    Erdemir, Ahmet; Piazza, Stephen J

    2002-06-01

    The lever arm of the ground reaction force (GRF) about the talocrural joint axis is a functionally important indicator of the nature of foot loading. Walking initiation experiments (ten subjects; age, 23-29 years) were completed to demonstrate that rotational foot placement is a possible strategy to specify the lever arm. Externally-rotated foot placement resulted in larger lever arms during push-off. A computer simulation of push-off revealed that a decreased lever arm reduces the plantarflexion moment necessary to maintain a constant forward velocity, while increasing the required plantarflexion velocity. Shortening of the foot thus diminishes the muscular force demand but also requires high muscle fiber shortening velocities that may limit the force generating capacity of plantar flexors. Decreased plantar flexion moment and slow walking previously noted in partial-foot amputees may result from shortened lever arms in this manner.

  13. PELVIC ROTATION AND LOWER EXTREMITY MOTION WITH TWO DIFFERENT FRONT FOOT DIRECTIONS IN THE TENNIS BACKHAND GROUNDSTROKE

    Directory of Open Access Journals (Sweden)

    Sayumi Iwamoto

    2013-06-01

    Full Text Available When a tennis player steps forward to hit a backhand groundstroke in closed stance, modifying the direction of the front foot relative to the net may reduce the risk of ankle injury and increase performance. This study evaluated the relationship between pelvic rotation and lower extremity movement during the backhand groundstroke when players stepped with toes parallel to the net (Level or with toes pointed towards the net (Net. High school competitive tennis players (eleven males and seven females, 16.8 ± 0.8 years, all right- handed performed tennis court tests comprising five maximum speed directional runs to the court intersection line to hit an imaginary ball with forehand or backhand swings. The final backhand groundstroke for each player at the backcourt baseline was analyzed. Pelvic rotation and lower extremity motion were quantified using 3D video analysis from frontal and sagittal plane camera views reconstructed to 3D using DLT methods. Plantar flexion of ankle and supination of the front foot were displayed for both Net and Level groups during the late phase of the front foot step. The timings of the peak pelvis rotational velocity and peak pelvis rotational acceleration showed different pattern for Net and Level groups. The peak timing of the pelvis rotational velocity of the Level group occurred during the late phase of the step, suggesting an increase in the risk of inversion ankle sprain and a decrease in stroke power compared to the Net group

  14. A correlative study of aortic valve rotation angle and thoracic aortic sizes using ECG gated CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Saremi, Farhood, E-mail: fsaremi@usc.edu; Cen, Steven; Tayari, Nazila; Alizadeh, Houman; Emami, Amir; Lin, Leah; Fleischman, Fernando

    2017-04-15

    Objective: Various degrees of aortic valve rotation may be seen in individuals with no history of congenital cardiovascular malformations, but its association with aortic sizes has not been studied. Methods: Gated computed tomographic (CT angiograms in 217 patients were studied (66.7 ± 15; 22–97 years old)). Aortic diameters were determined at 5 anatomic locations. The length of the aorta from sinus to left subclavian artery was measured. The angle of valve rotation was recorded by measuring the angle between a line connecting the midpoint of the non-coronary sinus to the anterior commissure and another line along the interatrial septum. Rotation angles were correlated with aortic measurements. Patients were separated into two groups based on aortic sizes and into three groups based on age. The threshold for aortic dilatation was set at maximum ascending aorta diameter ≥40 mm (≥21 mm body surface area [BSA] indexed). Results: No significant difference in rotation angles was seen between the three age groups or between genders. Rotation angles were significantly correlated with maximal, average, and BSA adjustment of the aortic root and ascending aortic measurements. The aortic root angles were significantly different between the dilated versus nondilated aortas. There was no significant association between the rotation angles and age, length of ascending aorta, or diameters of descending aorta. Multivariate adaptive regression splines showed 25° of aortic root rotation as the diagnostic cut off for ascending aorta dilation. Above the 25° rotation, every 10° of increasing rotation was associated with a 3.78 ± 0.87 mm increase in aortic diameter (p < 0.01) and a 1.73 ± 0.25 times increased risk for having a dilated aorta (p < 0.01). Conclusion: Rotation angles of the aortic valve may be an independent non-invasive imaging marker for dilatation of the ascending aorta. Patients with increased rotation angle of the aortic valve may have higher risk for

  15. Rotational error in path integration: encoding and execution errors in angle reproduction.

    Science.gov (United States)

    Chrastil, Elizabeth R; Warren, William H

    2017-06-01

    Path integration is fundamental to human navigation. When a navigator leaves home on a complex outbound path, they are able to keep track of their approximate position and orientation and return to their starting location on a direct homebound path. However, there are several sources of error during path integration. Previous research has focused almost exclusively on encoding error-the error in registering the outbound path in memory. Here, we also consider execution error-the error in the response, such as turning and walking a homebound trajectory. In two experiments conducted in ambulatory virtual environments, we examined the contribution of execution error to the rotational component of path integration using angle reproduction tasks. In the reproduction tasks, participants rotated once and then rotated again to face the original direction, either reproducing the initial turn or turning through the supplementary angle. One outstanding difficulty in disentangling encoding and execution error during a typical angle reproduction task is that as the encoding angle increases, so does the required response angle. In Experiment 1, we dissociated these two variables by asking participants to report each encoding angle using two different responses: by turning to walk on a path parallel to the initial facing direction in the same (reproduction) or opposite (supplementary angle) direction. In Experiment 2, participants reported the encoding angle by turning both rightward and leftward onto a path parallel to the initial facing direction, over a larger range of angles. The results suggest that execution error, not encoding error, is the predominant source of error in angular path integration. These findings also imply that the path integrator uses an intrinsic (action-scaled) rather than an extrinsic (objective) metric.

  16. Planar covariance of upper and lower limb elevation angles during hand-foot crawling in healthy young adults.

    Science.gov (United States)

    MacLellan, M J; Catavitello, G; Ivanenko, Y P; Lacquaniti, F

    2017-11-01

    Habitual quadrupeds have been shown to display a planar covariance of segment elevation angle waveforms in the fore and hind limbs during many forms of locomotion. The purpose of the current study was to determine if humans generate similar patterns in the upper and lower limbs during hand-foot crawling. Nine healthy young adults performed hand-foot crawling on a treadmill at speeds of 1, 2, and 3 km/h. A principal component analysis (PCA) was applied to the segment elevation angle waveforms for the upper (upper arm, lower arm, and hand) and lower (thigh, shank, and foot) limbs separately. The planarity of the elevation angle waveforms was determined using the sum of the variance explained by the first two PCs and the orientation of the covariance plane was quantified using the direction cosines of the eigenvector orthogonal to the plane, projected upon each of the segmental semi-axes. Results showed that planarity of segment elevation angles was maintained in the upper and lower limbs (explained variance >97%), although a slight decrease was present in the upper limb when crawling at 3 km/h. The orientation of the covariance plane was highly limb-specific, consistent with animal studies and possibly related to the functional neural control differences between the upper and lower limbs. These results may suggest that the motor patterns stored in the central nervous system for quadrupedal locomotion may be retained through evolution and may still be exploited when humans perform such tasks.

  17. Effect of the cosmological constant on the deflection angle by a rotating cosmic string

    Science.gov (United States)

    Jusufi, Kimet; Övgün, Ali

    2018-03-01

    We report the effect of the cosmological constant and the internal energy density of a cosmic string on the deflection angle of light in the spacetime of a rotating cosmic string with internal structure. We first revisit the deflection angle by a rotating cosmic string and then provide a generalization using the geodesic equations and the Gauss-Bonnet theorem. We show there is an agreement between the two methods when employing higher-order terms of the linear mass density of the cosmic string. By modifying the integration domain for the global conical topology, we resolve the inconsistency between these two methods previously reported in the literature. We show that the deflection angle is not affected by the rotation of the cosmic string; however, the cosmological constant Λ strongly affects the deflection angle, which generalizes the well-known result.

  18. Full-Angle Quaternions for Robustly Matching Vectors of 3D Rotations

    NARCIS (Netherlands)

    Liwicki, Stephan; Pham, Minh-Tri; Zafeiriou, Stefanos; Pantic, Maja; Stenger, Björn

    In this paper we introduce a new distance for robustly matching vectors of 3D rotations. A special representation of 3D rotations, which we coin full-angle quaternion (FAQ), allows us to express this distance as Euclidean. We apply the distance to the problems of 3D shape recognition from point

  19. The Effect of Incorrect Foot Placement on the Accuracy of Radiographic Measurements of the Hallux Valgus and Inter-Metatarsal Angles for Treating Hallux Valgus.

    Science.gov (United States)

    Kuyucu, E; Ceylan, H H; Surucu, S; Erdil, I; Kara, A; Gulenc, B G; Bulbul, M; Erdil, M

    2017-01-01

    PURPOSE OF THE STUDY Accurate radiographic measurements are crucial in treating hallux valgus (HV). This three-dimensional deformity should not be evaluated from one joint on one plane. However, in practice, surgeons measure the deformity only on transverse dorsoplantar radiographs. We determined the amount of error associated with positioning the foot incorrectly on radiographs. MATERIAL AND METHODS To simulate incorrect positions of the foot in radiographic evaluation, we designed an angled device that can move in transverse and frontal plane. In four patients with symptomatic HV, we took weight-bearing radiographs of the involved foot in seven different positions. These 28 radiographs were given identifying but meaningless labels. On each radiograph, six surgeons blinded to the position of the radiograph measured the HV angle (HVA) and the inter-metatarsal angle (IMA) and state the treatment plan according to five treatment options were given to participants. RESULTS Inter-observer agreement was high for measurements of HVA and IMA in all positions (interclass correlation coefficients, 0.96 and 0.88, respectively). However, intra-observer agreement was poor for HVA (intra-observer agreement, 0.17) but good for IMA (intra-observer agreement, 0.64). According to the measurements in different positions, intra-observer treatment choices revealed moderate results (ICC: 0.524). Clinical Relevance Radiographic measurements are very important on the treatment decisions of hallux valgus. The foot position can influence the measurement accuracy and can cause incorrect decisions. In this study, we evaluated the impact of foot positions on measurements of hallux valgus angle and inter-metatarsal angle. Additionally, we evaluated the incorrect foot positioning on treatment decisions. Moreover, we analyzed intra-observer and inter-observer agreements of these angles in various positions. CONCLUSIONS We recommend that measurements of IMA are more reliable than those of HVA for

  20. The greater tuberosity angle: a new predictor for rotator cuff tear.

    Science.gov (United States)

    Cunningham, Gregory; Nicodème-Paulin, Emilie; Smith, Margaret M; Holzer, Nicolas; Cass, Benjamin; Young, Allan A

    2018-04-24

    The implication of scapular morphology in rotator cuff tears has been extensively studied. However, the role of the greater tuberosity (GT) should be of equal importance. The aim of this study was to propose a new radiographic marker, the GT angle (GTA), which measures the position of the GT in relation to the center of rotation of the humeral head. The hypothesis was that a higher angle value would be associated with a higher likelihood in detecting a rotator cuff tear. During 1 year, patients were prospectively recruited from a single institution specialized shoulder clinic in 2 different groups. The patient group consisted of individuals with a degenerative rotator cuff tear involving at least the supraspinatus. The control group consisted of individuals with no rotator cuff pathology. Individuals in both groups with congenital, post-traumatic, or degenerative alterations of the proximal humerus were excluded. The GTA was measured on an anteroposterior shoulder x-ray image with the arm in neutral rotation by 3 observers at 2 different times. The study recruited 71 patients (33 patients, 38 controls). Mean GTA value was 72.5° (range, 67.6°-79.2°) in patients and 65.2° (range, 55.8°-70.5°) for controls (P rotator cuff tear (P rotator cuff tears. The GTA is a reliable radiographic marker, with more than 70° being highly predictive in detecting such lesions. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.

  1. Introduction of hind foot coronal alignment view

    International Nuclear Information System (INIS)

    Moon, Il Bong; Jeon, Ju Seob; Yoon, Kang Cheol; Choi, Nam Kil; Kim, Seung Kook

    2006-01-01

    Accurate clinical evaluation of the alignment of the calcaneus relative to the tibia in the coronal plane is essential in the evaluation and treatment of hind foot pathologic condition. Previously described standard anteroposterior, lateral, and oblique radiographic methods of the foot or ankle do not demonstrate alignment of the tibia relation to the calcaneus in the coronal plane. The purpose of this study was to introduce hind foot coronal alignment view. Both feet were imaged simultaneously on an elevated, radiolucent foot stand equipment. Both feet stood on a radiolucent platform with equal weight on both feet. Both feet are located foot axis longitudinal perpendicular to the platform. Silhouette tracing around both feet are made, and line is then drawn to bisect the silhouette of the second toe and the outline of the heel. The x-ray beam is angled down approximately 15 .deg. to 20 .deg. This image described tibial axis and medial, lateral tuberosity of calcaneus. Calcaneus do not rotated. The view is showed by talotibial joint space. Although computed tomographic and magnetic resonance imaging techniques are capable of demonstrating coronal hind foot alignment, they lack usefulness in most clinical situations because the foot is imaged in a non-weight bearing position. But hind foot coronal alignment view is obtained for evaluating position changing of inversion, eversion of the hind foot and varus, valgus deformity of calcaneus

  2. Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster

    Science.gov (United States)

    Kovacs, Geza

    2018-04-01

    The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2

  3. Femoral rotation unpredictably affects radiographic anatomical lateral distal femoral angle measurements

    DEFF Research Database (Denmark)

    Miles, James Edward

    2016-01-01

    Objective: To describe the effects of internal and external femoral rotation on radiographic measurements of the anatomical lateral distal femoral angle (a-LDFA) using two methods for defining the anatomical proximal femoral axis (a-PFA). Methods: Digital radiographs were obtained of 14 right...... femora at five degree intervals from 10° external rotation to 10° internal rotation. Using freely available software, a-LDFA measurements were made using two different a-PFA by a single observer on one occasion. Results: Mean a-LDFA was significantly greater at 10° external rotation than at any other...... rotation. The response of individual femora to rotation was unpredictable, although fairly stable within ±5° of zero rotation. Mean a-LDFA for the two a-PFA methods differed by 1.5°, but were otherwise similarly affected by femoral rotation. Clinical significance: If zero femoral elevation can be achieved...

  4. Rotation Estimation for Wide-Angle Inverse Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2016-01-01

    Full Text Available To present focused ISAR imaging results in the homogenous range and cross-range domain, an integrated scheme is proposed to estimate both the targets equivalent rotational velocity (RV and rotational center (RC. The RV estimation is improved by radial projection combined with keystone processing, and then the RC is estimated through image entropy minimization. Finally, delicate imaging results may be obtained for wide-angle scenarios. Experiment results are provided to demonstrate the effectiveness of the proposed method.

  5. Correlation between physical examination and three-dimensional gait analysis in the assessment of rotational abnormalities in children with cerebral palsy.

    Science.gov (United States)

    Teixeira, Fernando Borge; Ramalho Júnior, Amancio; Morais Filho, Mauro César de; Speciali, Danielli Souza; Kawamura, Catia Miyuki; Lopes, José Augusto Fernandes; Blumetti, Francesco Camara

    2018-01-01

    Objective To evaluate the correlation between physical examination data concerning hip rotation and tibial torsion with transverse plane kinematics in children with cerebral palsy; and to determine which time points and events of the gait cycle present higher correlation with physical examination findings. Methods A total of 195 children with cerebral palsy seen at two gait laboratories from 2008 and 2016 were included in this study. Physical examination measurements included internal hip rotation, external hip rotation, mid-point hip rotation and the transmalleolar axis angle. Six kinematic parameters were selected for each segment to assess hip rotation and shank-based foot rotation. Correlations between physical examination and kinematic measures were analyzed by Spearman correlation coefficients, and a significance level of 5% was considered. Results Comparing physical examination measurements of hip rotation and hip kinematics, we found moderate to strong correlations for all variables (pphysical examination and hip rotation kinematics (rho range: 0.48-0.61). Moderate correlations were also found between the transmalleolar axis angle measurement on physical examination and foot rotation kinematics (rho range 0.44-0.56; p<0.001). Conclusion These findings may have clinical implications in the assessment and management of transverse plane gait deviations in children with cerebral palsy.

  6. Increasing FSW join strength by optimizing feed rate, rotating speed and pin angle

    Science.gov (United States)

    Darmadi, Djarot B.; Purnowidodo, Anindito; Siswanto, Eko

    2017-10-01

    Principally the join in Friction Stir Welding (FSW) is formed due to mechanical bonding. At least there are two factors determines the quality of this join, first is the temperature in the area around the interface and secondly the intense of mixing forces in nugget zone to create the mechanical bonding. The adequate temperature creates good flowability of the nugget zone and an intensive mixing force produces homogeneous strong bonding. Based on those two factors in this research the effects of feed rate, rotating speed and pin angle of the FSW process to the tensile strength of resulted join are studied. The true experimental method was used. Feed rate was varied at 24, 42, 55 and 74 mm/minutes and from the experimental results, it can be concluded that the higher feed rate decreases the tensile strength of weld join and it is believed due to the lower heat embedded in the material. Inversely, the higher rotating speed increases the join’s tensile strength as a result of higher heat embedded in base metal and higher mixing force in the nugget zone. The rotating speed were 1842, 2257 and 2904 RPMs. The pin angle determines the direction of mixing force. With variation of pin angle: 0°, 4°, 8° and 12° the higher pin angle generally increases the tensile strength because of more intensive mixing force. For 12° pin angle the lower tensile strength is found since the force tends to push out the nugget area from the joint gap.

  7. The effects of hip external rotator exercises and toe-spread exercises on lower extremity muscle activities during stair-walking in subjects with pronated foot.

    Science.gov (United States)

    Goo, Young-Mi; Kim, Da-Yeon; Kim, Tae-Ho

    2016-03-01

    [Purpose] The purpose of the present study was to examine the effects of toe-spread (TS) exercises and hip external rotator strengthening exercises for pronated feet on lower extremity muscle activities during stair-walking. [Subjects and Methods] The participants were 20 healthy adults with no present or previous pain, no past history of surgery on the foot or the ankle, and no foot deformities. Ten subjects performed hip external rotator strengthening exercises and TS exercises and the remaining ten subjects performed only TS exercises five times per week for four weeks. [Results] Less change in navicular drop height occurred in the group that performed hip external rotator exercises than in the group that performed only TS exercises. The group that performed only TS exercises showed increased abductor hallucis muscle activity during both stair-climbing and -descending, and the group that performed hip external rotator exercises showed increased muscle activities of the vastus medialis and abductor hallucis during stair-climbing and increased muscle activity of only the abductor hallucis during stair-descending after exercise. [Conclusion] Stair-walking can be more effectively performed if the hip external rotator muscle is strengthened when TS exercises are performed for the pronated foot.

  8. The influence of foot geometry on the calcaneal osteotomy angle based on two-dimensional static force analyses

    NARCIS (Netherlands)

    Reilingh, M.L.; Tuijthof, G.J.M.; Van Dijk, C.N.; Blankevoort, L.

    2011-01-01

    Background: Malalignment of the hindfoot can be corrected with a calcaneal osteotomy (CO). A well-selected osteotomy angle in the sagittal plane will reduce the shear force in the osteotomy plane while walking. The purpose was to determine the presence of a relationship between the foot geometry and

  9. The influence of foot geometry on the calcaneal osteotomy angle based on two-dimensional static force analyses

    NARCIS (Netherlands)

    Reilingh, M. L.; Tuijthof, G. J. M.; van Dijk, C. N.; Blankevoort, L.

    2011-01-01

    Malalignment of the hindfoot can be corrected with a calcaneal osteotomy (CO). A well-selected osteotomy angle in the sagittal plane will reduce the shear force in the osteotomy plane while walking. The purpose was to determine the presence of a relationship between the foot geometry and loading of

  10. Knee rotation influences the femoral tunnel angle measurement after anterior cruciate ligament reconstruction: a 3-dimensional computed tomography model study

    Science.gov (United States)

    Tang, Jing; Thorhauer, Eric; Marsh, Chelsea; Fu, Freddie H.

    2013-01-01

    Purpose Femoral tunnel angle (FTA) has been proposed as a metric for evaluating whether ACL reconstruction was performed anatomically. In clinic, radiographic images are typically acquired with an uncertain amount of internal/external knee rotation. The extent to which knee rotation will influence FTA measurement is unclear. Furthermore, differences in FTA measurement between the two common positions (0° and 45° knee flexion) have not been established. The purpose of this study was to investigate the influence of knee rotation on FTA measurement after ACL reconstruction. Methods Knee CT data from 16 subjects were segmented to produce 3D bone models. Central axes of tunnels were identified. The 0° and 45° flexion angles were simulated. Knee internal/external rotations were simulated in a range of ±20°. FTA was defined as the angle between the tunnel axis and femoral shaft axis, orthogonally projected into the coronal plane. Results Femoral tunnel angle was positively/negatively correlated with knee rotation angle at 0°/45° knee flexion. At 0° knee flexion, FTA for anterio-medial (AM) tunnels was significantly decreased at 20° of external knee rotation. At 45° knee flexion, more than 16° external or 19° internal rotation significantly altered FTA measurements for single-bundle tunnels; smaller rotations (±9° for AM, ±5° for PL) created significant errors in FTA measurements after double-bundle reconstruction. Conclusion Femoral tunnel angle measurements were correlated with knee rotation. Relatively small imaging malalignment introduced significant errors with knee flexed 45°. This study supports using the 0° flexion position for knee radiographs to reduce errors in FTA measurement due to knee internal/external rotation. Level of evidence Case–control study, Level III. PMID:23589127

  11. A new method to normalize plantar pressure measurements for foot size and foot progression angle.

    NARCIS (Netherlands)

    Keijsers, N.L.; Stolwijk, N.M.; Nienhuis, B.; Duysens, J.E.J.

    2009-01-01

    Plantar pressure measurement provides important information about the structure and function of the foot and is a helpful tool to evaluate patients with foot complaints. In general, average and maximum plantar pressure of 6-11 areas under the foot are used to compare groups of subjects. However,

  12. Effect of forearm axially rotated posture on shoulder load and shoulder abduction / flexion angles in one-armed arrest of forward falls.

    Science.gov (United States)

    Hsu, Hsiu-Hao; Chou, You-Li; Lou, Shu-Zon; Huang, Ming-Jer; Chou, Paul Pei-Hsi

    2011-03-01

    Falling onto the outstretched hand is the most common cause of upper extremity injury. This study develops an experimental model for evaluating the shoulder load during a simulated forward fall onto one hand with three different forearm axially rotated postures, and examines the shoulder abduction angle and shoulder flexion angle in each case. Fifteen healthy young male subjects with an average age of 23.7 years performed a series of one-armed arrests from a height of 5 cm onto a force plate. The kinematics and kinetics of the upper extremity were analyzed for three different forearm postures, namely 45° externally rotated, non-rotated, and 45° internally rotated. The shoulder joint load and shoulder abduction/flexion angles were significantly dependent on the rotational posture of the forearm. The shoulder medio-lateral shear forces in the externally rotated group were found to be 1.61 and 2.94 times higher than those in the non-rotated and internally rotated groups, respectively. The shoulder flexion angles in the externally rotated, non-rotated and internally rotated groups were 0.6°, 8.0° and 19.2°, respectively, while the corresponding shoulder abduction angles were 6.1°, 34.1° and 46.3°, respectively. In falls onto the outstretched hand, an externally rotated forearm posture should be avoided in order to reduce the medio-lateral shear force acting on the shoulder joint. In falls of this type, a 45° internally rotated forearm posture represents the most effective fall strategy in terms of minimizing the risk of upper extremity injuries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    Science.gov (United States)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  14. The Relationship Between Foot and Pelvic Alignment While Standing

    Directory of Open Access Journals (Sweden)

    Khamis Sam

    2015-06-01

    Full Text Available A normal motion and segmental interrelationship has been determined as a significant factor in normal function. Yet, the relationship between distal segments and pelvic alignment needs further investigation. The aim of this study was to investigate the interrelationship between distal and proximal lower extremity segments while standing and during induced feet hyperpronation. Changes in alignment of the pelvis and lower extremities were measured at a gait laboratory using the VICON 612 computerized motion analysis system. Thirty-five healthy volunteer subjects were recruited. Four randomized repeated-measure standing modes were used: standing directly on the floor and then on three wedges angled at 10°, 15° and 20° to induce bilateral hyperpronation for 20 seconds. A significant (p<0.05 bi-variate relationship was found between the anterior pelvic tilt and thigh internal rotation, in all four standing positions (.41≤r≤.46, in all p<0.014. A combined effect of rotational alignment between segments and the cumulative effect of foot hyperpronation on pelvic tilt revealed that only the shank significantly affected pelvic alignment, acting as a mediator between a foot and a thigh with the thigh having a crude significant effect on the pelvis. When internal rotation of the shank occurs, calcaneal eversion couples with thigh internal rotation and anterior pelvic tilt. It can be concluded that in response to induced hyperpronation, the shank is a pivotal segment in postural adjustment.

  15. The influence of the Peroneus Longus muscle on the foot under axial loading: A CT evaluated dynamic cadaveric model study.

    Science.gov (United States)

    Dullaert, K; Hagen, J; Klos, K; Gueorguiev, B; Lenz, M; Richards, R G; Simons, P

    2016-05-01

    Subtle hypermobility of the first tarsometatarsal joint can occur concomitantly with other pathologies and may be difficult to diagnose. Peroneus Longus muscle might influence stability of this joint. Collapse of the medial longitudinal arch is common in flatfoot deformity and the muscle might also play a role in correcting Meary's angle. A radiolucent frame was used to simulate weightbearing during CT examination. Eight pairs fresh-frozen lower legs were imaged in neutral position under non-weightbearing (75N), weightbearing (700N) and with 15kg weights hung from Peroneus Longus tendon. Measurements included first metatarsal rotation, intermetatarsal angle, first tarsometatarsal joint subluxation and Meary's angle. Weightbearing significantly increased Meary's angle and significantly decreased first tarsometatarsal joint subluxation (both Pfoot pathology. Weightbearing affects anatomy of the foot. No reliable information is available concerning the influence of the Peroneus muscle. This study investigates the influence of weightbearing and the impact the Peroneus muscle on the anatomy of the foot. Copyright © 2016. Published by Elsevier Ltd.

  16. The Comparison of two models of marker – placement for identifying the rear foot angle in normal people with and without shoes during the stance phase of walking

    Directory of Open Access Journals (Sweden)

    2016-09-01

    Full Text Available Objective: The purpose of this study was to compare the two models of marker placement for identifying of rear foot angle in normal people with and without shoes during the different stage of stance phase of walking. Methods: Fifteen male students in Birjand University were selected based on Navicular Drop Index. After marker placement based on Clarke and Nigg models, the rear foot angle were recorded with two-dimensional analysis (Panasonic Camera from behind position while subjects walked with 1.7 m/s on a treadmill with and without shoes. For statistical analysis, independent samples t-test was used (p≤0.05. Results: The Results showed a significant difference in rear foot angle during the stance phase between the two models of Clarke and Nigg during walking with and without shoes (p≤0.001. Conclusion: Based on the results of the present study, due to their specific features care must be considered when using any of these two models to investigate the angular kinematics of the foot.

  17. Rapid emission angle selection for rotating-shield brachytherapy

    International Nuclear Information System (INIS)

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Sun, Wenqing; Yang Wenjun; Wu Xiaodong

    2013-01-01

    Purpose: The authors present a rapid emission angle selection (REAS) method that enables the efficient selection of the azimuthal shield angle for rotating shield brachytherapy (RSBT). The REAS method produces a Pareto curve from which a potential RSBT user can select a treatment plan that balances the tradeoff between delivery time and tumor dose conformity. Methods: Two cervical cancer patients were considered as test cases for the REAS method. The RSBT source considered was a Xoft Axxent TM electronic brachytherapy source, partially shielded with 0.5 mm of tungsten, which traveled inside a tandem intrauterine applicator. Three anchor RSBT plans were generated for each case using dose-volume optimization, with azimuthal shield emission angles of 90°, 180°, and 270°. The REAS method converts the anchor plans to treatment plans for all possible emission angles by combining neighboring beamlets to form beamlets for larger emission angles. Treatment plans based on exhaustive dose-volume optimization (ERVO) and exhaustive surface optimization (ERSO) were also generated for both cases. Uniform dwell-time scaling was applied to all plans such that that high-risk clinical target volume D 90 was maximized without violating the D 2cc tolerances of the rectum, bladder, and sigmoid colon. Results: By choosing three azimuthal emission angles out of 32 potential angles, the REAS method performs about 10 times faster than the ERVO method. By setting D 90 to 85–100 Gy 10 , the delivery times used by REAS generated plans are 21.0% and 19.5% less than exhaustive surface optimized plans used by the two clinical cases. By setting the delivery time budget to 5–25 and 10–30 min/fx, respectively, for two the cases, the D 90 contributions for REAS are improved by 5.8% and 5.1% compared to the ERSO plans. The ranges used in this comparison were selected in order to keep both D 90 and the delivery time within acceptable limits. Conclusions: The REAS method enables efficient RSBT

  18. Movement coordination patterns between the foot joints during walking

    Directory of Open Access Journals (Sweden)

    John B. Arnold

    2017-10-01

    Full Text Available Abstract Background In 3D gait analysis, kinematics of the foot joints are usually reported via isolated time histories of joint rotations and no information is provided on the relationship between rotations at different joints. The aim of this study was to identify movement coordination patterns in the foot during walking by expanding an existing vector coding technique according to an established multi-segment foot and ankle model. A graphical representation is also described to summarise the coordination patterns of joint rotations across multiple patients. Methods Three-dimensional multi-segment foot kinematics were recorded in 13 adults during walking. A modified vector coding technique was used to identify coordination patterns between foot joints involving calcaneus, midfoot, metatarsus and hallux segments. According to the type and direction of joints rotations, these were classified as in-phase (same direction, anti-phase (opposite directions, proximal or distal joint dominant. Results In early stance, 51 to 75% of walking trials showed proximal-phase coordination between foot joints comprising the calcaneus, midfoot and metatarsus. In-phase coordination was more prominent in late stance, reflecting synergy in the simultaneous inversion occurring at multiple foot joints. Conversely, a distal-phase coordination pattern was identified for sagittal plane motion of the ankle relative to the midtarsal joint, highlighting the critical role of arch shortening to locomotor function in push-off. Conclusions This study has identified coordination patterns between movement of the calcaneus, midfoot, metatarsus and hallux by expanding an existing vector cording technique for assessing and classifying coordination patterns of foot joints rotations during walking. This approach provides a different perspective in the analysis of multi-segment foot kinematics, and may be used for the objective quantification of the alterations in foot joint

  19. Kinematic repeatability of a multi-segment foot model for dance.

    Science.gov (United States)

    Carter, Sarah L; Sato, Nahoko; Hopper, Luke S

    2018-03-01

    The purpose of this study was to determine the intra and inter-assessor repeatability of a modified Rizzoli Foot Model for analysing the foot kinematics of ballet dancers. Six university-level ballet dancers performed the movements; parallel stance, turnout plié, turnout stance, turnout rise and flex-point-flex. The three-dimensional (3D) position of individual reflective markers and marker triads was used to model the movement of the dancers' tibia, entire foot, hindfoot, midfoot, forefoot and hallux. Intra and inter-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability for the first metatarsophalangeal joint in the sagittal plane. Intra-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability during flex-point-flex across all inter-segmental angles except for the tibia-hindfoot and hindfoot-midfoot frontal planes. Inter-assessor repeatability ranged from poor to excellent (0.5 > ICC ≥ 0.75) for the 3D segment rotations. The most repeatable measure was the tibia-foot dorsiflexion/plantar flexion articulation whereas the least repeatable measure was the hindfoot-midfoot adduction/abduction articulation. The variation found in the inter-assessor results is likely due to inconsistencies in marker placement. This 3D dance specific multi-segment foot model provides insight into which kinematic measures can be reliably used to ascertain in vivo technical errors and/or biomechanical abnormalities in a dancer's foot motion.

  20. Development of a Robotic Assembly for Analyzing the Instantaneous Axis of Rotation of the Foot Ankle Complex

    Directory of Open Access Journals (Sweden)

    Kelly N. Salb

    2016-01-01

    Full Text Available Ankle instantaneous axis of rotation (IAR measurements represent a more complete parameter for characterizing joint motion. However, few studies have implemented this measurement to study normal, injured, or pathological foot ankle biomechanics. A novel testing protocol was developed to simulate aspects of in vivo foot ankle mechanics during mid-stance gait in a human cadaveric specimen. A lower leg was mounted in a robotic testing platform with the tibia upright and foot flat on the baseplate. Axial tibia loads (ATLs were controlled as a function of a vertical ground reaction force (vGRF set at half body weight (356 N and a 50% vGRF (178 N Achilles tendon load. Two specimens were repetitively loaded over 10 degrees of dorsiflexion and 20 degrees of plantar flexion. Platform axes were controlled within 2 microns and 0.008 degrees resulting in ATL measurements within ±2 N of target conditions. Mean ATLs and IAR values were not significantly different between cycles of motion, but IAR values were significantly different between dorsiflexion and plantar flexion. A linear regression analysis showed no significant differences between slopes of plantar flexion paths. The customized robotic platform and advanced testing protocol produced repeatable and accurate measurements of the IAR, useful for assessing foot ankle biomechanics under different loading scenarios and foot conditions.

  1. Correlation between anatomic foot and ankle movement measured with MRI and with a motion analysis system.

    Science.gov (United States)

    Marquez-Barrientos, C; Liu, X C; Lyon, R; Tassone, C; Thometz, J; Tarima, S

    2012-07-01

    Several studies have attempted to measure how well external markers track internal bone movement using pins drilled into the foot, but this is too invasive for the pediatric population. This study investigated how well a six segment foot model (6SFM) using external markers was able to measure bone movement in the foot compared to MRI measurements. The foot was moved into different positions using a plastic foot jig and measurements were taken with both systems. The aims were to: (1) Look at the correlation between movement tracked with an Electronic Motion Tracking System (EMTS) and by measurements derived from MRI images, specifically the principal intercept angles (PIAs) which are the angles of intersection between principal axes of inertia of bone volumes. (2) To see how well external motion measured by the 6SFM could predict PIAs. Four bone pairs had their movement tracked: Tibia-Calcaneus, Calcaneus-Cuboid, Navicular-1st Metatarsal, and 1st Metatarsal-Hallux. The results showed moderate correlation between measured PIAs and those predicted at the Tibia-Calcaneus, Navicular-1st Metatarsal, and 1st Metatarsal-Hallux joints. Moderate to high correlation was found between the PIA and movement in a single anatomic plane for all four joints at several positions. The 6SFM using the EMTS allows reliable tracking of 3D rotations in the pediatric foot, except at the Calcaneus-Cuboid joint. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Relationship between sagittal plane kinematics, foot morphology and vertical forces applied to three regions of the foot

    OpenAIRE

    Hannah, I.; Sawacha, Z.; Guiotto, A.; Mazza, C.

    2016-01-01

    Kinetic analysis of human motion with a multi-segment musculoskeletal foot model requires the distribution of loading applied to the modeled foot segments to be determined. This work thus examines the existence of any correlation between intersegmental foot kinematics, foot morphology, and the distribution of vertical loading in a multi-segment foot model. Gait analysis trials were performed by 20 healthy subjects at a self-selected speed with intersegmental foot joint angles and the distribu...

  3. Three-Dimensional Rotational Angiography of the Foot in Critical Limb Ischemia: A New Dimension in Revascularization Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jens, Sjoerd, E-mail: s.jens@amc.uva.nl [Academic Medical Center, Department of Radiology (Netherlands); Lucatelli, Pierleone, E-mail: pierleone.lucatelli@gmail.com [' Sapienza' University of Rome, Vascular and Interventional Radiology Unit, Department of Radiological Sciences (Italy); Koelemay, Mark J. W., E-mail: m.j.koelemaij@amc.uva.nl [Academic Medical Center, Department of Surgery (Netherlands); Marquering, Henk A., E-mail: h.a.marquering@amc.uva.nl; Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl [Academic Medical Center, Department of Radiology (Netherlands)

    2013-06-15

    Purpose. To evaluate the additional value of three-dimensional rotational angiography (3DRA) of the foot compared with digital subtraction angiography (DSA) in patients with critical limb ischemia (CLI). Technique. For 3DRA, the C-arm was placed in the propeller position with the foot in an isocentric position. The patient's unaffected foot was positioned in a footrest outside the field of view. For correct timing of 3DRA, the delay from contrast injection in the popliteal artery at the level of knee joint to complete pedal arterial enhancement was assessed using DSA. With this delay, 3DRA was started after injection of 15 ml contrast. Imaging of the 3DRA could directly be reconstructed and visualized.Materials and MethodsPatients undergoing 3DRA of the foot were prospectively registered. DSA and 3DRA images were scored separately for arterial patency and presence of collaterals. Treatment strategies were proposed based on DSA with and without the availability of 3DRA. Results. Eleven patients underwent 3DRA of the foot. One 3DRA was not included because the acquisition was focused on the heel instead of the entire foot. Diagnostic quality of 3DRA was good in all ten patients. 3DRA compared with DSA showed additional patent arteries in six patients, patent plantar arch in three patients, and collaterals between the pedal arteries in five patients. Additional information from 3DRA resulted in a change of treatment strategy in six patients. Conclusion, 3DRA of the foot contains valuable additional real-time information to better guide peripheral vascular interventions in patients with CLI and nonhealing tissue lesions.

  4. Three-Dimensional Rotational Angiography of the Foot in Critical Limb Ischemia: A New Dimension in Revascularization Strategy

    International Nuclear Information System (INIS)

    Jens, Sjoerd; Lucatelli, Pierleone; Koelemay, Mark J. W.; Marquering, Henk A.; Reekers, Jim A.

    2013-01-01

    Purpose. To evaluate the additional value of three-dimensional rotational angiography (3DRA) of the foot compared with digital subtraction angiography (DSA) in patients with critical limb ischemia (CLI). Technique. For 3DRA, the C-arm was placed in the propeller position with the foot in an isocentric position. The patient’s unaffected foot was positioned in a footrest outside the field of view. For correct timing of 3DRA, the delay from contrast injection in the popliteal artery at the level of knee joint to complete pedal arterial enhancement was assessed using DSA. With this delay, 3DRA was started after injection of 15 ml contrast. Imaging of the 3DRA could directly be reconstructed and visualized.Materials and MethodsPatients undergoing 3DRA of the foot were prospectively registered. DSA and 3DRA images were scored separately for arterial patency and presence of collaterals. Treatment strategies were proposed based on DSA with and without the availability of 3DRA. Results. Eleven patients underwent 3DRA of the foot. One 3DRA was not included because the acquisition was focused on the heel instead of the entire foot. Diagnostic quality of 3DRA was good in all ten patients. 3DRA compared with DSA showed additional patent arteries in six patients, patent plantar arch in three patients, and collaterals between the pedal arteries in five patients. Additional information from 3DRA resulted in a change of treatment strategy in six patients. Conclusion, 3DRA of the foot contains valuable additional real-time information to better guide peripheral vascular interventions in patients with CLI and nonhealing tissue lesions.

  5. Forefoot-rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running.

    Science.gov (United States)

    Eslami, Mansour; Begon, Mickaël; Farahpour, Nader; Allard, Paul

    2007-01-01

    Based on twisted plate and mitered hinge models of the foot and ankle, forefoot-rearfoot coupling motion patterns can contribute to the amount of tibial rotation. The present study determined the differences of forefoot-rearfoot coupling patterns as well as excessive excursion of tibial internal rotation in shod versus barefoot conditions during running. Sixteen male subjects ran 10 times at 170 steps per minute under the barefoot and shod conditions. Forefoot-rearfoot coupling motions were assessed by measuring mean relative phase angle during five intervals of stance phase for the main effect of five time intervals and two conditions (ANOVA, PForefoot adduction/abduction and rearfoot eversion/inversion coupling motion patterns were significantly different between the conditions and among the intervals (Pstrike of running with shoe wears. No significant differences were noted in the tibial internal rotation excursion between shod and barefoot conditions. Significant variations in the forefoot adduction/abduction and rearfoot eversion/inversion coupling patterns could have little effect on the amount of tibial internal rotation excursion. Yet it remains to be determined whether changes in the frontal plane forefoot-rearfoot coupling patterns influence the tibia kinematics for different shoe wears or foot orthotic interventions. The findings question the rational for the prophylactic use of forefoot posting in foot orthoses.

  6. Comparing non-invasive scapular tracking methods across elevation angles, planes of elevation and humeral axial rotations.

    Science.gov (United States)

    Grewal, T-J; Cudlip, A C; Dickerson, C R

    2017-12-01

    Altered scapular motions premeditate shoulder impingement and other musculoskeletal disorders. Divergent experimental conditions in previous research precludes rigorous comparisons of non-invasive scapular tracking techniques. This study evaluated scapular orientation measurement methods across an expanded range of humeral postures. Scapular medial/lateral rotation, anterior/posterior tilt and protraction/retraction was measured using an acromion marker cluster (AMC), a scapular locator, and a reference stylus. Motion was captured using reflective markers on the upper body, as well as on the AMC, locator and stylus. A combination of 5 arm elevation angles, 3 arm elevation planes and 3 arm axial rotations was examined. Measurement method interacted with elevation angle and plane of elevation for all three scapular orientation directions (p planes and axial rotations. The AMC underestimated lateral rotation, with the largest difference of ∼2° at 0° elevation. Both the locator and AMC overestimated posterior tilt at high arm elevation by up to 7.4°. Misestimations from using the locator could be enough to potentially obscure meaningful differences in scapular rotations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Predicting timing of foot strike during running, independent of striking technique, using principal component analysis of joint angles.

    Science.gov (United States)

    Osis, Sean T; Hettinga, Blayne A; Leitch, Jessica; Ferber, Reed

    2014-08-22

    As 3-dimensional (3D) motion-capture for clinical gait analysis continues to evolve, new methods must be developed to improve the detection of gait cycle events based on kinematic data. Recently, the application of principal component analysis (PCA) to gait data has shown promise in detecting important biomechanical features. Therefore, the purpose of this study was to define a new foot strike detection method for a continuum of striking techniques, by applying PCA to joint angle waveforms. In accordance with Newtonian mechanics, it was hypothesized that transient features in the sagittal-plane accelerations of the lower extremity would be linked with the impulsive application of force to the foot at foot strike. Kinematic and kinetic data from treadmill running were selected for 154 subjects, from a database of gait biomechanics. Ankle, knee and hip sagittal plane angular acceleration kinematic curves were chained together to form a row input to a PCA matrix. A linear polynomial was calculated based on PCA scores, and a 10-fold cross-validation was performed to evaluate prediction accuracy against gold-standard foot strike as determined by a 10 N rise in the vertical ground reaction force. Results show 89-94% of all predicted foot strikes were within 4 frames (20 ms) of the gold standard with the largest error being 28 ms. It is concluded that this new foot strike detection is an improvement on existing methods and can be applied regardless of whether the runner exhibits a rearfoot, midfoot, or forefoot strike pattern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. VALIDITY AND REPRODUCIBILITY OF MEASURING THE KINEMATIC COUPLING BEHAVIOR OF CALCANEAL PRONATION/SUPINATION AND SHANK ROTATION DURING WEIGHT BEARING USING AN OPTICAL THREE-DIMENSIONAL MOTION ANALYSIS SYSTEM

    Directory of Open Access Journals (Sweden)

    Masahiro Edo

    2017-12-01

    Full Text Available Background: It’s important to understand the kinematic coupling of calcaneus and shank to optimize the pathological movement of the lower extremity. However, the quantitative indicator to show the kinematic coupling hasn’t been clarified. We measured the angles of calcaneal pronation-to-supination and shank rotation during pronation and supination of both feet in standing position and devised a technique to quantify the kinematic coupling behavior of calcaneal pronation/supination and shank rotation as the linear regression coefficient (kinematic chain ratio: KCR of those measurements. Therefore, we verified the validity and reproducibility of this technique. Methods: This study is a non-comparative cross-sectional study. The KCR, which is an outcome, was measured using an optical three-dimensional motion analysis system in 10 healthy subjects. The coefficient of determination (R² was calculated for the linear regression equation of the angle of calcaneal pronation-to-supination and angle of shank rotation, and the intraclass correlation coefficient (ICC [1,1] was calculated for the KCR during foot pronation and foot supination and for the KCR measured on different days. And also, skin movement artifacts were investigated by measurement of the displacement of bone and body surface markers in one healthy subject. Results: The linear regression equation of calcaneal pronation/supination and the angle of shank rotation included R²≥0.9 for all subjects. The KCR on foot pronation and supination had an ICC(1,1 of 0.95. The KCR measured on different days had an ICC(1,1 of 0.72. Skin movement artifacts were within the allowable range. Conclusion: The validity and reproducibility of this technique were largely good, and the technique can be used to quantify kinematic coupling behavior.

  9. Radiographic Relevance of the Distal Medial Cuneiform Angle in Hallux Valgus Assessment.

    Science.gov (United States)

    Hatch, Daniel J; Smith, Abigail; Fowler, Troy

    2016-01-01

    The angle formed by the distal articular facet of the medial cuneiform has been evaluated and discussed by various investigators. However, no consistent method has been available to radiograph and measure this entity. The wide variability of the angle is not conducive to comparative analysis. Additionally, investigators have noted that the angles observed (obliquity) vary greatly because of changes in radiographic angle, foot position, rotation of the first ray, and declination of the first metatarsal. Recognizing that these variables exist, we propose a reproducible assessment using digital radiography and application of deformity of correction principles. Our results have indicated a mean distal medial cuneiform angle of 20.69° in normal feet, 23.51° with moderate hallux valgus, and 20.41° with severe hallux valgus deformity. The radiograph beam was kept at 15° from the coronal plane. An inverse relationship was found between the distal medial cuneiform angle and bunion severity. This was in contrast to our expected hypothesis. The overall angle of the first metatarsal-medial cuneiform did, however, correlate with the severity of the bunion deformity (p hallux valgus. A better indicator appears to be the first metatarsal-medial cuneiform angle. This pathologic entity is a 3-dimensional one that incorporates the joint morphology of the first ray, triplane osseous positioning, and soft tissue imbalances. Perhaps, 3-dimensional computed tomography imaging will provide better insight into this entity. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Measurement of first ray of foot with reference to hallux valgus.

    Science.gov (United States)

    Howale, Deepak S; Iyer, Kanaklata V; Shah, Jigesh V

    2012-06-01

    A study was carried out on 58 healthy volunteers. None of the volunteeres had any foot complaints. This was done to study Indian feet, as foot is an important part of human anatomy and its certain deformities eg, hallux valgus, can be very disabling. We have studied anatomical angles between 1st and 2nd rays of foot eg, angle of hallux valgus and angle of slant of distal facet of medial cuneiform and have shown significant correlation between them and development of hallux valgus. The coefficient of correlation (r) calculated between these two angles is significant, showing that this angle influences the angle of hallux valgus and hence development of hallux valgus. These are anatomical angles and indicate shapes of medial cuneiform and 1st metatarsal. Hence these seem to be inherited, making the feet anatomically predisposed to develop hallux valgus. This view is supported by Gray's Anatomy. The extrinsic factors such as narrow toes, closed, footwear worn for an extended period do increase the angle of hallux valgus. So, in predisposed feet, this is one of the extrinsic factor which can lead to development of hallux valgus. On studying these two angles, orthopaedicians should be on alert and should advise such individuals on wearing foot- friendly foot-wear.

  11. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    International Nuclear Information System (INIS)

    Tuite, M.J.; Asinger, D.; Orwin, J.F.

    2001-01-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  12. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J; Asinger, D; Orwin, J F [Dept. of Radiology, Univ. of Wisconsin Hospital and Clinics, Madison, WI (United States)

    2001-05-01

    Objective. To compare the accuracy for diagnosing rotator cuff tears of oblique coronal images supplemented with standard oblique sagittal images versus thinner-section angled oblique sagittal images.Design and patients. The study included 75 consecutive patients who had a shoulder MR scan followed by arthroscopy. MR images included oblique coronal, oblique sagittal (4 mm thick, 1 mm interslice gap), and angled oblique sagittal (3 mm/0.2 mm) images perpendicular to the lateral cuff. A musculoskeletal staff radiologist and fellow separately evaluated the cuff for tears on the oblique coronal images supplemented with either the oblique sagittal or the angled sagittal images.Results. For distinguishing a cuff tear from no tear, the staff radiologist had an accuracy of 0.76 (95% confidence interval: 0.67, 0.85) with the standard sagittal set, and 0.88 (0.80, 0.95) with the angled set (P=0.04). There was a nonsignificant improvement in accuracy for the fellow, calculated as 0.73 (0.63, 0.83) on the standard sagittal set and 0.76 (0.67, 0.85) on the angled set. Both readers also improved their diagnostic accuracy for partial-thickness tears with the angled set, although the improvement was statistically significant only for the staff radiologist.Conclusion. There is a slight improvement in accuracy for diagnosing rotator cuff tears, particularly partial-thickness tears, for the more experienced radiologist using thinner-section angled oblique sagittal images. These images may be useful as a supplemental sequence in patients where it is important to identify partial-thickness tears accurately. (orig.)

  13. Lumbar lordosis angle and trunk and lower-limb electromyographic activity comparison in hip neutral position and external rotation during back squats.

    Science.gov (United States)

    Oshikawa, Tomoki; Morimoto, Yasuhiro; Kaneoka, Koji

    2018-03-01

    [Purpose] To compare the lumbar lordosis angle and electromyographic activities of the trunk and lower-limb muscles in the hip neutral position and external rotation during back squats. [Subjects and Methods] Ten healthy males without severe low back pain or lower-limb injury participated in this study. The lumbar lordosis angle and electromyographic activities were measured using three-dimensional motion-capture systems and surface electrodes during four back squats: parallel back squats in the hip neutral position and external rotation and full back squats in the hip neutral position and external rotation. A paired t-test was used to compare parallel and full back squats measurements in the hip neutral position and external rotation, respectively. [Results] During parallel back squats, the average lumbar lordosis angle was significantly larger in hip external rotation than in the hip neutral position. During full back squats, lumbar erector spinae and multifidus activities were significantly lower in hip external rotation than in the hip neutral position, whereas gluteus maximus activity was significantly higher in hip external rotation than in the hip neutral position. [Conclusion] The back squat in hip external rotation induced improvement of lumbar kyphosis, an increasing of the gluteus maximus activity and a decrease of both lumbar erector spinae and multifidus activities.

  14. Analytical calculations of the rotational transform angles in the torsatron systems with different plasma pressure profiles

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.K.; Pinos, I.B.; Tyupa, V.I.

    1999-01-01

    With formulas for averaging over magnetic surfaces general analytical expressions are here deduced to determine the rotational transform angles in stellarator systems having different plasma pressure profiles

  15. Effects of pelvic rotation and needle angle on pubic arch interference during transperineal prostate implants

    International Nuclear Information System (INIS)

    Tincher, Sandra A.; Kim, Robert Y.; Ezekiel, Mark P.; Zinsli, Tom; Fiveash, John B.; Raben, David A.; Bueschen, Anton J.; Urban, Donald A.

    2000-01-01

    Purpose: Pubic arch interference due to an enlarged prostate gland or a narrow pubic arch is often a limiting factor in adequate prostate coverage during transperineal brachytherapy. The purpose of this study was to evaluate the effects of both pelvic rotation and needle angles on pubic arch interference using CT-based 3-D information. Methods and Materials: Seven patients had CT imaging in both supine and lithotomy positions and 3-D treatment planning was performed with three needle angles (20 downward, 0, 20 upward). The pubic arch interference was then measured and comparisons were made for each needle trajectory and pelvic position. Results: Increasing pelvic rotation from supine to lithotomy position shows less pubic arch interference. Directing the needle tip upward shows less pubic arch interference in both supine and lithotomy positions when compared to needle tips directed downward. Conclusions: Both pelvic position and needle angles are important factors influencing pubic arch interference. Preplanning CT-based 3-D information may assist for individualized treatment planning in patients with a significant bony interference, thus avoiding pubic arch interference during implantation

  16. Effect of shoulder abduction angle on biomechanical properties of the repaired rotator cuff tendons with 3 types of double-row technique.

    Science.gov (United States)

    Mihata, Teruhisa; Fukuhara, Tetsutaro; Jun, Bong Jae; Watanabe, Chisato; Kinoshita, Mitsuo

    2011-03-01

    After rotator cuff repair, the shoulder is immobilized in various abduction positions. However, there is no consensus on the proper abduction angle. To assess the effect of shoulder abduction angle on the biomechanical properties of the repaired rotator cuff tendons among 3 types of double-row techniques. Controlled laboratory study. Thirty-two fresh-frozen porcine shoulders were used. A simulated rotator cuff tear was repaired by 1 of 3 double-row techniques: conventional double-row repair, transosseous-equivalent repair, and a combination of conventional double-row and bridging sutures (compression double-row repair). Each specimen underwent cyclic testing followed by tensile testing to failure at a simulated shoulder abduction angle of 0° or 40° on a material testing machine. Gap formation and failure loads were measured. Gap formation in conventional double-row repair at 0° (1.2 ± 0.5 mm) was significantly greater than that at 40° (0.5 ± 0.3mm, P = .01). The yield and ultimate failure loads for conventional double-row repair at 40° were significantly larger than those at 0° (P row repair (P row repair was the greatest among the 3 double-row techniques at both 0° and 40° of abduction. Bridging sutures have a greater effect on the biomechanical properties of the repaired rotator cuff tendon at a low abduction angle, and the conventional double-row technique has a greater effect at a high abduction angle. Proper abduction position after rotator cuff repair differs between conventional double-row repair and transosseous-equivalent repair. The authors recommend the use of the combined technique of conventional double-row and bridging sutures to obtain better biomechanical properties at both low and high abduction angles.

  17. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  18. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  19. Changes in multi-segment foot biomechanics with a heat-mouldable semi-custom foot orthotic device

    Directory of Open Access Journals (Sweden)

    Ferber Reed

    2011-06-01

    Full Text Available Abstract Background Semi-custom foot orthoses (SCO are thought to be a cost-effective alternative to custom-made devices. However, previous biomechanical research involving either custom or SCO has only focused on rearfoot biomechanics. The purpose of this study was therefore to determine changes in multi-segment foot biomechanics during shod walking with and without an SCO. We chose to investigate an SCO device that incorporates a heat-moulding process, to further understand if the moulding process would significantly alter rearfoot, midfoot, or shank kinematics as compared to a no-orthotic condition. We hypothesized the SCO, whether moulded or non-moulded, would reduce peak rearfoot eversion, tibial internal rotation, arch deformation, and plantar fascia strain as compared to the no-orthoses condition. Methods Twenty participants had retroreflective markers placed on the right limb to represent forefoot, midfoot, rearfoot and shank segments. 3D kinematics were recorded using an 8-camera motion capture system while participants walked on a treadmill. Results Plantar fascia strain was reduced by 34% when participants walked in either the moulded or non-moulded SCO condition compared to no-orthoses. However, there were no significant differences in peak rearfoot eversion, tibial internal rotation, or medial longitudinal arch angles between any conditions. Conclusions A semi-custom moulded orthotic does not control rearfoot, shank, or arch deformation but does, however, reduce plantar fascia strain compared to walking without an orthoses. Heat-moulding the orthotic device does not have a measurable effect on any biomechanical variables compared to the non-moulded condition. These data may, in part, help explain the clinical efficacy of orthotic devices.

  20. Foot strike pattern in children during shod-unshod running.

    Science.gov (United States)

    Latorre Román, Pedro Ángel; Balboa, Fernando Redondo; Pinillos, Felipe García

    2017-10-01

    The purpose of this study was to determine the foot strike patterns (FSPs) and neutral support (no INV/EVE and no foot rotation) in children, as well as to determine the influence of shod/unshod conditions and sex. A total of 713 children, aged 6 to 16 years, participated in this study (Age=10.28±2.71years, body mass index [BMI]=19.70±3.91kg/m 2 , 302 girls and 411 boys). A sagittal and frontal-plane video (240Hz) was recorded using a high-speed camcorder, to record the following variables: rearfoot strike (RFS), midfoot strike (MFS), forefoot strike (FFS), inversion/eversion (INV/EVE) and foot rotation on initial contact. RFS prevalence was similar between boys and girls in both shod and unshod conditions. In the unshod condition there was a significant reduction (p<0.001) of RFS prevalence both in boys (shod condition=83.95% vs. 62.65% unshod condition) and in girls (shod condition=87.85% vs. 62.70% unshod condition). No significant differences were found in INV/EVE and foot rotation between sex groups. In the unshod condition there was a significant increase (p<0.001) of neutral support (no INV/EVE) both in boys (shod condition=12.55% vs. 22.22% unshod condition) and in girls (shod condition=17.9% vs. 28.15% unshod condition). In addition, in the unshod condition there is a significant reduction (p<0.001) of neutral support (no foot rotation) both in boys (shod condition=21.55% vs. 11.10% unshod condition) and in girls (shod condition=21.05% vs. 11.95% unshod condition). In children, RFS prevalence is lower than adult's population. Additionally, barefoot running reduced the prevalence of RFS and INV/EVE, however increased foot rotation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modified small angle magnetization rotation method in multilayer magnetic microwires

    International Nuclear Information System (INIS)

    Torrejon, J.; Badini, G.; Pirota, K.; Vazquez, M.

    2007-01-01

    The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications

  2. Increase of rotation angle of soil layers during plow operation

    Science.gov (United States)

    Vasilenko, VV; Afonichev, D. N.; Vasilenko, S. V.; Khakhulin, A. N.

    2018-03-01

    One of the advantages of plowing is the ability of the plow to hide the weed seeds deep into the soil. The depth of the embankment exceeds 10-12 cm, from there the weeds can not rise to the surface of the soil. They perish halfway. But for this, it is necessary to wrap the soil layers at an angle close to 180 °. Modern ploughs can not turn the layers of soil at an angle of more than 135 °, therefore the plow is required to be equipped with additional working elements. The aim of the study is to create an adaptation to the plow to expand the furrow before laying the next soil layer. In a wide furrow, the formation will completely tip, the previous layer will not interfere with it. The device is a set of vertical shields. Each shield is fixed behind the working body of the plow. It is installed with an angle of attack of 20-25 ° to move the previous layer to expand the furrow by 10-12 cm. The model and industrial samples of the plow have shown improved agrotechnical indicators. The average angle of the formation rotation was 177 °, the burial of plant residues in the soil increased from 61 to 99%. The field surface with blocks more than 5 cm decreased from 36.3 to 13.4%, the height of the ridges decreased from 7 to 4 cm. The force of soil pressure on the shield was measured by a strain gage. It is 130-330 N depending on the depth of processing and the speed of movement. The increase in power costs for the four-hull plow was 190-750 W. The coulters on the plow are unnecessary, and this saves energy more than its increase for shields.

  3. Rotating-coil calibration in a reference quadrupole, considering roll-angle misalignment and higher-order harmonics

    CERN Document Server

    AUTHOR|(CDS)2075492; Buzio, Marco; Köster, Oliver; Russenschuck, Stephan; Severino, Giordana

    2016-01-01

    A method is proposed for calibrating the radius of a rotating coil sensor by relaxing the metrological constraints on alignment and field errors of the reference quadrupole. A coil radius calibration considering a roll-angle misalignment of the measurement bench, the magnet, and the motor-drive unit is analyzed. Then, the error arising from higher-order harmonic field imperfections in the reference quadrupole is assessed. The method is validated by numerical field computation for both the higher-order harmonic errors and the roll-angle misalignment. Finally, an experimental proof-of-principle demonstration is car-ried out in a calibration magnet with sextupole harmonic.

