WorldWideScience

Sample records for food spoilage yeast

  1. Activity of essential oils from Mediterranean Lamiaceae species against food spoilage yeasts.

    Science.gov (United States)

    Araújo, C; Sousa, M J; Ferreira, M F; Leão, C

    2003-04-01

    The essential oils from aerial parts of Melissa officinalis, Lavandula angustifolia, Salvia officinalis, and Mentha piperita were analyzed by gas chromatography and gas chromatography-mass spectrometry. Their antimicrobial activities were evaluated against five food spoilage yeasts, Torulaspora delbrueckii, Zygosaccharomyces bailii, Pichia membranifaciens, Dekkera anomala, and Yarrowia lipolytica. Saccharomyces cerevisiae was also used as a reference. The oils were preliminarily screened by a disc diffusion technique, with the most active being the oil from M. officinalis. MICs were determined by the broth dilution method, and the main components of the oils were also tested by this method. The essential oil of M. officinalis at 500 microg/ml completely inhibited the growth of all yeast species. The main component of the oil of M. officinalis is citral (neral plus geranial) (58.3%), which showed a marked fungitoxic effect, contributing to its high activity.

  2. Identification of food and beverage spoilage yeasts from DNA sequence analyses.

    Science.gov (United States)

    Kurtzman, Cletus P

    2015-11-20

    Detection, identification and classification of yeasts have undergone major changes in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of the nuclear large subunit rRNA gene and from ITS now permits many laboratories to identify species quickly and accurately, thus replacing the laborious and often inaccurate phenotypic tests previously used. Phylogenetic analysis of gene sequences has resulted in a major revision of yeast systematics resulting in redefinition of nearly all genera. This new understanding of species relationships has prompted a change of rules for naming and classifying yeasts and other fungi, and these new rules are presented in the recently implemented International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). The use of molecular methods for species identification and the impact of Code changes on classification will be discussed, especially in the context of food and beverage spoilage yeasts.

  3. Solving Microbial Spoilage Problems in Processed Foods

    Science.gov (United States)

    Clavero, Rocelle

    This chapter surveys common microbial food spoilage processes. The chapter is organized by food products and includes sections addressing spoilage in meat, poultry, fish; dairy products (milk, butter, cheese); beverage products; bakery products; canned foods; fruit and confectionery products; and emulsions. It addresses the isolation and identification of spoilage organisms and provides several case studies as examples. It introduces various organisms responsible for spoilage including Gram-positive lactic acid bacteria, Gram-negative aerobic bacteria, yeasts, molds, and fungal contaminants. Throughout the chapter, attention is given to when, where, and how spoilage organisms enter the food processing chain. Troubleshooting techniques are suggested. The effect (or lack of effect) of heating, dehydration, pH change, cooling, and sealing on various organisms is explained throughout. The chapter contains four tables that connect specific organisms to various spoilage manifestations in a variety of food products.

  4. Moulds in food spoilage

    DEFF Research Database (Denmark)

    Filtenborg, Ole; Frisvad, Jens Christian; Thrane, Ulf

    1996-01-01

    There is an increasing knowledge and understanding of the role played by moulds in food spoilage. Especially the discovery of mycotoxin production in foods has highligh-ted the importance of moulds in food quality. It is, however, only within the last 5-10 years that major progresses have been made...... towards the prevention of spoilage caused by moulds. This is due to recent international agreements on taxonomy and analytical methods for foodborne moulds, which has led to the discovery, that a specific, very limited funga (=mycobiota) is responsible for the spoilage of each kind of food. This is called...... the associated or critical funga and has been shown to consist of less than 10 species. In this paper the associated funga is described for the following foods: Citrus and pomaceous fruits, potato and yam tubers, onions, rye, wheat, rye bread, cheese and fermented sausages and whenever possible the selective...

  5. Plasma membrane H+ and K+ transporters are involved in the weak-acid preservative response of disparate food spoilage yeasts.

    Science.gov (United States)

    Macpherson, Neil; Shabala, Lana; Rooney, Henrietta; Jarman, Marcus G; Davies, Julia M

    2005-06-01

    The food spoilage yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae have been proposed to resist weak-acid preservative stress by different means; Z. bailii by limiting influx of preservative combined with its catabolism, S. cerevisiae by active extrusion of the preservative weak-acid anion and H(+). Measurement of H(+) extrusion by exponential-phase Z. bailii cells suggest that, in common with S. cerevisiae, this yeast uses a plasma membrane H(+)-ATPase to expel H(+) when challenged by weak-acid preservative (benzoic acid). Simultaneous measurement of Z. bailii net H(+) and K(+) fluxes showed that net K(+) influx accompanies net H(+) efflux during acute benzoic acid stress. Such ionic coupling is known for S. cerevisiae in short-term preservative stress. Both yeasts significantly accumulated K(+) on long-term exposure to benzoic acid. Analysis of S. cerevisiae K(+) transporter mutants revealed that loss of the high affinity K(+) uptake system Trk1 confers sensitivity to growth in preservative. The results suggest that cation accumulation is an important factor in adaptation to weak-acid preservatives by spoilage yeasts and that Z. bailii and S. cerevisiae share hitherto unsuspected adaptive responses at the level of plasma membrane ion transport.

  6. RAPD analysis : a rapid technique for differentation of spoilage yeasts

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Vossen, J.M.B.M. van der; Hofstra, H.; Huis in 't Veld, J.H.J.

    1994-01-01

    Techniques for the identification of the spoilage yeasts Saccharomyces cerevisiae and members of the Zygosaccharomyces genus from food and beverages sources were evaluated. The use of identification systems based on physiological characteristics resulted often in incomplete identification or misiden

  7. Food spoilage - interactions between food spoilage bacteria

    DEFF Research Database (Denmark)

    Gram, Lone; Flodgaard, Lars; Rasch, Maria

    2002-01-01

    the actual specific spoilage organism. Whilst the chemical and physical parameters are the main determining factors for selection of spoilage microorganisms, a level of refinement may be found in some products in which the interactive behavior of microorganisms may contribute to their growth and/or spoilage...... activity. This review gives three such examples. We describe the competitive advantage of Pseudomonas spp. due to the production of iron-chelating siderophores, the generation of substrates for spoilage reactions by one organism from another microorganism (so-called metabiosis) and the up...

  8. Nanoemulsion of orange oil with non ionic surfactant produced emulsion using ultrasonication technique: evaluating against food spoilage yeast

    Science.gov (United States)

    Sugumar, Saranya; Singh, Sanjay; Mukherjee, Amitava; Chandrasekaran, N.

    2016-01-01

    In recent years, food industries have shown great interest in developing nanoemulsion (NE) using essential oils (EOs) to prevent food spoilage caused by microorganisms. The hydrophobic properties of EOs have lead to reduced solubilization effect of food, which in turn, created a negative impact on the quality of food and its antimicrobial efficacy. Focusing this issue, we attempted a unique NE preparation using orange oil, Tween 80 (organic phase) and water (aqueous phase) by sonication technique. Based on thermodynamic stability studies, the effective diameter was reported to be in the size range from 20 to 30 nm. Saccharomyces cerevisiae was used in testing the anti-yeast effect. Their activity was studied in both growth medium and apple juice. The minimum inhibitory concentration of this NE was determined using broth dilution method. At 2 μl/ml, orange oil NE demonstrated inhibition of tested microorganisms. The kinetics of killing curve, have shown that the NE treated cells had lost its viability within 30 min of interaction. Also, SEM image revealed that the treated cells became distorted in comparison to their control cells. NE treated apple juice showed complete loss of viability even on dilution as compared to their controls.

  9. Identification of spoilage yeasts in a food-production chain by microsatellite polymerase chain reaction fingerprinting

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Hartog, B.J.; Veld, J.H.J. Huis in 't; Hofstra, H.; Vossen, J.M.B.M. van der

    1996-01-01

    A survey of yeast strains present in the production chain of mayonnaise and salad dressings was carried out over a period of 14 months. Attempts were made to identify the isolated yeasts with the API system, but identification of all species involved was not possible. In the investigation the

  10. Antifungal activity of mango peel and seed extracts against clinically pathogenic and food spoilage yeasts.

    Science.gov (United States)

    Dorta, E; González, M; Lobo, M G; Laich, F

    2015-11-26

    The antioxidant and antifungal (antiyeast) properties of mango (Mangifera indica) peel and seed by-products were investigated. Nine extracts were obtained using three cultivars and two extraction methods. Significant differences between cultivars and extraction methods were detected in their bioactive compounds and antioxidant activity. The antifungal property was determined using agar diffusion and broth micro-dilution assays against 18 yeast species of the genera Candida, Dekkera, Hanseniaspora, Lodderomyces, Metschnikowia, Pichia, Schizosaccharomyces, Saccharomycodes and Zygosaccharomyces. All mango extracts showed antifungal activity. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) values were lower for seed than for peel extracts. MICs and MFCs ranged from values 30 mgGAE/mL, respectively. The multivariate analysis showed a relationship between antifungal activity, the capacity to inhibit lipid peroxidation and total phenol content. These properties were associated with high levels of proanthocyanidins, gallates and gallotannins in the extracts.

  11. A novel killer protein from Pichia kluyveri isolated from an Algerian soil: purification and characterization of its in vitro activity against food and beverage spoilage yeasts.

    Science.gov (United States)

    Labbani, Fatima-Zohra Kenza; Turchetti, Benedetta; Bennamoun, Leila; Dakhmouche, Scheherazad; Roberti, Rita; Corazzi, Lanfranco; Meraihi, Zahia; Buzzini, Pietro

    2015-04-01

    A novel killer protein (Pkkp) secreted by a Pichia kluyveri strain isolated from an Algerian soil was active against food and beverage spoilage yeasts of the genera Dekkera, Kluyveromyces, Pichia, Saccharomyces, Torulaspora, Wickerhamomyces and Zygosaccharomyces. After purification by gel filtration chromatography Pkkp revealed an apparent molecular mass of 54 kDa with SDS-PAGE. Minimum inhibitory concentrations (MICs) of purified Pkkp exhibited a high in vitro activity against Dekkera bruxellensis (MICs from 64,000- to 256,000-fold lower than that exhibited by potassium metabisulphite) and Saccharomyces cerevisiae (MICs from 32,000- to 64,000- fold lower than potassium sorbate). No in vitro synergistic interactions (calculated by FIC index - Σ FIC) were observed when Pkkp was used in combination with potassium metabisulphite, potassium sorbate, or ethanol. Pkkp exhibited a dose-response effect against D. bruxellensis and S. cerevisiae in a low-alcoholic drink and fruit juice, respectively. The results of the present study suggest that Pkkp could be proposed as a novel food-grade compound useful for the control of food and beverage spoilage yeasts.

  12. Isolation and Identification of Spoilage Yeasts in Foods and Their Spoilage Ability%食品中酵母菌的分离鉴定及其致腐能力

    Institute of Scientific and Technical Information of China (English)

    陆文俊; 王芳; 陆兆新; 吕凤霞; 赵海珍; 张充; 别小妹

    2016-01-01

    参照食品安全GB 4789.15—2010《食品安全国家标准食品微生物学检验霉菌和酵母计数》中酵母菌的检测方法,从水果、蜂蜜中分离筛选酵母菌并根据其26S rDNA D1/D2区序列进行鉴定。从蜂蜜、草莓、香蕉、橙子、油桃、芒果中共分离得到3株固囊酵母(Citeromyces matritensis)、3株异常威客汉姆酵母(Wickerhamomyces anomalus)、12株季也蒙毕赤酵母(Meyerozymaguilliermondii)、1株长孢洛德酵母(Lodderomyces elongisporus)、2株葡萄有孢汉逊酵母(Hanseniaspora uvarum)和1株海洋酵母菌(Metschnikowia reukaufii)。将每种酵母菌接种于苹果、油桃和香蕉中与空白对照进行对比,以食品腐烂的速率来判断酵母菌的腐败能力,确定了W. anomalus和 C. matritensis是上述3种水果中主要的腐败酵母菌,除此之外,M. reukaufii对油桃有较强的腐败作用,M. guilliermondii对香蕉的腐败效果明显。食品工业中加强对上述这些腐败酵母菌的检测与控制,可以更好地防止腐败酵母对于食品工业造成的危害。%According to the method to detect yeasts described in the National Food Safety Standard GB 4789.15–2010, yeasts from fruit and honey were isolated and identified by sequence analysis of the D1/D2 domain of 26S rDNA. From honey, strawberries, bananas, oranges, nectarines and mangoes, a total of 3Citeromyces matritensisstrains, 3 Wickerhamomyces anomalusstrains, 12 Meyerozymaguilliermondiistrains, 1 Lodderomyces elongisporusstrain, 2 Hanseniaspora uvarum strains and 1Metschnikowia reukaufii strain were isolated. Each of these yeasts was inoculated on apples, nectarines and bananas to evaluate their spoilage ability in comparison with blank control based on how fast the inoculated samples spoiled. We determinedW. anomalusand andC. matritensisare to be the major spoilage yeasts of fruits and honey. Moreover, M. reukaufiicauses could result in strong putrefaction on

  13. Latest about Spoilage by Yeasts: Focus on the Deterioration of Beverages and Other Plant-Derived Products.

    Science.gov (United States)

    Krisch, Judit; Chandrasekaran, Muthusamy; Kadaikunnan, Shine; Alharbi, Naiyf S; Vágvölgyi, Csaba

    2016-05-01

    Food and beverage deterioration by spoilage yeasts is a serious problem that causes substantial financial losses each year. Yeasts are able to grow under harsh environmental conditions in foods with low pH, low water activity, and high sugar and/or salt content. Some of them are extremely resistant to the traditional preservatives used in the food industry. The search for new methods and agents for prevention of spoilage by yeasts is ongoing, but most of these are still at laboratory scale. This minireview gives an overview of the latest research issues relating to spoilage by yeasts, with a focus on wine and other beverages, following the interest of the research groups. It seems that a better understanding of the mechanisms to combat food-related stresses, the characteristics leading to resistance, and rapid identification of strains of yeasts in foods are the tools that can help control spoilage yeasts.

  14. Microbiological Spoilage of Canned Foods

    Science.gov (United States)

    Evancho, George M.; Tortorelli, Suzanne; Scott, Virginia N.

    Nicolas Appert (1749-1841) developed the first commercial process that kept foods from spoiling in response to an offer from the French government for a method of preserving food for use by the army and navy. Appert, a confectioner and chef, began to experiment in his workshop in Massy, near Paris, but since little was known about bacteriology and the causes of spoilage (Louis Pasteur had yet to formulate the germ theory), much of his work involved trial and error. In 1810, after years of experimenting, he was awarded the prize of 12,000 francs for his method of preservation, which involved cooking foods in sealed jars at high temperatures. He described his method of preserving food in a book published in 1811, "L'Art De Conserver, Pendant Plusiers Annes, Toutes les Substances Animales et Végétales," which translated means "The Art of Preserving All Kinds of Animal and Vegetable Substances for Several Years." He later built a bottling factory and began to produce preserved foods for the people of France and is credited with being the "Father of Canning."

  15. Yeasts in table olive processing: desirable or spoilage microorganisms?

    Science.gov (United States)

    Arroyo-López, F N; Romero-Gil, V; Bautista-Gallego, J; Rodríguez-Gómez, F; Jiménez-Díaz, R; García-García, P; Querol, A; Garrido-Fernández, A

    2012-11-01

    Yeasts are unicellular eukaryotic microorganisms isolated from many foods, and are commonly found in table olive processing where they can play a double role. On one hand, these microorganisms can produce spoilage of fruits due to the production of bad odours and flavours, the accumulation of CO(2) leading to swollen containers, the clouding of brines, the softening of fruits and the degradation of lactic acid, which is especially harmful during table olive storage and packaging. But on the other hand, fortunately, yeasts also possess desirable biochemical activities (lipase, esterase, β-glucosidase, catalase, production of killer factors, etc.) with important technological applications in this fermented vegetable. Recently, the probiotic potential of olive yeasts has begun to be evaluated because many species are able to resist the passage through the gastrointestinal tract and show beneficial effects on the host. In this way, yeasts may improve consumers' health by decreasing cholesterol levels, inhibiting pathogens, degrading non assimilated compounds, producing antioxidants and vitamins, adhering to intestinal cells or by maintaining epithelial barrier integrity. Many yeast species, usually also found in table olive processing, such as Wicherhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens and Kluyveromyces lactis, have been reported to exhibit some of these properties. Thus, the selection of the most appropriate strains to be used as starters, alone or in combination with lactic acid bacteria, is a promising research line to develop in a near future which might improve the added value of the commercialized product.

  16. High Pdr12 levels in spoilage yeast (Saccharomyces cerevisiae) correlate directly with sorbic acid levels in the culture medium but are not sufficient to provide cells with acquired resistance to the food preservative.

    Science.gov (United States)

    Papadimitriou, Minas N B; Resende, Catarina; Kuchler, Karl; Brul, Stanley

    2007-01-25

    Sorbic acid is a commonly used food preservative against yeast and fungal food spoilage. Understanding its effect on the molecular physiology of yeast cells will allow the food industry to develop knowledge-based strategies to make more optimal use of its preservative action. Here we show that the yeast membrane protein Pdr12, previously shown to be prominently involved in sorbic acid resistance development in laboratory strains, was strongly induced by the presence of sorbic acid in the culture medium in Saccharomyces strains isolated from spoiled foods. Induction of Pdr12 expression was seen both under laboratory conditions and upon growth in a commercial soft drink. Induction was rapid and maintained for the duration of the stress. No Pdr12-like protein induction was seen in Zygosaccharomyces bailii or Zygosaccharomyces lentus, two well-known beverages spoilage organisms. Finally, unexpectedly, our studies showed for the first time that pre-inducing Pdr12p to maximal levels by subjecting cells to a mild sorbic acid stress did not lead to cells with an acquired resistance. Neither more rapid growth in the presence of the acid nor growth at higher sorbic acid concentrations at a given environmental pH was observed. Thus we have shown that while important in resistance development against sorbic acid, by itself induction of the pump is not sufficient to acquire resistance to the preservative.

  17. Undergraduate Laboratory Exercises Specific to Food Spoilage Microbiology

    Science.gov (United States)

    Snyder, Abigail B.; Worobo, Randy W.; Orta-Ramirez, Alicia

    2016-01-01

    Food spoilage has an enormous economic impact, and microbial food spoilage plays a significant role in food waste and loss; subsequently, an equally significant portion of undergraduate food microbiology instruction should be dedicated to spoilage microbiology. Here, we describe a set of undergraduate microbiology laboratory exercises that focus…

  18. Isolation and identification of spoilage microorganisms using food-based media combined with rDNA sequencing: ranch dressing as a model food.

    Science.gov (United States)

    Waite, Joy G; Jones, Joseph M; Yousef, Ahmed E

    2009-05-01

    Investigating microbial spoilage of food is hampered by the lack of suitable growth media and protocols to characterize the causative agents. Microbial spoilage of salad dressing is sporadic and relatively unpredictable, thus processors struggle to develop strategies to minimize or prevent spoilage of this product. The objectives of this study were to (i) induce and characterize spoilage events in ranch-style dressing as a model food, and (ii) isolate and identify the causative microorganisms using traditional and food-based media, coupled with rDNA sequence analysis. Ranch dressing (pH 4.4) was prepared and stored at 25 degrees C for 14 d and microbial populations were recovered on MRS agar and ranch dressing agar (RDA), a newly formulated food-based medium. When isolates suspected as the spoilage agents were inoculated into ranch dressing and held at 25 degrees C for 9-10 d, three unique spoilage events were characterized. Using rDNA sequence comparisons, spoilage organisms were identified as Lactobacillus brevis, Pediococcus acidilactici, and Torulaspora delbrueckii. P. acidilactici produced flat-sour spoilage, whereas Lb. brevis resulted in product acidification and moderate gas production. The RDA medium allowed for optimum recovery of the excessive gas-producing spoilage yeast, T. delbrueckii. The isolation and identification strategy utilized in this work should assist in the characterization of spoilage organisms in other food systems.

  19. Heat inactivation of wine spoilage yeast Dekkera bruxellensis by hot water treatment

    National Research Council Canada - National Science Library

    Fabrizio, V; Vigentini, I; Parisi, N; Picozzi, C; Compagno, C; Foschino, R

    2015-01-01

    Significance and Impact of the Study: Brettanomyces/Dekkera bruxellensis is the main yeast involved in red wine spoilage that occurs during ageing in barrel, generating considerable economic losses...

  20. Occurrence and growth of yeasts in processed meat products - implications for potential spoilage

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Jacobsen, Tomas; Jespersen, Lene

    2008-01-01

    Spoilage of meat products is in general attributed to bacteria but new processing and storage techniques inhibiting growth of bacteria may provide opportunities for yeasts to dominate the microflora and cause spoilage of the product. With the aim of obtaining a deeper understanding of the potential...... role of yeast in spoilage of five different processed meat products (bacon, ham, salami and two different liver patés), yeasts were isolated, enumerated and identified during processing, in the final product and in the final product at the end of shelf life. Yeasts were isolated along the bacon...... of the processed meat products. The yeast microflora was complex with 4-12 different species isolated from the different production sites. In general, Candida zeylanoides, Debaryomyces hansenii and the newly described Candida alimentaria were found to be the dominant yeast species. In addition, three putatively...

  1. Use of indirect conductimetry to predict the growth of spoilage yeasts, with special consideration of Zygosaccharomyces bailii.

    Science.gov (United States)

    Deak, T; Beuchat, L R

    1994-11-01

    In recent years, modeling for the purpose of predicting microbiological spoilage of foods has gained much interest. Predictive modeling requires a concentrated mathematical and experimental approach; to collect data of adequate quality is a technically demanding task when several experimental parameters are involved. Rapid, non-traditional, automated techniques are particularly useful in modeling. Of these, electrometric techniques appear to be most promising. Indirect conductimetry was used to study the effect of temperature, aw, pH and potassium sorbate concentration on the growth of Zygosaccharomyces bailii. The automated Malthus 2000 instrument proved to be convenient for gathering a large amount of data that were then used to develop polynomial models describing the response of the yeast to combinations of experimental factors in terms of conductimetric detection time and maximum rate of change in conductance. Results demonstrated that indirect conductimetry is suitable for monitoring the effect of environmental factors on the growth and activity of Z. bailii and perhaps other food spoilage yeasts.

  2. The fate of acetic acid during glucose co-metabolism by the spoilage yeast Zygosaccharomyces bailii.

    Directory of Open Access Journals (Sweden)

    Fernando Rodrigues

    Full Text Available Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo(13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2-(13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C(2, C(3 and C(4. The incorporation of [U-(14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.

  3. The Fate of Acetic Acid during Glucose Co-Metabolism by the Spoilage Yeast Zygosaccharomyces bailii

    OpenAIRE

    Fernando Rodrigues; Maria João Sousa; Paula Ludovico; Helena Santos; Manuela Côrte-Real; Cecília Leão

    2012-01-01

    Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate me...

  4. Occurrence and growth of yeasts in processed meat products - Implications for potential spoilage.

    Science.gov (United States)

    Nielsen, Dennis S; Jacobsen, Tomas; Jespersen, Lene; Koch, Anette Granly; Arneborg, Nils

    2008-11-01

    Spoilage of meat products is in general attributed to bacteria but new processing and storage techniques inhibiting growth of bacteria may provide opportunities for yeasts to dominate the microflora and cause spoilage of the product. With the aim of obtaining a deeper understanding of the potential role of yeast in spoilage of five different processed meat products (bacon, ham, salami and two different liver patés), yeasts were isolated, enumerated and identified during processing, in the final product and in the final product at the end of shelf life. Yeasts were isolated along the bacon production line in numbers up to 4.2 log (CFU/g). Smoking of the bacon reduced the yeast counts to lower than 1.0 log (CFU/g) or non-detectable levels. In general, yeasts were only isolated in low numbers during the production of salami, cooked ham and liver paté. In the final products yeasts were detected in low numbers in a few samples (3 out of 30) samples, 1.0-1.3 log (CFU/g). By the end of storage, yeasts were only detected in 1 out of 25 investigated samples 1.8 log (CFU/g). A combination of phenotypic and genotypic methods was used to identify the yeast microflora present during production of the processed meat products. The yeast microflora was complex with 4-12 different species isolated from the different production sites. In general, Candida zeylanoides, Debaryomyces hansenii and the newly described Candida alimentaria were found to be the dominant yeast species. In addition, three putatively previously undescribed yeast species were isolated. Fourteen isolates, representing seven different species isolated during the production of the processed meat products and one species isolated from spoiled, modified atmosphere packed, sliced ham, were screened for their ability to grow in a meat model substrate under a low oxygen/high carbon-dioxide atmosphere (0.5% O(2), 20% CO(2), 79.5% N(2)) at two different temperatures (5 and 8°C). Eleven out of the tested 14 strains were

  5. TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts.

    Science.gov (United States)

    Villalba, María Leticia; Susana Sáez, Julieta; Del Monaco, Silvana; Lopes, Christian Ariel; Sangorrín, Marcela Paula

    2016-01-18

    Microbiological spoilage is a major concern throughout the wine industry, and control tools are limited. This paper addresses the identification and partial characterization of a new killer toxin from Torulaspora delbrueckii with potential biocontrol activity of Brettanomyces bruxellensis, Pichia guilliermondii, Pichia manshurica and Pichia membranifaciens wine spoilage. A panel of 18 different wine strains of T. delbrueckii killer yeasts was analysed, and the strain T. delbrueckii NPCC 1033 (TdKT producer) showed a significant inhibitory effect on the growth of all different spoilage yeasts evaluated. The TdKT toxin was then subjected to a partial biochemical characterization. Its estimated molecular weight was N30 kDa and it showed glucanase and chitinase enzymatic activities. The killer activity was stable between pH 4.2 and 4.8 and inactivated at temperature above 40 °C. Pustulan and chitin — but not other cell wall polysaccharides — prevented sensitive yeast cells from being killed by TdKT, suggesting that those may be the first toxin targets in the cell wall. TdKT provoked an increase in necrosis cell death after 3 h treatment and apoptotic cell death after 24 h showing time dependence in its mechanisms of action. Killer toxin extracts were active at oenological conditions, confirming their potential use as a biocontrol tool in winemaking.

  6. Inactivation of wine spoilage yeasts Dekkera bruxellensis using low electric current treatment (LEC).

    Science.gov (United States)

    Lustrato, G; Vigentini, I; De Leonardis, A; Alfano, G; Tirelli, A; Foschino, R; Ranalli, G

    2010-08-01

    The objective of this study was to investigate the inactivation of a selected yeast Dekkera bruxellensis strain 4481 in red wine by application of low electric current treatment (LEC). LEC (200 mA) was applied for 60 days to a red wine, Montepulciano d'Abruzzo, in an alternative strategy to the SO(2) addition during wine storage. The LEC effect on both cell activity and microflora viability was assessed. LEC decreased significantly the survival viable cells and increased the death rate of D. bruxellensis strain 4481 yeast. A final comparison was made of the main physico-chemical parameters of the wine after the different treatments. The study suggests the importance of an appropriate LEC treatment which limits wine deterioration in terms of off-flavours synthesis. The results demonstrate that the growth of undesirable Dekkera can be inhibited by low voltage treatment; LEC was shown to be useful to prevent wine spoilage and has the potential of being a concrete alternative method for controlling wine spoilage. Wine spoilage can be avoided by preventing the growth of undesirable Dekkera yeasts, through the effective use of LEC in the winemaking process.

  7. Spoilage of vacuum-packed beef by the yeast Kazachstania psychrophila.

    Science.gov (United States)

    Kabisch, Jan; Erl-Höning, Constanze; Wenning, Mareike; Böhnlein, Christina; Gareis, Manfred; Pichner, Rohtraud

    2016-02-01

    A survey of the psychrotolerant yeast microbiota of vacuum-packed beef was conducted between 2010 and 2012. Chilled vacuum-packed beef (n = 50) sampled from 15 different producers was found to have a mean psychrotolerant yeast count of 3.76 log cfu per cm(2). During this assessment, a recently described yeast named Kazachstania psychrophila was shown to be associated with this product. In order to gain basic knowledge about the spoilage potential of K. psychrophila in vacuum-packed beef, challenge studies were performed and the survival of three different K. psychrophila strains was analyzed during storage of artificially contaminated beef. Beef samples were inoculated with the yeasts at a contamination level of 2 log cfu per cm(2). Survival and growth of K. psychrophila strains was monitored on malt extract agar at regular intervals over 84 days. Kazachstania levels rapidly increased about 5 log units within 16 days under chill conditions (4 °C). Gas bubbles were observed after 16 days, while discoloration and production of off-flavors became evident after 42 days in inoculated samples. This study demonstrates for the first time, that the psychrotolerant yeast K. psychrophila is a dominant spoilage microorganism of vacuum-packed beef products stored at low temperatures, causing sensory defects which result in reduced shelf life, and consequently in considerable economic losses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. [Fungal spoilage of foods and its risk assessment].

    Science.gov (United States)

    Udagawa, Shun-ichi

    2005-01-01

    From the second half of the 1990s, an increased regard has been given to the fungal spoilage of foods as follows: 1) post-harvest diseases and losses of fruits and vegetables, 2) deterioration of low water activity foods by xerophilic fungi, 3) contamination of psychrotolerant or psychrophilic fungi on foodstuffs and processed foods during storage and distribution at low temperature, and 4) spoilage of heat processed foods and soft drinks by heat-resistant fungi. In accordance with an international concern about food safety, mycotoxin contamination of foods has gained much global attention in recent times owing to its potential health hazards. The evaluation of mycotoxin hazards is principally based on the determination of a no-observed effect level (NOEL) in long-term toxicological studies, and the application of a safety factor (usually 100). In addition to hazard assessment, data on the natural occurrence of mycotoxins in various commodities and food intake data are needed to enable exposure assessment. Thus risk assessment of mycotoxins is, in fact, the product of hazard assessment and exposure assessment. In 1997, the FAO/WHO Joint Expert Committee on Food Additives (JECFA) considered estimates of the carcinogenic potency of aflatoxins and the potential risks associated with their intake. Recently the Codex Alimentarius Commission (Codex) has established standards for aflatoxin M1 in milk and for patulin in apple juice. The Codex is an international organization, supported by FAO/WHO, aiming at facilitating world trade and protecting the health of the consumer by developing international standards for food and feeds. Apart from aflatoxins, the JECFA has measured a provisional tolerable daily intake (TDI) for ochratoxin A, patulin, deoxynivalenol, T-2/HT-2 toxins, zearalenone and fumonisins. In 2001, the mycotoxins evaluated or re-evaluated at the JECFA meeting included ochratoxin A, deoxynivalenol, T-2/HT-2 toxins, fumonisins, and aflatoxin M1. In Japan

  9. Introduction to the Microbiological Spoilage of Foods and Beverages

    Science.gov (United States)

    Sperber, William H.

    Though direct evidence of ancient food-handling practices is difficult to obtain and examine, it seems safe to assume that over the span of several million years, prehistoric humans struggled to maintain an adequate food supply. Their daily food needed to be hunted or harvested and consumed before it spoiled and became unfit to eat. Freshly killed animals, for example, could not have been kept for very long periods of time. Moreover, many early humans were nomadic, continually searching for food. We can imagine that, with an unreliable food supply, their lives must have often been literally "feast or famine." Yet, our ancestors gradually learned by accident, or by trial and error, simple techniques that could extend the storage time of their food (Block, 1991). Their brain capacity was similar to that of modern humans; therefore, some of them were likely early scientists and technologists. They would have learned that primitive cereal grains, nuts and berries, etc. could be stored in covered vessels to keep them dry and safer from mold spoilage. Animal products could be kept in cool places or dried and smoked over a fire, as the controlled use of fire by humans is thought to have begun about 400,000 years ago. Quite likely, naturally desiccated or fermented foods were also noticed and produced routinely to provide a more stable supply of edible food. Along with the development of agricultural practices for crop and animal production, the "simple" food-handling practices developed during the relatively countless millennia of prehistory paved the way for human civilizations.

  10. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Science.gov (United States)

    Lentz, Michael; Harris, Chad

    2015-01-01

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains. PMID:28231223

  11. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    Directory of Open Access Journals (Sweden)

    Michael Lentz

    2015-10-01

    Full Text Available Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  12. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast.

    Science.gov (United States)

    Lentz, Michael; Harris, Chad

    2015-10-15

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  13. Molecular and physiological comparison of spoilage wine yeasts.

    Science.gov (United States)

    Sangorrín, M P; García, V; Lopes, C A; Sáez, J S; Martínez, C; Ganga, M A

    2013-04-01

    Dekkera bruxellensis and Pichia guilliermondii are contaminating yeasts in wine due to the production of phenolic aromas. Although the degradation pathway of cinnamic acids, precursors of these phenolic compounds has been described in D. bruxellensis, no such pathway has been described in P. guilliermondii. A molecular and physiological characterization of 14 D. bruxellensis and 15 P. guilliermondii phenol-producing strains was carried out. Both p-coumarate decarboxylase (CD) and vinyl reductase (VR) activities, responsible for the production of volatile phenols, were quantified and the production of 4-vinylphenol and 4-ethylphenol were measured. All D. bruxellensis and some P. guilliermondii strains showed the two enzymatic activities, whilst 11 of the 15 strains of this latter species showed only CD activity and did not produce 4-EP in the assay conditions. Furthermore, PCR products obtained with degenerated primers showed a low homology with the sequence of the gene for a phenyl acrylic acid decarboxylase activity described in Saccharomyces cerevisiae. D. bruxellensis and P. guilliermondii may share a similar metabolic pathway for the degradation of cinnamic acids. This is the first work that analyses the CD and VR activities in P. guilliermondii, and the results suggest that within this species, there are differences in the metabolization of cinnamic acids. © 2013 The Society for Applied Microbiology.

  14. Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces.

    Science.gov (United States)

    Couto, José António; Neves, Filipe; Campos, Francisco; Hogg, Tim

    2005-10-25

    The heat resistance of three strains of Dekkera/Brettanomyces (Dekkera anomala PYCC 5,153, Dekkera bruxellensis PYCC 4,801 and Dekkera/Brettanomyces 093) was evaluated at different temperatures between 32.5 and 55 degrees C. Thermal inactivation tests were performed in tartrate buffer solution (pH 4.0) and in wines. In the studies employing buffer as the heating menstruum, measurable thermal inactivation began only at temperatures of 50 degrees C. When heating was performed in wine, significant inactivation begins at 35 degrees C. Subsequent thermal inactivation tests were performed in buffer at various levels of pH, ethanol concentration, and various phenolic acids. Results from experiments in buffer with added ethanol suggest that the greater heat sensitivity shown in wines can be largely attributed to ethanol, although potentiation of this effect might be due to the phenolic content, particularly from ferulic acid. In the range of pH values tested (2.5-4.5), this factor had no influence in the heat inactivation kinetics. Relevant data, in the form of D and Z values calculated in the various environments, potentially useful for the establishment of regimes of thermal control of Dekkera/Brettanomyces yeasts in wine and contaminated equipment is presented.

  15. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  16. Modelling the effect of ethanol on growth rate of food spoilage moulds

    NARCIS (Netherlands)

    Dantigny, P.; Guilmart, A.; Radoi, F.; Bensoussan, M.; Zwietering, M.H.

    2005-01-01

    The effect of ethanol (E) on the radial growth rate (¿) of food spoilage moulds (Aspergillus candidus, Aspergillus flavus, Aspergillus niger, Cladosporium cladosporioides, Eurotium herbariorum, Mucor circinelloides, Mucor racemosus, Paecilomyces variotii, Penicillium chrysogenum, Penicillium digitat

  17. In vitro antifungal effect of black cumin seed quinones against dairy spoilage yeasts at different acidity levels.

    Science.gov (United States)

    Halamova, Katerina; Kokoska, Ladislav; Flesar, Jaroslav; Sklenickova, Olga; Svobodova, Blanka; Marsik, Petr

    2010-12-01

    The antiyeast activity of the black cumin seed (Nigella sativa) quinones dithymoquinone, thymohydroquinone (THQ), and thymoquinone (TQ) were evaluated in vitro with a broth microdilution method against six dairy spoilage yeast species. Antifungal effects of the quinones were compared with those of preservatives commonly used in milk products (calcium propionate, natamycin, and potassium sorbate) at two pH levels (4.0 and 5.5). THQ and TQ possessed significant antiyeast activity and affected the growth of all strains tested at both pH levels, with MICs ranging from 8 to 128 μg/ml. With the exception of the antibiotic natamycin, the inhibitory effects of all food preservatives against the yeast strains tested in this study were strongly affected by differences in pH, with MICs of ≥16 and ≥512 μg/ml at pH 4.0 and 5.5, respectively. These findings suggest that HQ and TQ are effective antiyeast agents that could be used in the dairy industry as chemical preservatives of natural origin.

  18. Dekkera bruxellensis--spoilage yeast with biotechnological potential, and a model for yeast evolution, physiology and competitiveness.

    Science.gov (United States)

    Blomqvist, Johanna; Passoth, Volkmar

    2015-06-01

    Dekkera bruxellensis is a non-conventional yeast normally considered a spoilage organism in wine (off-flavours) and in the bioethanol industry. But it also has potential as production yeast. The species diverged from Saccharomyces cerevisiae 200 mya, before the whole genome duplication. However, it displays similar characteristics such as being Crabtree- and petite positive, and the ability to grow anaerobically. Partial increases in ploidy and promoter rewiring may have enabled evolution of the fermentative lifestyle in D. bruxellensis. On the other hand, it has genes typical for respiratory yeasts, such as for complex I or the alternative oxidase AOX1. Dekkera bruxellensis grows more slowly than S. cerevisiae, but produces similar or greater amounts of ethanol, and very low amounts of glycerol. Glycerol production represents a loss of energy but also functions as a redox sink for NADH formed during synthesis of amino acids and other compounds. Accordingly, anaerobic growth required addition of certain amino acids. In spite of its slow growth, D. bruxellensis outcompeted S. cerevisiae in glucose-limited cultures, indicating a more efficient energy metabolism and/or higher affinity for glucose. This review tries to summarize the latest discoveries about evolution, physiology and metabolism, and biotechnological potential of D. bruxellensis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Brettanomyces yeasts--From spoilage organisms to valuable contributors to industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Daenen, Luk; Malcorps, Philippe; Derdelinckx, Guy; Verachtert, Hubert; Verstrepen, Kevin J

    2015-08-03

    Ever since the introduction of controlled fermentation processes, alcoholic fermentations and Saccharomyces cerevisiae starter cultures proved to be a match made in heaven. The ability of S. cerevisiae to produce and withstand high ethanol concentrations, its pleasant flavour profile and the absence of health-threatening toxin production are only a few of the features that make it the ideal alcoholic fermentation organism. However, in certain conditions or for certain specific fermentation processes, the physiological boundaries of this species limit its applicability. Therefore, there is currently a strong interest in non-Saccharomyces (or non-conventional) yeasts with peculiar features able to replace or accompany S. cerevisiae in specific industrial fermentations. Brettanomyces (teleomorph: Dekkera), with Brettanomyces bruxellensis as the most commonly encountered representative, is such a yeast. Whilst currently mainly considered a spoilage organism responsible for off-flavour production in wine, cider or dairy products, an increasing number of authors report that in some cases, these yeasts can add beneficial (or at least interesting) aromas that increase the flavour complexity of fermented beverages, such as specialty beers. Moreover, its intriguing physiology, with its exceptional stress tolerance and peculiar carbon- and nitrogen metabolism, holds great potential for the production of bioethanol in continuous fermentors. This review summarizes the most notable metabolic features of Brettanomyces, briefly highlights recent insights in its genetic and genomic characteristics and discusses its applications in industrial fermentation processes, such as the production of beer, wine and bioethanol. Copyright © 2015. Published by Elsevier B.V.

  20. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria.

    Science.gov (United States)

    Pastorkova, E; Zakova, T; Landa, P; Novakova, J; Vadlejch, J; Kokoska, L

    2013-02-15

    This paper investigates the in vitro antimicrobial potential of 15 grape phenolic compounds of various chemical classes (phenolic acids, stilbenes and flavonoids) using the broth microdilution method against yeasts and acetic acid bacteria frequently occurring in deteriorated wine. Pterostilbene (MICs=32-128 μg/mL), resveratrol (MICs=256-512 μg/mL) and luteolin (MICs=256-512 μg/mL) are among six active compounds that possessed the strongest inhibitory effects against all microorganisms tested. In the case of phenolic acids, myricetin, p-coumaric and ferulic acids exhibited selective antimicrobial activity (MICs=256-512 μg/mL), depending upon yeasts and bacteria tested. In comparison with potassium metabisulphite, all microorganisms tested were more susceptible to the phenolics. The results revealed the antibacterial and antiyeast effects against wine spoilage microorganisms of several highly potent phenolics naturally occurring in grapes. These findings also provide arguments for further investigation of stilbenes as prospective compounds reducing the need for the use of sulphites in winemaking.

  1. Microbial community analysis of food-spoilage bacteria in commercial custard creams using culture-dependent and independent methods.

    Science.gov (United States)

    Arakawa, K; Kawai, Y; Iioka, H; Tanioka, M; Nishimura, J; Kitazawa, H; Tsurumi, K; Saito, T

    2008-08-01

    Custard cream is made from highly nutritive raw materials such as milk and sugar and is easily spoiled by the multiplication of specific microbial contaminants or residents. However, this spoilage microbial community has not been studied. We determined the spoilage microbiota in commercial custard creams using culture-dependent and independent methods. Using the culture-dependent analysis with various agar media, 185 bacterial colonies and 43 eukaryal colonies were isolated from 7 commercial custard cream products. All bacterial isolates were morphologically, physiologically, and genetically identified as bacilli, staphylococci, lactic acid bacteria, and psychrotrophic gram-negative rods. Using culture-independent molecular analysis, the PCR-denaturing gradient gel electrophoresis technique, spoilage of the commercial custard creams was found to be caused by bacilli, staphylococci, lactic acid bacteria, psychrotrophic gram-negative rods, Anoxybacillus sp., Caurobacter sp., and Streptococcus sp. bacteria. The detected spoilage bacteria were the same species as previously detected in spoiled milk products and shown in other reports, suggesting that spoilage bacteria in a raw material easily grow in processed foods made from milk. We determined the spoilage microbial communities in commercial custard creams, and these are the first data concerning spoilage microbiota in nonfermented processed foods using a culture-independent analysis. Our study will be useful for the manufacture and safe preservation of dairy products because the first step toward safe food preservation by food manufacturers is to understand the spoilage microbiota in a target food to select optimal preservatives and to reduce the use of food additives.

  2. Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores

    NARCIS (Netherlands)

    Boer, de P.; Caspers, M.; Sanders, J.W.; Kemperman, R.; Wijman, J.; Lommerse, G.; Roeselers, G.; Montijn, R.; Abee, T.; Kort, R.

    2015-01-01

    Background
    Spoilage of food products is frequently caused by bacterial spores and lactic acid bacteria. Identification of these organisms by classic cultivation methods is limited by their ability to form colonies on nutrient agar plates. In this study, we adapted and optimized 16S rRNA amplicon

  3. Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores

    NARCIS (Netherlands)

    Boer, de P.; Caspers, M.; Sanders, J.W.; Kemperman, R.; Wijman, J.; Lommerse, G.; Roeselers, G.; Montijn, R.; Abee, T.; Kort, R.

    2015-01-01

    Background
    Spoilage of food products is frequently caused by bacterial spores and lactic acid bacteria. Identification of these organisms by classic cultivation methods is limited by their ability to form colonies on nutrient agar plates. In this study, we adapted and optimized 16S rRNA amplicon

  4. Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates.

    Science.gov (United States)

    Fernández Ramírez, Mónica D; Smid, Eddy J; Abee, Tjakko; Nierop Groot, Masja N

    2015-08-17

    Lactobacillus plantarum has been associated with food spoilage in a wide range of products and the biofilm growth mode has been implicated as a possible source of contamination. In this study we analysed the biofilm forming capacity of L. plantarum WCFS1 and six food spoilage isolates. Biofilm formation as quantified by crystal violet staining and colony forming units was largely affected by the medium composition, growth temperature and maturation time and by strain specific features. All strains showed highest biofilm formation in Brain Heart Infusion medium supplemented with manganese and glucose. For L. plantarum biofilms the crystal violet (CV) assay, that is routinely used to quantify total biofilm formation, correlates poorly with the number of culturable cells in the biofilm. This can in part be explained by cell death and lysis resulting in CV stainable material, conceivably extracellular DNA (eDNA), contributing to the extracellular matrix. The strain to strain variation may in part be explained by differences in levels of eDNA, likely as result of differences in lysis behaviour. In line with this, biofilms of all strains tested, except for one spoilage isolate, were sensitive to DNase treatment. In addition, biofilms were highly sensitive to treatment with Proteinase K suggesting a role for proteins and/or proteinaceous material in surface colonisation. This study shows the impact of a range of environmental factors and enzyme treatments on biofilm formation capacity for selected L. plantarum isolates associated with food spoilage, and may provide clues for disinfection strategies in food industry.

  5. Survival of Listeria monocytogenes, and other food spoilage microbes in vacuum packaged West African soft cheese 'wara'.

    Science.gov (United States)

    Adetunji, V O

    2012-12-01

    'Wara' soft cheese is traditionally produced in Nigeria and has a poor microbial quality. This study assessed the survivability of Listeria monocytogenes and other food spoilage microbes (enterobacteriacea, molds and yeasts) in vacuum packaged soft cheese treated independently with Carica papaya (Vcpc), Terminalia cattapa (Vtcc) crude extracts, nisin (Vnc), and the combination of these three treatments (V+3) stored at 15 degrees C and 28 degrees C for a three week storage period. Vacuum packaging did not suppress Listeria monocytogenes, and there were no significant differences in the L. monocytogenes counts throughout the storage weeks (P > 0.05). The enterobacteriacea counts were suppressed to undetectable levels at 15 degrees C storage temperature by the third week of storage in all treatments except the Vnc and V+3. Molds and yeasts were undetectable in all treatments throughout the storage weeks. Significant differences occurred in the microbial count at the two storage temperatures and storage weeks (P Vacuum packaging and addition of crude extracts (Carica papaya, Terminalia cattapa) in soft cheese storage can suppress enterobacteriacea, molds and yeasts. Food technologists developing industrialized 'wara should consider including these extracts and vacuum packaging in their production. Therefore, their use in extension of the shelf-life of soft cheese is recommended.

  6. Genome Survey Sequencing of the Wine Spoilage Yeast Dekkera (Brettanomyces) bruxellensis▿ †

    Science.gov (United States)

    Woolfit, Megan; Rozpędowska, Elżbieta; Piškur, Jure; Wolfe, Kenneth H.

    2007-01-01

    The hemiascomycete yeast Dekkera bruxellensis, also known as Brettanomyces bruxellensis, is a major cause of wine spoilage worldwide. Wines infected with D. bruxellensis develop distinctive, unpleasant aromas due to volatile phenols produced by this species, which is highly ethanol tolerant and facultatively anaerobic. Despite its importance, however, D. bruxellensis has been poorly genetically characterized until now. We performed genome survey sequencing of a wine strain of D. bruxellensis to obtain 0.4× coverage of the genome. We identified approximately 3,000 genes, whose products averaged 49% amino acid identity to their Saccharomyces cerevisiae orthologs, with similar intron contents. Maximum likelihood phylogenetic analyses suggest that the relationship between D. bruxellensis, S. cerevisiae, and Candida albicans is close to a trichotomy. The estimated rate of chromosomal rearrangement in D. bruxellensis is slower than that calculated for C. albicans, while its rate of amino acid evolution is somewhat higher. The proteome of D. bruxellensis is enriched for transporters and genes involved in nitrogen and lipid metabolism, among other functions, which may reflect adaptations to its low-nutrient, high-ethanol niche. We also identified an adenyl deaminase gene that has high similarity to a gene in bacteria of the Burkholderia cepacia species complex and appears to be the result of horizontal gene transfer. These data provide a resource for further analyses of the population genetics and evolution of D. bruxellensis and of the genetic bases of its physiological capabilities. PMID:17277171

  7. Complex Nature of the Genome in a Wine Spoilage Yeast, Dekkera bruxellensis▿ †

    Science.gov (United States)

    Hellborg, Linda; Piškur, Jure

    2009-01-01

    When the genome organizations of 30 native isolates belonging to a wine spoilage yeast, Dekkera (Brettanomyces) bruxellensis, a distant relative of Saccharomyces cerevisiae, were examined, the numbers of chromosomes varied drastically, from 4 to at least 9. When single gene probes were used in Southern analysis, the corresponding genes usually mapped to at least two chromosomal bands, excluding a simple haploid organization of the genome. When different loci were sequenced, in most cases, several different haplotypes were obtained for each single isolate, and they belonged to two subtypes. Phylogenetic reconstruction using haplotypes revealed that the sequences from different isolates belonging to one subtype were more similar to each other than to the sequences belonging to the other subtype within the isolate. Reanalysis of the genome sequence also confirmed that partially sequenced strain Y879 is not a simple haploid and that its genome contains approximately 1% polymorphic sites. The present situation could be explained by (i) a hybridization event where two similar but different genomes have recently fused together or (ii) an event where the diploid progenitor of all analyzed strains lost a regular sexual cycle, and the genome started to accumulate mutations. PMID:19717738

  8. Genome survey sequencing of the wine spoilage yeast Dekkera (Brettanomyces) bruxellensis.

    Science.gov (United States)

    Woolfit, Megan; Rozpedowska, Elzbieta; Piskur, Jure; Wolfe, Kenneth H

    2007-04-01

    The hemiascomycete yeast Dekkera bruxellensis, also known as Brettanomyces bruxellensis, is a major cause of wine spoilage worldwide. Wines infected with D. bruxellensis develop distinctive, unpleasant aromas due to volatile phenols produced by this species, which is highly ethanol tolerant and facultatively anaerobic. Despite its importance, however, D. bruxellensis has been poorly genetically characterized until now. We performed genome survey sequencing of a wine strain of D. bruxellensis to obtain 0.4x coverage of the genome. We identified approximately 3,000 genes, whose products averaged 49% amino acid identity to their Saccharomyces cerevisiae orthologs, with similar intron contents. Maximum likelihood phylogenetic analyses suggest that the relationship between D. bruxellensis, S. cerevisiae, and Candida albicans is close to a trichotomy. The estimated rate of chromosomal rearrangement in D. bruxellensis is slower than that calculated for C. albicans, while its rate of amino acid evolution is somewhat higher. The proteome of D. bruxellensis is enriched for transporters and genes involved in nitrogen and lipid metabolism, among other functions, which may reflect adaptations to its low-nutrient, high-ethanol niche. We also identified an adenyl deaminase gene that has high similarity to a gene in bacteria of the Burkholderia cepacia species complex and appears to be the result of horizontal gene transfer. These data provide a resource for further analyses of the population genetics and evolution of D. bruxellensis and of the genetic bases of its physiological capabilities.

  9. Complex nature of the genome in a wine spoilage yeast, Dekkera bruxellensis.

    Science.gov (United States)

    Hellborg, Linda; Piskur, Jure

    2009-11-01

    When the genome organizations of 30 native isolates belonging to a wine spoilage yeast, Dekkera (Brettanomyces) bruxellensis, a distant relative of Saccharomyces cerevisiae, were examined, the numbers of chromosomes varied drastically, from 4 to at least 9. When single gene probes were used in Southern analysis, the corresponding genes usually mapped to at least two chromosomal bands, excluding a simple haploid organization of the genome. When different loci were sequenced, in most cases, several different haplotypes were obtained for each single isolate, and they belonged to two subtypes. Phylogenetic reconstruction using haplotypes revealed that the sequences from different isolates belonging to one subtype were more similar to each other than to the sequences belonging to the other subtype within the isolate. Reanalysis of the genome sequence also confirmed that partially sequenced strain Y879 is not a simple haploid and that its genome contains approximately 1% polymorphic sites. The present situation could be explained by (i) a hybridization event where two similar but different genomes have recently fused together or (ii) an event where the diploid progenitor of all analyzed strains lost a regular sexual cycle, and the genome started to accumulate mutations.

  10. Antimicrobial Activity of neo-Clerodane Diterpenoids isolated from Lamiaceae Species against Pathogenic and Food Spoilage Microorganisms.

    Science.gov (United States)

    Bozov, Petko; Girova, Tania; Prisadova, Natalia; Hristova, Yana; Gochev, Velizar

    2015-11-01

    Antimicrobial activity of nineteen neo-clerodane diterpenoids, isolated from the acetone extracts of the aerial parts of Scutellaria and Salvia species (Lamiaceae) were tested against thirteen strains belonging to nine different species of pathogenic and food spoilage bacteria Aeromonas hydrophila, Bacillus cereus, Escherichia coli, Listeria monocytogenes, Proteus vulgaris, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella abony and Staphylococcus aureus as well as against two yeast strains belonging to species Candida albicans. Seven of the evaluated compounds scutalpin A, scutalpin E, scutalpin F, salviarin, splenolide A, splenolide B and splendidin demonstrated antimicrobial activity against used test microbial strains, the rest of the compounds were inactive within the studied concentration range. Among all of the tested compounds the highest antimicrobial activity was detected for scutalpin A against Staphylococcus aureus (MIC 25 µg/mL).

  11. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity

    Science.gov (United States)

    Padilla, Beatriz; Gil, José V.; Manzanares, Paloma

    2016-01-01

    It is well established that non-Saccharomyces wine yeasts, considered in the past as undesired or spoilage yeasts, can enhance the analytical composition, and aroma profile of the wine. The contribution of non-Saccharomyces yeasts, including the ability to secret enzymes and produce secondary metabolites, glycerol and ethanol, release of mannoproteins or contributions to color stability, is species- and strain-specific, pointing out the key importance of a clever strain selection. The use of mixed starters of selected non-Saccharomyces yeasts with strains of Saccharomyces cerevisiae represents an alternative to both spontaneous and inoculated wine fermentations, taking advantage of the potential positive role that non-Saccharomyces wine yeast species play in the organoleptic characteristics of wine. In this context mixed starters can meet the growing demand for new and improved wine yeast strains adapted to different types and styles of wine. With the aim of presenting old and new evidences on the potential of non-Saccharomyces yeasts to address this market trend, we mainly review the studies focused on non-Saccharomyces strain selection and design of mixed starters directed to improve primary and secondary aroma of wines. The ability of non-Saccharomyces wine yeasts to produce enzymes and metabolites of oenological relevance is also discussed. PMID:27065975

  12. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  13. In situ control of food spoilage fungus using Lactobacillus acidophilus NCDC 291.

    Science.gov (United States)

    Garcha, Seema; Natt, Navdeep Kaur

    2012-10-01

    A challenge for food industry today is to produce minimally processed food, without use of chemical preservatives and little compromise on nutritional status. Lactobacillus acidophilus NCDC 291 can be directly added to food where it enhances shelf life by competing with other microflora (both bacterial and fungal) for food and also by production of antimicrobial metabolites as bacteriocins. Comprehensive studies have demonstrated the in vitro activity of bacteriocins. However their role in preventing fresh food spoilage needs more elucidation. The present study was conducted to evaluate the efficacy of the whole cells of this organism as biopreservative agent against fungi. Four most commonly occurring spoilage fungi were isolated and were identified as Fusarium, Alternaria, Penicillium and Aspergillus. Growth of all of them was inhibited in in vitro studies, (approximately 33-43% decrease in mycelial dry weight basis between test and control). In situ biopreservation of Indian cheese and raw poultry meat was attempted and the colony count of Alternaria was significantly (p < 0.05, Bonferroni Holm) reduced in presence of L. acidophilus. Dip and Keep approach of preservation for Mangifera and Momordica were carried out in which microbial spoilage was not observed up to 6 days.

  14. Spoilage of foods monitored by native fluorescence spectroscopy with selective excitation wavelength

    Science.gov (United States)

    Pu, Yang; Wang, Wubao; Alfano, Robert R.

    2015-03-01

    The modern food processing and storage environments require the real-time monitoring and rapid microbiological testing. Optical spectroscopy with selective excitation wavelengths can be the basis of a novel, rapid, reagent less, noncontact and non-destructive technique for monitoring the food spoilage. The native fluorescence spectra of muscle foods stored at 2-4°C (in refrigerator) and 20-24°C (in room temperature) were measured as a function of time with a selective excitation wavelength of 340nm. The contributions of the principal molecular components to the native fluorescence spectra of meat were measured spectra of each fluorophore: collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin. The responsible components were extracted using a method namely Multivariate Curve Resolution with Alternating Least-Squares (MCR-ALS). The native fluorescence combined with MCR-ALS can be used directly on the surface of meat to produce biochemically interpretable "fingerprints", which reflects the microbial spoilage of foods involved with the metabolic processes. The results show that with time elapse, the emission from NADH in meat stored at 24°C increases much faster than that at 4°C. This is because multiplying of microorganisms and catabolism are accompanied by the generation of NADH. This study presents changes of relative content of NADH may be used as criterion for detection of spoilage degree of meat using native fluorescence spectroscopy.

  15. Heat inactivation of wine spoilage yeast Dekkera bruxellensis by hot water treatment.

    Science.gov (United States)

    Fabrizio, V; Vigentini, I; Parisi, N; Picozzi, C; Compagno, C; Foschino, R

    2015-08-01

    Cell suspensions of four Dekkera bruxellensis strains (CBS 2499, CBS 2797, CBS 4459 and CBS 4601) were subjected to heat treatment in deionized water at four different temperatures (55·0, 57·5, 60·0 and 62·5°C) to investigate their thermal resistance. The decimal reduction times at a specific temperature were calculated from the resulting inactivation curves: the D-values at 55·0°C ranged from 63 to 79·4 s, at 57·5°C from 39·6 to 46·1 s, at 60·0°C from 19·5 to 20·7 s, at 62·5°C from 10·2 to 13·7 s. The z-values were between 9·2 and 10·2°C, confirming that heat resistance is a strain-dependent character. A protocol for the sanitization of 225 l casks by immersion in hot water was set up and applied to contaminated 3-year-old barrels. The heat penetration through the staves was evaluated for each investigated temperature by positioning a thermal probe at 8 mm deep. A treatment at 60°C for an exposure time of 19 min allowed to eliminate the yeast populations up to a log count reduction of 8. Brettanomyces/Dekkera bruxellensis is the main yeast involved in red wine spoilage that occurs during ageing in barrel, generating considerable economic losses. Current sanitization protocols, performed using different chemicals, are ineffective due to the porous nature of the wood. The thermal inactivation of D. bruxellensis cells by hot water treatment proves to be efficacious and easy to perform, provided that the holding time at the killing temperature takes into account the filling time of the vessel and the time for the heat penetration into the wood structure. © 2015 The Society for Applied Microbiology.