  4. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model.

    Science.gov (United States)

    Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Sung Ju; Lee, Kyoung Min; Farber, Daniel C; Chung, Chin Youb; Choi, In Ho

    2015-01-01

    Radiographic examination is a widely used evaluation method in the orthopedic clinic. However, conventional radiography alone does not reflect the dynamic changes between foot and ankle segments during gait. Multiple 3-dimensional multisegment foot models (3D MFMs) have been introduced to evaluate intersegmental motion of the foot. In this study, we evaluated the correlation between static radiographic indices and intersegmental foot motion indices. One hundred twenty-five females were tested. Static radiographs of full-leg and anteroposterior (AP) and lateral foot views were performed. For hindfoot evaluation, we measured the AP tibiotalar angle (TiTA), talar tilt (TT), calcaneal pitch, lateral tibiocalcaneal angle, and lateral talcocalcaneal angle. For the midfoot segment, naviculocuboid overlap and talonavicular coverage angle were calculated. AP and lateral talo-first metatarsal angles and metatarsal stacking angle (MSA) were measured to assess the forefoot. Hallux valgus angle (HVA) and hallux interphalangeal angle were measured. In gait analysis by 3D MFM, intersegmental angle (ISA) measurements of each segment (hallux, forefoot, hindfoot, arch) were recorded. ISAs at midstance phase were most highly correlated with radiography. Significant correlations were observed between ISA measurements using MFM and static radiographic measurements in the same segment. In the hindfoot, coronal plane ISA was correlated with AP TiTA (P foot motion indices at midstance phase during gait measured by 3D MFM gait analysis were correlated with the conventional radiographic indices. The observed correlation between MFM measurements at midstance phase during gait and static radiographic measurements supports the fundamental basis for the use of MFM in analysis of dynamic motion of foot segment during gait. © The Author(s) 2014.

  5. Influence of the position of the foot on MRI signal in the deep digital flexor tendon and collateral ligaments of the distal interphalangeal joint in the standing horse.

    Science.gov (United States)

    Spriet, M; Zwingenberger, A

    2009-05-01

    Hyperintense signal is sometimes observed in ligaments and tendons of the equine foot on standing magnetic resonance examination without associated changes in size and shape. In such cases, the presence of a true lesion or an artifact should be considered. A change in position of a ligament or tendon relative to the magnetic field can induce increased signal intensity due to the magic angle effect. To assess if positional rotation of the foot in the solar plane could be responsible for artifactual changes in signal intensity in the collateral ligaments of the distal interphalangeal joint and in the deep digital flexor tendon. Six isolated equine feet were imaged with a standing equine magnetic resonance system in 9 different positions with different degrees of rotation in the solar plane. Rotation of the limb induced a linear hyperintense signal on all feet at the palmar aspect of one of the lobes of the deep digital flexor tendon and at the dorsal aspect of the other lobe. Changes in signal intensity in the collateral ligaments of the distal interphalangeal joint occurred with rotation of the limb only in those feet where mediolateral hoof imbalance was present. The position and conformation of the foot influence the signal intensity in the deep digital flexor tendon and in the collateral ligaments of the distal interphalangeal joint. The significance of increased signal intensity in the deep digital flexor tendon and in the collateral ligaments of the distal interphalangeal joint should be interpreted with regard to the position and the conformation of the foot.

  6. Reliability and criterion validity of measurements using a smart phone-based measurement tool for the transverse rotation angle of the pelvis during single-leg lifting.

    Science.gov (United States)

    Jung, Sung-Hoon; Kwon, Oh-Yun; Jeon, In-Cheol; Hwang, Ui-Jae; Weon, Jong-Hyuck

    2018-01-01

    The purposes of this study were to determine the intra-rater test-retest reliability of a smart phone-based measurement tool (SBMT) and a three-dimensional (3D) motion analysis system for measuring the transverse rotation angle of the pelvis during single-leg lifting (SLL) and the criterion validity of the transverse rotation angle of the pelvis measurement using SBMT compared with a 3D motion analysis system (3DMAS). Seventeen healthy volunteers performed SLL with their dominant leg without bending the knee until they reached a target placed 20 cm above the table. This study used a 3DMAS, considered the gold standard, to measure the transverse rotation angle of the pelvis to assess the criterion validity of the SBMT measurement. Intra-rater test-retest reliability was determined using the SBMT and 3DMAS using intra-class correlation coefficient (ICC) [3,1] values. The criterion validity of the SBMT was assessed with ICC [3,1] values. Both the 3DMAS (ICC = 0.77) and SBMT (ICC = 0.83) showed excellent intra-rater test-retest reliability in the measurement of the transverse rotation angle of the pelvis during SLL in a supine position. Moreover, the SBMT showed an excellent correlation with the 3DMAS (ICC = 0.99). Measurement of the transverse rotation angle of the pelvis using the SBMT showed excellent reliability and criterion validity compared with the 3DMAS.

  7. The critical shoulder angle is associated with osteoarthritis in the shoulder but not rotator cuff tears

    DEFF Research Database (Denmark)

    Bjarnison, Arnar O; Sørensen, Thomas J; Kallemose, Thomas

    2017-01-01

    BACKGROUND: In 2013 Moor et al introduced the concept of the critical shoulder angle (CSA) and suggested that an abnormal CSA was a leading factor in development of rotator cuff tear (RCT) and osteoarthritis (OA) of the shoulder. This study assessed whether the CSA was associated with RCT and OA...

  8. Creation of the {pi} angle standard for the flat angle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Giniotis, V; Rybokas, M, E-mail: gi@ap.vtu.l, E-mail: MRybokas@gama.l [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40 (Lithuania)

    2010-07-01

    Angle measurements are based mainly on multiangle prisms - polygons with autocollimators, rotary encoders for high accuracy and circular scales as the standards of the flat angle. Traceability of angle measurements is based on the standard of the plane angle - prism (polygon) calibrated at an appropriate accuracy. Some metrological institutions have established their special test benches (comparators) equipped with circular scales or rotary encoders of high accuracy and polygons with autocollimators for angle calibration purposes. Nevertheless, the standard (etalon) of plane angle - polygon has many restrictions for the transfer of angle unit - radian (rad) and other units of angle. It depends on the number of angles formed by the flat sides of the polygon that is restricted by technological and metrological difficulties related to the production and accuracy determination of the polygon. A possibility to create the standard of the angle equal to {pi} rad or half the circle or the full angle is proposed. It can be created by the circular scale with the rotation axis of very high accuracy and two precision reading instruments, usually, photoelectric microscopes (PM), placed on the opposite sides of the circular scale using the special alignment steps. A great variety of angle units and values can be measured and its traceability ensured by applying the third PM on the scale. Calibration of the circular scale itself and other scale or rotary encoder as well is possible using the proposed method with an implementation of {pi} rad as the primary standard angle. The method proposed enables to assure a traceability of angle measurements at every laboratory having appropriate environment and reading instruments of appropriate accuracy together with a rotary table with the rotation axis of high accuracy - rotation trajectory (runout) being in the range of 0.05 {mu}m. Short information about the multipurpose angle measurement test bench developed is presented.

  9. Large Critical Shoulder Angle Has Higher Risk of Tendon Retear After Arthroscopic Rotator Cuff Repair.

    Science.gov (United States)

    Li, Hong; Chen, Yuzhou; Chen, Jiwu; Hua, Yinghui; Chen, Shiyi

    2018-05-01

    The critical shoulder angle (CSA) is the angle created between the superior and inferior bone margins of the glenoid and the most lateral border of the acromion. A few studies recently investigated the relation between CSA and functional outcomes after rotator cuff repair. However, there is a lack of research investigating the effect of CSA on postoperative tendon integrity after rotator cuff repair. To assess the effects of the CSA on postoperative tendon integrity after rotator cuff repair. Cohort study; Level of evidence, 3. All patients who underwent rotator cuff repair for full-thickness supraspinatus tears by 1 senior surgeon between January 2010 and January 2014 were included in this study. All patients had standardized anteroposterior shoulder radiographs the day before surgery. CSA and acromial index (AI) were measured. AI was derived by measuring the distance from the glenoid plane to the lateral border of the acromion and dividing it by the distance from the glenoid plane to the lateral aspect of the humeral head. Functional scores-including American Shoulder and Elbow Surgeons shoulder evaluation form, modified University of California at Los Angeles score, Constant-Murley score, and visual analog scale for pain-were used to evaluate shoulder function at a minimum follow-up of 2 years. Meanwhile, magnetic resonance imaging examinations were performed to evaluate rotator cuff integrity according to the Sugaya method and the signal/noise quotient (SNQ) of the rotator cuff tendon. A total of 90 patients were included in this study: 42 patients with a single-row repair and 48 with a double-row repair. There was a significant positive correlation between CSA or AI and tendon SNQ. On the basis of CSA, the patients were divided into 2 groups: large CSA (>38°) and control (CSA ≤38°). At final follow-up, the large CSA group and the control CSA group demonstrated no significant differences in American Shoulder and Elbow Surgeons, University of California at

  10. Characteristics of Selected Anthropometric Foot Indicators in Physically Active Students.

    Science.gov (United States)

    Bac, Aneta; Bogacz, Gabriela; Ogrodzka-Ciechanowicz, Katarzyna; Kulis, Aleksandra; Szaporów, Tomasz; Woźniacka, Renata; Radlińska, Natalia

    2018-05-01

    The aim of this study was to determine the type of medial longitudinal arch (MLA) in students of Krakow universities, investigate the relationship between physical activity and the shaping of the feet, and examine the relationship between hallux valgus angle and the type of footwear chosen most often. The study group consisted of 120 students, of which 56 respondents were students of the University School of Physical Education in Krakow, whereas the remaining 64 respondents were students of the Pedagogical University of Krakow. To evaluate the MLA, a podoscope was used, which allowed us to determine the length and width of the foot, and calculation of the Clarke angle, heel angle γ, and the angle of hallux valgus. All students were also subjected to a measurement of body weight and height. There was a statistically significant relationship between physical activity and the Clarke angle in the group of women studying at the University School of Physical Education. There was no correlation between the hallux valgus angle and the type of footwear chosen most often in the research groups. The most frequently diagnosed type of longitudinal and transverse arch foot in the research group was normal MLA. There was no relationship between physical activity and transverse arch foot in any of the research groups.

  11. Influence of turnout on foot posture and its relationship to overuse musculoskeletal injury in professional contemporary dancers: a preliminary investigation.

    Science.gov (United States)

    Cimelli, Sonja N; Curran, Sarah A

    2012-01-01

    The angle of turnout is thought to predispose professional dancers to overuse musculoskeletal injuries of the lower limb; yet, the influence of angle of turnout on foot posture is currently unknown. Twelve professional contemporary dancers (five women and seven men; mean age, 26.8 years) were recruited. The angle of gait and angle of turnout were measured using a quasi-static clinical tracing method. Foot posture was assessed in the base of gait and angle of turnout using the Foot Posture Index. Each dancer completed a dance history and injury questionnaire. The results show a tendency toward a pronated foot posture (mean, 9°) in the angle of turnout position. A significant relationship was noted between the Foot Posture Index and angle of turnout (ρ = 0.933-0.968, P history of injury to the spine or lower limb, and 9 of the 12 reported an injury within the previous 12 months. Turnout is one of the most fundamental aspects of dance technique. This study suggests a trend toward pronation in angle of turnout and a link to lower-limb musculoskeletal injury.

  12. Foot Placement Modification for a Biped Humanoid Robot with Narrow Feet

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    2014-01-01

    Full Text Available This paper describes a walking stabilization control for a biped humanoid robot with narrow feet. Most humanoid robots have larger feet than human beings to maintain their stability during walking. If robot’s feet are as narrow as humans, it is difficult to realize a stable walk by using conventional stabilization controls. The proposed control modifies a foot placement according to the robot's attitude angle. If a robot tends to fall down, a foot angle is modified about the roll axis so that a swing foot contacts the ground horizontally. And a foot-landing point is also changed laterally to inhibit the robot from falling to the outside. To reduce a foot-landing impact, a virtual compliance control is applied to the vertical axis and the roll and pitch axes of the foot. Verification of the proposed method is conducted through experiments with a biped humanoid robot WABIAN-2R. WABIAN-2R realized a knee-bended walking with 30 mm breadth feet. Moreover, WABIAN-2R mounted on a human-like foot mechanism mimicking a human's foot arch structure realized a stable walking with the knee-stretched, heel-contact, and toe-off motion.

  13. Analysis of foot kinematics wearing high heels using the Oxford foot model.

    Science.gov (United States)

    Wang, Meizi; Gu, Yaodong; Baker, Julien Steven

    2018-04-29

    Wearing high heels is thought to lead to various foot disorders and injuries such as metatarsal pain, Achilles tendon tension, plantar fasciitis and Haglund malformation. However, there is little available information explaining the specific mechanisms and reasons why wearing high heels causes foot deformity. Therefore, the purpose of this study was to investigate the foot kinematics of high heel wearers and compare any differences with barefoot individuals using the Oxford Foot Model (OFM). Fifteen healthy women aged 20-25 years were measured while walking barefoot and when wearing high heels. The peak value of angular motion for the hallux with respect to the forefoot, the forefoot with respect to the hind foot, and the hind foot with respect to the tibia were all analyzed. Compared to the barefoot, participants wearing high heels demonstrated larger hallux dorsiflexion (22.55∘± 1.62∘ VS 26.6∘± 2.33∘ for the barefoot; P= 0.001), and less hallux plantarflexion during the initial stance phase (-4.86∘± 2.32∘ VS -8.68∘± 1.13∘; Pfoot demonstrated a larger dorsiflexion in the horizontal plane (16.59∘± 1.69∘ VS 12.08∘± 0.9∘; Pfoot extension rotation (-5.49∘± 0.69∘ VS -10.73∘± 0.42∘; P= 0.001). These findings complement existing kinematic evidence that wearing high heels can lead to foot deformities and injuries.

  14. A clinically applicable six-segmented foot model.

    Science.gov (United States)

    De Mits, Sophie; Segers, Veerle; Woodburn, Jim; Elewaut, Dirk; De Clercq, Dirk; Roosen, Philip

    2012-04-01

    We describe a multi-segmented foot model comprising lower leg, rearfoot, midfoot, lateral forefoot, medial forefoot, and hallux for routine use in a clinical setting. The Ghent Foot Model describes the kinematic patterns of functional units of the foot, especially the midfoot, to investigate patient populations where midfoot deformation or dysfunction is an important feature, for example, rheumatoid arthritis patients. Data were obtained from surface markers by a 6 camera motion capture system at 500 Hz. Ten healthy subjects walked barefoot along a 12 m walkway at self-selected speed. Joint angles (rearfoot to shank, midfoot to rearfoot, lateral and medial forefoot to midfoot, and hallux to medial forefoot) in the sagittal, frontal, and transverse plane are reported according to anatomically based reference frames. These angles were calculated and reported during the foot rollover phases in stance, detected by synchronized plantar pressure measurements. Repeated measurements of each subject revealed low intra-subject variability, varying between 0.7° and 2.3° for the minimum values, between 0.5° and 2.1° for the maximum values, and between 0.8° and 5.8° for the ROM. The described movement patterns were repeatable and consistent with biomechanical and clinical knowledge. As such, the Ghent Foot model permits intersegment, in vivo motion measurement of the foot, which is crucial for both clinical and research applications. Copyright © 2011 Orthopaedic Research Society.

  15. Characterizing multisegment foot kinematics during gait in diabetic foot patients

    Directory of Open Access Journals (Sweden)

    Denti Paolo

    2009-10-01

    Full Text Available Abstract Background The prevalence of diabetes mellitus has reached epidemic proportions, this condition may result in multiple and chronic invalidating long term complications. Among these, the diabetic foot, is determined by the simultaneous presence of both peripheral neuropathy and vasculopathy that alter the biomechanics of the foot with the formation of callosity and ulcerations. To diagnose and treat the diabetic foot is crucial to understand the foot complex kinematics. Most of gait analysis protocols represent the entire foot as a rigid body connected to the shank. Nevertheless the existing multisegment models cannot completely decipher the impairments associated with the diabetic foot. Methods A four segment foot and ankle model for assessing the kinematics of the diabetic foot was developed. Ten normal subjects and 10 diabetics gait patterns were collected and major sources of variability were tested. Repeatability analysis was performed both on a normal and on a diabetic subject. Direct skin marker placement was chosen in correspondence of 13 anatomical landmarks and an optoelectronic system was used to collect the data. Results Joint rotation normative bands (mean plus/minus one standard deviation were generated using the data of the control group. Three representative strides per subject were selected. The repeatability analysis on normal and pathological subjects results have been compared with literature and found comparable. Normal and pathological gait have been compared and showed major statistically significant differences in the forefoot and midfoot dorsi-plantarflexion. Conclusion Even though various biomechanical models have been developed so far to study the properties and behaviour of the foot, the present study focuses on developing a methodology for the functional assessment of the foot-ankle complex and for the definition of a functional model of the diabetic neuropathic foot. It is, of course, important to evaluate

  16. Determination of 2D equivalent angles of attack for a non-rotating wind turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Maassen, W.H.

    1993-11-01

    For the investigation into models to compute the title subject use has been made of the Lanchester-Prandtl lifting line model. The inflow conditions are given by a uniform inflow velocity and the geometrical angles of attack at every spanwise position. A model using pressure measurements at the instrumented sections and a model using 2-dimensional C{sub L}-{alpha} data at certain spanwise positions were investigated. In section two the experimental setups of the experiments at ECN (Netherlands Energy Research Foundation) and FFA (the Aeronautical Research Institute of Sweden) are presented. In section three the theoretical background and the different methods to compute the 2D equivalent angles of attack are outlined. In section four the results of the computations of the downwash and the 2D equivalent angles of attack for the considered FFA wind tunnel experiment is presented. Finally, in section five the most important conclusions are summarized and a recommendation for the computation of the 2D equivalent angles of attack for the non-rotating blade experiments at ECN is formulated. 59 figs., 2 tabs., 3 appendices, 30 refs.

  17. Repeatability of the Oxford Foot Model in children with foot deformity.

    Science.gov (United States)

    McCahill, Jennifer; Stebbins, Julie; Koning, Bart; Harlaar, Jaap; Theologis, Tim

    2018-03-01

    The Oxford Foot Model (OFM) is a multi-segment, kinematic model developed to assess foot motion. It has previously been assessed for repeatability in healthy populations. To determine the OFM's reliability for detecting foot deformity, it is important to know repeatability in pathological conditions. The aim of the study was to assess the repeatability of the OFM in children with foot deformity. Intra-tester repeatability was assessed for 45 children (15 typically developing, 15 hemiplegic, 15 clubfoot). Inter-tester repeatability was assessed in the clubfoot population. The mean absolute differences between testers (clubfoot) and sessions (clubfoot and hemiplegic) were calculated for each of 15 clinically relevant, kinematic variables and compared to typically developing children. Children with clubfoot showed a mean difference between visits of 2.9° and a mean difference between raters of 3.6° Mean absolute differences were within one degree for the intra and inter-rater reliability in 12/15 variables. Hindfoot rotation, forefoot/tibia abduction and forefoot supination were the most variable between testers. Overall the clubfoot data were less variable than the typically developing population. Children with hemiplegia demonstrated slightly higher differences between sessions (mean 4.1°), with the most reliable data in the sagittal plane, and largest differences in the transverse plane. The OFM was designed to measure different types of foot deformity. The results of this study show that it provides repeatable results in children with foot deformity. To be distinguished from measurement artifact, changes in foot kinematics as a result of intervention or natural progression over time must be greater than the repeatability reported here. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Initial foot contact and related kinematics affect impact loading rate in running.

    Science.gov (United States)

    Breine, Bastiaan; Malcolm, Philippe; Van Caekenberghe, Ine; Fiers, Pieter; Frederick, Edward C; De Clercq, Dirk

    2017-08-01

    This study assessed kinematic differences between different foot strike patterns and their relationship with peak vertical instantaneous loading rate (VILR) of the ground reaction force (GRF). Fifty-two runners ran at 3.2 m · s -1 while we recorded GRF and lower limb kinematics and determined foot strike pattern: Typical or Atypical rearfoot strike (RFS), midfoot strike (MFS) of forefoot strike (FFS). Typical RFS had longer contact times and a lower leg stiffness than Atypical RFS and MFS. Typical RFS showed a dorsiflexed ankle (7.2 ± 3.5°) and positive foot angle (20.4 ± 4.8°) at initial contact while MFS showed a plantar flexed ankle (-10.4 ± 6.3°) and more horizontal foot (1.6 ± 3.1°). Atypical RFS showed a plantar flexed ankle (-3.1 ± 4.4°) and a small foot angle (7.0 ± 5.1°) at initial contact and had the highest VILR. For the RFS (Typical and Atypical RFS), foot angle at initial contact showed the highest correlation with VILR (r = -0.68). The observed higher VILR in Atypical RFS could be related to both ankle and foot kinematics and global running style that indicate a limited use of known kinematic impact absorbing "strategies" such as initial ankle dorsiflexion in MFS or initial ankle plantar flexion in Typical RFS.

  19. Angle measurement with laser feedback instrument.

    Science.gov (United States)

    Chen, Wenxue; Zhang, Shulian; Long, Xingwu

    2013-04-08

    An instrument for angle measurement based on laser feedback has been designed. The measurement technique is based on the principle that when a wave plate placed into a feedback cavity rotates, its phase retardation varies. Phase retardation is a function of the rotating angle of the wave plate. Hence, the angle can be converted to phase retardation. The phase retardation is measured at certain characteristic points identified in the laser outputting curve that are then modulated by laser feedback. The angle of a rotating object can be measured if it is connected to the wave plate. The main advantages of this instrument are: high resolution, compact, flexible, low cost, effective power, and fast response.

  20. Effective radiation dose and eye lens dose in dental cone beam CT: effect of field of view and angle of rotation.

    Science.gov (United States)

    Pauwels, R; Zhang, G; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Bogaerts, R; Horner, K

    2014-10-01

    To quantify the effect of field of view (FOV) and angle of rotation on radiation dose in dental cone beam CT (CBCT) and to define a preliminary volume-dose model. Organ and effective doses were estimated using 148 thermoluminescent dosemeters placed in an anthropomorphic phantom. Dose measurements were undertaken on a 3D Accuitomo 170 dental CBCT unit (J. Morita, Kyoto, Japan) using six FOVs as well as full-rotation (360°) and half-rotation (180°) protocols. For the 360° rotation protocols, effective dose ranged between 54 µSv (4 × 4 cm, upper canine) and 303 µSv (17 × 12 cm, maxillofacial). An empirical relationship between FOV dimension and effective dose was derived. The use of a 180° rotation resulted in an average dose reduction of 45% compared with a 360° rotation. Eye lens doses ranged between 95 and 6861 µGy. Significant dose reduction can be achieved by reducing the FOV size, particularly the FOV height, of CBCT examinations to the actual region of interest. In some cases, a 180° rotation can be preferred, as it has the added value of reducing the scan time. Eye lens doses should be reduced by decreasing the height of the FOV rather than using inferior FOV positioning, as the latter would increase the effective dose considerably. The effect of the FOV and rotation angle on the effective dose in dental CBCT was quantified. The dominant effect of FOV height was demonstrated. A preliminary model has been proposed, which could be used to predict effective dose as a function of FOV size and position.

  1. Foot and Ankle Deformity in Young Acrobatic and Artistic Gymnasts

    Directory of Open Access Journals (Sweden)

    Sobera Anna

    2015-09-01

    Full Text Available Purpose. The aim of the paper was to determine the occurrence of feet and ankle deformities in trampoline and artistic gymnasts. Methods. Ten acrobatic gymnasts (trampolinists and 10 artistic gymnasts aged 6-14 years were recruited. The calcaneal-tibial (rearfoot angle was determined as the angle of the upper calcaneal tendon and the longitudinal heel axis while Clarke angles were determined by podoscopy. Results. The trampolinists showed significantly greater medial angulation (calcaneal valgus than the group of gymnasts. Right and left foot Clark’s angles in both the trampoline and artistic gymnasts were above 55°. Conclusions. Trampolinists exhibit significantly more pronounced calcaneal valgus than artistic gymnasts. The prevalence of foot and ankle deformities in both populations should be addressed by coaches in the gymnastics training of young children.

  2. Forefoot angle at initial contact determines the amplitude of forefoot and rearfoot eversion during running.

    Science.gov (United States)

    Monaghan, Gail M; Hsu, Wen-Hao; Lewis, Cara L; Saltzman, Elliot; Hamill, Joseph; Holt, Kenneth G

    2014-09-01

    Clinically, foot structures are assessed intrinsically - relation of forefoot to rearfoot and rearfoot to leg. We have argued that, from a biomechanical perspective, the interaction of the foot with the ground may influence forces and torques that are propagated through the lower extremity. We proposed that a more appropriate measure is an extrinsic one that may predict the angle the foot makes with ground at contact. The purposes of this study were to determine if the proposed measure predicts contact angles of the forefoot and rearfoot and assess if the magnitude of those angles influences amplitude and duration of foot eversion during running. With the individual in prone, extrinsic clinical forefoot and rearfoot angles were measured relative to the caudal edge of the examination table. Participants ran over ground while frontal plane forefoot and rearfoot contact angles, forefoot and rearfoot eversion amplitude and duration were measured. Participants were grouped twice, once based on forefoot contact inversion angle (moderatemedian) and once based on rearfoot contact inversion angle (moderatemedian). The forefoot and rearfoot extrinsic clinical angles predicted, respectively, the forefoot and rearfoot angles at ground contact. Large forefoot contact angles were associated with greater amplitudes (but not durations) of forefoot and rearfoot eversion during stance. Rearfoot contact angles, however, were associated with neither amplitudes nor durations of forefoot and rearfoot eversion. Possible mechanisms for the increased risk of running injuries associated with large forefoot angles are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Foot Morphological Difference between Habitually Shod and Unshod Runners.

    Directory of Open Access Journals (Sweden)

    Yang Shu

    Full Text Available Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23±2.4 years, 66±7.1 kg & 1.68±0.13 m and 78 females whose age, weight & height were 22±1.8 years, 55±4.7 kg & 1.6±0.11 m (Indians and 196 shod runners (130 males whose age, weight & height were 24±2.6 years, 66±8.2 kg & 1.72±0.18 m and 66 females whose age, weight & height were 23±1.5 years, 54±5.6 kg & 1.62±0.15 m (Chinese participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians for foot length (female p = 0.001, width (female p = 0.001, hallux angle (male and female p = 0.001 and the minimal distance (male and female p = 0.001 from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes.

  4. A computational procedure to define the incidence angle on airfoils rotating around an axis orthogonal to flow direction

    International Nuclear Information System (INIS)

    Bianchini, Alessandro; Balduzzi, Francesco; Ferrara, Giovanni; Ferrari, Lorenzo

    2016-01-01

    Highlights: • New method to calculate the incidence angle from a computed CFD flow field. • Applicable to each airfoil rotating around an axis orthogonal to flow direction. • Composed by four, easily automatable steps explained in details. • Robustness of the model assessed on two Darrieus turbine study cases. - Abstract: Numerical simulations provided in the last few years a significant contribution for a better understanding of many phenomena connected to the flow past rotating blades. In case of airfoils rotating around an axis orthogonal to flow direction, one of the most critical issues is represented by the definition of the incidence angle on the airfoil from the computed flow field. Incidence indeed changes continuously as a function of the azimuthal position of the blade and a distribution of peripheral speed is experienced along the airfoil’s thickness due to radius variation. The possibility of reducing the flow to lumped parameters (relative speed modulus and direction), however, would be of capital relevance to transpose accurate CFD numerical results into effective inputs to low-order models that are often exploited for preliminary design analyses. If several techniques are available for this scope in the case of blades rotating around an axis parallel to flow direction (e.g., horizontal-axis wind turbines), the definition of a robust procedure in case the revolution axis is orthogonal to the flow is still missing. In the study, a novel technique has been developed using data from Darrieus-like rotating airfoils. The method makes use of the virtual camber theory to define a virtual airfoil whose pressure coefficient distributions in straight flow are used to match those of the real airfoil in curved flow. Even if developed originally for vertical-axis wind turbines, the method is of general validity and is thought to represent in the near future a valuable tool for researchers to get a new insight on many complex phenomena connected to flow

  5. The impact of changing solar screen rotation angle and its opening aspect ratios on Daylight Availability in residential desert buildings

    KAUST Repository

    Sherif, Ahmed H.; Sabry, Hanan M.; Gadelhak, Mahmoud I.

    2012-01-01

    usually used to diffuse and prevent direct solar penetration into spaces. This paper investigates the impact of changing solar screen axial rotation angle and screen opening aspect ratio on daylighting performance in a typical residential living room space

  6. THE EFFECT OF STEP RATE MANIPULATION ON FOOT STRIKE PATTERN OF LONG DISTANCE RUNNERS.

    Science.gov (United States)

    Allen, Darrell J; Heisler, Hollie; Mooney, Jennifer; Kring, Richard

    2016-02-01

    Running gait retraining to change foot strike pattern in runners from a heel strike pattern to a non heel- strike pattern has been shown to reduce impact forces and may help to reduce running related injuries. Step rate manipulation above preferred is known to help decrease step length, foot inclination angle, and vertical mass excursion, but has not yet been evaluated as a method to change foot strike pattern. The purpose of this study was to investigate the effect of step rate manipulation on foot strike pattern in shod recreational runners who run with a heel strike pattern. A secondary purpose was to describe the effect of step rate manipulation at specific percentages above preferred on foot inclination angle at initial contact. Forty volunteer runners, who were self-reported heel strikers and had a weekly running mileage of at least 10 miles, were recruited. Runners were confirmed to be heel strikers during the warm up period on the treadmill. The subject's step rate was determined at their preferred running pace. A metronome was used to increase step rate above the preferred step rate by 5%, 10% and 15%. 2D video motion analysis was utilized to determine foot strike pattern and to measure foot inclination angle at initial contact for each step rate condition. There was a statistically significant change in foot strike pattern from a heel strike pattern to a mid-foot or forefoot strike pattern at both 10% and 15% step rates above preferred. Seven of the 40 subjects (17.5%) changed from a heel- strike pattern to a non- heel strike pattern at +10% and 12 of the 40 subjects (30%) changed to a non-heel strike pattern at +15%. Mean foot inclination angle at initial contact showed a statistically significant change (reduction) as step rate increased. Step rate manipulation of 10% or greater may be enough to change foot strike pattern from a heel strike to a mid-foot or forefoot strike pattern in a small percentage of recreational runners who run in traditional

  7. Gender differences of foot characteristics in older Japanese adults using a 3D foot scanner.

    Science.gov (United States)

    Saghazadeh, Mahshid; Kitano, Naruki; Okura, Tomohiro

    2015-01-01

    Knowledge of gender differences in foot shape assists shoe manufactures with designing appropriate shoes for men and women. Although gender differences in foot shapes are relatively known among young men and women, less is known about how the older men and women's feet differ in shape. A recent development in foot shape assessment is the use of 3D foot scanners. To our knowledge this technology has yet to be used to examine gender differences in foot shape of Japanese older adults. This cross-sectional study included 151 older men (74.5 ± 5.6 years) and 140 older women (73.9 ± 5.1 years) recruited in Kasama City, Japan. Foot variables were measured in sitting and standing positions using Dream GP Incorporated's 3D foot scanner, Footstep PRO (Osaka, Japan). Scores were analyzed as both raw and normalized to truncated foot length using independent samples t-test and analysis of covariance, respectively. In men, the measurement values for navicular height, first and fifth toe and instep heights, ball and heel width, ball girth, arch height index (just standing), arch rigidity index and instep girth were significantly greater than the women's, whereas the first toe angle, in both sitting and standing positions was significantly smaller. However, after normalizing, the differences in ball width, heel width, height of first and fifth toes in both sitting and standing and ball girth in sitting position were nonsignificant. According to Cohen's d, among all the foot variables, the following had large effect sizes in both sitting and standing positions: truncated foot length, instep, navicular height, foot length, ball girth, ball width, heel width and instep girth. This study provides evidence of anthropometric foot variations between older men and women. These differences need to be considered when manufacturing shoes for older adults.

  8. Investigating the Influence of Prefabricated Insole with Medial Flange on Forefoot and Rearfoot Alignment Changes at Females with Flexible Flat Foot

    Directory of Open Access Journals (Sweden)

    Fatemeh Dehghani

    2015-01-01

    Full Text Available Objective: Flexible flat foot is one the most common extremities diseases happen among adults, this causes change in foot, tibia, and higher joints alignment, pain and certain complications in upper joints and soft tissues. This study aimed to investigate differences in foot direction among patients with flexible flat feet as so called foot static response to a certain prefabricated insole. Materials & Methods: It was a quasi-experimental study and patients were consisted of 32 female with flat feet in range of 18 to 28 years old and to measure differences a laser device was used. The rear foot angle amount which is calculated by investigating the heel valgus angle and the forefoot angle amount which is calculated by investigating leg angle and forefoot, both assessed at barefoot condition and with medial flange insole mode. Results: Results showed that by using the insole there is a significant decrease in direction of anterior line angle (P<0.001. At mean, by using medial flange insole 3.5 degrees decrease at forefoot angle and 2.5 degrees decrease at heel angle was observed (P<0.001. Conclusion: This study showed that the prefabricated insole with high internal septum could normalize the direction of foot. Namely, it corrected the heel angle and leg deviations. Moreover, the NAS line despite of specifying the leg changes, it represents the influence of orthoses on this section.

  9. Intra-rater repeatability of the Oxford foot model in healthy children in different stages of the foot roll over process during gait

    DEFF Research Database (Denmark)

    Curtis, D J; Bencke, J; Stebbins, J A

    2009-01-01

    BACKGROUND: The repeatability of the Oxford foot model has been reported, but possible variations in the repeatability during the foot roll over process have not been examined. The aim of this study was to determine the relative and absolute repeatability of the model for each stage of the foot...... roll over process during gait and to compare foot kinematic data from this study with that from another centre as a preliminary examination of the model's inter-centre repeatability and validity. METHOD: Eight healthy children were tested twice at the gait laboratory. Foot kinematics from this study...... were plotted against those from an earlier repeatability study and repeatability statistics calculated for the three rockers of stance phase and swing phase. RESULTS: Foot kinematics from this study and an earlier repeatability study produced similar kinematic patterns and joint angle ranges...

  10. A finite element model of the foot and ankle for automotive impact applications.

    Science.gov (United States)

    Shin, Jaeho; Yue, Neng; Untaroiu, Costin D

    2012-12-01

    A finite element (FE) model of the foot and leg was developed to improve understanding of injury mechanisms of the ankle and subtalar joints during vehicle collisions and to aid in the design of injury countermeasures. The FE model was developed based on the reconstructed geometry of a male volunteer close to the anthropometry of a 50th percentile male and a commercial anatomical database. While the forefoot bones were defined as rigid bodies connected by ligament models, the surrounding bones of the ankle and subtalar joints and the leg bones were modeled as deformable structures. The material and structural properties were selected based on a synthesis of current knowledge of the constitutive models for each tissue. The whole foot and leg model was validated in different loading conditions including forefoot impact, axial rotation, dorsiflexion, and combined loadings. Overall results obtained in the model validation indicated improved biofidelity relative to previous FE models. The developed model was used to investigate the injury tolerance of the ankle joint under brake pedal loading for internally and externally rotated feet. Ligament failures were predicted as the main source of injury in this loading condition. A 12% variation of failure moment was observed in the range of axial foot rotations (±15°). The most vulnerable position was the internally rotated (15°) posture among three different foot positions. Furthermore, the present foot and ankle model will be coupled together with other body region FE models into the state-of-art human FE model to be used in the field of automotive safety.

  11. Determination of the structural phase and octahedral rotation angle in halide perovskites

    Science.gov (United States)

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich

    2018-02-01

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.

  12. Correlation between hindfoot joint three-dimensional kinematics and the changes of the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot.

    Science.gov (United States)

    Zhang, Yi-Jun; Xu, Jian; Wang, Yue; Lin, Xiang-Jin; Ma, Xin

    2015-02-01

    The aim of this study was to explore the correlation between the kinematics of the hindfoot joint and the medial arch angle change in stage II posterior tibial tendon dysfunction flatfoot three-dimensionally under loading. Computed tomography (CT) scans of 12 healthy feet and 12 feet with stage II posterior tibial tendon dysfunction flatfoot were taken both in non- and full-body-weight-bearing condition. The CT images of the hindfoot bones were reconstructed into three-dimensional models with Mimics and Geomagic reverse engineering software. The three-dimensional changes of the hindfoot joint were calculated to determine their correlation to the medial longitudinal arch angle. The medial arch angle change was larger in stage II posterior tibial tendon dysfunction flatfoot compared to that in healthy foot under loading. The rotation and translation of the talocalcaneal joint, the talonavicular joint and the calcanocuboid joint had little influence on the change of the medial arch angle in healthy foot. However, the eversion of the talocalcaneal joint, the proximal translation of the calcaneus relative to the talus and the dorsiflexion of talonavicular joint could increase the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot under loading. Joint instability occurred in patients with stage II posterior tibial tendon dysfunction flatfoot under loading. Limitation of over movement of the talocalcaneal joint and the talonavicular joint may help correct the medial longitudinal arch in stage II posterior tibial tendon dysfunction flatfoot. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Simultaneous Detection of Displacement, Rotation Angle, and Contact Pressure Using Sandpaper Molded Elastomer Based Triple Electrode Sensor.

    Science.gov (United States)

    Choi, Eunsuk; Sul, Onejae; Lee, Seung-Beck

    2017-09-06

    In this article, we report on a flexible sensor based on a sandpaper molded elastomer that simultaneously detects planar displacement, rotation angle, and vertical contact pressure. When displacement, rotation, and contact pressure are applied, the contact area between the translating top elastomer electrode and the stationary three bottom electrodes change characteristically depending on the movement, making it possible to distinguish between them. The sandpaper molded undulating surface of the elastomer reduces friction at the contact allowing the sensor not to affect the movement during measurement. The sensor showed a 0.25 mm −1 displacement sensitivity with a ±33 μm accuracy, a 0.027 degree −1 of rotation sensitivity with ~0.95 degree accuracy, and a 4.96 kP −1 of pressure sensitivity. For possible application to joint movement detection, we demonstrated that our sensor effectively detected the up-and-down motion of a human forefinger and the bending and straightening motion of a human arm.

  14. 49 CFR 571.208a - Optional test procedures for vehicles manufactured between January 27, 2004 and August 31, 2004.

    Science.gov (United States)

    2010-10-01

    ... with the vehicles brake or clutch pedal, rotate the test dummy's left foot about the leg. If there is... pedal in that position. S16.3.2.2.2 If the ball of the foot does not contact the pedal, change the angle... the vehicle's brake or clutch pedal, rotate the test dummy's left foot about the lower leg. If there...

  15. Photoelectron spectra of N2+: Rotational line profiles studied with HeI-excited angle-resolved spectroscopy and with synchrotron radiation

    International Nuclear Information System (INIS)

    Ohrwall, G.; Baltzer, P.; Bozek, J.

    2004-01-01

    We have recorded angle-resolved He I photoelectron spectra of the three outer most valence states in N+2, with high enough resolution to observe rotational line profiles. For the two Sigma states, the X 2 Sigma +g and the B 2 Sigma +u, we found that the rotational branches corresponding to different changes in rotational quantum number can differ dramatically in beta value. The well-known difference in beta value for the nu=0 and nu =1 vibrations of the X 2 Sigma +g state was found to be due to different rotational branching ratios and also different beta values of the rotational branches. For the nu=0-2 vibrations of the A 2 Pi u state, the beta value difference between rotational branches is much less pronounced than in the X and B states. We have also recorded synchrotron-radiation-excited photoelectron spectra of the nu=0 vibrational peaks of the X 2 Sigma +g and B 2 Sigma +u states where rotational line profiles are resolved. The intensities of the rotational branches were studied as function of photon energy, the X state between 23 and 65 eV, and We have recorded angle-resolved He I photoelectron spectra of the three outermost valence states in N+2, with high enough resolution to observe rotational line profiles. For the two Sigma states, the X 2 Sigma +g and the B 2 Sigma +u, we found that the rotational branches corresponding to different changes in rotational quantum number can differ dramatically in beta value. The well-known difference in beta value for the nu=0 and nu=1 vibrations of the X 2 Sigma +g state was found to be due to different rotational branching ratios and also different beta values of the rotational branches. For the nu=0-2 vibrations of the A 2 Pi u state, the beta value difference between rotational branches is much less pronounced than in the X and B states. We have also recorded synchrotron-radiation-excited photoelectron spectra of the nu=0 vibrational peaks of the X 2 Sigma +g and B 2 Sigma +u states where rotational line profiles a

  16. Increased foot-stretcher height improves rowing performance: evidence from biomechanical perspectives on water.

    Science.gov (United States)

    Liu, Yang; Gao, Binghong; Li, Jiru; Ma, Zuchang; Sun, Yining

    2018-06-07

    The aim of this study was to investigate whether changes on foot-stretcher height were associated with characteristics of better rowing performance. Ten male rowers performed a 200 m rowing trial at their racing rate at each of three foot-stretcher heights. A single scull was equipped with an accelerometer to collect boat acceleration, an impeller with embedded magnets to collect boat speed, specially designed gate sensors to collect gate force and angle, and a compact string potentiometer to collect leg drive length. All sensor signals were sampled at 50 Hz. A one-way repeated measures ANOVA showed that raising foot-stretcher position had a significant reduction on total gate angle and leg drive length. However, a raised foot-stretcher position had a deeper negative peak of boat acceleration at the catch, a lower boat fluctuation, a faster leg drive speed, a larger gate force for the port and starboard side separately. This could be attributed to the optimisation of the magnitude and direction of the foot force with a raised foot-stretcher position. Although there was a significant negative influence of a raised foot-stretcher position on two kinematic variables, biomechanical evidence suggested that a raised foot-stretcher position could contribute to the improvement of rowing performance.

  17. Sex differences in mental rotation and line angle judgments are positively associated with gender equality and economic development across 53 nations.

    Science.gov (United States)

    Lippa, Richard A; Collaer, Marcia L; Peters, Michael

    2010-08-01

    Mental rotation and line angle judgment performance were assessed in more than 90,000 women and 111,000 men from 53 nations. In all nations, men's mean performance exceeded women's on these two visuospatial tasks. Gender equality (as assessed by United Nations indices) and economic development (as assessed by per capita income and life expectancy) were significantly associated, across nations, with larger sex differences, contrary to the predictions of social role theory. For both men and women, across nations, gender equality and economic development were significantly associated with better performance on the two visuospatial tasks. However, these associations were stronger for the mental rotation task than for the line angle judgment task, and they were stronger for men than for women. Results were discussed in terms of evolutionary, social role, and stereotype threat theories of sex differences.

  18. [Anlysis of foot biomechanics characteristic in 303 patients with type 2 diabetes mellitus].

    Science.gov (United States)

    Li, Wen-Xia; Cao, Ying; Zou, Meng-Chen; Huang, Ying; Hu, Ping; Luo, Xiang-Rong; Jiang, Ya; Xue, Yao-Ming; Gao, Fang

    2016-10-20

    To investigate foot biomechanics characteristic of patients with type 2 diabetes mellitus. This study was conducted among 303 patients with type 2 diabetes. The whole foot was divided into 10 regions, namely the first toe (T1); the second to fifth toes (T2-5); the first, second, third, fourth, and fifth metatarsals (M1, M2, M3, M4, and M5, respectively); midfoot (MF), and the heel medial (HM). Foot arch index, foot angle and maximum peak pressure (MPP) of the 10 regions were measured using a Footscan gait system. The maximum peak pressure of 10 regions decreased in the order of M3>M2>HM>M4>HL>M1>M5>T1>ML>T2-5 for the left foot, and in the order of M3>M2>HM>M4>HL>M1>M5>T1>ML>T2-5 for the right foot. The MPP in M1 region was higher in the right than in the left foot (Ppatients. Foot flat phase was extended and forefoot push-off phase shortened in stance phase in the patients. Compared with the right foot, the left foot showed a significantly increased foot arch index and increased low and high arch rates with a decreased normal arch rate. Total plantar pressure was higher in of the left high arch foot than in normal arch foot. The foot angle was significantly larger on the right than on the left. The bilateral total plantar pressures were significantly greater in male patients (Ppatients have obvious alterations in foot biomechanics with abnormalities of the plantar pressure, and the percentage of high-risk foot increases in overweight and obese patients, suggesting the need of body weight control in these patients when administering offloading treatment for prevention of diabetic foot ulcer.

  19. Bundle Block Adjustment of Airborne Three-Line Array Imagery Based on Rotation Angles

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang

    2014-05-01

    Full Text Available In the midst of the rapid developments in electronic instruments and remote sensing technologies, airborne three-line array sensors and their applications are being widely promoted and plentiful research related to data processing and high precision geo-referencing technologies is under way. The exterior orientation parameters (EOPs, which are measured by the integrated positioning and orientation system (POS of airborne three-line sensors, however, have inevitable systematic errors, so the level of precision of direct geo-referencing is not sufficiently accurate for surveying and mapping applications. Consequently, a few ground control points are necessary to refine the exterior orientation parameters, and this paper will discuss bundle block adjustment models based on the systematic error compensation and the orientation image, considering the principle of an image sensor and the characteristics of the integrated POS. Unlike the models available in the literature, which mainly use a quaternion to represent the rotation matrix of exterior orientation, three rotation angles are directly used in order to effectively model and eliminate the systematic errors of the POS observations. Very good experimental results have been achieved with several real datasets that verify the correctness and effectiveness of the proposed adjustment models.

  20. Critical shoulder angle in an East Asian population: correlation to the incidence of rotator cuff tear and glenohumeral osteoarthritis.

    Science.gov (United States)

    Shinagawa, Kiyotsugu; Hatta, Taku; Yamamoto, Nobuyuki; Kawakami, Jun; Shiota, Yuki; Mineta, Mitsuyoshi; Itoi, Eiji

    2018-05-03

    Focus has recently been on the critical shoulder angle (CSA) as a factor related to rotator cuff tear and osteoarthritis (OA) in the European population. However, whether this relationship is observed in the Asian population is unclear. The correlation between the CSAs measured on anteroposterior radiographs and the presence or absence of rotator cuff tears or OA changes was assessed in 295 patients. Rotator cuff tears were diagnosed with magnetic resonance imaging or ultrasonography. OA findings were classified using the Samilson-Prieto classification. The CSAs among the patients with rotator cuff tears, OA changes, and those without pathologies were compared. Multivariable analyses were used to clarify the potential risks for these pathologies. The mean CSA with rotator cuff tear (33.9° ± 4.1°) was significantly greater than that without a rotator cuff tear (32.3° ± 4.5°; P = .002). Multivariable analysis also showed that a greater CSA had a significantly increased risk of rotator cuff tears, with the odds ratio of 1.08 per degree. OA findings showed no significant correlation to the CSAs. Our study demonstrates that the CSA is greater in those with a rotator cuff tear than in those without a tear or OA changes, which may be an independent risk factor for the incidence of rotator cuff tears in the Japanese population. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Fabricius, Maximilian H.; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Williams, Michael J.; Noyola, Eva; Opitsch, Michael

    2014-01-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements

  2. Interaction effects of stride angle and strike pattern on running economy.

    Science.gov (United States)

    Santos-Concejero, J; Tam, N; Granados, C; Irazusta, J; Bidaurrazaga-Letona, I; Zabala-Lili, J; Gil, S M

    2014-12-01

    This study aimed to investigate the relationship between stride angle and running economy (RE) in athletes with different foot strike patterns. 30 male runners completed 4 min running stages on a treadmill at different velocities. During the test, biomechanical variables such as stride angle, swing time, contact time, stride length and frequency were recorded using an optical measurement system. Their foot strike pattern was determined, and VO2 at velocities below the lactate threshold were measured to calculate RE. Midfoot/forefoot strikers had better RE than rearfoot strikers (201.5±5.6 ml · kg(-1) · km(-1) vs. 213.5±4.2 ml · kg(-1) · km(-1)respectively; p=0.019). Additionally, midfoot/fore-foot strikers presented higher stride angles than rearfoot strikers (p=0.043). Linear modelling analysis showed that stride angle is closely related to RE (r=0.62, pstrike pattern is likely to be more economical, whereas at any lower degree, the midfoot/forefoot strike pattern appears to be more desirable. A biomechanical running technique characterised by high stride angles and a midfoot/forefoot strike pattern is advantageous for a better RE. Athletes may find stride angle useful for improving RE. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Changes in foot and shank coupling due to alterations in foot strike pattern during running.

    Science.gov (United States)

    Pohl, Michael B; Buckley, John G

    2008-03-01

    Determining if and how the kinematic relationship between adjacent body segments changes when an individual's gait pattern is experimentally manipulated can yield insight into the robustness of the kinematic coupling across the associated joint(s). The aim of this study was to assess the effects on the kinematic coupling between the forefoot, rearfoot and shank during ground contact of running with alteration in foot strike pattern. Twelve subjects ran over-ground using three different foot strike patterns (heel strike, forefoot strike, toe running). Kinematic data were collected of the forefoot, rearfoot and shank, which were modelled as rigid segments. Coupling at the ankle-complex and midfoot joints was assessed using cross-correlation and vector coding techniques. In general good coupling was found between rearfoot frontal plane motion and transverse plane shank rotation regardless of foot strike pattern. Forefoot motion was also strongly coupled with rearfoot frontal plane motion. Subtle differences were noted in the amount of rearfoot eversion transferred into shank internal rotation in the first 10-15% of stance during heel strike running compared to forefoot and toe running, and this was accompanied by small alterations in forefoot kinematics. These findings indicate that during ground contact in running there is strong coupling between the rearfoot and shank via the action of the joints in the ankle-complex. In addition, there was good coupling of both sagittal and transverse plane forefoot with rearfoot frontal plane motion via the action of the midfoot joints.

  4. A protocol for classifying normal- and flat-arched foot posture for research studies using clinical and radiographic measurements

    Directory of Open Access Journals (Sweden)

    Menz Hylton B

    2009-07-01

    Full Text Available Abstract Background There are several clinical and radiological methods available to classify foot posture in research, however there is no clear strategy for selecting the most appropriate measurements. Therefore, the aim of this study was to develop a foot screening protocol to distinguish between participants with normal- and flat-arched feet who would then subsequently be recruited into a series of laboratory-based gait studies. Methods The foot posture of ninety-one asymptomatic young adults was assessed using two clinical measurements (normalised navicular height and arch index and four radiological measurements taken from antero-posterior and lateral x-rays (talus-second metatarsal angle, talo-navicular coverage angle, calcaneal inclination angle and calcaneal-first metatarsal angle. Normative foot posture values were taken from the literature and used to recruit participants with normal-arched feet. Data from these participants were subsequently used to define the boundary between normal- and flat-arched feet. This information was then used to recruit participants with flat-arched feet. The relationship between the clinical and radiographic measures of foot posture was also explored. Results Thirty-two participants were recruited to the normal-arched study, 31 qualified for the flat-arched study and 28 participants were classified as having neither normal- or flat-arched feet and were not suitable for either study. The values obtained from the two clinical and four radiological measurements established two clearly defined foot posture groups. Correlations among clinical and radiological measures were significant (p r = 0.24 to 0.70. Interestingly, the clinical measures were more strongly associated with the radiographic angles obtained from the lateral view. Conclusion This foot screening protocol provides a coherent strategy for researchers planning to recruit participants with normal- and flat-arched feet. However, further research is

  5. Variable angle asymmetric cut monochromator

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    A variable incident angle, asymmetric cut, double crystal monochromator was tested for use on beamlines at the Advanced Photon Source (APS). For both undulator and wiggler beams the monochromator can expand area of footprint of beam on surface of the crystals to 50 times the area of incident beam; this will reduce the slope errors by a factor of 2500. The asymmetric cut allows one to increase the acceptance angle for incident radiation and obtain a better match to the opening angle of the incident beam. This can increase intensity of the diffracted beam by a factor of 2 to 5 and can make the beam more monochromatic, as well. The monochromator consists of two matched, asymmetric cut (18 degrees), silicon crystals mounted so that they can be rotated about three independent axes. Rotation around the first axis controls the Bragg angle. The second rotation axis is perpendicular to the diffraction planes and controls the increase of the area of the footprint of the beam on the crystal surface. Rotation around the third axis controls the angle between the surface of the crystal and the wider, horizontal axis for the beam and can make the footprint a rectangle with a minimum. length for this area. The asymmetric cut is 18 degrees for the matched pair of crystals, which allows one to expand the footprint area by a factor of 50 for Bragg angles up to 19.15 degrees (6 keV for Si[111] planes). This monochromator, with proper cooling, will be useful for analyzing the high intensity x-ray beams produced by both undulators and wigglers at the APS

  6. VMAT optimization with dynamic collimator rotation.

    Science.gov (United States)

    Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke

    2018-04-16

    Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc

  7. Q-angle in patellofemoral pain: relationship with dynamic knee valgus, hip abductor torque, pain and function

    Directory of Open Access Journals (Sweden)

    Gabriel Peixoto Leão Almeida

    2016-04-01

    Full Text Available OBJECTIVE: To investigate the relationship between the q-angle and anterior knee pain severity, functional capacity, dynamic knee valgus and hip abductor torque in women with patellofemoral pain syndrome (PFPS. METHODS: This study included 22 women with PFPS. The q-angle was assessed using goniometry: the participants were positioned in dorsal decubitus with the knee and hip extended, and the hip and foot in neutral rotation. Anterior knee pain severity was assessed using a visual analog scale, and functional capacity was assessed using the anterior knee pain scale. Dynamic valgus was evaluated using the frontal plane projection angle (FPPA of the knee, which was recorded using a digital camera during step down, and hip abductor peak torque was recorded using a handheld dynamometer. RESULTS: The q-angle did not present any significant correlation with severity of knee pain (r = -0.29; p = 0.19, functional capacity (r = -0.08; p = 0.72, FPPA (r = -0.28; p = 0.19 or isometric peak torque of the abductor muscles (r = -0.21; p = 0.35. CONCLUSION: The q-angle did not present any relationship with pain intensity, functional capacity, FPPA, or hip abductor peak torque in the patients with PFPS.

  8. The effect of gender on foot anthropometrics in older people.

    Science.gov (United States)

    Paiva de Castro, Alessandra; Rebelatto, Jose Rubens; Aurichio, Thais Rabiatti

    2011-08-01

    Some questions remain regarding the anthropometric differences between the feet of young men and women, but the gap is much greater when dealing with older adults. No studies were found concerning these differences in an exclusively older adult population, which makes it difficult to manufacture shoes based on the specific anthropometric measurements of the older adult population and according to gender differences. To identify differences between the anthropometric foot variables of older men and women. Cross-sectional. 154 older women (69.0 ± 6.8 y) and 131 older men (69.0 ± 6.5 y). The foot evaluations comprised the variables of width, perimeter, height, length, 1st and 5th metatarsophalangeal angles, the Arch Index (AI), and the Foot Posture Index (FPI). A data analysis was performed using t test and a post hoc power analysis. Women showed significantly higher values for the width and perimeter of the toes, width of the metatarsal heads, and width of the heel and presented significantly lower values for the height of the dorsal foot after normalization of the data to foot length. The 1st and 5th metatarsophalangeal angles were smaller in the men. There were no differences between men and women with respect to AI and FPI. Overall, the current study shows evidence of differences between some of the anthropometric foot variables of older men and women that must be taken into account for the manufacture of shoes for older adults.

  9. The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.

    Science.gov (United States)

    Shepherd, Max K; Rouse, Elliott J

    2017-12-01

    Most commercially available prosthetic feet do not exhibit a biomimetic torque-angle relationship, and are unable to modulate their mechanics to assist with other mobility tasks, such as stairs and ramps. In this paper, we present a quasi-passive ankle-foot prosthesis with a customizable torque-angle curve and an ability to quickly modulate ankle stiffness between tasks. The customizable torque-angle curve is obtained with a cam-based transmission and a fiberglass leaf spring. To achieve variable stiffness, the leaf spring's support conditions can be actively modulated by a small motor, shifting the torque-angle curve to be more or less stiff. We introduce the design, characterize the available torque-angle curves, and present kinematics from a transtibial amputee subject performing level-ground walking, stair ascent/descent, and ramp ascent/descent. The subject exhibited a more normative range of motion on stairs and ramps at lower stiffness levels, and preferred different stiffness levels for each task. Paired with an appropriate intent recognition system, our novel ankle prosthesis could improve gait biomechanics during walking and many other mobility tasks.

  10. INFORMATIONAL MODEL OF MENTAL ROTATION OF FIGURES

    Directory of Open Access Journals (Sweden)

    V. A. Lyakhovetskiy

    2016-01-01

    Full Text Available Subject of Study.The subject of research is the information structure of objects internal representations and operations over them, used by man to solve the problem of mental rotation of figures. To analyze this informational structure we considered not only classical dependencies of the correct answers on the angle of rotation, but also the other dependencies obtained recently in cognitive psychology. Method.The language of technical computing Matlab R2010b was used for developing information model of the mental rotation of figures. Such model parameters as the number of bits in the internal representation, an error probability in a single bit, discrete rotation angle, comparison threshold, and the degree of difference during rotation can be changed. Main Results.The model reproduces qualitatively such psychological dependencies as the linear increase of time of correct answers and the number of errors on the angle of rotation for identical figures, "flat" dependence of the time of correct answers and the number of errors on the angle of rotation for mirror-like figures. The simulation results suggest that mental rotation is an iterative process of finding a match between the two figures, each step of which can lead to a significant distortion of the internal representation of the stored objects. Matching is carried out within the internal representations that have no high invariance to rotation angle. Practical Significance.The results may be useful for understanding the role of learning (including the learning with a teacher in the development of effective information representation and operations on them in artificial intelligence systems.

  11. Central Rotations of Milky Way Globular Clusters

    Science.gov (United States)

    Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.

  12. Relationship of frontal plane rotation of first metatarsal to proximal articular set angle and hallux alignment in patients undergoing tarsometatarsal arthrodesis for hallux abducto valgus: a case series and critical review of the literature.

    Science.gov (United States)

    Dayton, Paul; Feilmeier, Mindi; Kauwe, Merrell; Hirschi, Jordan

    2013-01-01

    Rotation of the first metatarsal, as a component of hallux abducto valgus, is rarely discussed and is not addressed as a component of most hallux valgus corrective procedures. We believe frontal plane rotation of the first metatarsal to be an integral component of hallux abducto valgus deformity (the "third plane of deformity") and believe de-rotation is necessary for complete deformity correction. We observed the change in angular measurements commonly used in the evaluation of hallux valgus deformity in patients who underwent a modified lapidus procedure. We measured the intermetatarsal angle, hallux abductus angle, proximal articular set angle, and tibial sesamoid position on weightbearing radiographs of 25 feet in 24 patients who had undergone tarsal metatarsal corrective arthrodesis and lateral capsular release. Specific attention was given to reduction of the frontal plane rotation of the first metatarsal during correction. Our results showed a change in the angular measurements observed by 4 investigators as follows. The mean change in the intermetatarsal angle was 10.1° (p hallux abductus angle was 17.8° (p valgus, or everted position of the first metatarsal, was noted as a component of the hallux abducto valgus deformity in our patient population and was corrected by varus rotation or inversion of the metatarsal. We also reviewed the current literature related to anatomic changes in the first ray in the patient with hallux valgus deformity and reviewed our hypothesis regarding the reduction in the proximal articular set angle, which we believe to be related to frontal plane rotation of the first metatarsal, resulting in a radiographic artifact. Copyright © 2013. Published by Elsevier Inc.