  16. Antimicrobial characteristics of chitosans against food spoilage microorganisms in liquid media and mayonnaise.

    Science.gov (United States)

    Oh, H I; Kim, Y J; Chang, E J; Kim, J Y

    2001-11-01

    Four different kinds of chitosans were prepared by treating crude chitin with various NaOH concentrations. The antimicrobial activities of the chitosans were tested against four species of food spoilage microorganisms (Lactobacillus plantarum, Lactobacillus fructivorans, Serratia liquefaciens, and Zygosaccharomyces bailii). The initial effect of the chitosans was biocidal, and counts of viable cells were significantly reduced. After an extended lag phase, some strains recovered and resumed growth. The activities of chitosan against these microorganisms increased with the concentration. Chitosan-50 was most effective against L. fructivorans, but inhibition of L. plantarum was greatest with chitosan-55. There was no significant difference among the chitosans in their antimicrobial activity against S. liquefaciens and Z. bailii. The addition of chitosan to mayonnaise significantly decreased the viable cell counts of L. fructivorans and Z. bailii during storage at 25 degrees C. These results suggest that chitosan can be used as a food preservative to inhibit the growth of spoilage microorganisms in mayonnaise.

  17. Inhibition of the wine spoilage yeast Dekkera bruxellensis by bovine lactoferrin-derived peptides.

    Science.gov (United States)

    Enrique, María; Marcos, Jose F; Yuste, María; Martínez, Mireia; Vallés, Salvador; Manzanares, Paloma

    2008-10-31

    The antimicrobial action of lactoferrin (LF)-derived peptides against Dekkera bruxellensis strains isolated from spoiled wines has been examined. The study included a fifteen-residue peptide (LfcinB(17-31)) derived from bovine lactoferricin B and a bovine LF pepsin hydrolysate (LFH). In vitro assays showed the inhibitory properties of LfcinB(17-31) on D. bruxellensis growth with IC(50) and MIC values in the micromolar range. Strains tested showed different sensitivity to the peptide. LfcinB(17-31) showed fungicidal properties towards all strains tested in laboratory growth medium. However, the extent of fungicidal activity was strain-dependent in must and wine, confirming the different antimicrobial action of peptides depending on both the food matrix and the target micro-organism. The binding of LfcinB(17-31) to D. bruxellensis cells was visualized by fluorescence microscopy and correlated with the fungicidal activity in the different matrixes. LfcinB(17-31) and LFH showed growth inhibitory properties in wine suggesting their potential use for spoilage control.

  18. Effect of Ethanol, Sulfur Dioxide and Glucose on the Growth of Wine Spoilage Yeasts Using Response Surface Methodology.

    Directory of Open Access Journals (Sweden)

    Mahesh Chandra

    Full Text Available Response surface methodology (RSM was used to study the effect of three factors, sulfur dioxide, ethanol and glucose, on the growth of wine spoilage yeast species, Zygosaccharomyces bailii, Schizosaccharomyces pombe, Saccharomycodes ludwigii and Saccharomyces cerevisiae. Seventeen central composite rotatable design (CCRD trials were designed for each test yeast using realistic concentrations of the factors (variables in premium red wine. Polynomial regression equations were fitted to experimental data points, and the growth inhibitory conditions of these three variables were determined. The overall results showed Sa. ludwigii as the most resistant species growing under high ethanol/free sulfur dioxide concentrations, i.e., 15% (v/v/20 mg L-1, 14% (v/v/32 mg L-1 and 12.5% (v/v/40 mg L-1, whereas other yeasts did not survive under the same levels of ethanol/free sulfur dioxide concentrations. The inhibitory effect of ethanol was primarily observed during longer incubation periods, compared with sulfur dioxide, which showed an immediate effect. In some CCRD trials, Sa. ludwigii and S. cerevisiae showed growth recovery after a short death period under the exposure of 20-32 mg L-1 sulfur dioxide in the presence of 11% (v/v or more ethanol. However, Sc. pombe and Z. bailii did not show such growth recovery under similar conditions. Up to 10 g L-1 of glucose did not prevent cell death under the sulfur dioxide or ethanol stress. This observation demonstrates that the sugar levels commonly used in wine to sweeten the mouthfeel do not increase wine susceptibility to spoilage yeasts, contrary to the anecdotal evidence.

  19. Resistance of yeasts to weak organic acid food preservatives.

    Science.gov (United States)

    Piper, Peter W

    2011-01-01

    Carboxylate weak acids are invaluable for large-scale food and beverage preservation. However, in response to safety concerns, there is now desire to reduce the use of these additives. The resistance to these compounds displayed by spoilage yeasts and fungi is a major reason why these preservatives often have to be used in millimolar levels. This chapter summarizes the mechanisms whereby yeasts are rendered resistant to acetate, propionate, sorbate, and benzoate. In baker's yeast (Saccharomyces cerevisiae), resistance to high acetic acid is acquired partly by loss of the plasma membrane aquaglyceroporin that facilitates the passive diffusional entry of undissociated acid into cells (Fps1), and partly through a transcriptional response mediated by the transcription factor Haa1. Other carboxylate preservatives are too large to enter cells through the Fps1 channel but instead penetrate at appreciable rates by passive diffusion across the plasma membrane. In Saccharomyces and Candida albicans though not, it seems, in the Zygosaccharomyces, resistance to the latter acids involves activation of the War1 transcription factor, which in turn generates strong induction of a specific plasma membrane ATP-binding cassette transporter (Pdr12). The latter actively pumps the preservative anion from the cell. Other contributors to weak acid resistance include enzymes that allow preservative degradation, members of the Tpo family of major facilitator superfamily transporters, and changes to the cell envelope that minimize the diffusional entry of the preservative into the cell.

  20. Adaptive ingredients against food spoilage in Japanese cuisine.

    Science.gov (United States)

    Ohtsubo, Yohsuke

    2009-12-01

    Billing and Sherman proposed the antimicrobial hypothesis to explain the worldwide spice use pattern. The present study explored whether two antimicrobial ingredients (i.e. spices and vinegar) are used in ways consistent with the antimicrobial hypothesis. Four specific predictions were tested: meat-based recipes would call for more spices/vinegar than vegetable-based recipes; summer recipes would call for more spices/vinegar than winter recipes; recipes in hotter regions would call for more spices/vinegar; and recipes including unheated ingredients would call for more spices/vinegar. Spice/vinegar use patterns were compiled from two types of traditional Japanese cookbooks. Dataset I included recipes provided by elderly Japanese housewives. Dataset II included recipes provided by experts in traditional Japanese foods. The analyses of Dataset I revealed that the vinegar use pattern conformed to the predictions. In contrast, analyses of Dataset II generally supported the predictions in terms of spices, but not vinegar.

  1. A generic model for spoilage of acidic emulsified foods: combining physicochemical data, diversity and levels of specific spoilage organisms.

    Science.gov (United States)

    Manios, Stavros G; Lambert, Ronald J W; Skandamis, Panagiotis N

    2014-01-17

    The spoilage pattern of three emulsified, vegetable-based spreads of low pH (3.90-4.15) adjusted with acetic acid was characterized by correlating the growth of spoilage flora with the organoleptic and physicochemical changes, as well as the changes in the species composition of the dominant microflora during storage under isothermal conditions. In a further step, a generic (hereafter called 'unified') model was developed to describe the maximum specific growth rate of the specific spoilage organisms (SSOs) in all acetic acid acidified products, including literature data and additional in-house data from similar products, as a function of the storage temperature, pH (3.61-4.25) and initial concentration of the undissociated acetic acid in each product. The predictions of the unified model were compared with those of product-specific models, with temperature as the sole predictor variable. Two independent batches of commercially prepared pepper- (PS), fava beans- (FS) and eggplant-based (ES) spreads were stored at 4, 7, 10, 12, 15, 18, 20 and 25°C. The growth of lactic acid bacteria (SSOs; LAB) was correlated with changes in pH, titratable acidity and organic acids concentration, as well as sensory characteristics, in order to define the shelf-life of the products. Isolates from each spread and storage temperature were grouped with SDS-PAGE and were identified with 16S rRNA, determining the association between spoilage and species diversity. Product-specific models were developed using the square root model, while a polynomial and the Ratkowsky model were used for the development of the unified model. Products with lower pH and/or higher acetic acid content showed higher microbial stability. Lactobacillus plantarum or Lactobacillus brevis dominated the LAB association in all three spreads, although their relative percentage at the beginning of storage varied significantly. These facultative or obligate hetero-fermentative bacteria increased lactic acid and

  2. De-novo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499.

    Science.gov (United States)

    Curtin, Chris D; Borneman, Anthony R; Chambers, Paul J; Pretorius, Isak S

    2012-01-01

    Despite its industrial importance, the yeast species Dekkera (Brettanomyces) bruxellensis has remained poorly understood at the genetic level. In this study we describe whole genome sequencing and analysis for a prevalent wine spoilage strain, AWRI1499. The 12.7 Mb assembly, consisting of 324 contigs in 99 scaffolds (super-contigs) at 26-fold coverage, exhibits a relatively high density of single nucleotide polymorphisms (SNPs). Haplotype sampling for 1.2% of open reading frames suggested that the D. bruxellensis AWRI1499 genome is comprised of a moderately heterozygous diploid genome, in combination with a divergent haploid genome. Gene content analysis revealed enrichment in membrane proteins, particularly transporters, along with oxidoreductase enzymes. Availability of this assembly and annotation provides a resource for further investigation of genomic organization in this species, and functional characterization of genes that may confer important phenotypic traits.

  3. De-novo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499.

    Directory of Open Access Journals (Sweden)

    Chris D Curtin

    Full Text Available Despite its industrial importance, the yeast species Dekkera (Brettanomyces bruxellensis has remained poorly understood at the genetic level. In this study we describe whole genome sequencing and analysis for a prevalent wine spoilage strain, AWRI1499. The 12.7 Mb assembly, consisting of 324 contigs in 99 scaffolds (super-contigs at 26-fold coverage, exhibits a relatively high density of single nucleotide polymorphisms (SNPs. Haplotype sampling for 1.2% of open reading frames suggested that the D. bruxellensis AWRI1499 genome is comprised of a moderately heterozygous diploid genome, in combination with a divergent haploid genome. Gene content analysis revealed enrichment in membrane proteins, particularly transporters, along with oxidoreductase enzymes. Availability of this assembly and annotation provides a resource for further investigation of genomic organization in this species, and functional characterization of genes that may confer important phenotypic traits.

  4. Evaluation of Antibacterial Activity of Lactobacillus Spp. on Selected Food Spoilage Bacteria.

    Science.gov (United States)

    Sharma, Anurag; Gupta, Piyush; Bhattacharya, Susinjan

    2015-01-01

    This study was done to isolate Lactobacillus species from curd, amla/Indian gooseberry and orange and to assess their antagonistic ability against selected food spoilage bacteria, Escherichia coli, Pseudomonas spp. and Bacillus spp. isolated from natural food sources. In the approaches used, native Lactobacillus spp. were isolated from amla, orange and curd and identified by standard microbiological methods. Their antagonistic affect was tested by disc diffusion tests against three selected test isolates, Escherichia coli, Pseudomonas and Bacillus spp. isolated from tomato, pumpkin, cauliflower, lady's finger, carrot, and milk. There are recent patents also suggesting use of novel strains of Lactobacillus for microbial antagonism. In our present work, the lactobacilli isolated from different food sources showed varied ability to inhibit the growth of test isolates. The growth of test isolates was inhibited by Lactobacillus isolates with one of the Lactobacillus isolate from amla being the most potent inhibitor.

  5. Raman spectroscopy and chemometrics for identification and strain discrimination of the wine spoilage yeasts Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Brettanomyces bruxellensis.

    Science.gov (United States)

    Rodriguez, Susan B; Thornton, Mark A; Thornton, Roy J

    2013-10-01

    The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%.

  6. ANTIBACTERIAL ACTIVITY OF SIMAROUBA GLAUCA LEAF EXTRACTS AGAINST FOOD BORNE SPOILAGE AND PATHOGENIC MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    B. L. Jangale et al.

    2012-02-01

    Full Text Available Crude ethanol and methanol extracts from dried and fresh leaves of Simarouba glauca were tested for their inhibitory activity against two food borne pathogenic microorganisms (Staphylococcus aeureus and Escherichia coli and two food spoilage microorganism (Bacillus subtilis and Pseudomonas aeurogenosa. Screening for antimicrobial activity using well diffusion assay showed the inhibition against entire tested microorganisms. On the other hand the maximum zone of inhibition was recorded of fresh leaves methanol extract (FLM about 11 mm against Escherichia coli and the lowest zone of inhibition was recorded of fresh leaves methanol extract (FLM about 2 mm against Bacillus subtilis. Minimum inhibitory concentrations (MIC’s of extracts were determined using agar dilution method on the same test microorganisms. Fresh leaves methanol (FLM extract gave MIC value ranging from 160 to 10,240 parts per million (ppm. Result showed that the Bacillus subtilis was the most sensitive microorganism.

  7. Antimicrobial effect of emulsion-encapsulated isoeugenol against biofilms of food pathogens and spoilage bacteria.

    Science.gov (United States)

    Krogsgård Nielsen, Christina; Kjems, Jørgen; Mygind, Tina; Snabe, Torben; Schwarz, Karin; Serfert, Yvonne; Meyer, Rikke Louise

    2017-02-02

    Food-related biofilms can cause food-borne illnesses and spoilage, both of which are problems on a global level. Essential oils are compounds derived from plant material that have a potential to be used in natural food preservation in the future since they are natural antimicrobials. Bacterial biofilms are particularly resilient towards biocides, and preservatives that effectively eradicate biofilms are therefore needed. In this study, we test the antibacterial properties of emulsion-encapsulated and unencapsulated isoeugenol against biofilms of Lis. monocytogenes, S. aureus, P. fluorescens and Leu. mesenteroides in tryptic soy broth and carrot juice. We show that emulsion encapsulation enhances the antimicrobial properties of isoeugenol against biofilms in media but not in carrot juice. Some of the isoeugenol emulsions were coated with chitosan, and treatment of biofilms with these emulsions disrupted the biofilm structure. Furthermore, we show that addition of the surfactant Tween 80, which is commonly used to disperse oils in food, hampers the antibacterial properties of isoeugenol. This finding highlights that common food additives, such as surfactants, may have an adverse effect on the antibacterial activity of preservatives. Isoeugenol is a promising candidate as a future food preservative because it works almost equally well against planktonic bacteria and biofilms. Emulsion encapsulation has potential benefits for the efficacy of isoeugenol, but the effect of encapsulation depends on the properties of food matrix in which isoeugenol is to be applied.

  8. Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat.

    Science.gov (United States)

    Gallocchio, Federica; Cibin, Veronica; Biancotto, Giancarlo; Roccato, Anna; Muzzolon, Orietta; Carmen, Losasso; Simone, Belluco; Manodori, Laura; Fabrizi, Alberto; Patuzzi, Ilaria; Ricci, Antonia

    2016-06-01

    Migration of nanomaterials from food containers into food is a matter of concern because of the potential risk for exposed consumers. The aims of this study were to evaluate silver migration from a commercially available food packaging containing silver nanoparticles into a real food matrix (chicken meat) under plausible domestic storage conditions and to test the contribution of such packaging to limit food spoilage bacteria proliferation. Chemical analysis revealed the absence of silver in chicken meatballs under the experimental conditions in compliance with current European Union legislation, which establishes a maximum level of 0.010 mg kg(-1) for the migration of non-authorised substances through a functional barrier (Commission Regulation (EU) No. 10/2011). On the other hand, microbiological tests (total microbial count, Pseudomonas spp. and Enterobacteriaceae) showed no relevant difference in the tested bacteria levels between meatballs stored in silver-nanoparticle plastic bags or control bags. This study shows the importance of testing food packaging not only to verify potential silver migration as an indicator of potential nanoparticle migration, but also to evaluate the benefits in terms of food preservation so as to avoid unjustified usage of silver nanoparticles and possible negative impacts on the environment.

  9. Characterization of Osmotolerant Yeasts and Yeast-Like Molds from Apple Orchards and Apple Juice Processing Plants in China and Investigation of Their Spoilage Potential.

    Science.gov (United States)

    Wang, Huxuan; Hu, Zhongqiu; Long, Fangyu; Niu, Chen; Yuan, Yahong; Yue, Tianli

    2015-08-01

    Yeasts and yeast-like fungal isolates were recovered from apple orchards and apple juice processing plants located in the Shaanxi province of China. The strains were evaluated for osmotolerance by growing them in 50% (w/v) glucose. Of the strains tested, 66 were positive for osmotolerance and were subsequently identified by 26S or 5.8S-ITS ribosomal RNA (rRNA) gene sequencing. Physiological tests and RAPD-PCR analysis were performed to reveal the polymorphism of isolates belonging to the same species. Further, the spoilage potential of the 66 isolates was determining by evaluating their growth in 50% to 70% (w/v) glucose and measuring gas generation in 50% (w/v) glucose. Thirteen osmotolerant isolates representing 9 species were obtained from 10 apple orchards and 53 target isolates representing 19 species were recovered from 2 apple juice processing plants. In total, members of 14 genera and 23 species of osmotolerant isolates including yeast-like molds were recovered from all sources. The commonly recovered osmotolerant isolates belonged to Kluyveromyces marxianus, Hanseniaspora uvarum, Saccharomyces cerevisiae, Zygosaccharomyces rouxii, Candida tropicalis, and Pichia kudriavzevii. The polymorphism of isolates belonging to the same species was limited to 1 to 3 biotypes. The majority of species were capable of growing within a range of glucose concentration, similar to sugar concentrations found in apple juice products with a lag phase from 96 to 192 h. Overall, Z. rouxii was particularly the most tolerant to high glucose concentration with the shortest lag phase of 48 h in 70% (w/v) glucose and the fastest gas generation rate in 50% (w/v) glucose.

  10. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    Science.gov (United States)

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.

  11. Astaxanthin from psychrotrophic Sphingomonas faeni exhibits antagonism against food-spoilage bacteria at low temperatures.

    Science.gov (United States)

    Mageswari, Anbazhagan; Subramanian, Parthiban; Srinivasan, Ramachandran; Karthikeyan, Sivashanmugam; Gothandam, Kodiveri Muthukaliannan

    2015-10-01

    Food production and processing industry holds a perpetual relationship with microorganisms and their by-products. In the present study, we aimed to identify beneficial cold-adapted bacteria devoid of any food spoilage properties and study their antagonism against common food-borne pathogens at low temperature conditions. Ten isolates were obtained on selective isolation at 5 °C, which were spread across genera Pseudomonas, Sphingomonas, Psychrobacter, Leuconostoc, Rhodococcus, and Arthrobacter. Methanol extracts of strains were found to contain several bioactive metabolites. Among the studied isolates, methanol extracts of S. faeni ISY and Rhodococcus fascians CS4 were found to show antagonism against growth of Escherichia coli, Proteus mirabilis, Enterobacter aerogenes, Listeria monocytogenes and Vibrio fischeri at refrigeration temperatures. Characterization of the abundant yellow pigment in methanol extracts of S. faeni ISY through UV-Vis spectrophotometry, high performance liquid chromatography (HPLC) and mass spectrometry (LC-MS) revealed the presence of astaxanthin, which, owing to its presence in very large amounts and evidenced to be responsible for antagonistic activity of the solvent extract.

  12. Effect of white mustard essential oil on the growth of foodborne pathogens and spoilage microorganisms and the effect of food components on its efficacy.

    Science.gov (United States)

    Monu, Emefa A; David, Jairus R D; Schmidt, Marcel; Davidson, P Michael

    2014-12-01

    Antimicrobial preservative compounds are added to foods to target specific pathogens and spoilage organisms. White mustard essential oil (WMEO) is an extract that contains 4-hydroxybenzyl isothiocyanate, a compound which has been demonstrated to have antimicrobial activity in limited studies. The objective of this research was to determine the in vitro antimicrobial activity of WMEO against gram-positive and gram-negative spoilage and pathogenic bacteria and determine the effect of food components on the antimicrobial activity. The bacteria Escherichia coli, Salmonella enterica serovar Enteritidis, Enterobacter aerogenes, Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, and Lactobacillus fermentum, as well as the acid- and preservative-resistant yeast Schizosaccharomyces pombe, were evaluated. All microorganisms were inhibited by WMEO at 8.3 g/liter (equivalent to 1,000 mg/liter 4-hydroxybenzyl isothiocyanate). In general, WMEO was more effective against gram-negative than against gram-positive bacteria. Salmonella Enteritidis and S. pombe were the most sensitive, with inhibition at as low as 2.1 g/liter. The effects on growth profiles varied but included increased lag phases and lethality, indicating both bacteriostatic and bactericidal activity. Soybean oil had a negative effect on the efficacy of WMEO against L. monocytogenes, and at 5% soybean oil, the antimicrobial activity against Salmonella Enteritidis was eliminated after 48 h. Sodium caseinate at 1% also negated the antimicrobial effect of WMEO against Salmonella Enteritidis and decreased its effectiveness against L. monocytogenes. The presence of starch had no significant effect on the antimicrobial activity of WMEO against L. monocytogenes and Salmonella Enteritidis. Thus, WMEO is effective against a wide range of microorganisms and has potential to be used in foods, depending upon the target microorganism and food components present.

  13. Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin.

    Science.gov (United States)

    Narayanan, Aarthi; Neera; Mallesha; Ramana, Karna Venkata

    2013-07-01

    Biopolymers and biopreservatives produced by microorganisms play an essential role in food technology. Polyhydroxyalkanoates and bacteriocins produced by bacteria are promising components to safeguard the environment and for food preservation applications. Polyhydroxybutyrate (PHB)-based antimicrobial films were prepared incorporating eugenol, from 10 to 200 μg/g of PHB. The films were evaluated for antimicrobial activity against foodborne pathogens, spoilage bacteria, and fungi such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Penicillium sp., and Rhizopus sp. The synergistic antimicrobial activity of the films in the presence of crude pediocin was also investigated. The broth system containing pediocin (soluble form) as well as antimicrobial PHB film demonstrated an extended lag phase and a significant growth reduction at the end of 24 h against the bacteria. Crude pediocin alone could not elicit antifungal activity, while inhibition of growth and sporulation were observed in the presence of antimicrobial PHB film containing eugenol (80 μg/g) until 7 days in the case of molds, i.e., A. niger, A. flavus, Penicillium sp., and Rhizopus sp. in potato dextrose broth. In the present study, we identified that use of pediocin containing broth in conjunction with eugenol incorporated PHB film could function in synergized form, providing effective hurdle toward food contaminating microorganisms. Furthermore, tensile strength, percent crystallinity, melting point, percent elongation to break, glass transition temperature, and seal strength of the PHB film with and without eugenol incorporation were investigated. The migration of eugenol on exposure to different liquid food simulants was also analyzed using Fourier transform infrared spectroscopy. The study is expected to provide applications for pediocin in conjunction with eugenol containing PHB film to enhance the shelf life of foods in the

  14. Lactococcus piscium: a psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food-a review.

    Science.gov (United States)

    Saraoui, T; Leroi, F; Björkroth, J; Pilet, M F

    2016-10-01

    The genus Lactococcus comprises 12 species, some known for decades and others more recently described. Lactococcus piscium, isolated in 1990 from rainbow trout, is a psychrotrophic lactic acid bacterium, probably disregarded because most of the strains are unable to grow at 30°C. During the last 10 years, this species has been isolated from a large variety of food: meat, seafood and vegetables, mostly packed under vacuum (VP) or modified atmosphere (MAP) and stored at chilled temperature. Recently, culture-independent techniques used for characterization of microbial ecosystems have highlighted the importance of Lc. piscium in food. Its role in food spoilage varies according to the strain and the food matrix. However, most studies have indicated that Lc. piscium spoils meat, whereas it does not degrade the sensory properties of seafood. Lactococcus piscium strains have a large antimicrobial spectrum, including Gram-positive and negative bacteria. In various seafoods, some strains have a protective effect against spoilage and can extend the sensory shelf-life of the products. They can also inhibit the growth of Listeria monocytogenes, by a cell-to-cell contact-dependent. This article reviews the physiological and genomic characteristics of Lc. piscium and discusses its spoilage or protective activities in food.

  15. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage

    Science.gov (United States)

    Chaillou, Stéphane; Chaulot-Talmon, Aurélie; Caekebeke, Hélène; Cardinal, Mireille; Christieans, Souad; Denis, Catherine; Hélène Desmonts, Marie; Dousset, Xavier; Feurer, Carole; Hamon, Erwann; Joffraud, Jean-Jacques; La Carbona, Stéphanie; Leroi, Françoise; Leroy, Sabine; Lorre, Sylvie; Macé, Sabrina; Pilet, Marie-France; Prévost, Hervé; Rivollier, Marina; Roux, Dephine; Talon, Régine; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2015-01-01

    The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189±58 operational taxonomic units (OTUs) but dropped to 27±12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota. PMID:25333463

  16. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage.

    Science.gov (United States)

    Chaillou, Stéphane; Chaulot-Talmon, Aurélie; Caekebeke, Hélène; Cardinal, Mireille; Christieans, Souad; Denis, Catherine; Desmonts, Marie Hélène; Dousset, Xavier; Feurer, Carole; Hamon, Erwann; Joffraud, Jean-Jacques; La Carbona, Stéphanie; Leroi, Françoise; Leroy, Sabine; Lorre, Sylvie; Macé, Sabrina; Pilet, Marie-France; Prévost, Hervé; Rivollier, Marina; Roux, Dephine; Talon, Régine; Zagorec, Monique; Champomier-Vergès, Marie-Christine

    2015-05-01

    The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189±58 operational taxonomic units (OTUs) but dropped to 27±12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota.

  17. Factors Affecting Microbial Load and Profile of Potential Pathogens and Food Spoilage Bacteria from Household Kitchen Tables.

    Science.gov (United States)

    Biranjia-Hurdoyal, Susheela; Latouche, Melissa Cathleen

    2016-01-01

    The aim was to study the bacterial load and isolate potential pathogens and food spoilage bacteria from kitchen tables, including preparation tables and dining tables. Methods. A total of 53 households gave their consent for participation. The samples were collected by swabbing over an area of 5 cm by 5 cm of the tables and processed for bacterial count which was read as colony forming units (CFU), followed by isolation and identification of potential pathogens and food spoilage bacteria. Result. Knowledge about hygiene was not always put into practice. Coliforms, Enterococcus spp., Pseudomonas spp., Proteus spp., and S. aureus were detected from both dining and preparation tables. The mean CFU and presence of potential pathogens were significantly affected by the hygienic practices of the main food handler of the house, materials of kitchen tables, use of plastic covers, time of sample collection, use of multipurpose sponges/towels for cleaning, and the use of preparation tables as chopping boards (p Kitchen tables could be very important source of potential pathogens and food spoilage bacteria causing foodborne diseases. Lack of hygiene was confirmed by presence of coliforms, S. aureus, and Enterococcus spp. The use of plastic covers, multipurpose sponges, and towels should be discouraged.

  18. Investigations on the Antifungal Effect of Nerol against Aspergillus flavus Causing Food Spoilage

    Directory of Open Access Journals (Sweden)

    Jun Tian

    2013-01-01

    Full Text Available The antifungal efficacy of nerol (NEL has been proved against Aspergillus flavus by using in vitro and in vivo tests. The mycelial growth of A. flavus was completely inhibited at concentrations of 0.8 μL/mL and 0.1 μL/mL NEL in the air at contact and vapor conditions, respectively. The NEL also had an evident inhibitory effect on spore germination in A. flavus along with NEL concentration as well as time-dependent kinetic inhibition. The NEL presented noticeable inhibition on dry mycelium weight and synthesis of aflatoxin B1 (AFB1 by A. flavus, totally restraining AFB1 production at 0.6 μL/mL. In real food system, the efficacy of the NEL on resistance to decay development in cherry tomatoes was investigated in vivo by exposing inoculated and control fruit groups to NEL vapor at different concentration. NEL vapors at 0.1 μL/mL air concentration significantly reduced artificially contaminated A. flavus and a broad spectrum of fungal microbiota. Results obtained from presented study showed that the NEL had a great antifungal activity and could be considered as a benefit and safe tool to control food spoilage.

  19. Global overview of the risk linked to the Bacillus cereus group in the egg product industry: identification of food safety and food spoilage markers.

    Science.gov (United States)

    Techer, C; Baron, F; Delbrassinne, L; Belaïd, R; Brunet, N; Gillard, A; Gonnet, F; Cochet, M-F; Grosset, N; Gautier, M; Andjelkovic, M; Lechevalier, V; Jan, S

    2014-05-01

    To evaluate the food safety and spoilage risks associated with psychrotrophic Bacillus cereus group bacteria for the egg product industry and to search for relevant risk markers. A collection of 68 psychrotrophic B. cereus group isolates, coming from pasteurized liquid whole egg products, was analysed through a principal component analysis (PCA) regarding their spoilage and food safety risk potentials. The principal component analysis showed a clear differentiation between two groups within the collection, one half of the isolates representing a safety risk and the other half a spoilage risk. Relevant risk markers were highlighted by PCA, that is (i) for the food safety risk, the presence of the specific 16S rDNA-1m genetic signature and the ability to grow at 43°C on solid medium and (ii) for the spoilage risk, the presence of the cspA genetic signature. This work represents a first step in the development of new diagnostic technologies for the assessment of the microbiological quality of foods likely to be contaminated with psychrotrophic B. cereus group bacteria. © 2014 The Society for Applied Microbiology.

  20. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria.

    Science.gov (United States)

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-07-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products.

  1. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria

    Science.gov (United States)

    Mith, Hasika; Duré, Rémi; Delcenserie, Véronique; Zhiri, Abdesselam; Daube, Georges; Clinquart, Antoine

    2014-01-01

    This study was undertaken to determine the in vitro antimicrobial activities of 15 commercial essential oils and their main components in order to pre-select candidates for potential application in highly perishable food preservation. The antibacterial effects against food-borne pathogenic bacteria (Listeria monocytogenes, Salmonella Typhimurium, and enterohemorrhagic Escherichia coli O157:H7) and food spoilage bacteria (Brochothrix thermosphacta and Pseudomonas fluorescens) were tested using paper disk diffusion method, followed by determination of minimum inhibitory (MIC) and bactericidal (MBC) concentrations. Most of the tested essential oils exhibited antimicrobial activity against all tested bacteria, except galangal oil. The essential oils of cinnamon, oregano, and thyme showed strong antimicrobial activities with MIC ≥ 0.125 μL/mL and MBC ≥ 0.25 μL/mL. Among tested bacteria, P. fluorescens was the most resistant to selected essential oils with MICs and MBCs of 1 μL/mL. The results suggest that the activity of the essential oils of cinnamon, oregano, thyme, and clove can be attributed to the existence mostly of cinnamaldehyde, carvacrol, thymol, and eugenol, which appear to possess similar activities against all the tested bacteria. These materials could be served as an important natural alternative to prevent bacterial growth in food products. PMID:25473498

  2. The emulsifying effect of biosurfactants produced by food spoilage organisms in Nigeria

    Directory of Open Access Journals (Sweden)

    Christianah O. Ogunmola

    2016-04-01

    Full Text Available Food spoilage organisms were isolated using standard procedures on Nutrient Agar, Cetrimide Agar and Pseudomonas Agar Base (supplemented with CFC. The samples were categorized as animal products (raw fish, egg, raw chicken, corned beef, pasteurized milk and plant products (vegetable salad, water leaf (Talinium triangulare, boiled rice, tomatoes and pumpkin leaf (Teifairia occidentalis.They were characterised as Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas stutzeri, Burkholderia pseudomallei, Serratia rubidaea, Corynebacterium pilosum, Bacillus subtilis, Bacillus mycoides, Bacillus laterosporus, Bacillus laterosporus, Serratia marcescens, Bacillus cereus, Bacillus macerans, Alcaligenes faecalis and Alcaligenes eutrophus. Preliminary screening for biosurfactant production was done using red blood haemolysis test and confirmed by slide test, drop collapse and oil spreading assay. The biosurfactant produced was purified using acetone and the composition determined initially using Molisch’s test, thin layer chromatography and gas chromatography mass spectrometry. The components were found to be ethanol, amino acids, butoxyacetic acid, hexadecanoic acid, oleic acid, lauryl peroxide, octadecanoic acid and phthalic acid. The producing organisms grew readily on several hydrocarbons such as crude oil, diesel oil and aviation fuel when used as sole carbon sources.  The purified biosurfactants produced were able to cause emulsification of kerosene (19.71-27.14% as well as vegetable oil (16.91-28.12% based on the emulsification index. This result suggests that the isolates can be an asset and further work can exploit their optimal potential in industries.

  3. Antimicrobial activity of essential oil components against potential food spoilage microorganisms.

    Science.gov (United States)

    Klein, G; Rüben, C; Upmann, M

    2013-08-01

    The antimicrobial activity of six essential oil components against the potential food spoilage bacteria Aeromonas (A.) hydrophila, Escherichia (E.) coli, Brochothrix (B.) thermosphacta, and Pseudomonas (P.) fragi at single use and in combination with each other was investigated. At single use, the most effective oil components were thymol (bacteriostatic effect starting from 40 ppm, bactericidal effect with 100 ppm) and carvacrol (50 ppm/100 ppm), followed by linalool (180 ppm/720 ppm), α-pinene (400 ppm/no bactericidal effect), 1,8-cineol (1,400 ppm/2,800 ppm), and α-terpineol (600 ppm/no bactericidal effect). Antimicrobial effects occurred only at high, sensorial not acceptable concentrations. The most susceptible bacterium was A. hydrophila, followed by B. thermosphacta and E. coli. Most of the essential oil component combinations tested showed a higher antimicrobial effect than tested at single use. Antagonistic antimicrobial effects were observed particularly against B. thermosphacta, rarely against A. hydrophila. The results show that the concentration of at least one of the components necessary for an antibacterial effect is higher than sensorial acceptable. So the use of herbs with a high content of thymol, carvacrol, linalool, 1,8-cineol, α-pinene or α-terpineol alone or in combination must be weighted against sensorial quality.

  4. The emulsifying effect of biosurfactants produced by food spoilage organisms in Nigeria

    Directory of Open Access Journals (Sweden)

    Christianah O. Ogunmola

    2016-04-01

    Full Text Available Food spoilage organisms were isolated using standard procedures on Nutrient Agar, Cetrimide Agar and Pseudomonas Agar Base (supplemented with CFC. The samples were categorized as animal products (raw fish, egg, raw chicken, corned beef, pasteurized milk and plant products (vegetable salad, water leaf (Talinium triangulare, boiled rice, tomatoes and pumpkin leaf (Teifairia occidentalis.They were characterised as Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas stutzeri, Burkholderia pseudomallei, Serratia rubidaea, Corynebacterium pilosum, Bacillus subtilis, Bacillus mycoides, Bacillus laterosporus, Bacillus laterosporus, Serratia marcescens, Bacillus cereus, Bacillus macerans, Alcaligenes faecalis and Alcaligenes eutrophus. Preliminary screening for biosurfactant production was done using red blood haemolysis test and confirmed by slide test, drop collapse and oil spreading assay. The biosurfactant produced was purified using acetone and the composition determined initially using Molisch’s test, thin layer chromatography and gas chromatography mass spectrometry. The components were found to be ethanol, amino acids, butoxyacetic acid, hexadecanoic acid, oleic acid, lauryl peroxide, octadecanoic acid and phthalic acid. The producing organisms grew readily on several hydrocarbons such as crude oil, diesel oil and aviation fuel when used as sole carbon sources.  The purified biosurfactants produced were able to cause emulsification of kerosene (19.71-27.14% as well as vegetable oil (16.91-28.12% based on the emulsification index. This result suggests that the isolates can be an asset and further work can exploit their optimal potential in industries.

  5. Occurrence and function of yeasts in Asian indigenous fermented foods

    NARCIS (Netherlands)

    Aidoo, K.E.; Nout, M.J.R.; Sarkar, P.K.

    2006-01-01

    In the Asian region, indigenous fermented foods are important in daily life. In many of these foods, yeasts are predominant and functional during the fermentation. The diversity of foods in which yeasts predominate ranges from leavened bread-like products such as nan and idli, to alcoholic beverages

  6. Occurrence and function of yeasts in Asian indigenous fermented foods

    NARCIS (Netherlands)

    Aidoo, K.E.; Nout, M.J.R.; Sarkar, P.K.

    2006-01-01

    In the Asian region, indigenous fermented foods are important in daily life. In many of these foods, yeasts are predominant and functional during the fermentation. The diversity of foods in which yeasts predominate ranges from leavened bread-like products such as nan and idli, to alcoholic beverages

  7. Phytochemical profiles and antimicrobial activity of aromatic Malaysian herb extracts against food-borne pathogenic and food spoilage microorganisms.

    Science.gov (United States)

    Aziman, Nurain; Abdullah, Noriham; Noor, Zainon Mohd; Kamarudin, Wan Saidatul Syida Wan; Zulkifli, Khairusy Syakirah

    2014-04-01

    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products.

  8. Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi.

    Science.gov (United States)

    Nguefack, J; Leth, V; Amvam Zollo, P H; Mathur, S B

    2004-08-01

    Five essential oils (EO) extracted from Cymbopogon citratus, Monodora myristica, Ocimum gratissimum, Thymus vulgaris and Zingiber officinale were investigated for their inhibitory effect against three food spoilage and mycotoxin producing fungi, Fusarium moniliforme, Aspergillus flavus and Aspergillus fumigatus. Five strains of each fungus were tested. The agar dilution technique was used to determine the inhibitory effect of each EO on the radial growth of the fungus, and a dose response was recorded. The EO from O. gratissimum, T. vulgaris and C. citratus were the most effective and prevented conidial germination and the growth of all three fungi on corn meal agar at 800, 1000 and 1200 ppm, respectively. Moderate activity was observed for the EO from Z. officinale between 800 and 2500 ppm, while the EO from M. myristica was less inhibitory. These effects against food spoilage and mycotoxin producing fungi indicated the possible ability of each essential oil as a food preservative. A comparative test on the preservative ability of the EO from O. gratissimum and potassium sorbate against A. flavus at pH 3.0 and 4.5 showed that the EO remained stable at both pH, whereas the efficacy of potassium sorbate was reduced at higher pH. We concluded that the EO from O. gratissimum is a potential food preservative with a pH dependent superiority against potassium sorbate, and these are novel scientific information.

  9. Probiotic properties of yeasts occurring in fermented food and beverages

    DEFF Research Database (Denmark)

    Jespersen, Lene

    Besides being able to improve the quality and safety of many fermented food and beverages some yeasts offer a number of probiotic traits. Especially a group of yeast referred to as "Saccharomyces boulardii", though taxonomically belonging to Saccharomyces cerevisiae, has been claimed to have...... probiotic properties. Besides, yeasts naturally occurring globally in food and beverages will have traits that might have a positive impact on human health....

  10. Multilocus sequence typing of Leuconostoc gelidum subsp. gasicomitatum, a Psychrotrophic lactic acid bacterium causing spoilage of packaged perishable foods.

    Science.gov (United States)

    Rahkila, Riitta; Johansson, Per; Säde, Elina; Paulin, Lars; Auvinen, Petri; Björkroth, Johanna

    2015-04-01

    Leuconostoc gelidum subsp. gasicomitatum is a psychrotrophic lactic acid bacterium (LAB) that causes spoilage of a variety of modified-atmosphere-packaged (MAP) cold-stored food products. During the past 10 years, this spoilage organism has been increasingly reported in MAP meat and vegetable products in northern Europe. In the present study, the population structure within 252 L. gelidum subsp. gasicomitatum strains was determined based on a novel multilocus sequence-typing (MLST) scheme employing seven housekeeping genes. These strains had been isolated from meat and vegetable sources over a time span of 15 years, and all 68 previously detected pulsed-field gel electrophoresis (PFGE) genotypes were represented. A total of 46 sequence types (STs) were identified, with a majority of the strains (>60%) belonging to three major STs, which were grouped into three clonal complexes (CCs) and 17 singletons by Global Optimal eBURST (goeBURST). The results by Bayesian analysis of population structure (BAPS) mostly correlated with the grouping by goeBURST. Admixture analysis by BAPS indicated a very low level of exchange of genetic material between the subpopulations. Niche specificity was observed within the subpopulations: CC1 and BAPS cluster 1 consisted mostly of strains from a variety of MAP meats, whereas vegetable strains grouped together with strains from MAP poultry within CC2 and BAPS cluster 2. The MLST scheme presented in this study provides a shareable and continuously growing sequence database enabling global comparison of strains associated with spoilage cases. This will further advance our understanding of the microbial ecology of this industrially important LAB. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Occurrence and function of yeasts in Asian indigenous fermented foods.

    Science.gov (United States)

    Aidoo, Kofi E; Nout, M J Rob; Sarkar, Prabir K

    2006-01-01

    In the Asian region, indigenous fermented foods are important in daily life. In many of these foods, yeasts are predominant and functional during the fermentation. The diversity of foods in which yeasts predominate ranges from leavened bread-like products such as nan and idli, to alcoholic beverages such as rice and palm wines, and condiments such as papads and soy sauce. Although several products are obtained by natural fermentation, the use of traditional starter cultures is widespread. This minireview focuses on the diversity and functionality of yeasts in these products, and on opportunities for research and development.

  12. ANTIBACTERIAL ACTIVITY OF GUAVA (PSIDIUM GUAJAVA L.) AND NEEM (AZADIRACHTA INDICA A. JUSS.)EXTRACTS AGAINST FOOD BORNE PATHOGENS AND SPOILAGE BACTERIA

    Science.gov (United States)

    The objective of this study was to investigate the antibacterial properties of guava (Psidium guajava) and neem (Azadirachta indica) extracts against a number of common food borne pathogens and spoilage bacteria. Screening for antibacterial activity was determined by disc diffusion assay against 21...

  13. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms.

    Science.gov (United States)

    Plumed-Ferrer, Carme; Väkeväinen, Kati; Komulainen, Heli; Rautiainen, Maarit; Smeds, Annika; Raitanen, Jan-Erik; Eklund, Patrik; Willför, Stefan; Alakomi, Hanna-Leena; Saarela, Maria; von Wright, Atte

    2013-06-03

    The antimicrobial effects of the wood-associated polyphenolic compounds pinosylvin, pinosylvin monomethyl ether, astringin, piceatannol, isorhapontin, isorhapontigenin, cycloXMe, dHIMP, ArX, and ArXOH were assessed against both Gram-negative (Salmonella) and Gram-positive bacteria (Listeria monocytogenes, Staphylococcus epidermidis, Staphylococcus aureus) and yeasts (Candida tropicalis, Saccharomyces cerevisiae). Particularly the stilbenes pinosylvin, its monomethyl ether and piceatannol demonstrated a clear antimicrobial activity, which in the case of pinosylvin was present also in food matrices like sauerkraut, gravlax and berry jam, but not in milk. The destabilization of the outer membrane of Gram-negative microorganisms, as well as interactions with the cell membrane, as indicated by the NPN uptake and LIVE/DEAD viability staining experiments, can be one of the specific mechanisms behind the antibacterial action. L. monocytogenes was particularly sensitive to pinosylvin, and this effect was also seen in L. monocytogenes internalized in intestinal Caco2 cells at non-cytotoxic pinosylvin concentrations. In general, the antimicrobial effects of pinosylvin were even more prominent than those of a related stilbene, resveratrol, well known for its various bioactivities. According to our results, pinosylvin could have potential as a natural disinfectant or biocide in some targeted applications.

  14. Antimicrobial Activity of Kefir against Various Food Pathogens and Spoilage Bacteria.

    Science.gov (United States)

    Kim, Dong-Hyeon; Jeong, Dana; Kim, Hyunsook; Kang, Il-Byeong; Chon, Jung-Whan; Song, Kwang-Young; Seo, Kun-Ho

    2016-01-01

    Kefir is a unique fermented dairy product produced by a mixture of lactic acid bacteria, acetic acid bacteria, and yeast. Here, we compared the antimicrobial spectra of four types of kefirs (A, L, M, and S) fermented for 24, 36, 48, or 72 h against eight food-borne pathogens. Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, and Cronobacter sakazakii were used as test strains, and antibacterial activity was investigated by the spot on lawn method. The spectra, potencies, and onsets of activity varied according to the type of kefir and the fermentation time. The broadest and strongest antimicrobial spectrum was obtained after at least 36-48 h of fermentation for all kefirs, although the traditional fermentation method of kefir is for 18-24 h at 25℃. For kefir A, B. cereus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited, while B. cereus, S. aureus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited to different extents by kefirs L, M, and S. Remarkably, S. aureus, S. Enteritidis, and C. sakazakii were only inhibited by kefirs L, M, and S, and L. monocytogenes by kefir M after fermentation for specific times, suggesting that the antimicrobial activity is attributable not only to a low pH but also to antimicrobial substances secreted during the fermentation.

  15. Antimicrobial effects of Turkish propolis, pollen, and laurel on spoilage and pathogenic food-related microorganisms.

    Science.gov (United States)

    Erkmen, Osman; Ozcan, Mehmet Musa

    2008-09-01

    The antimicrobial activities of propolis extract, pollen extract, and essential oil of laurel (Laurus nobilis L.) at concentrations from 0.02% to 2.5% (vol/vol) were investigated on bacteria (Bacillus cereus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Yersinia enterocolitica, Enterococcus faecalis, and Listeria monocytogenes), yeasts (Saccharomyces cerevisiae and Candida rugosa), and molds (Aspergillus niger and Rhizopus oryzae). Pollen has no antimicrobial effects on the bacteria and fungi tested in the concentrations used. Propolis showed a bactericidal effect at 0.02% on B. cereus and B. subtilis, at 1.0% on S. aureus and E. faecalis, and at 0.2% on L. monocytogenes. The minimum inhibitory concentration of propolis for fungi was 2.5%. Propolis and laurel were ineffective against E. coli and S. typhimurium at the concentrations tested. The results showed that the antimicrobial activity were concentration dependent. Propolis and essential oil of laurel may be used as biopreservative agents in food processing and preservation.

  16. Microbiological Spoilage of Cereal Products

    Science.gov (United States)

    Cook, Frederick K.; Johnson, Billie L.

    A wide range of cereal products, including bakery items, refrigerated dough, fresh pasta products, dried cereal products, snack foods, and bakery mixes, are manufactured for food consumption. These products are subject to physical, chemical, and microbiological spoilage that affects the taste, aroma, leavening, appearance, and overall quality of the end consumer product. Microorganisms are ubiquitous in nature and have the potential for causing food spoilage and foodborne disease. However, compared to other categories of food products, bakery products rarely cause food poisoning. The heat that is applied during baking or frying usually eliminates pathogenic and spoilage microorganisms, and low moisture contributes to product stability. Nevertheless, microbiological spoilage of these products occurs, resulting in substantial economic losses.

  17. Identification of Yeasts Present in Sour Fermented Foods and Fodder

    NARCIS (Netherlands)

    Middelhoven, W.J.

    2002-01-01

    This paper deals with rapid methods for identification of 50 yeast species frequently isolated from foods and fodders that underwent a lactic acid fermentation. However, many yeast species present in olive brine, alpechin, and other olive products were not treated. The methods required for identific

  18. Interactions between nitric oxide and ethylene in monomeric G-protein activation in relation to food spoilage

    DEFF Research Database (Denmark)

    Hall, M A; moshkov, moshkov; Novikova, G

    2014-01-01

    and it is notable that many are dependent on the production of volatile signals or signals which have volatile derivatives. Ethylene (ET) has long been recognized as an important regulator of development, stress responses, senescence and food spoilage. Our work has focused on the gaseous signal nitric oxide (NO......) and how it interacts with established stress signalling pathways and in particular, those regulated by ET. Using laser photoacoustic detection (LPAD) we have established that NO production overlaps with that of ethylene during plant responses to disease. To examine the interaction of NO and ET signalling...... approach and 2D-electrophoresis (2DE) a series of GTP binding proteins which were activated by both ethylene and SNP were detected and some that exhibited specific activation patterns in response to both signals. These observations underline the close relationship between ET and NO signalling cascades...

  19. Potential Application of Yeast β-Glucans in Food Industry

    Directory of Open Access Journals (Sweden)

    Vesna Zechner-krpan

    2009-12-01

    Full Text Available Different β-glucans are found in a variety of natural sources such as bacteria, yeast, algae, mushrooms, barley and oat. They have potential use in medicine and pharmacy, food, cosmetic and chemical industries, in veterinary medicine and feed production. The use of different β-glucans in food industry and their main characteristics important for food production are described in this paper. This review focuses on beneficial properties and application of β-glucans isolated from different yeasts, especially those that are considered as waste from brewing industry. Spent brewer’s yeast, a by-product of beer production, could be used as a raw-material for isolation of β-glucan. In spite of the fact that large quantities of brewer’s yeast are used as a feedstuff , certain quantities are still treated as a liquid waste. β-Glucan is one of the compounds that can achieve a greater commercial value than the brewer’s yeast itself and maximize the total profitability of the brewing process. β-Glucan isolated from spent brewer’s yeast possesses properties that are benefi cial for food production. Therefore, the use of spent brewer’s yeast for isolation of β-glucan intended for food industry would represent a payable technological and economical choice for breweries.

  20. Identification of yeasts present in sour fermented foods and fodders.

    Science.gov (United States)

    Middelhoven, Wouter J

    2002-07-01

    This paper deals with rapid methods for identification of 50 yeast species frequently isolated from foods and fodders that underwent a lactic acid fermentation. However, many yeast species present in olive brine, alpechin, and other olive products were not treated. The methods required for identification include light microscopy, physiological growth tests (ID32C system of BioMérieux), assimilation of nitrate and of ethylamine as sole nitrogen sources, vitamin requirement, and maximum growth temperature. An identification key to treated yeast species is provided. In another table characteristics of all yeast species treated are listed.

  1. Probabilistic model for the spoilage wine yeast Dekkera bruxellensis as a function of pH, ethanol and free SO2 using time as a dummy variable.

    Science.gov (United States)

    Sturm, M E; Arroyo-López, F N; Garrido-Fernández, A; Querol, A; Mercado, L A; Ramirez, M L; Combina, M

    2014-01-17

    The present study uses a probabilistic model to determine the growth/no growth interfaces of the spoilage wine yeast Dekkera bruxellensis CH29 as a function of ethanol (10-15%, v/v), pH (3.4-4.0) and free SO2 (0-50 mg/l) using time (7, 14, 21 and 30 days) as a dummy variable. The model, built with a total of 756 growth/no growth data obtained in a simile wine medium, could have application in the winery industry to determine the wine conditions needed to inhibit the growth of this species. Thereby, at 12.5% of ethanol and pH 3.7 for a growth probability of 0.01, it is necessary to add 30 mg/l of free SO2 to inhibit yeast growth for 7 days. However, the concentration of free SO2 should be raised to 48 mg/l to achieve a probability of no growth of 0.99 for 30 days under the same wine conditions. Other combinations of environmental variables can also be determined using the mathematical model depending on the needs of the industry. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. VOC-based metabolic profiling for food spoilage detection with the application to detecting Salmonella typhimurium-contaminated pork.

    Science.gov (United States)

    Xu, Yun; Cheung, William; Winder, Catherine L; Goodacre, Royston

    2010-07-01

    In this study, we investigated the feasibility of using a novel volatile organic compound (VOC)-based metabolic profiling approach with a newly devised chemometrics methodology which combined rapid multivariate analysis on total ion currents with in-depth peak deconvolution on selected regions to characterise the spoilage progress of pork. We also tested if such approach possessed enough discriminatory information to differentiate natural spoiled pork from pork contaminated with Salmonella typhimurium, a food poisoning pathogen commonly recovered from pork products. Spoilage was monitored in this study over a 72-h period at 0-, 24-, 48- and 72-h time points after the artificial contamination with the salmonellae. At each time point, the VOCs from six individual pork chops were collected for spoiled vs. contaminated meat. Analysis of the VOCs was performed by gas chromatography/mass spectrometry (GC/MS). The data generated by GC/MS analysis were initially subjected to multivariate analysis using principal component analysis (PCA) and multi-block PCA. The loading plots were then used to identify regions in the chromatograms which appeared important to the separation shown in the PCA/multi-block PCA scores plot. Peak deconvolution was then performed only on those regions using a modified hierarchical multivariate curve resolution procedure for curve resolution to generate a concentration profiles matrix C and the corresponding pure spectra matrix S. Following this, the pure mass spectra (S) of the peaks in those region were exported to NIST 02 mass library for chemical identification. A clear separation between the two types of samples was observed from the PCA models, and after deconvolution and univariate analysis using N-way ANOVA, a total of 16 significant metabolites were identified which showed difference between natural spoiled pork and those contaminated with S. typhimurium.

  3. Spent yeast as natural source of functional food additives

    Science.gov (United States)

    Rakowska, Rita; Sadowska, Anna; Dybkowska, Ewa; Świderski, Franciszek

    Spent yeasts are by-products arising from beer and wine production which over many years have been chiefly used as feed additives for livestock. They contain many valuable and bioactive substances which has thereby generated much interest in their exploitation. Up till now, the main products obtained from beer-brewing yeasts are β-glucans and yeast extracts. Other like foodstuffs include dried brewer’s yeast, where this is dried and the bitterness removed to be fit for human consumption as well as mannan-oligosaccharides hitherto used in the feed industry. β-glucans constitute the building blocks of yeast cell walls and can thus be used in human nutrition as dietary supplements or serving as food additives in functional foods. β-glucans products obtained via post-fermentation of beer also exhibit a high and multi-faceted biological activity where they improve the blood’s lipid profile, enhance immunological status and have both prebiotic and anti-oxidant properties. Yeast extracts are currently being used more and more to enhance flavour in foodstuffs, particularly for meat and its products. Depending on how autolysis is carried out, it is possible to design extracts of various meat flavours characteristic of specific meats. Many different flavour profiles can be created which may be additionally increased in combination with vegetable extracts. Within the food market, yeast extracts can appear in various guises such as liquids, pastes or powders. They all contain significant amounts of glutamic acid, 5’-GMP and 5’-IMP nucleotides together with various amino acids and peptides that act synergistically for enhancing the flavour of foodstuff products. Recent studies have demonstrated additional benefits of yeast extracts as valuable sources of amino acids and peptides which can be used in functional foods and dietary supplements. These products possess GRAS status (Generally Recognised As Safe) which thereby also adds further as to why they should be used

  4. Identification of food spoilage in the smart home based on neural and fuzzy processing of odour sensor responses.

    Science.gov (United States)

    Green, Geoffrey C; Chan, Adrian D C; Goubran, Rafik A

    2009-01-01

    Adopting the use of real-time odour monitoring in the smart home has the potential to alert the occupant of unsafe or unsanitary conditions. In this paper, we measured (with a commercial metal-oxide sensor-based electronic nose) the odours of five household foods that had been left out at room temperature for a week to spoil. A multilayer perceptron (MLP) neural network was trained to recognize the age of the samples (a quantity related to the degree of spoilage). For four of these foods, median correlation coefficients (between target values and MLP outputs) of R > 0.97 were observed. Fuzzy C-means clustering (FCM) was applied to the evolving odour patterns of spoiling milk, which had been sampled more frequently (4h intervals for 7 days). The FCM results showed that both the freshest and oldest milk samples had a high degree of membership in "fresh" and "spoiled" clusters, respectively. In the future, as advancements in electronic nose development remove the present barriers to acceptance, signal processing methods like those explored in this paper can be incorporated into odour monitoring systems used in the smart home.

  5. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages

    OpenAIRE

    Hultman, Jenni; Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K. Johanna

    2015-01-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected ...

  6. Development Of Polyaniline As A Sensor For Food Quality And Spoilage Detection

    OpenAIRE

    Hobday, Duncan Stuart

    2009-01-01

    This thesis describes the research that has been completed for the application of polyaniline as a food quality indicator. It has been reported by WRAP (Waste and Resources Action Programme) that in the UK alone, a third of all purchased food items are thrown away regardless of the quality or condition. It has also been reported by DEFRA (Department for Environment Food and Rural Affairs) that the food manufacturing and processing industry is one of the UK’s largest producers of land fil...

  7. Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould.

    Science.gov (United States)

    Nevarez, Laurent; Vasseur, Valérie; Debaets, Stella; Barbier, Georges

    2010-01-01

    Fungi are ubiquitous microorganisms often associated with spoilage and biodeterioration of a large variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic or environmental factors such as temperature, water activity, pH, preservatives, atmosphere composition, all of which may represent potential sources of stress. Molecular-based analyses of their physiological responses to environmental conditions would help to better manage the risk of alteration and potential toxicity of food products. However, before investigating molecular stress responses, appropriate experimental stress conditions must be precisely defined. Penicillium glabrum is a filamentous fungus widely present in the environment and frequently isolated in the food processing industry as a contaminant of numerous products. Using response surface methodology, the present study evaluated the influence of two environmental factors (temperature and pH) on P. glabrum growth to determine 'optimised' environmental stress conditions. For thermal and pH shocks, a large range of conditions was applied by varying factor intensity and exposure time according to a two-factorial central composite design. Temperature and exposure duration varied from 30 to 50 °C and from 10 min to 230 min, respectively. The effects of interaction between both variables were observed on fungal growth. For pH, the duration of exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on fungal growth results, a thermal shock of 120 min at 40 °C or a pH shock of 240 min at 1.50 or 9.00 may therefore be useful to investigate stress responses to non-optimal conditions.

  8. 细菌群体感应及其在食品变质中的作用%Quorum sensing of bacteria and its effect on food spoilage

    Institute of Scientific and Technical Information of China (English)

    高宗良; 谷元兴; 赵峰; 刘永生

    2012-01-01

    Food spoilage caused by the bacterial biofilm is a significant problems in food industry.It is indicated that quorum sensing of the bacteria plays a major role in biofilm formation and food spoilage.This review focuses on the recent research advances about various quorum-sensing signaling molecules produced by bacteria, the role of signaling molecules in biofilm formation and the significance of biofilms in food industry.As quorum-sensing signaling molecules are closely relate to food spoilage, it was also reviewed that quorum-sensing inhibitors can be developed to be used as novel food preservatives for enhance shelf life and food safety.%食品相关细菌引起的生物被膜形成和食品变质是食品工业中的重大问题.研究表明细菌群体感应(Quorum sensing,QS)与被膜形成、食品腐败变质密切相关.重点对细菌产生的各种QS信号分子及其在被膜形成的作用和被膜在食品工业中的重要性做了介绍.QS信号分子与食品变质密切相关,故对QS抑制剂作为新型食品防腐剂以延长储存期限及加强食品安全的前景进行了概述.

  9. Ochratoxin A in brewer's yeast used as food supplement.

    Science.gov (United States)

    Gottschalk, Christoph; Biermaier, Barbara; Gross, Madeleine; Schwaiger, Karin; Gareis, Manfred

    2016-02-01

    Brewer's yeasts are rich in vitamins of the B-group and contain other nutritive factors; therefore, they are recommended as valuable food supplements for people with special dietary requirements like pregnant women, children, and adolescents, or for people with high physical activity. Additionally, certain strains of brewer's yeast are known to be capable of adsorbing xenobiotics such as mycotoxins. Because of that, these yeasts are regarded as having positive effects in food, beverage, and feed technology. Their potential to bind mycotoxins such as ochratoxin A (OTA), however, can subsequently lead to a contamination of such brewer's yeasts used as food supplements. In the present study, we analyzed 46 samples of brewer's yeasts for the occurrence of OTA by HPLC with fluorescence detector (HPLC-FLD) and for confirmatory measurements by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nearly 90% of the samples were contaminated with OTA, the levels ranging from the limit of detection (LOD, 0.01 μg/kg) to 4.2 μg/kg. The mean and median levels of contamination were 0.49 and 0.27 μg/kg, respectively. Based on these results, the additional weekly OTA exposure by regularly consuming such supplements was assessed. Depending on different subpopulations (adults, children) and levels of contamination used for calculation, the additional OTA intake via brewer's yeast products ranged from 9.3% (mean case) to 114% (worst case) of the published mean weekly OTA intake in Germany (adults 279.3 ng, children 195.3 ng). At present, maximum levels for OTA in nutritional supplements like brewer's yeast do not exist. Based on our results, however, it is recommended that producers of these dietary supplements should include mycotoxin analyses in ongoing and future self-monitoring programs and in product quality checks.