  13. THE EFFECTS OF APPROACH ANGLE ON PENALTY KICKING ACCURACY AND KICK KINEMATICS WITH RECREATIONAL SOCCER PLAYERS

    Directory of Open Access Journals (Sweden)

    Joanna Scurr

    2009-06-01

    Full Text Available Kicking accuracy is an important component of successful penalty kicks, which may be influenced by the approach angle. The purpose of this study was to examine the effects of approach angle on kicking accuracy and three-dimensional kinematics of penalty kicks. Seven male amateur recreational soccer players aged (mean ± s 26 ± 3 years, body mass 74.0 ± 6.8 kg, stature 1.74 ± 0.06 m, who were right foot dominant, kicked penalties at a 0.6 x 0.6 m target in a full size goal from their self-selected approach angle, 30º, 45º and 60º (direction of the kick was 0º. Kicking accuracy and three-dimensional kinematics were recorded. Results revealed that there was no significant difference in kicking accuracy (p = 0.27 or ball velocity (p = 0.59 between the approach angles. Pelvic rotation was significantly greater under the 45º and the 60º approach angles than during the self-selected approach angle (p < 0.05. Thigh abduction of the kicking leg at impact using the 60º approach angle was significantly greater than during the self- selected approach (p = 0.01 and the 30º approach (p = 0.04. It was concluded that altering an individual's self-selected approach angle at recreational level did not improve kicking accuracy or ball velocity, despite altering aspects of underlying technique.

  14. Effects of different foot progression angles and platform settings on postural stability and fall risk in healthy and medial knee osteoarthritic adults.

    Science.gov (United States)

    Khan, Saad Jawaid; Khan, Soobia Saad; Usman, Juliana; Mokhtar, Abdul Halim; Abu Osman, Noor Azuan

    2018-02-01

    This study aims to investigate the effects of varying toe angles at different platform settings on Overall Stability Index of postural stability and fall risk using Biodex Balance System in healthy participants and medial knee osteoarthritis patients. Biodex Balance System was employed to measure postural stability and fall risk at different foot progression angles (ranging from -20° to 40°, with 10° increments) on 20 healthy (control group) and 20 knee osteoarthritis patients (osteoarthritis group) randomly (age: 59.50 ± 7.33 years and 61.50 ± 8.63 years; body mass: 69.95 ± 9.86 kg and 70.45 ± 8.80 kg). Platform settings used were (1) static, (2) postural stability dynamic level 8 (PS8), (3) fall risk levels 12 to 8 (FR12) and (4) fall risk levels 8 to 2 (FR8). Data from the tests were analysed using three-way mixed repeated measures analysis of variance. The participant group, platform settings and toe angles all had a significant main effect on balance ( p ≤ 0.02). Platform settings had a significant interaction effect with participant group F(3, 144) = 6.97, p fall risk as compared to the healthy group. Changing platform settings has a more pronounced effect on balance in knee osteoarthritis group than in healthy participants. Changing toe angles produced similar effects in both the participant groups, with decreased stability and increased fall risk at extreme toe-in and toe-out angles.

  15. Laterality-Specific Training Improves Mental Rotation Performance in Young Soccer Players.

    Science.gov (United States)

    Pietsch, Stefanie; Jansen, Petra

    2018-01-01

    This study investigates the influence of specific soccer training with the non-dominant leg on mental rotation performance of 20 adolescent soccer players between 10 and 11 years of age. While the experimental group performed soccer specific tasks only with the non-dominant foot once a week for 10 weeks, the control group absolved the same exercises with the dominant foot for the same period of time. Both groups performed a mental rotation task and shot, dribbling and ball control tests before and after the 10 week intervention. The most relevant result was that the experimental group showed a significantly larger increase in mental rotation ability than the control group.

  16. A pelvic motion driven electrical stimulator for drop-foot treatment.

    Science.gov (United States)

    Chen, Shih-Wei; Chen, Shih-Ching; Chen, Chiun-Fan; Lai, Jin-Shin; Kuo, Te-Son

    2009-01-01

    Foot switches operating with force sensitive resistors placed in the shoe sole were considered as an effective way for driving FES assisted walking systems in gait restoration. However, the reliability and durability of the foot switches run down after a certain number of steps. As an alternative for foot switches, a simple, portable, and easy to handle motion driven electrical stimulator (ES) is provided for drop foot treatment. The device is equipped with a single tri-axis accelerometer worn on the pelvis, a commercial dual channel electrical stimulator, and a controller unit. By monitoring the pelvic rotation and acceleration during a walking cycle, the events including heel strike and toe off of each step is thereby predicted by a post-processing neural network model.

  17. Efficient foot motor control by Neymar’s brain

    Directory of Open Access Journals (Sweden)

    Eiichi eNaito

    2014-08-01

    Full Text Available How very long-term (over many years motor skill training shapes internal motor representation remains poorly understood. We provide valuable evidence that the football brain of Neymar da Silva Santos Júnior (the Brasilian footballer recruits very limited neural resources in the motor-cortical foot regions during foot movements. We scanned his brain activity with a 3-tesla functional magnetic resonance imaging (fMRI while he rotated his right ankle at 1Hz. We also scanned brain activity when three other age-controlled professional footballers, two top-athlete swimmers and one amateur footballer performed the identical task. A comparison was made between Neymar’s brain activity with that obtained from the others. We found activations in the left medial-wall foot motor regions during the foot movements consistently across all participants. However, the size and intensity of medial-wall activity was smaller in the four professional footballers than in the three other participants, despite no difference in amount of foot movement. Surprisingly, the reduced recruitment of medial-wall foot motor regions became apparent in Neymar. His medial-wall activity was smallest among all participants with absolutely no difference in amount of foot movement. Neymar may efficiently control given foot movements probably by largely conserving motor-cortical neural resources. We discuss this possibility in terms of over-years motor skill training effect, use-dependent plasticity, and efficient motor control.

  18. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation

    International Nuclear Information System (INIS)

    Ritschl, Ludwig; Fleischmann, Christof; Kuntz, Jan; Kachelrieß, Marc

    2016-01-01

    Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation

  19. The rotate-plus-shift C-arm trajectory. Part I. Complete data with less than 180° rotation

    Energy Technology Data Exchange (ETDEWEB)

    Ritschl, Ludwig; Fleischmann, Christof [Ziehm Imaging GmbH, Donaustraße 31, Nürnberg 90451 (Germany); Kuntz, Jan, E-mail: j.kuntz@dkfz.de; Kachelrieß, Marc [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany)

    2016-05-15

    Purpose: In the last decade, C-arm-based cone-beam CT became a widely used modality for intraoperative imaging. Typically a C-arm CT scan is performed using a circular or elliptical trajectory around a region of interest. Therefore, an angular range of at least 180° plus fan angle must be covered to ensure a completely sampled data set. However, mobile C-arms designed with a focus on classical 2D applications like fluoroscopy may be limited to a mechanical rotation range of less than 180° to improve handling and usability. The method proposed in this paper allows for the acquisition of a fully sampled data set with a system limited to a mechanical rotation range of at least 180° minus fan angle using a new trajectory design. This enables CT like 3D imaging with a wide range of C-arm devices which are mainly designed for 2D imaging. Methods: The proposed trajectory extends the mechanical rotation range of the C-arm system with two additional linear shifts. Due to the divergent character of the fan-beam geometry, these two shifts lead to an additional angular range of half of the fan angle. Combining one shift at the beginning of the scan followed by a rotation and a second shift, the resulting rotate-plus-shift trajectory enables the acquisition of a completely sampled data set using only 180° minus fan angle of rotation. The shifts can be performed using, e.g., the two orthogonal positioning axes of a fully motorized C-arm system. The trajectory was evaluated in phantom and cadaver examinations using two prototype C-arm systems. Results: The proposed trajectory leads to reconstructions without limited angle artifacts. Compared to the limited angle reconstructions of 180° minus fan angle, image quality increased dramatically. Details in the rotate-plus-shift reconstructions were clearly depicted, whereas they are dominated by artifacts in the limited angle scan. Conclusions: The method proposed here employs 3D imaging using C-arms with less than 180° rotation

  20. Swift and sure-footed on the Savanna: A study of Hadzabe gaits and feet in Northern Tanzania.

    Science.gov (United States)

    Musiba, Charles M; Tuttle, Russell H; Hallgrímsson, Benedikt; Webb, David M

    1997-01-01

    Data on footprints and gait of 54 Hadzabe, 6-70 years of age expand understanding of pedal morphology of unshod people and assist the development of ideas about the evolution of hominid bipedality and upright posture. Contrary to published data on gaits and pedal morphology of unshod populations, Hadzabe (also known as Hadza) from northern Tanzania exhibit values of stride length, relative stride length, and walking speeds that exceed those of rural and small-town populations. In all observable plantar features, including foot indices, an interdigital space between the hallux and second toe, fanning of the foot anteriorly, and foot angles (in-toeing and out-toeing), Hadzabe feet are comparable with those of never-shod Machiguengas in Perú. On average, Hadzabe hallucal gaps and ball widths are narrower than those of Machiguengas and other unshod short people. Hadzabe feet are also characterized by valgus halluces versus the varus halluces of never-shod Machiguengas and certain West Africans. Although characterized by a valgus toe, Hadzabe hallucal angles, which do not exceed 20°, are lower than those of Northern Hemispheric urbanites and shod rural populations of the Southern and Northern Hemispheres. Hadzabe also exhibit less medial and lateral rotation of the hip joint than Machiguengas do. The heel and the longitudinal arch impressions of the Hadzabe footprints closely resemble those of the Laetoli bipeds in the manner of weight distribution during locomotion. The striking similarity of footprint impressions, especially the heel and the longitudinal arch, between Hadzabe and Laetoli hominid footprints clearly imply that the pedal features of the Laetoli printmakers are remarkably humanoid. Am. J. Hum. Biol. 9:303-321, 1997. © 1997 Wiley-Liss, Inc. Copyright © 1997 Wiley-Liss, Inc.

  1. Asymmetric-cut variable-incident-angle monochromator.

    Science.gov (United States)

    Smither, R K; Graber, T J; Fernandez, P B; Mills, D M

    2012-03-01

    A novel asymmetric-cut variable-incident-angle monochromator was constructed and tested in 1997 at the Advanced Photon Source of Argonne National Laboratory. The monochromator was originally designed as a high heat load monochromator capable of handling 5-10 kW beams from a wiggler source. This was accomplished by spreading the x-ray beam out on the surface an asymmetric-cut crystal and by using liquid metal cooling of the first crystal. The monochromator turned out to be a highly versatile monochromator that could perform many different types of experiments. The monochromator consisted of two 18° asymmetrically cut Si crystals that could be rotated about 3 independent axes. The first stage (Φ) rotates the crystal around an axis perpendicular to the diffraction plane. This rotation changes the angle of the incident beam with the surface of the crystal without changing the Bragg angle. The second rotation (Ψ) is perpendicular to the first and is used to control the shape of the beam footprint on the crystal. The third rotation (Θ) controls the Bragg angle. Besides the high heat load application, the use of asymmetrically cut crystals allows one to increase or decrease the acceptance angle for crystal diffraction of a monochromatic x-ray beam and allows one to increase or decrease the wavelength bandwidth of the diffraction of a continuum source like a bending-magnet beam or a normal x-ray-tube source. When the monochromator is used in the doubly expanding mode, it is possible to expand the vertical size of the double-diffracted beam by a factor of 10-15. When this was combined with a bending magnet source, it was possible to generate an 8 keV area beam, 16 mm wide by 26 mm high with a uniform intensity and parallel to 1.2 arc sec that could be applied in imaging experiments.

  2. Laterality-Specific Training Improves Mental Rotation Performance in Young Soccer Players

    Directory of Open Access Journals (Sweden)

    Stefanie Pietsch

    2018-02-01

    Full Text Available This study investigates the influence of specific soccer training with the non-dominant leg on mental rotation performance of 20 adolescent soccer players between 10 and 11 years of age. While the experimental group performed soccer specific tasks only with the non-dominant foot once a week for 10 weeks, the control group absolved the same exercises with the dominant foot for the same period of time. Both groups performed a mental rotation task and shot, dribbling and ball control tests before and after the 10 week intervention. The most relevant result was that the experimental group showed a significantly larger increase in mental rotation ability than the control group.

  3. Foot shape and its relationship with somatic characteristics in pre-school children

    Directory of Open Access Journals (Sweden)

    Ewa Puszczałowska-Lizis

    2017-09-01

    Full Text Available Introduction : The preschool period, characterised by high intensity of ontogenetic developmental changes, is considered to be the most important regarding formation of the foot. Getting to know the issue of the foot anatomy in children in this period is the main problem, which is the starting point towards proper prevention, examination, or correction of its deformities. Aim of the research: To analyse the shape of children’s feet and its relationship with chosen somatic characteristics in pre-school children. Material and methods : The study group comprised 80 five-year-old children recruited from randomly selected pre-schools in the Podkarpackie region. A CQ-ST podoscope was used as the research tool. In order to evaluate intersex differences at the average level of the tested variables, we used the Student’s t test or alternatively the Mann-Whitney U test. The relations between tested variables was assessed using Pearson’s linear correlation or Spearman’s rank correlation. Results : A low percentage of foot deformities in the children was found. In girls, statistically significant relationships were seen between Clarke’s angle in the right foot and body mass index as well as between Wejsflog index in the right foot and body weight and height. In the case of boys, Clarke’s angle and Wejsflog index in the left foot correlated with body mass index. Conclusions: We can therefore assume that most of the surveyed girls and boys had correctly longitudinally and transversely arched feet and toes positioned correctly. Excessive weight was a factor distorting the foot shape in children; it caused a deterioration of longitudinal and transverse arch of the right foot in girls, and left foot flattening occurred in boys.

  4. Biomechanics of the arch of the foot. Pre- and postoperative radiological examination

    International Nuclear Information System (INIS)

    Kristen, K.H.

    2007-01-01

    The human foot is a complex biomechanical structure. The arch of the foot is formed by the bony and articular structure of the midfoot and supported by strong ligaments and tendons. The normal arch develops in childhood. Tendon and ligament rupture and degeneration often lead to flattening of the arch. Frequent painful conditions include hallux valgus deformity and rupture of the posterior tibial tendon both leading to flat feet. Radiological examination is necessary in a standardized, full weight bearing standing position. The standing dorsoplantar view shows hallux valgus angle and intermetatarsal 1/2 angle. The side view shows Lisfranc joint instability and decrease of the talometatarsal angle. Talonavicular instability is a frequent secondary sign of spring ligament and posterior tibial tendon lesion. After failure of conservative therapy, corrective surgery with osteotomy and realignment procedure of the malpositioned bones in combination with tendon and ligament reconstruction is the state of the art procedure. In postoperative follow-up a standing X-ray of the foot is again the standard tool. Additional MRI and CT examinations help to detect bone and cartilage lesions and tendon/ligament ruptures. (orig.) [de

  5. Regional wall thickening in gated myocardial perfusion SPECT in a Japanese population: effect of sex, radiotracer, rotation angles and frame rates

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, Nasima; Nakajima, Kenichi; Okuda, Koichi; Matsuo, Shinro; Yoneyama, Tatsuya; Taki, Junichi; Kinuya, Seigo [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa, Ishikawa (Japan)

    2008-09-15

    Gated single-photon emission computed tomography (SPECT) imaging of myocardium by {sup 99m}Tc and {sup 201}Tl is used extensively to measure quantitative cardiac functional parameters. However, factors affecting normal values for myocardial functional parameters and population-specific standards have not yet been established. The aim of the study was to determine the effect of sex, radiotracer, rotation angles and frame rates on resting myocardial wall thickening (WT) and to develop a Japanese standard of normal values for WT. Data from a total of 202 patients with low possibility of having cardiac problems were collected from nine hospitals throughout Japan. Patients were divided into five groups according to study protocol, and WT was evaluated according to the 17-segment and four-region (basal, mid and apical regions and the apex) polar map distribution. WT was generally higher in women than in men irrespective of the use of radiotracers, rotation angles or frame rates, and the difference was highly significant in the mid and apical regions. In any protocol used, resting myocardial thickening in the apex was higher than in the mid and apical regions, and thickening was lowest in the basal region, suggesting heterogeneous regional myocardial thickening (%) in normal subjects. Different rotation angles showed no significant change on WT, but different frame rates and tracers showed significant WT change in both sexes. Percent thickening of the myocardium was significantly higher in imaging by {sup 99m}Tc-labelled tracers than in {sup 201}Tl. Sex, radiotracers and frame rates had a significant effect on myocardial thickening, and the importance of population-specific standards should be emphasized. A normal database can serve as a standard for gated SPECT evaluation of myocardial thickening in a Japanese population and might be applicable to Asian populations having a similar physique. (orig.)

  6. Transformation of Real Spherical Harmonics under Rotations

    Science.gov (United States)

    Romanowski, Z.; Krukowski, St.; Jalbout, A. F.

    2008-08-01

    The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.

  7. Radiographic Shape of Foot With Second Metatarsophalangeal Joint Dislocation Associated With Hallux Valgus.

    Science.gov (United States)

    Kokubo, Tetsuro; Hashimoto, Takeshi; Suda, Yasunori; Waseda, Akeo; Ikezawa, Hiroko

    2017-12-01

    Second metatarsophalangeal (MTP) joint dislocation is associated with hallux valgus, and the treatment of complete dislocation can be difficult. The purpose of this study was to radiographically clarify the characteristic foot shape in the presence of second MTP joint dislocation. Weight-bearing foot radiographs of the 268 patients (358 feet) with hallux valgus were examined. They were divided into 2 groups: those with second MTP joint dislocation (study group = 179 feet) and those without dislocation (control group = 179 feet). Parameters measured included the hallux valgus angle (HVA), first-second intermetatarsal angle (IMA), second MTP joint angle, hallux interphalangeal angle (IPA), second metatarsal protrusion distance (MPD), metatarsus adductus angle (MAA), and the second metatarsal declination angle (2MDA). Furthermore, the dislocation group was divided into 3 subgroups according to second toe deviation direction: group M (medial type), group N (neutral type), and group L (lateral type). The IPA and the 2MDA were significantly greater in the study group than in the control group. By multiple comparison analysis, the IMA was greatest in group M and smallest in group L. The IPA was smaller and 2MDA greater in group N than in group L. The HVA and MAA in group L were greatest, and MPD in group L was smallest. The patients with second MTP joint dislocation associated with hallux valgus had greater hallux interphalangeal joint varus and a second metatarsal more inclined than with hallux valgus alone. The second toe deviated in a different direction according to the foot shape. Level III, retrospective comparative study.

  8. Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers

    International Nuclear Information System (INIS)

    Mikhailov, Eugeniy E.; Goda, Keisuke; Corbitt, Thomas; Mavalvala, Nergis

    2006-01-01

    We study the effects of frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency (EIT) on gravitational-wave (GW) interferometers. We propose the use of low-pass, bandpass, and high-pass EIT filters, an S-shaped EIT filter, and an intracavity EIT filter to generate frequency-dependent squeezing for injection into the antisymmetric port of GW interferometers. We find that the EIT filters have several advantages over the previous filter designs with regard to optical losses, compactness, and the tunability of the filter linewidth

  9. Foot Structure in Boys with Down Syndrome

    Directory of Open Access Journals (Sweden)

    Ewa Puszczałowska-Lizis

    2017-01-01

    Full Text Available Introduction and Aim. Down syndrome (DS is associated with numerous developmental abnormalities, some of which cause dysfunctions of the posture and the locomotor system. The analysis of selected features of the foot structure in boys with DS versus their peers without developmental disorders is done. Materials and Methods. The podoscopic examination was performed on 30 boys with DS aged 14-15 years. A control group consisted of 30 age- and gender-matched peers without DS. Results. The feet of boys with DS are flatter compared to their healthy peers. The hallux valgus angle is not the most important feature differentiating the shape of the foot in the boys with DS and their healthy peers. In terms of the V toe setting, healthy boys had poorer results. Conclusions. Specialized therapeutic treatment in individuals with DS should involve exercises to increase the muscle strength around the foot joints, enhancing the stabilization in the joints and proprioception. Introducing orthotics and proper footwear is also important. It is also necessary to monitor the state of the foot in order to modify undertaken therapies.

  10. Radiographic femoral varus measurement is affected unpredictably by femoral rotation

    DEFF Research Database (Denmark)

    Miles, James Edward

    Radiographic measurements of femoral varus are used to determine if intervention to correct femoral deformity is required, and to calculate the required correction. The varus angle is defined as the angle between the proximal femoral long axis (PFLA) and an axis tangential to the distal femoral...... and externally by 5° and 10° using plastic wedges. Accuracy of rotation was within +1°. Digital radiographs were obtained at each position. Varus angles were measured using ImageJ, employing two definitions of PFLA. Mean varus angles increased with 10° of either internal or external rotation with both PFLA...... rotation angles. The effect of rotation on varus angle measurements in these femoral specimens contradicts a previous report using CT. The most probable explanation is the difference in femoral positioning: the CT study used a slightly elevated position compared to that in this study, resulting in better...

  11. Foot Function, Foot Pain, and Falls in Older Adults: The Framingham Foot Study.

    Science.gov (United States)

    Awale, Arunima; Hagedorn, Thomas J; Dufour, Alyssa B; Menz, Hylton B; Casey, Virginia A; Hannan, Marian T

    2017-01-01

    Although foot pain has been linked to fall risk, contributions of pain severity, foot posture, or foot function are unclear. These factors were examined in a cohort of older adults. The purpose of this study was to examine the associations of foot pain, severity of foot pain, and measures of foot posture and dynamic foot function with reported falls in a large, well-described cohort of older adults from the Framingham Foot Study. Foot pain, posture, and function were collected from Framingham Foot Study participants who were queried about falls over the past year (0, 1, and ≥2 falls). Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the relation of falls with foot pain, pain severity, foot posture, and foot function adjusting for covariates. The mean age of the 1,375 participants was 69 years; 57% were female, and 21% reported foot pain (40% mild pain, 47% moderate pain, and 13% severe pain). One-third reported falls in the past year (1 fall: n = 263, ≥2 falls: n = 152). Foot pain was associated with a 62% increased odds of recurrent falls. Those with moderate and severe foot pain showed increased odds of ≥2 falls (OR 1.78, CI 1.06-2.99, and OR 3.25, CI 1.65-7.48, respectively) compared to those with no foot pain. Foot function was not associated with falls. Compared to normal foot posture, those with planus foot posture had 78% higher odds of ≥2 falls. Higher odds of recurrent falls were observed in individuals with foot pain, especially severe foot pain, as well as in individuals with planus foot posture, indicating that both foot pain and foot posture may play a role in increasing the risk of falls among older adults. © 2017 S. Karger AG, Basel.

  12. Influence of Radiographic Positioning on Canine Sacroiliac and Lumbosacral Angle Measurements.

    Science.gov (United States)

    Jones, Susan; Savage, Mason; Naughton, Brian; Singh, Susheela; Robertson, Ian; Roe, Simon C; Marcellin-Little, Denis J; Mathews, Kyle G

    2018-01-01

     To evaluate the influence of radiographic malpositioning on canine sacroiliac and lumbosacral inclination angles.  Using canine cadavers, lateral pelvic radiographs were acquired with the radiographic beam in a neutral position and then rotated 5, 10 and 15° to mimic rotational malpositioning. The focal point of the beam was then focused over the abdomen and again over mid-diaphysis of the femur to mimic an abdominal or femoral radiographic study.  Five degrees of rotational malpositioning did not influence measurements of sacroiliac or lumbosacral inclination, but malpositioning by more than 5° led to a significant decrease in both sacroiliac and lumbosacral angles. Moving the focal point to the femur significantly decreased the measured lumbosacral angle. Abdominally centred radiographs had no effect on lumbosacral and sacroiliac angle measurements.  When evaluating canine lumbosacral and sacroiliac angles radiographically, pelvic rotation of more than 5° should be avoided as should the use of lateral radiographs centred over the femur. Schattauer GmbH Stuttgart.

  13. Unlocking the talus by eversion limits medial ankle injury risk during external rotation.

    Science.gov (United States)

    Button, Keith D; Wei, Feng; Haut, Roger C

    2015-10-15

    Eversion prior to excessive external foot rotation has been shown to predispose the anterior tibiofibular ligament (ATiFL) to failure, yet protect the anterior deltoid ligament (ADL) from failure despite high levels of foot rotation. The purpose of the current study was to measure the rotations of both the subtalar and talocrural joints during foot external rotation at sub-failure levels in either a neutral or a pre-everted position as a first step towards understanding the mechanisms of injury in previous studies. Fourteen (seven pairs) cadaver lower extremities were externally rotated 20° in either a pre-everted or neutral configuration, without producing injury. Motion capture was performed to track the tibia, talus, and calcaneus motions, and a joint coordinate system was used to analyze motions of the two joints. While talocrural joint rotation was greater in the neutral ankle (13.3±2.0° versus 10.5±2.7°, p=0.006), subtalar joint rotation was greater in the pre-everted ankle (2.4±1.9° versus 1.1±1.0°, p=0.014). Overall, the talocrural joint rotated more than the subtalar joint (11.9±2.8° versus 1.8±1.6°, p<0.001). It was proposed that the calcaneus and talus 'lock' in a neutral position, but 'unlock' when the ankle is everted prior to rotation. This locking/unlocking mechanism could be responsible for an increased subtalar rotation, but decreased talocrural rotation when the ankle is pre-everted, protecting the ADL from failure. This study may provide information valuable to the study of external rotation kinematics and injury risk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effects of mid-foot contact area ratio on lower body kinetics/kinematics in sagittal plane during stair descent in women.

    Science.gov (United States)

    Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S

    2016-07-01

    The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (pcontact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Rotated balance in humans due to repetitive rotational movement

    Science.gov (United States)

    Zakynthinaki, M. S.; Madera Milla, J.; López Diaz De Durana, A.; Cordente Martínez, C. A.; Rodríguez Romo, G.; Sillero Quintana, M.; Sampedro Molinuevo, J.

    2010-03-01

    We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.

  16. A comparison of foot kinematics in people with normal- and flat-arched feet using the Oxford Foot Model.

    Science.gov (United States)

    Levinger, Pazit; Murley, George S; Barton, Christian J; Cotchett, Matthew P; McSweeney, Simone R; Menz, Hylton B

    2010-10-01

    Foot posture is thought to influence predisposition to overuse injuries of the lower limb. Although the mechanisms underlying this proposed relationship are unclear, it is thought that altered foot kinematics may play a role. Therefore, this study was designed to investigate differences in foot motion between people with normal- and flat-arched feet using the Oxford Foot Model (OFM). Foot posture in 19 participants was documented as normal-arched (n=10) or flat-arched (n=9) using a foot screening protocol incorporating measurements from weightbearing antero-posterior and lateral foot radiographs. Differences between the groups in triplanar motion of the tibia, rearfoot and forefoot during walking were evaluated using a three-dimensional motion analysis system incorporating a multi-segment foot model (OFM). Participants with flat-arched feet demonstrated greater peak forefoot plantar-flexion (-13.7° ± 5.6° vs -6.5° ± 3.7°; p=0.004), forefoot abduction (-12.9° ± 6.9° vs -1.8° ± 6.3°; p=0.002), and rearfoot internal rotation (10.6° ± 7.5° vs -0.2°± 9.9°; p=0.018) compared to those with normal-arched feet. Additionally, participants with flat-arched feet demonstrated decreased peak forefoot adduction (-7.0° ± 9.2° vs 5.6° ± 7.3°; p=0.004) and a trend towards increased rearfoot eversion (-5.8° ± 4.4° vs -2.5° ± 2.6°; p=0.06). These findings support the notion that flat-arched feet have altered motion associated with greater pronation during gait; factors that may increase the risk of overuse injury. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Effects of asymmetrical stance and movement on body rotation in pushing.

    Science.gov (United States)

    Lee, Yun-Ju; Aruin, Alexander S

    2015-01-21

    Pushing objects in the presence of body asymmetries could increase the risk of back injury. Furthermore, when the object is heavy, it could exacerbate the effects induced by asymmetrical posture. We investigated how the use of asymmetrical posture and/or upper extremity movement affect vertical torque (Tz) and center of pressure (COP) displacement during pushing. Ten healthy volunteers were instructed to push objects of three different weights using two hands (symmetrical hand use) or one hand (asymmetrical hand use) while standing in symmetrical or asymmetrical foot-positions. The peak values of Tz and COP displacement in the medial-lateral direction (COPML) were analyzed. In cases of isolated asymmetry, changes in the Tz were mainly linked with effects of hand-use whereas effects of foot-position dominated changes in the COPML displacement. In cases of a combined asymmetry, the magnitudes of both Tz and COPML were additive when asymmetrical hand-use and foot-position induced the rotation of the lower and upper body in the same direction or subtractive when asymmetries resulted in the rotation of the body segments in the opposite directions. Moreover, larger Tz and COP displacements were seen when pushing the heavy weight. The results point out the importance of using Tz and COPML to describe the isolated or combined effects of asymmetrical upper extremity movement and asymmetrical posture on body rotation during pushing. Furthermore, it suggests that a proper combination of unilateral arm movement and foot placements could help to reduce body rotation even when pushing heavy objects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Validation of hand and foot anatomical feature measurements from smartphone images

    Science.gov (United States)

    Amini, Mohammad; Vasefi, Fartash; MacKinnon, Nicholas

    2018-02-01

    A smartphone mobile medical application, previously presented as a tool for individuals with hand arthritis to assess and monitor the progress of their disease, has been modified and expanded to include extraction of anatomical features from the hand (joint/finger width, and angulation) and foot (length, width, big toe angle, and arch height index) from smartphone camera images. Image processing algorithms and automated measurements were validated by performing tests on digital hand models, rigid plastic hand models, and real human hands and feet to determine accuracy and reproducibility compared to conventional measurement tools such as calipers, rulers, and goniometers. The mobile application was able to provide finger joint width measurements with accuracy better than 0.34 (+/-0.25) millimeters. Joint angulation measurement accuracy was better than 0.50 (+/-0.45) degrees. The automatically calculated foot length accuracy was 1.20 (+/-1.27) millimeters and the foot width accuracy was 1.93 (+/-1.92) millimeters. Hallux valgus angle (used in assessing bunions) accuracy was 1.30 (+/-1.29) degrees. Arch height index (AHI) measurements had an accuracy of 0.02 (+/-0.01). Combined with in-app documentation of symptoms, treatment, and lifestyle factors, the anatomical feature measurements can be used by both healthcare professionals and manufacturers. Applications include: diagnosing hand osteoarthritis; providing custom finger splint measurements; providing compression glove measurements for burn and lymphedema patients; determining foot dimensions for custom shoe sizing, insoles, orthotics, or foot splints; and assessing arch height index and bunion treatment effectiveness.

  19. Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation

    DEFF Research Database (Denmark)

    Weiss, Michael M; Wolbers, Thomas; Peller, Martin

    2008-01-01

    Functional neuroimaging studies have identified a set of areas in the intraparietal sulcus and dorsal precentral cortex which show a linear increase in activity with the angle of rotation across a variety of mental rotation tasks. This linear increase in activity with angular disparity suggests t...... modulated by angular disparity during the stimulus categorization task. These results suggest that at least for alphanumerical characters, areas implicated in mental rotation will only be called into action if the task requires a rotational transformation....

  20. SMAP Faraday Rotation

    Science.gov (United States)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  1. Cross polarization with phase and amplitude modulation of radio frequency fields in NMR-experiments with sample rotation at magic angle

    International Nuclear Information System (INIS)

    Dvinskij, S.V.; Chizhik, V.I.

    2006-01-01

    One analyzes cross polarization of nuclei within a rotating system of coordinates as applied to the NMR-experiments with a specimen rotation under the magic angle. One worded a concept of simultaneous phase and amplitude modulation according to which the Hamiltonian form of the restored dipole interaction persisted if inversion of difference of radiofrequency field amplitudes occurred simultaneously with phase inversion. One presents a theoretical substantiation in terms of the average Hamiltonian theory. The concept is demonstrated both experimentally and by means of numerical analysis for a number of special cases. Phase periodic inversion in cross polarized experiments is shown to result into practically important advantage of suppression of interactions of chemical shift and influence of effects of coarse adjustment of radiofrequency field parameters [ru

  2. Effect of limb rotation on radiographic alignment in total knee arthroplasties.

    Science.gov (United States)

    Radtke, Kerstin; Becher, Christoph; Noll, Yvonne; Ostermeier, Sven

    2010-04-01

    Even in a well-aligned total knee arthroplasty (TKA), limb rotation at the time of radiographic assessment will alter the measurement of alignment. This could influence the radiographic outcome of TKA. The purpose of this study was to evaluate the effect of limb rotation on radiographic alignment after TKA and to establish a re-calculation of this rotation by using existing radiographic landmarks. Synthetic femur and tibia (Sawbones), Inc. Vashon Island, WA) were used to create a TKA of the Triathlon knee prosthesis system (Stryker), Limerick, Ireland). The femoral alignment was 6.5 degrees valgus. The model was fixed in an upright stand. Five series of nine anteroposterior (AP) long leg radiographs were taken on a 30 cm x 120 cm plates in full extension with the limb rotated, in 5 degrees increments, from 20 degrees external rotation to 20 degrees internal rotation. After digitizing each radiograph (Scanner Hewlett Packard XJ 527), an observer measured the anatomic mechanical angle of the femur [AMA ( degrees )], the mechanical lateral proximal femur angle [mLPFA ( degrees )], the mechanical lateral distal femur angle [mLDFA ( degrees )], the mechanical medial proximal tibia angle [mMPTA ( degrees )] and the mechanical lateral distal tibia angle [mLDTA ( degrees )] using a digital measurement software (MediCAD, Hectec, Altfraunhofen, Germany). Besides, the observer measured the geometrical distances of the femoral component figured on the long leg radiograph. A ratio of one distance to another was measured (called femoral component distance ratio). The average radiographic anatomic alignment ranged from 6.827 degrees AMA (SD = 0.22 degrees ) in 20 degrees internal rotation to 4.627 degrees AMA (SD = 0.22 degrees ) in 20 degrees external rotation. Average mLPFA ( degrees ) ranged from 101.63 degrees (SD = 0.63) in 20 degrees internal rotation to 93.60 degrees (SD = 0.74 degrees ) in 20 degrees external rotation. Average mLDFA ( degrees ) ranged from 90.59 degrees

  3. The Impact of the Derotational Mobilization of Manual Therapy According to Kaltenborn-Evjenth on the Angle of Trunk Rotation in Patients with Adolescent Idiopathic Scoliosis--Pilot Study, Direct Observation.

    Science.gov (United States)

    Wnuk, Bartosz; Blicharska, Irmina; Błaszczak, Edward; Durmała, Jacek

    2015-01-01

    The use of manual therapy in the treatment of scoliosis has been controversial. Scientific reports do not clearly indicate its effectiveness or harmfulness. The aim of this study was to determine the effectiveness of passive and active derotation techniques of manual therapy according to Kaltenborn-Evjent on the reduction of the angle of trunk rotation in patients with idiopathic scoliosis. The study enrolled 33 female patients from the Department of Rehabilitation who were diagnosed with adolescent idiopathic scoliosis. The patients were divided into two groups according to the curve location (SRS classification). Group A consisted of 17 women, aged 14.±2.4 years, with single-curve scoliosis in the thoracolumbar segment and group B was composed of 16 women, aged 15±2.24 years, with double-curve scoliosis in the thoracic and lumbar segments. In both groups, the angle of trunk rotation, the magnitude of thoracic kyphosis and lumbar lordosis were measured twice, before and after each session of derotation techniques. Both groups demonstrated a positive impact of active and passive derotation techniques on the angle of trunk inclination. The greatest difference was observed after a session of active derotation in the patients with lumbar scoliosis. The angle of trunk rotation decreased on average by 4.5°±1.14°. No correlations were found between the curve angle values and the degree of thoracic derotation after the application of these techniques. Derotational mobilization techniques may be a valuable complement to scoliosis treatment methods as they increase their effectiveness.

  4. Morfologie dětské nohy Child's foot morphology

    Directory of Open Access Journals (Sweden)

    Jarmila Riegerová

    2005-02-01

    . Longitudinal foot vault was evaluated by Plantographic method by index method and processed by "Foot" software; the big toe and little toe axis in the sense of valgozity and varozity, the size of foot angle. Statistically significant differences were evaluated by means of Wilcoxon, Mann-Whitney tests, Scheffe test and chí-quadrate test (Statistica, vers. 6. The state of longitudinal foot vault appeared as relatively satisfactory. The normal foot of I. and II. degree was determined with highest frequency. The occurrence of flat foot and high foot did not signify any principal problem in these age categories. The deformation of big toe and little toe occurred in high frequency in both genders and in all age categories. In boys the valgoze angle reached the range 2.6–7.9°, in girls 4.3–8.1°. The average values of big toe varozity were higher. Little toe angle (valgozity in the group of boys reached the range of values 15.4° to 20.4°, in girls 14.4° to 18.6°. At the end we can evaluate the longitudinal foot vault in child's age categories as corresponding with the ontogenesis phase. The analysis of morphological parameters in the area of anterior part of foot proved the deformations in medial and lateral foot rays in high frequency. The foot angle in posterior part of the foot responds the reference values of established age categories.

  5. Titrating decision processes in the mental rotation task.

    Science.gov (United States)

    Provost, Alexander; Heathcote, Andrew

    2015-10-01

    Shepard and Metzler's (1971) seminal mental-rotation task-which requires participants to decide if 1 object is a rotated version of another or its mirror image-has played a central role in the study of spatial cognition. We provide the first quantitative model of behavior in this task that is comprehensive in the sense of simultaneously providing an account of both error rates and the full distribution of response times. We used Brown and Heathcote's (2008) model of choice processing to separate out the contributions of mental rotation and decision stages. This model-based titration process was applied to data from a paradigm where converging evidence supported performance being based on rotation rather than other strategies. Stimuli were similar to Shepard and Metzler's block figures except a long major axis made rotation angle well defined for mirror stimuli, enabling comprehensive modeling of both mirror and normal responses. Results supported a mental rotation stage based on Larsen's (2014) model, where rotation takes a variable amount of time with a mean and variance that increase linearly with rotation angle. Differences in response threshold differences were largely responsible for mirror responses being slowed, and for errors increasing with rotation angle for some participants. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  6. Kinesiology-Based Robot Foot Design for Human-Like Walking

    Directory of Open Access Journals (Sweden)

    SangJoo Kwon

    2012-12-01

    Full Text Available Compared with the conventional flat foot, the flexible foot is advantageous in implementing human-like walking and much reduces energy consumption. In this paper, from an anatomical and kinesiological point of view, a flexible foot with toes and heels is investigated for a bipedal robot and three critical design parameters for walking stability are drawn, which include stiffness of toes and heels, frontal toe position, and ankle joint position. In addition, a human-like walking trajectory compatible with the flexible foot is proposed by mimicking a human walking pattern. First of all, the zero moment point (ZMP trajectory continuously moves forward without stopping, even in the single support phase. Secondly, the centre of mass (CoM trajectory includes vertical motion similar to that seen in human beings. Thirdly, the ankle trajectory follows the rotational motion of a human foot while being lifted from and landing on the ground. Through the simulation study, it is shown that the suggested design parameters can be applied as useful indices for the mechanical design of biped feet; interestingly, the vertical motion of the centre of mass tends to compensate for the transient response in the initial walking step.

  7. Rotation in a gravitational billiard

    Science.gov (United States)

    Peraza-Mues, G. G.; Carvente, Osvaldo; Moukarzel, Cristian F.

    Gravitational billiards composed of a viscoelastic frictional disk bouncing on a vibrating wedge have been studied previously, but only from the point of view of their translational behavior. In this work, the average rotational velocity of the disk is studied under various circumstances. First, an experimental realization is briefly presented, which shows sustained rotation when the wedge is tilted. Next, this phenomenon is scrutinized in close detail using a precise numerical implementation of frictional forces. We show that the bouncing disk acquires a spontaneous rotational velocity whenever the wedge angle is not bisected by the direction of gravity. Our molecular dynamics (MD) results are well reproduced by event-driven (ED) simulations. When the wedge aperture angle θW>π/2, the average tangential velocity Rω¯ of the disk scales with the typical wedge vibration velocity vb, and is in general a nonmonotonic function of the overall tilt angle θT of the wedge. The present work focuses on wedges with θW=2π/3, which are relevant for the problem of spontaneous rotation in vibrated disk packings. This study makes part of the PhD Thesis of G. G. Peraza-Mues.

  8. Development of stair-climbing mechanism with passive crawlers. Analysis of limitation for crawler rotation angle and test vehicle performance

    International Nuclear Information System (INIS)

    Hirasawa, Junji; Kimura, Tetsuya

    2016-01-01

    This paper describes a novel mechanism with passive crawlers that will realize a stair-climbing rescue robot with simple system. The proposed mechanism is called 'SMART-III', it is named after 'Simple Mechanism Adaptive for Rough Terrain'. Some quasi-static dynamic analysis were implemented and effectiveness of limitation for crawler rotation angle were verified. A prototype robot with the SMART-III mechanism had been improved. Experimental results show the effectiveness and performance of the proposed mechanism against a step and continuous stairs. (author)

  9. Rotational discontinuities in anisotropic plasmas

    International Nuclear Information System (INIS)

    Omidi, N.

    1992-01-01

    The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense

  10. Lateral radiography of the knee with single-leg standing

    International Nuclear Information System (INIS)

    Ohmori, Kan; Sugawara, Tsuyoshi; Murakami, Katsuyoshi; Kirinai, Mikio; Fujiwara, Junichi; Oikawa, Takumi; Matsumura, Yutaka; Sugawara, Tsukasa

    2002-01-01

    The purpose of this investigation was to accomplish reproducible radiography of single-leg standing lateral radiography of the knee by adjusting lateral rotation using a ruler to measure foot position. After preliminary assessment of three-dimensional CT of the knees of normal volunteers, the best adjustment of external rotation was estimated. A ruler was made for use in adjusting the angle of knee rotation by measuring foot rotation. Based on the foot rotation measured by this ruler, the positioning of radiography was adjusted to correct rotation. Rotation was estimated by the distance between the posterior edges of the lateral and medial femoral condyles. Fifteen-degree and 17.5-degree rotations were used for correction. Correction of rotation was 17 degrees on average. This helped not only to correct external rotation in the initial radiography but also to correct rotation for repeat radiography. Our method is quantitative and highly reproducible, and it increases the success rate of lateral knee radiography. (author)

  11. Optical fibre angle sensor used in MEMS

    International Nuclear Information System (INIS)

    Golebiowski, J; Milcarz, Sz; Rybak, M

    2014-01-01

    There is a need for displacement and angle measurements in many movable MEMS structures. The use of fibre optical sensors helps to measure micrometre displacements and small rotation angles. Advantages of this type of transducers are their simple design, high precision of processing, low costs and ability of a non-contact measurement. The study shows an analysis of a fibre-optic intensity sensor used for MEMS movable structure rotation angle measurement. An intensity of the light in the photodetector is basically dependent on a distance between a reflecting surface and a head surface of the fibre transmitting arm, and the deflection angle. Experimental tests were made for PMMA 980/1000 plastic fibres, Θ NA =33°. The study shows both analytical and practical results. It proves that calculated and experimental characteristics for the analysed transducers are similar.

  12. The impact of obesity on foot morphology in women aged 48 years or older

    Directory of Open Access Journals (Sweden)

    Kristína Tománková

    2015-06-01

    Full Text Available Background: Obesity is major risk factor for many diseases within society and represents extensive loads for the feet which lead to various foot disorders and deformities. Objective: The aim of this study was to evaluate the impact of obesity as represented by percent body fat (PBF on foot morphology. Methods: The study sample included 139 Czech women aged 48-69 years. The women were divided into two groups by PBF: non-obese women (NOW (n = 66; PBF < 35% and obese women (OW (n = 73; PBF > 35%. Measurements included % PBF and width, length and angle dimensions of foot. The Chippaux-Smirak index (CSI was calculated for each foot. Results: We found significant differences between OW and NOW in these parameters: direct forefoot width (sin. p = .02, rpb = .20, direct heel width (sin. p = .01, rpb = .22; dex. p < .01, rpb = .22, hallux angle (sin. p = .01, rpb = .25 and CSI (sin. p < .01, rpb = .26; dex. p < .01, rpb = .27. The results showed that the mean values of the heel width and CSI were significantly higher in OW on both feet, the mean values of forefoot width only on the left foot. Conclusions: Results proved that obesity impacts all parts of the foot (heel, longitudinal foot arch, forefoot. Despite significant differences of the CSI between NOW and OW, the number of subjects with flat feet was in both groups negligible.

  13. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  14. Photoelectron spectra of N2 +: Rotational line profiles studied with He;I endash excited angle-resolved spectroscopy and with synchrotron radiation

    International Nuclear Information System (INIS)

    Oehrwall, G.; Baltzer, P.; Bozek, J.

    1999-01-01

    We have recorded angle-resolved He I photoelectron spectra of the three outermost valence states in N 2 + , with high enough resolution to observe rotational line profiles. For the two Σ states, the X 2 Σ g + and the B 2 Σ u + , we found that the rotational branches corresponding to different changes in rotational quantum number can differ dramatically in β value. The well-known difference in β value for the ν=0 and ν=1 vibrations of the X 2 Σ g + state was found to be due to different rotational branching ratios and also different β values of the rotational branches. For the ν=0 endash 2 vibrations of the A 2 Π u state, the β value difference between rotational branches is much less pronounced than in the X and B states. We have also recorded synchrotron-radiation-excited photoelectron spectra of the ν=0 vibrational peaks of the X 2 Σ g + and B 2 Σ u + states where rotational line profiles are resolved. The intensities of the rotational branches were studied as function of photon energy, the X state between 23 and 65 eV, and the B state between 23 and 45 eV. The results for the X state have recently been presented in a Letter [G. Oehrwall, P. Baltzer, and J. Bozek, Phys. Rev. Lett. 81, 546, 1998]. The rotational branching ratios of the two states have very different behaviors as functions of photon energy. The relative intensities of the rotational branches in the X state change significantly over the studied energy range. The 3σ g →kσ u shape resonance apparently gives rise to a non-Franck-Condon-like behavior for the rotational branching ratio of the X state. In the B state, the rotational branching ratios remain essentially constant over the studied energy range. copyright 1999 The American Physical Society

  15. Modelling foot height and foot shape-related dimensions.

    Science.gov (United States)

    Xiong, Shuping; Goonetilleke, Ravindra S; Witana, Channa P; Lee Au, Emily Yim

    2008-08-01

    The application of foot anthropometry to design good-fitting footwear has been difficult due to the lack of generalised models. This study seeks to model foot dimensions so that the characteristic shapes of feet, especially in the midfoot region, can be understood. Fifty Hong Kong Chinese adults (26 males and 24 females) participated in this study. Their foot lengths, foot widths, ball girths and foot heights were measured and then evaluated using mathematical models. The results showed that there were no significant allometry (p > 0.05) effects of foot length on ball girth and foot width. Foot height showed no direct relationship with foot length. However, a normalisation with respect to foot length and foot height resulted in a significant relationship for both males and females with R(2) greater than 0.97. Due to the lack of a direct relationship between foot height and foot length, the current practice of grading shoes with a constant increase in height or proportionate scaling in response to foot length is less than ideal. The results when validated with other populations can be a significant way forward in the design of footwear that has an improved fit in the height dimension.

  16. Factors affecting femoral rotational angle based on the posterior condylar axis in gap-based navigation-assisted total knee arthroplasty for valgus knee.

    Science.gov (United States)

    Lee, Sung-Sahn; Lee, Yong-In; Kim, Dong-Uk; Lee, Dae-Hee; Moon, Young-Wan

    2018-01-01

    Achieving proper rotational alignment of the femoral component in total knee arthroplasty (TKA) for valgus knee is challenging because of lateral condylar hypoplasia and lateral cartilage erosion. Gap-based navigation-assisted TKA enables surgeons to determine the angle of femoral component rotation (FCR) based on the posterior condylar axis. This study evaluated the possible factors that affect the rotational alignment of the femoral component based on the posterior condylar axis. Between 2008 and 2016, 28 knees were enrolled. The dependent variable for this study was FCR based on the posterior condylar axis, which was obtained from the navigation system archives. Multiple regression analysis was conducted to identify factors that might predict FCR, including body mass index (BMI), Kellgren-Lawrence grade (K-L grade), lateral distal femoral angles obtained from the navigation system and radiographs (NaviLDFA, XrayLDFA), hip-knee-ankle (HKA) axis, lateral gap under varus stress (LGVS), medial gap under valgus stress (MGVS), and side-to-side difference (STSD, MGVS - LGVS). The mean FCR was 6.1° ± 2.0°. Of all the potentially predictive factors evaluated in this study, only NaviLDFA (β = -0.668) and XrayLDFA (β = -0.714) predicted significantly FCR. The LDFAs, as determined using radiographs and the navigation system, were both predictive of the rotational alignment of the femoral component based on the posterior condylar axis in gap-based TKA for valgus knee. A 1° increment with NaviLDFA led to a 0.668° decrement in FCR, and a 1° increment with XrayLDFA led to a 0.714° decrement. This suggests that symmetrical lateral condylar hypoplasia of the posterior and distal side occurs in lateral compartment end-stage osteoarthritis with valgus deformity.

  17. The rotational elements of Mars and its satellites

    Science.gov (United States)

    Jacobson, R. A.; Konopliv, A. S.; Park, R. S.; Folkner, W. M.

    2018-03-01

    The International Astronomical Union (IAU) defines planet and satellite coordinate systems relative to their axis of rotation and the angle about that axis. The rotational elements of the bodies are the right ascension and declination of the rotation axis in the International Celestial Reference Frame and the rotation angle, W, measured easterly along the body's equator. The IAU specifies the location of the body's prime meridian by providing a value for W at epoch J2000. We provide new trigonometric series representations of the rotational elements of Mars and its satellites, Phobos and Deimos. The series for Mars are from a least squares fit to the rotation model used to orient the Martian gravity field. The series for the satellites are from a least squares fit to rotation models developed in accordance with IAU conventions from recent ephemerides.

  18. Rotational discontinuities and the structure of the magnetopause

    International Nuclear Information System (INIS)

    Swift, D.W.; Lee, L.C.

    1983-01-01

    Symmetric and asymmetric rotational discontinuities are studied by means of a one-dimensional computer simulation and by single-particle trajectory calculations. The numerical simulations show the symmetric rotation to be stable for both ion and electron senses of rotation with a thickness of the order of a few ion gyroradii when the rotation angle of the tangential field is 180 0 or less. Larger rotation angles tend to be unstable. In an expansive discontinuity, when the magnetic field on the downstream side of the discontinuity is larger, an expanding transition layer separating the high-field from a low-field region develops on the downstream side, and a symmetric rotational discontinuity forms at the upstream edge. The implication of these results for magnetopause structure and energy flow through the magnetopause is described

  19. On the stability of rotational discontinuities

    International Nuclear Information System (INIS)

    Richter, P.; Scholer, M.

    1989-01-01

    The stability of symmetric rotational discontinuities in which the magnetic field rotates by 180 degree is investigated by means of a one-dimensional self-consistent hybrid code. Rotational discontinuities with an angle Θ > 45 degree between the discontinuity normal direction and the upstream magnetic field are found to be relatively stable. The discontinuity normal is in the x direction and the initial magnetic field has finite y component only in the transition region. In the case of the ion (left-handed) sense of rotation of the tangential magnetic field, the transition region does not broaden with time. In the case of the electron (right-handed) sense of rotation, a damped wavetrain builds up in the B y component downstream of the rotational discontinuity and the discontinuity broadens with time. Rotational discontinuities with smaller angles, Θ, are unstable. Examples for a rotational discontinuity with Θ = 30 degree and the electron sense of rotation as well as a rotational discontinuity with Θ = 15 degree and the ion sense of rotation show that these discontinuities into waves. These waves travel approximately with Alfven velocity in the upstream direction and are therefore phase standing in the simulation system. The magnetic hodograms of these disintegrated discontinuities are S-shaped. The upstream portion of the hodogram is always right-handed; the downstream portion is always left-handed

  20. The reliability of the Adelaide in-shoe foot model.

    Science.gov (United States)

    Bishop, Chris; Hillier, Susan; Thewlis, Dominic

    2017-07-01

    Understanding the biomechanics of the foot is essential for many areas of research and clinical practice such as orthotic interventions and footwear development. Despite the widespread attention paid to the biomechanics of the foot during gait, what largely remains unknown is how the foot moves inside the shoe. This study investigated the reliability of the Adelaide In-Shoe Foot Model, which was designed to quantify in-shoe foot kinematics and kinetics during walking. Intra-rater reliability was assessed in 30 participants over five walking trials whilst wearing shoes during two data collection sessions, separated by one week. Sufficient reliability for use was interpreted as a coefficient of multiple correlation and intra-class correlation coefficient of >0.61. Inter-rater reliability was investigated separately in a second sample of 10 adults by two researchers with experience in applying markers for the purpose of motion analysis. The results indicated good consistency in waveform estimation for most kinematic and kinetic data, as well as good inter-and intra-rater reliability. The exception is the peak medial ground reaction force, the minimum abduction angle and the peak abduction/adduction external hindfoot joint moments which resulted in less than acceptable repeatability. Based on our results, the Adelaide in-shoe foot model can be used with confidence for 24 commonly measured biomechanical variables during shod walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparison of the Calcaneal Pitch Angle and Modified Projection Area Per Length Squared Method for Medial Longitudinal Arch Evaluation of the Foot

    Directory of Open Access Journals (Sweden)

    Esat Kıter2

    2012-12-01

    Full Text Available Objective: To compare the calcaneal pitch angle (CPA values measured on direct lateral radiographs of feet, and the modified projection area per length squared (PAL, which was calculated as a new method for the evaluation of the medial longitudinal arch (MLA of the foot.Material and Methods: Direct lateral radiographs of patients who had weightbearing feet radiographies for any reason except trauma were retrospectively obtained from the archives. Direct lateral radiographs of the feet were printed and a transparent sheet was placed on it. A straight line was drawn between the most plantar process of the calcaneus and the head of the first metatarsal bone for the calculation of the PAL of the MLA. Two semilunar arcs were drawn upon this straight line. PAL1 and PAL2 were estimated using a point-counting technique. The CPA, lateral talo-calcaneal angles (LTCA, and talo-first metatarsal angles (TFMA were measured. The correlations between PAL1, PAL2 of right and left feet and CPA, LTCA, and TFMA were explored.Results: Fifty patients (27 females, 23 males with a mean age of 40.12 (4-78 years were evaluated. Significant correlations were detected between PAL1, PAL2 and CPA, and TFMA for both right and left feet (p<0.05. Conclusion: A significant correlation was detected between the modified PAL method as a new technique and the standard CPA method for MLA evaluation. The PAL method is suggested as a simple and practical method for MLA evaluation.

  2. Hemodynamic study of ischemic limb by velocity measurement in foot

    International Nuclear Information System (INIS)

    Shionoya, S.; Hirai, M.; Kawai, S.; Ohta, T.; Seko, T.

    1981-01-01

    By means of a tracer technique with 99mTc-pertechnetate, provided with seven zonal regions of interest, 6 mm in width, placed at equal spaces of 18 mm, from the toe tip to the midfoot at a right angle to the long axis of the foot, arterial flow velocity in the foot during reactive hyperemia was measured. The mean velocity in the foot was 5.66 +/- 1.78 cm/sec in 14 normal limbs, 1.58 +/- 1.07 cm/sec in 29 limbs with distal thromboangiitis obliterans (TAO), 0.89 +/- 0.61 cm/sec in 13 limbs with proximal TAO, and 0.97 +/- 0.85 cm/sec in 15 limbs with arteriosclerosis obliterans (ASO). The velocity returned to normal in all 12 limbs after successful arterial reconstruction, whereas the foot or toe blood pressure remained pathologic in 9 of the 12 limbs postoperatively; the velocity reverted to normal in 4 of 13 limbs after lumbar sympathectomy. When the velocity was normalized after operation, the ulceration healed favorably, and the ischemic limb was salvaged. The most characteristic feature of peripheral arterial occlusive disease of the lower extremity was a stagnation of arterial circulation in the foot, and the flow velocity in the foot was a sensitive predictive index of limb salvage

  3. The structure of rotational discontinuities

    International Nuclear Information System (INIS)

    Neugebauer, M.

    1989-01-01

    This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle θ between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When θ is large, angular overshoots are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (i.e., when θ is small), many different types of structure are seen, ranging from straight lines, the S-shaped curves, to complex, disorganized shapes

  4. NMR system and method having a permanent magnet providing a rotating magnetic field

    Science.gov (United States)

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  5. Reliability of Two Smartphone Applications for Radiographic Measurements of Hallux Valgus Angles.

    Science.gov (United States)

    Mattos E Dinato, Mauro Cesar; Freitas, Marcio de Faria; Milano, Cristiano; Valloto, Elcio; Ninomiya, André Felipe; Pagnano, Rodrigo Gonçalves

    The objective of the present study was to assess the reliability of 2 smartphone applications compared with the traditional goniometer technique for measurement of radiographic angles in hallux valgus and the time required for analysis with the different methods. The radiographs of 31 patients (52 feet) with a diagnosis of hallux valgus were analyzed. Four observers, 2 with >10 years' experience in foot and ankle surgery and 2 in-training surgeons, measured the hallux valgus angle and intermetatarsal angle using a manual goniometer technique and 2 smartphone applications (Hallux Angles and iPinPoint). The interobserver and intermethod reliability were estimated using intraclass correlation coefficients (ICCs), and the time required for measurement of the angles among the 3 methods was compared using the Friedman test. A very good or good interobserver reliability was found among the 4 observers measuring the hallux valgus angle and intermetatarsal angle using the goniometer (ICC 0.913 and 0.821, respectively) and iPinPoint (ICC 0.866 and 0.638, respectively). Using the Hallux Angles application, a very good interobserver reliability was found for measurements of the hallux valgus angle (ICC 0.962) and intermetatarsal angle (ICC 0.935) only among the more experienced observers. The time required for the measurements was significantly shorter for the measurements using both smartphone applications compared with the goniometer method. One smartphone application (iPinPoint) was reliable for measurements of the hallux valgus angles by either experienced or nonexperienced observers. The use of these tools might save time in the evaluation of radiographic angles in the hallux valgus. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Multisegmental Foot and Ankle Motion Analysis After Hallux Valgus Surgery

    Science.gov (United States)

    Canseco, Karl; Long, Jason; Smedberg, Thomas; Tarima, Sergey; Marks, Richard M.; Harris, Gerald F.