  10. Antifungal activity of some marine organisms from India, against food spoilage Aspergillus strains

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H.; Jagtap, T.G.; Naik, C.G.

    Crude aqueous methanol extracts obtained from 31 species of various marine organisms (including floral and faunal), were screened for their antifungal activity against food poisoning strains of Aspergillus. Seventeen species exhibited mild (+ = zone...

  11. Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection

    Directory of Open Access Journals (Sweden)

    Paolo Di Francesco

    2006-11-01

    Full Text Available Over the last twenty years, newly developed chemical sensor systems (socalled“electronic noses" have odour analyses made possible. This paper describes theapplications of these systems for microbial detection in different fields such as medicineand the food industry, where fast detection methods are essential for appropriatemanagement of health care. Several groups have employed different electronic noses forclassification and quantification of bacteria and fungi to obtain accurate medicaldiagnosis and food quality control. So far, detection and identification of bacterial andfungal volatiles have been achieved by use of e-noses offering different correctclassification percentages. The present review includes examples of bacterial and fungalspecies producing volatile compounds and correlated to infectious diseases or fooddeterioration. The results suggest the possibility of using this new technology both inmedical diagnostics and in food control management.

  12. Ustilago maydis killer toxin as a new tool for the biocontrol of the wine spoilage yeast Brettanomyces bruxellensis.

    Science.gov (United States)

    Santos, Antonio; Navascués, Eva; Bravo, Enrique; Marquina, Domingo

    2011-01-31

    Brettanomyces bruxellensis is one of the most damaging species for wine quality, and tools for controlling its growth are limited. In this study, thirty-nine strains belonging to Saccharomyces cerevisiae and B. bruxellensis have been isolated from wineries, identified and then tested against a panel of thirty-nine killer yeasts. Here, for the first time, the killer activity of Ustilago maydis is proven to be effective against B. bruxellensis. Mixed cultures in winemaking conditions show that U. maydis CYC 1410 has the ability to inhibit B. bruxellensis, while S. cerevisiae is fully resistant to its killer activity, indicating that it could be used in wine fermentation to avoid the development of B. bruxellensis without undesirable effects on the fermentative yeast. The characterization of the dsRNAs isolated and purified from U. maydis CYC 1410 indicated that this strain produces a KP6-related toxin. Killer toxin extracts were active against B. bruxellensis at pH values between 3.0 and 4.5 and temperatures comprised between 15 °C and 25 °C, confirming their biocontrol activity in winemaking and wine aging conditions. Furthermore, small amounts (100 AU/ml) of killer toxin extracts from U. maydis significantly reduced the amount of 4-ethylphenol produced by B. bruxellensis, indicating that in addition to the growth inhibition observed for high killer toxin concentrations (ranging from 400 to 2000 AU/ml), small amounts of the toxin are able to reduce the production of volatile phenols responsible for the aroma defects in wines caused by B. bruxellensis.

  13. A mixed-species microarray for identification of food spoilage bacilli

    NARCIS (Netherlands)

    Caspers, M.P.M.; Schuren, F.H.J.; Zuijlen, van A.C.M.; Brul, S.; Montijn, R.C.; Abee, T.; Kort, R.

    2011-01-01

    Failure of food preservation is frequently caused by thermostable spores of members of the Bacillaceae family, which show a wide spectrum of resistance to cleaning and preservation treatments. We constructed and validated a mixed-species genotyping array for 6 Bacillus species, including Bacillus su

  14. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    Science.gov (United States)

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  15. A mixed-species microarray for identification of food spoilage bacilli

    NARCIS (Netherlands)

    Caspers, M.P.M.; Schuren, F.H.J.; Zuijlen, A.C.M. van; Brul, S.; Montijn, R.C.; Abee, T.; Kort, R.

    2011-01-01

    Failure of food preservation is frequently caused by thermostable spores of members of the Bacillaceae family, which show a wide spectrum of resistance to cleaning and preservation treatments. We constructed and validated a mixed-species genotyping array for 6 Bacillus species, including Bacillus

  16. The wine and beer yeast Dekkera bruxellensis

    OpenAIRE

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P.; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beer...

  17. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.

    Science.gov (United States)

    Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula

    2009-01-15

    Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.

  18. Myrtus communis essential oil: chemical composition and antimicrobial activities against food spoilage pathogens.

    Science.gov (United States)

    Ben Hsouna, Anis; Hamdi, Naceur; Miladi, Ramzi; Abdelkafi, Slim

    2014-04-01

    Myrtus communis is a typical plant of the Mediterranean area, which is mainly used as animal and human food and, in folk medicine, for treating some disorders. In the present study, we evaluated in vitro antibacterial and antifungal properties of the essential oils of Myrtus communis (McEO), as well as its phytochemical composition. The GC/MS analysis of the essential oil revealed 17 compounds. Myrtenyl acetate (20.75%), 1,8-cineol (16.55%), α-pinene (15.59%), linalool (13.30%), limonene (8.94%), linalyl acetate (3.67%), geranyl acetate (2.99%), and α-terpineol (2.88%) were the major components. The antimicrobial activity of the essential oil was also investigated on several microorganisms. The inhibition zones and minimal inhibitory concentration (MIC) values of bacterial strains were in the range of 16-28 mm and 0.078-2.5 mg/ml, respectively. The inhibitory activity of the McEO against Gram-positive bacteria was significantly higher than against Gram-negative. It also exhibited remarkable activity against several fungal strains. The investigation of the mode of action of the McEO by the time-kill curve against Listeria monocytogenes (food isolate) showed a drastic bactericidal effect after 5 min using a concentration of 312 μg/ml. These results evidence that the McEO possesses antimicrobial properties, and it is, therefore, a potential source for active ingredients for food and pharmaceutical industries.

  19. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages.

    Science.gov (United States)

    Hultman, Jenni; Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K Johanna

    2015-10-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Characterization and control of Mucor circinelloides spoilage in yogurt.

    Science.gov (United States)

    Snyder, Abigail B; Churey, John J; Worobo, Randy W

    2016-07-02

    Consumer confidence in the food industry is severely affected by large-scale spoilage incidents. However, relatively little research exists on spoilage potential of members of the fungal subphylum Mucormycotina (e.g. Mucor), which includes dimorphic spoilage organisms that can switch between a yeast-like and hyphal phase depending on environmental conditions. The presence of Mucor circinelloides in yogurt may not cause spoilage, but growth and subsequent changes in quality (e.g. container bloating) can cause spoilage if not controlled. The purpose of this study was to evaluate the effects on M. circinelloides of pasteurization regimen, natamycin concentrations, and storage temperature in yogurt production, as measured by fungal proliferation and carbon dioxide production. A strain of M. circinelloides isolated from commercially spoiled yogurt showed greater yogurt-spoilage potential than clinical isolates and other industrial strains. D-values and z-values were determined for the spoilage isolate in milk as an evaluation of the fungus' ability to survive pasteurization. Natamycin was added to yogurt at 0, 5, 10, 15, and 20ppm (μg/ml) to determine its ability to inhibit M. circinelloides over the course of month-long challenge studies at 4°C, 15°C, and 25°C. Survivors were recovered on acidified PDA and carbon dioxide levels were recorded. The D-values at 54°C, 56°C, and 58°C for hyphae/sporangiospores were (in min) 38.31±0.02, 10.17±0.28, and 1.94±0.53, respectively, which yielded a z-value of 3.09°C. The D-values at 51°C, 53°C, and 55°C for yeast-like cells were (in min) 14.25±0.12, 6.87±1.19, and 2.44±0.35, respectively, which yielded a z-value of 0.34°C. These results indicated that M. circinelloides would not survive fluid milk pasteurization if contamination occurred prior to thermal treatment. CO2 production was only observed when M. circinelloides was incubated under low-oxygen conditions, and occurred only at temperatures above 4

  1. Evaluation and Comparison of Lactic Strains Isolated from Traditional Iranian Dairy Products (Richal Shiri with Armenian Dairy Products on Control of Food Spoilage Agents

    Directory of Open Access Journals (Sweden)

    F Karimpour

    2016-10-01

    Full Text Available Abstract Background & aim: Some bacterial metabolites isolated from fermentative products have antibacterial properties against food spoilage bacteria. The aim of this study was to evaluate the antibacterial properties of the isolated strains of traditional Armenian dairy products including cheese and traditional yogurts (Matson and Richal  shiri as a traditional dairy products from Iran. Material and method: In the present experimental study, bacterial strains were isolated, and subsequently the antibacterial activity of supernatants of strains on several types of spoilages bacteria such as Salmonella  was assessed. In addition, isolated strains from Rachel shiri showed  a good  antibacterial properties against Salmonella typhimurium. Results: The isolated strains were significantly reduced food contamination and increased the shelf -life. Furthermore, isolated strains from Richal shiri showed a good antibacterial properties against Salmonella typhimurium Conclusion: LAB strains isolated with appropriate inhibition, fermented power as a natural preservative and pragmatic as new products may be used in the dairy industry.

  2. Yeast adaptation to weak acids prevents futile energy expenditure

    NARCIS (Netherlands)

    Ullah, A.; Chandrasekaran, G.; Brul, S.; Smits, G.J.

    2013-01-01

    Weak organic acids (WOAs) are widely used preservatives to prevent fungal spoilage of foods and beverages. Exposure of baker's yeast Saccharomyces cerevisiae to WOA leads to cellular acidification and anion accumulation. Pre-adaptation of cultures reduced the rate of acidification caused by weak aci

  3. 食品腐败中细菌群体感应现象的研究进展%Advances on bacterial quorum sensing in food spoilage

    Institute of Scientific and Technical Information of China (English)

    李学鹏; 陈桂芳; 仪淑敏; 朱军莉; 李婷婷; 李春; 励建荣

    2015-01-01

    微生物作用是引起食品腐败变质的主要因素之一.研究表明,细菌群体感应在该过程中起着重要作用.文中介绍了群体感应现象的产生机制与研究前沿,重点以牛奶和奶制品、肉和肉制品、水产品和果蔬4类食品体系为例分析了细菌群体感应现象在食品腐败中的作用,最后对开发以群体感应抑制剂为新型防腐剂的食品保藏新策略进行了论述,以期在为从群体感应角度研究食品腐败机制及保鲜方法提供理论依据.%Microbial activities is one of the major factors of food deterioration.The studies showed that bacterial quorum sensing plays an important role on food spoilage.This article summarized the mechanism for generation of quorum sensing system and its related researches.In particularly,the effect of bacterial quorum sensing on spoilage of foods,such as milk and milk products,meat and meat products,aquatic products,fruits and vegetables,was analyzed.Furthermore,the new strategy for food preservation based on quorum sensing inhibitors was briefly discussed.This paper will provide the theoretical basis for the study of food deterioration mechanism and the development of preservation methods derived from quorum sensing.

  4. Diversity of spoilage fungi associated with various French dairy products.

    Science.gov (United States)

    Garnier, Lucille; Valence, Florence; Pawtowski, Audrey; Auhustsinava-Galerne, Lizaveta; Frotté, Nicolas; Baroncelli, Riccardo; Deniel, Franck; Coton, Emmanuel; Mounier, Jérôme

    2017-01-16

    Yeasts and molds are responsible for dairy product spoilage, resulting in significant food waste and economic losses. Yet, few studies have investigated the diversity of spoilage fungi encountered in dairy products. In the present study, 175 isolates corresponding to 105 from various spoiled dairy products and 70 originating from dairy production environments, were identified using sequencing of the ITS region, the partial β-tubulin, calmodulin and/or EFα genes, and the D1-D2 domain of the 26S rRNA gene for filamentous fungi and yeasts, respectively. Among the 41 species found in spoiled products, Penicillium commune and Penicillium bialowiezense were the most common filamentous fungi, representing around 10% each of total isolates while Meyerozyma guilliermondii and Trichosporon asahii were the most common yeasts (4.8% each of total isolates). Several species (e.g. Penicillium antarcticum, Penicillium salamii and Cladosporium phyllophilum) were identified for the first time in dairy products or their environment. In addition, numerous species were identified in both spoiled products and their corresponding dairy production environment suggesting that the latter acts as a primary source of contamination. Secondly, the resistance to chemical preservatives (sodium benzoate, calcium propionate, potassium sorbate and natamycin) of 10 fungal isolates representative of the observed biodiversity was also evaluated. Independently of the fungal species, natamycin had the lowest minimum inhibitory concentration (expressed in gram of preservative/l), followed by potassium sorbate, sodium benzoate and calcium propionate. In the tested conditions, Cladosporium halotolerans and Didymella pinodella were the most sensitive fungi while Yarrowia lipolytica and Candida parapsilosis were the most resistant towards the tested preservatives. This study provides interesting information on the occurrence of fungal contaminants in dairy products and environments that may help developing

  5. Transfer of genetic material between pathogenic and food-borne yeasts

    DEFF Research Database (Denmark)

    Mentel, M.; Spirek, M.; Jorck-Ramberg, D.

    2006-01-01

    Many pathogenic yeast species are asexual and therefore not involved in intra- or interspecies mating. However, high-frequency transfer of plasmid DNA was observed when pathogenic and food-borne yeasts were grown together. This property could play a crucial role in the spread of virulence and drug...... resistance factors among yeasts....

  6. Microbiological Spoilage of Meat and Poultry Products

    Science.gov (United States)

    Cerveny, John; Meyer, Joseph D.; Hall, Paul A.

    Humankind has consumed animal protein since the dawn of its existence. The archaeological record shows evidence of animal protein consumption as early as 12,500 BC (Mann, 2005). Raw meat and poultry are highly perishable commodities subject to various types of spoilage depending on handling and storage conditions. Because of this high potential for spoilage, the historical record reveals that early civilizations used techniques such as salting, smoking, and drying to preserve meat (Mack, 2001; Bailey, 1986). Today, more than ever, because of the globalization of the food supply, and increasing demands from exacting consumers, the control of meat and poultry spoilage is essential.

  7. Spoilage Science

    Science.gov (United States)

    Science and Children, 2005

    2005-01-01

    Have you ever tucked away a piece of fruit for later and returned to find it past its prime? Or found some leftovers that had outlived their welcome in the refrigerator? Whether it's fresh or processed, all food eventually spoils. Methods such as freezing, canning, and the use of preservatives lengthen the lifespan of foods, and we--and the modern…

  8. Development and validation of a colorimetric sensor array for fish spoilage monitoring

    DEFF Research Database (Denmark)

    Morsy, Mohamed K.; Zor, Kinga; Kostesha, Natalie;

    2016-01-01

    Given the need for non-destructive methods and sensors for food spoilage monitoring, we have evaluated sixteen chemo-sensitive compounds incorporated in an array for colorimetric detection of typical spoilage compounds (trimethylamine, dimethylamine, cadaverine, putrescine) and characterized...

  9. Quantitative assessment of the risk of microbial spoilage in foods. Prediction of non-stability at 55 °C caused by Geobacillus stearothermophilus in canned green beans.

    Science.gov (United States)

    Rigaux, Clémence; André, Stéphane; Albert, Isabelle; Carlin, Frédéric

    2014-02-03

    Microbial spoilage of canned foods by thermophilic and highly heat-resistant spore-forming bacteria, such as Geobacillus stearothermophilus, is a persistent problem in the food industry. An incubation test at 55 °C for 7 days, then validation of biological stability, is used as an indicator of compliance with good manufacturing practices. We propose a microbial risk assessment model predicting the percentage of non-stability due to G. stearothermophilus in canned green beans manufactured by a French company. The model accounts for initial microbial contaminations of fresh unprocessed green beans with G. stearothermophilus, cross-contaminations in the processing chain, inactivation processes and probability of survival and growth. The sterilization process is modeled by an equivalent heating time depending on sterilization value F₀ and on G. stearothermophilus resistance parameter z(T). Following the recommendations of international organizations, second order Monte-Carlo simulations are used, separately propagating uncertainty and variability on parameters. As a result of the model, the mean predicted non-stability rate is of 0.5%, with a 95% uncertainty interval of [0.1%; 1.2%], which is highly similar to data communicated by the French industry. A sensitivity analysis based on Sobol indices and some scenario tests underline the importance of cross-contamination at the blanching step, in addition to inactivation due to the sterilization process.

  10. Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health

    Directory of Open Access Journals (Sweden)

    Saloomeh Moslehi-Jenabian

    2010-04-01

    Full Text Available Besides being important in the fermentation of foods and beverages, yeasts have shown numerous beneficial effects on human health. Among these, probiotic effects are the most well known health effects including prevention and treatment of intestinal diseases and immunomodulatory effects. Other beneficial functions of yeasts are improvement of bioavailability of minerals through the hydrolysis of phytate, folate biofortification and detoxification of mycotoxins due to surface binding to the yeast cell wall.

  11. Beneficial effects of probiotic and food borne yeasts on human health

    DEFF Research Database (Denmark)

    Moslehi Jenabian, Saloomeh; Pedersen, Line Lindegaard; Jespersen, Lene

    2010-01-01

    Besides being important in the fermentation of foods and beverages, yeasts have shown numerous beneficial effects on human health. Among these, propiotic effects are the most well known health effects including prevention and treatment of intestinal diseases and immunomodulatory effects. Other be...... beneficial functions of yeasts are improvement of bioavailability of minerals through the hydrolysis of phytate, folate biofortification and detoxification of mycotoxins due to surface binding to the yeast cell wall....

  12. Mapping the structural requirements of inducers and substrates for decarboxylation of weak acid preservatives by the food spoilage mould Aspergillus niger.

    Science.gov (United States)

    Stratford, Malcolm; Plumridge, Andrew; Pleasants, Mike W; Novodvorska, Michaela; Baker-Glenn, Charles A G; Pattenden, Gerald; Archer, David B

    2012-07-16

    Moulds are able to cause spoilage in preserved foods through degradation of the preservatives using the Pad-decarboxylation system. This causes, for example, decarboxylation of the preservative sorbic acid to 1,3-pentadiene, a volatile compound with a kerosene-like odour. Neither the natural role of this system nor the range of potential substrates has yet been reported. The Pad-decarboxylation system, encoded by a gene cluster in germinating spores of the mould Aspergillus niger, involves activity by two decarboxylases, PadA1 and OhbA1, and a regulator, SdrA, acting pleiotropically on sorbic acid and cinnamic acid. The structural features of compounds important for the induction of Pad-decarboxylation at both transcriptional and functionality levels were investigated by rtPCR and GCMS. Sorbic and cinnamic acids served as transcriptional inducers but ferulic, coumaric and hexanoic acids did not. 2,3,4,5,6-Pentafluorocinnamic acid was a substrate for the enzyme but had no inducer function; it was used to distinguish induction and competence for decarboxylation in combination with the analogue chemicals. The structural requirements for the substrates of the Pad-decarboxylation system were probed using a variety of sorbic and cinnamic acid analogues. High decarboxylation activity, ~100% conversion of 1mM substrates, required a mono-carboxylic acid with an alkenyl double bond in the trans (E)-configuration at position C2, further unsaturation at C4, and an overall molecular length between 6.5Å and 9Å. Polar groups on the phenyl ring of cinnamic acid abolished activity (no conversion). Furthermore, several compounds were shown to block Pad-decarboxylation. These compounds, primarily aldehyde analogues of active substrates, may serve to reduce food spoilage by moulds such as A. niger. The possible ecological role of Pad-decarboxylation of spore self-inhibitors is unlikely and the most probable role for Pad-decarboxylation is to remove cinnamic acid-type inhibitors from

  13. Fish Spoilage Mechanisms and Preservation Techniques: Review

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2010-01-01

    Full Text Available Problem statement: Spoilage of food products is due to chemical, enzymatic or microbial activities One-fourth of the worlds food supply and 30% of landed fish are lost through microbial activity alone. With the ever growing world population and the need to store and transport the food from one place to another where it is needed, food preservation becomes necessary in order to increase its shelf life and maintain its nutritional value, texture and flavor. The freshness and quality of fish have always gained the attention by Food Regulatory Agencies and Food Processing Industry. Proper handling, pretreatment and preservation techniques can improve the quality fish and fish products and increase their shelf life. Methodology: Historically salting, drying, smoking, fermentation and canning were the methods to prevent fish spoilage and extend its shelf life. In response to consumer demand for texture, appearance and taste, new methods were developed including: Cooling, freezing and chemical preservation. A comprehensive review of the literature on the subject of fish spoilage and modern preservation techniques was carried out. Conclusion: Fish spoilage results from three basic mechanisms: Enzymatic autolysis, oxidation, microbial growth. Low temperature storage and chemical techniques for controlling water activity, enzymatic, oxidative and microbial spoilage are the most common in the industry today. A process involving the addition of an EDTA (1 mM-TBHQ (0.02% combination and ascorbic acid and storage at refrigerated temperatures (5°C in darkness can be the most positive for controlling the spoilage of fish and fish product. The suggested process would address antimicrobial activity as well as destructive oxidation of the desired lipids and fats. However, more efforts are required to understand the role of proximate composition of fish, post harvest history, environmental conditions, initial microbial load, type and nature of bacteria and their

  14. Transfer of genetic material between pathogenic and food-borne yeasts

    DEFF Research Database (Denmark)

    Mentel, M.; Spirek, M.; Jorck-Ramberg, D.

    2006-01-01

    Many pathogenic yeast species are asexual and therefore not involved in intra- or interspecies mating. However, high-frequency transfer of plasmid DNA was observed when pathogenic and food-borne yeasts were grown together. This property could play a crucial role in the spread of virulence and drug...

  15. Fish Spoilage Mechanisms and Preservation Techniques: Review

    OpenAIRE

    Abdel E. Ghaly; Dave, D; Budge, S; M. S. Brooks

    2010-01-01

    Problem statement: Spoilage of food products is due to chemical, enzymatic or microbial activities One-fourth of the worlds food supply and 30% of landed fish are lost through microbial activity alone. With the ever growing world population and the need to store and transport the food from one place to another where it is needed, food preservation becomes necessary in order to increase its shelf life and maintain its nutritional value, texture and flavor. The freshness and quality of fish hav...

  16. Evaluation of antimicrobial activity from native wine yeast against food industry pathogenic microorganisms

    National Research Council Canada - National Science Library

    Acuña-Fontecilla, Andrea; Silva-Moreno, Evelyn; Ganga, María Angélica; Godoy, Liliana

    2017-01-01

    ...) that work against pathogenic bacteria of food importance. We evaluated the antimicrobial capacity of 103 yeast against Salmonella typhimurium, Listeria monocytogenes, and Escherichia coli, by measuring the growth inhibition...

  17. Microbiological Spoilage of Spices, Nuts, Cocoa, and Coffee

    Science.gov (United States)

    Pinkas, Joan M.; Battista, Karen; Morille-Hinds, Theodora

    Spices, nuts, cocoa, and coffee are raw materials that may be used alone or as ingredients in the manufacture of processed food products. The control of microbiological spoilage of these raw materials at the ingredient stage will enable the food processor to better assure the production of high-quality foods with an acceptable shelf life. While this chapter is limited to four materials, many of the spoilage control procedures recommended can also be applied to other raw materials of a similar nature.

  18. Immuno-assay techniques for detecting yeasts in foods.

    Science.gov (United States)

    Middelhoven, W J; Notermans, S

    1993-06-25

    A brief literature review on immuno-assay of yeast cell wall antigens is given. Special attention is paid to extracellular, thermostable yeast antigens (EPS), which are released to the growth medium by many yeast species. The EPS of Saccharomyces cerevisiae and of Stephanoascus ciferrii (syn. Candida ciferrii) could be specifically and sensitively detected by a sandwich ELISA, using an IgG raised in rabbits immunized with the EPS of these yeasts. The EPS ELISA of three basidiomycetous yeasts tested was not specific, that of Geotrichum candidum was genus-specific but was not sensitive. The EPS of Zygosaccharomyces bailii could be detected in a highly specific competitive ELISA but not in a sandwich ELISA or in a latex agglutination test.

  19. Meat spoilage during distribution.

    Science.gov (United States)

    Nychas, George-John E; Skandamis, Panos N; Tassou, Chrysoula C; Koutsoumanis, Konstantinos P

    2008-01-01

    Meat spoilage during distribution can be considered as an ecological phenomenon that encompasses the changes of the available substrata (e.g., low molecular compounds), during the prevailing of a particular microbial association, the so-called specific spoilage organisms (SSO). In fact, spoilage of meat depends on an even smaller fraction of SSO, called ephemeral spoilage organisms (ESO). These ESO are the consequence of factors that dynamically persist or imposed during, e.g., processing, transportation and storage in the market. Meanwhile spoilage is a subjective judgment by the consumer, which may be influenced by cultural and economic considerations and background as well as by the sensory acuity of the individual and the intensity of the change. Indeed, when spoilage progresses, most consumers would agree that gross discoloration, strong off-odors, and the development of slime would constitute the main qualitative criteria for meat rejection. On the other hand, meat industry needs rapid analytical methods or tools for quantification of these indicators to determine the type of processing needed for their raw material and to predict remaining shelf life of their products. The need of an objective evaluation of meat spoilage is of great importance. The use of metabolomics as a potential tool for the evaluation of meat spoilage can be of great importance. The microbial association of meat should be monitored in parallel with the estimation of changes occurring in the production and/or assimilation of certain compounds would allow us to evaluate spoilage found or produced during the storage of meat under different temperatures as well as packaging conditions.

  20. Draft genome sequence and transcriptome analysis of the wine spoilage yeast Dekkera bruxellensis LAMAP2480 provides insights into genetic diversity, metabolism and survival.

    Science.gov (United States)

    Valdes, Jorge; Tapia, Paz; Cepeda, Victoria; Varela, Javier; Godoy, Liliana; Cubillos, Francisco A; Silva, Evelyn; Martinez, Claudio; Ganga, Maria Angélica

    2014-12-01

    Dekkera bruxellensis is the major contaminant yeast in the wine industry worldwide. Here, we present the draft genome sequence of D. bruxellensis LAMAP2480 isolated from a Chilean wine. Genomic evidence reveals shared and exclusive genes potentially involved in colonization and survival during alcoholic fermentation.

  1. Development of an enrichment medium to detect Dekkera/Brettanomyces bruxellensis, a spoilage wine yeast, on the surface of grape berries.

    Science.gov (United States)

    Renouf, Vincent; Lonvaud-Funel, Aline

    2007-01-01

    Brettanomyces bruxellensis spoilage is a serious problem for the wine industry. Mainly, by producing 4-ethylphenol and 4-ethylguaiacol, it confers off-odors to the wine and changes its aromatic quality. The presence of B. bruxellensis cells on the berry was speculated but it had never been clearly demonstrated. On grape berries, the microbial ecosystem is highly diverse and the population of B. bruxellensis can be very small. The aim of our study was to reveal and confirm the presence of B. bruxellensis on the surface of grape berries. We developed an enrichment medium for B. bruxellensis in order to overcome the detection limit of the molecular methods (species-specific PCR, ITS-RFLP PCR, PCR-DGGE). This medium, named EBB medium, made it possible to detect B. bruxellensis after 10 days of culture. For the first time, the presence of B. bruxellensis has been clearly established in several vineyards and at different stages of the grape development after the veraison. This work led to the conclusion that the grape berry is the primary source of B. bruxellensis. Grape growers and winemakers should take these results into account when deciding on the treatment to apply in the vineyards and the must. With the information provided here, B. bruxellensis prevention could start in the vineyard.

  2. 酸奶中污染酵母菌和霉菌的分离及鉴定%The isolation and identification of yeast and molds from the spoilage yogurts

    Institute of Scientific and Technical Information of China (English)

    赵泰霞; 孟祥晨; 张巧云

    2012-01-01

    以室温放置直至变质的市售酸奶为样品,从中分离出2株酵母菌和4株霉菌,分别命名为Y1、Y2、M1、M2、M3、M4。酵母菌采用形态学和26SrDNA D1/D2区序列分析鉴定,确定Y1为乳酸克鲁维酵母(Kluyveromyces lactis),Y2为马克思克鲁维酵母(Kluyveromyces marxianus)。霉菌经茵落及菌体形态学鉴定,确定M1、M2、M4为青霉(Penicillum),M3为白地霉(Geotrichum candidum)。%Two yeast strains ( marked Y1, Y2) and 4 molds strains ( marked M1, M2, M3, M4) were isolated from spoilage yogurts which were purchased from local market. The yeast strains were identified by observing its morphology and 26S rDNA D1/D2 region sequence analysis,the results showed that Y1 was Kluyveromyces lactis, Y2 was Kluyveromyces marxianus.The molds strains were identified by colony and cell morphology,and M1, M2, M4.were Penicillum,M3 was Geotrichum candidum.

  3. Microbiological Spoilage of High-Sugar Products

    Science.gov (United States)

    Thompson, Sterling

    The high-sugar products discussed in this chapter are referred to as chocolate, sugar confectionery (non-chocolate), liquid sugars, sugar syrups, and honey. Products grouped in the sugar confectionery category include hard candy, soft/gummy candy, caramel, toffee, licorice, marzipan, creams, jellies, and nougats. A common intrinsic parameter associated with high-sugar products is their low water activity (a w), which is known to inhibit the growth of most spoilage and pathogenic bacteria. However, spoilage can occur as a result of the growth of osmophilic yeasts and xerophilic molds (Von Richter, 1912; Anand & Brown, 1968; Brown, 1976). The a w range for high-sugar products is between 0.20 and 0.80 (Banwart, 1979; Richardson, 1987; Lenovich & Konkel, 1992; ICMSF, 1998; Jay, Loessner, & Golden, 2005). Spoilage of products, such as chocolate-covered cherries, results from the presence of yeasts in the liquid sugar brine or the cherry. Generally, the spoiled product will develop leakers. The chocolate covering the cherry would not likely be a source of yeast contamination.