    2015-01-01

    Background Gait changes in patients with hallux valgus, including altered kinematic and temporal-spatial parameters, have been documented in the literature. Although operative treatment can yield favorable clinical and radiographic results, restoration of normal gait in this population remains unclear. Segmental kinematic changes within the foot and ankle during ambulation after operative correction of hallux valgus have not been reported. The aim of this study was to analyze changes in multisegmental foot and ankle kinematics in patients who underwent operative correction of hallux valgus. Methods A 15-camera Vicon Motion Analysis System was used to evaluate 24 feet in 19 patients with hallux valgus preoperatively and postoperatively. The Milwaukee Foot Model was used to characterize segmental kinematics and temporal-spatial parameters (TSPs). Preoperative and postoperative kinematics and TSPs were compared using paired nonparametric methods; comparisons with normative data were performed using unpaired nonparametric methods. Outcomes were evaluated using the SF-36 assessment tool. Results Preoperatively, patients with hallux valgus showed significantly altered temporal-spatial and kinematic parameters. Postoperatively, kinematic analysis demonstrated restoration of hallux position to normal. Hallux valgus angles and intermetatarsal angles were significantly improved, and outcomes showed a significant increase in performance of physical activities. Temporal-spatial parameters and kinematics in the more proximal segments were not significantly changed postoperatively. Conclusion Postoperative results demonstrated significant improvement in foot geometry and hallux kinematics in the coronal and transverse planes. However, the analysis did not identify restoration of proximal kinematics. Clinical Relevance Further investigation is necessary to explore possible causes/clinical relevance and appropriate treatment interventions for the persistently altered kinematics

  7. Effects of Angle of Rotation on Pool Boiling Heat Transfer of V-shape Tube Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2016-10-15

    The most important facility for the systems is a passive heat exchanger that transfers core decay heat to the cold water in a water storage tank under atmospheric pressure. Since the space for the installation of the heat exchanger is usually limited, developing more efficient heat exchangers is important. In general, pool boiling is generated on the surface of the heat exchanging tube. The major design parameter of the heat exchanger is a tube arrangement. The upper tube is affected by the lower tube and the enhancement of the heat transfer on the upper tube is estimated by the bundle effect. Since heat transfer is related to the conditions of a tube surface, bundle geometries, and a liquid type, lots of studies have been carried out for the combinations of those parameters. An experimental study was performed to investigate the effects of the angle of rotation on pool boiling heat transfer of a V-shape tube bundle. For the test, two smooth stainless steel tubes of 19 mm outside diameter and the water at atmospheric pressure were used. The enhancement of the heat transfer is clearly observed when the angle becomes to 90° where the upper tube has the maximum region of influence by the lower tube. The convective flow and liquid agitation enhance heat transfer while the coalescence of the bubbles deteriorates heat transfer.

  8. COMPARING 3D FOOT SHAPE MODELS BETWEEN TAIWANESE AND JAPANESE FEMALES.

    Science.gov (United States)

    Lee, Yu-Chi; Kouchi, Makiko; Mochimaru, Masaaki; Wang, Mao-Jiun

    2015-06-01

    This study compares foot shape and foot dimensions between Taiwanese and Japanese females. One hundred Taiwanese and 100 Japanese female 3D foot scanning data were used for comparison. To avoid the allometry effect, data from 23 Taiwanese and 19 Japanese with foot length between 233 to 237 mm were used for shape comparison. Homologous models created for the right feet of the 42 subjects were analyzed by Multidimensional Scaling. The results showed that there were significant differences in the forefoot shape between the two groups, and Taiwanese females had slightly wider feet with straighter big toe than Japanese females. The results of body and foot dimension comparison indicated that Taiwanese females were taller, heavier and had larger feet than Japanese females, while Japanese females had significantly larger toe 1 angle. Since some Taiwanese shoemakers adopt the Japanese shoe sizing system for making shoes, appropriateness of the shoe sizing system was also discussed. The present results provide very useful information for improving shoe last design and footwear fit for Taiwanese females.

  9. Effect of excessive body weight on foot arch changes in preschoolers a 2-year follow-up study.

    Science.gov (United States)

    Jankowicz-Szymanska, Agnieszka; Mikolajczyk, Edyta

    2015-07-01

    A stable standing posture, and effective and aesthetic gait, depend heavily on correct anatomical construction of the feet, thanks to which they can play their important role. The shape and height of the foot arches are already formed in the preschool and early school years; therefore, abnormalities and disorders in children's feet, and correlations between foot formation and somatic build, are still crucial and interesting issues for orthopedists, pediatricians, physiotherapists, and podiatrists. This study deals with changes in the height of the longitudinal and transverse arches of the foot in 4- to 6-year-old children. A total of 102 boys and 105 girls took part in a 24-month study in which their body weight, height, body mass index, and Clarke's and gamma angles were measured. The analysis also focused on correlations among sex, nutritional status, and changes in foot arch height. It was discovered that sex did not considerably affect Clarke's and gamma angle values. However, it was found that between ages 4 and 6 years, the proportion of overweight and obese boys and girls increased, and the medial longitudinal arch of the foot had a tendency to collapse in those with excessive body weight. The effect of nutritional status on the transverse arch of the foot is rather dubious. In light of these findings, therapeutic programs for preventing foot deformities in children should also focus on body weight control.

  10. [Posterior tibial tendon dysfunction: what other structures are involved in the development of acquired adult flat foot?].

    Science.gov (United States)

    Herráiz Hidalgo, L; Carrascoso Arranz, J; Recio Rodríguez, M; Jiménez de la Peña, M; Cano Alonso, R; Álvarez Moreno, E; Martínez de Vega Fernández, V

    2014-01-01

    To evaluate the association of posterior tibial tendon dysfunction and lesions of diverse ankle structures diagnosed at MRI with radiologic signs of flat foot. We retrospectively compared 29 patients that had posterior tibial tendon dysfunction (all 29 studied with MRI and 21 also studied with weight-bearing plain-film X-rays) with a control group of 28 patients randomly selected from among all patients who underwent MRI and weight-bearing plain-film X-rays for other ankle problems. In the MRI studies, we analyzed whether a calcaneal spur, talar beak, plantar fasciitis, calcaneal bone edema, Achilles' tendinopathy, spring ligament injury, tarsal sinus disease, and tarsal coalition were present. In the weight-bearing plain-film X-rays, we analyzed the angle of Costa-Bertani and radiologic signs of flat foot. To analyze the differences between groups, we used Fisher's exact test for the MRI findings and for the presence of flat foot and analysis of variance for the angle of Costa-Bertani. Calcaneal spurs, talar beaks, tarsal sinus disease, and spring ligament injury were significantly more common in the group with posterior tibial tendon dysfunction (P<.05). Radiologic signs of flat foot and anomalous values for the angle of Costa-Bertani were also significantly more common in the group with posterior tibial tendon dysfunction (P<.001). We corroborate the association between posterior tibial tendon dysfunction and lesions to the structures analyzed and radiologic signs of flat foot. Knowledge of this association can be useful in reaching an accurate diagnosis. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  11. Angle measures, general rotations, and roulettes in normed planes

    Science.gov (United States)

    Balestro, Vitor; Horváth, Ákos G.; Martini, Horst

    2017-12-01

    In this paper a special group of bijective maps of a normed plane (or, more generally, even of a plane with a suitable Jordan curve as unit circle) is introduced which we call the group of general rotations of that plane. It contains the isometry group as a subgroup. The concept of general rotations leads to the notion of flexible motions of the plane, and to the concept of Minkowskian roulettes. As a nice consequence of this new approach to motions the validity of strong analogues to the Euler-Savary equations for Minkowskian roulettes is proved.

  12. Does obesity influence foot structure and plantar pressure patterns in prepubescent children?

    Science.gov (United States)

    Dowling, A M; Steele, J R; Baur, L A

    2001-06-01

    This study examined the effects of obesity on plantar pressure distributions in prepubescent children. Field-based, experimental data on BMI (body mass index), foot structure and plantar pressures were collected for 13 consenting obese children and 13 non-obese controls. Thirteen obese (age 8.1+/-1.2 y; BMI 25.5+/-2.9 kg/m(2)) and 13 non-obese (age 8.4+/-0.9 y; BMI 16.9+/-1.2 kg/m(2)) prepubescent children, matched to the obese children for gender, age and height. Height and weight were measured to calculate BMI. Static weight-bearing footprints for the right and left foot of each subject were recorded using a pedograph to calculate the footprint angle and the Chippaux-Smirak index as representative measures of the surface area of the foot in contact with the ground. Right and left foot plantar pressures were then obtained using a mini-emed(R) pressure platform to calculate the force and pressure experienced under each child's foot during static and dynamic loaded and unloaded conditions. Obese subjects displayed significantly lower footprint angle (t=4.107; P=plantar pressures between the two subject groups. That is, although rearfoot dynamic forces generated by the obese subjects were significantly higher than those generated by the non-obese subjects, these forces were experienced over significantly higher mean peak areas of contact with the mini-emed(R) system. Therefore, rearfoot pressures experienced by the two subject groups did not differ. However, the mean peak dynamic forefoot pressures generated by the obese subjects (39.3+/-15.7 N.cm(-2); q=3.969) were significantly higher than those generated by the non-obese subjects (32.3+/-9.2 N.cm(-2)). It is postulated that foot discomfort-associated structural changes and increased forefoot plantar pressures in the obese foot may hinder obese children from participating in physical activity and therefore warrants immediate further investigation.

  13. Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running.

    Science.gov (United States)

    Eslami, Mansour; Begon, Mickaël; Hinse, Sébastien; Sadeghi, Heydar; Popov, Peter; Allard, Paul

    2009-11-01

    Changes in magnitude and timing of rearfoot eversion and tibial internal rotation by foot orthoses and their contributions to vertical ground reaction force and knee joint moments are not well understood. The objectives of this study were to test if orthoses modify the magnitude and time to peak rearfoot eversion, tibial internal rotation, active ground reaction force and knee adduction moment and determine if rearfoot eversion, tibial internal rotation magnitudes are correlated to peak active ground reaction force and knee adduction moment during the first 60% stance phase of running. Eleven healthy men ran at 170 steps per minute in shod and with foot orthoses conditions. Video and force-plate data were collected simultaneously to calculate foot joint angular displacement, ground reaction forces and knee adduction moments. Results showed that wearing semi-rigid foot orthoses significantly reduced rearfoot eversion 40% (4.1 degrees ; p=0.001) and peak active ground reaction force 6% (0.96N/kg; p=0.008). No significant time differences occurred among the peak rearfoot eversion, tibial internal rotation and peak active ground reaction force in both conditions. A positive and significant correlation was observed between peak knee adduction moment and the magnitude of rearfoot eversion during shod (r=0.59; p=0.04) and shod/orthoses running (r=0.65; p=0.02). In conclusion, foot orthoses could reduce rearfoot eversion so that this can be associated with a reduction of knee adduction moment during the first 60% stance phase of running. Finding implies that modifying rearfoot and tibial motions during running could not be related to a reduction of the ground reaction force.

  14. Characteristics of the Foot Static Alignment and the Plantar Pressure Associated with Fifth Metatarsal Stress Fracture History in Male Soccer Players: a Case-Control Study.

    Science.gov (United States)

    Matsuda, Sho; Fukubayashi, Toru; Hirose, Norikazu

    2017-12-01

    There is a large amount of information regarding risk factors for fifth metatarsal stress fractures; however, there are few studies involving large numbers of subjects. This study aimed to compare the static foot alignment and distribution of foot pressure of athletes with and without a history of fifth metatarsal stress fractures. The study participants comprised 335 collegiate male soccer players. Twenty-nine with a history of fifth metatarsal stress fractures were in the fracture group and 306 were in the control group (with subgroups as follows: 30 in the fracture foot group and 28 in the non-fracture group). We measured the foot length, arch height, weight-bearing leg-heel alignment, non-weight-bearing leg-heel alignment, forefoot angle relative to the rearfoot, forefoot angle relative to the horizontal axis, and foot pressure. The non-weight-bearing leg-heel alignment was significantly smaller and the forefoot angle relative to the rearfoot was significantly greater in the fracture foot group than in the control foot group (P = 0.049 and P = 0.038, respectively). With regard to plantar pressure, there were no significant differences among the groups. Midfield players had significantly higher rates of fifth metatarsal stress fracture in their histories, whereas defenders had significantly lower rates (chi-square = 13.2, P stress fractures according to the type of foot (kicking foot vs. pivoting foot) or the severity of ankle sprain. Playing the midfield position and having an everted rearfoot and inverted forefoot alignment were associated with fifth metatarsal stress fractures. This information may be helpful for preventing fifth metatarsal stress fracture recurrence. More detailed load evaluations and a prospective study are needed in the future.

  15. The Predictive Value of the Foot Posture Index on Dynamic Function

    DEFF Research Database (Denmark)

    Mølgaard, Carsten Møller; Olesen Gammelgaard, Christian; Nielsen, R. G.

    2008-01-01

    Keenan et. al. identified the six-item version of the Foot Posture Index (FPI) as a valid, simple and clinically useful tool. The model combines measures of the standing foot posture in multiple planes and anatomical segments. It provides an alternative to existing static clinical measures when...... dynamic measures are not feasible. Redmond et. al. found the model able to predict 41% of the variation in the complex rotation of the ankle joint, representing inversion/eversion, during midstance of walking. To our knowledge no studies have been published on the relationship between FPI and the movement...

  16. TRUNK ROTATION AND WEIGHT TRANSFER PATTERNS BETWEEN SKILLED AND LOW SKILLED GOLFERS

    Directory of Open Access Journals (Sweden)

    Isao Okuda

    2010-03-01

    Full Text Available The purpose of this study was to examine trunk rotational patterns and weight transfer patterns that may differentiate swing skill level in golfers. Thirteen skilled golfers (mean handicap = 0.8 ± 2.6 and seventeen low skilled golfers (mean handicap = 30.8 ± 5.5 participated in this study. Kinematic and kinetic data were obtained through high-speed 3-D videography and force plates while the participant performed a full shot golf swing with a driver. Data at six temporal events during the swing were selected for the analysis. The results indicated that significant differences existed between the groups in the multiple events, as the skilled golfers showed the following motion patterns when compared to the low skilled golfers; 1 An earlier trunk horizontal rotation with a rapid weight transfer to the trail foot during the backswing; 2 An earlier pelvic horizontal rotation accompanied with an earlier weight transfer to the lead foot during the downswing motion; and 3 Less upper trunk horizontal rotation and more posterior pelvic rotation at the follow through. Collectively, these finding may be useful for instruction of golfers to improve their swing mechanics on a full shot golf swing

  17. The Effects of Visual Discriminability and Rotation Angle on 30-Month-Olds' Search Performance in Spatial Rotation Tasks.

    Science.gov (United States)

    Ebersbach, Mirjam; Nawroth, Christian

    2016-01-01

    Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds' success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children ( N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.

  18. The effects of visual discriminability and rotation angle on 30-month-olds’ search performance in spatial rotation tasks

    Directory of Open Access Journals (Sweden)

    Mirjam Ebersbach

    2016-10-01

    Full Text Available Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29 performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.

  19. The Effects of Visual Discriminability and Rotation Angle on 30-Month-Olds’ Search Performance in Spatial Rotation Tasks

    Science.gov (United States)

    Ebersbach, Mirjam; Nawroth, Christian

    2016-01-01

    Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children. PMID:27812346

  20. ECONOMICAL DESIGN OF CIRCULAR FOOTINGS ADJACENT TO SLOPES ON SANDY SOILS

    Directory of Open Access Journals (Sweden)

    Adnan Jayed Zedan

    2013-05-01

    Full Text Available The analysis presented here introduces three optimization techniques namely, Hooke and Jeeves, Fletcher-Reeves and Davidon-Fletcher-Powell as applied to design of the circular footing adjacent to slopes. A computer program was developed to solve this design problem using the conventional structural design approach   in conjunction with these methods, A simple study was performed to detect the sensitivity of the objective function to its design variables. A further parametric study was performed regarding the geometric configurations of the footing and loading conditions in order to provide the geotechnical engineer with some useful design curves. Hooke and Jeeves method has been proved to be very instructive in exposing the effect of the other methods.It has been proved that the minimum cost of the circular footing increases with the increase of the load whereas it decreases as the angle of internal friction increases and the Dcl/B ratio (column diameter/diameter of footing.

  1. Evaluation of foot static disturbances in patients with rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Anna Kuryliszyn-Moskal

    2017-04-01

    Full Text Available Objectives : Rheumatic diseases such as osteoarthritis and rheumatoid arthritis constitute the most frequent pathological states leading to the development of foot deformities, which reduce quality of life and cause disability. The aim of the present study was to compare the results of plantoconturographic examinations, obtained by means of a computer podoscope, in osteoarthritis and rheumatoid arthritis patients. Special attention was paid to the differences in the values of each parameter determining the level of foot function. Material and methods : The study was performed in 94 female patients divided into two groups according to the type of disease. There were 54 patients with rheumatoid arthritis and 40 with osteoarthritis. The control group consisted of 34 healthy women. The plantographic assessment of static foot structure was carried out by means of a device for computer-aided foot examination. Results : A fallen transverse arch of the right foot was statistically much more frequent in the rheumatoid arthritis patients than in osteoarthritis patients or the control group (p < 0.005 and p < 0.05, respectively. Significant differences in the values of the Wejsflog index were observed in the case of left foot between rheumatoid arthritis patients and the control group (p < 0.05. Similarly, there were statistically significant differences in the values of the hallux valgus angle ( for the right foot between rheumatoid arthritis and osteoarthritis patients or control group (in both cases p < 0.05. Conclusions : Rheumatic diseases predispose patients to disturbances of static foot function. The obtained results highlight the importance of diagnosing foot static disturbances in the prevention of destructive changes affecting the functioning of osteoarthritis and rheumatoid arthritis patients.

  2. Lower-extremity rotational profile and toe-walking in preschool children with autism spectrum disorder.

    Science.gov (United States)

    Arik, Atilla; Aksoy, Cemalettin; Aysev, Ayla; Akçakin, Melda

    2018-04-24

    The aim of this study was to establish the torsional and toe-walking profiles of children with autism spectrum disorder (ASD), and to analyze the correlations between torsion, toe-walking, autism severity score, and age. In total, 79 consecutive children with autism were examined to determine their hip rotations, thigh-foot angle, degree of toe-walking, and autism severity. Femoral and tibial torsion values, of the preschool patients, were compared statistically with age-matched controls. The hip rotation profile of the patients was similar to the normal group. Nearly a half of the patients with ASD present excessive external tibial torsion. The difference in the tibial torsion between patients and normal children was statistically significant. A weak correlation was found only between tibial torsion and the autism severity score, but no correlation was found between the other parameters. External tibial torsion is the cardinal and persistent orthopedic manifestation among patients with ASD. Toe-walking is the second most common such manifestation and is an independent orthopedic feature in these patients. External tibial torsion may potentially contribute toward the described gait abnormalities in patients with ASD.

  3. A Viewpoint on the Quantity "Plane Angle"

    Science.gov (United States)

    Eder, W. E.

    1982-01-01

    Properties of the quantity "plane angle" are explored under the hypothesis that it is a dimensional quantity. The exploration proceeds especially with respect to the physical concept, its mathematical treatment, vector concepts, measurement theory, units of related quantities, engineering pragmatism, and SI. An attempt is made to bring these different relations into a rational, logical and consistent framework, and thus to justify the hypothesis. Various types of vectorial quantities are recognized, and their properties described with an outline of the necessary algebraic manipulations. The concept of plane angle is amplified, and its interdependence with the circular arc is explored. The resulting units of plane angle form a class of similar scales of measurement. Consequences of the confirmed hypothesis are developed for mathematical expressions involving trigonometric functions, rotational volumes and areas, mathematical limits, differentiation and series expansion. Consequences for mechanical rotational quantities are developed, with proposals for revisions to a number of expressions for derived units within SI. A revised definition for the quantity "plane angle" is stated to take account of the developed insights. There is a clear need to reconsider the status of plane angle and some other quantities within the international framework of SI.

  4. Bohler's angle's role in assessing the injury severity and functional outcome of internal fixation for displaced intra-articular calcaneal fractures: a retrospective study.

    Science.gov (United States)

    Su, Yanling; Chen, Wei; Zhang, Tao; Wu, Xingwang; Wu, Zhanpo; Zhang, Yingze

    2013-09-24

    Controversy exits over the role of Böhler's angle in assessing the injury severity of displaced intra-articular calcaneal fractures and predicting the functional outcome following internal fixation. This study aims to investigate whether a correlation exists between Böhler's angle and the injury severity of displaced calcaneal fractures, and between surgical improvement of Böhler's angle and functional outcome. Patients treated operatively for unilateral closed displaced intra-articular calcaneal fractures from January 1, 2004 to March 31, 2008 were identified. The Böhler's angles of both calcaneus were measured, and the measurement of the uninjured foot was used as its normal control. The difference in the value of Böhler's angle measured preoperatively or postoperatively between the angle of the injured foot and that of the contralateral calcaneus were calculated, respectively. The change in Böhler's angle by ratio was calculated by dividing the difference value of Böhler's angle between bilateral calcaneus by its normal control. The injury severity was assessed according to Sanders classification. The functional outcomes were assessed using American Orthopaedic Foot & Ankle Society hindfoot scores. 274 patients were included into the study with a mean follow-up duration of 71 months. According to Sanders classification, the fracture pattern included 105 type II, 121 type III and 48 type IV fractures. According to American Orthopaedic Foot & Ankle Society hindfoot scoring system, the excellent, good, fair and poor results were achieved in 104, 132, 27, and 11 patients, respectively. The preoperative Böhler's angle, difference value of Böhler's angle between bilateral calcaneus, and change in Böhler's angle by ratio each has a significant correlation with Sanders classification (rs=-0.178, P=0.003; rs=-0.174, P=0.004; rs=-0.172, P=0.005, respectively), however, is not correlated with functional outcome individually. The three postoperative measurements

  5. Genetic parameters for claw and leg health, foot and leg conformation, and locomotion in Danish Holsteins

    DEFF Research Database (Denmark)

    Laursen, M. V.; Boelling, D.; Mark, Thomas

    2009-01-01

    was defined as absence of hock infection, swollen hock, and bruising. The potential indicators were locomotion and foot and leg conformation, represented by rear leg side view, rear leg rear view, foot angle, and apparent hock quality and bone structure. The study was conducted using records from 429......,877 Danish Holstein cows in first lactation. Binary health traits were divided into 3 subcategories: claw health, leg health, and absence of all claw and leg disorders. Genetic (r(g)) and phenotypic correlations were estimated using a bivariate linear sire model and REML. Estimated heritabilities were 0.......01 for all 3 combined claw and leg health traits (on the observed binary scale), 0.09 for locomotion, 0.14 for rear leg rear view, 0.19 for rear leg side view, 0.13 for foot angle, 0.22 for apparent hock quality, and 0.27 for apparent bone structure. Heritabilities were 0.06 and 0.01 for claw health and leg...

  6. A relação do ângulo da articulação metatarsofalangeana e de medidas antropométricas com a postura dos pés de idosos Relationship between the metatarsophalangeal joint angle and anthropometric measures and foot posture among older adults

    Directory of Open Access Journals (Sweden)

    AP Castro

    2009-02-01

    Full Text Available OBJETIVOS: Verificar a relação entre o ângulo da articulação metatarsofalangeana I (Ang-I e a idade, as medidas antropométricas e a postura dos pés de mulheres e homens idosos. MÉTODOS: A amostra foi composta por 227 mulheres idosas, com média de idade de 69,6 anos (±6,8 e 172 homens idosos, com média de idade de 69,4 anos (±6,7. As variáveis estudadas foram: a largura e o perímetro da cabeça dos metatarsos, a altura da cabeça do metatarso I e do dorso do pé, o comprimento do pé, os ângulos articulares Ang-I e metatarsofalangeana V, o índice do arco e o índice postural do pé. As medidas foram tomadas com instrumentos analógicos. Os dados foram analisados por meio de Correlação de Pearson. RESULTADOS: O Ang-I não apresentou relação com a idade e com o índice do arco, porém apresentou associação positiva com a largura e o perímetro da cabeça dos metatarsos, com o índice postural do pé e com o ângulo da articulação metatarsofalangeana V e associação negativa com a altura do dorso do pé. CONCLUSÕES: Foram encontradas relações entre maior Ang-I e maiores largura e perímetro de antepé, maior ângulo da articulação metatarsofalangeana V, pés mais pronados e com menor altura do dorso do pé.OBJECTIVES: To investigate the relationship between the first metatarsophalangeal joint angle (Ang-I, the age, anthropometric measures and foot posture of older adults. METHODS: The sample was composed of 227 older women with a mean age of 69.6 (±6.8 years and 172 older men with a mean age of 69.4 (±6.7 years. The studied variables were: the width and circumference of the metatarsal heads, the height of the first metatarsal head and the dorsum of the foot, the length of the foot, the Ang-I and fifth metatarsophalangeal joint angles, the arch index and the foot posture index. The measurements were taken with analog instruments. The data were analyzed using Pearson's correlation. RESULTS: There was no association

  7. Relationship between static foot posture and foot mobility

    Directory of Open Access Journals (Sweden)

    McPoil Thomas G

    2011-01-01

    Full Text Available Abstract Background It is not uncommon for a person's foot posture and/or mobility to be assessed during a clinical examination. The exact relationship, however, between static posture and mobility is not known. Objective The purpose of this study was to determine the degree of association between static foot posture and mobility. Method The static foot posture and foot mobility of 203 healthy individuals was assessed and then analyzed to determine if low arched or "pronated" feet are more mobile than high arched or "supinated" feet. Results The study demonstrated that those individuals with a lower standing dorsal arch height and/or a wider standing midfoot width had greater mobility in their foot. In addition, those individuals with higher Foot Posture Index (FPI values demonstrated greater mobility and those with lower FPI values demonstrated less mobility. Finally, the amount of foot mobility that an individual has can be predicted reasonably well using either a 3 or 4 variable linear regression model. Conclusions Because of the relationship between static foot posture and mobility, it is recommended that both be assessed as part of a comprehensive evaluation of a individual with foot problems.

  8. Inception mechanism and suppression of rotating stall in an axial-flow fan

    International Nuclear Information System (INIS)

    Nishioka, T

    2013-01-01

    Inception patterns of rotating stall at two stagger-angle settings for the highly loaded rotor blades were experimentally investigated in a low-speed axial-flow fan. Rotor-tip flow fields were also numerically investigated to clarify the mechanism behind the rotating stall inception. The stall inception patterns depended on the rotor stagger-angle settings. The stall inception from a rotating instability was confirmed at the design stagger-angle settings. The stall inception from a short length-scale stall cell (spike) was also confirmed at the small stagger-angle setting. The spillage of tip-leakage flow and the tip-leakage vortex breakdown influence the rotating stall inception. An air-separator has been developed based on the clarified inception mechanism of rotating stall. The rotating stall was suppressed by the developed air-separator, and the operating range of fan was extended towards low flow rate. The effect of developed air-separator was also confirmed by application to a primary air fan used in a coal fired power plant. It is concluded from these results that the developed air-separator can provide a wide operating range for an axial-flow fan

  9. The immediate effects of foot orthoses on functional performance in individuals with patellofemoral pain syndrome.

    Science.gov (United States)

    Barton, C J; Menz, H B; Crossley, K M

    2011-03-01

    Patellofemoral pain syndrome (PFPS) often results in reduced functional performance. There is growing evidence for the use of foot orthoses to treat this multifactorial condition. In this study, the immediate effects of foot orthoses on functional performance and the association of foot posture and footwear with improvements in function were evaluated. Fifty-two individuals with PFPS (18-35 years) were prescribed prefabricated foot orthoses (Vasyli Pro; Vasyli International, Labrador, Australia). Functional outcome measures evaluated included the change in (1) pain and (2) ease of a single-leg squat on a five-point Likert scale, and change in the number of (3) pain-free step downs and (4) single-leg rises from sitting. The association of foot posture using the Foot Posture Index, navicular drop and calcaneal angle relative to subtalar joint neutral; and the footwear motion control properties scale score with improved function were evaluated using Spearman's ρ statistics. Prefabricated foot orthoses produced significant improvements (psquat and improvements in the number of pain-free single-leg rises from sitting when wearing foot orthoses. In addition, a more pronated foot type was also found to be associated with improved ease of completing a single-leg squat when wearing foot orthoses. Prefabricated foot orthoses provide immediate improvements in functional performance, and these improvements are associated with a more pronated foot type and poorer footwear motion control properties.

  10. The epidemiology and clinical manifestations of hamstring muscle and plantar foot flexor shortening.

    Science.gov (United States)

    Joźwiak, M; Pietrzak, S; Tobjasz, F

    1997-07-01

    A population of 920 healthy children was studied with the aim of assessing the incidence of hamstring muscle and plantar foot flexor tightness, and to correlate such symptoms with gait, posture, and low back discomfort or pain. Special attention was paid to the popliteal angle and dorsal foot flexion. The borderline values for the popliteal angle in the following age groups were, boys: 3 to 5 years, 40 degrees; 6 to 15 years, 50 degrees; and 16 to 19 years, 40 degrees; girls: 3 to 5 years, 30 degrees; 6 to 14 years, 45 degrees; 15 to 19 years, 30 degrees. The borderline values for dorsal foot flexion in the following age groups were 3 to 4 years, 7 degrees; 5 to 13 years, 10 degrees; and 14 to 19 years, 5 degrees. The results obtained indicate a natural increase in hamstring tightness, particularly shortly before the pubertal growth spurt. This seems to be linked with the natural evolution of lumbar lordosis and pelvic tilt. When hamstring tightness surpassed borderline values, dorsiflexion and lumbar lordosis decreased leading to postural deformities, bending-forward deficit, discomfort when sitting, and a shambling gait.

  11. Rotational Angles and Velocities During Down the Line and Diagonal Across Court Volleyball Spikes

    Directory of Open Access Journals (Sweden)

    Justin R. Brown

    2014-05-01

    Full Text Available The volleyball spike is an explosive movement that is frequently used to end a rally and earn a point. High velocity spikes are an important skill for a successful volleyball offense. Although the influence of vertical jump height and arm velocity on spiked ball velocity (SBV have been investigated, little is known about the relationship of shoulder and hip angular kinematics with SBV. Other sport skills, like the baseball pitch share similar movement patterns and suggest trunk rotation is important for such movements. The purpose of this study was to examine the relationship of both shoulder and hip angular kinematics with ball velocity during the volleyball spike. Methods: Fourteen Division I collegiate female volleyball players executed down the line (DL and diagonally across-court (DAC spikes in a laboratory setting to measure shoulder and hip angular kinematics and velocities. Each spike was analyzed using a 10 Camera Raptor-E Digital Real Time Camera System.  Results: DL SBV was significantly greater than for DAC, respectively (17.54±2.35 vs. 15.97±2.36 m/s, p<0.05.  The Shoulder Hip Separation Angle (S-HSA, Shoulder Angular Velocity (SAV, and Hip Angular Velocity (HAV were all significantly correlated with DAC SBV. S-HSA was the most significant predictor of DAC SBV as determined by regression analysis.  Conclusions: This study provides support for a relationship between a greater S-HSA and SBV. Future research should continue to 1 examine the influence of core training exercise and rotational skill drills on SBV and 2 examine trunk angular velocities during various types of spikes during play.

  12. Hydrogen and deuterium NMR of solids by magic-angle spinning

    International Nuclear Information System (INIS)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, β/sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of 1 H with 2 H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids

  13. Effect of ski boot settings on tibio-femoral abduction and rotation during standing and simulated skiing.

    Science.gov (United States)

    Böhm, Harald; Senner, Veit

    2008-01-01

    Ski boots are designed to transfer high forces from the skier to the ski. For this purpose they are made of stiff materials and constrain the leg of the skier to an unnatural position. To overcome the problem of unnatural knee posture, the ski boots can be adjusted in the frontal plane as well as in the horizontal plane by the canting mechanism and the "v-position", respectively. Canting enables lateral and medial orientation of the shaft with respect to the base of the boot. The "v-position" is a pronounced outward rotation of the boot's base with respect to the ski's long axis. The purpose of this study is to investigate the effect of different foot rotations and ski boot canting settings on knee kinematics during standing and simulated skiing. Knee kinematics was measured by means of motion analysis and with the help of skin-mounted markers on 20 subjects. The ski boots in their standard settings significantly constrained the skier to an unnatural valgus position. Ski boot base rotation had a significant effect on internal external knee rotation, whereas canting had an effect on varus-valgus angles during standing. However, for the simulated skiing position no effects were observed. The study suggests that the constraints of the ski boots result in a clinically relevant valgus misalignment. Canting settings reduced the misalignment but only by about 10%. Increased ski boot canting settings would therefore be desirable. Knee kinematics showed that rotational misalignment could not be linked to any significant increase in injury risk.

  14. Exercise therapy and custom-made insoles are effective in patients with excessive pronation and chronic foot pain

    DEFF Research Database (Denmark)

    Andreasen, Jane; Mølgaard, Carsten; Christensen, Marianne

    2013-01-01

    Background: Excessive foot pronation is a causal mechanisms described in relation to injuries of the lower extremities. Evidence to support an effective treatment is insufficient. Objective: To investigate the effect of exercise and custom-made insoles to patients with excessive pronation...... and posted. Pain was measured during walking, resting and running. Static and dynamic foot postures were measured as calcaneal angle, navicular drift, drop and height. Results: The average duration of foot pain was 7.3 years. There was a significant pain reduction during walking within all groups at 4 and 12...

  15. Power dependence on the rotational strength in a quartz crystal

    International Nuclear Information System (INIS)

    Joshi, N.V.; Salcedo, D.; Gil, H.

    2007-01-01

    The rotational strength of optical activity has been examined as a function of power of the incident radiation in a quartz crystal for the first time. It has been observed that the angle of rotation is proportional to the square root of the intensity of the radiation. The present experimental data directly support the recently proposed model which takes into account the electronic polarizability rather than the atomic polarizability. This model explicitly explains the role of the incident power in estimating the angle of rotation

  16. Device for contamination monitoring against radiation contamination of people

    International Nuclear Information System (INIS)

    Rische, U.W.; Gerlach, R.

    1986-01-01

    The monitor has detector devices at an angle to each other made as a rigid component which can be rotated around a vertical axis in the angle between the joined detector devices. A reset drive which can be tensioned is provided at the axis of rotation. If it is in its rest position, a platform is situated as floor plate with a foot detector between the vertical detector devices. (orig./HP) [de

  17. Extraction of the wake induction and angle of attack on rotating wind turbine blades from PIV and CFD results

    Directory of Open Access Journals (Sweden)

    I. Herráez

    2018-01-01

    Full Text Available The analysis of wind turbine aerodynamics requires accurate information about the axial and tangential wake induction as well as the local angle of attack along the blades. In this work we present a new method for obtaining them conveniently from the velocity field. We apply the method to the New Mexico particle image velocimetry (PIV data set and to computational fluid dynamics (CFD simulations of the same turbine. This allows the comparison of experimental and numerical results of the mentioned quantities on a rotating wind turbine. The presented results open up new possibilities for the validation of numerical rotor models.

  18. An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements

    International Nuclear Information System (INIS)

    Lin, Yuan; Samei, Ehsan; Ramirez-Giraldo, Juan Carlos; Gauthier, Daniel J.; Stierstorfer, Karl

    2014-01-01

    Purpose: Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. Methods: The proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to measure

  19. Actuator assembly including a single axis of rotation locking member

    Science.gov (United States)

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  20. Foot strike pattern in preschool children during running: sex and shod-unshod differences.

    Science.gov (United States)

    Latorre-Román, Pedro Á; Párraga-Montilla, Juan A; Guardia-Monteagudo, Ignacio; García-Pinillos, Felipe

    2018-04-01

    This study aims to determine the foot strike patterns (FSPs) and neutral support (no inversion [INV]/eversion [EVE] and no foot rotation) in preschool children, as well as to determine the influence of shod/unshod conditions and sex. A total of 1356 children aged 3-6 years (673 boys and 683 girls) participated in this study. A sagittal and frontal-plane video (240 Hz) was recorded using a high-speed camcorder to record the following variables: rearfoot strike (RFS), midfoot strike (MFS), forefoot strike (FFS), inversion/ eversion (INV/EVE) and foot rotation on initial contact. There were no between-sex significant differences in both shod and unshod conditions in RFS. In the unshod condition, there was a significant reduction (p < 0.001) of RFS prevalence in both boys (shod condition = 44.2% vs. 34.7% unshod condition) and girls (shod condition = 48.5% vs. 36.1% unshod condition). As for neutral support, there were no between-sex differences in both shod and unshod conditions or in the shod-unshod comparison. In preschool children, no between-sex differences were found in relation to prevalence of RFS and neutral support (no INV/EVE). Shod running alters FSP of running barefoot, producing a significant increase of RFS prevalence.

  1. Foot strike patterns and hind limb joint angles during running in Hadza hunter-gatherers

    Directory of Open Access Journals (Sweden)

    Herman Pontzer

    2014-06-01

    Conclusion: Unlike other habitually barefoot populations which prefer FFS while running, Hadza men preferred MFS, and Hadza women and juveniles preferred RFS. Sex and age differences in foot strike behavior among Hadza adults may reflect differences in running experience, with men learning to prefer MFS as they accumulate more running experience.

  2. A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet.

    Science.gov (United States)

    Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B

    2012-04-01

    Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Foot morphometric phenomena.

    Science.gov (United States)

    Agić, Ante

    2007-06-01

    Knowledge of the foot morphometry is important for proper foot structure and function. Foot structure as a vital part of human body is important for many reasons. The foot anthropometric and morphology phenomena are analyzed together with hidden biomechanical descriptors in order to fully characterize foot functionality. For Croatian student population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot morphometric descriptors are influenced by many factors, such as life style, climate, and things of great importance in human society. Dominant descriptors related to fit and comfort are determined by the use 3D foot shape and advanced foot biomechanics. Some practical recommendations and conclusions for medical, sportswear and footwear practice are highlighted.

  4. Behavior of a strip footing on reinforced soil subjected to inclined load

    Directory of Open Access Journals (Sweden)

    Abbas Jawdat

    2018-01-01

    Full Text Available This study investigates the behavior of a strip footing under inclined load on reinforced sandy soil by using experimental model. The effect of the load inclination angle (α, number of geogrid layers (N and the relative density (RD on the bearing capacity, settlement and horizontal displacement were studied. The results showed that by increasing the number of reinforcement layers (N, the bearing capacity increased, but there is an optimum value (N=4-5 depending on relative density of supporting soil. Also the settlement and horizontal displacement of footing decreasing with increase number of reinforcement layers.

  5. One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Simon, E-mail: simon.schwarz@h-ab.de; Rung, Stefan; Hellmann, Ralf

    2017-07-31

    Highlights: • Generation of one-dimensional low spatial frequency LIPSS on transparent material. • Varying the angle of incidence results in a rotation of the one-dimensional LSFL. • Rotation angle of LSFL decreases with increasing the applied fluence. • Orientation of the LSFL is mirror-inverted when reversing the scanning direction. - Abstract: We report on the generation of one-dimensional low spatial frequency LIPSS on transparent material. The influence of the applied laser fluence and angle of incidence on the periodicity, orientation and quality of the one-dimensional low spatial frequency LIPSS is investigated, facilitating the generation of highly uniform LIPSS alongside a line. Most strikingly, however, we observe a previously unreported effect of a pronounced rotation of the one-dimensional low spatial frequency LIPSS for varying angle of incidence upon inclined laser irradiation.

  6. Roentgenographic evaluation of the actual CCD and AT angle. Pt. 2

    International Nuclear Information System (INIS)

    Brueckl, R.; Grunert, S.; Rosemeyer, B.

    1986-01-01

    The method developed by Rippstein and Mueller allows a mathematically exact determination of the femoral neck-shaft angle (CCD) and the angle of torsion (AT); already at a deviation of 5-10 0 from the prescribed position of the patient considerable errors (up to more than 15 0 ) may occur. For this reason two alternative methods are cited and described in detail: a) the cinematographic determination of the CCD- and AT-angle according to Schwetlick, and b) the combination of the determination of the AT-angle in exterior rotation according to Rogers and an anteroposterior roentgenogram of the pelvis and hips in interior rotation of the size of the AT-angle. Both methods are also mathematically exact, however, in addition almost independent from minor deviations in the position of the patient. It is advisable to apply one of the cited methods in cases of high AT-angle values (>>30 0 ), in cases where the placing of the patient is difficult and where the determination of the angles would require a major therapeutic measurement. (orig.) [de

  7. Foot morphology of Turkish football players according to foot ...

    African Journals Online (AJOL)

    Football is the most popular sport in the world. Foot morphology and foot preference are important factors in football player's performance. The aim of this cross-sectional study was to evaluate the foot morphology of elite football players with different foot preferences. 407 male football players participated in this study. 328 of ...

  8. An Unusual Presentation of Right-Sided Sciatica with Foot Drop.

    Science.gov (United States)

    McCabe, Fergus J; McCabe, John P

    2016-01-01

    Rarely, sciatica is of extraspinal aetiology. By compressing the sciatic nerve, swelling of the short external rotators of the hip can cause sciatica. Uncommon anatomical relationships between the sciatic nerve and local muscles may potentiate this compressive effect. In this report, we describe the presentation of right sciatica and foot drop resulting from both extreme local constriction and unusual anatomical variation of the right sciatic nerve.

  9. Cross-cultural adaptation and validation of the Foot Function Index to Spanish.

    Science.gov (United States)

    Paez-Moguer, Joaquin; Budiman-Mak, Elly; Cuesta-Vargas, Antonio I

    2014-03-01

    The purpose of this study was to adapt and validate the Foot Function Index to the Spanish (FFI-Sp) following the guidelines of the American Academy of Orthopaedic Surgeons. A cross-sectional study 80 participants with some foot pathology. A statistical analysis was made, including a correlation study with other questionnaires (the Foot Health Status Questionnaire, EuroQol 5-D, Visual Analogue Pain Scale, and the Short Form SF-12 Health Survey). Data analysis included reliability, construct and criterion-related validity and factor analyses. The principal components analysis with varimax rotation produced 3 principal factors that explained 80% of the variance. The confirmatory factor analysis showed an acceptable fit with a comparative fit index of 0.78. The FFI-Sp demonstrated excellent internal consistency on the three subscales: pain 0.95; disability 0.96; and activity limitation 0.69, the subscale that scored lowest. The correlation between the FFI-Sp and the other questionnaires was high to moderate. The Spanish version of the Foot Function Index (FFI-Sp) is a tool that is a valid and reliable tool with a very good internal consistency for use in the assessment of pain, disability and limitation of the function of the foot, for use both in clinic and research. Copyright © 2013 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  10. Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee.

    Science.gov (United States)

    Kiriyama, Shinya; Sato, Haruhiko; Takahira, Naonobu

    2009-01-01

    Increased shank rotation during landing has been considered to be one of the factors for noncontact anterior cruciate ligament injuries in female athletes. There have been no known gender differences in rotational knee muscle strength, which is expected to inhibit exaggerated shank rotation. Women have less knee external rotator strength than do men. Lower external rotator strength is associated with increased internal shank rotation at the time of landing. Controlled laboratory study. One hundred sixty-nine healthy young subjects (81 female and 88 male; age, 17.0 +/- 1.0 years) volunteered to participate in this study. The subjects performed single-legged drop landings from a 20-cm height. Femoral and shank kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the joint angles around the knee (flexion/extension, valgus/varus, and internal/external rotation) were calculated. The maximal isometric rotational muscle strength of the knee was measured at 30 degrees of knee flexion in a supine position using a dynamometer. The female subjects had significantly less external shank rotation strength than did the male subjects (P external rotation strength and the peak shank internal rotation angle during landing (r = -0.322, P external rotator strength. This may lead to large shank internal rotation movement during the single-legged drop landing. Improving strength training of the external rotator muscle may help decrease the rates of anterior cruciate ligament injury in female athletes.

  11. Critical Shoulder Angle and Acromial Index Do Not Influence 24-Month Functional Outcome After Arthroscopic Rotator Cuff Repair.

    Science.gov (United States)

    Lee, Merrill; Chen, Jerry Yongqian; Liow, Ming Han Lincoln; Chong, Hwei Chi; Chang, Paul; Lie, Denny

    2017-11-01

    Recent studies have shown a correlation between scapular geometry and the development of atraumatic rotator cuff tears. However, a paucity of literature is available on the effects of critical shoulder angle (CSA) and acromial index (AI) on functional outcomes after arthroscopic rotator cuff repair. Hypothesis/Purpose: The purpose was to investigate the influence of CSA and AI on 24-month functional outcomes after arthroscopic rotator cuff repair. The hypothesis was that a larger CSA or AI would result in poorer postoperative outcomes. Cohort study; Level of evidence, 3. The study included 147 patients who underwent arthroscopic double-row rotator cuff repair for radiologically documented full-thickness supraspinatus tears. An independent reviewer measured the CSA and AI on preoperative radiographs. These patients were prospectively enrolled and were evaluated preoperatively as well as at 3, 6, 12, and 24 months postoperatively. Functional outcome was assessed with the Constant Shoulder Score (CSS), Oxford Shoulder Score (OSS), and University of California at Los Angeles (UCLA) Shoulder Rating Scale. The patients were first divided based on CSA: (1) ≤35° (control CSA) and (2) >35° (increased CSA); and then based on AI: (1) ≤0.7 and (2) >0.7. The Student unpaired t test, Pearson chi-square test, and Pearson correlation were performed to examine the influence of CSA and AI on postoperative functional outcome scores. At 6 months of follow-up, the CSS, OSS, and UCLA Shoulder Rating Scale were 10 ± 1, 4 ± 2, and 3 ± 1 points poorer in the increased CSA group compared with the control CSA group ( P = .005, P = .030, and P = .035, respectively). These scores were not significantly different between both AI groups. By 24 months of follow-up, all outcome scores were comparable between both CSA groups as well as between both AI groups. No significant correlation was found between either CSA or AI when compared with CSS, OSS, or UCLA Shoulder Rating Scale at 24

  12. Fan Stagger Angle for Dirt Rejection

    Science.gov (United States)

    Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)

    2015-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.

  13. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  14. Effects of a foot placement constraint on use of motor equivalence during human hopping.

    Directory of Open Access Journals (Sweden)

    Arick G Auyang

    Full Text Available Humans can robustly locomote over complex terrains even while simultaneously attending to other tasks such as accurate foot placement on the ground. We investigated whether subjects would exploit motor redundancy across the joints of the leg to stabilize overall limb kinematics when presented with a hopping task that constrained foot placement position. Subjects hopped in place on one leg (2.2 Hz while having to place their foot into one of three target sizes upon landing (0.250, 0.063, 0.010 m(2. As takeoff and landing angles are critical to this task performance, we hypothesized smaller target sizes would increase the need to stabilize (i.e., make more consistent the leg orientation through motor equivalent combinations of segment angles. As it was not critical to the targeting task, we hypothesized no changes for leg length stabilization across target size. With smaller target sizes, we saw total segment angle variance increase due to greater signal-dependent noise associated with an increased activation of leg extensor muscles (medial and lateral gastrocnemius, vastus medialis, vastus lateralis and rectus femoris. At smaller target sizes, more segment angle variance was aligned to kinematic deviations with the goal of maintaining leg orientation trajectory. We also observed a decrease in the variance structure for stabilizing leg length at the smallest target conditions. This trade-off effect is explained by the nearly orthogonal relationship between the two goal-equivalent manifolds for leg length vs. leg orientation stabilization. Our results suggest humans increasingly rely on kinematic redundancy in their legs to achieve robust, consistent locomotion when faced with novel conditions that constrain performance requirements. These principles may generalize to other human locomotor gaits and provide important insights into the control of the legs during human walking and running.

  15. Obese older adults suffer foot pain and foot-related functional limitation.

    Science.gov (United States)

    Mickle, Karen J; Steele, Julie R

    2015-10-01

    There is evidence to suggest being overweight or obese places adults at greater risk of developing foot complications such as osteoarthritis, tendonitis and plantar fasciitis. However, no research has comprehensively examined the effects of overweight or obesity on the feet of individuals older than 60 years of age. Therefore we investigated whether foot pain, foot structure, and/or foot function is affected by obesity in older adults. Three hundred and twelve Australian men and women, aged over 60 years, completed validated questionnaires to establish the presence of foot pain and health related quality of life. Foot structure (anthropometrics and soft tissue thickness) and foot function (ankle dorsiflexion strength and flexibility, toe flexor strength, plantar pressures and spatiotemporal gait parameters) were also measured. Obese participants (BMI >30) were compared to those who were overweight (BMI=25-30) and not overweight (BMI foot pain and scored significantly lower on the SF-36. Obesity was also associated with foot-related functional limitation whereby ankle dorsiflexion strength, hallux and lesser toe strength, stride/step length and walking speed were significantly reduced in obese participants compared to their leaner counterparts. Therefore, disabling foot pain and altered foot structure and foot function are consequences of obesity for older adults, and impact upon their quality of life. Interventions designed to reduce excess fat mass may relieve loading of the foot structures and, in turn, improve foot pain and quality of life for older obese individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The structure of rotational discontinuities. [in solar wind

    Science.gov (United States)

    Neugebauer, M.

    1989-01-01

    This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle theta between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When theta is large, angular 'overshoots' are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (when theta is small), many different types of structure are seen, ranging from straight lines, to S-shaped curves, to complex, disorganized shapes.

  17. Texture orientation of glancing angle deposited copper nanowire arrays

    International Nuclear Information System (INIS)

    Alouach, H.; Mankey, G.J.

    2004-01-01

    Self-assembled copper nanowires were deposited on native oxide Si(100) substrates using glancing angle deposition with and without substrate rotation. Wire morphology, texture and crystallographic orientation are strongly dependent on the deposition parameters. A method for determining the preferred crystal orientation is described. This orientation is found to be different from what is expected from the geometric orientation of the wires. For wires deposited without substrate rotation, the face-centered-cubic (fcc)(111) crystal orientation, which corresponds to the close-packed, low surface energy (111) plane of copper, lies between the long axis of the wire and that normal to the substrate. X-ray diffraction data show that the wires exhibit bundling behavior perpendicular to the plane of incidence. For samples deposited with azimuthal rotation of the substrate, the fcc(111) directions in the wires are evenly distributed in a cone around the long axis of the wires, which point normal to the substrate. When the substrate is rotated during deposition at an angle of 75 deg., the wires exhibit a strong fcc(220) texture. These observations show that wires deposited with substrate rotation are highly textured and have random orientations in the plane of the substrate

  18. The results of Grice Green subtalar arthrodesis of valgus foot in spina bifida

    Directory of Open Access Journals (Sweden)

    Fatih Küçükdurmaz

    2012-01-01

    Full Text Available Background: Valgus foot is a common foot deformity in spina bifida. The most popular operation for the valgus deformity has been the Grice talocalcaneal blocking. It has not been studied primarily in children with spina bifida. We report a prospective series, we present the results of hind foot valgus deformity of children with spina bifida, using Grice talocalcaneal arthrodesis with a tricortical iliac bone graft. Materials and Methods: Between May 2000 and December 2003, 21 patients with bilateral (42 feet valgus deformity of feet underwent surgery. There were 7 males and 14 females. The mean age of patients was 67.7 months (range 50-108 months. Results: The total number of feet that had nonunion was 11, in 7 of them the grafts were completely reabsorbed and the outcome of all these feet was unsatisfactory. Four feet had partial union of which three had unsatisfactory and one had satisfactory outcome. Sixteen feet had residual valgus deformity at the last followup visit, 10 patients had nonunion, and 6 had inadequate correction. Mean preoperative talocalcaneal and calcaneal pitch angles were 48.5΀ and 31.9΀, respectively, which decreased to 38.5΀ and 29.1΀, respectively, postoperatively. The decrease in talocalcaneal angle and calcaneal pitch was significant between preoperative and postoperative measurements (P<0.05. Conclusion: Grice subtalar arthrodesis technique is still a valuable option for valgus foot in patients with spina bifida. In this study, we found more encouraging results in older patients.

  19. A simple field method to identify foot strike pattern during running.

    Science.gov (United States)

    Giandolini, Marlène; Poupard, Thibaut; Gimenez, Philippe; Horvais, Nicolas; Millet, Guillaume Y; Morin, Jean-Benoît; Samozino, Pierre

    2014-05-07

    Identifying foot strike patterns in running is an important issue for sport clinicians, coaches and footwear industrials. Current methods allow the monitoring of either many steps in laboratory conditions or only a few steps in the field. Because measuring running biomechanics during actual practice is critical, our purpose is to validate a method aiming at identifying foot strike patterns during continuous field measurements. Based on heel and metatarsal accelerations, this method requires two uniaxial accelerometers. The time between heel and metatarsal acceleration peaks (THM) was compared to the foot strike angle in the sagittal plane (αfoot) obtained by 2D video analysis for various conditions of speed, slope, footwear, foot strike and state of fatigue. Acceleration and kinematic measurements were performed at 1000Hz and 120Hz, respectively, during 2-min treadmill running bouts. Significant correlations were observed between THM and αfoot for 14 out of 15 conditions. The overall correlation coefficient was r=0.916 (Pstrike except for extreme forefoot strike during which the heel rarely or never strikes the ground, and for different footwears and states of fatigue. We proposed a classification based on THM: FFS<-5.49ms

  20. Rotation of the Sacrum During Bellyboard Pelvic Radiotherapy

    International Nuclear Information System (INIS)

    Kasabasic, Mladen; Faj, Dario; Ivkovic, Ana; Jurkovic, Slaven; Belaj, Nenad

    2010-01-01

    Patients with cervical, uterine, and rectal carcinomas are usually treated in the prone position using the bellyboard positioning device. Specific and uncomfortable prone position gives rise to uncertainties in the daily set-up of patients during the treatment. During investigation of translational movements, rotational movements of the pelvis are observed and investigated. The film portal imaging is used to discover patient positioning errors during treatment. We defined the rotational set-up errors by angle deviations of the sacrum. Thirty-six patients were included in the study; 15 patients were followed during the whole treatment and 21 during the first 5 consecutive treatment days. The image acquisitions were completed in 84%. Systematic and random positioning errors were analyzed in 725 images. Approximately half of the patients had adjusted to the bellyboard in the first few fractions, with sacrum angles remaining the same for the rest of the treatment. The other half had drifts of the sacrum angle during the whole treatment. The rotation of the sacrum during treatment ranged up to 14 deg., causing the usual set-up verification and correction procedure to result in errors up to 15 mm. Rotational movements of the patient pelvis during bellyboard pelvis radiotherapy can introduce considerable patient position error.

  1. Foot Health

    Science.gov (United States)

    ... straight across and not too short Your foot health can be a clue to your overall health. For example, joint stiffness could mean arthritis. Tingling ... foot checks are an important part of your health care. If you have foot problems, be sure ...

  2. Mental rotation of faces in healthy aging and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Cassandra A Adduri

    Full Text Available BACKGROUND: Previous research has shown that individuals with Alzheimer's disease (AD develop visuospatial difficulties that affect their ability to mentally rotate objects. Surprisingly, the existing literature has generally ignored the impact of this mental rotation deficit on the ability of AD patients to recognize faces from different angles. Instead, the devastating loss of the ability to recognize friends and family members in AD has primarily been attributed to memory loss and agnosia in later stages of the disorder. The impact of AD on areas of the brain important for mental rotation should not be overlooked by face processing investigations -- even in early stages of the disorder. METHODOLOGY/PRINCIPAL FINDINGS: This study investigated the sensitivity of face processing in AD, young controls and older non-neurological controls to two changes of the stimuli -- a rotation in depth and an inversion. The control groups showed a systematic effect of depth rotation, with errors increasing with the angle of rotation, and with inversion. The majority of the AD group was not impaired when faces were presented upright and no transformation in depth was required, and were most accurate when all faces were presented in frontal views, but accuracy was severely impaired with any rotation or inversion. CONCLUSIONS/SIGNIFICANCE: These results suggest that with the onset of AD, mental rotation difficulties arise that affect the ability to recognize faces presented at different angles. The finding that a frontal view is "preferred" by these patients provides a valuable communication strategy for health care workers.

  3. Lower extremity kinematics and kinetics of Division III collegiate baseball and softball players while performing a modified pro-agility task.

    Science.gov (United States)

    Wallace, B J; Kernozek, T W; Bothwell, E C

    2007-12-01

    Females experience at least twice as many non-contact anterior cruciate ligament (ACL) injuries as males. The aim of this study was to investigate if males and females exhibited different characteristics while performing a modified pro-agility test. Collegiate Division III male baseball (n=14) and female softball (n=13) players performed 4 trials of a modified pro-agility task, which consisted of running toward a force platform target for 5 steps, planting their right foot, and propelling themselves off of the target with their left foot. Kinematic and kinetic parameters were compared using a multivariate analysis of variance between gender with the level of significance set at P<0.05. Males and females exhibited similar knee valgus angles. Females had a greater maximum knee extension angle (10.14 degrees vs 17.43 degrees ), and greater knee range of motion (46.12 degrees vs 40.12 degrees ). Both groups reached maximum knee flexion at 52% of stance. Females had significantly more maximum hip flexion than males (28.86 degrees vs 22.75 degrees ). Females had significantly smaller minimum internal knee varus moments than their male counterparts (1.12 Nm/kg vs 1.55 Nm/kg). Vertical ground reaction forces as a percentage of bodyweight, and stance time, were not statistically different. The female group displayed an external knee rotation angle (2.49 degrees ) during the beginning of their stance, which was significantly different than the internal rotation angle (4.11 degrees ) in the male group. Early in stance knee rotation angle was highly correlated with the lack of internal knee varus moment (males R(2)=0.75, females R(2)=0.88). Females displayed knee moments and kinematics that may place them at greater risk for ACL injury during a stop-cut task. Females should be coached to perform stop cuts with more knee flexion and a more neutral knee rotation angle upon foot contact in an effort to reduce moments that may place the ACL at risk.

  4. Flat Foot in a Random Population and its Impact on Quality of Life and Functionality.

    Science.gov (United States)

    Pita-Fernandez, Salvador; Gonzalez-Martin, Cristina; Alonso-Tajes, Francisco; Seoane-Pillado, Teresa; Pertega-Diaz, Sonia; Perez-Garcia, Sergio; Seijo-Bestilleiro, Rocio; Balboa-Barreiro, Vanesa

    2017-04-01

    Flat foot is a common deformity in adults. It is characterized by medial rotation and plantar flexion of the talus, eversion of the calcaneus, collapsed medial arch and abduction of the forefoot. The aim of this study was to determine the prevalence of flat foot and its impact on quality of life, dependence, foot pain, disability and functional limitation among random population of 40-year-old and above. A cross-sectional study in a random population sample from Cambre (A Coruña-Spain) (n=835) was performed (α =0.05; Precision=±3.4%). The diagnosis of flat foot was stablished by the study of the footprint obtained with a pedograph. Anthropometric variables were studied, Charlson's Comorbidity Index, function and state of foot (Foot Function Index (FFI), Foot Health Status Questionnaire (FHSQ)), quality of life (SF-36), and dependence for activities of daily living (Barthel and Lawton index). A logistic and linear multiple regression analysis was performed. The prevalence of flat foot was 26.62%. Patients with flat foot were significantly older (65.73±11.04 vs 61.03±11.45-year-old), showed a higher comorbidity index (0.92±1.49 vs 0.50±0.98), had a greater BMI (31.45±5.55 vs 28.40±4.17) and greater foot size (25.16±1.66 vs 24.82±1.65). The presence of flat foot diminishes the quality of life, as measured by the FHSQ, and foot function, measured by the FFI. The presence of flat foot does not alter the physical and mental dimension of the SF-36 or the degree of dependence. Flat foot was associated with age, Charlson's Comorbidity Index, BMI and foot size. The SF-36, Barthel and Lawton questionnaires remained unaltered by the presence of flat foot. The FHSQ and FFI questionnaires did prove to be sensitive to the presence of flat foot in a significant manner.

  5. Classification of the height and flexibility of the medial longitudinal arch of the foot

    DEFF Research Database (Denmark)

    Nilsson, Mettte Kjaergaard; Friis, Rikke; Michaelsen, Maria Skjoldahl

    2012-01-01

    -off values presented in this study can be used to categorize people performing standing work into groups of different foot arch types. The results of this study are important for investigating a possible link between arch height and arch movement and the development of injuries....... was to identify cut-off values for maximum values and ROM of the MLA of the foot during static tests and to identify factors influencing foot posture. METHODS: The participants consisted of 254 volunteers from Central and Northern Denmark (198 m/56 f; age 39.0 +/- 11.7 years; BMI 27.3 +/- 4.7 kg/m2). Navicular...... height (NH), longitudinal arch angle (LAA) and Feiss line (FL) were measured for either the left or the right foot in a subtalar neutral position and subtalar resting position. Maximum values and ROM were calculated for each test. The 95% and 68% prediction intervals were used as cut-off limits. Multiple...

  6. Effectiveness of Variable-Gain Kalman Filter Based on Angle Error Calculated from Acceleration Signals in Lower Limb Angle Measurement with Inertial Sensors

    Science.gov (United States)

    Watanabe, Takashi

    2013-01-01

    The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors. PMID:24282442

  7. [Outcome of operative treatment for supination-external rotation Lauge-Hansen stage IV ankle fractures].

    Science.gov (United States)

    Kołodziej, Łukasz; Boczar, Tomasz; Bohatyrewicz, Andrzej; Zietek, Paweł

    2010-01-01

    Ankle fractures are among the most common musculoskeletal injures. These fractures occur with an overall age- and sex-adjusted incidence rate around 180 per 100 000 person-years. The most frequent mechanism is considered to be supination-external rotation (60 to 80% of all ankle fractures) consisting of pathologic external rotation of the foot initially placed in some degree of supination. According to Lauge-Hansen classification, ankle joint structures are damaged in a sequence where the final, stage IV injuries, represents transverse fracture of the medial malleolus or its equivalent-rupture of the deltoid ligament. The aim of this study is to compare the results of two subtypes of supination-external rotation stage IV fractures. 43 patients treated surgically in 2006 to 2007 at Authors institution because of stage IV supination-external rotation ankle fracture were submitted to retrospective analysis. There were 25 patients with bimalleolar fracture (type 1) and in 18 patients with lateral malleolar fracture with accompanying rupture of the deltoid ligament (type 2). The mean age was 46 years (from 20 to 82 years). Average follow up period was 37 months (from 24 to 46 months). For the evaluation of treatment AOFAS hind-foot score (American Orthopedic Foot and Ankle Society) was used. The mean AOFAS score scale for Type 1 fractures was 85 points and for type 2 was significantly higher and amounted to 91 points (p ankle fractures with medial malleolar fracture, requires the implementation of additional diagnostic and therapeutic strategies and procedures in order to improve the outcome of results.

  8. A new uncertainty relation for angular momentum and angle

    International Nuclear Information System (INIS)

    Kranold, H.U.

    1984-01-01

    An uncertainty relation of the form ΔL 2 ΔSo >=sup(h/2π)/sub(2) is derived for angular momentum and angle. The non-linear operator So measures angles and has a simple interpretation. Subject to very general conditions of rotational invariance the above relation is unique. Radial momentum is not quantized

  9. Poor compliance with ankle-foot-orthoses in Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Vinci, P; Gargiulo, P

    2008-03-01

    The aim of this study is to evaluate the compliance with ankle-foot orthoses (AFOs) in patients previously prescribed and affected with Charcot-Marie-Tooth disease (CMT). Twenty-five Italian patients (8 males 17 females; mean age: 41.6 years, range 16-54) with severe bilateral footdrop (leg-sole angle alpha >105 degrees ) alone or associated with other problems (rotation, plantarflexor failure, knee flexor failure) were examined by a physiatrist (with measurement of the leg-sole angle alpha' with their footwear) and interviewed by a psychologist. Only 5 patients (20%) used AFOs (3 prefabricated polypropylene AFOs, 2 custom-made short AFOs incorporated in high-top boots) with satisfactory functional results (alpha' <=94 degrees ; reported increased mobility and no more falls). The interview revealed that all patients had a bad relationship with their own body. The 3 subjects using prefabricated AFOs said that they hated them and one of them complained of pain. Patients not using AFOs justified their decision with statements such as: ''I am not yet ready to accept them'' (n=3) or ''I can still manage without them for a while'' (n=2) or both (n=15). Four patients had experienced pain during the trial, 2 had not found proper shoes to accommodate them and 12 were absolutely not interested in AFOs and, therefore, had not gone to an orthotist. Compliance with AFOs is poor. Patients with CMT discard AFOs because they highlight their disability, are not essential for their limited daily walking and are uncomfortable. We suggest that prescription of AFOs be accompanied with psychological support and that research of more comfortable and cosmetically acceptable solutions for the problem of footdrop be stimulated.

  10. Observation of rotating nuclear molecules and determination of their lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Comas, V.; Heinz, S.; Ackermann, D.; Heredia, J.; Hessberger, F.P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Mann, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany)

    2012-12-15

    Long-living rotating nuclear molecules (or ''dinuclear systems'') have been observed at the velocity filter SHIP at GSI in reactions of {sup 64}Ni + {sup 207}Pb at Coulomb barrier energies. The rotation was directly revealed by the velocity spectra of deep inelastic target-like transfer products which are formed during the lifetime of the nuclear molecule and emitted after its breakup. The corresponding rotation angles were about 180 degree pointing to long nuclear interaction times or lifetimes of the system, respectively. We deduced the lifetimes from the lines in the velocity spectra originating from two different rotation angles. Further, the unambiguous correlation of a certain transfer product with its individual velocity spectrum allowed us to study the lifetimes as a function of the number of transferred protons. (orig.)

  11. Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading

    NARCIS (Netherlands)

    Kingma, I.; Bosch, T.; Bruins, L.; van Dieen, J.H.

    2004-01-01

    This study investigated the effects of initial load height and foot placement instruction in four lifting techniques: free, stoop (bending the back), squat (bending the knees) and a modified squat technique (bending the knees and rotating them outward). A 2D dynamic linked segment model was combined

  12. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

    Science.gov (United States)

    Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

    2017-08-01

    In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

  13. Select injury-related variables are affected by stride length and foot strike style during running.

    Science.gov (United States)

    Boyer, Elizabeth R; Derrick, Timothy R

    2015-09-01

    Some frontal plane and transverse plane variables have been associated with running injury, but it is not known if they differ with foot strike style or as stride length is shortened. To identify if step width, iliotibial band strain and strain rate, positive and negative free moment, pelvic drop, hip adduction, knee internal rotation, and rearfoot eversion differ between habitual rearfoot and habitual mid-/forefoot strikers when running with both a rearfoot strike (RFS) and a mid-/forefoot strike (FFS) at 3 stride lengths. Controlled laboratory study. A total of 42 healthy runners (21 habitual rearfoot, 21 habitual mid-/forefoot) ran overground at 3.35 m/s with both a RFS and a FFS at their preferred stride lengths and 5% and 10% shorter. Variables did not differ between habitual groups. Step width was 1.5 cm narrower for FFS, widening to 0.8 cm as stride length shortened. Iliotibial band strain and strain rate did not differ between foot strikes but decreased as stride length shortened (0.3% and 1.8%/s, respectively). Pelvic drop was reduced 0.7° for FFS compared with RFS, and both pelvic drop and hip adduction decreased as stride length shortened (0.8° and 1.5°, respectively). Peak knee internal rotation was not affected by foot strike or stride length. Peak rearfoot eversion was not different between foot strikes but decreased 0.6° as stride length shortened. Peak positive free moment (normalized to body weight [BW] and height [h]) was not affected by foot strike or stride length. Peak negative free moment was -0.0038 BW·m/h greater for FFS and decreased -0.0004 BW·m/h as stride length shortened. The small decreases in most variables as stride length shortened were likely associated with the concomitant wider step width. RFS had slightly greater pelvic drop, while FFS had slightly narrower step width and greater negative free moment. Shortening one's stride length may decrease or at least not increase propensity for running injuries based on the variables

  14. Effects of ballet training of children in Turkey on foot anthropometric measurements and medial longitudinal arc development.

    Science.gov (United States)

    Ozdinc, Sevgi Anar; Turan, Fatma Nesrin

    2016-07-01

    To investigate the effects of ballet training on foot structure and the formation of the medial longitudinal arc in childhood, and the association of body mass index with structural change secondary to ballet training. This study was conducted at Öykü Ballet and Dance School and Trakya University, Edirne, Turkey, from September 2007 to November 2008, and comprised girl students who were taking ballet classes, and a group of those who were not taking such who acted as the controls. Static footprints of both feet of all participants were taken with an ink paedogram. Parameters evaluated from footprints included foot length, metatarsal width, heel width and medial longitudinal arch. The relationship between the parameters, the ballet starting age, training duration and body mass index was investigated. Of the 67 participants, there were 36(53.7%) in the experimental group and 31(48.3%) in the control group. The difference between age, height, weight and body mass index between the two groups was insignificant (p>0.05). The average ballet starting age was 6.47±1.55 years and duration was 4.36±2.002 years. Positive correlations were found between body mass index and foot length, metatarsal width, heel width, medial longitudinal arch contact width and halluxvalgus angle; between ballet starting age and metatarsal width, heel width; between duration of training and foot length, metatarsal width and hallux valgus angle (p?0.05 each). Evidence supporting the education in children on foot anthropometric measurements and medial longitudinal arc development could not be found.

  15. A Model of Polarisation Rotations in Blazars from Kink Instabilities in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Krzysztof Nalewajko

    2017-10-01

    Full Text Available This paper presents a simple model of polarisation rotation in optically thin relativistic jets of blazars. The model is based on the development of helical (kink mode of current-driven instability. A possible explanation is suggested for the observational connection between polarisation rotations and optical/gamma-ray flares in blazars, if the current-driven modes are triggered by secular increases of the total jet power. The importance of intrinsic depolarisation in limiting the amplitude of coherent polarisation rotations is demonstrated. The polarisation rotation amplitude is thus very sensitive to the viewing angle, which appears to be inconsistent with the observational estimates of viewing angles in blazars showing polarisation rotations. Overall, there are serious obstacles to explaining large-amplitude polarisation rotations in blazars in terms of current-driven kink modes.

  16. New Methodology For Use in Rotating Field Nuclear MagneticResonance

    Energy Technology Data Exchange (ETDEWEB)

    Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.

  17. New Methodology For Use in Rotating Field Nuclear MagneticResonance

    Energy Technology Data Exchange (ETDEWEB)

    Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)

    2007-05-18

    High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.

  18. The method of the gas-dynamic centrifugal compressor stage characteristics recalculation for variable rotor rotational speeds and the rotation angle of inlet guide vanes blades if the kinematic and dynamic similitude conditions are not met

    Science.gov (United States)

    Vanyashov, A. D.; Karabanova, V. V.

    2017-08-01

    A mathematical description of the method for obtaining gas-dynamic characteristics of a centrifugal compressor stage is proposed, taking into account the control action by varying the rotor speed and the angle of rotation of the guide vanes relative to the "basic" characteristic, if the kinematic and dynamic similitude conditions are not met. The formulas of the correction terms for the non-dimensional coefficients of specific work, consumption and efficiency are obtained. A comparative analysis of the calculated gas-dynamic characteristics of a high-pressure centrifugal stage with experimental data is performed.

  19. Propeller rotation noise due to torque and thrust

    Science.gov (United States)

    Deming, Arthur F

    1940-01-01

    Sound pressure of the first four harmonics of rotation from a full-scale two-blade propeller were measured and are compared with values calculated from theory. The comparison is made (1) for the space distribution with constant tip speed and (2) for fixed space angles with variable tip speed. A relation for rotation noise from an element of radius developed by Gutin is given showing the effect of number of blades on the rotation noise.

  20. Combined versus individual effects of a valgus knee brace and lateral wedge foot orthotic during stair use in patients with knee osteoarthritis.

    Science.gov (United States)

    Moyer, Rebecca; Birmingham, Trevor; Dombroski, Colin; Walsh, Robert; Giffin, J Robert

    2017-05-01

    The aim of this study was to investigate the combined and individual biomechanical effects of a valgus knee brace and a lateral wedge foot orthotic during stair ascent and descent in patients with knee osteoarthritis (OA). Thirty-five patients with varus alignment and medial knee OA were prescribed a custom valgus knee brace and lateral wedge foot orthotic. Knee angles and moments in the frontal and sagittal planes were determined from 3D gait analysis completed under four randomized conditions: (1) control (no knee brace or foot orthotic), (2) knee brace, (3) foot orthotic, and (4) combined knee brace and foot orthotic. Additional measures included the vertical ground reaction force, trunk lean, toe out and gait speed. During the combined use of a knee brace and foot orthotic, significant decreases in the knee adduction angle (2.17, 95%CI: 0.50-3.84, p=0.013) and 2nd peak EKAM (0.35, 95%CI: 0.17-0.52, pstair descent; and significant increases in the EKFM were observed during stair ascent (0.54, 95%CI: 0.30-0.78, pstair descent compared to ascent, except for toe out. Findings suggest greater effects on gait when both knee brace and foot orthotic are used together, resulting in a more normal gait pattern. However, whether or not a true change in knee joint load can be inferred when using these orthoses remains unclear. Further research is required to determine the clinical importance of the observed changes. Copyright © 2017. Published by Elsevier B.V.

  1. The Comparison of Mental Rotation Performance in Team and Individual Sports of Students

    Directory of Open Access Journals (Sweden)

    Fatemeh Pasand

    2015-01-01

    Full Text Available As a practical and causal-comparative study, the present study was aimed at comparing the mental rotation performance in team and individual sports among students. The statistical population included all of the female and male athletes (N=1500 from different districts of Shiraz, Iran who participated in the sport clubs. The participants of this study included 240 students between 12-14 years old (120 girls and 120 boys who were selected randomly from four sport fields (Volleyball, Basketball, Karate, and Gymnastics. Finally, 30 athletes were selected from each field. The Mentrat Program, a kind of software for the Mental Rotation Test was used as an evaluation tool. Analyses of variance (ANOVA with repeated measures were conducted to analysis of data. The results indicated that the impact of the rotational angle was significant in both team and individual groups (p0.05. It was also observed that there was a significant difference between the mental rotation scores of the males in the individual groups contrary to the ones in the team groups (p<0.05. As a whole, it seems that as the rotational angle increases, the ability of the mental rotation in the individual fields of sport (males will be higher compared to the team groups. Keywords: Mental Rotation, Rotational Angle, Team and Individual Sports, Students

  2. Rapid fluctuations in ionospheric Faraday rotation angle and 4GHz amplitude scintillation observed at Suva, Fiji

    International Nuclear Information System (INIS)

    Buonsanto, M.J.; Northcott, R.L.; Wright, R.W.H.

    1987-01-01

    Observations are reported of rapid fluctuations in Faraday rotation angle (FRA) recorded at 137MHz and amplitude scintillation at 4 GHz. The observations were made at Suva, Fiji Islands (average ionospheric coordinates 17 0 S, 178 0 E) and cover the period September, 1978 through March, 1983. Monthly occurrence of both the FRA fluctuations and the amplitude scintillation are positively correlated with sunspot number and negatively correlated with Ap and hmF2 at Tahiti. No events were seen in the summer months (November, December, and January) and it is suggested that the south to north neutral wind may be responsible for this. Maximum occurrence of both the 137 MHz FRA fluctuations and the 4 GHz scintillation is in April-May and August-September. The more rapid FRA fluctuations, termed here V-type, occur more often in months when the ambient electron density is larger. Most events occur in the pre-midnight sector, as observed elsewhere. Fewer 4 GHz events are observed at later times in the evening, as compared to the 137 MHz FRA fluctuations

  3. Growth and properties of the CuInS2 thin films produced by glancing angle deposition

    International Nuclear Information System (INIS)

    Akkari, F. Chaffar; Kanzari, M.; Rezig, B.

    2008-01-01

    We use the glancing angle deposition technique (GLAD) to grow CuInS 2 thin films by a vacuum thermal method onto glass substrates. During deposition, the substrate temperature was maintained at 200 deg. C. Due to shadowing effect the oblique angle deposition technique can produce nanorods tilted toward the incident deposition flux. The evaporated atoms arrive at the growing interface at a fixed angle θ measured from the substrate normal. The substrate is rotated with rotational speed ω fixed at 0.033 rev s -1 . We show that the use of this growth technique leads to an improvement in the optical properties of the films. Indeed high absorption coefficients (10 5 -3.10 5 cm -1 ) in the visible range and near-IR spectral range are reached. In the case of the absence of the substrate rotation, scanning electron microscopy pictures show that the structure of the resulting film consists of nanocolumns that are progressively inclined towards the evaporation source as the incident angle was increased. If a rapid azimuthal rotation accompanies the substrate tilt, the resulting nanostructure is composed of an array of pillars normal to the substrate. The surface morphology show an improvement without presence of secondary phases for higher incident angles (θ > 60 deg.)

  4. State-to-state differential cross sections for rotationally inelastic scattering of Na2 by He

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Witt, J.

    1980-01-01

    State-to-state differential cross sections for rotational transitions of Na 2 in collisions with He are measured in the electronic and vibrational ground state at thermal collision energies using a new laser technique. Single rotational levels j/sub i/ are labelled by modulation of their population via laser optical pumping using a dye laser. The modulation of the fluorescence induced by an Ar + laser tuned to the level j/sub f/=28 is proportional to the cross section for collisional transfer j/sub i/→j/sub f/ and is detected at the scattering angle theta. A single optical fiber and a fiber bundle provide a flexible connection between the detector and the laser and photomultiplier, respectively. Transitions as large as Δj=20 are observed. At small angles elastic scattering is dominant, but rotationally inelastic processes become increasingly important at larger scattering angles. Rotational rainbow structure causing a steep onset of the cross section with the scattering angle theta (at fixed Δj) or a sharp cutoff with Δj (at fixed theta) is found. Preliminary results on rotational energy transfer in v=1 indicates that vibrational motion of the molecule favors larger rotational quantum jumps. semiclassical picture for the scattering of a hard ellipsoid gives a

  5. A Two-Stage Foot Repair in a 55-Year-Old Man with Poliomyelitis.

    Science.gov (United States)

    Pollack, Daniel

    2018-01-01

    A 55-year-old man with poliomyelitis presented with a plantarflexed foot and painful ulceration of the sub-first metatarsophalangeal joint present for many years. A two-stage procedure was performed to bring the foot to 90°, perpendicular to the leg, and resolve the ulceration. The first stage corrected only soft-tissue components. It involved using a hydrosurgery system to debride and prepare the ulcer, a unilobed rotational skin plasty to close the ulcer, and a tendo Achillis lengthening to decrease forefoot pressure. The second stage corrected the osseous deformity with a dorsiflexory wedge osteotomy of the first metatarsal. The ulceration has remained closed since the procedures, with complete resolution of pain.

  6. Effects of the Tongue-in-Groove Maneuver on Nasal Tip Rotation.

    Science.gov (United States)

    Antunes, Marcelo B; Quatela, Vito C

    2018-03-27

    Changes in nasal tip rotation is a very common maneuver performed during rhinoplasty. Among the many techniques used to achieve this goal is the tongue-in-groove (TIG). This study addresses the long-term effect of the TIG on the nasal tip rotation 1 year after rhinoplasty. The authors prospectively identified patients who were submitted to a rhinoplasty with a TIG maneuver over a period of 1 year. The angle of rotation was measured along the nostril axis angle. The data was analyzed using the t-test and a linear regression model. Seventeen patients were included. The average preoperative tip rotation was 93.95° (SD, 3.12°). Immediate postoperative tip rotation averaged 114.47° (SD, 3.79°). At the 1-year follow-up appointment, the tip rotation averaged 106.55° (SD, 3.54°). There was a significant loss of rotation at the 1-year postoperative visit (pTIG is a more dependable technique than the ones that rely on healing and contraction to obtain rotation. Our data demonstrated a significant loss of rotation during the first year. This suggests that the surgeon needs to slightly overcorrect the tip rotation to account for this loss.

  7. Unified parametrization for quark and lepton mixing angles

    International Nuclear Information System (INIS)

    Rodejohann, Werner

    2009-01-01

    We propose a new parametrization for the quark and lepton mixing matrices: the two 12-mixing angles (the Cabibbo angle and the angle responsible for solar neutrino oscillations) are at zeroth order π/12 and π/5, respectively. The resulting 12-elements in the CKM and PMNS matrices, V us and U e2 , are in this order irrational but simple algebraic numbers. We note that the cosine of π/5 is the golden ratio divided by two. The difference between π/5 and the observed best-fit value of solar neutrino mixing is of the same order as the difference between the observed value and the one for tri-bimaximal mixing. In order to reproduce the central values of current fits, corrections to the zeroth order expressions are necessary. They are small and of the same order and sign for quarks and leptons. We parametrize the perturbations to the CKM and PMNS matrices in a 'triminimal' way, i.e., with three small rotations in an order corresponding to the order of the rotations in the PDG-description of mixing matrices

  8. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    Energy Technology Data Exchange (ETDEWEB)

    Santosa, Ignatius Edi [Department of Physics Education, Sanata Dharma University, Paingan Maguwohardjo Depok Sleman, Yogyakarta 55281, Indonesia edi@usd.ac.id (Indonesia)

    2015-04-16

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold.

  9. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    International Nuclear Information System (INIS)

    Santosa, Ignatius Edi

    2015-01-01

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold

  10. Fabrication of a Large-Area Superhydrophobic SiO2 Nanorod Structured Surface Using Glancing Angle Deposition

    Directory of Open Access Journals (Sweden)

    Xun Lu

    2017-01-01

    Full Text Available A glancing angle deposition (GLAD technique was used to generate SiO2 nanorods on a glass substrate to fabricate a low-cost superhydrophobic functional nanostructured surface. GLAD-deposited SiO2 nanorod structures were fabricated using various deposition rates, substrate rotating speeds, oblique angles, and deposition times to analyze the effects of processing conditions on the characteristics of the fabricated functional nanostructures. The wettability of the surface was measured after surface modification with a self-assembled monolayer (SAM. The measured water contact angles were primarily affected by substrate rotation speed and oblique angle because the surface fraction of the GLAD nanostructure was mainly affected by these parameters. A maximum contact angle of 157° was obtained from the GLAD sample fabricated at a rotation speed of 5 rpm and an oblique angle of 87°. Although the deposition thickness (height of the nanorods was not a dominant factor for determining the wettability, we selected a deposition thickness of 260 nm as the optimum processing condition based on the measured optical transmittance of the samples because optically transparent films can serve as superhydrophobic functional nanostructures for optical applications.

  11. Effects of ankle-foot orthoses on mediolateral foot-placement ability during post-stroke gait.

    Science.gov (United States)

    Zissimopoulos, Angelika; Fatone, Stefania; Gard, Steven

    2015-10-01

    Accurate and precise mediolateral foot placement is important for balance during gait, but is impaired post stroke. Mediolateral foot placement may be improved with ankle-foot orthosis use. The purpose of this study was to determine whether an ankle-foot orthosis improves mediolateral foot-placement ability during post-stroke ambulation. Crossover trial with randomized order of conditions tested. The accuracy and precision of mediolateral foot placement was quantified while subjects targeted four different randomized step widths. Subjects were tested with and without their regular non-rigid ankle-foot orthosis in two separate visits (order randomized). While ankle-foot orthosis use corrected foot and ankle alignment (i.e. significantly decreased mid-swing plantar flexion, p = 0.000), effects of ankle-foot orthosis use on hip hiking (p = 0.545), circumduction (p = 0.179), coronal plane hip range of motion (p = 0.06), and mediolateral foot-placement ability (p = 0.537) were not significant. While ankle-foot orthosis-mediated equinovarus correction of the affected foot and ankle was not associated with improved biomechanics of walking (i.e. proximal ipsilateral hip kinematics or mediolateral foot-placement ability), it may affect other aspects of balance that were not tested in this study (e.g. proprioception, cerebellar, vestibular, and cognitive mechanisms). Studies that investigate the effect of ankle-foot orthosis on gait can help advance stroke rehabilitation by documenting the specific gait benefits of ankle-foot orthosis use. In this study, we investigated the effect of ankle-foot orthosis use on mediolateral foot-placement ability, an aspect of gait important for maintaining balance. © The International Society for Prosthetics and Orthotics 2014.

  12. Mathematical Minute: Rotating a Function Graph

    Science.gov (United States)

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  13. A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies.

    Science.gov (United States)

    Ren, Lei; Howard, David; Ren, Luquan; Nester, Chris; Tian, Limei

    2010-01-19

    The objective of this paper is to develop an analytical framework to representing the ankle-foot kinematics by modelling the foot as a rollover rocker, which cannot only be used as a generic tool for general gait simulation but also allows for case-specific modelling if required. Previously, the rollover models used in gait simulation have often been based on specific functions that have usually been of a simple form. In contrast, the analytical model described here is in a general form that the effective foot rollover shape can be represented by any polar function rho=rho(phi). Furthermore, a normalized generic foot rollover model has been established based on a normative foot rollover shape dataset of 12 normal healthy subjects. To evaluate model accuracy, the predicted ankle motions and the centre of pressure (CoP) were compared with measurement data for both subject-specific and general cases. The results demonstrated that the ankle joint motions in both vertical and horizontal directions (relative RMSE approximately 10%) and CoP (relative RMSE approximately 15% for most of the subjects) are accurately predicted over most of the stance phase (from 10% to 90% of stance). However, we found that the foot cannot be very accurately represented by a rollover model just after heel strike (HS) and just before toe off (TO), probably due to shear deformation of foot plantar tissues (ankle motion can occur without any foot rotation). The proposed foot rollover model can be used in both inverse and forward dynamics gait simulation studies and may also find applications in rehabilitation engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Foot roll-over evaluation based on 3D dynamic foot scan.

    Science.gov (United States)

    Samson, William; Van Hamme, Angèle; Sanchez, Stéphane; Chèze, Laurence; Van Sint Jan, Serge; Feipel, Véronique

    2014-01-01

    Foot roll-over is commonly analyzed to evaluate gait pathologies. The current study utilized a dynamic foot scanner (DFS) to analyze foot roll-over. The right feet of ten healthy subjects were assessed during gait trials with a DFS system integrated into a walkway. A foot sole picture was computed by vertically projecting points from the 3D foot shape which were lower than a threshold height of 15 mm. A 'height' value of these projected points was determined; corresponding to the initial vertical coordinates prior to projection. Similar to pedobarographic analysis, the foot sole picture was segmented into anatomical regions of interest (ROIs) to process mean height (average of height data by ROI) and projected surface (area of the projected foot sole by ROI). Results showed that these variables evolved differently to plantar pressure data previously reported in the literature, mainly due to the specificity of each physical quantity (millimeters vs Pascals). Compared to plantar pressure data arising from surface contact by the foot, the current method takes into account the whole plantar aspect of the foot, including the parts that do not make contact with the support surface. The current approach using height data could contribute to a better understanding of specific aspects of foot motion during walking, such as plantar arch height and the windlass mechanism. Results of this study show the underlying method is reliable. Further investigation is required to validate the DFS measurements within a clinical context, prior to implementation into clinical practice. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Contributions of foot muscles and plantar fascia morphology to foot posture.

    Science.gov (United States)

    Angin, Salih; Mickle, Karen J; Nester, Christopher J

    2018-03-01

    The plantar foot muscles and plantar fascia differ between different foot postures. However, how each individual plantar structure contribute to foot posture has not been explored. The purpose of this study was to investigate the associations between static foot posture and morphology of plantar foot muscles and plantar fascia and thus the contributions of these structures to static foot posture. A total of 111 participants were recruited, 43 were classified as having pes planus and 68 as having normal foot posture using Foot Posture Index assessment tool. Images from the flexor digitorum longus (FDL), flexor hallucis longus (FHL), peroneus longus and brevis (PER), flexor hallucis brevis (FHB), flexor digitorum brevis (FDB) and abductor hallucis (AbH) muscles, and the calcaneal (PF1), middle (PF2) and metatarsal (PF3) regions of the plantar fascia were obtained using a Venue 40 ultrasound system with a 5-13 MHz transducer. In order of decreasing contribution, PF3 > FHB > FHL > PER > FDB were all associated with FPI and able to explain 69% of the change in FPI scores. PF3 was the highest contributor explaining 52% of increases in FPI score. Decreased thickness was associated with increased FPI score. Smaller cross sectional area (CSA) in FHB and PER muscles explained 20% and 8% of increase in FPI score. Larger CSA of FDB and FHL muscles explained 4% and 14% increase in FPI score respectively. The medial plantar structures and the plantar fascia appear to be the major contributors to static foot posture. Elucidating the individual contribution of multiple muscles of the foot could provide insight about their role in the foot posture. Copyright © 2018. Published by Elsevier B.V.

  16. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.

    Science.gov (United States)

    Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P

    2015-06-01

    This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P torque (P torque when the cervical and thoracic spines were flexed (P torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Apparatus and method for variable angle slant hole collimator

    Science.gov (United States)

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  18. [Foot growth and foot types in children and adolescents: a narrative review].

    Science.gov (United States)

    Xu, Miaomiao; Wang, Lin

    2017-08-01

    Foot shape and size are important for footwear design and production. Information about important foot characteristics helps not only to improve shoe comfort but to maintain the proper physiological development of the feet. What's more, plenty of studies have suggested that the shape of the shoe must closely resemble the shape of the foot to create a properly fitted shoe. This means that the differences between various populations should be considered and that footwear should be designed according to the measurements of users. Childhood and adolescent are important periods of human growth. During these periods, foot shape changes with human growth and can be influenced by extrinsic factors. Therefore, the foot shape characteristics of children and adolescents should be investigated. The results from these investigations can contribute to developing appropriate shoe for children and adolescents, improving perceived comfort of children shoes and preventing pedopathy among children and adolescents. This review aims to discuss measuring methods of foot shape, types of foot shape, and factors influencing foot shape. The results of the review can provide recommendations for investigating growth development of foot shape and useful information for consumers and shoe manufacturers.

  19. Midplane Faraday Rotation: A densitometer for BPX

    International Nuclear Information System (INIS)

    Jobes, F.C.; Mansfield, D.K.

    1992-02-01

    The density in a high field, high density tokamak such as BPX can be determined by measuring the Faraday rotation of a 10.6 μm laser directed tangent to the toroidal field. If there is a horizontal array of such beams, then n e (R) can be readily obtained with a simple Abel version about the center line of the tokamak. For BPX operated at full field and density, the rotation angle would be quite large -- about 75 degrees per pass. A layout in which a single laser beam is fanned out in the horizontal midplane of the tokamak, with a set of retroreflectors on the far side of the vacuum vessel, would provide good spatial resolution, depending only upon the number of reflectors. With this proposed layout, only one window would be needed. Because the rotation angle is never more than 1 ''fringe,'' the data is always good, and it is also a continuous measurement in time. Faraday rotation is dependent only upon the plasma itself, and thus is not sensitive to vibration of the optical components. Simulations of the expected results show that BPX would be well served even at low densities by a Midplane Faraday Rotation densitometer of ∼64 channels. Both TFTR and PBX-M would be suitable test beds for the BPX system

  20. Visual and Haptic Mental Rotation

    Directory of Open Access Journals (Sweden)

    Satoshi Shioiri

    2011-10-01

    Full Text Available It is well known that visual information can be retained in several types of memory systems. Haptic information can also be retained in a memory because we can repeat a hand movement. There may be a common memory system for vision and action. On the one hand, it may be convenient to have a common system for acting with visual information. On the other hand, different modalities may have their own memory and use retained information without transforming specific to the modality. We compared memory properties of visual and haptic information. There is a phenomenon known as mental rotation, which is possibly unique to visual representation. The mental rotation is a phenomenon where reaction time increases with the angle of visual target (eg,, a letter to identify. The phenomenon is explained by the difference in time to rotate the representation of the target in the visual sytem. In this study, we compared the effect of stimulus angle on visual and haptic shape identification (two-line shapes were used. We found that a typical effect of mental rotation for the visual stimulus. However, no such effect was found for the haptic stimulus. This difference cannot be explained by the modality differences in response because similar difference was found even when haptical response was used for visual representation and visual response was used for haptic representation. These results indicate that there are independent systems for visual and haptic representations.

  1. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    Science.gov (United States)

    Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  2. Method for high resolution magnetic resonance analysis using magic angle technique

    Science.gov (United States)

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  3. Synchronization of coupled active rotators by common noise

    Science.gov (United States)

    Dolmatova, Anastasiya V.; Goldobin, Denis S.; Pikovsky, Arkady

    2017-12-01

    We study the effect of common noise on coupled active rotators. While such a noise always facilitates synchrony, coupling may be attractive (synchronizing) or repulsive (desynchronizing). We develop an analytical approach based on a transformation to approximate angle-action variables and averaging over fast rotations. For identical rotators, we describe a transition from full to partial synchrony at a critical value of repulsive coupling. For nonidentical rotators, the most nontrivial effect occurs at moderate repulsive coupling, where a juxtaposition of phase locking with frequency repulsion (anti-entrainment) is observed. We show that the frequency repulsion obeys a nontrivial power law.

  4. Rotation Period Determination for 5143 Heracles

    Science.gov (United States)

    Pilcher, Frederick; Briggs, John W.; Franco, Lorenzo; Inasaridze, Raguli Ya.; Krugly, Yurij N.; Molotiv, Igor E.; Klinglesmith, Daniel A., III; Pollock, Joe; Pravec, Petr

    2012-07-01

    The Earth crossing minor planet 5143 Heracles made in late 2011 its closest approach to Earth since discovery. A consortium of observers found a synodic rotation period near 2.706 hours and amplitude increasing from 0.08 ±0.02 magnitudes at phase angle 20 degrees to 0.18 ±0.03 magnitudes at phase angle 87 degrees, with 3 unequal maxima and minima per cycle. Magnitude parameters H = 14.10 ±0.04 and G = 0.08 ±0.02 are found, and the color index V-R = 0.42 ±0.07. For an asteroid of taxonomic class Q, a suggested albedo pv = 0.20 ±0.05 yields estimated diameter D = 4.5 ±0.7 km. Three possible binary events were recorded, but these are insufficient for binary detection to be secure. Retrograde rotation is suggested.

  5. Comparison of acoustic data from a 102 mm conic nozzle as measured in the RAE 24-foot wind tunnel and the NASA Ames 40- by 80-foot wind tunnel

    Science.gov (United States)

    Atencio, A., Jr.; Mckie, J.

    1982-01-01

    A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.

  6. Transonic high Reynolds number stability and control characteristics of a 0.015-scale remotely controlled elevon model (44-0) of the space shuttle orbiter tested in calspan 8-foot TWT (LA70)

    Science.gov (United States)

    Parrell, H.; Gamble, J. D.

    1977-01-01

    Transonic Wind Tunnel tests were run on a .015 scale model of the space shuttle orbiter vehicle in the 8-foot transonic wind tunnel. Purpose of the test program was to obtain basic shuttle aerodynamic data through a full range of elevon and aileron deflections, verification of data obtained at other facilities, and effects of Reynolds number. Tests were performed at Mach numbers from .35 to 1.20 and Reynolds numbers from 3,500,000 to 8,200,000 per foot. The high Reynolds number conditions (nominal 8,000,000/foot) were obtained using the ejector augmentation system. Angle of attack was varied from -2 to +20 degrees at sideslip angles of -2, 0, and +2 degrees. Sideslip was varied from -6 to +8 degrees at constant angles of attack from 0 to +20 degrees. Aileron settings were varied from -5 to +10 degrees at elevon deflections of -10, 0, and +10 degrees. Fixed aileron settings of 0 and 2 degrees in combination with various fixed elevon settings between -20 and +5 degrees were also run at varying angles of attack.

  7. Repeatability of the Oxford Foot Model in children with foot deformity

    NARCIS (Netherlands)

    McCahill, Jennifer; Stebbins, Julie; Koning, Bart; Harlaar, Jaap; Theologis, Tim

    Introduction The Oxford Foot Model (OFM) is a multi-segment, kinematic model developed to assess foot motion. It has previously been assessed for repeatability in healthy populations. To determine the OFM's reliability for detecting foot deformity, it is important to know repeatability in

  8. Foot segmental motion and coupling in stage II and III tibialis posterior tendon dysfunction.

    Science.gov (United States)

    Van de Velde, Maarten; Matricali, Giovanni Arnoldo; Wuite, Sander; Roels, Charlotte; Staes, Filip; Deschamps, Kevin

    2017-06-01

    Classification systems developed in the field of posterior tibialis tendon dysfunction omit to include dynamic measurements. Since this may negatively affect the selection of the most appropriate treatment modality, studies on foot kinematics are highly recommended. Previous research characterised the foot kinematics in patients with posterior tibialis tendon dysfunction. However, none of the studies analysed foot segmental motion synchrony during stance phase, nor compared the kinematic behaviour of the foot in presence of different posterior tibialis tendon dysfunction stages. Therefore, we aimed at comparing foot segmental motion and coupling in patients with posterior tibialis tendon dysfunction grade 2 and 3 to those of asymptomatic subjects. Foot segmental motion of 11 patients suffering from posterior tibialis tendon dysfunction stage 2, 4 patients with posterior tibialis tendon dysfunction stage 3 and 15 asymptomatic subjects was objectively quantified with the Rizzoli foot model using an instrumented walkway and a 3D passive motion capture system. Dependent variables were the range of motion occurring at the different inter-segment angles during subphases of stance and swing phase as well as the cross-correlation coefficient between a number of segments. Significant differences in range of motion were predominantly found during the forefoot push off phase and swing phase. In general, both patient cohorts demonstrated a reduced range of motion compared to the control group. This hypomobility occurred predominantly in the rearfoot and midfoot (pfoot which should be considered in the decision making process since it may help explaining the success and failure of certain conservative and surgical interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Reliability and minimal detectable difference in multisegment foot kinematics during shod walking and running.

    Science.gov (United States)

    Milner, Clare E; Brindle, Richard A

    2016-01-01

    There has been increased interest recently in measuring kinematics within the foot during gait. While several multisegment foot models have appeared in the literature, the Oxford foot model has been used frequently for both walking and running. Several studies have reported the reliability for the Oxford foot model, but most studies to date have reported reliability for barefoot walking. The purpose of this study was to determine between-day (intra-rater) and within-session (inter-trial) reliability of the modified Oxford foot model during shod walking and running and calculate minimum detectable difference for common variables of interest. Healthy adult male runners participated. Participants ran and walked in the gait laboratory for five trials of each. Three-dimensional gait analysis was conducted and foot and ankle joint angle time series data were calculated. Participants returned for a second gait analysis at least 5 days later. Intraclass correlation coefficients and minimum detectable difference were determined for walking and for running, to indicate both within-session and between-day reliability. Overall, relative variables were more reliable than absolute variables, and within-session reliability was greater than between-day reliability. Between-day intraclass correlation coefficients were comparable to those reported previously for adults walking barefoot. It is an extension in the use of the Oxford foot model to incorporate wearing a shoe while maintaining marker placement directly on the skin for each segment. These reliability data for walking and running will aid in the determination of meaningful differences in studies which use this model during shod gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Gender-related differences in lower limb alignment, range of joint motion, and the incidence of sports injuries in Japanese university athletes.

    Science.gov (United States)

    Mitani, Yasuhiro

    2017-01-01

    [Purpose] To investigate the gender-related differences in lower limb alignment, range of joint motion, and history of lower limb sports injuries in Japanese university athletes. [Subjects and Methods] The subjects were 224 Japanese university athletes (154 males and 70 females). The quadriceps angle (Q-angle), arch height index, and ranges of internal and external rotation of the hip joints were measured. History of lower limb sports injury was surveyed using a questionnaire. [Results] Females had a significantly higher Q-angle and hip joint internal rotation angle and a significantly lower arch height index than males. The survey revealed that a significantly higher proportion of females had a history of lower limb sports injuries, and that the proportion of those with a history of foot/ankle injuries was particularly high. [Conclusion] These results suggested that females experience more lower limb sports injuries than males, and that a large proportion of these injuries involve the foot/ankle. Reduced lower limb alignment and increased range of joint motion in females may be risk factors for injury because they lead to increased physical stress being exerted on the lower legs during sporting activities.

  11. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    International Nuclear Information System (INIS)

    Krivoruchenko, Mikhail I

    2009-01-01

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)

  12. Body configuration at first stepping-foot contact predicts backward balance recovery capacity in people with chronic stroke.

    Science.gov (United States)

    de Kam, Digna; Roelofs, Jolanda M B; Geurts, Alexander C H; Weerdesteyn, Vivian

    2018-01-01

    To determine the predictive value of leg and trunk inclination angles at stepping-foot contact for the capacity to recover from a backward balance perturbation with a single step in people after stroke. Twenty-four chronic stroke survivors and 21 healthy controls were included in a cross-sectional study. We studied reactive stepping responses by subjecting participants to multidirectional stance perturbations at different intensities on a translating platform. In this paper we focus on backward perturbations. Participants were instructed to recover from the perturbations with maximally one step. A trial was classified as 'success' if balance was restored according to this instruction. We recorded full-body kinematics and computed: 1) body configuration parameters at first stepping-foot contact (leg and trunk inclination angles) and 2) spatiotemporal step parameters (step onset, step length, step duration and step velocity). We identified predictors of balance recovery capacity using a stepwise logistic regression. Perturbation intensity was also included as a predictor. The model with spatiotemporal parameters (perturbation intensity, step length and step duration) could correctly classify 85% of the trials as success or fail (Nagelkerke R2 = 0.61). In the body configuration model (Nagelkerke R2 = 0.71), perturbation intensity and leg and trunk angles correctly classified the outcome of 86% of the recovery attempts. The goodness of fit was significantly higher for the body configuration model compared to the model with spatiotemporal variables (pmodel. Body configuration at stepping-foot contact is a valid and clinically feasible indicator of backward fall risk in stroke survivors, given its potential to be derived from a single sagittal screenshot.

  13. Characterization of actinide targets by low solid-angle alpha particle counting

    CERN Document Server

    Denecke, B; Pauwels, J; Robouch, P; Gilliam, D M; Hodge, P; Hutchinson, J M R; Nico, J S

    1999-01-01

    Actinide samples were characterized in an interlaboratory comparison between IRMM and NIST, including alpha-particle counting at defined low solid angle and counting in a 2 pi proportional gas counter. For this comparison, nine sup 2 sup 3 sup 3 UF sub 4 samples with high uniformity in the layer thickness were prepared at IRMM by deposition under vacuum. Polished silicon wafers were used as source substrates, and these were rotated during the deposition using a planetary rotation system. The estimated uncertainties for the defined low solid-angle methods were about 0.1% at both NIST and IRMM. The agreement of reported alpha-particle emission rates in the energy range 2.5-5.09 MeV was better than or equal to 0.02% for the defined solid-angle methods. When comparing total alpha-particle emission rates over the larger energy range 0-9 MeV (which includes all emissions from the daughter nuclides and the impurities), the agreement of the defined solid-angle methods was better than or equal to 0.05%. The 2 pi propo...

  14. Is the foot elevation the optimal position for wound healing of a diabetic foot?

    Science.gov (United States)

    Park, D J; Han, S K; Kim, W K

    2010-03-01

    In managing diabetic foot ulcers, foot elevation has generally been recommended to reduce oedema and prevent other sequential problems. However, foot elevation may decrease tissue oxygenation of the foot more than the dependent position since the dependent position is known to increase blood flow within the arterial system. In addition, diabetic foot ulcers, which have peripheral vascular insufficiency, generally have less oedema than other wounds. Therefore, we argue that foot elevation may not be helpful for healing of vascularly compromised diabetic foot ulcers since adequate tissue oxygenation is an essential factor in diabetic wound healing. The purpose of this study was to evaluate the influence of foot height on tissue oxygenation and to determine the optimal foot position to accelerate wound healing of diabetic foot ulcers. This study included 122 cases (73 males and 47 females; two males had bilateral disease) of diabetic foot ulcer patients aged 40-93 years. Trans-cutaneous partial oxygen tension (TcpO(2)) values of diabetic feet were measured before and after foot elevation (n=21). Elevation was achieved by placing a foot over four cushions. We also measured foot TcpO(2) values before and after lowering the feet (n=122). Feet were lowered to the patient's tibial height, approximately 30-35 cm, beside a bed handrail. Due to the large number of lowering measurements, we divided them into five sub-groups according to initial TcpO(2.) Tissue oxygenation values were compared. Foot-elevation-lowered TcpO(2) values before and after elevation were 32.5+/-22.2 and 23.8+/-23.1 mmHg (pFoot-lowering-augmented TcpO(2) values before and after lowering were 44.6+/-23.8 and 58.0+/-25.9 mmHg (pfoot lowering, rather than elevation, significantly augments TcpO(2) and may stimulate healing of diabetic foot ulcers. (c) 2008 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Machine-specific quality assurance procedure for stereotactic treatments with dynamic couch rotations.

    Science.gov (United States)

    Wilson, Byron; Gete, Ermias

    2017-12-01

    We present a method in which the treatment couch's accuracy is measured using the electronic portal imaging device (EPID) and a phantom of our own construction. Using this phantom, we were able to quantify the treatment couch walkout, and the rotation angle accuracy for both static and dynamic couch treatments. These measurements were used to provide an accurate measure of the treatment couch isocenter as well as to verify the couch rotation angle recorded in the trajectory log. The phantom was constructed using a polystyrene slab in which five ball bearings of 4 mm diameter are placed on the same plane at varying radii (0, 2.8, 4.4, 5.6, and 6.7 cm). The couch was rotated through its full extent (-90, 90 degrees) while MV images were acquired continuously. The couch rotational accuracy was calculated using a least squares minimization which fit the locations of the BBs to their expected locations relative to reference setup conditions. Using this approach, rotation angle and isocenter walkout was calculated in three dimensions. These measurements were used to quantify the accuracy of the couch as well as to validate the Varian TrueBeam trajectory logs. Additionally, a method for an EPID-based couch star-shot measurement was developed and compared with the traditional film-based method. The measured couch center of rotation consisted of a cloud of points clustered around the room isocenter within 0.7 mm distance. The trajectory log couch angle values agreed with those recorded in the DICOM header of the EPID images to the third significant digit and the couch rotation angles recorded in the trajectory log and DICOM header agreed with the calculated values to 0.08 degrees. Comparison of couch star-shot measurement developed in this study with film-based star-shot measurements gave an agreement to within 0.2 mm. We have developed a quality assurance method for the treatment couch which is simple, accurate, and enables the user to access a multitude of consistent data

  16. A preliminary case study of the effect of shoe-wearing on the biomechanics of a horse’s foot

    Directory of Open Access Journals (Sweden)

    Olga Panagiotopoulou

    2016-07-01

    Full Text Available Horse racing is a multi-billion-dollar industry that has raised welfare concerns due to injured and euthanized animals. Whilst the cause of musculoskeletal injuries that lead to horse morbidity and mortality is multifactorial, pre-existing pathologies, increased speeds and substrate of the racecourse are likely contributors to foot disease. Horse hooves have the ability to naturally deform during locomotion and dissipate locomotor stresses, yet farriery approaches are utilised to increase performance and protect hooves from wear. Previous studies have assessed the effect of different shoe designs on locomotor performance; however, no biomechanical study has hitherto measured the effect of horseshoes on the stresses of the foot skeleton in vivo. This preliminary study introduces a novel methodology combining three-dimensional data from biplanar radiography with inverse dynamics methods and finite element analysis (FEA to evaluate the effect of a stainless steel shoe on the function of a Thoroughbred horse’s forefoot during walking. Our preliminary results suggest that the stainless steel shoe shifts craniocaudal, mediolateral and vertical GRFs at mid-stance. We document a similar pattern of flexion-extension in the PIP (pastern and DIP (coffin joints between the unshod and shod conditions, with slight variation in rotation angles throughout the stance phase. For both conditions, the PIP and DIP joints begin in a flexed posture and extend over the entire stance phase. At mid-stance, small differences in joint angle are observed in the PIP joint, with the shod condition being more extended than the unshod horse, whereas the DIP joint is extended more in the unshod than the shod condition. We also document that the DIP joint extends more than the PIP after mid-stance and until the end of the stance in both conditions. Our FEA analysis, conducted solely on the bones, shows increased von Mises and Maximum principal stresses on the forefoot phalanges

  17. A descriptive study of step alignment and foot positioning relative to the tee by professional rugby union goal-kickers.

    Science.gov (United States)

    Cockcroft, John; Van Den Heever, Dawie

    2016-01-01

    This study describes foot positioning during the final two steps of the approach to the ball amongst professional rugby goal-kickers. A 3D optical motion capture system was used to test 15 goal-kickers performing 10 goal-kicks. The distance and direction of each step, as well as individual foot contact positions relative to the tee, were measured. The intra- and inter-subject variability was calculated as well as the correlation (Pearson) between the measurements and participant anthropometrics. Inter-subject variability for the final foot position was lowest (placed 0.03 ± 0.07 m behind and 0.33 ± 0.03 m lateral to the tee) and highest for the penultimate step distance (0.666 ± 0.149 m), performed at an angle of 36.1 ± 8.5° external to the final step. The final step length was 1.523 ± 0.124 m, executed at an external angle of 35.5 ± 7.4° to the target line. The intra-subject variability was very low; distances and angles for the 10 kicks varied per participant by 1.6-3.1 cm and 0.7-1.6°, respectively. The results show that even though the participants had variability in their run-up to the tee, final foot position next to the tee was very similar and consistent. Furthermore, the inter- and intra-subject variability could not be attributed to differences in anthropometry. These findings may be useful as normative reference data for coaching, although further work is required to understand the role of other factors such as approach speed and body alignment.

  18. Measurements of Drag Coefficients and Rotation Rates of Free-Falling Helixes

    KAUST Repository

    Al-Omari, Abdulrhaman A.

    2016-01-01

    in water, glycerol and a mixture of 30% glycerol in water. That generated rotation due to helical angle in water. However, we observe the rotation disappear in glycerol. The movement of the solid helical shapes is imaged using a high-speed video camera

  19. Acute effect of different minimalist shoes on foot strike pattern and kinematics in rearfoot strikers during running.

    Science.gov (United States)

    Squadrone, Roberto; Rodano, Renato; Hamill, Joseph; Preatoni, Ezio

    2015-01-01

    Despite the growing interest in minimalist shoes, no studies have compared the efficacy of different types of minimalist shoe models in reproducing barefoot running patterns and in eliciting biomechanical changes that make them differ from standard cushioned running shoes. The aim of this study was to investigate the acute effects of different footwear models, marketed as "minimalist" by their manufacturer, on running biomechanics. Six running shoes marketed as barefoot/minimalist models, a standard cushioned shoe and the barefoot condition were tested. Foot-/shoe-ground pressure and three-dimensional lower limb kinematics were measured in experienced rearfoot strike runners while they were running at 3.33 m · s⁻¹ on an instrumented treadmill. Physical and mechanical characteristics of shoes (mass, heel and forefoot sole thickness, shock absorption and flexibility) were measured with laboratory tests. There were significant changes in foot strike pattern (described by the strike index and foot contact angle) and spatio-temporal stride characteristics, whereas only some among the other selected kinematic parameters (i.e. knee angles and hip vertical displacement) changed accordingly. Different types of minimalist footwear models induced different changes. It appears that minimalist footwear with lower heel heights and minimal shock absorption is more effective in replicating barefoot running.

  20. Rod rotation and differential rod contouring followed by direct vertebral rotation for treatment of adolescent idiopathic scoliosis: effect on thoracic and thoracolumbar or lumbar curves assessed with intraoperative computed tomography.

    Science.gov (United States)

    Seki, Shoji; Kawaguchi, Yoshiharu; Nakano, Masato; Makino, Hiroto; Mine, Hayato; Kimura, Tomoatsu

    2016-03-01

    Although direct vertebral rotation (DVR) is now used worldwide for the surgical treatment of adolescent idiopathic scoliosis (AIS), the benefit of DVR in reducing vertebral body rotation in these patients has not been determined. We investigated a possible additive effect of DVR on further reduction of vertebral body rotation in the axial plane following intraoperative rod rotation or differential rod contouring in patients undergoing surgical treatment for AIS. The study was a prospective computed tomography (CT) image analysis. We analyzed the results of the two intraoperative procedures in 30 consecutive patients undergoing surgery for AIS (Lenke type I or II: 15; Lenke type V: 15). The angle of reduction of vertebral body rotation taken by intraoperative CT scan was measured and analyzed. Pre- and postoperative responses to the Scoliosis Research Society 22 Questionnaire (SRS-22) were also analyzed. To analyze the reduction of vertebral body rotation with rod rotation or DVR, intraoperative cone-beam CT scans of the three apical vertebrae of the major curve of the scoliosis (90 vertebrae) were taken pre-rod rotation (baseline), post-rod rotation with differential rod contouring, and post-DVR in all patients. The angle of vertebral body rotation in these apical vertebrae was measured and analyzed for statistical significance. Additionally, differences between thoracic curve scoliosis (Lenke type I or II; 45 vertebrae) and thoracolumbar or lumbar curve scoliosis (Lenke type V; 45 vertebrae) were analyzed. Pre- and postoperative SRS-22 scores were evaluated in all patients. The mean (90 vertebrae) vertebral body rotation angles at baseline, post-rod rotation or differential rod contouring, and post-rod rotation or differential rod contouring or post-DVR were 17.3°, 11.1°, and 6.9°, respectively. The mean reduction in vertebral body rotation with the rod rotation technique was 6.8° for thoracic curves and 5.7° for thoracolumbar or lumbar curves (pself

  1. Rotational magnetization of anisotropic media: Lag angle, ellipticity and accommodation

    International Nuclear Information System (INIS)

    Kahler, G.R.; Della Torre, E.

    2006-01-01

    This paper discusses the change in the ellipticity of two-dimensional magnetization trajectories as the applied field rotates from the easy axis to the hard axis of a material. Furthermore, the impact that the reversible magnetization has on the ellipticity is discussed, including the relationship between the magnetization squareness and the reversible component of the magnetization

  2. Asteroid rotation. IV

    International Nuclear Information System (INIS)

    Harris, A.W.; Young, J.W.

    1983-01-01

    The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

  3. An imaging method of wavefront coding system based on phase plate rotation

    Science.gov (United States)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  4. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    Energy Technology Data Exchange (ETDEWEB)

    Habib, K. M. Masum, E-mail: khabib@ee.ucr.edu; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K., E-mail: rlake@ee.ucr.edu [Department of Electrical Engineering, University of California, Riverside, California 92521-0204 (United States); Ge, Supeng [Department of Physics and Astronomy, University of California, Riverside, California 92521-0204 (United States)

    2013-12-09

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm{sup 2}. For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described.

  5. The coherent interlayer resistance of a single, rotated interface between two stacks of AB graphite

    International Nuclear Information System (INIS)

    Habib, K. M. Masum; Sylvia, Somaia S.; Neupane, Mahesh; Lake, Roger K.; Ge, Supeng

    2013-01-01

    The coherent, interlayer resistance of a misoriented, rotated interface between two stacks of AB graphite is determined for a variety of misorientation angles. The quantum-resistance of the ideal AB stack is on the order of 1 to 10 mΩ μm 2 . For small rotation angles, the coherent interlayer resistance exponentially approaches the ideal quantum resistance at energies away from the charge neutrality point. Over a range of intermediate angles, the resistance increases exponentially with cell size for minimum size unit cells. Larger cell sizes, of similar angles, may not follow this trend. The energy dependence of the interlayer transmission is described

  6. A superellipsoid-plane model for simulating foot-ground contact during human gait.

    Science.gov (United States)

    Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T

    2016-01-01

    Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

  7. Visualization and spectral synthesis of rotationally distorted stars

    International Nuclear Information System (INIS)

    Dall, T H; Sbordone, L

    2011-01-01

    Simple spherical, non-rotating stellar models are inadequate when describing real stars in the limit of very fast rotation: Both the observable spectrum and the geometrical shape of the star deviate strongly from simple models. We attempt to approach the problem of modeling geometrically distorted, rapidly rotating stars from a new angle: By constructing distorted geometrical models and integrating standard stellar models with varying temperature, gravity, and abundances, over the entire surface, we attempt a semi-empirical approach to modeling. Here we present our methodology, and present simple examples of applications.

  8. Can orthoses and navicular drop affect foot motion patterns during running?

    Science.gov (United States)

    Eslami, Mansour; Ferber, Reed

    2013-07-01

    The purpose of this study was to examine the influence of semi-rigid foot orthoses on forefoot-rearfoot joint coupling patterns in individuals with different navicular drop measures during heel-toe running. Ten trials were collected from twenty-three male subjects who ran slowly shod at 170 steps per minute (2.23m/s) with a semi-rigid orthoses and without. Forefoot-rearfoot coupling motions were assessed using a vector coding technique during four intervals across the first 50% of stance. Subjects were divided into two groups based on navicular drop measures. A three way ANOVA was performed to examine the interaction and main effects of stance interval, orthoses condition and navicular drop (pForefoot-rearfoot coupling motion in the no-orthoses condition increased from heel-strike to foot-flat phase at a rate faster than the orthoses condition (p=0.02). Foot orthoses significantly decrease the forefoot-rearfoot joint coupling angle by reducing forefoot frontal plane motion relative to the rearfoot. Navicular drop measures did not influence joint coupling relationships between the forefoot and rearfoot during the first 50% of stance regardless of orthotic condition. Copyright © 2012 Sports Medicine Australia. All rights reserved.

  9. Wind tunnel tests on a one-foot diameter SR-7L propfan model

    Science.gov (United States)

    Aljabri, Abdullah S.

    1987-01-01

    Wind tunnel tests have been conducted on a one-foot diameter model of the SR-7L propfan in the Langley 16-Foot and 4 x 7 Meter Wind Tunnels as part of the Propfan Test Assessment (PTA) Program. The model propfan was sized to be used on a 1/9-scale model of the PTA testbed aircraft. The model propeller was tested in isolation and wing-mounted on the aircraft configuration at various Mach numbers and blade pitch angles. Agreement between data obtained from these tests and data from Hamilton Standard validate that the 1/9-scale propeller accurately simulates the aerodynamics of the SR-7L propfan. Predictions from an analytical computer program are presented and show good agreement with the experimental data.

  10. Flux expulsion and trapping in rotating discs of type II superconductors

    International Nuclear Information System (INIS)

    Boyer, R.; Leblanc, M.A.R.

    1977-01-01

    The magnetic flux rotating in step with a type II superconducting disc is measured with orthogonal pick up coils for various previous magnetic histories vs H 0 applied at right angles to the axis of rotation. For some initial magnetic states, flux expulsion, independent of the rate of rotation, occurs during the initial rotation. A simple model where flux lines leave the specimen against the magnetic pressure in the active region accounts for the observations. (author)

  11. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    Science.gov (United States)

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  12. Foot Kinetics and Kinematics Profile in Type 2 Diabetes Mellitus with Peripheral Neuropathy: A Hospital Based Study from South India.

    Science.gov (United States)

    Hazari, Animesh; Maiya, Arun G; N, Shivashankara K

    2018-02-01

    A kinetic change in thefoot like altered plantar pressure is the most common etiological risk factor for causing foot ulcers among people with diabetes mellitus. Kinematic alterations in joint angle and spatiotemporal parameters of the gait have also been frequently observed in participants with diabetes peripheral neuropathy. Diabetes peripheral neuropathy is the most common long-term standing complication of type 2 diabetes mellitus. It leads to various micro and macrovascular related complication of the foot. There is a gap in theliteraturefor biomechanical evaluation and assessment in type 2 diabetes mellitus with peripheral neuropathy in Indian population. The aim of the study was to assess and determine the biomechanical changes including kinetics and kinematics of foot among diabetic peripheral neuropathy. The cross-sectional study was conducted at Diabetic Foot Clinic, Kasturba Hospital, Manipal University, Manipal, Karnataka, India. A total of 120 participants with type 2 diabetes mellitus and peripheral neuropathywere recruited under the purposive sampling method. Participants with any active ulceration or amputation were excluded from the study. The mean age, height, weight, body mass index, duration of diabetes was 57±14 year, 164±11cm, 61±18kg, 24± 3, 12±7 year respectively. There were significant changes in overall biomechanical profile along with clinical manifestations of diabetes peripheral neuropathy.The regression analysis showed statistical significance for dynamic maximum plantar pressure at forefoot with age, weight, height, duration of diabetes, body mass index, knee & ankle joint angle at toe-off phase of gait cycle,pinprick sensation and ankle reflex (R=.71,R =.55, F (12, 108)=521.9 kPa, p=.002) Conclusions: From the present study, we conclude that people with type 2 diabetes mellitus and peripheral neuropathy have significant changes in their foot kinetics and kinematicsparameters. Therefore, they could be at higher risk of foot

  13. Subsonic stability and control characteristics of a 0.015-scale (remotely controlled elevon) model 44-0 of the space shuttle orbiter tested in the NASA/ARC 12-foot pressure tunnel (LA66)

    Science.gov (United States)

    Underwood, J. M.; Parrell, H.