  4. Bioprotective Role of Yeasts

    Directory of Open Access Journals (Sweden)

    Serena Muccilli

    2015-10-01

    Full Text Available The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance.

  5. Random amplified polymorphic DNA and restriction enzyme analysis of PCR amplified rDNA in taxonomy: Two identification techniques for food-borne yeasts

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Vogels, J.T.W.E.; Hofstra, H.; Veld, J.H.J. Huis in't; Vossen, J.M.B.M. van der

    1995-01-01

    The random amplified polymorphic DNA (RAPD) assay and the restriction enzyme analysis of PCR amplified rDNA are compared for the identification of the common spoilage yeasts Zygosaccharomyces bailii, Z. rouxii, Saccharomyces cerevisiae, Candida valida and C. lipolytica. Both techniques proved to be

  6. Identification of meat spoilage gene biomarkers in Pseudomonas putida using gene profiling

    OpenAIRE

    Mohareb, Fady R; Iriondo, Maite; Doulgeraki, Agapi I.; Van Hoek, Angela; Aarts, Henk; Cauchi, Michael; Nychas, George-John E.

    2015-01-01

    While current food science research mainly focuses on microbial changes in food products that lead to foodborne illnesses, meat spoilage remains as an unsolved problem for the meat industry. This can result in important economic losses, food waste and loss of consumer confidence in the meat market. Gram-negative bacteria involved in meat spoilage are aerobes or facultative anaerobes. These represent the group with the greatest meat spoilage potential, where Pseudomonas tend to dominate the mi...

  7. Identification of meat spoilage gene biomarkers in Pseudomonas putida using gene profiling

    OpenAIRE

    Mohareb, Fady R.; Iriondo, Maite; Doulgeraki, Agapi I.; Hoek, Angela van; Aarts, Henk; Cauchi, Michael; Nychas, George-John E.

    2015-01-01

    While current food science research mainly focuses on microbial changes in food products that lead to foodborne illnesses, meat spoilage remains as an unsolved problem for the meat industry. This can result in important economic losses, food waste and loss of consumer confidence in the meat market. Gram-negative bacteria involved in meat spoilage are aerobes or facultative anaerobes. These represent the group with the greatest meat spoilage potential, where Pseudomonas tend to dominate the mi...

  8. 18 Evaluation of Microbial Spoilage of Some Aquacultured Fresh ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    sp., and four fungi species namely; Aspergillis niger, Geotrichum sp., Rhizopus sp. and ... pathogens in the fresh fish samples could pose a potential public health threat especially to consumers. It is ..... the spoilage of certain sea foods. Journal ...

  9. The Potential of the Yeast Debaryomyces hansenii H525 to Degrade Biogenic Amines in Food

    Directory of Open Access Journals (Sweden)

    Mathias Bäumlisberger

    2015-11-01

    Full Text Available Twenty-six yeasts from different genera were investigated for their ability to metabolize biogenic amines. About half of the yeast strains produced one or more different biogenic amines, but some strains of Debaryomyces hansenii and Yarrowia lipolytica were also able to degrade such compounds. The most effective strain D. hanseniii H525 metabolized a broad spectrum of biogenic amines by growing and resting cells. Degradation of biogenic amines by this yeast isolate could be attributed to a peroxisomal amine oxidase activity. Strain H525 may be useful as a starter culture to reduce biogenic amines in fermented food.

  10. Detection of Food Spoilage and Pathogenic Bacteria Based on Ligation Detection Reaction Coupled to Flow-Through Hybridization on Membranes

    Directory of Open Access Journals (Sweden)

    K. Böhme

    2014-01-01

    Full Text Available Traditional culturing methods are still commonly applied for bacterial identification in the food control sector, despite being time and labor intensive. Microarray technologies represent an interesting alternative. However, they require higher costs and technical expertise, making them still inappropriate for microbial routine analysis. The present study describes the development of an efficient method for bacterial identification based on flow-through reverse dot-blot (FT-RDB hybridization on membranes, coupled to the high specific ligation detection reaction (LDR. First, the methodology was optimized by testing different types of ligase enzymes, labeling, and membranes. Furthermore, specific oligonucleotide probes were designed based on the 16S rRNA gene, using the bioinformatic tool Oligonucleotide Retrieving for Molecular Applications (ORMA. Four probes were selected and synthesized, being specific for Aeromonas spp., Pseudomonas spp., Shewanella spp., and Morganella morganii, respectively. For the validation of the probes, 16 reference strains from type culture collections were tested by LDR and FT-RDB hybridization using universal arrays spotted onto membranes. In conclusion, the described methodology could be applied for the rapid, accurate, and cost-effective identification of bacterial species, exhibiting special relevance in food safety and quality.

  11. Detection of Food Spoilage and Pathogenic Bacteria Based on Ligation Detection Reaction Coupled to Flow-Through Hybridization on Membranes

    Science.gov (United States)

    Böhme, K.; Cremonesi, P.; Severgnini, M.; Villa, Tomás G.; Fernández-No, I. C.; Barros-Velázquez, J.; Castiglioni, B.; Calo-Mata, P.

    2014-01-01

    Traditional culturing methods are still commonly applied for bacterial identification in the food control sector, despite being time and labor intensive. Microarray technologies represent an interesting alternative. However, they require higher costs and technical expertise, making them still inappropriate for microbial routine analysis. The present study describes the development of an efficient method for bacterial identification based on flow-through reverse dot-blot (FT-RDB) hybridization on membranes, coupled to the high specific ligation detection reaction (LDR). First, the methodology was optimized by testing different types of ligase enzymes, labeling, and membranes. Furthermore, specific oligonucleotide probes were designed based on the 16S rRNA gene, using the bioinformatic tool Oligonucleotide Retrieving for Molecular Applications (ORMA). Four probes were selected and synthesized, being specific for Aeromonas spp., Pseudomonas spp., Shewanella spp., and Morganella morganii, respectively. For the validation of the probes, 16 reference strains from type culture collections were tested by LDR and FT-RDB hybridization using universal arrays spotted onto membranes. In conclusion, the described methodology could be applied for the rapid, accurate, and cost-effective identification of bacterial species, exhibiting special relevance in food safety and quality. PMID:24818128

  12. EFFECT OF ELECTROMAGNETIC FIELD ON THE SPOILAGE FUNGI OF SOME SELECTED EDIBLE FRUITS IN SOUTHWESTERN, NIGERIA

    Directory of Open Access Journals (Sweden)

    Bamidele J. Akinyele

    2012-10-01

    Full Text Available The influence of electromagnetic field wave on the survival of spoilage fungi associated with some edible fruits consumed in southwestern, Nigeria was studied using cashew (Anacardium occidentale L., pineapple (Ananas comosus, carrot (Daucus carota, cucumber (Cucumis sativus, apple (Malus domestica and African star apple (Chrysophyllum africanum. The spoilage fungi used include the genera of Aspergillus, Penicillium, Articulospora, Mucor, Staphylotrichum, Bisbyopeltis, Fusarium, Rhizopus and a yeast, Saccharomyces cerevisiae. There was a general decrease in fungal growth as shown in the number of spores produced with increase in exposure time of isolates to electromagnetic field except in Articulospora inflata, Penicillium italicum and Mucor mucedo where there was stimulatory effect as there was increase in the fungal spores compared to the control. A decrease was also observed in growth of the fungal isolates with increase in the intensity of the electromagnetic field at voltage of 7 V to 10 V and from 10 V to 13 V. The highest percentage reduction was recorded by Bisbyopeltis phoebesii at intensity of voltage 13V after 60 minutes of exposure. Exposure of the fruits to electromagnetic field wave did not alter the nutrient components of the fruits as observed in the proximate and mineral contents of the treated and untreated fruits. The result of the study revealed that electromagnetic field wave has great potential for use in the control of fruits spoilage and food preservation.

  13. Whey – an optional raw material for food yeast production

    Directory of Open Access Journals (Sweden)

    Damir Stanzer

    2002-04-01

    Full Text Available The influence of the lactose content in the medium and of the air flow rate on the biomass yield of the yeast Kluyveromyces marxianus on whey substrate was investigated. For this purpose, batch processes were conducted in a laboratory bioreactor (2L with the yeast Kluyveromyces marxianus ZIM75 in media with different contents of lactose and at different air flow rates. The higest biomass yield (5,9 g d.m./L was achieved at the highest air flow rate (1,5 L/L min in the medium with 10% of lactose. The specific growth rate increased with increased air flow rate, and the highest specific growth rate of 0,1060 h-1 was achieved at the highest air flow rate in the medium with 5% of lactose. However, the best conversion of lactose carbon to biomass (0,104 g/g was achieved in the medium with 5% of lactose.

  14. Validation of the NeoFilm for Yeast and Mold Method for Enumeration of Yeasts and Molds in Select Foods.

    Science.gov (United States)

    Caballero, Oscar; Alles, Susan; Le, Quynh-Nhi; Mozola, Mark; Rice, Jennifer

    2015-01-01

    NeoFilm Yeast and Mold (Y&M), also known as Sanita-kun Yeasts and Molds, is a simple, effective device used for the enumeration of yeasts and molds. It consists of a nonwoven fabric on which a layer of microbial nutrients is deposited in a film. A 1 mL sample homogenate is applied to the membrane and this, in turn, is incubated for 48-72 h at 25°C. Sample homogenates were prepared using two different diluents for customer convenience: phosphate buffered saline (PBS) and 0.1% peptone water. In comparative testing of breaded chicken nuggets, dry pet food, orange juice concentrate, yogurt, and cake mix, there were statistically significant differences in the counts obtained by the NeoFilm Y&M and U.S. Food and Drug Administration Bacteriological Analytical Manual reference culture methods only in the following instances: medium level for orange juice with PBS as diluent and low level for pet food with 0.1% peptone water as diluent, where reference method counts were higher than those of NeoFilm; medium level for cake mix with PBS, and low and medium levels for cake mix with 0.1% peptone water, where NeoFilm produced higher counts than the reference method. In addition to the method comparison study with five matrixes, robustness and stability/lot-to-lot testing were also performed. Results of robustness testing showed no significant effect on results even with perturbation to three assay parameters simultaneously. Results of testing of three lots of devices ranging in age from 2 to 26 months post-manufacture showed no significant differences in performance.

  15. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties

    OpenAIRE

    Piskur, Jure

    2012-01-01

    The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses in wine industry due to production of phenolic off-flavor compounds. D. bruxellensis is a distant relative of baker's yeast Saccharomyces cerevisiae. Nevertheless, these two yeasts are often found in the same habitats and share several food-related traits, such as production of high ethanol levels and ability to grow without oxygen. In some food products, like lambic beer, D. bruxellensis can importantly contribut...

  16. Advances in the control of wine spoilage by Zygosaccharomyces and Dekkera/Brettanomyces.

    Science.gov (United States)

    Zuehlke, J M; Petrova, B; Edwards, C G

    2013-01-01

    Understanding the characteristics of yeast spoilage, as well as the available control technologies, is vital to producing consistent, high-quality wine. Zygosaccharomyces bailii contamination may result in refermentation and CO2 production in sweet wines or grape juice concentrate, whereas Brettanomyces bruxellensis spoilage often contributes off-odors and flavors to red wines. Early detection of these yeasts by selective/differential media or genetic methods is important to minimize potential spoilage. More established methods of microbial control include sulfur dioxide, dimethyl dicarbonate, and filtration. Current research is focused on the use of chitosan, pulsed electric fields, low electric current, and ultrasonics as means to protect wine quality.

  17. Evaluation of the Biolog system for the identification of food and beverage yeasts.

    Science.gov (United States)

    Praphailong, W; Van Gestel, M; Fleet, G H; Heard, G M

    1997-06-01

    The inconvenience of conventional yeast identification methods has resulted in the development of rapid, commercial systems, mainly for clinical yeast species. The Biolog system (Biolog Inc., Hayward, CA, USA) is a new semi-automated, computer-linked technology for rapid identification of clinical and non-clinical yeasts. The system is based around a microtitre tray and includes assimilation and oxidation tests. This paper evaluates the Biolog system for the identification of 21 species (72 strains) of yeasts of food and wine origin. Species correctly identified included Saccharomyces cerevisiae, Debaryomyces hansenii, Yarrowia lipolytica, Kluyveromyces marxianus, Kloeckera apiculata, Dekkera bruxellensis and Schizosaccharomyces pombe. Zygosaccharomyces bailii and Zygosaccharomyces rouxii were identified correctly 50% of the time and Pichia membranaefaciens 20% of the time.

  18. Functional genomics for food microbiology: Molecular mechanisms of weak organic acid preservative adaptation in yeast

    NARCIS (Netherlands)

    S. Brul; W. Kallemeijn; G. Smits

    2008-01-01

    The recent era of genomics has offered tremendous possibilities to biology. This concise review describes the possibilities of applying (functional) genomics studies to the field of microbial food stability. In doing so, the studies on weak-organic-acid stress response in yeast are discussed by way

  19. Research progress of the key regulation mechanism of quorum sensing on food spoilage%食品腐败的关键调控机制之群体感应的研究进展

    Institute of Scientific and Technical Information of China (English)

    朱素芹; 张彩丽; 孙秀娇; 潘玉荣; 揭金鑫; 曾名湧

    2016-01-01

    群体感应是细菌之间的一种细胞密度依赖型信息交流机制,越来越多的研究证明,细菌群体感应与食品腐败变质过程之间存在复杂而紧密的联系,有望成为食品保鲜技术领域中一个极具应用前景的新靶点。本文概述了微生物群体感应、群体感应对食品腐败变质的影响和群体感应抑制剂3个方面的研究进展,重点介绍了食源细菌的群体感应研究进展和群体感应对食品(水产品、肉及肉制品、乳及乳制品和果蔬)腐败变质的影响,旨在为新型食品保鲜技术的开发提供理论指导。%Quorum sensing (QS) is a cell-to-cell communication mechanism used by bacteria to regulate their collective behaviors in a cell density-dependent manner. In recent years, an increasing number of empirical evidences had demonstrated that there was a complex and close relationship between food spoilage and bacterial QS. QS has received much attention as a novel target for food preservation recently which has great applied prospects. This article reviewed some progresses in QS, the effects of QS on food spoilage and QS inhibitor, and the research progress of QS in bacteria isolated from food and the effects of QS on food (such as aquatic products, meat and meat products, milk and milk products, fruits and vegetables) spoilage were emphatically introduced. The aim of present paper is to provide theoretical guidance for the development of new food preservation technology.

  20. The wine and beer yeast Dekkera bruxellensis

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  1. The wine and beer yeast Dekkera bruxellensis.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  2. Antimicrobial Activities of Maize Silk Extracts against Food Spoilage and Food-borne Pathogens%玉米须提取物对食品腐败菌及致病菌抑制作用的研究

    Institute of Scientific and Technical Information of China (English)

    纪丽莲; 谭仁祥

    2001-01-01

    Antimicrobial activities of maize (Zea mays. L.) silks extracted with organic solvents were tested against seven food spoilage and food-borne pathogens for the first time.Ethanol (95%,v/v) extracts were ascertained to be the optimum by permitting the maximum yield and the highest antimicrobial activity.The MICs (minimum inhibition concentrations,in g/100g) of maize silk extracts were determined as 1.5 against Escherichia coli,3.0 against Staphylococcus aureus,3.0 against Pseudomonas fluorescens,1.5 against Salmonella typhimurium,2.0 against Bacillus subtilis,2.5 against Bacillus cereus,and 2.0 against Proteus vulgaris,respectively.Influences of food properties including mid-range pH values,storage temperature and time on the activities of the maize extracts were examined.The dependence of the activity on routine food sterilization conditions was measured as well.Therefore,the maize silk extracts could serve as potent,safe and effective food preservatives by means of controlling food properties and processing conditions.%首次以玉米须提取物对7种常见的食品腐败菌及致病菌进行抑菌试验,发现玉米须的乙醇提取物的效果最好,其最低抑菌浓度(MIC)为3.0 g/100g。此外,对食品加工条件(如杀菌方式等)及食品介质(如pH)对玉米须提取物抑菌活性的影响也作了研究。结果表明,玉米须提取物在常规食品杀菌条件(UHT)及中酸到酸性环境下抑菌活性稳定,因而可作为潜在的食品防腐剂。

  3. Genome and transcriptome analysis of the food-yeast Candida utilis.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Tomita

    Full Text Available The industrially important food-yeast Candida utilis is a Crabtree effect-negative yeast used to produce valuable chemicals and recombinant proteins. In the present study, we conducted whole genome sequencing and phylogenetic analysis of C. utilis, which showed that this yeast diverged long before the formation of the CUG and Saccharomyces/Kluyveromyces clades. In addition, we performed comparative genome and transcriptome analyses using next-generation sequencing, which resulted in the identification of genes important for characteristic phenotypes of C. utilis such as those involved in nitrate assimilation, in addition to the gene encoding the functional hexose transporter. We also found that an antisense transcript of the alcohol dehydrogenase gene, which in silico analysis did not predict to be a functional gene, was transcribed in the stationary-phase, suggesting a novel system of repression of ethanol production. These findings should facilitate the development of more sophisticated systems for the production of useful reagents using C. utilis.

  4. Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products.

    Science.gov (United States)

    Ogunremi, O R; Sanni, A I; Agrawal, R

    2015-09-01

    To determine the starter culture and multifunctional potentials of yeast strains from some cereal-based Nigerian traditional fermented food products. Yeast isolates were screened for enzyme production and identified by sequencing the D1/D2 region of 26S rDNA. Pichia kluyveri LKC17, Issatchenkia orientalis OSL11, Pichia kudriavzevii OG32, Pichia kudriavzevii ROM11 and Candida tropicalis BOM21 exhibited the highest protease, lipase and phytase activity. They were selected and further evaluated for gastrointestinal survival and adherence ability. Although strain-specific, they retained viability at 37°C and showed survival at pH 2·0., I. orientalis OSL11 showed the highest survival at 2% bile salts concentration and P. kudriavzevii ROM11 showed the least survival. The yeast strains showed strong autoaggregation ability (81·24-91·85%) and hydrophobicity to n-hexadecane (33·61-42·30%). The highest co-aggregation ability was detected for P. kudriavzevii OG32 and Escherichia coli (71·57%). All the yeast strains removed cholesterol in the range of 49·03-74·05% over 48 h and scavenged for free radicals in methanol reaction system. In this study, we isolated new yeast strains with multifunctional potentials that can be used as functional starter cultures to produce cereal-based probiotic products. The development of probiotic yeast strains as starter culture to improve the quality attributes and confer functional value on cereal-based traditional fermented foods is beneficial. © 2015 The Society for Applied Microbiology.

  5. Antimicrobial activity of yeasts against some pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Gamal Younis

    2017-08-01

    Full Text Available Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR for detection of khs (kievitone hydratase and pelA (pectate degrading enzyme genes. Results: The recovery rate of yeasts from sausage was 20% (2/10 followed by kareish cheese, processed cheese, and butter 10% (1/10 each as well as raw milk 9% (9/100, and fruit yoghurt 30% (6/20. Different yeast species were recovered, namely, Candida kefyr (5 isolates, Saccharomyces cerevisiae (4 isolates, Candida intermedia (3 isolates, Candida tropicalis (2 isolates, Candida lusitaniae (2 isolates, and Candida krusei (1 isolate. khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.

  6. Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model

    OpenAIRE

    Amparo Pascual-Ahuir; Elena Vanacloig-Pedros; Markus Proft

    2014-01-01

    Mycotoxins are important food contaminants and a serious threat for human nutrition. However, in many cases the mechanisms of toxicity for this diverse group of metabolites are poorly understood. Here we apply live cell gene expression reporters in yeast as a quantitative model to unravel the cellular defense mechanisms in response to the mycotoxin citrinin. We find that citrinin triggers a fast and dose dependent activation of stress responsive promoters such as GRE2 or SOD2. More specifical...

  7. High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation

    NARCIS (Netherlands)

    Gamero, Amparo; Quintilla, Raquel; Groenewald, Marizeth; Alkema, Wynand; Boekhout, Teun; Hazelwood, Lucie

    2016-01-01

    Saccharomyces yeast species are currently the most important yeasts involved in industrial-scale food fermentations. However, there are hundreds of other yeast species poorly studied that are highly promising for flavour development, some of which have also been identified in traditional food fermen

  8. FUNCTIONAL PROPERTIES OF YEASTS ISOLATED FROM SOME NIGERIAN TRADITIONAL FERMENTED FOODS

    Directory of Open Access Journals (Sweden)

    Tolulope P. Alakeji

    2015-04-01

    Full Text Available Yeasts play important roles in confering some desirable qualities such as nutritional value in traditional fermented foods. This study was carried out to investigate the potentials of yeasts isolated from some Nigerian traditional fermented foods for functional characteristics such as growth at pH 2.5 and 2% bile salts concentration and ability to lower cholesterol in culture medium. A total of 40 yeast strains were isolated from burukutu, ogi and pito. They were characterized phenotypically. Fifteen strains were selected based on the ability to tolerate pH 2.5 and 2% bile salts and they were further identified using API 20C AUX (Biomerieux, France to be Debaryomyces hansenii (5, Candida krusei (4, Candida glabrata (2, Candida colliculosa (1, Pichia anomala (1, Pichia farinosa (1 and Pichia membranefaciens (1. At pH 2.5, C. glabrata SA2 showed the highest increase in viable cells count after 24h (6.31 log10 cfu ml-1 while the most sensitive strain was P. membranefaciens BA2 (0.70 log10 cfu ml-1. P. membranefaciens BA2 survived in 2% bile salts than other yeast strains, with viable cell increase of 0.84 log10 cfu ml-1 after 24 h while the least tolerance was observed for D. hansenii OA1 with an increase in viable cells of 7.76 log10 cfu ml-1. C. krusei OB1 exhibited the greatest reduction of cholesterol of 91.34% while the least reduction of 24.28% was observed for D. hansenii OA1 after 48h incubation. The yeast strains in this study demonstrated functional attributes which can be employed as dietary adjuncts for the development of non-dairy beverages with hypocholesterolemic attributes.

  9. Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matrices

    Directory of Open Access Journals (Sweden)

    Javiera F. Rubilar

    2013-04-01

    Full Text Available There is growing interest in the use of natural agents with antimicrobial (AM and antioxidant (AOX properties. Optimization of the AM capacity for mixtures containing carvacrol, grape seed extract (GSE and chitosan, against gram-negative (Pseudomonas aeruginosa, gram-positive bacteria (Staphylococcus aureus, Listeria innocua and Enterococcus faecalis and yeast (Saccharomyces cerevisiae at 106 cfu mL-1 was studied. To observe the synergistic or antagonistic effect and find optimal combinations between the three agents, a simplex centroid mixture design was run for each microorganism, combining carvacrol (0-300 ppm, X1, GSE (0-2000 ppm, X2 and chitosan (0-2% w/v, X3. Results of the response surface analysis showed several synergistic effects for all microorganisms. Combinations of 60 ppm-400 ppm-1.2% w/v (carvacrol-GSE-chitosan; optimal AM combination 1, OAMC-1; 9.6 ppm-684 ppm-1.25% w/v (OAMC-2; 90 ppm-160 ppm-1.24% w/v (OAMC-3 were found to be the optimal mixtures for all microorganisms. Radical scavenging activity (RSA of the same agents was then compared with a standard AOX (butylated hydroxytoluene; BHT at different concentrations (25, 50 and 100 ppm; as well as the optimal AM concentrations by the 1,1-diphenyl-2-picrylhydrazyl (DPPH method. RSA increased in the following order: chitosan< carvacrol< BHT< GSE and for the OAMC: OAMC-2< OAMC-1< OAMC-3. The best RSA (OAMC-3 was applied as a coating in two different food matrices (strawberries and salmon. For strawberries, P. aeruginosa was more sensitive to the action of OAMC-3 than S. cerevisiae. For salmon, S. aureus was more resistant to the action of OAMC-3 than E. faecalis and L. innocua.

  10. Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matrices

    Directory of Open Access Journals (Sweden)

    Javiera F. Rubilar

    2013-04-01

    Full Text Available There is growing interest in the use of natural agents with antimicrobial (AM and antioxidant (AOX properties. Optimization of the AM capacity for mixtures containing carvacrol, grape seed extract (GSE and chitosan, against gram-negative (Pseudomonas aeruginosa, gram-positive bacteria (Staphylococcus aureus, Listeria innocua and Enterococcus faecalis and yeast (Saccharomyces cerevisiae at 106 cfu mL-1 was studied. To observe the synergistic or antagonistic effect and find optimal combinations between the three agents, a simplex centroid mixture design was run for each microorganism, combining carvacrol (0-300 ppm, X1, GSE (0-2000 ppm, X2 and chitosan (0-2% w/v, X3. Results of the response surface analysis showed several synergistic effects for all microorganisms. Combinations of 60 ppm-400 ppm-1.2% w/v (carvacrol-GSE-chitosan; optimal AM combination 1, OAMC-1; 9.6 ppm-684 ppm-1.25% w/v (OAMC-2; 90 ppm-160 ppm-1.24% w/v (OAMC-3 were found to be the optimal mixtures for all microorganisms. Radical scavenging activity (RSA of the same agents was then compared with a standard AOX (butylated hydroxytoluene; BHT at different concentrations (25, 50 and 100 ppm; as well as the optimal AM concentrations by the 1,1-diphenyl-2-picrylhydrazyl (DPPH method. RSA increased in the following order: chitosan< carvacrol< BHT< GSE and for the OAMC: OAMC-2< OAMC-1< OAMC-3. The best RSA (OAMC-3 was applied as a coating in two different food matrices (strawberries and salmon. For strawberries, P. aeruginosa was more sensitive to the action of OAMC-3 than S. cerevisiae. For salmon, S. aureus was more resistant to the action of OAMC-3 than E. faecalis and L. innocua.

  11. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties.

    Science.gov (United States)

    Piškur, Jure; Ling, Zhihao; Marcet-Houben, Marina; Ishchuk, Olena P; Aerts, Andrea; LaButti, Kurt; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Compagno, Concetta; Bisson, Linda; Grigoriev, Igor V; Gabaldón, Toni; Phister, Trevor

    2012-07-02

    The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses in wine industry due to production of phenolic off-flavor compounds. D. bruxellensis is a distant relative of baker's yeast Saccharomyces cerevisiae. Nevertheless, these two yeasts are often found in the same habitats and share several food-related traits, such as production of high ethanol levels and ability to grow without oxygen. In some food products, like lambic beer, D. bruxellensis can importantly contribute to flavor development. We determined the 13.4 Mb genome sequence of the D. bruxellensis strain Y879 (CBS2499) and deduced the genetic background of several "food-relevant" properties and evolutionary history of this yeast. Surprisingly, we find that this yeast is phylogenetically distant to other food-related yeasts and most related to Pichia (Komagataella) pastoris, which is an aerobic poor ethanol producer. We further show that the D. bruxellensis genome does not contain an excess of lineage specific duplicated genes nor a horizontally transferred URA1 gene, two crucial events that promoted the evolution of the food relevant traits in the S. cerevisiae lineage. However, D. bruxellensis has several independently duplicated ADH and ADH-like genes, which are likely responsible for metabolism of alcohols, including ethanol, and also a range of aromatic compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties

    Energy Technology Data Exchange (ETDEWEB)

    Piskur, Jure; Ling, Zhihao; Marcet-Houben, Marina; Ishchuk, Olena P.; Aerts, Andrea; LaButti, Kurt; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Compagno, Concetta; Bisson, Linda; Grigoriev, Igor V.; Gabaldon, Toni; Phister, Trevor

    2012-03-14

    The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses in wine industry due to production of phenolic off-flavor compounds. D. bruxellensis is a distant relative of baker's yeast Saccharomyces cerevisiae. Nevertheless, these two yeasts are often found in the same habitats and share several food-related traits, such as production of high ethanol levels and ability to grow without oxygen. In some food products, like lambic beer, D. bruxellensis can importantly contribute to flavor development. We determined the 13.4 Mb genome sequence of the D. bruxellensis strain Y879 (CBS2499) and deduced the genetic background of several ?food-relevant? properties and evolutionary history of this yeast. Surprisingly, we find that this yeast is phylogenetically distant to other food-related yeasts and most related to Pichia (Komagataella) pastoris, which is an aerobic poor ethanol producer. We further show that the D. bruxellensis genome does not contain an excess of lineage specific duplicated genes nor a horizontally transferred URA1 gene, two crucial events that promoted the evolution of the food relevant traits in the S. cerevisiae lineage. However, D. bruxellensis has several independently duplicated ADH and ADH-like genes, which are likely responsible for metabolism of alcohols, including ethanol, and also a range of aromatic compounds.

  13. Validation of the Soleris direct yeast and mold method for semiquantitative determination of yeast and mold in a variety of foods.

    Science.gov (United States)

    Pereault, Marcelle; Alles, Susan; Caballero, Oscar; Sarver, Ron; McDougal, Susan; Mozola, Mark; Rice, Jennifer

    2014-01-01

    A study was carried out to determine the efficacy of the Soleris Direct Yeast and Mold (DYM) automated growth-based method for semiquantitative detection of yeast and mold in a variety of food products. A probability of detection (POD) statistical model was used to compare Soleris results at multiple test thresholds (dilutions) with plate counts determined using the U.S. Food and Drug Administration Bacteriological Analytical Manual, Chapter 18, dilution plating procedure. Fourteen naturally contaminated food products were tested, with Soleris testing performed at three or more threshold levels for each food. Using the POD model, the majority of Soleris test results were in statistical agreement with the reference plating procedures. The exceptions included a single threshold level in yogurt, black pepper, dried fruit, and dry pet food, and two levels in nonfat dry milk and saw palmetto powder. In all but one of these instances, the exception being pet food, the statistical disagreement was due to Soleris estimating a higher level of contamination than the reference method. Results of ruggedness testing showed that the Soleris method produced accurate results even when significant variances in a critical operating parameter, incubation temperature, were introduced. Results of the internal and independent laboratory validation studies showed that the Soleris DYM method can be used as an accurate alternative to conventional dilution plating procedures for evaluation of yeast and mold counts at threshold levels, while saving as much as 72 h in analysis time.