    1976-01-01

    The investigation was conducted in the NASA/Ames Research Center 12-foot Pressure Tunnel. The model was a Langley-built 0.015-scale SSV orbiter model with remote independently operated left and right elevon surfaces. The objective of the test was to generate a detailed aerodynamic data base for the current shuttle orbiter configuration. Special attention was directed to definition of nonlinear aerodynamic characteristics by taking data at small increments in angle of attack, angle of sideslip, and elevon position. Six-component aerodynamic force and moment and elevon position data were recorded over an angle of attack range from -4 deg to 24 deg at angles of sideslip of 0 deg and + or - 4 deg. Additional tests were made over an angle of sideslip range from -6 deg to 6 deg at selected angles of attack. The test Mach numbers were 0.22 and 0.29 and the Reynolds number was varied from 2.0 to 8.5 million per foot.

  14. Charcot Foot

    Science.gov (United States)

    ... damage (neuropathy). The bones are weakened enough to fracture, and with continued walking, the foot eventually changes ... difference. Advanced therapies for foot wounds are saving limbs, restoring ... in the feet come from the lower back. Pressure or chemical change in the nerve ...

  15. Effect of the degree of sternal depression on the cardiac rotation in pectus excavatum: evaluation with spiral CT

    International Nuclear Information System (INIS)

    Yu Jianqun; Yang Zhigang; Li Zhenlin; Guo Yingkun; Lu Chunyan; Zhang Mei

    2004-01-01

    Objective: To evaluate the effects of the degree of sternal depression on the cardiac rotation in pectus excavatum by using spiral CT. Methods: Spiral CT features of 32 patients with surgically corrected pectus excavatum were retrospectively reviewed. They included 27 males and 5 females ranging in age from 6 months to 17 years (mean, 6.3 years). Analysis was based on relationship among the degree of sternal depression, CT depression index, cardiac rotation angle, and PV angle. Results: 32 cases of pectus excavatum presented the sternal depression (21 ± 7) mm, CT depression index 2.9 ± 1.8, cardiac rotation angle (55.9 ± 9.8) degree, and PV angle (49.8 ± 14.0) degree, respectively. The sternal depression (17 mm) in cases with CT depression index less than 2.4 was smaller than those with CT depression index 2.4-2.9 (21 mm) and CT depression index larger than 2.9 (27 mm) (F 5.39, P<0.01). Cardiac rotation angle (49.7 degree) in cases with CT depression index less than 2.4 was smaller than those with CT depression index 2.4-2.9 (55.5 degree) and CT depression index larger than 2.9 (66.9 degree) (F=7.44, P<0.01). PV angle (58.7 degree) in cases with CT depression index less than 2.4 was larger than those with CT depression index 2.4-2.9 (46.5 degree) and CT depression index more than 2.9 (42.4 degree) ( F=3.33, P<0.05). Cardiac rotation angle of pectus excavatum had positive correlation with the CT depression index (γ=0.73, P<0.01). Conclusion: Spiral CT is a better tool for revealing chest deformity and corresponding cardiac rotation. The degree of sternal depression in pectus excavatum directly influences the cardiac rotation, and they had positive correlation. (authors)

  16. Measurement of plasma conductivity using faraday rotation of submillimeter waves

    International Nuclear Information System (INIS)

    Kuzmenko, P.J.; Self, S.A.

    1983-01-01

    This paper examines the application of Faraday rotation to the measurement of electron combustion MHD plasmas. Details on the design of a working system are given, including the selection of operating wavelength. A theoretical comparison between the Faraday rotation technique and two-path interferometry shows Faraday rotation in its simplest form to be somewhat less sensitive to changes in electron concentration. This deficit can be balanced against greater immunity to vibration and thermal drift. Improved techniques of measuring the rotation angle promise greater sensitivity. A preliminary experiment has verified the technique

  17. METHODOLOGICAL NOTES: Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    Science.gov (United States)

    Krivoruchenko, Mikhail I.

    2009-08-01

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect).

  18. Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere

    Science.gov (United States)

    Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng

    2018-03-01

    Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.

  19. Natural gaits of the non-pathological flat foot and high-arched foot

    OpenAIRE

    Fan, Yifang; Fan, Yubo; Li, Zhiyu; Lv, Changsheng; Luo, Donglin

    2010-01-01

    There has been a controversy as to whether or not the non-pathological flat foot and high-arched foot have an effect on human walking activities. The 3D foot scanning system was employed to obtain static footprints from subjects adopting a half-weight-bearing stance. Based upon their footprints, the subjects were divided into two groups: the flat-footed and the high-arched. The plantar pressure measurement system was used to measure and record the subjects' successive natural gaits. Two indic...

  20. Uniform analytic approximation of Wigner rotation matrices

    Science.gov (United States)

    Hoffmann, Scott E.

    2018-02-01

    We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.

  1. Garnet film rotator applied in polarizing microscope for domain image modulation (abstract)

    Science.gov (United States)

    Wakabayashi, K.; Numata, T.; Inokuchi, S.

    1991-04-01

    A garnet film polarization rotator placed before the analyzer in a polarizing microscope was investigated to obtain the difference image of a positive and a negative one of magnetic domain in real time along with an image processor. In the difference image, a nonmagnetic image can be reduced and hence the weak magnetic contrast enhanced. Theoretical calculation of S/N and contrast C of the domain image as a function of the rotation shows they take maxima at the rotation angle of 2.6° and 0.1°, respectively, with the extinction ratio of e=4×10-6 of a polarizing microscope. Thus, since the thickness of the garnet film required is 1 μm or so, the absorption by the garnet rotator does not bring a serious problem even in a visible region for the domain observation. The optimum rotation of the rotator for a high quality observation was obtained by a quantitative study of images obtained experimentally as well as by a visual evaluation. A magnetically unsaturated garnet film with perpendicular magnetization (i.e., multidomain) was employed as a rotator, in which the polarization rotation angle θm of the undeflected beam with respect to the light diffraction could be continuously varied by an applied magnetic field. The dependences of S/N and C on θm were measured, resulting in a well agreement between the measured and the calculated. The visually best image was obtained at θm=0.5° which made the product of S/N and C maximum. The domain image of the Kerr rotation angle of θk=0.22° was observed in S/N=47 dB and C=0.4 when Ar+ laser (λ=515 nm) of tenths of a watt was employed as a light source. Since the domain image with 47 dB S/N does not need an image summation for a noise reduction, a garnet film rotator makes it possible to invert the contrast of a domain image in a real time for an improved domain observation.

  2. Non-reciprocity of Faraday rotation in gyrotropic crystals

    OpenAIRE

    Vlokh R.; Adamenko D.

    2008-01-01

    It is shown that, under the conditions of coexisting natural optical activity and non-zero linear optical birefringence, reversal of the light wave vector sign can result in changing angle of Faraday rotation.

  3. Crime scene reconstruction-Sex prediction from blood stained foot sole impressions.

    Science.gov (United States)

    Basu, Nabanita; Bandyopadhyay, Samir Kumar

    2017-09-01

    It is often difficult to predict the sex of an individual based on bloody incomplete footprints. However, such prints/impressions are particularly common in a crime scene. Again variability in the texture, color of the target surface has an impact on the bloodstained impression formed. The study of bare foot, footprint, footwear (i.e. shoe, canvas etc.) within the legal context is referred to as forensic podiatry. Based on the fact that it is possible to predict the sex of an individual from footprint impressions, an automated model has been proposed in this paper for analyzing the sex of an individual from his/her broken/incomplete footprint impressions based on morphological features alone. Five male and female volunteers aged between 20 to 65 years participated in dataset development. Keeping the blood volume constant and having stepped on differently shaped porcine blood pools, the individuals were asked to walk on herbarium sheets. The footprints were recorded and documented in accordance with the guidelines in place for physical evidence documentation within the forensic domain. The morphological features that were extracted from each of the footprint impressions are footprint length, footprint breadth, angle of walking, approximated heel radius etc. Using exhaustive cross validation technique, the dataset was divided into training and test set. Non-redundant, relevant features that are particularly effective at sex prediction were marked out using the relief algorithm in coherence with the correlation metric. Supervised learning techniques were used on the dataset to predict the sex of the owner of an unknown footprint. The study concentrates on morphological features in order to deal with bloodstain footprint transfer stains formed on any non-porous/non-absorbent surfaces such as cemented floor, glass, mosaic floor space, colored and designed tiled floor spaces. Features such as the angle of walking and foot breadth were found to be particularly influential

  4. Analyzing the Influence of the Angles of Incidence and Rotation on MBU Events Induced by Low LET Heavy Ions in a 28-nm SRAM-Based FPGA

    Science.gov (United States)

    Tonfat, Jorge; Kastensmidt, Fernanda Lima; Artola, Laurent; Hubert, Guillaume; Medina, Nilberto H.; Added, Nemitala; Aguiar, Vitor A. P.; Aguirre, Fernando; Macchione, Eduardo L. A.; Silveira, Marcilei A. G.

    2017-08-01

    This paper shows the impact of low linear energy transfer heavy ions on the reliability of 28-nm Bulk static random access memory (RAM) cells from Artix-7 field-programmable gate array. Irradiation tests on the ground showed significant differences in the multiple bit upset cross section of configuration RAM and block RAM memory cells under various angles of incidence and rotation of the device. Experimental data are analyzed at transistor level by using the single-event effect prediction tool called multiscale single-event phenomenon prediction platform coupled with SPICE simulations.

  5. Recent VLA Measurements of CME-Induced Faraday Rotation

    Science.gov (United States)

    Kooi, Jason; Thomas, Najma; Guy, Michael; Spangler, Steven R.

    2018-01-01

    Observations of Faraday rotation, the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma, have been used for decades to determine the strength and structure of the coronal magnetic field and plasma density. Similarly, observations of Faraday rotation through a coronal mass ejection (CME) have the potential to improve our understanding of the CME’s plasma structure. We report recent results from simultaneous white-light coronagraph and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of cosmic radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. A unique aspect of these observations is that the CME occulted several of these radio sources and, therefore, our Faraday rotation measurements provide information on the plasma structure in different regions of the CME. We successfully measured CME-induced Faraday rotation along multiple lines of sight because we made special arrangements with the staff at the National Radio Astronomy Observatory to trigger VLA observations when a candidate CME appeared low in the corona in near real-time images from the Large Angle and Spectrometric Coronagraph (LASCO) C2 instrument.

  6. Spatial asymmetry of post-stroke hemiparetic gait: assessment and ...

    African Journals Online (AJOL)

    Despite potential benefits, quantitative analysis of gait asymmetry is still not routinely used in many hospitals and rehabilitation institutions in developing countries due to ... Conclusion: Overall, the study demonstrated asymmetry of step length and foot rotation angle during walking of post-stroke hemiparetic individuals and ...

  7. Foot placement modulation diminishes for perturbations near foot contact

    NARCIS (Netherlands)

    Vlutters, Mark; Van Asseldonk, Edwin H.F.; van der Kooij, Herman

    2018-01-01

    Whenever a perturbation occurs during walking we have to maintain our balance using the recovery strategies that are available to us. Foot placement adjustment is often considered an important recovery strategy. However, because this strategy takes time it is likely a poor option if the foot is

  8. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures

    International Nuclear Information System (INIS)

    Széchenyi, Gábor; Vigh, Máté; Cserti, József; Kormányos, Andor

    2016-01-01

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model. (paper)

  9. Rotation of small clusters in sheared metallic glasses

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: When a Cu 50 Ti 50 metallic glass is shear-deformed, the irreversible rearrangement of local structures allows the rigid body rotation of clusters. Highlights: → A shear-deformed Cu 50 Ti 50 metallic glass was studied by molecular dynamics. → Atomic displacements occur at irreversible rearrangements of local structures. → The dynamics of such events includes the rigid body rotation of clusters. → Relatively large clusters can undergo two or more complete rotations. - Abstract: Molecular dynamics methods were used to simulate the response of a Cu 50 Ti 50 metallic glass to shear deformation. Attention was focused on the atomic displacements taking place during the irreversible rearrangement of local atomic structures. It is shown that the apparently disordered dynamics of such events hides the rigid body rotation of small clusters. Cluster rotation was investigated by evaluating rotation angle, axis and lifetimes. This permitted to point out that relatively large clusters can undergo two or more complete rotations.

  10. Correlates between kinematics and baropodometric measurements for an integrated in-vivo assessment of the segmental foot function in gait.

    Science.gov (United States)

    Giacomozzi, Claudia; Leardini, Alberto; Caravaggi, Paolo

    2014-08-22

    Baropodometry and multi-segmental foot kinematics are frequently employed to obtain insight into the mechanics of the foot-ground interaction in both basic research and clinical settings. However, nothing hitherto has been reported on the full integration of kinematics with baropodometric parameters, and only a few studies have addressed the association between intersegmental kinematics and plantar loading within specific foot regions. The aim of this study was to understanding the relationships between foot joint mobility and plantar loading by focusing on the correlation between these two measures. An integrated pressure-force-kinematics system was used to measure plantar pressure and rotations between foot segments during the stance phase of walking in 10 healthy subjects. An anatomically-based mask was applied to each footprint to obtain six regions according to the position of the markers; hence each kinematic segment was paired with a corresponding area of the plantar surface. Relationships between segmental motion and relevant baropodometric data were explored by means of correlation analysis. Negative, weak-to-moderate correlations (R(2)plantar pressure in almost all regions. The study helps improve our understanding of the relationship between joint mobility and plantar loading in the healthy foot and represents a critical preliminary analysis before addressing possible clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Primordial gravitational waves measurements and anisotropies of CMB polarization rotation

    Directory of Open Access Journals (Sweden)

    Si-Yu Li

    2015-12-01

    Full Text Available Searching for the signal of primordial gravitational waves in the B-modes (BB power spectrum is one of the key scientific aims of the cosmic microwave background (CMB polarization experiments. However, this could be easily contaminated by several foreground issues, such as the interstellar dust grains and the galactic cyclotron electrons. In this paper we study another mechanism, the cosmic birefringence, which can be introduced by a CPT-violating interaction between CMB photons and an external scalar field. Such kind of interaction could give rise to the rotation of the linear polarization state of CMB photons, and consequently induce the CMB BB power spectrum, which could mimic the signal of primordial gravitational waves at large scales. With the recently released polarization data of BICEP2 and the joint analysis data of BICEP2/Keck Array and Planck, we perform a global fitting analysis on constraining the tensor-to-scalar ratio r by considering the polarization rotation angle [α(nˆ] which can be separated into a background isotropic part [α¯] and a small anisotropic part [Δα(nˆ]. Since the data of BICEP2 and Keck Array experiments have already been corrected by using the “self-calibration” method, here we mainly focus on the effects from the anisotropies of CMB polarization rotation angle. We find that including Δα(nˆ in the analysis could slightly weaken the constraints on the tensor-to-scalar ratio r, when using current CMB polarization measurements. We also simulate the mock CMB data with the BICEP3-like sensitivity. Very interestingly, we find that if the effects of the anisotropic polarization rotation angle could not be taken into account properly in the analysis, the constraints on r will be dramatically biased. This implies that we need to break the degeneracy between the anisotropies of the CMB polarization rotation angle and the CMB primordial tensor perturbations, in order to measure the signal of primordial

  12. Examination of the Correlation Between Foot Morphology Measurements Using Pedography and Radiographic Measurements.

    Science.gov (United States)

    Inui, Kentaro; Ikoma, Kazuya; Imai, Kan; Ohashi, Suzuyo; Maki, Masahiro; Kido, Masamitsu; Hara, Yusuke; Oka, Yoshinobu; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    Pedography provides excellent visualization of the footprint. However, the correlation between the footprint images and radiographic measures has not been thoroughly evaluated. Therefore, the objectives of our study were to examine the correlation between the pedography-based measures of foot morphology and radiographic measurements and to propose reference values for the diagnosis of flatfoot using footprint imaging. The plantar footprints of 100 right feet were photographed using a pedography standing platform. The sole and arch areas were measured to calculate the footprint index (FPI). The lateral talar-first metatarsal angle (LTM) and calcaneal pitch angle (CP) were measured on standing lateral radiographs, and the talonavicular coverage angle was measured on frontal radiographs. The Pearson moment correlation between the FPI and radiography-based measures was calculated. The area under the receiver operating characteristic curve was calculated using an LTM of <-4° as the identifying criterion of flatfoot. The sensitivity and specificity of FPI were calculated for LTM values <-4°. The FPI correlated with the LTM (y = -17.964 ± 52.644x, R = 0.588) and CP (y = 9.2304 ± 27.739x, R = 0.659) but not with the talonavicular coverage angle (y = 26.01 ± 15.78x, R = 0.207). The area under the receiver operating characteristic curve was 0.753, with a cutoff FPI of 0.208, yielding a sensitivity of 0.462 and specificity of 0.934 for flatfoot identification. Pedography could provide an easy screening tool for flatfoot, with an FPI cutoff of 0.208, yielding a specificity of 93.4%. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Giant enhancement of Kerr rotation in two-dimensional Bismuth iron garnet/Ag photonic crystals

    International Nuclear Information System (INIS)

    Liang Hong; Zhang Qiang; Liu Huan; Fu Shu-Fang; Zhou Sheng; Wang Xuan-Zhang

    2015-01-01

    Kerr effects of two-dimensional (2D) Bismuth iron garnet (BIG)/Ag photonic crystals (PCs) combined magnetic and plasmonic functionalities is investigated with the effective medium theory. An analytical expression of Kerr rotation angles is derived, in which the effects of the surface pasmons polaritons (SPP) on magneto–optical (MO) activities are reflected. The largest enhancement of Kerr rotation up to now is demonstrated, which is improved three orders of magnitude compared with that of BIG film. When λ < 750 nm all of the reflection are over 10% for the arbitrary filling ratio f 1 , in addition, the enhancement of Kerr rotation angles are at least one order of magnitude. (paper)

  14. Synthesis of optical holograms of rotating objects

    International Nuclear Information System (INIS)

    Bogdanova, T.V.; Titar', V.P.; Tomchuk, E.Ya.

    1998-01-01

    A method of synthesis of rotating objects is analyzed and its advantages over the previously known methods and restrictions caused by the nonlinear character of motion of objects being studied are determined. Numerical simulation is used to study properties of synthesized holograms and the images reconstructed with their help. The resolving power of synthesized holograms is determined. The pulsed response of the system used for the synthesis of rotating objects is studied and its isoplanar sections are determined. It is shown that in the optical range, in contrast to the radio-frequency range, one can synthesize holograms and reconstruct visual images not only of rotating objects, but of vibrating objects as well. For small angles of object rotation (0.0025 rad), an image with a high resolution power (0.0004 m) can be obtained

  15. Rotation of the swing plane of Foucault's pendulum and Thomas spin precession: two sides of one coin

    Energy Technology Data Exchange (ETDEWEB)

    Krivoruchenko, Mikhail I [Alikhanov Institute for Theoretical and Experimental Physics, Russian Federation State Scientific Center, Moscow (Russian Federation)

    2009-08-31

    Using elementary geometric tools, we apply essentially the same methods to derive expressions for the rotation angle of the swing plane of Foucault's pendulum and the rotation angle of the spin of a relativistic particle moving in a circular orbit (the Thomas precession effect). (methodological notes)

  16. Can arthroscopic rotator cuff repair prevent proximal migration of the humeral head?

    Directory of Open Access Journals (Sweden)

    Pablo Sanz-Ruiz

    2015-12-01

    Full Text Available Introduction: Shoulder arthroscopy has become increasingly used in recent years, especially in rotator cuff repair. The purpose of this study was to determine whether arthroscopic rotator cuff repair could prevent proximal migration of the humeral head. Material and Methods: We performed a retrospective study of 56 patients suffering from shoulder pain. They were divided into two groups, one comprising patients with impingement syndrome who underwent acromioplasty only and another comprising patients with rotator cuff tear who underwent acromioplasty combined with rotator cuff repair. The pre-operative Hirooka angle and the results of the simple shoulder test (SST were compared after 1 year. Results: We found no differences between the groups for the Hirooka angle or SST results. We did find a significant difference (P<0.05 between pre-operative and post-operative SST results. Conclusions: Rotator cuff repair using arthroscopy is a minimally invasive procedure that improves function and prevents proximal migration of the humeral head after 1 year of follow-up. [Arch Clin Exp Surg 2015; 4(4.000: 190-195

  17. Action-angle variables for spherical mechanics related to near horizon extremal Myers–Perry black hole

    International Nuclear Information System (INIS)

    Galajinsky, Anton; Nersessian, Armen; Saghatelian, Armen

    2013-01-01

    The action-angle formulation for the spherical part of the conformal mechanics describing a massive relativistic particle moving near the horizon of an extremal rotating black hole in arbitrary dimension is presented for the special case that all rotation parameters are equal

  18. Foot problems in a group of patients with rheumatoid arthritis: an unmet need for foot care.

    Science.gov (United States)

    Borman, Pinar; Ayhan, Figen; Tuncay, Figen; Sahin, Mehtap

    2012-01-01

    The aim of this study was to evaluate the foot involvement in a group of RA patients in regard to symptoms, type and frequency of deformities, location, radiological changes, and foot care. A randomized selected 100 rheumatoid arthritis (RA) patients were recruited to the study. Data about foot symptoms, duration and location of foot pain, pain intensity, access to services related to foot, treatment, orthoses and assistive devices, and usefulness of therapies were determined by the questionnaire. Radiological changes were assessed according to modified Larsen scoring system. The scores of disease activity scale of 28 joints and Health Assessment Questionnaire indicating the functional status of RA patients were collected from patient files. A total of 100 RA patients (90 female, 10 male) with a mean age of 52.5 ±10.9 years were enrolled to the study. Eighty-nine of the 100 patients had experienced foot complaints/symptoms in the past or currently. Foot pain and foot symptoms were reported as the first site of involvement in 14 patients. Thirty-six patients had ankle pain and the most common sites of the foot symptoms were ankle (36%) and forefoot (30%) followed by hindfoot (17%) and midfoot (7%) currently. Forty-nine of the patients described that they had difficulty in performing their foot care. Insoles and orthopedic shoes were prescribed in 39 patients, but only 14 of them continued to use them. The main reasons for not wearing them were; 17 not helpful (43%), 5 made foot pain worse (12.8%), and 3 did not fit (7.6%). Foot symptoms were reported to be decreased in 24 % of the subjects after the medical treatment and 6 patients indicated that they had underwent foot surgery. Current foot pain was significantly associated with higher body mass index and longer disease duration, and duration of morning stiffness. The radiological scores did not correlate with duration of foot symptoms and current foot pain (p>0.05) but the total number of foot deformities was

  19. The role of foot morphology on foot function in diabetic subjects with or without neuropathy.

    Science.gov (United States)

    Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Cristoferi, Giuseppe; Avogaro, Angelo; Cobelli, Claudio

    2013-04-01

    The aim of this study was to investigate the role of foot morphology, related with respect to diabetes and peripheral neuropathy in altering foot kinematics and plantar pressure during gait. Healthy and diabetic subjects with or without neuropathy with different foot types were analyzed. Three dimensional multisegment foot kinematics and plantar pressures were assessed on 120 feet: 40 feet (24 cavus, 20 with valgus heel and 11 with hallux valgus) in the control group, 80 feet in the diabetic (25 cavus 13 with valgus heel and 13 with hallux valgus) and the neuropathic groups (28 cavus, 24 with valgus heel and 18 with hallux valgus). Subjects were classified according to their foot morphology allowing further comparisons among the subgroups with the same foot morphology. When comparing neuropathic subjects with cavus foot, valgus heel with controls with the same foot morphology, important differences were noticed: increased dorsiflexion and peak plantar pressure on the forefoot (Pfoot morphology in altering both kinematics and plantar pressure in diabetic subjects, diabetes appeared to further contribute in altering foot biomechanics. Surprisingly, all the diabetic subjects with normal foot arch or with valgus hallux were no more likely to display significant differences in biomechanics parameters than controls. This data could be considered a valuable support for future research on diabetic foot function, and in planning preventive interventions. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace.

    Science.gov (United States)

    Burdett, R G; Borello-France, D; Blatchly, C; Potter, C

    1988-08-01

    The effects of the Air-Stirrup (AS) standard ankle brace on the gait of 19 subjects with hemiplegia resulting from a cerebrovascular accident who exhibited excessive subtalar joint motion were studied. Videotaped trials and footprint analyses were used to measure subjects' hip, knee, and ankle sagittal plane angles; inversion and eversion of the calcaneus; and time-distance gait characteristics. A one-way analysis of variance for repeated measures was used to compare the gait of 19 subjects with the AS brace and unbraced and 11 subjects with the AS brace, unbraced, and with an ankle-foot orthosis. The AS brace was associated with more calcaneal stability during standing than the unbraced condition. The ankle-foot orthosis was associated with less plantar flexion at foot-strike than either the AS brace or unbraced condition. Both the AS brace and the ankle-foot orthosis were associated with less mid-swing plantar flexion and increased step length on the paretic side compared with no brace. These results support the effectiveness of the AS brace in controlling inversion and eversion instability in patients with hemiplegia.

  1. Analysis of Rotation and Transport Data in C-Mod ITB Plasmas

    Science.gov (United States)

    Fiore, C. L.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2009-11-01

    Internal transport barriers (ITBs) spontaneously form near the half radius of Alcator C-Mod plasmas when the EDA H-mode is sustained for several energy confinement times in either off-axis ICRF heated discharges or in purely ohmic heated plasmas. These plasmas exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles, and thermal transport coefficients that approach neoclassical values in the core. It has long been observed that the intrinsic central plasma rotation that is strongly co-current following the H-mode transition slows and often reverses as the density peaks as the ITB forms. Recent spatial measurements demonstrate that the rotation profile develops a well in the core region that decreases continuously as central density rises while the value outside of the core remains strongly co-current. This results in the formation of a steep potential gradient/strong electric field at the location of the foot of the ITB density profile. The resulting E X B shearing rate is also quite significant at the foot. These analyses and the implications for plasma transport and stability will be presented.

  2. Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade

    Science.gov (United States)

    Gewehr, H. W.

    1979-01-01

    The design, fabrication, testing, and evaluation of a prototype 150 foot long composite wind turbine blade is described. The design approach and material selection, compatible with low cost fabrication methods and objectives, are highlighted. The operating characteristics of the blade during rotating and nonrotating conditions are presented. The tensile, compression, and shear properties of the blade are reported. The blade fabrication, tooling, and quality assurance are discussed.

  3. Midplane Faraday rotation: A densitometer for large tokamaks

    International Nuclear Information System (INIS)

    Jobes, F.C.; Mansfield, D.K.

    1992-01-01

    The density in a large tokamak such as International Thermonuclear Experimental Reactor (ITER), or any of the proposed future US machines, can be determined by measuring the Faraday rotation of a 10.6 μm laser directed tangent to the toroidal field. If there is a horizontal array of such beams, then n e (R) can be readily obtained with a simple Abel inversion about the center line of the tokamak. For a large machine, operated at a full field of 30 T m and a density of 2x10 20 /m 3 , the rotation angle would be quite large-about 60 degree for two passes. A layout in which a single laser beam is fanned out in the horizontal midplane of the tokamak, with a set of retroreflectors on the far side of the vacuum vessel, would provide good spatial resolution, depending only upon the number of reflectors. With this proposed layout, only one window would be needed. Because the rotation angle is never more than 1 ''fringe,'' the data is always good, and it is also a continuous measurement in time. Faraday rotation is dependent only upon the plasma itself, and thus is not sensitive to vibration of the optical components. Simulations of the expected results show that ITER, or any large tokamak, existing or proposed, would be well served even at low densities by a midplane Faraday rotation densitometer of ∼64 channels

  4. Multiple rotation assessment through isothetic fringes in speckle photography

    International Nuclear Information System (INIS)

    Angel, Luciano; Tebaldi, Myrian; Bolognini, Nestor

    2007-01-01

    The use of different pupils for storing each speckled image in speckle photography is employed to determine multiple in-plane rotations. The method consists of recording a four-exposure specklegram where the rotations are done between exposures. This specklegram is then optically processed in a whole field approach rendering isothetic fringes, which give detailed information about the multiple rotations. It is experimentally demonstrated that the proposed arrangement permits the depiction of six isothetics in order to measure either six different angles or three nonparallel components for two local general in-plane displacements

  5. Thermodynamic equilibrium in relativistic rotating systems

    International Nuclear Information System (INIS)

    Suen, W.M.; Washington Univ., St. Louis, MO; Young, K.

    1988-01-01

    The thermodynamic equilibrium configurations of relativistic rotating stars are studied using the maximum entropy principle. It is shown that the heuristic arguments for the equilibrium conditions can be developed into a maximum entropy principle in which the variations are carried out in a fixed background spacetime. This maximum principle with the fixed background assumption is technically simpler than, but has to be justified by, a maximum entropy principle without the assumption. Such a maximum entropy principle is formulated in this paper, showing that the general relativistic system can be treated on the same footing as other long-range force systems. (author)

  6. Grain boundary motion and grain rotation in aluminum bicrystals: recent experiments and simulations

    International Nuclear Information System (INIS)

    Molodov, D A; Barrales-Mora, L A; Brandenburg, J-E

    2015-01-01

    The results of experimental and computational efforts over recent years to study the motion of geometrically different grain boundaries and grain rotation under various driving forces are briefly reviewed. Novel in-situ measuring techniques based on orientation contrast imaging and applied simulation techniques are described. The experimental results obtained on specially grown aluminum bicrystals are presented and discussed. Particularly, the faceting and migration behavior of low angle grain boundaries under the curvature force is addressed. In contrast to the pure tilt boundaries, which remained flat/faceted and immobile during annealing at elevated temperatures, mixed tilt-twist boundaries readily assumed a curved shape and steadily moved under the capillary force. Computational analysis revealed that this behavior is due to the inclinational anisotropy of grain boundary energy, which in turn depends on boundary geometry. The shape evolution and shrinkage kinetics of cylindrical grains with different tilt and mixed boundaries were studied by molecular dynamics simulations. The mobility of low angle <100> boundaries with misorientation angles higher than 10°, obtained by both the experiments and simulations, was found not to differ from that of the high angle boundaries, but decreases essentially with further decrease of misorientation. The shape evolution of the embedded grains in simulations was found to relate directly to results of the energy computations. Further simulation results revealed that the shrinkage of grains with pure tilt boundaries is accompanied by grain rotation. In contrast, grains with the tilt-twist boundaries composed of dislocations with the mixed edge-screw character do not rotate during their shrinkage. Stress driven boundary migration in aluminium bicrystals was observed to be coupled to a tangential translation of the grains. The activation enthalpy of high angle boundary migration was found to vary non-monotonically with

  7. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    International Nuclear Information System (INIS)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom

    2015-01-01

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  8. Cardiac motion correction based on partial angle reconstructed images in x-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungeon; Chang, Yongjin; Ra, Jong Beom, E-mail: jbra@kaist.ac.kr [Department of Electrical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2015-05-15

    Purpose: Cardiac x-ray CT imaging is still challenging due to heart motion, which cannot be ignored even with the current rotation speed of the equipment. In response, many algorithms have been developed to compensate remaining motion artifacts by estimating the motion using projection data or reconstructed images. In these algorithms, accurate motion estimation is critical to the compensated image quality. In addition, since the scan range is directly related to the radiation dose, it is preferable to minimize the scan range in motion estimation. In this paper, the authors propose a novel motion estimation and compensation algorithm using a sinogram with a rotation angle of less than 360°. The algorithm estimates the motion of the whole heart area using two opposite 3D partial angle reconstructed (PAR) images and compensates the motion in the reconstruction process. Methods: A CT system scans the thoracic area including the heart over an angular range of 180° + α + β, where α and β denote the detector fan angle and an additional partial angle, respectively. The obtained cone-beam projection data are converted into cone-parallel geometry via row-wise fan-to-parallel rebinning. Two conjugate 3D PAR images, whose center projection angles are separated by 180°, are then reconstructed with an angular range of β, which is considerably smaller than a short scan range of 180° + α. Although these images include limited view angle artifacts that disturb accurate motion estimation, they have considerably better temporal resolution than a short scan image. Hence, after preprocessing these artifacts, the authors estimate a motion model during a half rotation for a whole field of view via nonrigid registration between the images. Finally, motion-compensated image reconstruction is performed at a target phase by incorporating the estimated motion model. The target phase is selected as that corresponding to a view angle that is orthogonal to the center view angles of

  9. The validity and accuracy in foot-to-foot bioelectrical impedance ...

    African Journals Online (AJOL)

    The validity and accuracy in foot-to-foot bioelectrical impedance analysis measuring models referenced by dual-energy X-ray absorptiometry in body composition in standing position. KC Hsieh, HK Lu, CH Chen, TR Jang, YY Chen, MF Kao ...

  10. A Descriptive Study of Lower Limb Torsional Kinematic Profiles in Children With Spastic Diplegia.

    Science.gov (United States)

    Simon, Anne-Laure; Ilharreborde, Brice; Megrot, Fabrice; Mallet, Cindy; Azarpira, Reza; Mazda, Keyvan; Presedo, Ana; Penneçot, Georges F

    2015-09-01

    Lower limb rotational anomalies in spastic diplegic children with cerebral palsy (CP) are common and difficult to identify through physical examination alone. The identification and treatment of the overall rotational disorders must be considered to restore physiological lever-arms lengths and lever-arms orientation.The aims of the study were to assess the prevalence of lower limb rotational malalignment and to describe the distribution of the different kinematic torsional profiles in children with spastic diplegia. Instrumented gait analysis data from 188 children with spastic diplegia were retrospectively reviewed. None of the patients had undergone surgery previously or received botulinum toxin treatment within 6 months before the review. Kinematic data, collected at the midstance phase, included: pelvic, hip, and ankle rotation and foot progression angle. The prevalence of kinematic rotational deviations was 98.4%. Sixty-one percent of the children walked with an internal foot progression angle and 21% exhibited external alignment. The pelvis was internally rotated in 41% of the cases and externally in another 27%. Hip rotation was internal in 29% and external in 27% of the cases. Ankle rotation was internal in 55% and external in 16% of the cases. Lower limb rotational anomalies involved more than one level in 77% of the limbs. A kinematic compensatory deviation was identified in at least one level in 48% of the limbs. Kinematic rotational anomalies were identified in nearly all the 188 children in the study. The multilevel involvement of lower limb malalignment was not systematically associated with compensatory mechanisms between the levels. Ankle rotational anomalies were the most frequent cause of lower limb torsional deviations followed by pelvic malalignment. Level IV.

  11. A musculoskeletal model of low grade connective tissue inflammation in patients with thyroid associated ophthalmopathy (TAO: the WOMED concept of lateral tension and its general implications in disease

    Directory of Open Access Journals (Sweden)

    Moncayo Helga

    2007-02-01

    Full Text Available Abstract Background Low level connective tissue inflammation has been proposed to play a role in thyroid associated ophthalmopathy (TAO. The aim of this study was to investigate this postulate by a musculoskeletal approach together with biochemical parameters. Methods 13 patients with TAO and 16 controls were examined. Erythrocyte levels of Zn, Cu, Ca2+, Mg, and Fe were determined. The musculoskeletal evaluation included observational data on body posture with emphasis on the orbit-head region. The angular foot position in the frontal plane was quantified following gait observation. The axial orientation of the legs and feet was evaluated in an unloaded supine position. Functional propioceptive tests based on stretch stimuli were done by using foot inversion and foot rotation. Results Alterations in the control group included neck tilt in 3 cases, asymmetrical foot angle during gait in 2, and a reaction to foot inversion in 5 cases. TAO patients presented facial asymmetry with displaced eye fissure inclination (mean 9.1° as well as tilted head-on-neck position (mean 5.7°. A further asymmetry feature was external rotation of the legs and feet (mean 27°. Both foot inversion as well as foot rotation induced a condition of neuromuscular deficit. This condition could be regulated by gentle acupressure either on the lateral abdomen or the lateral ankle at the acupuncture points gall bladder 26 or bladder 62, respectively. In 5 patients, foot rotation produced a phenomenon of moving toes in the contra lateral foot. In addition foot rotation was accompanied by an audible tendon snapping. Lower erythrocyte Zn levels and altered correlations between Ca2+, Mg, and Fe were found in TAO. Conclusion This whole body observational study has revealed axial deviations and body asymmetry as well as the phenomenon of moving toes in TAO. The most common finding was an arch-like displacement of the body, i.e. eccentric position, with foot inversion and head tilt

  12. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    Science.gov (United States)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  13. Improving the Geolocation Algorithm for Sensors Onboard the ISS: Effect of Drift Angle

    Directory of Open Access Journals (Sweden)

    Changyong Dou

    2014-05-01

    Full Text Available The drift angle caused by the Earth’s self-rotation may introduce rotational displacement artifact on the geolocation results of imagery acquired by an Earth observing sensor onboard the International Space Station (ISS. If uncorrected, it would cause a gradual degradation of positional accuracy from the center towards the edges of an image. One correction method to account for the drift angle effect was developed. The drift angle was calculated from the ISS state vectors and positional information of the ground nadir point of the imagery. Tests with images acquired by the International Space Station Agriculture Camera (ISSAC using Google EarthTM as a reference indicated that applying the drift angle correction can reduce the residual geolocation error for the corner points of the ISSAC images from over 1000 to less than 500 m. The improved geolocation accuracy is well within the inherent geolocation uncertainty of up to 800 m, mainly due to imprecise knowledge of the ISS attitude and state parameters required to perform the geolocation algorithm.

  14. Correlations between the alpha angle and femoral head asphericity: Implications and recommendations for the diagnosis of cam femoroacetabular impingement

    International Nuclear Information System (INIS)

    Harris, Michael D.; Kapron, Ashley L.; Peters, Christopher L.; Anderson, Andrew E.

    2014-01-01

    Objective: To determine the strength of common radiographic and radial CT views for measuring true femoral head asphericity. Patients and methods: In 15 patients with cam femoroacetabular impingement (FAI) and 15 controls, alpha angles were measured by two observers using radial CT (0°, 30°, 60°, 90°) and digitally reconstructed radiographs (DRRs) for the: anterior–posterior (AP), standing frog-leg lateral, 45° Dunn with neutral rotation, 45° Dunn with 40° external rotation, and cross-table lateral views. A DRR validation study was performed. Alpha angles were compared between groups. Maximum deviation from a sphere of each subject was obtained from a previous study. Alpha angles from each view were correlated with maximum deviation. Results: There were no significant differences between alpha angles measured on radiographs and the corresponding DRRs (p = 0.72). Alpha angles were significantly greater in patients for all views (p ≤ 0.002). Alpha angles from the 45° Dunn with 40° external rotation, cross-table lateral, and 60° radial views had the strongest correlations with maximum deviation (r = 0.831; r = 0.823; r = 0.808, respectively). The AP view had the weakest correlation (r = 0.358). Conclusion: DRRs were a validated means to simulate hip radiographs. The 45° Dunn with 40° external rotation, cross-table lateral, and 60° radial views best visualized femoral asphericity. Although commonly used, the AP view did not visualize cam deformities well. Overall, the magnitude of the alpha angle may not be indicative of the size of the deformity. Thus, 3D reconstructions and measurements of asphericity could improve the diagnosis of cam FAI

  15. Adipofascial sural artery flap for foot and ankle reconstruction in children: for better aesthetic outcome

    International Nuclear Information System (INIS)

    Mahmood, F.

    2015-01-01

    Wheel spoke injury of the ankle and foot is very common in children and its reconstruction is challenging. Reverse flow sural artery fasciocutaneous flap is versatile for this area but lead to significant donor site morbidity. Free tissue transfer is an option in children which needs a micro-vascular expertise, expensive equipment and long operating time. Method: Fifteen adipofascial flaps were done for foot and ankle coverage from June 2011 to June 2014 at CH and ICH Lahore. The efficacy of adipofascial sural artery flap for the coverage of these defects was evaluated. Results: Fifteen children presented with defects of foot and ankle, 11 (73%) were male and 4 (27%) were female. Their age ranged from 1 - 13 years. All patients had trauma to the foot due to wheel spoke injury. Flaps were used to cover tendoachilles and malleoli. In one patient there was flap tip necrosis with partial graft loss which healed with dressings. Donor site aesthetic outcome was satisfactory in all cases. Mean follow-up was I year. Conclusion: Adipofascial Sural artery flap is quick and safe with wide arc of rotation, minimal donor site morbidity and better aesthetic outcome and it does not sacrifice major extremity vessel. (author)

  16. Mortality associated with acute Charcot foot and neuropathic foot ulceration

    NARCIS (Netherlands)

    van Baal, Juliette; Hubbard, Richard; Game, Fran; Jeffcoate, William

    2010-01-01

    To compare the mortality of patients with an acute Charcot foot with a matched population with uninfected neuropathic foot ulcers (NFUs). Data were extracted from a specialist departmental database, supplemented by hospital records. The findings were compared with the results of earlier populations

  17. Variation in Foot Strike Patterns among Habitually Barefoot and Shod Runners in Kenya.

    Science.gov (United States)

    Lieberman, Daniel E; Castillo, Eric R; Otarola-Castillo, Erik; Sang, Meshack K; Sigei, Timothy K; Ojiambo, Robert; Okutoyi, Paul; Pitsiladis, Yannis

    2015-01-01

    Runners are often categorized as forefoot, midfoot or rearfoot strikers, but how much and why do individuals vary in foot strike patterns when running on level terrain? This study used general linear mixed-effects models to explore both intra- and inter-individual variations in foot strike pattern among 48 Kalenjin-speaking participants from Kenya who varied in age, sex, body mass, height, running history, and habitual use of footwear. High speed video was used to measure lower extremity kinematics at ground contact in the sagittal plane while participants ran down 13 meter-long tracks with three variables independently controlled: speed, track stiffness, and step frequency. 72% of the habitually barefoot and 32% of the habitually shod participants used multiple strike types, with significantly higher levels of foot strike variation among individuals who ran less frequently and who used lower step frequencies. There was no effect of sex, age, height or weight on foot strike angle, but individuals were more likely to midfoot or forefoot strike when they ran on a stiff surface, had a high preferred stride frequency, were habitually barefoot, and had more experience running. It is hypothesized that strike type variation during running, including a more frequent use of forefoot and midfoot strikes, used to be greater before the introduction of cushioned shoes and paved surfaces.

  18. Variation in Foot Strike Patterns among Habitually Barefoot and Shod Runners in Kenya.

    Directory of Open Access Journals (Sweden)

    Daniel E Lieberman

    Full Text Available Runners are often categorized as forefoot, midfoot or rearfoot strikers, but how much and why do individuals vary in foot strike patterns when running on level terrain? This study used general linear mixed-effects models to explore both intra- and inter-individual variations in foot strike pattern among 48 Kalenjin-speaking participants from Kenya who varied in age, sex, body mass, height, running history, and habitual use of footwear. High speed video was used to measure lower extremity kinematics at ground contact in the sagittal plane while participants ran down 13 meter-long tracks with three variables independently controlled: speed, track stiffness, and step frequency. 72% of the habitually barefoot and 32% of the habitually shod participants used multiple strike types, with significantly higher levels of foot strike variation among individuals who ran less frequently and who used lower step frequencies. There was no effect of sex, age, height or weight on foot strike angle, but individuals were more likely to midfoot or forefoot strike when they ran on a stiff surface, had a high preferred stride frequency, were habitually barefoot, and had more experience running. It is hypothesized that strike type variation during running, including a more frequent use of forefoot and midfoot strikes, used to be greater before the introduction of cushioned shoes and paved surfaces.

  19. Examination into the maximum rotational frequency for an in-plane switched active waveplate device

    International Nuclear Information System (INIS)

    Davidson, A J; Elston, S J; Raynes, E P

    2005-01-01

    An examination of an active waveplate device using a one-dimensional model, giving numerical and analytical results, is presented. The model calculates the director and twist configuration by minimizing the free energy of the system with simple homeotropic boundary conditions. The effect of varying the in-plane electric field in both magnitude and direction is examined, and it is shown that the twist through the cell is constant in time as the field is rotated. As the electric field is rotated, the director field lags behind by an angle which increases as the frequency of the electric field rotation increases. When this angle reaches approximately π/4 the director field no longer follows the electric field in a uniform way. Using mathematical analysis it is shown that the conditions on which the director profile will fail to follow the rotating electric field depend on the frequency of electric field rotation, the magnitude of the electric field, the dielectric anisotropy and the viscosity of the liquid crystal

  20. Frontal Changes in the Lower Face After Clockwise Rotation of the Maxillomandibular Complex Without Perisurgical Orthodontic Treatment in Angle Class I and Skeletal Class III Women.

    Science.gov (United States)

    Lee, Sang Woo; Cho, Jeongmok; Kim, Kikap; Ahn, Seung Hyun

    2017-06-01

    Orthognathic surgery has become more popular to slenderize a wide lower face and to improve facial esthetics in Asian patients with normal occlusion. Clockwise rotation (CR) of the maxillomandibular complex (MMC) steepens the mandibular plane. This study performed a quantitative analysis on the influence of CR on slenderness of the lower face from the frontal view. This retrospective study included 36 female patients with Angle Class I occlusion and skeletal Class III pattern. The subjects underwent CR of the MMC without perioperative orthodontic treatment and change in the occlusion only for the purpose of esthetic improvement. Linear and angular variables were measured on a cephalogram and three-dimensional computed tomography (3D CT) obtained before and at least 6 months after surgery. Data were analyzed using paired t tests and Spearman correlations. Univariate regression analysis was used to predict the postoperative change according to the amount of posterior impaction. The mean posterior impaction was 3.81 mm. All mandibular plane angle (MPA) measurements were increased (ranged from 5.69° to 13.12°, p lower face becomes narrower and more slender as the MMC rotates in a clockwise direction. Orthognathic surgery with CR has the advantage of increasing the MPAs and obtaining natural soft tissue contouring while minimizing the amount of bone resection. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266c .

  1. Foot pain and functional limitation in healthy adults with hallux valgus: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Nix Sheree E

    2012-10-01

    Full Text Available Abstract Background Hallux valgus (HV is a very common deformity of the first metatarsophalangeal joint that often requires surgical correction. However, the association between structural HV deformity and related foot pain and disability is unclear. Furthermore, no previous studies have investigated concerns about appearance and difficulty with footwear in a population with HV not seeking surgical correction. The aim of this cross-sectional study was to investigate foot pain, functional limitation, concern about appearance and difficulty with footwear in otherwise healthy adults with HV compared to controls. Methods Thirty volunteers with HV (radiographic HV angle >15 degrees and 30 matched controls were recruited for this study (50 women, 10 men; mean age 44.4 years, range 20 to 76 years. Differences between groups were examined for self-reported foot pain and disability, satisfaction with appearance, footwear difficulty, and pressure-pain threshold at the first metatarsophalangeal joint. Functional measures included balance tests, walking performance, and hallux muscle strength (abduction and plantarflexion. Mean differences (MD and 95% confidence intervals (CI were calculated. Results All self-report measures showed that HV was associated with higher levels of foot pain and disability and significant concerns about appearance and footwear (p Conclusions These findings show that HV negatively impacts on self-reported foot pain and function, and concerns about foot appearance and footwear in otherwise healthy adults. There was also evidence of impaired hallux muscle strength and increased postural sway in HV subjects compared to controls, although general physical functioning and participation in physical activity were not adversely affected.

  2. The association of foot arch posture and prior history of shoulder or elbow surgery in elite-level baseball pitchers.

    Science.gov (United States)

    Feigenbaum, Luis A; Roach, Kathryn E; Kaplan, Lee D; Lesniak, Bryson; Cunningham, Sean

    2013-11-01

    Case-control. The specific aim of this study was to examine the association between abnormal foot arch postures and a history of shoulder or elbow surgery in baseball pitchers. Pitching a baseball generates forces throughout the musculoskeletal structures of the upper and lower limbs. Structures such as the longitudinal arch of the foot are adaptable to stresses over time. Repeated pitching-related stresses may contribute to acquiring abnormal foot arch postures. Inversely, congenitally abnormal foot arch posture may lead to altered stresses of the upper limb during pitching. A convenience sample of 77 pitchers was recruited from a Division I university team and a professional baseball franchise. Subjects who had a history of shoulder or elbow surgery to the pitching arm were classified as cases. Subjects who met the criteria for classification of pes planus or pes cavus based on longitudinal arch angle were classified as having abnormal foot arch posture. Odds ratios were calculated to examine the association between abnormal foot arch posture and pitching-arm injury requiring surgery. Twenty-three subjects were classified as cases. The odds of being a case were 3.4 (95% confidence interval: 1.2, 9.6; P = .02) times greater for subjects with abnormal foot arch posture and 2.9 (95% confidence interval: 1.0, 8.1; P = .04) times greater for subjects with abnormal foot posture on the lunge leg. Abnormal foot arch posture and a surgical history in the pitching shoulder or elbow may be associated. Because the foot and its arches are adaptable and change over time, the pathomechanics of this association should be further explored.

  3. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition.

    Directory of Open Access Journals (Sweden)

    Thomas Hoffmann

    2015-07-01

    Full Text Available T-cell receptors (TCR play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR, which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation.

  4. An investigation of the structure of rotational discontinuities

    International Nuclear Information System (INIS)

    Goodrich, C.C.; Cargill, P.J.

    1991-01-01

    The structure of rotational discontinuities (RDs) has been studied through hybrid simulations for a range of propagation angle Θ bn between the discontinuity normal and the upstream magnetic field and plasma β. For sufficiently narrow initial states, the simulations produce quasi-steady reverse rotation magnetic field structures for 30 degree ≤ Θ bn ≤ 60 degree and 0 i -1 . This structure is characterized by a right handed field rotation upstream joined smoothly to a left handed field rotation downstream; its width decreases from 60-70 c/ω pi at Θ bn = 30 degree to less than 25 c/ω pi at Θ bn = 60 degree. The magnetic field hodograms of the RD results have a distinctive S-shape which is most pronounced in simulations with small Θ bn and initially right handed rotations. The reverse rotation structure is the net result of the expansion of the initial current layer via the fast and intermediate wave modes

  5. Preferred nasolabial angle in Middle Eastern population.

    Science.gov (United States)

    Alharethy, Sami

    2017-05-01

    To define the preferred nasolabial angle measurement in Middle Eastern population. An observational study was conducted from January 2012 to January 2016 at the Department of Otolaryngology, Head and Neck Surgery, King Abdulaziz University Hospital, King Saud University, Riyadh, Kingdom of Saudi Arabia. A total of 1027 raters, 506 males, and 521 females were asked to choose the most ideal nasolabial angle for 5 males and 5 females lateral photographs whose nasolabial angle were modified with Photoshop into the following angles (85°, 90°, 95°, 100°, 105°, and 110°). Male raters preferred the angle of 89.5° ± 3.5° (mean ± SD) for males and 90.8° ± 5.6° for females. While female raters preferred the angle of 89.3° ± 3.8° for males and 90.5° ± 4.8° for females. ANOVA test compare means among groups: p: 0.342, and there is no statistically significant difference between groups. The results of our study showed an even more acute angles than degrees found in the literature. It shows that what young generation in our region prefers and clearly reflects that what could be explained as under rotation of the nasal tip in other cultures is just the ideal for some Middle Eastern population.

  6. A quasi-linear control theory analysis of timesharing skills

    Science.gov (United States)

    Agarwal, G. C.; Gottlieb, G. L.

    1977-01-01

    The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation.

  7. Spherical null geodesics of rotating Kerr black holes

    International Nuclear Information System (INIS)

    Hod, Shahar

    2013-01-01

    The non-equatorial spherical null geodesics of rotating Kerr black holes are studied analytically. Unlike the extensively studied equatorial circular orbits whose radii are known analytically, no closed-form formula exists in the literature for the radii of generic (non-equatorial) spherical geodesics. We provide here an approximate formula for the radii r ph (a/M;cosi) of these spherical null geodesics, where a/M is the dimensionless angular momentum of the black hole and cos i is an effective inclination angle (with respect to the black-hole equatorial plane) of the orbit. It is well-known that the equatorial circular geodesics of the Kerr spacetime (the prograde and the retrograde orbits with cosi=±1) are characterized by a monotonic dependence of their radii r ph (a/M;cosi=±1) on the dimensionless spin-parameter a/M of the black hole. We use here our novel analytical formula to reveal that this well-known property of the equatorial circular geodesics is actually not a generic property of the Kerr spacetime. In particular, we find that counter-rotating spherical null orbits in the range (3√(3)−√(59))/4≲cosi ph (a/M;cosi=const) on the dimensionless rotation-parameter a/M of the black hole. Furthermore, it is shown that spherical photon orbits of rapidly-rotating black holes are characterized by a critical inclination angle, cosi=√(4/7), above which the coordinate radii of the orbits approach the black-hole radius in the extremal limit. We prove that this critical inclination angle signals a transition in the physical properties of the spherical null geodesics: in particular, it separates orbits which are characterized by finite proper distances to the black-hole horizon from orbits which are characterized by infinite proper distances to the horizon.

  8. Foot anthropometry and morphology phenomena.

    Science.gov (United States)

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-12-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in human society. Dominant descriptors are determined by principal component analysis. Some practical recommendation and conclusion for medical, sportswear and footwear practice are highlighted.

  9. A methodological framework for detecting ulcers' risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model.

    Science.gov (United States)

    Scarton, Alessandra; Guiotto, Annamaria; Malaquias, Tiago; Spolaor, Fabiola; Sinigaglia, Giacomo; Cobelli, Claudio; Jonkers, Ilse; Sawacha, Zimi

    2018-02-01

    Diabetic foot is one of the most debilitating complications of diabetes and may lead to plantar ulcers. In the last decade, gait analysis, musculoskeletal modelling (MSM) and finite element modelling (FEM) have shown their ability to contribute to diabetic foot prevention and suggested that the origin of the plantar ulcers is in deeper tissue layers rather than on the plantar surface. Hence the aim of the current work is to develop a methodology that improves FEM-derived foot internal stresses prediction, for diabetic foot prevention applications. A 3D foot FEM was combined with MSM derived force to predict the sites of excessive internal stresses on the foot. In vivo gait analysis data, and an MRI scan of a foot from a healthy subject were acquired and used to develop a six degrees of freedom (6 DOF) foot MSM and a 3D subject-specific foot FEM. Ankle kinematics were applied as boundary conditions to the FEM together with: 1. only Ground Reaction Forces (GRFs); 2. OpenSim derived extrinsic muscles forces estimated with a standard OpenSim MSM; 3. extrinsic muscle forces derived through the (6 DOF) foot MSM; 4. intrinsic and extrinsic muscles forces derived through the 6 DOF foot MSM. For model validation purposes, simulated peak pressures were extracted and compared with those measured experimentally. The importance of foot muscles in controlling plantar pressure distribution and internal stresses is confirmed by the improved accuracy in the estimation of the peak pressures obtained with the inclusion of intrinsic and extrinsic muscle forces. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Nanoparticles in dilute solution : A numerical study of rotational diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Evensen, Tom Richard

    2008-06-15

    This thesis is dedicated to Brownian dynamics simulations of rotational diffusion. A rotation dynamics engine has been implemented and tested. This engine will in the future be integrated as a part of a complete Brownian dynamics simulation tool. The special case, when translational motion can be ignored, has thoroughly been studied. Two choices of generalized coordinates describing angular orientation of the particles are used. The Euler angles, which constitute the classical choice, and the Cartesian components of the rotation vector, which was recently introduced as an alternative, are being compared with regards to computational efficiency. Results from both equilibrium and non-equilibrium simulations are presented. The consistency of two new algorithms is demonstrated on systems of free rigid particles with arbitrary surface topographies. The algorithms make use of only the principal values of the rotational mobility tensor, assuming the corresponding principal axes coincide with the body-fixed coordinate system. These three scalars contain all information about the particle surface topography relevant for rotational diffusion. The calculation of the mobility tensor can be performed in a pre-calculation step, which makes the algorithm itself highly efficient. Both choices of generalized coordinates correctly reproduce theoretical predictions, but we have found that the algorithm using the Cartesian components of the rotation vector as generalized coordinates outperform its counterpart using the Euler angles by up to a factor 1000 in extreme cases. The reason for this improvement is that the algorithm using the Cartesian components of the rotation vector is free of singularities. (Author). refs. figs

  11. Using Order Tracking Analysis Method to Detect the Angle Faults of Blades on Wind Turbine

    DEFF Research Database (Denmark)

    Li, Pengfei; Hu, Weihao; Liu, Juncheng

    2016-01-01

    The angle faults of blades on wind turbines are usually included in the set angle fault and the pitch angle fault. They are occupied with a high proportion in all wind turbine faults. Compare with the traditional fault detection methods, using order tracking analysis method to detect angle faults....... By analyzing and reconstructing the fault signals, it is easy to detect the fault characteristic frequency and see the characteristic frequencies of angle faults depend on the shaft rotating frequency, which is known as the 1P frequency and 3P frequency distinctly....

  12. Reliability and normative values of the foot line test: a technique to assess foot posture

    DEFF Research Database (Denmark)

    Brushøj, C; Larsen, Klaus; Nielsen, MB

    2007-01-01

    STUDY DESIGN: Test-retest reliability. OBJECTIVE: To examine the reliability and report normative values of a novel test, the foot line test (FLT), to describe foot morphology. BACKGROUND: Numerous foot examinations are performed each day, but most existing examination techniques have considerable...... limitations regarding reliability and validity. METHODS: One hundred thirty subjects with mean foot size 44 (41-50 European size) participated. Two examiners, blinded to each other's measurements, measured the right foot of the subjects twice and the left foot once. The position of the most medial aspect...... of the navicular in the mediolateral direction was projected vertically onto a piece of paper placed under the subject's foot, and compared to the position of the forefoot and hindfoot to obtain the FLT value. RESULTS: FLT values ranged from -8 to 14 mm, with a mean (+/-SD) of 3.7 +/- 3.4 mm. The intratester...

  13. Full-angle tomographic phase microscopy of flowing quasi-spherical cells.

    Science.gov (United States)

    Villone, Massimiliano M; Memmolo, Pasquale; Merola, Francesco; Mugnano, Martina; Miccio, Lisa; Maffettone, Pier Luca; Ferraro, Pietro

    2017-12-19

    We report a reliable full-angle tomographic phase microscopy (FA-TPM) method for flowing quasi-spherical cells along microfluidic channels. This method lies in a completely passive optical system, i.e. mechanical scanning or multi-direction probing of the sample is avoided. It exploits the engineered rolling of cells while they are flowing along a microfluidic channel. Here we demonstrate significant progress with respect to the state of the art of in-flow TPM by showing a general extension to cells having almost spherical shapes while they are flowing in suspension. In fact, the adopted strategy allows the accurate retrieval of rotation angles through a theoretical model of the cells' rotation in a dynamic microfluidic flow by matching it with phase-contrast images resulting from holographic reconstructions. So far, the proposed method is the first and the only one that permits to get in-flow TPM by probing the cells with full-angle, achieving accurate 3D refractive index mapping and the simplest optical setup, simultaneously. Proof of concept experiments were performed successfully on human breast adenocarcinoma MCF-7 cells, opening the way for the full characterization of circulating tumor cells (CTCs) in the new paradigm of liquid biopsy.

  14. Urban-area extraction from polarimetric SAR image using combination of target decomposition and orientation angle

    Science.gov (United States)

    Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.

    2016-05-01

    The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.

  15. SU-E-P-45: An Analytical Formula for Deriving Mechanical Iso-Center of Rotational Gantry Treatment Unit Rotational Gantry Treatment Unit

    International Nuclear Information System (INIS)

    Ding, X; Bues, M

    2015-01-01

    Purpose: To present an analytical formula for deriving mechanical isocenter (MIC) of a rotational gantry treatment unit. The input data to the formula is obtained by a custom-made device. The formula has been implemented and used in an operational proton therapy facility since 2005. Methods: The custom made device consisted of 3 mutually perpendicular dial indicators and 5 clinometers, to obtain displacement data and gantry angle data simultaneously. During measurement, a steel sphere was affixed to the patient couch, and the device was attached to the snout rotating with the gantry. The displacement data and angle data were obtained simultaneously at angular increments of less than 1 degree. The analytical formula took the displacement and angle as input and derived the positions of dial indicator tips (DIT) position in room-fixed coordinate system. The formula derivation presupposes trigonometry and 3-dimentional coordinate transformations. Due to the symmetry properties of the defining equations, the DIT position can be solved for analytically without using mathematical approximations. We define the mean of all points in the DIT trajectory as the MIC. The formula was implemented in computer code, which has been employed during acceptance test, commissioning, as well as routine QA practice in an operational proton facility since 2005. Results: It took one minute for the custom-made device to acquire the measurement data for a full gantry rotation. The DIT trajectory and MIS are instantaneously available after the measurement. The MIC Result agrees well with vendor’s Result, which came from a different measurement setup, as well as different data analysis algorithm. Conclusion: An analytical formula for deriving mechanical isocenter was developed and validated. The formula is considered to be absolutely accurate mathematically. Be analyzing measured data of radial displacements as function of gantry angle, the formula calculates the MI position in room

  16. Fabrication of black-gold coatings by glancing angle deposition with sputtering

    Directory of Open Access Journals (Sweden)

    Alan Vitrey

    2017-02-01

    Full Text Available The fabrication of black-gold coatings using sputtering is reported here. Glancing angle deposition with a rotating substrate is needed to obtain vertical nanostructures. Enhanced light absorption is obtained in the samples prepared in the ballistic regime with high tilt angles. Under these conditions the diameter distribution of the nanostructures is centered at about 60 nm and the standard deviation is large enough to obtain black-metal behavior in the visible range.

  17. Effect of Forefoot Strike on Lower Extremity Muscle Activity and Knee Joint Angle During Cutting in Female Team Handball Players.

    Science.gov (United States)

    Yoshida, Naruto; Kunugi, Shun; Mashimo, Sonoko; Okuma, Yoshihiro; Masunari, Akihiko; Miyazaki, Shogo; Hisajima, Tatsuya; Miyakawa, Shumpei

    2015-06-01

    The purpose of this study is to examine the effects of different strike forms, during cutting, on knee joint angle and lower limb muscle activity. Surface electromyography was used to measure muscle activity in individuals performing cutting manoeuvres involving either rearfoot strikes (RFS) or forefoot strikes (FFS). Three-dimensional motion analysis was used to calculate changes in knee angles, during cutting, and to determine the relationship between muscle activity and knee joint angle. Force plates were synchronized with electromyography measurements to compare muscle activity immediately before and after foot strike. The valgus angle tends to be smaller during FFS cutting than during RFS cutting. Just prior to ground contact, biceps femoris, semitendinosus, and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was greater during RFS cutting. Immediately after ground contact, biceps femoris and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was significantly lower during FFS cutting. The results of the present study suggest that the hamstrings demonstrate greater activity, immediately after foot strike, during FFS cutting than during RFS cutting. Thus, FFS cutting may involve a lower risk of anterior cruciate ligament injury than does RFS cutting.

  18. Beyond the Bottom of the Foot: Topographic Organization of the Foot Dorsum in Walking.

    Science.gov (United States)

    Klarner, Taryn; Pearcey, Gregory E P; Sun, Yao; Barss, Trevor S; Kaupp, Chelsea; Munro, Bridget; Frank, Nick; Zehr, E Paul

    2017-12-01

    Sensory feedback from the foot dorsum during walking has only been studied globally by whole nerve stimulation. Stimulating the main nerve innervating the dorsal surface produces a functional stumble corrective response that is phase-dependently modulated. We speculated that effects evoked by activation of discrete skin regions on the foot dorsum would be topographically organized, as with the foot sole. Nonnoxious electrical stimulation was delivered to five discrete locations on the dorsal surface of the foot during treadmill walking. Muscle activity from muscles acting at the ankle, knee, hip, and shoulder were recorded along with ankle, knee, and hip kinematics and kinetic information from forces under the foot. All data were sorted on the basis of stimulus occurrence in 12 step cycle phases, before being averaged together within a phase for subsequent analysis. Results reveal dynamic changes in reflex amplitudes and kinematics that are site specific and phase dependent. Most responses from discrete sites on the foot dorsum were seen in the swing phase suggesting function to conform foot trajectory to maintain stability of the moving limb. In general, responses from lateral stimulation differed from medial stimulation, and effects were largest from stimulation at the distal end of the foot at the metatarsals; that is, in anatomical locations where actual impact with an object in the environment is most likely during swing. Responses to stimulation extend to include muscles at the hip and shoulder. We reveal that afferent feedback from specific cutaneous locations on the foot dorsum influences stance and swing phase corrective responses. This emphasizes the critical importance of feedback from the entire foot surface in locomotor control and has application for rehabilitation after neurological injury and in footwear development.

  19. Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.

    Science.gov (United States)

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L

    2012-04-01

    Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (median<3°), while the least repeatable orientations were the Hindfoot coronal plane and Hallux transverse plane. Joint translations were generally less than 2mm in any one direction, while segment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Integrated kinematics-kinetics-plantar pressure data analysis: a useful tool for characterizing diabetic foot biomechanics.

    Science.gov (United States)

    Sawacha, Zimi; Guarneri, Gabriella; Cristoferi, Giuseppe; Guiotto, Annamaria; Avogaro, Angelo; Cobelli, Claudio

    2012-05-01

    The fundamental cause of lower-extremity complications in diabetes is chronic hyperglycemia leading to diabetic foot ulcer pathology. While the relationship between abnormal plantar pressure distribution and plantar ulcers has been widely investigated, little is known about the role of shear stress. Moreover, the mutual relationship among plantar pressure, shear stress, and abnormal kinematics in the etiology of diabetic foot has not been established. This lack of knowledge is determined by the lack of commercially available instruments which allow such a complex analysis. This study aims to develop a method for the simultaneous assessment of kinematics, kinetics, and plantar pressure on foot subareas of diabetic subjects by means of combining three commercial systems. Data were collected during gait on 24 patients (12 controls and 12 diabetic neuropathics) with a motion capture system synchronized with two force plates and two baropodometric systems. A four segment three-dimensional foot kinematics model was adopted for the subsegment angles estimation together with a three segment model for the plantar sub-area definition during gait. The neuropathic group exhibited significantly excessive plantar pressure, ground reaction forces on each direction, and a reduced loading surface on the midfoot subsegment (pfoot ulcerations, and help planning prevention programs. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Joint angles of the ankle, knee, and hip and loading conditions during split squats.

    Science.gov (United States)

    Schütz, Pascal; List, Renate; Zemp, Roland; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2014-06-01

    The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject's movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.

  2. Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shangyun; Chen, Songbai; Jing, Jiliang, E-mail: shangyun_wang@163.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China)

    2016-11-01

    Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case of the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.

  3. A six-week clinical evaluation of the plaque and gingivitis efficacy of an oscillating-rotating power toothbrush with a novel brush head utilizing angled CrissCross bristles versus a sonic toothbrush.

    Science.gov (United States)

    Klukowska, Malgorzata; Grender, Julie M; Conde, Erinn; Goyal, C Ram; Qaqish, J

    2014-01-01

    To compare the efficacy of an oscillating-rotating power toothbrush with a novel brush head incorporating angled CrissCross bristles (Oral-B Triumph with SmartGuide with Oral-B CrossAction brush head) versus a sonic toothbrush (Sonicare DiamondClean) for plaque and gingivitis reduction over a six-week period. This was a single-center, randomized, examiner-blind, two-treatment, parallel group study involving 65 subjects per group. Subjects presenting with mild-to-moderate gingivitis at Baseline were randomly assigned to either the oscillating-rotating brush or the sonic brush. They were instructed to use their assigned toothbrush and a standard fluoride dentifrice for two minutes twice daily at home for six weeks. Gingivitis and plaque were assessed at Baseline and Week 6 using the Modified Gingival Index (MGI), Gingival Bleeding Index (GBI), and Rustogi Modified Navy Plaque Index (RMNPI). Data were analyzed using an Analysis of Covariance (ANCOVA), with baseline as the covariate. Subjects also completed a consumer perception questionnaire to evaluate their brushing experience. One-hundred and thirty subjects were enrolled in the study and randomized to treatment. Sixty-four subjects per group completed the trial. Both brushes produced statistically significant reductions in gingivitis and plaque measures at Week 6 relative to Baseline (p gingivitis and plaque measures compared to the sonic toothbrush. The benefits for the oscillating-rotating brush over the sonic brush were 32.6% for gingivitis, 35.4% for gingival bleeding, 32% for number of bleeding sites, 22% for whole mouth plaque, 24.2% for gingival margin plaque, and 33.3% for approximal plaque (p gingival margin plaque, where p = 0.018). Analysis of the consumer perception questionnaire results showed subjects using the oscillating-rotating brush rated it higher for overall use experience and key attributes related to cleaning, gentleness, and brush head shape/size versus subjects in the sonic brush group

  4. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    International Nuclear Information System (INIS)

    Du, Weiliang; Gao, Song

    2011-01-01

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  5. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weiliang; Gao, Song [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030 (United States)

    2011-08-15

    Purpose: The isocenter accuracy of a linear accelerator is often assessed with star-shot films. This approach is limited in its ability to quantify three dimensional wobble of radiation field centers (RFCs). The authors report a Winston-Lutz based method to measure the 3D wobble of RFCs during gantry rotation, collimator rotation, and collimator field size change. Methods: A stationary ball-bearing phantom was imaged using multileaf collimator-shaped radiation fields at various gantry angles, collimator angles, and field sizes. The center of the ball-bearing served as a reference point, to which all RFCs were localized using a computer algorithm with subpixel accuracy. Then, the gantry rotation isocenter and the collimator rotation axis were derived from the coordinates of these RFCs. Finally, the deviation or wobble of the individual RFC from the derived isocenter or rotation axis was quantified. Results: The results showed that the RFCs were stable as the field size of the multileaf collimator was varied. The wobble of RFCs depended on the gantry angle and the collimator angle and was reproducible, indicating that the mechanical imperfections of the linac were mostly systematic and quantifiable. It was found that the 3D wobble of RFCs during gantry rotation was reduced after compensating for a constant misalignment of the multileaf collimator. Conclusions: The 3D wobble of RFCs can be measured with submillimeter precision using the proposed method. This method provides a useful tool for checking and adjusting the radiation isocenter tightness of a linac.

  6. Polarization splitter and polarization rotator designs based on transformation optics.

    Science.gov (United States)

    Kwon, Do-Hoon; Werner, Douglas H

    2008-11-10

    The transformation optics technique is employed in this paper to design two optical devices - a two-dimensional polarization splitter and a three-dimensional polarization rotator for propagating beams. The polarization splitter translates the TM- and the TE-polarized components of an incident beam in opposite directions (i.e., shifted up or shifted down). The polarization rotator rotates the polarization state of an incoming beam by an arbitrary angle. Both optical devices are reflectionless at the entry and exit interfaces. Design details and full-wave simulation results are provided.

  7. NMR and rotational angles in solution conformation of polypeptides

    Science.gov (United States)

    Bystrov, V. F.

    1985-01-01

    Professor San-Ichiro Mizushima and Professor Yonezo Morino's classical contributions provided unique means and firm basis for understanding of conformational states and internal rotation in polypeptide molecules. Now the NMR spectroscopy is the best choice to study molecular conformation, mechanism of action and structure-functional relationships of peptide and proteins in solution under conditions approaching those of their physiological environments. Crucial details of spatial structure and interactions of these molecules in solution are revealed by using proton-proton and carbon-proton vicinal coupling constants, proton nuclear Overhauser effect and spectral perturbation techniques. The results of NMR conformational analysis are presented for valinomycin "bracelet", gramicidin A double helices, honey-bee neurotoxin apamin, scorpion insectotoxins and snake neurotoxins of long and short types.

  8. Hoof position during limb loading affects dorsoproximal bone strains on the equine proximal phalanx.

    Science.gov (United States)

    Singer, Ellen; Garcia, Tanya; Stover, Susan

    2015-07-16

    Sagittal fractures of the proximal phalanx (P1) in the racehorse appear to be associated with turf racing surfaces, which are known to restrict forward slide of the foot at impact. We hypothesized that restriction of forward foot slip would result in higher P1 bone strains during metacarpophalangeal joint (MCPJ) hyperextension. Unilateral limbs from six equine cadavers were instrumented with strain gauges and bone reference markers to measure dorsoproximal P1 bone strains and MCPJ extension, collateromotion and axial rotation during in vitro limb loading to 10,500 N. By limiting movement of the distal actuator platform, three different foot conditions (forward, free, and restricted) were applied in a randomised block design. Bone reference markers, recorded by video, were analyzed to determine motion of P1 relative to MC3. Rosette strain data were reduced to principal and shear magnitudes and directions. A mixed model ANOVA determined the effect of foot position on P1 bone strains and MCPJ angles. At 10,000 N load, the restricted condition resulted in higher P1 axial compressive (p=0.015), maximum shear (p=0.043) and engineering shear (p=0.046) strains compared to the forward condition. The restricted condition had higher compressive (p=0.025) and lower tensile (p=0.043) principal strains compared to the free condition. For the same magnitude of principal or shear strains, axial rotation and collateromotion angles were greatest for the restricted condition. Therefore, the increase in P1 principal compressive and shear bone strains associated with restricted foot slip indicate that alterations in foot:ground interaction may play a role in fracture occurrence in horses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Foot Problems in a Group of Patients with Rheumatoid Arthritis: An Unmet Need for Foot Care

    OpenAIRE

    Borman, Pinar; Ayhan, Figen; Tuncay, Figen; Sahin, Mehtap

    2012-01-01

    Objectives: The aim of this study was to evaluate the foot involvement in a group of RA patients in regard to symptoms, type and frequency of deformities, location, radiological changes, and foot care. Patients and Methods: A randomized selected 100 rheumatoid arthritis (RA) patients were recruited to the study. Data about foot symptoms, duration and location of foot pain, pain intensity, access to services related to foot, treatment, orthoses and assistive devices, and usefulness of therapie...

  10. Evaluation of Strip Footing Bearing Capacity Built on the Anthropogenic Embankment by Random Finite Element Method

    Science.gov (United States)

    Pieczynska-Kozlowska, Joanna

    2014-05-01

    One of a geotechnical problem in the area of Wroclaw is an anthropogenic embankment layer delaying to the depth of 4-5m, arising as a result of historical incidents. In such a case an assumption of bearing capacity of strip footing might be difficult. The standard solution is to use a deep foundation or foundation soil replacement. However both methods generate significant costs. In the present paper the authors focused their attention on the influence of anthropogenic embankment variability on bearing capacity. Soil parameters were defined on the basis of CPT test and modeled as 2D anisotropic random fields and the assumption of bearing capacity were made according deterministic finite element methods. Many repeated of the different realizations of random fields lead to stable expected value of bearing capacity. The algorithm used to estimate the bearing capacity of strip footing was the random finite element method (e.g. [1]). In traditional approach of bearing capacity the formula proposed by [2] is taken into account. qf = c'Nc + qNq + 0.5γBN- γ (1) where: qf is the ultimate bearing stress, cis the cohesion, qis the overburden load due to foundation embedment, γ is the soil unit weight, Bis the footing width, and Nc, Nq and Nγ are the bearing capacity factors. The method of evaluation the bearing capacity of strip footing based on finite element method incorporate five parameters: Young's modulus (E), Poisson's ratio (ν), dilation angle (ψ), cohesion (c), and friction angle (φ). In the present study E, ν and ψ are held constant while c and φ are randomized. Although the Young's modulus does not affect the bearing capacity it governs the initial elastic response of the soil. Plastic stress redistribution is accomplished using a viscoplastic algorithm merge with an elastic perfectly plastic (Mohr - Coulomb) failure criterion. In this paper a typical finite element mesh was assumed with 8-node elements consist in 50 columns and 20 rows. Footings width B

  11. A conjunct near-surface spectroscopy system for fix-angle and multi-angle continuous measurements of canopy reflectance and sun-induced chlorophyll fluorescence

    Science.gov (United States)

    Zhang, Qian; Fan, Yifeng; Zhang, Yongguang; Chou, Shuren; Ju, Weimin; Chen, Jing M.

    2016-09-01

    An automated spectroscopy system, which is divided into fix-angle and multi-angle subsystems, for collecting simultaneous, continuous and long-term measurements of canopy hyper-spectra in a crop ecosystem is developed. The fix-angle subsystem equips two spectrometers: one is HR2000+ (OceanOptics) covering the spectral range 200-1100 nm with 1.0 nm spectral resolution, and another one is QE65PRO (OceanOptics) providing 0.1 nm spectral resolution within the 730-780 nm spectral range. Both spectrometers connect a cosine-corrected fiber-optic fixed up-looking to collect the down-welling irradiance and a bare fiber-optic to measure the up-welling radiance from the vegetation. An inline fiber-optic shutter FOS-2x2-TTL (OceanOptics) is used to switch between input fibers to collect the signal from either the canopy or sky at one time. QE65PRO is used to permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2-A band. The data collection scheme includes optimization of spectrometer integration time to maximize the signal to noise ratio and measurement of instrument dark currency. The multi-angle subsystem, which can help understanding bidirectional reflectance effects, alternatively use HR4000 (OceanOptics) providing 0.1 nm spectral resolution within the 680-800 nm spectral range to measure multi-angle SIF. This subsystem additionally includes a spectrometer Unispec-DC (PPSystems) featuring both up-welling and down-welling channels with 3 nm spectral resolution covering the 300-1100 nm spectral range. Two down-looking fiber-optics are mounted on a rotating device PTU-D46 (FLIR Systems), which can rotate horizontally and vertically at 10° angular step widths. Observations can be used to calculate canopy reflectance, vegetation indices and SIF for monitoring plant physiological processes.

  12. Geckos significantly alter foot orientation to facilitate adhesion during downhill locomotion.

    Science.gov (United States)

    Birn-Jeffery, Aleksandra V; Higham, Timothy E

    2014-10-01

    Geckos employ their adhesive system when moving up an incline, but the directionality of the system may limit function on downhill surfaces. Here, we use a generalist gecko to test whether limb modulation occurs on downhill slopes to allow geckos to take advantage of their adhesive system. We examined three-dimensional limb kinematics for geckos moving up and down a 45° slope. Remarkably, the hind limbs were rotated posteriorly on declines, resulting in digit III of the pes facing a more posterior direction (opposite to the direction of travel). No significant changes in limb orientation were found in any other condition. This pes rotation leads to a dramatic shift in foot function that facilitates the use of the adhesive system as a brake/stabilizer during downhill locomotion and, although this rotation is not unique to geckos, it is significant for the deployment of adhesion. Adhesion is not just advantageous for uphill locomotion but can be employed to help deal with the effects of gravity during downhill locomotion, highlighting the incredible multi-functionality of this key innovation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Femoral component rotation in patellofemoral joint replacement.

    Science.gov (United States)

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Misalignment calibration of geomagnetic vector measurement system using parallelepiped frame rotation method

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Zhu, XueJun; Pan, Mengchun; Zhang, Qi; Wan, Chengbiao; Luo, Shitu; Chen, Dixiang; Chen, Jinfei; Li, Ji; Lv, Yunxiao

    2016-01-01

    Misalignment error is one key factor influencing the measurement accuracy of geomagnetic vector measurement system, which should be calibrated with the difficulties that sensors measure different physical information and coordinates are invisible. A new misalignment calibration method by rotating a parallelepiped frame is proposed. Simulation and experiment result show the effectiveness of calibration method. The experimental system mainly contains DM-050 three-axis fluxgate magnetometer, INS (inertia navigation system), aluminium parallelepiped frame, aluminium plane base. Misalignment angles are calculated by measured data of magnetometer and INS after rotating the aluminium parallelepiped frame on aluminium plane base. After calibration, RMS error of geomagnetic north, vertical and east are reduced from 349.441 nT, 392.530 nT and 562.316 nT to 40.130 nT, 91.586 nT and 141.989 nT respectively. - Highlights: • A new misalignment calibration method by rotating a parallelepiped frame is proposed. • It does not need to know sensor attitude information or local dip angle. • The calibration system attitude change angle is not strictly required. • It can be widely used when sensors measure different physical information. • Geomagnetic vector measurement error is reduced evidently.

  15. Misalignment calibration of geomagnetic vector measurement system using parallelepiped frame rotation method

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Hongfeng [Academy of Equipment, Beijing 101416 (China); College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073 (China); Zhu, XueJun, E-mail: zhuxuejun1990@126.com [College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073 (China); Pan, Mengchun; Zhang, Qi; Wan, Chengbiao; Luo, Shitu; Chen, Dixiang; Chen, Jinfei; Li, Ji; Lv, Yunxiao [College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073 (China)

    2016-12-01

    Misalignment error is one key factor influencing the measurement accuracy of geomagnetic vector measurement system, which should be calibrated with the difficulties that sensors measure different physical information and coordinates are invisible. A new misalignment calibration method by rotating a parallelepiped frame is proposed. Simulation and experiment result show the effectiveness of calibration method. The experimental system mainly contains DM-050 three-axis fluxgate magnetometer, INS (inertia navigation system), aluminium parallelepiped frame, aluminium plane base. Misalignment angles are calculated by measured data of magnetometer and INS after rotating the aluminium parallelepiped frame on aluminium plane base. After calibration, RMS error of geomagnetic north, vertical and east are reduced from 349.441 nT, 392.530 nT and 562.316 nT to 40.130 nT, 91.586 nT and 141.989 nT respectively. - Highlights: • A new misalignment calibration method by rotating a parallelepiped frame is proposed. • It does not need to know sensor attitude information or local dip angle. • The calibration system attitude change angle is not strictly required. • It can be widely used when sensors measure different physical information. • Geomagnetic vector measurement error is reduced evidently.

  16. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO to Create Normal Ankle Joint Behavior

    Directory of Open Access Journals (Sweden)

    Amirhesam Amerinatanzi

    2017-12-01

    Full Text Available Hinge-based Ankle Foot Orthosis (HAFO is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II: (i subjects with bare foot; (ii subjects wearing a conventional HAFO with no spring; (iii subjects wearing a conventional Stainless Steel-based HAFO; and (iv subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree and an increased level of moment (0.55 versus 0.36 N·m/kg. Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  17. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO) to Create Normal Ankle Joint Behavior.

    Science.gov (United States)

    Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Elahinia, Mohammad

    2017-12-07

    Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  18. WE-EF-207-02: The Rotate-Plus-Shift C-Arm Trajectory: Theory and First Clinical Results

    International Nuclear Information System (INIS)

    Ritschl, L; Kachelriess, M; Kuntz, J

    2015-01-01

    Purpose: The proposed method enables the acquisition of a complete dataset for 3D reconstruction of C-Arm data using less than 180° rotation. Methods: Typically a C–arm cone–beam CT scan is performed using a circle–like trajectory around a region of interest. Therefore an angular range of at least 180° plus fan–angle must be covered to ensure a completely sampled data set. This fact defines some constraints on the geometry and technical specifications of a C–arm system, for example a larger C radius or a smaller C opening respectively. This is even more important for mobile C-arm devices which are typically used in surgical applications.To overcome these limitations we propose a new trajectory which requires only 180° minusfan–angle of rotation for a complete data set. The trajectory consists of three parts: A rotation of the C around a defined iso–center and two translational movements parallel to the detector plane at the begin and at the end of the rotation (rotate plus shift trajectory). This enables the acquisition of a completely sampled dataset using only 180° minus fan–angle of rotation. Results: For the evaluation of the method we show simulated and measured data. The results show, that the rotate plus shift scan yields equivalent image quality compared to the short scan which is assumed to be the gold standard for C-arm CT today. Compared to the pure rotational scan over only 165°, the rotate plus shift scan shows strong improvements in image quality. Conclusion: The proposed method makes 3D imaging using C–arms with less than 180° rotation range possible. This enables integrating full 3D functionality into a C- arm device without any loss of handling and usability for 2D imaging

  19. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  20. Supracondylar corrective osteotomy for cubitus varus--the internal rotation component and its importance. An unique bone experiment.

    Directory of Open Access Journals (Sweden)

    Jimulia T

    1994-10-01

    Full Text Available In 20 patients with cubitus varus, a clinical test suggested by Yamamoto et al (1985 was carried out to measure the internal rotation. Average internal rotation was found to be 37.5 +/- 9.390. A correction for internal rotation was carried out for all the patients having angle more than 20 degrees. Following osteotomy, post-operative Yamamoto′s angle was measured and was found to be 8.85 +/- 6.5. An experiment was carried out on postmortem human humerus with cubitus varus. The internal rotation was measured with Kirschner wires and was found to be 30 degrees. Osteotomy was carried out to eliminate varus and correct internal rotation. Radiographs taken before and after the osteotomy confirmed the correction. We conclude that this derotation has to be corrected and Yamamoto′s test should be used to assess the correction.

  1. Natural gaits of the non-pathological flat foot and high-arched foot.

    Science.gov (United States)

    Fan, Yifang; Fan, Yubo; Li, Zhiyu; Lv, Changsheng; Luo, Donglin

    2011-03-18

    There has been a controversy as to whether or not the non-pathological flat foot and high-arched foot have an effect on human walking activities. The 3D foot scanning system was employed to obtain static footprints from subjects adopting a half-weight-bearing stance. Based upon their footprints, the subjects were divided into two groups: the flat-footed and the high-arched. The plantar pressure measurement system was used to measure and record the subjects' successive natural gaits. Two indices were proposed: distribution of vertical ground reaction force (VGRF) of plantar and the rate of change of footprint areas. Using these two indices to compare the natural gaits of the two subject groups, we found that (1) in stance phase, there is a significant difference (pplantar; (2) in a stride cycle, there is also a significant difference (pfootprint area. Our analysis suggests that when walking, the VGRF of the plantar brings greater muscle tension to the flat-footed while a smaller rate of change of footprint area brings greater stability to the high-arched.

  2. The effects of orthotic intervention on multisegment foot kinematics and plantar fascia strain in recreational runners.

    Science.gov (United States)

    Sinclair, Jonathan; Isherwood, Josh; Taylor, Paul J

    2015-02-01

    Chronic injuries are a common complaint in recreational runners. Foot orthoses have been shown to be effective for the treatment of running injuries but their mechanical effects are still not well understood. This study aims to examine the influence of orthotic intervention on multisegment foot kinematics and plantar fascia strain during running. Fifteen male participants ran at 4.0 m · s(-1) with and without orthotics. Multisegment foot kinematics and plantar fascia strain were obtained during the stance phase and contrasted using paired t tests. Relative coronal plane range of motion of the midfoot relative to the rearfoot was significantly reduced with orthotics (1.0°) compared to without (2.2°). Similarly, relative transverse plane range of motion was significantly lower with orthotics (1.1°) compared to without (1.8°). Plantar fascia strain did not differ significantly between orthotic (7.1) and nonorthotic (7.1) conditions. This study shows that although orthotics did not serve to reduce plantar fascia strain, they are able to mediate reductions in coronal and transverse plane rotations of the midfoot.

  3. From the diabetic foot ulcer and beyond: how do foot infections spread in patients with diabetes?

    Science.gov (United States)

    Aragón-Sánchez, Javier; Lázaro-Martínez, Jose Luis; Pulido-Duque, Juan; Maynar, Manuel

    2012-01-01

    A diabetic foot infection is usually the result of a pre-existing foot ulceration and is the leading cause of lower extremity amputation in patients with diabetes. It is widely accepted that diabetic foot infections may be challenging to treat for several reasons. The devastating effects of hyperglycemia on host defense, ischemia, multi-drug resistant bacteria and spreading of infection through the foot may complicate the course of diabetic foot infections. Understanding the ways in which infections spread through the diabetic foot is a pivotal factor in order to decide the best approach for the patient's treatment. The ways in which infections spread can be explained by the anatomical division of the foot into compartments, the tendons included in the compartments, the initial location of the point of entry of the infection and the type of infection that the patient has. The aim of this paper is to further comment on the existed and proposed anatomical principles of the spread of infection through the foot in patients with diabetes. PMID:23050067

  4. Biplanar variable angle x-ray examining apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1986-01-01

    This invention relates to radiological equipment, particularly to apparatus for supporting and maneuvering a plurality of radiological examination sets to permit simultaneous or sequential exposure through different planes of an organ. The apparatus comprises: a first radiological examining set including a radiation source, receptor, and support for holding the source and receptor along an axis; and a second examining set with the source and receptor aligned to intersect the first axis at a common isocenter. The first support means is rotatable independently of the second support means about a rotational axis intersecting the common isocenter. The support means for one radiological examining set comprises two arms respectively carrying the radiation source and the radiation receptor of the one set and means reciprocally supporting the respective arms for movement independently of each other parallel to the rotational axis, whereby a series of substantially simultaneous radiological examinations can be made on both radiation axes through the subject at variable angles between the axes

  5. The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot.

    Science.gov (United States)

    Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; Tørholm, Søren; Al-Munajjed, Amir A; van Rhijn, Lodewijk; Meijer, Kenneth

    2016-01-01

    Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted.

  6. Priorities in offloading the diabetic foot

    NARCIS (Netherlands)

    Bus, Sicco A.

    2012-01-01

    Biomechanical factors play an important role in diabetic foot disease. Reducing high foot pressures (i.e. offloading) is one of the main goals in healing and preventing foot ulceration. Evidence-based guidelines show the strong association between the efficacy to offload the foot and clinical

  7. Pros and cons of rotating ground motion records to fault-normal/parallel directions for response history analysis of buildings

    Science.gov (United States)

    Kalkan, Erol; Kwong, Neal S.

    2014-01-01

    According to the regulatory building codes in the United States (e.g., 2010 California Building Code), at least two horizontal ground motion components are required for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 km of an active fault, these records should be rotated to fault-normal/fault-parallel (FN/FP) directions, and two RHAs should be performed separately (when FN and then FP are aligned with the transverse direction of the structural axes). It is assumed that this approach will lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. This assumption is examined here, for the first time, using a 3D computer model of a six-story reinforced-concrete instrumented building subjected to an ensemble of bidirectional near-fault ground motions. Peak values of engineering demand parameters (EDPs) were computed for rotation angles ranging from 0 through 180° to quantify the difference between peak values of EDPs over all rotation angles and those due to FN/FP direction rotated motions. It is demonstrated that rotating ground motions to FN/FP directions (1) does not always lead to the maximum responses over all angles, (2) does not always envelope the range of possible responses, and (3) does not provide maximum responses for all EDPs simultaneously even if it provides a maximum response for a specific EDP.

  8. The impact of changing solar screen rotation angle and its opening aspect ratios on Daylight Availability in residential desert buildings

    KAUST Repository

    Sherif, Ahmed H.

    2012-11-01

    In desert sunny clear-sky regions solar penetration can become excessive. This can cause non-uniform daylight distribution, glare and high solar heat gain, affecting both visual and thermal comfort. Shading devices, such as solar screens, were usually used to diffuse and prevent direct solar penetration into spaces. This paper investigates the impact of changing solar screen axial rotation angle and screen opening aspect ratio on daylighting performance in a typical residential living room space under the desert sunny clear-sky. The larger aim is to arrive at efficient solar screen designs that suit the different orientations.The study was divided into three consecutive phases. In phase one, the effect of the two parameters on Daylight Availability was tested. The solar screen was axially rotated by three different angles at 10° increments. Also, the aspect ratio of the screen opening in both horizontal and vertical directions was changed systematically. Simulation was conducted using the annual Daylight Dynamic Performance Metrics (DDPMs). In phase two, the Annual Daylight Glare Probability (DGP) metric was evaluated for the cases that were found adequate in phase one. In the third phase, the annual solar energy transmittance through the screen was calculated for the cases that achieved acceptable performance in the two previous phases in order to identify the more energy efficient screens.Solar screens with openings having horizontal aspect ratios were found to be the most effective, while those with vertical aspect ratios were achieved the lowest performance. In the North orientation, since almost all the cases that were tested in this research provided acceptable daylighting performance, the designer now have a variety of options to choose from. Preference should be given to screen openings of horizontal aspect ratios, especially the 12:1 and 18:1 (H:V) screens that achieved the best performance where 92% of the space was " daylit" in comparison with only 53

  9. A comparative biomechanical analysis of habitually unshod and shod runners based on a foot morphological difference.

    Science.gov (United States)

    Mei, Qichang; Fernandez, Justin; Fu, Weijie; Feng, Neng; Gu, Yaodong

    2015-08-01

    Running is one of the most accessible physical activities and running with and without footwear has attracted extensive attention in the past several years. In this study 18 habitually male unshod runners and 20 habitually male shod runners (all with dominant right feet) participated in a running test. A Vicon motion analysis system was used to capture the kinematics of each participant's lower limb. The in-shoe plantar pressure measurement system was employed to measure the pressure and force exerted on the pressure sensors of the insole. The function of a separate hallux in unshod runners is analyzed through the comparison of plantar pressure parameters. Owing to the different strike patterns in shod and unshod runners, peak dorsiflexion and plantarflexion angle were significantly different. Habitually shod runners exhibited a decreased foot strike angle (FSA) under unshod conditions; and the vertical average loading rate (VALR) of shod runners under unshod conditions was larger than that under shod conditions. This suggests that the foot strike pattern is more important than the shod or unshod running style and runners need to acquire the technique. It can be concluded that for habitually unshod runners the separate hallux takes part of the foot loading and reduces loading to the forefoot under shod conditions. The remaining toes of rearfoot strike (RFS) runners function similarly under unshod conditions. These morphological features of shod and unshod runners should be considered in footwear design to improve sport performance and reduce injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot

    OpenAIRE

    Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; T?rholm, S?ren; Al-Munajjed, Amir A.; van Rhijn, Lodewijk; Meijer, Kenneth

    2016-01-01

    Background Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Methods ...

  11. Finger and foot tapping sensor system for objective motor assessment

    Directory of Open Access Journals (Sweden)

    Đurić-Jovičić Milica

    2018-01-01

    Full Text Available Background/Aim. Finger tapping test is commonly used in neurological examinations as a test of motor performance. The new system comprising inertial and force sensors and custom proprietary software was developed for quantitative estimation and assessment of finger and foot tapping tests. The aim of this system was to provide diagnosis support and objective assessment of motor function. Methods. Miniature inertial sensors were placed on fingertips and used for measuring finger movements. A force sensor was placed on the fingertip of one finger, in order to measure the force during tapping. For foot tapping assessment, an inertial sensor was mounted on the subject’s foot, which was placed above a force platform. By using this system, various parameters such as a number of taps, tapping duration, rhythm, open and close speed, the applied force and tapping angle, can be extracted for detailed analysis of a patient’s motor performance. The system was tested on 13 patients with Parkinson’s disease and 14 healthy controls. Results. The system allowed easy measurement of listed parameters, and additional graphical representation showed quantitative differences in these parameters between neurological patient and healthy subjects. Conclusion. The novel system for finger and foot tapping test is compact, simple to use and efficiently collects patient data. Parameters measured in patients can be compared to those measured in healthy subjects, or among groups of patients, or used to monitor progress of the disease, or therapy effects. Created data and scores could be used together with the scores from clinical tests, providing the possibility for better insight into the diagnosis. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 175090 and Grant no. 175016

  12. Determination of Pole and Rotation Period of not Stabilized Artificial Satellite by Use of Model "diffuse Cylinder"

    Science.gov (United States)

    Kolesnik, S. Ya.; Dobrovolsky, A. V.; Paltsev, N. G.

    The algorithm of determination of orientation of rotation axis (pole) and rotation period of satellite, simulated by a cylinder, which is precessing around of vector of angular moment of pulse with constant nutation angle is offered. The Lambert's law of light reflection is accepted. Simultaneously, dependence of light reflection coefficient versus phase angle is determined. The model's simulation confirm applicability of this method. Results of the calculations for artificial satellite No 28506 are carried out.

  13. Education for diabetic foot

    Directory of Open Access Journals (Sweden)

    Fabio Batista

    2009-03-01

    Full Text Available Objective: The purpose of this investigation was to stratify the risk in a consecutive group of diabetic patients presenting, for the first time, in a diabetic foot clinic. Additional aims were to investigate the preventive measures in the local health system and to evaluate the level of patient’s awareness about diabetic foot-associated morbidity. Methods: Fifty consecutive adult diabetic patients referred to a Diabetic Foot Clinic of a Municipal Public Hospital comprised the sample for this observational study. The enrollment visit was considered as the first health-system intervention for potential foot morbidity. The average time elapsed since a diagnosis of diabetes among patients was five years. Rresults: At the time of presentation, 94% of sample was not using appropriate footwear. Pedal pulses (dorsalis pedis and/or posterior tibial arteries were palpable in 76% of patients. Thirty subjects (60% had signs of peripheral neuropathy. Twenty-one subjects (42% had clinical deformity. There was a positive correlation between a history of foot ulcer, the presence of peripheral neuropathy, and the presence of foot deformity (p < 0.004 in each correlation. Cconclusions: Informing and educating the patients and those interested in this subject and these problems is essential for favorable outcomes in this scenario.

  14. Foot Health Facts for Athletes

    Science.gov (United States)

    ... common foot problems affecting athletes: Prevent Foot & Ankle Running Injuries (downloadable PDF) Back-to-School Soccer Season Surgeons ... and Ankle Soccer is hard on the feet! Injuries to the foot and ankle can occur from running and side-to-side cutting, sliding or tackling ...

  15. Can Double Osteotomy Be a Solution for Adult Hallux Valgus Deformity With an Increased Distal Metatarsal Articular Angle?

    Science.gov (United States)

    Park, Chul Hyun; Cho, Jae Ho; Moon, Jeong Jae; Lee, Woo Chun

    2016-01-01

    No previous study has reported the results of double metatarsal osteotomy for adult hallux valgus deformity with an increased distal metatarsal articular angle (DMAA). The purpose of the present study was to evaluate the results after double metatarsal osteotomy in adult patients with incongruent hallux valgus deformity. We retrospectively reviewed 16 cases of consecutive first metatarsal double metatarsal osteotomy without lateral soft tissue release in 14 patients with symptomatic hallux valgus associated with an increased DMAA (≥15° after proximal chevron osteotomy on intraoperative radiographs). Clinical results were assessed using the American Orthopaedic Foot and Ankle Society scale and the visual analog scale. The radiographic results were assessed over time, and changes in the DMAA and the relative length of the first metatarsal were assessed by measuring each value preoperatively and at the last follow-up visit. The American Orthopaedic Foot and Ankle Society and visual analog scale scores were significantly improved after surgery. The hallux valgus angle and intermetatarsal angle were stabilized >3 months after surgery. The sesamoid position did not increase significantly beyond the immediate postoperative period. The mean DMAA was corrected from 21.6° (range 15° to 29°) preoperatively to 11.1° (range -2° to 17°) at the last follow-up visit. The mean amount of shortening of the first metatarsal after surgery was 5.5 (range 4 to 7) mm. In conclusion, double metatarsal osteotomy without lateral soft tissue release in adult hallux valgus deformity results in high postoperative recurrence and complication rates. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  16. A self-calibration method in single-axis rotational inertial navigation system with rotating mechanism

    Science.gov (United States)

    Chen, Yuanpei; Wang, Lingcao; Li, Kui

    2017-10-01

    Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.

  17. Rotation curve of our galaxy; how well do we know it

    Energy Technology Data Exchange (ETDEWEB)

    Pismis, P [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    Following an historical sketch of the relevant circumstances leading to the formulation of the rotation of the galaxy, the differential rotation formulae are recalled. The necessity of obtaining an overall rotation curve at the advent of radioastronomy is stressed; only through the knowledge of such a curve can the kinematic distances of H I profiles, H II regions and molecular clouds be obtained. The existence of the deviations from a smooth rotation curve are pointed out; in particular it is shown that the curve exhibits ''waves'', a phenomenon at present known to be rather common in spiral galaxies. Maxima and minima correspond to arm and interarm regions, respectively. The interpretation of these waves as population effects suggested earlier by this author is emphasized once again. Recent observations of H II regions and CO clouds suggest that the sun is located close to the minimum of a wave. Another irregularity, the presumed difference in the north and south rotation curves, is also briefly discussed. Based on a plausible assumption that the spiral structure can be represented by a pair of symmetrically located logarithmic spirals, it is shown that if waves do indeed exist - irrespective of the cause of such waves - the rotation curve in our galaxy and in others will be a function of direction from the galactic center. Unlike external galaxies, from the location of the sun we are not able to obtain the rotation velocity in all directions. An average rotation curve where the waves are smoothed out can be obtained from the mean over directions within a central angle of 180/sup 0/. However, from our eccentric position in the galaxy we can obtain information on the rotation law at best within a central angle of 120/sup 0/. Finally, it is emphazied that the rotation curve discussed usually is that of the fastest rotating system, the population I, which contains not more than 10% of the total mass of the galaxy. The rotation curve is, therefore, not unique.

  18. A Microscopic Quantal Model for Nuclear Collective Rotation

    International Nuclear Information System (INIS)

    Gulshani, P.

    2007-01-01

    A microscopic, quantal model to describe nuclear collective rotation in two dimensions is derived from the many-nucleon Schrodinger equation. The Schrodinger equation is transformed to a body-fixed frame to decompose the Hamiltonian into a sum of intrinsic and rotational components plus a Coriolis-centrifugal coupling term. This Hamiltonian (H) is expressed in terms of space-fixed-frame particle coordinates and momenta by using commutator of H with a rotation angle. A unified-rotational-model type wavefunction is used to obtain an intrinsic Schrodinger equation in terms of angular momentum quantum number and two-body operators. A Hartree-Fock mean-field representation of this equation is then obtained and, by means of a unitary transformation, is reduced to a form resembling that of the conventional semi-classical cranking model when exchange terms and intrinsic spurious collective excitation are ignored

  19. SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error

    Energy Technology Data Exchange (ETDEWEB)

    Ju, S; Hong, C; Kim, M; Chung, K; Kim, J; Han, Y; Ahn, S; Chung, S; Shin, E; Shin, J; Kim, H; Kim, D; Choi, D [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed without the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.

  20. Broken symmetries and the Cabibbo angle

    International Nuclear Information System (INIS)

    Lanik, J.

    1975-04-01

    Under the assumption that the SU(3) symmetry is broken down by the strong and electromagnetic interactions, a phenomenological theory of the Cabibbo angle theta is proposed. In this theory the angle theta is fixed, linking together the Cabibbo rotation in the SU(3) space and complete SU(3) breaking consisting of both the SU(3) Hamiltonian and vacuum non-invariances. Assuming that the value of theta is zero in the soft-pion limit and that, in this limit, the only forces responsible for the isotopic symmetry breaking are the usual photonic forces it is shown that the usual electromagnetic interactions can contribute for the value of theta only through the non-vanishing vacuum expectation value of a certain scalar field. Within the framework of the (3,average3)+(3,average3) chiral symmetry-breaking model and through the use of the experimental value of the ratio GAMMA (K→μν)/GAMMA(π→μν), the presented Cabibbo angle theory predicts the value sintheta=0.25 which is in good agreement with experiment. (Lanik, J.)

  1. Sesamoid Injuries in the Foot

    Science.gov (United States)

    ... on the ball of the foot when walking, running and jumping. Sesamoid injuries can involve the bones, tendons and/or surrounding ... on the ball of the foot, such as running, basketball, football, golf, tennis and ballet. ... of Sesamoid Injuries in the Foot There are three types of ...

  2. Combined diabetic foot infections treatment, complicated by foot phlegmon

    Directory of Open Access Journals (Sweden)

    Yavruyan O.A.

    2017-01-01

    Full Text Available the article shows the analysis of treatment results of 163 patients with diabetic foot infections, complicated by foot phlegmon. Patients were divided into 2 groups. The control group received traditional treatment and had an autopsy deep plantar space done and then, during the second phase, cytokine-rich autoplatelet concentrate had been applied. The research results confirmed a significant decrease in the duration of treatment and hospitalization of patients in the hospital.

  3. Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern

    Science.gov (United States)

    Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Peng, Zhike

    2018-03-01

    Fast and accurate rotational speed measurement is required both for condition monitoring and faults diagnose of rotating machineries. A vision- and fringe pattern-based rotational speed measurement system was proposed to measure the instantaneous rotational speed (IRS) with high accuracy and reliability. A special double-sine-varying-density fringe pattern (DSVD-FP) was designed and pasted around the shaft surface completely and worked as primary angular sensor. The rotational angle could be correctly obtained from the left and right fringe period densities (FPDs) of the DSVD-FP image sequence recorded by a high-speed camera. The instantaneous angular speed (IAS) between two adjacent frames could be calculated from the real-time rotational angle curves, thus, the IRS also could be obtained accurately and efficiently. Both the measurement principle and system design of the novel method have been presented. The influence factors on the sensing characteristics and measurement accuracy of the novel system, including the spectral centrobaric correction method (SCCM) on the FPD calculation, the noise sources introduce by the image sensor, the exposure time and the vibration of the shaft, were investigated through simulations and experiments. The sampling rate of the high speed camera could be up to 5000 Hz, thus, the measurement becomes very fast and the change in rotational speed was sensed within 0.2 ms. The experimental results for different IRS measurements and characterization of the response property of a servo motor demonstrated the high accuracy and fast measurement of the proposed technique, making it attractive for condition monitoring and faults diagnosis of rotating machineries.

  4. Magnitude and Spatial Distribution of Impact Intensity Under the Foot Relates to Initial Foot Contact Pattern.

    Science.gov (United States)

    Breine, Bastiaan; Malcolm, Philippe; Segers, Veerle; Gerlo, Joeri; Derie, Rud; Pataky, Todd; Frederick, Edward C; De Clercq, Dirk

    2017-12-01

    In running, foot contact patterns (rear-, mid-, or forefoot contact) influence impact intensity and initial ankle and foot kinematics. The aim of the study was to compare impact intensity and its spatial distribution under the foot between different foot contact patterns. Forty-nine subjects ran at 3.2 m·s -1 over a level runway while ground reaction forces (GRF) and shoe-surface pressures were recorded and foot contact pattern was determined. A 4-zone footmask (forefoot, midfoot, medial and lateral rearfoot) assessed the spatial distribution of the vertical GRF under the foot. We calculated peak vertical instantaneous loading rate of the GRF (VILR) per foot zone as the impact intensity measure. Midfoot contact patterns were shown to have the lowest, and atypical rearfoot contact patterns the highest impact intensities, respectively. The greatest local impact intensity was mainly situated under the rear- and midfoot for the typical rearfoot contact patterns, under the midfoot for the atypical rearfoot contact patterns, and under the mid- and forefoot for the midfoot contact patterns. These findings indicate that different foot contact patterns could benefit from cushioning in different shoe zones.

  5. Optimal Full Waveform Inversion Strategy in Azimuthally Rotated Elastic Orthorhombic Media

    KAUST Repository

    Oh, Juwon

    2017-05-26

    The elastic orthorhombic assumption is one of the most practical Earth models that takes into account the horizontal anisotropic layering and vertical fracture network. In this model, the rotation angle of the vertical planes of symmetry is a crucial parameter needed to increase the convergence of an anisotropic full waveform inversion (FWI) as well as to provide the fracture geometry along azimuthal direction. As an initial step, we investigate the possibility of recovering the azimuth angle via FWI, which may offer high-resolution information. We first utilize our new parameterization with deviation parameters, which provides the opportunity for multi-stage FWI. Based on the radiation patterns and gradient directions of each parameter, we show that the azimuth angle mainly affects the parameters that have azimuth-dependent radiation patterns, so that we can hierarchically build up the subsurface model from isotropic to VTI to azimuthally rotated orthorhombic models with less trade-offs. From the numerical example for a synthetic 3D model, we expect that both a deviation parameter and the azimuth angle can be recovered in the last stage of FWI with minimum trade-offs.

  6. Kinematic relationship between rotation of lumbar spine and hip joints during golf swing in professional golfers.

    Science.gov (United States)

    Mun, Frederick; Suh, Seung Woo; Park, Hyun-Joon; Choi, Ahnryul

    2015-05-14

    Understanding the kinematics of the lumbar spine and hip joints during a golf swing is a basic step for identifying swing-specific factors associated with low back pain. The objective of this study was to examine the kinematic relationship between rotational movement of the lumbar spine and hip joints during a golf swing. Fifteen professional golfers participated in this study with employment of six infrared cameras to record their golf swings. Anatomical reference system of the upper torso, pelvis and thigh segments, and the location of each hip and knee joint were defined by the protocols of the kinematic model of previous studies. Lumbar spine and hip joint rotational angle was calculated utilizing the Euler angle method. Cross-correlation and angle-angle plot was used to examine the degree of kinematic relationship between joints. A fairly strong coupling relationship was shown between the lumbar spine and hip rotational movements with an average correlation of 0.81. Leading hip contribution to overall rotation was markedly high in the early stage of the downswing, while the lumbar spine contributed greater towards the end of the downswing; however, the relative contributions of the trailing hip and lumbar spine were nearly equal during the entire downswing. Most of the professional golfers participated in this study used a similar coordination strategy when moving their hips and lumbar spine during golf swings. The rotation of hips was observed to be more efficient in producing the overall rotation during the downswing when compared to the backswing. These results provide quantitative information to better understand the lumbar spine and hip joint kinematic characteristics of professional golfers. This study will have great potential to be used as a normal control data for the comparison with kinematic information among golfers with low back pain and for further investigation of golf swing-specific factors associated with injury.

  7. Natural gaits of the non-pathological flat foot and high-arched foot.

    Directory of Open Access Journals (Sweden)

    Yifang Fan

    Full Text Available There has been a controversy as to whether or not the non-pathological flat foot and high-arched foot have an effect on human walking activities. The 3D foot scanning system was employed to obtain static footprints from subjects adopting a half-weight-bearing stance. Based upon their footprints, the subjects were divided into two groups: the flat-footed and the high-arched. The plantar pressure measurement system was used to measure and record the subjects' successive natural gaits. Two indices were proposed: distribution of vertical ground reaction force (VGRF of plantar and the rate of change of footprint areas. Using these two indices to compare the natural gaits of the two subject groups, we found that (1 in stance phase, there is a significant difference (p<0.01 in the distributions of VGRF of plantar; (2 in a stride cycle, there is also a significant difference (p<0.01 in the rate of change of footprint area. Our analysis suggests that when walking, the VGRF of the plantar brings greater muscle tension to the flat-footed while a smaller rate of change of footprint area brings greater stability to the high-arched.

  8. Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography

    Science.gov (United States)

    Heineck, James T.; Schuelein, Erich; Raffel, Markus

    2014-01-01

    Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.

  9. Diabetic foot disease: From the evaluation of the “foot at risk” to the novel diabetic ulcer treatment modalities

    Science.gov (United States)

    Amin, Noha; Doupis, John

    2016-01-01

    The burden of diabetic foot disease (DFD) is expected to increase in the future. The incidence of DFD is still rising due to the high prevalence of DFD predisposing factors. DFD is multifactorial in nature; however most of the diabetic foot amputations are preceded by foot ulceration. Diabetic peripheral neuropathy (DPN) is a major risk factor for foot ulceration. DPN leads to loss of protective sensation resulting in continuous unconscious traumas. Patient education and detection of high risk foot are essential for the prevention of foot ulceration and amputation. Proper assessment of the diabetic foot ulceration and appropriate management ensure better prognosis. Management is based on revascularization procedures, wound debridement, treatment of infection and ulcer offloading. Management and type of dressing applied are tailored according to the type of wound and the foot condition. The scope of this review paper is to describe the diabetic foot syndrome starting from the evaluation of the foot at risk for ulceration, up to the new treatment modalities. PMID:27076876

  10. Foot positioning instruction, initial vertical load position and lifting technique: effects on low back loading

    OpenAIRE

    Kingma, I.; Bosch, T.; Bruins, L.; van Dieen, J.H.

    2004-01-01

    This study investigated the effects of initial load height and foot placement instruction in four lifting techniques: free, stoop (bending the back), squat (bending the knees) and a modified squat technique (bending the knees and rotating them outward). A 2D dynamic linked segment model was combined with an EMG assisted trunk muscle model to quantify kinematics and low back loading in 10 subjects performing 19 different lifting movements, using 10.5 kg boxes without handles. When lifting from...

  11. 24 CFR 3285.312 - Footings.

    Science.gov (United States)

    2010-04-01

    ... reinforcing steel in cast-in-place concrete footings. (2) Pressure-treated wood. (i) Pressure-treated wood footings must consist of a minimum of two layers of nominal 2-inch thick pressure-treated wood, a single... values listed have been reduced by the dead load of the concrete footing. 4. Concrete block piers must...

  12. Foot muscles strengthener

    Directory of Open Access Journals (Sweden)

    Boris T. Glavač

    2012-04-01

    Full Text Available Previous experience in the correction of flat feet consisted of the use of insoles for shoes and exercises with toys, balls, rollers, inclined planes, etc. A device for strengthening foot muscles is designed for the correction of flat feet in children and, as its name suggests, for strengthening foot muscles in adults. The device is made of wood and metal, with a mechanism and technical solutions, enabling the implementation of specific exercises to activate muscles responsible for the formation of the foot arch. It is suitable for home use with controlled load quantities since it has calibrated springs. The device is patented with the Intellectual Property Office, Republic of Serbia, as a petty patent.

  13. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali; Fomel, Sergey B.

    2010-01-01

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  14. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-11-12

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  15. The 12-foot pressure wind tunnel restoration project model support systems

    Science.gov (United States)

    Sasaki, Glen E.

    1992-01-01

    The 12 Foot Pressure Wind Tunnel is a variable density, low turbulence wind tunnel that operates at subsonic speeds, and up to six atmospheres total pressure. The restoration of this facility is of critical importance to the future of the U.S. aerospace industry. As part of this project, several state of the art model support systems are furnished to provide an optimal balance between aerodynamic and operational efficiency parameters. Two model support systems, the Rear Strut Model Support, and the High Angle of Attack Model Support are discussed. This paper covers design parameters, constraints, development, description, and component selection.

  16. Vacuum variable-angle far-infrared ellipsometer

    Science.gov (United States)

    Friš, Pavel; Dubroka, Adam

    2017-11-01

    We present the design and performance of a vacuum far-infrared (∼50-680 cm-1) ellipsometer with a rotating analyser. The system is based on a Fourier transform spectrometer, an in-house built ellipsometer chamber and a closed-cycle bolometer. The ellipsometer chamber is equipped with a computer controlled θ-2θ goniometer for automated measurements at various angles of incidence. We compare our measurements on SrTiO3 crystal with the results acquired above 300 cm-1 with a commercially available ellipsometer system. After the calibration of the angle of incidence and after taking into account the finite reflectivity of mirrors in the detector part we obtain a very good agreement between the data from the two instruments. The system can be supplemented with a closed-cycle He cryostat for measurements between 5 and 400 K.

  17. Foot Complications in a Representative Australian Inpatient Population

    Directory of Open Access Journals (Sweden)

    Peter A. Lazzarini

    2017-01-01

    Full Text Available We investigated the prevalence and factors independently associated with foot complications in a representative inpatient population (adults admitted for any reason with and without diabetes. We analysed data from the Foot disease in inpatients study, a sample of 733 representative inpatients. Previous amputation, previous foot ulceration, peripheral arterial disease (PAD, peripheral neuropathy (PN, and foot deformity were the foot complications assessed. Sociodemographic, medical, and foot treatment history were collected. Overall, 46.0% had a foot complication with 23.9% having multiple; those with diabetes had higher prevalence of foot complications than those without diabetes (p<0.01. Previous amputation (4.1% was independently associated with previous foot ulceration, foot deformity, cerebrovascular accident, and past surgeon treatment (p<0.01. Previous foot ulceration (9.8% was associated with PN, PAD, past podiatry, and past nurse treatment (p<0.02. PAD (21.0% was associated with older age, males, indigenous people, cancer, PN, and past surgeon treatment (p<0.02. PN (22.0% was associated with older age, diabetes, mobility impairment, and PAD (p<0.05. Foot deformity (22.4% was associated with older age, mobility impairment, past podiatry treatment, and PN (p<0.01. Nearly half of all inpatients had a foot complication. Those with foot complications were older, male, indigenous, had diabetes, cerebrovascular accident, mobility impairment, and other foot complications or past foot treatment.

  18. What Is a Foot and Ankle Surgeon?

    Science.gov (United States)

    ... A A | Print | Share What is a Foot & Ankle Surgeon? Foot and ankle surgeons are the surgical ... every age. What education has a foot and ankle surgeon received? After completing undergraduate education, the foot ...

  19. Tool Indicates Contact Angles In Bearing Raceways

    Science.gov (United States)

    Akian, Richard A.; Butner, Myles F.

    1995-01-01

    Tool devised for use in measuring contact angles between balls and races in previously operated ball bearings. Used on both inner and outer raceways of bearings having cross-sectional widths between approximately 0.5 and 2.0 in. Consists of integral protractor mounted in vertical plane on bracket equipped with leveling screws and circular level indicator. Protractor includes rotatable indicator needle and set of disks of various sizes to fit various raceway curvatures.

  20. [A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].

    Science.gov (United States)

    Han, W; Song, J; Wang, G Z; Ding, H; Li, G S; Gong, M Q; Jiang, X Y; Wang, M Y

    2016-04-18

    To study a new positioning method of elbow external fixation rotation axis, and to evaluate its feasibility. Four normal adult volunteers and six Sawbone elbow models were brought into this experiment. The kinematic data of five elbow flexion were collected respectively by optical positioning system. The rotation axes of the elbow joints were fitted by the least square method. The kinematic data and fitting results were visually displayed. According to the fitting results, the average moving planes and rotation axes were calculated. Thus, the rotation axes of new kinematic methods were obtained. By using standard clinical methods, the entrance and exit points of rotation axes of six Sawbone elbow models were located under X-ray. And The kirschner wires were placed as the representatives of rotation axes using traditional positioning methods. Then, the entrance point deviation, the exit point deviation and the angle deviation of two kinds of located rotation axes were compared. As to the four volunteers, the indicators represented circular degree and coplanarity of elbow flexion movement trajectory of each volunteer were both about 1 mm. All the distance deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 3 mm. All the angle deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 5°. As to the six Sawbone models, the average entrance point deviations, the average exit point deviations and the average angle deviations of two different rotation axes determined by two kinds of located methods were respectively 1.697 2 mm, 1.838 3 mm and 1.321 7°. All the deviations were very small. They were all in an acceptable range of clinical practice. The values that represent circular degree and coplanarity of volunteer's elbow single curvature movement trajectory are very small. The result shows that the elbow single curvature movement can be regarded as the approximate fixed

  1. Sex-related differences in foot shape.

    Science.gov (United States)

    Krauss, I; Grau, S; Mauch, M; Maiwald, C; Horstmann, T

    2008-11-01

    The purpose of the study was to investigate sex-related differences in foot morphology. In total, 847 subjects were scanned using a 3-D-footscanner. Three different analysis methods were used: (1) comparisons were made for absolute foot measures within 250-270 mm foot length (FL); (2) and for averaged measures (% FL) across all sizes; (3) the feet were then classified using a cluster analysis. Within 250-270 mm FL, male feet were wider and higher (mean differences (MD) 1.3-5.9 mm). No relevant sex-related differences could be found in the comparison of averaged measures (MD 0.3-0.6% FL). Foot types were categorised into voluminous, flat-pointed and slender. Shorter feet were more often voluminous, longer feet were more likely to be narrow and flat. However, the definition of 'short' and 'long' was sex-related; thus, allometry of foot measures was different. For shoe design, measures should be derived for each size and sex separately. Different foot types should be considered to account for the variety in foot shape. Improper footwear can cause foot pain and deformity. Therefore, knowledge of sex-related differences in foot measures is important to assist proper shoe fit in both men and women. The present study supplements the field of knowledge within this context with recommendations for the manufacturing of shoes.