  14. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    Science.gov (United States)

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

  15. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    Science.gov (United States)

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  16. Toxicity mechanisms of the food contaminant citrinin: application of a quantitative yeast model.

    Science.gov (United States)

    Pascual-Ahuir, Amparo; Vanacloig-Pedros, Elena; Proft, Markus

    2014-05-22

    Mycotoxins are important food contaminants and a serious threat for human nutrition. However, in many cases the mechanisms of toxicity for this diverse group of metabolites are poorly understood. Here we apply live cell gene expression reporters in yeast as a quantitative model to unravel the cellular defense mechanisms in response to the mycotoxin citrinin. We find that citrinin triggers a fast and dose dependent activation of stress responsive promoters such as GRE2 or SOD2. More specifically, oxidative stress responsive pathways via the transcription factors Yap1 and Skn7 are critically implied in the response to citrinin. Additionally, genes in various multidrug resistance transport systems are functionally involved in the resistance to citrinin. Our study identifies the antioxidant defense as a major physiological response in the case of citrinin. In general, our results show that the use of live cell gene expression reporters in yeast are a powerful tool to identify toxicity targets and detoxification mechanisms of a broad range of food contaminants relevant for human nutrition.

  17. Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model

    Directory of Open Access Journals (Sweden)

    Amparo Pascual-Ahuir

    2014-05-01

    Full Text Available Mycotoxins are important food contaminants and a serious threat for human nutrition. However, in many cases the mechanisms of toxicity for this diverse group of metabolites are poorly understood. Here we apply live cell gene expression reporters in yeast as a quantitative model to unravel the cellular defense mechanisms in response to the mycotoxin citrinin. We find that citrinin triggers a fast and dose dependent activation of stress responsive promoters such as GRE2 or SOD2. More specifically, oxidative stress responsive pathways via the transcription factors Yap1 and Skn7 are critically implied in the response to citrinin. Additionally, genes in various multidrug resistance transport systems are functionally involved in the resistance to citrinin. Our study identifies the antioxidant defense as a major physiological response in the case of citrinin. In general, our results show that the use of live cell gene expression reporters in yeast are a powerful tool to identify toxicity targets and detoxification mechanisms of a broad range of food contaminants relevant for human nutrition.

  18. Coexistence of Lactic Acid Bacteria and Potential Spoilage Microbiota in a Dairy Processing Environment.

    Science.gov (United States)

    Stellato, Giuseppina; De Filippis, Francesca; La Storia, Antonietta; Ercolini, Danilo

    2015-11-01

    Microbial contamination in food processing plants can play a fundamental role in food quality and safety. In this study, the microbiota in a dairy plant was studied by both 16S rRNA- and 26S rRNA-based culture-independent high-throughput amplicon sequencing. Environmental samples from surfaces and tools were studied along with the different types of cheese produced in the same plant. The microbiota of environmental swabs was very complex, including more than 200 operational taxonomic units with extremely variable relative abundances (0.01 to 99%) depending on the species and sample. A core microbiota shared by 70% of the samples indicated a coexistence of lactic acid bacteria with a remarkable level of Streptococcus thermophilus and possible spoilage-associated bacteria, including Pseudomonas, Acinetobacter, and Psychrobacter, with a relative abundance above 50%. The most abundant yeasts were Kluyveromyces marxianus, Yamadazyma triangularis, Trichosporon faecale, and Debaryomyces hansenii. Beta-diversity analyses showed a clear separation of environmental and cheese samples based on both yeast and bacterial community structure. In addition, predicted metagenomes also indicated differential distribution of metabolic pathways between the two categories of samples. Cooccurrence and coexclusion pattern analyses indicated that the occurrence of potential spoilers was excluded by lactic acid bacteria. In addition, their persistence in the environment can be helpful to counter the development of potential spoilers that may contaminate the cheeses, with possible negative effects on their microbiological quality.

  19. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2016-09-01

    Lactobacillus acetotolerans is a hard-to-culture beer-spoilage bacterium capable of entering into the viable putative nonculturable (VPNC) state. As part of an initial strategy to investigate the phenotypic behavior of L. acetotolerans, draft genome sequencing was performed. Results demonstrated a total of 1824 predicted annotated genes, with several potential VPNC- and beer-spoilage-associated genes identified. Importantly, this is the first genome sequence of L. acetotolerans as beer-spoilage bacteria and it may aid in further analysis of L. acetotolerans and other beer-spoilage bacteria, with direct implications for food safety control in the beer brewing industry.

  20. Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing

    National Research Council Canada - National Science Library

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A; Verstrepen, Kevin J; Lievens, Bart

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B...

  1. Evaluation of the 3M™ Petrifilm™ Rapid Yeast and Mold Count Plate for the Enumeration of Yeast and Mold in Food: Collaborative Study, First Action 2014.05.

    Science.gov (United States)

    Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Jechorek, Robert

    2015-01-01

    The 3M™ Petrifilm™ Rapid Yeast and Mold (RYM) Count Plate is a simple, ready-to-use chromogenic culture method for the rapid detection and enumeration of yeast and mold in food products. The 3M Petrifilm RYM Count Plate method was compared to the U. S. Food and Drug Administration Bacteriological Analytical Manual (FDA BAM) Chapter 18, Yeasts, Molds and Mycotoxins and the ISO 21527:2008 Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Enumeration for Yeast and Molds - Part 1: Colony Count Technique in Products with Water Activity Greater Than 0.95 and Part 2: Colony Count Technique in Products with Water Activity Less Than or Equal to 0.95 reference methods for raw almonds and raw frozen ground beef patties (77% lean). The 3M Petrifilm RYM Count Plate method was evaluated using a paired study design in a multi-laboratory collaborative study following the current AOAC Validation Guidelines. Three target contamination levels (low, 10-100 CFU/g; medium, 100-1000 CFU/g; high 1000-10 000 CFU/g) as well as an uninoculated control level (0 CFU/g) were evaluated for each matrix. Samples evaluated by the 3M Petrifilm RYM Count Plate method were prepared in duplicate and incubated at both 25°C and 28°C. Plates at both temperatures were enumerated after 48 and 60 h of incubation. No significant difference was observed between the 3M Petrifilm RYM Count Plate method and the FDA BAM or ISO 21527 reference methods for each contamination level. No statistical differences were observed between samples analyzed by the 3M Petrifilm RYM Count Plate method (at either 25°C or 28°C) and the reference methods. No statistical significant differences were observed between enumeration of colonies at 48 and 60 h on the 3M Petrifilm RYM Count Plate method and the reference methods.

  2. Validation of the Soleris yeast and mold test for semiquantitative determination of yeast and mold in selected foods. Performance tested methods 040901.

    Science.gov (United States)

    Alles, Susan; Shrestha, Nabina; Ellsworth, Amanda; Rider, Alicia; Foti, Debra; Knickerbocker, Jake; Mozola, Mark

    2009-01-01

    The Soleris yeast and mold method, a growth-based test system with an optical detection end point, was evaluated for its ability to detect yeast and mold contamination in a wide variety of foods. The Soleris test was used in a semiquantitative manner, in which the test result is positive or negative at a threshold level determined by the dilution and volume of sample homogenate added to the Soleris test vial. By testing at two or more threshold levels, the contamination level can be estimated. The LOD of the Soleris method is 10 CFU/g when 1 mL of a 1:10 sample homogenate is added to the test vial. In these studies, the Soleris results were compared to plate counts obtained using the U.S Food and Drug Administration/Bacteriological Analytical Manual direct plating method, and agreement between the methods was calculated. Considering results from both internal and independent laboratory trials, overall agreement between the methods was 90%. Chi-square analysis showed, with few exceptions, that results of the Soleris and direct plating methods were not statistically different. Ruggedness testing was performed, and the Soleris method was found to be robust when challenged with marginally suboptimal assay conditions. Results of inclusivity testing showed that the Soleris test vial medium supports the growth of a wide variety of yeasts and molds common to foods. Results of exclusivity testing showed that bacteria do not produce positive results, even when present in the vial in relatively high initial concentrations. The Soleris method produces results in 72 h or less and thus offers considerable time savings in comparison to other commonly used yeast and mold methods.

  3. Acetic acid bacteria spoilage of bottled red wine -- a review.

    Science.gov (United States)

    Bartowsky, Eveline J; Henschke, Paul A

    2008-06-30

    Acetic acid bacteria (AAB) are ubiquitous organisms that are well adapted to sugar and ethanol rich environments. This family of Gram-positive bacteria are well known for their ability to produce acetic acid, the main constituent in vinegar. The oxidation of ethanol through acetaldehyde to acetic acid is well understood and characterised. AAB form part of the complex natural microbial flora of grapes and wine, however their presence is less desirable than the lactic acid bacteria and yeast. Even though AAB were described by Pasteur in the 1850s, wine associated AAB are still difficult to cultivate on artificial laboratory media and until more recently, their taxonomy has not been well characterised. Wine is at most risk of spoilage during production and the presence of these strictly aerobic bacteria in grape must and during wine maturation can be controlled by eliminating, or at least limiting oxygen, an essential growth factor. However, a new risk, spoilage of wine by AAB after packaging, has only recently been reported. As wine is not always sterile filtered prior to bottling, especially red wine, it often has a small resident bacterial population (bacteria. This spoilage is evident as a distinct deposit of bacterial biofilm in the neck of the bottle at the interface of the wine and the headspace of air, and is accompanied with vinegar, sherry, bruised apple, nutty, and solvent like off-aromas, depending on the degree of spoilage. This review focuses on the wine associated AAB species, the aroma and flavour changes in wine due to AAB metabolism, discusses the importance of oxygen ingress into the bottle and presents a hypothesis for the mechanism of spoilage of bottled red wine.

  4. Fish spoilage bacteria - problems and solutions

    DEFF Research Database (Denmark)

    Gram, Lone; Dalgaard, Paw

    2002-01-01

    Microorganisms are the major cause of spoilage of most seafood products. However, only a few members of the microbial community, the specific spoilage organisms (SSOs), give rise to the offensive off-flavours associated with seafood spoilage. Combining microbial ecology, molecular techniques, ana...

  5. Evaluation of the Hydrophobic Grid Membrane Filter for the Enumeration of Moulds and Yeasts in Naturally-Contaminated Foods

    OpenAIRE

    V.H. Tournas

    2009-01-01

    Over 240 food samples from six food groups (tree nuts, grains and grain products, dried fruits, fresh produce, fruit juice, and dairy products) were tested for levels of fungal contamination using the NEO-GRID hydrophobic grid membrane filter (HGMF) and the FDA official (BAM) method. Results showed that HGMF performed very well for all tested commodities giving yeast and mould (YM) counts similar to those of the BAM (reference) method. Statistical analysis of the data (t-test) revealed no sig...

  6. Functional food red yeast rice (RYR) for metabolic syndrome amelioration: a review on pros and cons.

    Science.gov (United States)

    Patel, Seema

    2016-05-01

    Red yeast rice (RYR), the fermentation product of mold Monascus purpureus has been an integral part of Oriental food and traditional Chinese medicine, long before the discovery of their medicinal roles. With the identification of bioactive components as polyketide pigments (statins), and unsaturated fatty acids, RYR has gained a nutraceutical status. Hypercholesterolemic effect of this fermented compound has been validated and monacolin K has been recognized as the pivotal component in cholesterol alleviation. Functional similarity with commercial drug lovastatin sans the side effects has catapulted its popularity in other parts of the world as well. Apart from the hypotensive role, ameliorative benefits of RYR as anti-inflammatory, antidiabetic, anticancer and osteogenic agent have emerged, fueling intense research on it. Mechanistic studies have revealed their interaction with functional agents like coenzyme Q10, astaxanthin, vitamin D, folic acid, policosanol, and berberine. On the other hand, concurrence of mycotoxin citrinin and variable content of statin has marred its integration in mainstream medication. In this disputable scenario, evaluation of the scopes and lacunae to overcome seems to contribute to an eminent area of healthcare. Red yeast rice (RYR), the rice-based fermentation product of mold Monascus purpureus is a functional food. Its bioactive component monacolin K acts like synthetic drug lovastatin, without the severe side effects of the latter. RYR has been validated to lower cholesterol, control high blood pressure; confer anti-flammation, hypoglycaemic, anticancer and osteogenic properties. However, dose inconsistency and co-occurrence of toxin citrinin hampers its dietary supplementation prospect. Further research might facilitate development of RYR as a nutraceutical.

  7. Yeast surface display is a novel tool for the rapid immunological characterization of plant-derived food allergens.

    Science.gov (United States)

    Popovic, Milica; Prodanovic, Radivoje; Ostafe, Raluca; Schillberg, Stefan; Fischer, Rainer; Gavrovic-Jankulovic, Marija

    2015-03-01

    High-throughput characterization of allergens relies often on phage display technique which is subject to the limitations of a prokaryotic expression system. Substituting the phage display platform with a yeast surface display could lead to fast immunological characterization of allergens with complex structures. Our objective was to evaluate the potential of yeast surface display for characterization of plant-derived food allergens. The coding sequence of mature actinidin (Act d 1) was cloned into pCTCON2 surface display vector. Flow cytometry was used to confirm localization of recombinant Act d 1 on the surface of yeast cells using rabbit polyclonal antisera IgG and IgE from sera of kiwifruit-allergic individuals. Immunological (dot blot, immunoblot ELISA and ELISA inhibition), biochemical (enzymatic activity in gel) and biological (basophil activation) characterization of Act d 1 after solubilization from the yeast cell confirmed that recombinant Act d 1 produced on the surface of yeast cell is similar to its natural counterpart isolated from green kiwifruit. Yeast surface display is a potent technique that enables fast immunochemical characterization of allergens in situ without the need for protein purification and offers an alternative that could lead to improvement of standard immunodiagnostic and immunotherapeutic approaches.

  8. Identity of Artificial Color on Oranges; Analysis for Spoilage Indicators in Butter; Rapid Identity of Margarine and Butter; Identity of Synthetic Colors in Foods. FDA's Science Project Series.

    Science.gov (United States)

    Food and Drug Administration (DHEW), Washington, DC.

    These guides are four of several prepared through the F.D.A.'s Science Project Series for senior high school chemistry students and teachers investigating the quality of constituents of foods through experimentation. Each eight page pamphlet gives background information on the subject, equipment and reagents needed for the experiment, the…

  9. Microbiological Spoilage of Fruits and Vegetables

    Science.gov (United States)

    Barth, Margaret; Hankinson, Thomas R.; Zhuang, Hong; Breidt, Frederick

    Consumption of fruit and vegetable products has dramatically increased in the United States by more than 30% during the past few decades. It is also estimated that about 20% of all fruits and vegetables produced is lost each year due to spoilage. The focus of this chapter is to provide a general background on microbiological spoilage of fruit and vegetable products that are organized in three categories: fresh whole fruits and vegetables, fresh-cut fruits and vegetables, and fermented or acidified vegetable products. This chapter will address characteristics of spoilage microorganisms associated with each of these fruit and vegetable categories including spoilage mechanisms, spoilage defects, prevention and control of spoilage, and methods for detecting spoilage microorganisms.

  10. Potential of a simple HPLC-based approach for the identification of the spoilage status of minced beef stored at various temperatures and packaging systems.

    Science.gov (United States)

    Argyri, Anthoula A; Doulgeraki, Agapi I; Blana, Vasiliki A; Panagou, Efstathios Z; Nychas, George-John E

    2011-10-17

    The shelf life of minced beef stored (i) aerobically, (ii) under modified atmosphere packaging (MAP), and (iii) under MAP with oregano essential oil (MAP/OEO) at 0, 5, 10, and 15°C was investigated. The microbial association of meat and the temporal biochemical changes were monitored. Microbiological analyses, including total viable counts (TVC), Pseudomonas spp., Brochothrix thermosphacta, lactic acid bacteria, Enterobacteriaceae, and yeasts/moulds, were undertaken, in parallel with sensory assessment, pH measurement and HPLC analysis of the organic acid profiles. Spectral data collected by HPLC were subjected to statistical analysis, including principal component analysis (PCA) and factorial discriminant analysis (FDA). This revealed qualitative discrimination of the samples based on their spoilage status. Partial least squares regression (PLS-R) was used to evaluate quantitative predictions of TVC, Pseudomonas spp., Br. thermosphacta, lactic acid bacteria, Enterobacteriaceae, and yeasts/moulds. Overall, the HPLC analysis of organic acids, was found to be a potential method to evaluate the spoilage and microbial status of a meat sample regardless of the storage conditions. This could be a very useful tool for monitoring the quality of meat batches during transportation and storage in the meat food chain.

  11. Diversity of Leuconostoc gasicomitatum associated with meat spoilage.

    Science.gov (United States)

    Vihavainen, Elina J; Björkroth, K Johanna

    2009-11-30

    Leuconostoc gasicomitatum isolates (n=384) associated with spoilage of meat and vegetable-based foods were characterised by pulsed-field gel electrophoresis (PFGE) typing. Our aim was to evaluate the diversity and distribution of spoilage-associated L. gasicomitatum isolates from meat products, and to determine whether the PFGE genotypes are specific to product, producer, or isolation year (1997-2007). PFGE typing differentiated the isolates into 68 genotypes, and revealed that none one of the 54 genotypes associated with meat products was recovered from vegetable-based foods. Generally, the meat-derived genotypes were not specific to meat animal species, and many genotypes included isolates from products of different types or processors, as well as isolates collected in different years. Furthermore, certain genotypes were repeatedly identified from products of the same processing plant suggesting that the processing environment may have an impact on L. gasicomitatum contamination of meat products.

  12. Investigation of Antibacterial Properties of Yeast Strains Isolated from Iranian Richal and Traditional Dairy Products in Armenia

    Directory of Open Access Journals (Sweden)

    F Karimpour

    2016-09-01

    Full Text Available Background & aim:The use of bio preservative or strains as sources are interesting for food bioprocessing technologist,   and is one of the latest methods to increase the shelf life of food by the health authorities . The present study aimed to investigate the antibacterial activity of supernatants of yeasts isolated from Richal as a traditional dairy product and fermented dairy products in Armenia. Methods: In the present experimental study, the purified supernatant of 77 strains of Armenian yeast products and 12 strains from Iranian Richal were isolated. The purified supernatant were tested against three strains as food spoilages bacteria includes: B. subtilis 17-89, B. Thuringensis17-89, S.typhimuium G-38 , on 3media in 2 condition as aerobic and anaerobic. The inhibition zone of the supernatant were measured   and reported as antibacterial activity. Data were analyzed using statistical tests. Result: A total of 89 strains of yeasts, three species of Rachel and 9 strains of Armenian products (13.5% percent had demonstrated antibacterial activity. T86 strains of Armenian yeasts and FA1 (25 of Rachel had shown more ZOI and antibacterial activity on three media at both aerobic and anaerobic conditions. Comparing the mean of ZOI upon three corruption factors, Rachel strains were significantly different (p <0.05. The highest and lowest effect was observed on Bacillus subtilis effect and Salmonella typhimurium respectively. Conclusion: The results indicated that the yeast strains isolated in anaerobic and aerobic conditions on spoilage bacteria had antibacterial activity effect. Thus, it could be concluded that adding the yeast or its supernatant to food as a bio preservative, may introduce a operative product to the food industry.

  13. Genome Sequence and Transcriptome Analysis of Meat-Spoilage-Associated Lactic Acid Bacterium Lactococcus piscium MKFS47

    National Research Council Canada - National Science Library

    Andreevskaya, Margarita; Johansson, Per; Laine, Pia; Smolander, Olli-Pekka; Sonck, Matti; Rahkila, Riitta; Jääskeläinen, Elina; Paulin, Lars; Auvinen, Petri; Björkroth, Johanna

    2015-01-01

    Lactococcus piscium is a psychrotrophic lactic acid bacterium and is known to be one of the predominant species within spoilage microbial communities in cold-stored packaged foods, particularly in meat products...

  14. Lactobacilli and tartrazine as causative agents of red-color spoilage in cucumber pickle products.

    Science.gov (United States)

    Pérez-Díaz, I M; Kelling, R E; Hale, S; Breidt, F; McFeeters, R F

    2007-09-01

    The cucumber pickling industry has sporadically experienced spoilage outbreaks in pickled cucumber products characterized by development of red color on the surface of the fruits. Lactobacillus casei and Lactobacillus paracasei were isolated from 2 outbreaks of this spoilage that occurred about 15 y apart during the last 3 decades. Both organisms were shown to produce this spoilage when inoculated into pickled cucumbers while concomitantly degrading the azo dye tartrazine (FD&C yellow nr 5). This food dye is used as a yellow coloring in the brine cover solutions of commercial pickled cucumber products. The red color does not occur in the absence of tartrazine, nor when turmeric is used as a yellow coloring in the pickles. Addition of sodium benzoate to the brine cover solutions of a pickled cucumber product, more specifically hamburger dill pickles, prevented growth of these lactic acid bacteria and the development of the red spoilage.

  15. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk.

    Science.gov (United States)

    Yan, Shoubao; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao

    2012-05-01

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 ± 1.86 g/l, an optimal ethanol concentration of 87.91 ± 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h.

  16. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shoubao [Huainan Normal Univ., Anhui (China). School of Life Science; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao [Chinese Academy of Sciences, Hefei (China). Key Lab. of Ion Beam Bio-engineering of Inst. of Plasma Physics

    2012-05-15

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 {+-} 1.86 g/l, an optimal ethanol concentration of 87.91 {+-} 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h. (orig.)

  17. Chemical composition and antioxidative activity of Echinophora platyloba DC. essential oil, and its interaction with natural antimicrobials against food-borne pathogens and spoilage organisms.

    Science.gov (United States)

    Saei-Dehkordi, S Siavash; Fallah, Aziz A; Saei-Dehkordi, S Saeid; Kousha, Sanaz

    2012-11-01

    This study was undertaken to determine the chemical composition and antioxidative capacity of Echinophora platyloba DC. essential oil, and its antimicrobial potency against Listeria monocytogenes, Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Salmonella typhimurium, Escherichia coli O157:H7, Pseudomonas aeruginosa, Candida albicans, Candida tropicalis, Rhodotorula rubra, and Rhodotorula mucilaginosa. The essential oil was analyzed by GC and GC-MS; and evaluated for its antioxidative and antimicrobial (singly or in combination with chitosan, nisin, monolaurin, or amphotericin B) activity. Thirty-three components were characterized representing 95.69% of the total oil composition in which thymol, trans-ocimene, carvacrol, and (E)-sesqui-lavandulol were the major constituents. The oil exhibited high scavenging (IC(50): 49.7 ± 2.3 μg/mL) and relative antioxidative activity (RAA%: 85.21 ± 0.4) in 1,1-diphenyl-2-picrylhydrazyl radicals and β-carotene/linoleic acid bleaching assays, respectively. The oil showed antimicrobial activity against L. monocytogenes, B. cereus, B. subtilis, S. aureus, S. typhimurium, E. coli O157:H7, P. aeruginosa, C. albicans, C. tropicalis, R. Rubra, and R. mucilaginosa. Moreover, R. mucilaginosa and P. aeruginosa were the most susceptible and most resistant organisms, respectively. Regarding the checkerboard data, 47 fractional inhibitory concentration index (FICIs) (≤ 0.5) indicated synergistic, whereas 7 FICIs (>0.5 to 1) indicated additive effect. Consequently, E. platyloba DC. essential oil could be used as a recommended natural antioxidant and antimicrobial substance for food preservation.

  18. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains

    DEFF Research Database (Denmark)

    Greppi, Anna; Krych, Lukasz; Costantini, Antonella

    2015-01-01

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces...

  19. Fish spoilage bacteria - problems and solutions

    DEFF Research Database (Denmark)

    Gram, Lone; Dalgaard, Paw

    2002-01-01

    Microorganisms are the major cause of spoilage of most seafood products. However, only a few members of the microbial community, the specific spoilage organisms (SSOs), give rise to the offensive off-flavours associated with seafood spoilage. Combining microbial ecology, molecular techniques, ana......, analytical chemistry, sensory analysis and mathematical modelling allows us to characterise the SSOs and to develop methods to determine, predict and extend the shelf life of products....

  20. Development of yeast molecular display systems focused on therapeutic proteins, enzymes, and foods: functional analysis of proteins and its application to bioconversion.

    Science.gov (United States)

    Shibasaki, Seiji; Ueda, Mitsuyoshi

    2010-11-01

    Molecular display systems using yeast have been developed for industrial, medical, pharmaceutical, and biological studies. Although several host cells are available to construct a molecular display system, the yeast Saccharomyces cerevisiae is a well-established and convenient organism in eukaryotes. A wide variety of prokaryotic and eukaryotic proteins have been displayed on yeast cell surfaces. In addition, functional analyses and applications to bioconversion have been performed on the cell surface, and cells are conveniently engineered by molecular display systems. In this review, we focus on the yeast molecular display system with regard to therapeutic proteins, several enzymes, and food ingredients. In addition, recent patents on molecular display using yeast cell for production of those compounds, screening technology and related techniques are introduced. Development of devices for functional analysis of created and modified proteins in the yeast display system is also described.

  1. Effect of electrical field strength applied by PEF processing and storage temperature on the outgrowth of yeasts and moulds naturally present in a fresh fruit smoothie.

    Science.gov (United States)

    Timmermans, R A H; Nederhoff, A L; Nierop Groot, M N; van Boekel, M A J S; Mastwijk, H C

    2016-08-02

    Pulsed electrical field (PEF) technology offers an alternative to thermal pasteurisation of high-acid fruit juices, by extending the shelf life of food products, while retaining its fresh taste and nutritional value. Substantial research has been performed on the effect of electrical field strength on the inactivation kinetics of spoilage and pathogenic micro-organisms and on the outgrowth of spoilage micro-organisms during shelf life. However, studies on the effect of electrical field strength on the inactivation and outgrowth of surviving populations during shelf life are missing. In this study, we assessed the influence of electrical field strength applied by PEF processing and storage temperature on the outgrowth of surviving yeast and mould populations naturally present in fresh fruit smoothie in time. Therefore, an apple-strawberry-banana smoothie was treated in a continuous-flow PEF system (130L/h), using similar inlet and outlet conditions (preheating temperature 41°C, maximum temperature 58°C) to assure that the amount of energy across the different conditions was kept constant. Smoothies treated with variable electrical field strengths (13.5, 17.0, 20.0 and 24.0kV/cm) were compared to smoothies without treatment for outgrowth of yeasts and moulds. Outgrowth of yeasts and moulds stored at 4°C and 7°C was analysed by plating and visual observation and yeast growth was modelled using the modified logistic growth model (Zwietering model). Results showed that the intensity of the electrical field strength had an influence on the degree of inactivation of yeast cells, resulting in a faster outgrowth over time at lower electrical field strength. Outgrowth of moulds over time was not affected by the intensity of the electrical field strength used. Application of PEF introduces a trade-off between type of spoilage: in untreated smoothie yeasts lead to spoilage after 8days when stored at 4 or 7°C, whereas in PEF treated smoothie yeasts were (partly

  2. Evaluation of potential antagonistism in yeasts, seeking biocontrol of spoilage by Penicillium expansumAvaliação do potencial antagônico de leveduras, visando biocontrole de deterioração por Penicillium expansum

    Directory of Open Access Journals (Sweden)

    Kei-ichi Harada

    2011-12-01

    Full Text Available Considerable losses during apple fruit storage occur due to microbiological diseases, mainly caused by Penicillium expansum, which in addition to fruit pulp deterioration produces patulin, a mycotoxin with carcinogenic and teratogenic activity. Biological control of post-harvest disease by antagonist yeasts focused on killer toxins is an appreciable alternative to the chemical fungicides, due to the low possibility of toxic residues demonstrated during fermentative processes. Twenty out of 44 yeasts (16 isolated from fruits, 10 from corn silage and 18 from laboratory anthill, showed antagonism against spores of P. expansum. The assay in solid medium pointed the strongest nutrient competition antagonism by D. hansenii strain C1 (31 mm inhibition diameter, while D. hansenii strain C7 (15 mm showed higher antibiosis and parasitism pattern. In the following step the extracellular activity was tested performing the assay with culture supernatant in Yeast Medium agar, where C. guilliermondii P3 was more effective against conidia germination (inhibition rate of 58.15% while P. ohmeri showed better inhibition on micelial growth (66.17%. The antibiosis showed by both yeasts could suggest probable mechanism associated with killer phenomenon, once both strains were killer positive against sensitive reference strains (S. cerevisiae NCYC 1006 and P. kluyveri CAY-15. In order to enhance the production of antifungal substance, these yeasts were cultivated with P. expansum, but the difference between culture supernatant obtained from yeasts cultivated alone and with mould was not significant (P > 0.05. The results demonstrated that the yeasts application constitute a promising tool, enhancing the biological control of P. expansum in post-harvest diseases of apple fruit.As perdas consideráveis no armazenamento de maçãs decorrem principalmente de desordens microbiológicas, causadas por Penicillium expansum, que além de colonizar o fruto e causar dano

  3. Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Torrellas, Max; Rábena, María Teresa; Gómez-Pastor, Rocío; Aranda, Agustín; Matallana, Emilia

    2015-12-01

    The tolerance of the yeast Saccharomyces cerevisiae to desiccation is important for the use of this microorganism in the wine industry, since active dry yeast (ADY) is routinely used as starter for must fermentations. Both biomass propagation and dehydration cause cellular oxidative stress, therefore negatively affecting yeast performance. Protective treatments against oxidative damage, such as natural antioxidants, may have important biotechnological implications. In this study we analysed the antioxidant capacity of pure chemical compounds (quercetin, ascorbic acid, caffeic acid, oleic acid, and glutathione) added to molasses during biomass propagation, and we determine several oxidative damage/response parameters (lipid peroxidation, protein carbonylation, protective metabolites and enzymatic activities) to assess their molecular effects. Supplementation with ascorbic, caffeic or oleic acids diminished the oxidative damage associated to ADY production. Based on these results, we tested supplementation of molasses with argan oil, a natural food-grade ingredient rich in these three antioxidants, and we showed that it improved both biomass yield and fermentative performance of ADY. Therefore, we propose the use of natural, food-grade antioxidant ingredients, such as argan oil, in industrial processes involving high cellular oxidative stress, such as the biotechnological production of the dry starter.