  2. Effect of soccer shoe upper on ball behaviour in curve kicks

    Science.gov (United States)

    Ishii, Hideyuki; Sakurai, Yoshihisa; Maruyama, Takeo

    2014-08-01

    New soccer shoes have been developed by considering various concepts related to kicking, such as curving a soccer ball. However, the effects of shoes on ball behaviour remain unclear. In this study, by using a finite element simulation, we investigated the factors that affect ball behaviour immediately after impact in a curve kick. Five experienced male university soccer players performed one curve kick. We developed a finite element model of the foot and ball and evaluated the validity of the model by comparing the finite element results for the ball behaviour immediately after impact with the experimental results. The launch angle, ball velocity, and ball rotation in the finite element analysis were all in general agreement with the experimental results. Using the validated finite element model, we simulated the ball behaviour. The simulation results indicated that the larger the foot velocity immediately before impact, the larger the ball velocity and ball rotation. Furthermore, the Young's modulus of the shoe upper and the coefficient of friction between the shoe upper and the ball had little effect on the launch angle, ball velocity, and ball rotation. The results of this study suggest that the shoe upper does not significantly influence ball behaviour.

  3. Modified Vertical Bearing Capacity for Circular Foundations in Sand Using Reduced Friction Angle

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim André

    2012-01-01

    Recently Bucket foundation as a large cylindrical structure that is open as the base and closed at the top, has attracted much attention in offshore projects. In order to present relationship between vertical bearing capacity of a bucket foundation relative to the corresponding capacity of a circ......Recently Bucket foundation as a large cylindrical structure that is open as the base and closed at the top, has attracted much attention in offshore projects. In order to present relationship between vertical bearing capacity of a bucket foundation relative to the corresponding capacity...... of a circular plate, several loading tests on small scale bucket foundations including the circular surface footings are performed at Aalborg University. In current research, the vertical bearing capacity of circular surface footings is investigated using reduced friction angle. It is also presented a linear...

  4. Assessment of signs of foot infection in diabetes patients using photographic foot imaging and infrared thermography

    NARCIS (Netherlands)

    Hazenberg, Constantijn E. V. B.; van Netten, Jaap J.; van Baal, Sjef G.; Bus, Sicco A.

    2014-01-01

    Patients with diabetic foot disease require frequent screening to prevent complications and may be helped through telemedical home monitoring. Within this context, the goal was to determine the validity and reliability of assessing diabetic foot infection using photographic foot imaging and infrared

  5. NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation

    International Nuclear Information System (INIS)

    Zandomeneghi, Giorgia; Tomaselli, Marco; Williamson, Philip T.F.; Meier, Beat H.

    2003-01-01

    Model-membrane systems composed of liquid-crystalline bicellar phases can be uniaxially oriented with respect to a magnetic field, thereby facilitating structural and dynamics studies of membrane-associated proteins. Here we quantitatively characterize a method that allows the manipulation of the direction of this uniaxial orientation. Bicelles formed from DMPC/DHPC are examined by 31 P NMR under variable-angle sample-spinning (VAS) conditions, confirming that the orientation of the liquid-crystalline director can be influenced by sample spinning. The director is perpendicular to the rotation axis when Θ (the angle between the sample-spinning axis and the magnetic field direction) is smaller than the magic angle, and is parallel to the rotation axis when Θ is larger than the magic angle. The new 31 P NMR VAS data presented are considerably more sensitive to the orientation of the bicelle than earlier 2 H studies and the analysis of the sideband pattern allows the determination of the orientation of the liquid-crystal director and its variation over the sample, i.e., the mosaic spread. Under VAS, the mosaic spread is small if Θ deviates significantly from the magic angle but becomes very large at the magic angle

  6. Flip-flop footwear with a moulded foot-bed for the treatment of foot pain: a randomised controlled trial.

    Science.gov (United States)

    Chuter, Vivienne Helaine; Searle, Angela; Spink, Martin J

    2016-11-11

    Foot pain is a common problem affecting up to 1 in 5 adults and is known to adversely affect activities of daily living and health related quality of life. Orthopaedic footwear interventions are used as a conservative treatment for foot pain, although adherence is known to be low, in part due to the perception of poor comfort and unattractiveness of the footwear. The objective of this trial was to assess the efficacy of flip-flop style footwear (Foot Bio-Tec©) with a moulded foot-bed in reducing foot pain compared to participant's usual footwear. Two-arm parallel randomised controlled trial using computer generated random allocation schedule at an Australian university podiatry clinic. 108 volunteers with disabling foot pain were enrolled after responding to an advertisement and eligibility screening. Participants were randomly allocated to receive footwear education and moulded flip-flop footwear to wear as much as they were comfortable with for the next 12 weeks (n = 54) or footwear education and instructions to wear their normal footwear for the next 12 weeks (n = 54). Primary outcome was the pain domain of the Foot Health Status Questionnaire (FHSQ). Secondary outcomes were the foot function and general foot health domains of the FHSQ, a visual analogue scale (VAS) for foot pain and perceived comfort of the intervention footwear. Compared to the control group, the moulded flip-flop group showed a significant improvement in the primary outcome measure of the FHSQ pain domain (adjusted mean difference 8.36 points, 95 % CI 5.58 to 13.27, p footwear and six (footwear group = 4) were lost to follow up. Our results demonstrate that flip-flop footwear with a moulded foot-bed can have a significant effect on foot pain, function and foot health and might be a valuable adjunct therapy for people with foot pain. ACTRN12614000933651 . Retrospectively registered: 01/09/2014.

  7. Bearing Capacity of Strip Footings near Slopes Using Lower Bound Limit Analysis

    Directory of Open Access Journals (Sweden)

    Javad Mofidi rouchi

    2014-06-01

    Full Text Available Stability of foundations near slopes is one of the important and complicated problems in geotechnical engineering, which has been investigated by various methods such as limit equilibrium, limit analysis, slip-line, finite element and discrete element. The complexity of this problem is resulted from the combination of two probable failures: foundation failure and overall slope failure. The current paper describes a lower bound solution for estimation of bearing capacity of strip footings near slopes. The solution is based on the finite element formulation and linear programming technique, which lead to a collapse load throughout a statically admissible stress field. Three-nodded triangular stress elements are used for meshing the domain of the problem, and stress discontinuities occur at common edges of adjacent elements. The Mohr-Coulomb yield function and an associated flow rule are adopted for the soil behavior. In this paper, the average limit pressure of strip footings, which are adjacent to slopes, is considered as a function of dimensionless parameters affecting the stability of the footing-on-slope system. These parameters, particularly the friction angle of the soil, are investigated separately and relevant charts are presented consequently. The results are compared to some other solutions that are available in the literature in order to verify the suitability of the methodology used in this research.

  8. Imaging of Charcot foot

    International Nuclear Information System (INIS)

    Erlemann, Rainer; Schmitz, Annette

    2014-01-01

    The onset of a Charcot foot ist a feared complication of a long lasting diabetes mellitus. A peripheral neuropathy and continuous weight bearing of the foot subsequent to repeated traumas depict the conditions. There exist three types of a Charcot foot, an atrophic, a hypertophic and a mixed type. In early stages a differentiation from osteoarthritis is difficult. Subluxation or luxation within the Lisfranc's joint is typical. The joints of the foot could rapidly and extensively be destroyed or may present the morphology of a 'superosteoarthritis'. Often, soft tissue infections or osteomyelitis evolve from ulcers of the skin as entry points. Diagnosis of osteomyelitis necessitate MR imaging as plain radiography offers only low sensitivity for detection of an osteomyelitis. The existence of periosteal reactions is not a proof for osteomyelitis. Bone marrow edema and soft tissue edema also appear in a non infected Charcot foot. The range of soft tissue infections goes from cellulitis over phlegmon to abscesses. The ghost sign is the most suitable diagnostic criterion for osteomyelitis. In addition, the penumbra sign or the existence of a sinus tract between a skin ulcer and the affected bone may be helpful. (orig.)

  9. Starting off on the right foot: strong right-footers respond faster with the right foot to positive words and with the left foot to negative words.

    Science.gov (United States)

    de la Vega, Irmgard; Graebe, Julia; Härtner, Leonie; Dudschig, Carolin; Kaup, Barbara

    2015-01-01

    Recent studies have provided evidence for an association between valence and left/right modulated by handedness, which is predicted by the body-specificity hypothesis (Casasanto, 2009) and also reflected in response times. We investigated whether such a response facilitation can also be observed with foot responses. Right-footed participants classified positive and negative words according to their valence by pressing a key with their left or right foot. A significant interaction between valence and foot only emerged in the by-items analysis. However, when dividing participants into two groups depending on the strength of their footedness, an interaction between valence and left/right was observed for strong right-footers, who responded faster with the right foot to positive words, and with the left foot to negative words. No interaction emerged for weak right-footers. The results strongly support the assumption that fluency lies at the core of the association between valence and left/right.

  10. Diabetic Foot - Multiple Languages

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Diabetic Foot URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Diabetic Foot - Multiple Languages To use the sharing features on ...

  11. Effects of Huge Earthquakes on Earth Rotation and the length of Day

    Directory of Open Access Journals (Sweden)

    Changyi Xu

    2013-01-01

    Full Text Available We calculated the co-seismic Earth rotation changes for several typical great earthquakes since 1960 based on Dahlen¡¦s analytical expression of Earth inertia moment change, the excitation functions of polar motion and, variation in the length of a day (ΔLOD. Then, we derived a mathematical relation between polar motion and earthquake parameters, to prove that the amplitude of polar motion is independent of longitude. Because the analytical expression of Dahlen¡¦s theory is useful to theoretically estimate rotation changes by earthquakes having different seismic parameters, we show results for polar motion and ΔLOD for various types of earthquakes in a comprehensive manner. The modeled results show that the seismic effect on the Earth¡¦s rotation decreases gradually with increased latitude if other parameters are unchanged. The Earth¡¦s rotational change is symmetrical for a 45° dip angle and the maximum changes appear at the equator and poles. Earthquakes at a medium dip angle and low latitudes produce large rotation changes. As an example, we calculate the polar motion and ΔLOD caused by the 2011 Tohoku-Oki Earthquake using two different fault models. Results show that a fine slip fault model is useful to compute co-seismic Earth rotation change. The obtained results indicate Dahlen¡¦s method gives good approximations for computation of co-seismic rotation changes, but there are some differences if one considers detailed fault slip distributions. Finally we analyze and discuss the co-seismic Earth rotation change signal using GRACE data, showing that such a signal is hard to be detected at present, but it might be detected under some conditions. Numerical results of this study will serve as a good indicator to check if satellite observations such as GRACE can detect a seismic rotation change when a great earthquake occur.

  12. Experimental study on flow past a rotationally oscillating cylinder

    Science.gov (United States)

    Gao, Yang-yang; Yin, Chang-shan; Yang, Kang; Zhao, Xi-zeng; Tan, Soon Keat

    2017-08-01

    A series of experiments was carried out to study the flow behaviour behind a rotationally oscillating cylinder at a low Reynolds number (Re=300) placed in a recirculation water channel. A stepper motor was used to rotate the cylinder clockwise- and- counterclockwise about its longitudinal axis at selected frequencies. The particle image velocimetry (PIV) technique was used to capture the flow field behind a rotationally oscillating cylinder. Instantaneous and timeaveraged flow fields such as the vorticity contours, streamline topologies and velocity distributions were analyzed. The effects of four rotation angle and frequency ratios F r ( F r= f n/ f v, the ratio of the forcing frequency f n to the natural vortex shedding frequency f v) on the wake in the lee of a rotationally oscillating cylinder were also examined. The significant wake modification was observed when the cylinder undergoes clockwise-and-counterclockwise motion with amplitude of π, especially in the range of 0.6≤ F r≤1.0.

  13. Classical theory of rotational rainbow scattering from uncorrugated surfaces

    International Nuclear Information System (INIS)

    Khodorkovsky, Yuri; Averbukh, Ilya Sh; Pollak, Eli

    2010-01-01

    A classical perturbation theory is developed to study rotational rainbow scattering of molecules from uncorrugated frozen surfaces. Considering the interaction of the rigid rotor with the translational motion towards the surface to be weak allows for a perturbative treatment, in which the known zeroth order motion is that of a freely rotating molecule hitting a surface. Using perturbation theory leads to explicit expressions for the angular momentum deflection function with respect to the initial orientational angle of the rotor that are valid for any magnitude of the initial angular momentum. The rotational rainbows appear as peaks both in the final angular momentum and rotational energy distributions, as well as peaks in the angular distribution, although the surface is assumed to be uncorrugated. The derived analytic expressions are compared with numerical simulation data. Even when the rotational motion is significantly coupled to the translational motion, the predictions of the perturbative treatment remain qualitatively correct.

  14. Health education programmes to improve foot self-care practices and foot problems among older people with diabetes: a systematic review.

    Science.gov (United States)

    Ahmad Sharoni, Siti Khuzaimah; Minhat, Halimatus Sakdiah; Mohd Zulkefli, Nor Afiah; Baharom, Anisah

    2016-09-01

    To assess the effectiveness of health education programmes to improve foot self-care practices and foot problems among older people with diabetes. The complications of diabetes among older people are a major health concern. Foot problems such as neuropathy, ulcer and ultimately amputation are a great burden on older people with diabetes. Diabetes foot education programmes can influence the behaviour of older people in practising foot self-care and controlling the foot problems. However, the educational approaches used by the educators are different. Therefore, it is important to assess the education programmes from various evidence-based practices. Six databases, EBSCOhost medical collections (MEDLINE, CINAHL, Psychology and Behavioral Sciences Collection), SAGE, Wiley Online Library, ScienceDirect, SpringerLink and Web of Science, were used to search for articles published from January 2000 to March 2015. The search was based on the inclusion criteria and keywords including 'foot', 'care' and 'diabetes'. Fourteen studies were assessed and reviewed in the final stage. Health education programmes varied according to their design, setting, approach, outcome measured and results. Foot assessment, verbal and written instructions and discussion were proved to improve the foot self-care and foot problems. Subsequent follow-ups and evaluations had a significant effect. An improvement was observed in foot self-care scores and foot problems (such as neuropathy, foot disability, lesion, ulcer, tinea pedis and callus grade) after implementation of the health education programme. The findings of this study support the claim that a health education programme increases the foot self-care scores and reduces the foot problems. However, there were certain methodological concerns in the reviewed articles, indicating the need for further evaluation. In future, researchers and practitioners must implement a vigorous education programme focusing on diabetes foot self-care among the

  15. Flow produced in a conical container by a rotating endwall

    International Nuclear Information System (INIS)

    Escudier, M.P.; O'Leary, J.; Poole, R.J.

    2007-01-01

    Numerical calculations have been carried out for flow in a truncated cone generated by rotation of one endwall. For both convergent (radius increasing with approach to the rotating endwall) and divergent geometries, vortex breakdown is suppressed beyond a certain angle of inclination of the sidewall. At the same time Moffat eddies of increasing strength and extent appear in the corner between the sidewall and the non-rotating endwall. For the divergent geometry, a zone of recirculation appears on the sidewall and eventually merges with the Moffat eddies. The flow phenomena identified from streamline patterns are consistent with the calculated variation of pressure around the periphery of the computational domain

  16. Exact quantum cross sections for a three dimensional angle dependent model for three body reactions.

    Science.gov (United States)

    Baer, M.; Kouri, D. J.

    1971-01-01

    Exact quantum mechanical reactive cross sections are reported for a three dimensional angle dependent model surface. The surface simulates an atom-heteronuclear diatom system A + BC leading to AB + C where atom B is much heavier than A or C. The molecules BC and AB are taken to be rotating vibrators which can dissociate. Results for two angle dependent potentials are given.

  17. Diabetes: Good Diabetes Management and Regular Foot Care Help Prevent Severe Foot Sores

    Science.gov (United States)

    Amputation and diabetes: How to protect your feet Good diabetes management and regular foot care help prevent severe foot sores that ... and may require amputation. By Mayo Clinic Staff Diabetes complications can include nerve damage and poor blood ...

  18. A comparison of hallux valgus angles assessed with computerised plantar pressure measurements, clinical examination and radiography in patients with diabetes

    NARCIS (Netherlands)

    Janssen, D.M.; Sanders, A.P.; Guldemond, N.A.; Hermus, J.; Walenkamp, G.H.; Van Rhijn, L.W.

    2014-01-01

    Background Hallux valgus deformity is a common musculoskeletal foot disorder with a prevalence of 3.5% in adolescents to 35.7% in adults aged over 65 years. Radiographic measurements of hallux valgus angles (HVA) are considered to be the most reproducible and accurate assessment of HVA. However, in

  19. An oilspill trajectory analysis model with a variable wind deflection angle

    Science.gov (United States)

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  20. Occlusal plane rotation: aesthetic enhancement in mandibular micrognathia.

    Science.gov (United States)

    Rosen, H M

    1993-06-01

    Patients afflicted with extreme degrees of mandibular micrognathia typically have vertically deficient rami as well as sagittally deficient mandibular bodies. This results in deficient posterior facial height, an obtuse gonial angle, excessively steep occlusal and mandibular planes, and a compensatory increase in anterior facial height. The entire maxillomandibular complex is overrotated in a clockwise direction. Standard orthognathic surgical correction fails to address this rotational deformity. As a consequence, the achieved projection of the lower face is inadequate, posterior facial height is further reduced, and occlusal and mandibular planes remain steep. Eleven patients with severe mandibular micrognathia underwent a surgical correction involving occlusal plane rotation to its normal orientation relative to Frankfort horizontal. This was accomplished by Le Fort I osteotomy to shorten the anterior maxilla (creating open bites in seven patients and making preexisting open bites worse in four patients) and sagittal split ramus osteotomies to advance and rotate the mandibular body counterclockwise, thus closing the surgically produced open bite. Counterclockwise rotation of the mandible afforded significantly greater sagittal displacement at the B point (mean 17 mm) than at the first molar (mean 10 mm) and produced adequate degrees of projection of the lower face when accompanied by a modest sliding genioplasty (mean 6.9 mm). Total advancement at the pogonion was a mean of 25.2 mm. In addition, posterior facial height was preserved, and mandibular and occlusal planes were normalized to mean angles of 27 and 10 degrees, respectively. At follow-up, which ranged from 9 to 24 months with a mean of 14.1 months, the mean sagittal relapse at the B point was 1.9 mm. Although heretofore considered unstable and therefore not clinically accepted, maxillomandibular counterclockwise rotation to normalize the occlusal plane rotational deformity provides stable, aesthetically

  1. Results of a M = 5.3 heat transfer test of the integrated vehicle using phase-change paint techniques on the 0.0175-scale model 56-OTS in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel

    Science.gov (United States)

    Marroquin, J.

    1985-01-01

    An experimental investigation was performed in the NASA/Ames Research Center 3.5-foot Hypersonic Wind Tunnel to obtain supersonic heat-distribution data in areas between the orbiter and external tank using phase-change paint techniques. The tests used Novamide SSV Model 56-OTS in the first and second-stage ascent configurations. Data were obtained at a nominal Mach number of 5.3 and a Reynolds number per foot of 5 x 10 to the 6th power with angles of attack of 0 deg, +/- 5 deg, and sideslip angles of 0 deg and +/- 5 deg.

  2. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint.

    Science.gov (United States)

    Mildren, Robyn L; Bent, Leah R

    2016-04-15

    It has previously been shown that cutaneous sensory input from across a broad region of skin can influence proprioception at joints of the hand. The present experiment tested whether cutaneous input from different skin regions across the foot can influence proprioception at the ankle joint. The ability to passively match ankle joint position (17° and 7° plantar flexion and 7° dorsiflexion) was measured while cutaneous vibration was applied to the sole (heel, distal metatarsals) or dorsum of the target foot. Vibration was applied at two different frequencies to preferentially activate Meissner's corpuscles (45 Hz, 80 μm) or Pacinian corpuscles (255 Hz, 10 μm) at amplitudes ∼3 dB above mean perceptual thresholds. Results indicated that cutaneous input from all skin regions across the foot could influence joint-matching error and variability, although the strongest effects were observed with heel vibration. Furthermore, the influence of cutaneous input from each region was modulated by joint angle; in general, vibration had a limited effect on matching in dorsiflexion compared with matching in plantar flexion. Unlike previous results in the upper limb, we found no evidence that Pacinian input exerted a stronger influence on proprioception compared with Meissner input. Findings from this study suggest that fast-adapting cutaneous input from the foot modulates proprioception at the ankle joint in a passive joint-matching task. These results indicate that there is interplay between tactile and proprioceptive signals originating from the foot and ankle. Copyright © 2016 the American Physiological Society.

  3. Foot Conditions among Homeless Persons: A Systematic Review

    Science.gov (United States)

    To, Matthew J.; Brothers, Thomas D.; Van Zoost, Colin

    2016-01-01

    Introduction Foot problems are common among homeless persons, but are often overlooked. The objectives of this systematic review are to summarize what is known about foot conditions and associated interventions among homeless persons. Methods A literature search was conducted on MEDLINE (1966–2016), EMBASE (1947–2016), and CINAHL (1982–2016) and complemented by manual searches of reference lists. Articles that described foot conditions in homeless persons or associated interventions were included. Data were independently extracted on: general study characteristics; participants; foot assessment methods; foot conditions and associated interventions; study findings; quality score assessed using the Downs and Black checklist. Results Of 333 articles screened, 17 articles met criteria and were included in the study. Prevalence of any foot problem ranged from 9% to 65% across study populations. Common foot-related concerns were corns and calluses, nail pathologies, and infections. Foot pathologies related to chronic diseases such as diabetes were identified. Compared to housed individuals across studies, homeless individuals were more likely to have foot problems including tinea pedis, foot pain, functional limitations with walking, and improperly-fitting shoes. Discussion Foot conditions were highly prevalent among homeless individuals with up to two thirds reporting a foot health concern, approximately one quarter of individuals visiting a health professional, and one fifth of individuals requiring further follow-up due to the severity of their condition. Homeless individuals often had inadequate foot hygiene practices and improperly-fitting shoes. These findings have service provision and public health implications, highlighting the need for evidence-based interventions to improve foot health in this population. An effective interventional approach could include optimization of foot hygiene and footwear, provision of comprehensive medical treatment, and

  4. Foot Conditions among Homeless Persons: A Systematic Review.

    Science.gov (United States)

    To, Matthew J; Brothers, Thomas D; Van Zoost, Colin

    2016-01-01

    Foot problems are common among homeless persons, but are often overlooked. The objectives of this systematic review are to summarize what is known about foot conditions and associated interventions among homeless persons. A literature search was conducted on MEDLINE (1966-2016), EMBASE (1947-2016), and CINAHL (1982-2016) and complemented by manual searches of reference lists. Articles that described foot conditions in homeless persons or associated interventions were included. Data were independently extracted on: general study characteristics; participants; foot assessment methods; foot conditions and associated interventions; study findings; quality score assessed using the Downs and Black checklist. Of 333 articles screened, 17 articles met criteria and were included in the study. Prevalence of any foot problem ranged from 9% to 65% across study populations. Common foot-related concerns were corns and calluses, nail pathologies, and infections. Foot pathologies related to chronic diseases such as diabetes were identified. Compared to housed individuals across studies, homeless individuals were more likely to have foot problems including tinea pedis, foot pain, functional limitations with walking, and improperly-fitting shoes. Foot conditions were highly prevalent among homeless individuals with up to two thirds reporting a foot health concern, approximately one quarter of individuals visiting a health professional, and one fifth of individuals requiring further follow-up due to the severity of their condition. Homeless individuals often had inadequate foot hygiene practices and improperly-fitting shoes. These findings have service provision and public health implications, highlighting the need for evidence-based interventions to improve foot health in this population. An effective interventional approach could include optimization of foot hygiene and footwear, provision of comprehensive medical treatment, and addressing social factors that lead to increased risk

  5. Measuring contact angle and meniscus shape with a reflected laser beam.

    Science.gov (United States)

    Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K

    2014-01-01

    Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.

  6. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    Science.gov (United States)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  7. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  8. Effects of five hindfoot arthrodeses on foot and ankle motion: Measurements in cadaver specimens

    Science.gov (United States)

    Zhang, Kun; Chen, Yanxi; Qiang, Minfei; Hao, Yini

    2016-01-01

    Single, double, and triple hindfoot arthrodeses are used to correct hindfoot deformities and relieve chronic pain. However, joint fusion may lead to dysfunction in adjacent articular surfaces. We compared range of motion in adjacent joints before and after arthrodesis to determine the effects of each procedure on joint motion. The theory of moment of couple, bending moment and balanced loading was applied to each of 16 fresh cadaver feet to induce dorsiflexion, plantarflexion, internal rotation, external rotation, inversion, and eversion. Range of motion was measured with a 3-axis coordinate measuring machine in a control foot and in feet after subtalar, talonavicular, calcaneocuboid, double, or triple arthrodesis. All arthrodeses restricted mainly internal-external rotation and inversion-eversion. The restriction in a double arthrodesis was more than that in a single arthrodesis, but that in a calcaneocuboid arthrodesis was relatively low. After triple arthrodeses, the restriction on dorsiflexion and plantarflexion movements was substantial, and internal-external rotation and inversion-eversion were almost lost. Considering that different arthrodesis procedures cause complex, three-dimensional hindfoot motion reductions, we recommend talonavicular or calcaneocuboid arthrodesis for patients with well-preserved functions of plantarflexion/dorsiflexion before operation, subtalar or calcaneocuboid arthrodesis for patients with well-preserved abduction/adduction, and talonavicular arthrodesis for patients with well-preserved eversion/inversion. PMID:27752084

  9. Risk Factors, Pathobiomechanics and Physical Examination of Rotator Cuff Tears

    Science.gov (United States)

    Moulton, Samuel G.; Greenspoon, Joshua A.; Millett, Peter J.; Petri, Maximilian

    2016-01-01

    Background: It is important to appreciate the risk factors for the development of rotator cuff tears and specific physical examination maneuvers. Methods: A selective literature search was performed. Results: Numerous well-designed studies have demonstrated that common risk factors include age, occupation, and anatomic considerations such as the critical shoulder angle. Recently, research has also reported a genetic component as well. The rotator cuff axially compresses the humeral head in the glenohumeral joint and provides rotational motion and abduction. Forces are grouped into coronal and axial force couples. Rotator cuff tears are thought to occur when the force couples become imbalanced. Conclusion: Physical examination is essential to determining whether a patient has an anterosuperior or posterosuperior tear. Diagnostic accuracy increases when combining a series of examination maneuvers. PMID:27708731

  10. In-hospital costs of diabetic foot disease treated by a multidisciplinary foot team

    NARCIS (Netherlands)

    Rinkel, Willem D.; Luiten, Jacky; van Dongen, Jelle; Kuppens, Bram; Van Neck, Johan W.; Polinder, Suzanne; Castro Cabezas, Manuel; Coert, J. Henk

    2017-01-01

    Background The diabetic foot imposes significant burden on healthcare systems. Obtaining knowledge on the extent of the costs of diabetic foot ulcers (DFUs) is of value to health care researchers investigating cost-effectiveness of interventions that prevent these costly complications. Objectives To

  11. A novel magnet based 3D printed marker wand as basis for repeated in-shoe multi segment foot analysis: a proof of concept.

    Science.gov (United States)

    Eerdekens, Maarten; Staes, Filip; Pilkington, Thomas; Deschamps, Kevin

    2017-01-01

    Application of in-shoe multi-segment foot kinematic analyses currently faces a number of challenges, including: (i) the difficulty to apply regular markers onto the skin, (ii) the necessity for an adequate shoe which fits various foot morphologies and (iii) the need for adequate repeatability throughout a repeated measure condition. The aim of this study therefore was to design novel magnet based 3D printed markers for repeated in-shoe measurements while using accordingly adapted modified shoes for a specific multi-segment foot model. Multi-segment foot kinematics of ten participants were recorded and kinematics of hindfoot, midfoot and forefoot were calculated. Dynamic trials were conducted to check for intra and inter-session repeatability when combining novel markers and modified shoes in a repeated measures design. Intraclass correlation coefficients were calculated to determine reliability. Both repeatability and reliability were proven to be good to excellent with maximum joint angle deviations of 1.11° for intra-session variability and 1.29° for same-day inter-session variability respectively and ICC values of >0.91. The novel markers can be reliably used in future research settings using in-shoe multi-segment foot kinematic analyses with multiple shod conditions.

  12. Assessment of foot perfusion in patients with a diabetic foot ulcer.

    Science.gov (United States)

    Forsythe, Rachael O; Hinchliffe, Robert J

    2016-01-01

    Assessment of foot perfusion is a vital step in the management of patients with diabetic foot ulceration, in order to understand the risk of amputation and likelihood of wound healing. Underlying peripheral artery disease is a common finding in patients with foot ulceration and is associated with poor outcomes. Assessment of foot perfusion should therefore focus on identifying the presence of peripheral artery disease and to subsequently estimate the effect this may have on wound healing. Assessment of perfusion can be difficult because of the often complex, diffuse and distal nature of peripheral artery disease in patients with diabetes, as well as poor collateralisation and heavy vascular calcification. Conventional methods of assessing tissue perfusion in the peripheral circulation may be unreliable in patients with diabetes, and it may therefore be difficult to determine the extent to which poor perfusion contributes to foot ulceration. Anatomical data obtained on cross-sectional imaging is important but must be combined with measurements of tissue perfusion (such as transcutaneous oxygen tension) in order to understand the global and regional perfusion deficit present in a patient with diabetic foot ulceration. Ankle-brachial pressure index is routinely used to screen for peripheral artery disease, but its use in patients with diabetes is limited in the presence of neuropathy and medial arterial calcification. Toe pressure index may be more useful because of the relative sparing of pedal arteries from medial calcification but may not always be possible in patients with ulceration. Fluorescence angiography is a non-invasive technique that can provide rapid quantitative information about regional tissue perfusion; capillaroscopy, iontophoresis and hyperspectral imaging may also be useful in assessing physiological perfusion but are not widely available. There may be a future role for specialized perfusion imaging of these patients, including magnetic resonance

  13. Classification of the height and flexibility of the medial longitudinal arch of the foot.

    Science.gov (United States)

    Nilsson, Mette Kjærgaard; Friis, Rikke; Michaelsen, Maria Skjoldahl; Jakobsen, Patrick Abildgaard; Nielsen, Rasmus Oestergaard

    2012-02-17

    The risk of developing injuries during standing work may vary between persons with different foot types. High arched and low arched feet, as well as rigid and flexible feet, are considered to have different injury profiles, while those with normal arches may sustain fewer injuries. However, the cut-off values for maximum values (subtalar position during weight-bearing) and range of motion (ROM) values (difference between subtalar neutral and subtalar resting position in a weight-bearing condition) for the medial longitudinal arch (MLA) are largely unknown. The purpose of this study was to identify cut-off values for maximum values and ROM of the MLA of the foot during static tests and to identify factors influencing foot posture. The participants consisted of 254 volunteers from Central and Northern Denmark (198 m/56 f; age 39.0 ± 11.7 years; BMI 27.3 ± 4.7 kg/m2). Navicular height (NH), longitudinal arch angle (LAA) and Feiss line (FL) were measured for either the left or the right foot in a subtalar neutral position and subtalar resting position. Maximum values and ROM were calculated for each test. The 95% and 68% prediction intervals were used as cut-off limits. Multiple regression analysis was used to detect influencing factors on foot posture. The 68% cut-off values for maximum MLA values and MLA ROM for NH were 3.6 to 5.5 cm and 0.6 to 1.8 cm, respectively, without taking into account the influence of other variables. Normal maximum LAA values were between 131 and 152° and normal LAA ROM was between -1 and 13°. Normal maximum FL values were between -2.6 and -1.2 cm and normal FL ROM was between -0.1 and 0.9 cm. Results from the multivariate linear regression revealed an association between foot size with FL, LAA, and navicular drop. The cut-off values presented in this study can be used to categorize people performing standing work into groups of different foot arch types. The results of this study are important for investigating a possible link between

  14. Classification of the height and flexibility of the medial longitudinal arch of the foot

    Directory of Open Access Journals (Sweden)

    Nilsson Mette

    2012-02-01

    Full Text Available Abstract Background The risk of developing injuries during standing work may vary between persons with different foot types. High arched and low arched feet, as well as rigid and flexible feet, are considered to have different injury profiles, while those with normal arches may sustain fewer injuries. However, the cut-off values for maximum values (subtalar position during weight-bearing and range of motion (ROM values (difference between subtalar neutral and subtalar resting position in a weight-bearing condition for the medial longitudinal arch (MLA are largely unknown. The purpose of this study was to identify cut-off values for maximum values and ROM of the MLA of the foot during static tests and to identify factors influencing foot posture. Methods The participants consisted of 254 volunteers from Central and Northern Denmark (198 m/56 f; age 39.0 ± 11.7 years; BMI 27.3 ± 4.7 kg/m2. Navicular height (NH, longitudinal arch angle (LAA and Feiss line (FL were measured for either the left or the right foot in a subtalar neutral position and subtalar resting position. Maximum values and ROM were calculated for each test. The 95% and 68% prediction intervals were used as cut-off limits. Multiple regression analysis was used to detect influencing factors on foot posture. Results The 68% cut-off values for maximum MLA values and MLA ROM for NH were 3.6 to 5.5 cm and 0.6 to 1.8 cm, respectively, without taking into account the influence of other variables. Normal maximum LAA values were between 131 and 152° and normal LAA ROM was between -1 and 13°. Normal maximum FL values were between -2.6 and -1.2 cm and normal FL ROM was between -0.1 and 0.9 cm. Results from the multivariate linear regression revealed an association between foot size with FL, LAA, and navicular drop. Conclusions The cut-off values presented in this study can be used to categorize people performing standing work into groups of different foot arch types. The results of this

  15. The changes of the interspace angle after anterior correction and instrumentation in adolescent idiopathic scoliosis patients

    Directory of Open Access Journals (Sweden)

    Fei Qi

    2007-10-01

    Full Text Available Abstract Background In idiopathic scoliosis patients, after anterior spinal fusion and instrumentation, the discs (interspace angle between the lowest instrumented vertebra (LIV and the next caudal vertebra became more wedged. We reviewed these patients and analyzed the changes of the angle. Methods By reviewing the medical records and roentgenograms of adolescent idiopathic scoliosis patients underwent anterior spinal fusion and instrumentation, Cobb angle of the curve, correction rate, coronal balance, LIV rotation, interspace angle were measured and analyzed. Results There were total 30 patients included. The mean coronal Cobb angle of the main curve (thoracolumbar/lumbar curve before and after surgery were 48.9° and 11.7°, respectively, with an average correction rate of 76.1%. The average rotation of LIV before surgery was 2.1 degree, and was improved to 1.2 degree after surgery. The interspace angle before surgery, on convex side-bending films, after surgery, at final follow up were 3.2°, -2.3°, 1.8° and 4.9°, respectively. The difference between the interspace angle after surgery and that preoperatively was not significant (P = 0.261, while the interspace angle at final follow-up became larger than that after surgery, and the difference was significant(P = 0.012. The interspace angle after surgery was correlated with that on convex side-bending films (r = 0.418, P = 0.022, and the interspace angle at final follow-up was correlated with that after surgery (r = 0.625, P = 0.000. There was significant correlation between the loss of the interspace angle and the loss of coronal Cobb angle of the main curve during follow-up(r = 0.483, P = 0.007. Conclusion The interspace angle could be improved after anterior correction and instrumentation surgery, but it became larger during follow-up. The loss of the interspace angle was correlated with the loss of coronal Cobb angle of the main curve during follow-up.

  16. The diabetic foot

    OpenAIRE

    Nabuurs-Franssen, M.H.

    2005-01-01

    The diabetic foot presents a complex interplay of neuropathic, macrovascular, and microvascular disease on an abnormal metabolic background, complicated by an increased susceptibility to mechanical, thermal, and chemical injury and decreased healing ability. The abnormalities of diabetes, once present, are not curable. But most severe foot abnormalities in the diabetic are due to neglect of injury and are mostly preventable. The physician must ensure that the diabetic patient learns the princ...

  17. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock

    Directory of Open Access Journals (Sweden)

    Ding Zhen-yu

    2015-08-01

    Full Text Available Airborne array antenna SAR is used to obtain three-dimensional imaging; however it is impaired by motion errors. In particular, rotation error changes the relative position among the different antenna units and strongly affects the image quality. Unfortunately, the presently available algorithm can not compensate for the rotation error. In this study, an airborne array antenna SAR three-dimensional imaging model is discussed along with the effect of rotation errors, and more specifically, the yaw angle error. The analysis reveals that along- and cross-track wavenumbers can be obtained from the echo phase, and when used to calculate the range error, these wavenumbers lead to a target position irrelevant result that eliminates the error's spatial variance. Therefore, a wavenumber-domain subblock compensation method is proposed by computing the range error in the subblock of the along- and cross-track 2-D wavenumber domain and precisely compensating for the error in the space domain. Simulations show that the algorithm can compensate for the effect of yaw angle error.

  18. Femoral Shaft Torsion in Injured and Uninjured Ballet Dancers and Its Association with Other Hip Measures: A Cross-sectional Study.

    Science.gov (United States)

    Hafiz, Eliza; Hiller, Claire E; Nicholson, Leslie L; Nightingale, Elizabeth J; Grimaldi, Alison; Refshauge, Kathryn M

    2016-03-01

    Low range femoral torsion, termed "lateral shaft torsion," has been associated with greater range of hip external rotation and turnout in dancers. It is also hypothesized that achieving greater turnout at the hip minimizes torsion at the knee, shank, ankle, and foot, and consequently reduces incidence of lower limb injuries. The primary aims of this study were to investigate: 1. differences in range of femoral shaft torsion between dancers with and without lower limb injuries; and 2. the relationship between femoral shaft torsion, hip external rotation range, and turnout. A secondary aim was to examine the relationship between femoral shaft torsion and other hip measures: hip strength, lower limb joint hypermobility, hip stability, and foot progression angle, as explanatory variables. Demographic, dance, and injury data were collected, along with physical measures of femoral shaft torsion, hip rotation range of motion, and turnout. Hip strength, control, lower limb hypermobility, and foot progression angle were also measured. Eighty female dancers, 50 with lower limb injury (20.7 ± 4.8 years of age) and 30 without lower limb injury (17.8 ± 4.1 years of age), participated in the study. There was no difference in range of femoral shaft torsion between the groups (p = 0.941). Femoral shaft torsion was weakly correlated with range of hip external rotation (r = -0.034, p = 0.384) and turnout (r = -0.066, p = 0.558). Injured dancers had a significantly longer training history than non-injured dancers (p = 0.001). It was concluded that femoral shaft torsion does not appear to be associated with the overall incidence of lower limb injury in dancers or to be a primary factor influencing extent of turnout in this population.

  19. Foot-and-mouth disease

    DEFF Research Database (Denmark)

    Belsham, Graham; Charleston, Bryan; Jackson, Terry

    2009-01-01

    Foot-and-mouth disease is an economically important, highly contagious, disease of cloven-hoofed animals characterized by the appearance of vesicles (blisters) on the feet and in and around the mouth. The causative agent, foot-and-mouth disease virus, was the first mammalian virus to be discovered...

  20. Internal wave patterns in enclosed density-stratified and rotating fluids

    NARCIS (Netherlands)

    Manders, A.M.A.

    2003-01-01

    Stratified fluids support internal waves, which propagate obliquely through the fluid. The angle with respectto the stratification direction is contrained: it is purely determined by the wave frequency and the strength of the density stratification (internal gravity waves) or the rotation rate

  1. 49 CFR 214.115 - Foot protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foot protection. 214.115 Section 214.115... protection. (a) The railroad or railroad contractor shall require railroad bridge workers to wear foot protection equipment when potential foot injury may result from impact, falling or flying objects, electrical...

  2. Application of photostress method in stress analysis of a rotating disc

    Directory of Open Access Journals (Sweden)

    P. Frankovský

    2014-10-01

    Full Text Available The presented article demonstrates the application of PhotoStressR method in stress analysis of a rotating disc of a constant thickness, which was made of a photoelastic material PS-1A. Isoclinic fringes were observed on the rotating disc using linear polarized light at revolutions 5 000 RPM. Observations were carried out under angle parameter 0 o to 90 o with 10 o increase. A set of isostatic lines of I and II set was made from the set of obtained isoclinic lines. During gradual increase of rotations of the rotating disc up to 17 000 RPM, and with circular polarized light, we observed the distribution of colourful isochromatic fringes on the rotating disc. The field of isochromatic fringes, gained experimentally, at 15 000 RPM was compared with the field which was gained by means of a numerical analysis.

  3. Mental rotation versus invariant features in object perception from different viewpoints: an fMRI study.

    Science.gov (United States)

    Vanrie, Jan; Béatse, Erik; Wagemans, Johan; Sunaert, Stefan; Van Hecke, Paul

    2002-01-01

    It has been proposed that object perception can proceed through different routes, which can be situated on a continuum ranging from complete viewpoint-dependency to complete viewpoint-independency, depending on the objects and the task at hand. Although these different routes have been extensively demonstrated on the behavioral level, the corresponding distinction in the underlying neural substrate has not received the same attention. Our goal was to disentangle, on the behavioral and the neurofunctional level, a process associated with extreme viewpoint-dependency, i.e. mental rotation, and a process associated with extreme viewpoint-independency, i.e. the use of viewpoint-invariant, diagnostic features. Two sets of 3-D block figures were created that either differed in handedness (original versus mirrored) or in the angles joining the block components (orthogonal versus skewed). Behavioral measures on a same-different judgment task were predicted to be dependent on viewpoint in the rotation condition (same versus mirrored), but not in the invariance condition (same angles versus different angles). Six subjects participated in an fMRI experiment while presented with both conditions in alternating blocks. Both reaction times and accuracy confirmed the predicted dissociation between the two conditions. Neurofunctional results indicate that all cortical areas activated in the invariance condition were also activated in the rotation condition. Parietal areas were more activated than occipito-temporal areas in the rotation condition, while this pattern was reversed in the invariance condition. Furthermore, some areas were activated uniquely by the rotation condition, probably reflecting the additional processes apparent in the behavioral response patterns.

  4. Determining the maximum diameter for holes in the shoe without compromising shoe integrity when using a multi-segment foot model.

    Science.gov (United States)

    Shultz, Rebecca; Jenkyn, Thomas

    2012-01-01

    Measuring individual foot joint motions requires a multi-segment foot model, even when the subject is wearing a shoe. Each foot segment must be tracked with at least three skin-mounted markers, but for these markers to be visible to an optical motion capture system holes or 'windows' must be cut into the structure of the shoe. The holes must be sufficiently large avoiding interfering with the markers, but small enough that they do not compromise the shoe's structural integrity. The objective of this study was to determine the maximum size of hole that could be cut into a running shoe upper without significantly compromising its structural integrity or changing the kinematics of the foot within the shoe. Three shoe designs were tested: (1) neutral cushioning, (2) motion control and (3) stability shoes. Holes were cut progressively larger, with four sizes tested in all. Foot joint motions were measured: (1) hindfoot with respect to midfoot in the frontal plane, (2) forefoot twist with respect to midfoot in the frontal plane, (3) the height-to-length ratio of the medial longitudinal arch and (4) the hallux angle with respect to first metatarsal in the sagittal plane. A single subject performed level walking at her preferred pace in each of the three shoes with ten repetitions for each hole size. The largest hole that did not disrupt shoe integrity was an oval of 1.7cm×2.5cm. The smallest shoe deformations were seen with the motion control shoe. The least change in foot joint motion was forefoot twist in both the neutral shoe and stability shoe for any size hole. This study demonstrates that for a hole smaller than this size, optical motion capture with a cluster-based multi-segment foot model is feasible for measure foot in shoe kinematics in vivo. Copyright © 2011. Published by Elsevier Ltd.

  5. Rotation and transport in Alcator C-Mod ITB plasmas

    Science.gov (United States)

    Fiore, C. L.; Rice, J. E.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.; Hughes, J. W.; Reinke, M.

    2010-06-01

    Internal transport barriers (ITBs) are seen under a number of conditions in Alcator C-Mod plasmas. Most typically, radio frequency power in the ion cyclotron range of frequencies (ICRFs) is injected with the second harmonic of the resonant frequency for minority hydrogen ions positioned off-axis at r/a > 0.5 to initiate the ITBs. They can also arise spontaneously in ohmic H-mode plasmas. These ITBs typically persist tens of energy confinement times until the plasma terminates in radiative collapse or a disruption occurs. All C-Mod core barriers exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles and thermal transport coefficients that approach neoclassical values in the core. The strongly co-current intrinsic central plasma rotation that is observed following the H-mode transition has a profile that is peaked in the centre of the plasma and decreases towards the edge if the ICRF power deposition is in the plasma centre. When the ICRF resonance is placed off-axis, the rotation develops a well in the core region. The central rotation continues to decrease as long as the central density peaks when an ITB develops. This rotation profile is flat in the centre (0 ITB density profile is observed (0.5 ITB foot that is sufficiently large to stabilize ion temperature gradient instabilities that dominate transport in C-Mod high density plasmas.

  6. Optimal Full Waveform Inversion Strategy in Azimuthally Rotated Elastic Orthorhombic Media

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2017-01-01

    The elastic orthorhombic assumption is one of the most practical Earth models that takes into account the horizontal anisotropic layering and vertical fracture network. In this model, the rotation angle of the vertical planes of symmetry is a

  7. Quantifying skin motion artifact error of the hindfoot and forefoot marker clusters with the optical tracking of a multi-segment foot model using single-plane fluoroscopy.

    Science.gov (United States)

    Shultz, R; Kedgley, A E; Jenkyn, T R

    2011-05-01

    The trajectories of skin-mounted markers tracked with optical motion capture are assumed to be an adequate representation of the underlying bone motions. However, it is well known that soft tissue artifact (STA) exists between marker and bone. This study quantifies the STA associated with the hindfoot and midfoot marker clusters of a multi-segment foot model. To quantify STA of the hindfoot and midfoot marker clusters with respect to the calcaneus and navicular respectively, fluoroscopic images were collected on 27 subjects during four quasi-static positions, (1) quiet standing (non-weight bearing), (2) at heel strike (weight-bearing), (3) at midstance (weight-bearing) and (4) at toe-off (weight-bearing). The translation and rotation components of STA were calculated in the sagittal plane. Translational STA at the calcaneus varied from 5.9±7.3mm at heel-strike to 12.1±0.3mm at toe-off. For the navicular the translational STA ranged from 7.6±7.6mm at heel strike to 16.4±16.7mm at toe-off. Rotational STA was relatively smaller for both bones at all foot positions. For the calcaneus they varied between 0.1±2.2° at heel-strike to 0.2±0.6° at toe-off. For the navicular, the rotational STA ranged from 0.6±0.9° at heel-strike to 0.7±0.7° at toe-off. The largest translational STA found in this study (16mm for the navicular) was smaller than those reported in the literature for the thigh and the lower leg, but was larger than the STA of individual spherical markers affixed to the foot. The largest errors occurred at toe-off position for all subjects for both the hindfoot and midfoot clusters. Future studies are recommended to quantify true three-dimensional STA of the entire foot during gait. Copyright © 2011. Published by Elsevier B.V.

  8. Development of an Adjustable board and a Rotational Board for Scaffold

    Science.gov (United States)

    Jang, Myunghoun

    2017-06-01

    Scaffold is widely used in high work-places inside and outside of a building construction site. It is inexpensive and is installed and dismantled easily. Although standards and ledgers of a steel tube and coupler scaffold are installed in a regular distance, the distances of transoms are not equal in some places. Sometimes a working platform or a board is absent in the corner of scaffold. This may cause safety accidents because a foothold is not stable on the transoms. An adjustable safety board and a rotational safety board are suggested in this paper. The adjustable board consists of two footholds. The small one is inserted into the large one. The rotational board covers not only right angle but also acute or obtuse angles. These safety boards for scaffold help to decrease safety accidents in construction sites.

  9. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    Science.gov (United States)

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  10. Effect of Channel Orientation and Rib Pitch-to-Height Ratio on Pressure Drop in a Rotating Square Channel with Ribs on Two Opposite Surfaces

    Directory of Open Access Journals (Sweden)

    Prabhu S. V.

    2005-01-01

    Full Text Available The effect of channel orientation and rib pitch-to-height ratio on the pressure drop distribution in a rib-roughened channel is an important issue in turbine blade cooling. The present investigation is a study of the overall pressure drop distribution in a square cross-sectioned channel, with rib turbulators, rotating about an axis normal to the free stream. The ribs are configured in a symmetric arrangement on two opposite surfaces with a rib angle of 90 ∘ to the mainstream flow. The study has been conducted for three Reynolds numbers, namely, 13 000, 17 000, and 22 000 with the rotation number varying from 0– 0.38 . Experiments have been carried out for various rib pitch-to-height ratios ( P/e with a constant rib height-to-hydraulic diameter ratio ( e/D of 0.1 . The test section in which the ribs are placed on the leading and trailing surfaces is considered as the base case ( orientation angle= 0 ∘ , Coriolis force vector normal to the ribbed surfaces. The channel is turned about its axis in steps of 15 ∘ to vary the orientation angle from 0 ∘ to 90 ∘ . The overall pressure drop does not change considerably under conditions of rotation for the base case. However, for the other cases tested, it is observed that the overall pressure drop increases with an increase in the rotation number for a given orientation angle and also increases with an increase in the orientation angle for a given rotation number. This change is attributed to the variation in the separation zone downstream of the ribs due to the presence of the Coriolis force—local pressure drop data is presented which supports this idea. At an orientation angle of 90 ∘ (ribs on the top and bottom surfaces, Coriolis force vector normal to the smooth surfaces, the overall pressure drop is observed to be maximum during rotation. The overall pressure drop for a case with a rib pitch-to-height ratio of 5 on both surfaces is found to be the highest

  11. Band structures in a two-dimensional phononic crystal with rotational multiple scatterers

    Science.gov (United States)

    Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele

    2017-03-01

    In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.

  12. High angle-of-attack aerodynamics of a strake-canard-wing V/STOL fighter configuration

    Science.gov (United States)

    Durston, D. A.; Schreiner, J. A.

    1983-01-01

    High angle-of-attack aerodynamic data are analyzed for a strake-canard-wing V/STOL fighter configuration. The configuration represents a twin-engine supersonic V/STOL fighter aircraft which uses four longitudinal thrust-augmenting ejectors to provide vertical lift. The data were obtained in tests of a 9.39 percent scale model of the configuration in the NASA Ames 12-Foot Pressure Wind Tunnel, at a Mach number of 0.2. Trimmed aerodynamic characteristics, longitudinal control power, longitudinal and lateral/directional stability, and effects of alternate strake and canard configurations are analyzed. The configuration could not be trimmed (power-off) above 12 deg angle of attack because of the limited pitch control power and the high degree of longitudinal instability (28 percent) at this Mach number. Aerodynamic center location was found to be controllable by varying strake size and canard location without significantly affecting lift and drag. These configuration variations had relatively little effect on the lateral/directional stability up to 10 deg angle of attack.

  13. Foot preferences during resting in wildfowl and waders.

    Science.gov (United States)

    Randler, Christoph

    2007-03-01

    Footedness in birds has been reported, e.g., in parrots and chickens, but the direction of footedness remained unclear. Is a bird left-footed because it uses its left foot for holding and handling food, or is it right-footed because it uses the right foot for stabilisation and balancing while perching? In 2004 and 2006 I examined footedness in wildfowl and waders while the birds were performing a single task: roosting on the ground on one foot. Avocet (Recurvirostra avosetta), northern shoveller (Anas clypeata), oystercatcher (Haematopus ostralegus), and Eurasian curlew (Numenius arquata) were right-footed. Another 21 species did not show any significant foot preferences. This study provides some evidence that asymmetries in preferential foot use in birds may be triggered by a preference during postural control.

  14. Nineteen-Foot Diameter Explosively Driven Blast Simulator; TOPICAL

    International Nuclear Information System (INIS)

    VIGIL, MANUEL G.

    2001-01-01

    This report describes the 19-foot diameter blast tunnel at Sandia National Laboratories. The blast tunnel configuration consists of a 6 foot diameter by 200 foot long shock tube, a 6 foot diameter to 19 foot diameter conical expansion section that is 40 feet long, and a 19 foot diameter test section that is 65 feet long. Therefore, the total blast tunnel length is 305 feet. The development of this 19-foot diameter blast tunnel is presented. The small scale research test results using 4 inch by 8 inch diameter and 2 foot by 6 foot diameter shock tube facilities are included. Analytically predicted parameters are compared to experimentally measured blast tunnel parameters in this report. The blast tunnel parameters include distance, time, static, overpressure, stagnation pressure, dynamic pressure, reflected pressure, shock Mach number, flow Mach number, shock velocity, flow velocity, impulse, flow duration, etc. Shadowgraphs of the shock wave are included for the three different size blast tunnels

  15. Determine the Foot Strike Pattern Using Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Tzyy-Yuang Shiang

    2016-01-01

    Full Text Available From biomechanical point of view, strike pattern plays an important role in preventing potential injury risk in running. Traditionally, strike pattern determination was conducted by using 3D motion analysis system with cameras. However, the procedure is costly and not convenient. With the rapid development of technology, sensors have been applied in sport science field lately. Therefore, this study was designed to determine the algorithm that can identify landing strategies with a wearable sensor. Six healthy male participants were recruited to perform heel and forefoot strike strategies at 7, 10, and 13 km/h speeds. The kinematic data were collected by Vicon 3D motion analysis system and 2 inertial measurement units (IMU attached on the dorsal side of both shoes. The data of each foot strike were gathered for pitch angle and strike index analysis. Comparing the strike index from IMU with the pitch angle from Vicon system, our results showed that both signals exhibited highly correlated changes between different strike patterns in the sagittal plane (r=0.98. Based on the findings, the IMU sensors showed potential capabilities and could be extended beyond the context of sport science to other fields, including clinical applications.

  16. The Dual-Angle Method for Fast, Sensitive T1 Measurement in Vivo with Low-Angle Adiabatic Pulses

    Science.gov (United States)

    Bottomley, P. A.; Ouwerkerk, R.

    A new method for measuring T1 based on a measurement of the ratio, R, of the steady-state partially saturated NMR signals acquired at two fixed low flip angles (hip-angle and excitation-field ( B1) inhomogeneity result in roughly proportionate errors in the apparent T1. The method is best implemented with adiabatic low-angle pulses such as B1-independent rotation (BIR-4) or BIR-4 phase-cycled (BIRP) pulses, which permit measurements with surface coils. Experimental validation was obtained at 2 T by comparison of unlocalized inversion-recovery and dual-angle proton ( 1H) and phosphorus ( 31P) measurements from vials containing doped water with 0.04 ≤ T1 ≤ 2.8 s and from the metabolites in the calf muscles of eight human volunteers. Calf muscle values of 6 ± 0.5 s for phosphocreatine and around 3.7 ± 0.8 s for the adenosine triphosphates (ATP) were in good agreement with inversion-recovery T1 values and values from the literature. Use of the dual-angle method accelerated T1 measurement time by about fivefold over inversion recovery. The dual-angle method was implemented in a one-dimensional localized surface-coil 31P spectroscopy sequence, producing consistent T1 measurements from phantoms, the calf muscle, and the human liver. 31P T1 values of ATP in the livers of six volunteers were about 0.5 ± 0.1 to 0.6 ± 0.2 s: the total exam times were about 35 minutes per subject. The method is ideally suited to low-sensitivity and/or low-concentration moieties, such as in 31P NMR in vivo, where study-time limitations are critical, and for rapid 1H T1 imaging.

  17. Low torque hydrodynamic lip geometry for bi-directional rotation seals

    Science.gov (United States)

    Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX

    2009-07-21

    A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.

  18. Dynamic modelling and control of a rotating Euler-Bernoulli beam

    Science.gov (United States)

    Yang, J. B.; Jiang, L. J.; Chen, D. CH.

    2004-07-01

    Flexible motion of a uniform Euler-Bernoulli beam attached to a rotating rigid hub is investigated. Fully coupled non-linear integro-differential equations, describing axial, transverse and rotational motions of the beam, are derived by using the extended Hamilton's principle. The centrifugal stiffening effect is included in the derivation. A finite-dimensional model, including couplings of axial and transverse vibrations, and of elastic deformations and rigid motions, is obtained by the finite element method. By neglecting the axial motion, a simplified modelling, suitable for studying the transverse vibration and control of a beam with large angle and high-speed rotation, is presented. And suppressions of transverse vibrations of a rotating beam are simulated with the model by combining positive position feedback and momentum exchange feedback control laws. It is indicated that an improved performance for vibration control can be achieved with the method.

  19. Importance of body rotation during the flight of a butterfly.

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2016-03-01

    In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.

  20. Effect of Leg Dominance on The Center-of-Mass Kinematics During an Inside-of-the-Foot Kick in Amateur Soccer Players.

    Science.gov (United States)

    Zago, Matteo; Motta, Andrea Francesco; Mapelli, Andrea; Annoni, Isabella; Galvani, Christel; Sforza, Chiarella

    2014-09-29

    Soccer kicking kinematics has received wide interest in literature. However, while the instep-kick has been broadly studied, only few researchers investigated the inside-of-the-foot kick, which is one of the most frequently performed techniques during games. In particular, little knowledge is available about differences in kinematics when kicking with the preferred and non-preferred leg. A motion analysis system recorded the three-dimensional coordinates of reflective markers placed upon the body of nine amateur soccer players (23.0 ± 2.1 years, BMI 22.2 ± 2.6 kg/m2), who performed 30 pass-kicks each, 15 with the preferred and 15 with the non-preferred leg. We investigated skill kinematics while maintaining a perspective on the complete picture of movement, looking for laterality related differences. The main focus was laid on: anatomical angles, contribution of upper limbs in kick biomechanics, kinematics of the body Center of Mass (CoM), which describes the whole body movement and is related to balance and stability. When kicking with the preferred leg, CoM displacement during the ground-support phase was 13% higher (p<0.001), normalized CoM height was 1.3% lower (p<0.001) and CoM velocity 10% higher (p<0.01); foot and shank velocities were about 5% higher (p<0.01); arms were more abducted (p<0.01); shoulders were rotated more towards the target (p<0.01, 6° mean orientation difference). We concluded that differences in motor control between preferred and non-preferred leg kicks exist, particularly in the movement velocity and upper body kinematics. Coaches can use these results to provide effective instructions to players in the learning process, moving their focus on kicking speed and upper body behavior.