  4. The use of chitooligosaccharide in beer brewing for protection against beer-spoilage bacteria and its influence on beer performance.

    Science.gov (United States)

    Zhao, Xue; Yu, Zhimin; Wang, Ting; Guo, Xuan; Luan, Jing; Sun, Yumei; Li, Xianzhen

    2016-04-01

    To identify a biological preservative that can protect beer from microbial contamination, which often results in the production of turbidity and off-flavor. The antimicrobial activity of a chitooligosaccharide against beer-spoilage bacteria and its effect on the fermentation performance of brewer's yeast was studied. Chitooligosaccharide with an average 2 kDa molecular weight was the best at inhibiting all tested beer-spoilage bacteria. The application of chitooligosaccharide in the brewing process did not influence the fermentation of brewer's yeast. The change in beer performance induced by the contamination of Lactobacillus brevis could be effectively controlled by application of chitooligosaccharide in the beer brewing process. The experimental data suggested that chitooligosaccharide should be an excellent preservative to inhibit beer-spoilage bacteria in the brewing process and in the end product.

  5. Microbiological spoilage of fish and fish products

    DEFF Research Database (Denmark)

    Gram, Lone; Huss, Hans Henrik

    1996-01-01

    Spoilage of fresh and lightly preserved fish products is caused by microbial action. This paper reviews the current knowledge in terms of the microbiology of fish and fish products with particular emphasis on identification of specific spoilage bacteria and the qualitative and quantitative...

  6. Role of yeasts in table olive production.

    Science.gov (United States)

    Arroyo-López, F N; Querol, A; Bautista-Gallego, J; Garrido-Fernández, A

    2008-12-10

    Table olives are a traditional fermented vegetable of the Mediterranean countries, but their production and consumption are now spread all around the world. Yeasts can play a double role in this food. They are present throughout the fermentative process and it is generally accepted that they can produce compounds with important organoleptic attributes determining the quality and flavour of the final product. However, yeasts can also be spoilage microorganisms in olive fermentation/storage and packing causing gas pockets, swollen containers, cloudy brines and off-flavours and off-odours. Candida boidinii, Debaryomyces hansenii, Pichia anomala, P. membranifaciens, Rhodotorula glutinis and Saccharomyces cerevisiae are species isolated with a high frequency from olive processes. Scarce information is still available about the ecology, biochemistry and molecular biology of these important microorganisms in table olives. A wider knowledge about these aspects could facilitate the possible application of yeasts as a starter culture, due to their ability to produce aromatic compounds, antioxidants, enzymes, and improve the growth of lactic acid bacteria.

  7. Spoilage of sous vide cooked salmon (Salmo salar) stored under refrigeration.

    Science.gov (United States)

    Díaz, P; Garrido, M D; Bañón, S

    2011-02-01

    The spoilage of Sous Vide 'SV' cooked salmon stored under refrigeration was studied. Samples were packaged under vacuum in polyamide-polypropylene pouches, cooked at an oven temperature/time of 80 (°)C/45 min, quickly chilled at 3 (°)C and stored at 2 (°)C for 0, 5 or 10 weeks for catering use. Microbial (aerobic and anaerobic psychrotrophs, lactic acid bacteria, molds and yeasts and Enterobacteriaceae), physical-chemical (pH, water activity, TBARS, acidity, L*a*b* color, texture profile analysis and shear force) and sensory (appearance, odor, flavor, texture and overall quality) parameters were determined. SV processing prevented the growth of aerobic and anaerobic psychrotrophs, lactic acid bacteria, molds and yeasts and Enterobacteriaceae. There were no relevant changes in pH, water activity, TBARS, CIELab color associated with cooked salmon spoilage. Instrumental texture data were contradictory. Slight decrease in lactic acid levels was found. In contrast, the SV cooked salmon suffered considerable sensory deterioration during its refrigerated storage, consisting of severe losses of cooked salmon odor and flavor, slight rancidity, discoloration associated with white precipitation, and moderates softness, and loss of chewiness and juiciness. No acidification, putrefaction or relevant rancidity was detected. The sensory spoilage preceded microbiological and physical-chemical spoilage, suggesting that microbiological quality alone may overestimate the shelf life of SV cooked salmon.

  8. Food Product Dating

    Science.gov (United States)

    ... prior to its consumption to determine if the product shows signs of spoilage. [ Top of Page ] What Types of Food are Dated? Open dating is found on most foods including meat, poultry, egg and dairy products. "Closed or coded ...

  9. Evaluation of the Hydrophobic Grid Membrane Filter for the Enumeration of Moulds and Yeasts in Naturally-Contaminated Foods

    Directory of Open Access Journals (Sweden)

    V.H. Tournas

    2009-01-01

    Full Text Available Over 240 food samples from six food groups (tree nuts, grains and grain products, dried fruits, fresh produce, fruit juice, and dairy products were tested for levels of fungal contamination using the NEO-GRID hydrophobic grid membrane filter (HGMF and the FDA official (BAM method. Results showed that HGMF performed very well for all tested commodities giving yeast and mould (YM counts similar to those of the BAM (reference method. Statistical analysis of the data (t-test revealed no significant differences between the two methods for all foods tested. Regression analysis showed that there was a good fit linear relationship between the two methods for most of the commodities examined. Some difficulties were encountered during counting of the colonies on HGMF since the size of the grid is very small and the number of possible colonies per plate can reach 1600.

  10. Evaluation of the Hydrophobic Grid Membrane Filter for the Enumeration of Moulds and Yeasts in Naturally-Contaminated Foods

    Directory of Open Access Journals (Sweden)

    V.H. Tournas

    2009-07-01

    Full Text Available Over 240 food samples from six food groups (tree nuts, grains and grain products, dried fruits, fresh produce, fruit juice, and dairy products were tested for levels of fungal contamination using the NEO-GRID hydrophobic grid membrane filter (HGMF and the FDA official (BAM method. Results showed that HGMF performed very well for all tested commodities giving yeast and mould (YM counts similar to those of the BAM (reference method. Statistical analysis of the data (t-test revealed no significant differences between the two methods for all foods tested. Regression analysis showed that there was a good fit linear relationship between the two methods for most of the commodities examined. Some difficulties were encountered during counting of the colonies on HGMF since the size of the grid is very small and the number of possible colonies per plate can reach 1600.

  11. Plant-based Paste Fermented by Lactic Acid Bacteria and Yeast: Functional Analysis and Possibility of Application to Functional Foods.

    Science.gov (United States)

    Kuwaki, Shinsuke; Nakajima, Nobuyoshi; Tanaka, Hidehiko; Ishihara, Kohji

    2012-01-01

    A plant-based paste fermented by lactic acid bacteria and yeast (fermented paste) was made from various plant materials. The paste was made of fermented food by applying traditional food-preservation techniques, that is, fermentation and sugaring. The fermented paste contained major nutrients (carbohydrates, proteins, and lipids), 18 kinds of amino acids, and vitamins (vitamin A, B1, B2, B6, B12, E, K, niacin, biotin, pantothenic acid, and folic acid). It contained five kinds of organic acids, and a large amount of dietary fiber and plant phytochemicals. Sucrose from brown sugar, used as a material, was completely resolved into glucose and fructose. Some physiological functions of the fermented paste were examined in vitro. It was demonstrated that the paste possessed antioxidant, antihypertensive, antibacterial, anti-inflammatory, anti-allergy and anti-tyrosinase activities in vitro. It was thought that the fermented paste would be a helpful functional food with various nutrients to help prevent lifestyle diseases.

  12. Comparison of some physical techniques for detection of spoilage in apple juice inoculated with Saccharomyces cerevisiae: Optical and photothermal methods

    NARCIS (Netherlands)

    Chirtoc, I.; Chirtoc, M.; Bicanic, D.D.; Cozijnsen, J.L.; Breeuwer, P.

    2003-01-01

    Several physical techniques were used to study the extent of spoilage in apple juice deliberately inoculated with yeast (concentration of Saccharomyces cerevisiae ranged from 25 cells mL(-1) to 2.5 x 10(6) cells mL(-1), respectively) and their performance compared in terms of detection limit achieve

  13. 7种食品防腐剂对肉制品污染微生物的抑菌效果比较研究%Comparison of Antibacterial Effects of Seven Food Preservatives on Spoilage Microorganisms in Meat

    Institute of Scientific and Technical Information of China (English)

    杨晓韬; 李春; 周晓宏

    2012-01-01

    通过测定抑菌率和最低抑菌质量浓度,研究化学防腐剂山梨酸钾、双乙酸钠、单辛酸甘油酯、乙二胺四乙酸二钠(EDTA)以及生物防腐剂乳酸链球菌素(Nisin)、壳聚糖、ε-聚赖氨酸(ε-PL)对12株肉制品腐败(包括2株环状芽孢杆菌(Bacillus circulans)、3株枯草芽孢杆菌(Bacillus subtilis)、3株地衣芽孢杆菌(Bacillus lichenifotrois)、2株凝结芽孢杆菌(Bacillus coagulans)、1株蜂房哈夫尼亚菌(Hafnia alvei)以及1株肠球菌(Enterococcus))的抑菌活性。结果表明:7种防腐剂对供试菌都有一定的抑菌效果,抑菌效果强弱顺序为:Nisin〉壳聚糖〉ε—PL〉单辛酸甘油酯〉EDTA〉双乙酸钠〉山梨酸钾。3种生物防腐剂的抑菌效果明显强于其他4种化学防腐剂。通过比较各种防腐剂对不同种和同种不同株的细菌的抑菌效果,表明同一种防腐剂不仅对不同种的细菌抑菌效果不同,即使对同种不同株的细菌其抑菌效果也有很大差异。%The antibacterial activities of food preservatives including potassium sorbate, sodium diacetate, capryl monoglyceride, disodium ethylene-diamine-tetraacetate (EDTA), nisin, chitosan and ε -polylysine (ε-PL) against 12 meat spoilage strains such as 2 Bacillus circulans strains, 3 Bacillus subtilis strains, 3 Bacillus licheniformis strains, 2 Bacillus coagulans strains, 1 Hafnia alvei strain and an Enterococcus strain were investigated based on inhibitory rate and minimum inhibitory concentration. The results showed that seven food preservatives had inhibitory effect on all tested bacteria at different levels. They could be ranked in decreasing order of antibacterial activity as follows: nisin 〉 chitosan 〉 ε-PL 〉 capryl monoglyceride 〉 EDTA 〉 sodium diacetate 〉potassium sorbate. Three bio-preservatives including nisin, chitosan and ε-PL had better antibacterial activity than other four

  14. Invasive Fungal Infections Acquired from Contaminated Food or Nutritional Supplements: A Review of the Literature.

    Science.gov (United States)

    Benedict, Kaitlin; Chiller, Tom M; Mody, Rajal K

    2016-07-01

    Fungi are an integral part of the natural environment and, therefore, play many roles in relation to food: some fungi are used in food production, some are food sources themselves, and some are agents of food spoilage. Some fungi that contaminate food can also be harmful to human health. The harmful but noninfectious health consequences of mycotoxins have been well-characterized, but the extent to which fungi in food pose a risk for invasive infections is unknown. We conducted a literature review to identify cases of invasive fungal infections (IFIs) believed to have resulted from ingestion or inhalation of food, beverages, or dietary supplements (excluding Saccharomyces infections). We identified 11 publications describing cases or small outbreaks of IFIs related to foods or beverages and three describing IFIs related to dietary supplements. These food-associated IFIs were predominantly mold infections, and the few yeast infections were associated with dairy products. Suspected foodborne IFIs appear to be rare, but are increasingly described in the electronically searchable literature. They are associated with a variety of foods, are due to a variety of fungal pathogens, and primarily occur in persons with immunosuppressive conditions or other predisposing factors. Various guidelines for high-risk patients recommend avoidance of certain food products that may contain high levels of fungi, but further work is needed to evaluate the effectiveness of these restrictive diets in preventing fungal infections. The relationships between food spoilage, food insecurity, and IFI risk are another area that may warrant further exploration.

  15. The Occurrence of Beer Spoilage Lactic Acid Bacteria in Craft Beer Production.

    Science.gov (United States)

    Garofalo, Cristiana; Osimani, Andrea; Milanović, Vesna; Taccari, Manuela; Aquilanti, Lucia; Clementi, Francesca

    2015-12-01

    Beer is one of the world's most ancient and widely consumed fermented alcoholic beverages produced with water, malted cereal grains (generally barley and wheat), hops, and yeast. Beer is considered an unfavorable substrate of growth for many microorganisms, however, there are a limited number of bacteria and yeasts, which are capable of growth and may spoil beer especially if it is not pasteurized or sterile-filtered as craft beer. The aim of this research study was to track beer spoilage lactic acid bacteria (LAB) inside a brewery and during the craft beer production process. To that end, indoor air and work surface samples, collected in the brewery under study, together with commercial active dry yeasts, exhausted yeasts, yeast pellet (obtained after mature beer centrifugation), and spoiled beers were analyzed through culture-dependent methods and PCR-DGGE in order to identify the contaminant LAB species and the source of contamination. Lactobacillus brevis was detected in a spoiled beer and in a commercial active dry yeast. Other LAB species and bacteria ascribed to Staphylococcus sp., Enterobaceriaceae, and Acetobacter sp. were found in the brewery. In conclusion, the PCR-DGGE technique coupled with the culture-dependent method was found to be a useful tool for identifying the beer spoilage bacteria and the source of contamination. The analyses carried out on raw materials, by-products, final products, and the brewery were useful for implementing a sanitization plan to be adopted in the production plant.

  16. Treatment and Valorization of Palm Oil Mill Effluent through Production of Food Grade Yeast Biomass

    Directory of Open Access Journals (Sweden)

    Joy O. Iwuagwu

    2014-01-01

    Full Text Available Palm oil mill effluent (POME is high strength wastewater derived from processing of palm fruit. It is generated in large quantities in all oil palm producing nations where it is a strong pollutant amenable to microbial degradation being rich in organic carbon, nitrogen, and minerals. Valorization and treatment of POME with seven yeast isolates was studied under scalable conditions by using POME to produce value-added yeast biomass. POME was used as sole source of carbon and nitrogen and the fermentation was carried out at 150 rpm, 28 ± 2°C using an inoculum size of 1 mL of 106 cells. Yeasts were isolated from POME, dump site, and palm wine. The POME had chemical oxygen demand (COD 114.8 gL−1, total solid 76 gL−1, total suspended solid (TSS 44 gL−1 and total lipid 35.80 gL−1. Raw POME supported accumulation of 4.42 gL−1 dry yeast with amino acid content comparable or superior to the FAO/WHO standard for feed use SCP. Peak COD reduction (83% was achieved with highest biomass accumulation in 96 h using Saccharomyces sp L31. POME can be used as carbon source with little or no supplementation to achieve waste-to-value by producing feed grade yeast with reduction in pollution potential.

  17. The glyceraldehyde-3-phosphate dehydrogenase promoter of the food yeast Candida utilis strain NRRL Y-660 is functional in Agrobacterium tumefaciens.

    Science.gov (United States)

    González, Tania; Eng, Felipe; Fraga, Reinaldo; Fonseca, Jennifer; Amores, Isis

    2013-11-01

    The glyceraldehyde-3-phosphate dehydrogenase promoter of the food yeast Candida utilis strain NRRL Y-660 was cloned to create a novel integrative vector for Agrobacterium tumefaciens-mediated transformation. The new binary vector harbors β-glucuronidase activity as reporter and kanamicin/geneticin resistance as selection marker. Recombinant clones of A. tumefaciens show kanamycin resistance and high β-glucuronidase activity under the control of the C. utilis promoter. This finding can be explained by the presence of a prokaryotic core in the yeast promoter, predicted by in silico analysis of the sequence. This is the first report about functionality of a yeast promoter in A. tumefaciens.

  18. Impact of water extracts of Spirulina (WES on bacteria, yeasts and molds

    Directory of Open Access Journals (Sweden)

    Aleksandra Duda-Chodak

    2013-03-01

    Full Text Available Background. Due to its chemical composition, Spirulina is widely used as a dietary supplement that exerts positive effects on the human body. It also has the ability to inhibit the growth of cert ain microorganisms, both pathogens that pose a health hazard, as well as those that cause food spoilage in all branches of food industry. The main aim of this study was to determine the impact of water extracts of Spirulina (WES on the growth of various microorganism both useful and harmful for humans and the economy. Material and methods. The impact of different WES concentrations (0.1, 1.0, 2.5, or 5.0% on the growth of various bacteria, yeasts and molds was determined by diffusion method on solid medium. Results. It was demonstrated that WES have a diversifi ed impact on microorganisms, depending on the species. The inhibitory activity was shown against Bacillus subtilis, Micrococcus luteus, Rhodotorula, and Penicillium. WES had strong stimulating effect on Alicyclobacillus acidoterrestris and Geotrichum. Moreover, higher concentrations of WES stimulated also the development of mycelium and production of conidiophores by Cladosporium and Aspergillus niger. Conclusions. Inhibitory impact of WES on microorganisms that cause food spoilage may be used in food production. However, the obtained results indicate the need for further studies, particularly in order to evaluate the effect of the WES on microfl ora in the food matrices.

  19. Reducing Salt in Raw Pork Sausages Increases Spoilage and Correlates with Reduced Bacterial Diversity.

    Science.gov (United States)

    Fougy, Lysiane; Desmonts, Marie-Hélène; Coeuret, Gwendoline; Fassel, Christine; Hamon, Erwann; Hézard, Bernard; Champomier-Vergès, Marie-Christine; Chaillou, Stéphane

    2016-07-01

    . However, salt has been used for a very long time as a hurdle technology, and salt reduction in meat products raises the question of spoilage and waste of food. The study was conceived to assess the role of sodium chloride reduction in meat products, both at the level of spoilage development and at the level of bacterial diversity, using 16S rRNA amplicon sequencing and raw pork sausage as a meat model. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Cytotoxic monacolins from red yeast rice, a Chinese medicine and food

    Science.gov (United States)

    Seven new monacolins, monacolins Q-S (1-3), a,ß-dehydromonacolin S (4), 3a-hydroxy-3,5-dihydromonacolin L (5), 3ß-hydroxy-3,5-dihydromonacolin L (6), and a,ß-hydromonacolin Q (7) were isolated and characterized from the methanol extract of red yeast rice. In addition, six known monacolins, a,ß-dehyd...

  1. Eucalyptus essential oil as a natural food preservative: in vivo and in vitro antiyeast potential.

    Science.gov (United States)

    Tyagi, Amit Kumar; Bukvicki, Danka; Gottardi, Davide; Tabanelli, Giulia; Montanari, Chiara; Malik, Anushree; Guerzoni, Maria Elisabetta

    2014-01-01

    In this study, the application of eucalyptus essential oil/vapour as beverages preservative is reported. The chemical composition of eucalyptus oil was determined by gas chromatography-mass spectrometry (GC-MS) and solid phase microextraction GC-MS (SPME/GC-MS) analyses. GC-MS revealed that the major constituents were 1,8-cineole (80.5%), limonene (6.5%), α-pinene (5%), and γ-terpinene (2.9%) while SPME/GC-MS showed a relative reduction of 1,8-cineole (63.9%) and an increase of limonene (13.8%), α-pinene (8.87%), and γ-terpinene (3.98%). Antimicrobial potential of essential oil was initially determined in vitro against 8 different food spoilage yeasts by disc diffusion, disc volatilization, and microdilution method. The activity of eucalyptus vapours was significantly higher than the eucalyptus oil. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) varied from 0.56 to 4.50 mg/mL and from 1.13 to 9 mg/mL, respectively. Subsequently, the combined efficacy of essential oil and thermal treatment were used to evaluate the preservation of a mixed fruit juice in a time-dependent manner. These results suggest eucalyptus oil as a potent inhibitor of food spoilage yeasts not only in vitro but also in a real food system. Currently, this is the first report that uses eucalyptus essential oil for fruit juice preservation against food spoiling yeast.

  2. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  3. Spoilage microorganisms in milk and dairy products

    Directory of Open Access Journals (Sweden)

    Andrea Skelin

    2007-12-01

    Full Text Available Spoilage microorganisms cause changes of primary characteristics and properties of milk and dairy products. The product defects depends on the specific species and number of microorganisms involved in pre- and post- technological processing. Most often, these changes are related to single undesirable sensory characteristic, smell, flavour or conistency. However, in the case of heavier microbial contamination all these undesirable characteristics can occur simultaneously. Besides, even small changes caused by presence of spoilage microorganisms lead to decreased quality of milk and various dairy products. Despite of the importance for the overall quality, the control of spoilage microorganisms for dairy industry is not obligated and therefore, only a few producers control them. Therefore, the present study describes the undesirable effect of spoilage microorganisms on quality of raw, pasteurized and sterilized milk, fermented milk, butter, sour cream and cheeses with the intention to emphasize the importance and significance of their control in the dairy industry.

  4. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Mega

  5. Classification of photobacteria associated with spoilage of fish products by numerical taxanomy and pyrolysis mass spectrometry

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Manfio, G.P.; Goodfellow, M.

    1997-01-01

    sub-groups. One sub-group of psychrotolerant P. phosphoreum strains, which was selected in modified atmosphere packed fish stored at low temperature, was also highlighted using each of the methods. The importance of classifying food spoilage bacteria has been shown and a simple key generated...

  6. Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations.

    Science.gov (United States)

    Zaragoza, Jose; Bendiks, Zachary; Tyler, Charlotte; Kable, Mary E; Williams, Thomas R; Luchkovska, Yelizaveta; Chow, Elaine; Boundy-Mills, Kyria; Marco, Maria L

    2017-01-01

    In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can be

  7. Effects of Exogenous Yeast and Bacteria on the Microbial Population Dynamics and Outcomes of Olive Fermentations

    Science.gov (United States)

    Zaragoza, Jose; Bendiks, Zachary; Tyler, Charlotte; Kable, Mary E.; Williams, Thomas R.; Luchkovska, Yelizaveta; Chow, Elaine; Boundy-Mills, Kyria

    2017-01-01

    ABSTRACT In this study, we examined Sicilian-style green olive fermentations upon the addition of Saccharomyces cerevisiae UCDFST 09-448 and/or Pichia kudriazevii UCDFST09-427 or the lactic acid bacteria (LAB) Lactobacillus plantarum AJ11R and Leuconostoc pseudomesenteroides BGM3R. Olives containing S. cerevisiae UCDFST 09-448, a strain able to hydrolyze pectin, but not P. kudriazevii UCDFST 09-427, a nonpectinolytic strain, exhibited excessive tissue damage within 4 weeks. DNA sequencing of fungal internal transcribed spacer (ITS) regions and comparisons to a yeast-specific ITS sequence database remarkably showed that neither S. cerevisiae UCDFST 09-448 nor P. kudriazevii UCDFST 09-427 resulted in significant changes to yeast species diversity. Instead, Candida boidinii constituted the majority (>90%) of the total yeast present, independent of whether S. cerevisiae or P. kudriazevii was added. By comparison, Lactobacillus species were enriched in olives inoculated with potential starter LAB L. plantarum AJ11R and L. pseudomesenteroides BGM3R according to community 16S rRNA gene sequence analysis. The bacterial diversity of those olives was significantly reduced and resembled control fermentations incubated for a longer period of time. Importantly, microbial populations were highly dynamic at the strain level, as indicated by the large variations in AJ11R and BGM3R cell numbers over time and reductions in the numbers of yeast isolates expressing polygalacturonase activity. These findings show the distinct effects of exogenous spoilage and starter microbes on indigenous communities in plant-based food fermentations that result in very different impacts on product quality. IMPORTANCE Food fermentations are subject to tremendous selective pressures resulting in the growth and persistence of a limited number of bacterial and fungal taxa. Although these foods are vulnerable to spoilage by unintended contamination of certain microorganisms, or alternatively, can

  8. Spoilage yeasts in Patagonian winemaking: molecular and physiological features of Pichia guilliermondii indigenous isolates Levaduras contaminantes en vinos patagónicos: características moleculares y fisiológicas de los aislamientos indígenas de Picchia guilliermondii

    Directory of Open Access Journals (Sweden)

    C. A. Lopes

    2009-09-01

    Full Text Available Yeasts belonging to the genus Dekkera/Brettanomyces, especially the species Dekkera bruxellensis, have long been associated with the production of volatile phenols responsible for off-flavour in wines. According to recent reports, the species Pichia guilliermondii could also produce these compounds at the initial stages of fermentation. Based on the abundance of P. guilliermondii in Patagonian winemaking, we decided to study the relevance of indigenous isolates belonging to this species as wine spoilage yeast. Twenty-three indigenous isolates obtained from grape surfaces and red wine musts were analyzed in their capacity to produce volatile phenols on grape must. The relationship between molecular Random Amplified Polymorphic DNA (RAPD and physiological (killer biotype patterns detected in indigenous populations of P. guilliermondii and volatile phenol production was also evaluated. Different production levels of 4-ethylphenol, 4-vinylguaiacol and 4-ethylguaiacol were detected among the isolates; however, the values were always lower than those produced by the D. bruxellensis reference strain in the same conditions. High levels of 4-vinylphenol were detected among P. guilliermondii indigenous isolates. The combined use of RAPD and killer biotype allowed us to identify the isolates producing the highest volatile phenol levels.Las levaduras del género Dekkera/Brettanomyces, sobre todo la especie Dekkera bruxellensis, siempre han sido asociadas con la producción de fenoles volátiles responsables de aromas desagradables en los vinos. Recientemente, se ha demostrado que la especie Pichia guilliermondii también es capaz de producir estos compuestos, particularmente durante las etapas iniciales de la fermentación. Dada la abundancia de P. guilliermondii en las bodegas de la Patagonia, se decidió evaluar la importancia de algunos aislamientos indígenas de esta especie como levaduras alterantes de vinos regionales. Se evaluó la capacidad de

  9. Use of Cymbopogon Citratus Essential Oil in Food Preservation: Recent Advances and Future Perspectives.

    Science.gov (United States)

    Ekpenyong, Christopher E; Akpan, Ernest E

    2015-07-06

    The economic burdens and health implications of food spoilage are increasing. Contamination of food sources by fungi, bacteria, yeast, nematodes, insects, and rodents remains a major public health concern. Research has focused on developing safer natural products and innovations to meet consumers' acceptance as alternatives to synthetic food preservatives. Many recent novel preservative techniques and applications of both natural and synthetic origin continue to proliferate in food and chemical industries. In particular, some essential oils of plant origin are potent food preservatives and are thus attractive alternatives to synthetic preservatives. This paper provides an overview of recent advances and future prospects in assessing the efficacy of theuse of Cymbopogon citratus (lemongrass) essential oil in food preservation. The possible mechanisms of action and toxicological profile as well as evidence for or against the use of this essential oil as an alternative to synthetic food preservatives in domestic and industrial applications are discussed.

  10. Construction of a Trp- commercial baker's yeast strain by using food-safe-grade dominant drug resistance cassettes.

    Science.gov (United States)

    Estruch, Francisco; Prieto, José Antonio

    2003-12-01

    We have designed a food-safe-grade module for gene disruptions in commercial baker's yeast strains, which contains the G418 resistance cassette, KanMX4, flanked by direct repeats from the MEL1 gene of Saccharomyces cerevisiae. This module was used to obtain a Trp(-) auxotrophic mutant of the polyploid HY strain by successive targeting to the TRP1 locus and later in vivo excision of the kan(r) marker. Southern blot analysis indicated that HY contains five copies of the TRP1 gene. However, after four disruption rounds, a strain named HYtrpM(4), unable to grow in the absence of tryptophan, was selected. Southern and Northern analysis of HYtrpM(4) cells showed that a remaining functional wild-type copy was still present, suggesting that the level of phosphoribosylanthranylate isomerase activity, resulting from a single copy of TRP1, is too low to sustain growth. Accordingly, a high reversion frequency of the Trp(-) phenotype, through gene conversion, was found in cells of the mutant strain. Nevertheless, this was not a drawback for its use as a recipient strain of heterologous genes. Indeed, YEpACT-X24 transformants were stable after 25 generations and expressed and secreted high levels of active recombinant xylanase. These data indicate that the new Trp(-) strain can be used to generate a stable recombinant yeast that fulfils all the requirements and market criteria for commercial utilisation.

  11. Plant-based Paste Fermented by Lactic Acid Bacteria and Yeast: Functional Analysis and Possibility of Application to Functional Foods

    Science.gov (United States)

    Kuwaki, Shinsuke; Nakajima, Nobuyoshi; Tanaka, Hidehiko; Ishihara, Kohji

    2012-01-01

    A plant-based paste fermented by lactic acid bacteria and yeast (fermented paste) was made from various plant materials. The paste was made of fermented food by applying traditional food-preservation techniques, that is, fermentation and sugaring. The fermented paste contained major nutrients (carbohydrates, proteins, and lipids), 18 kinds of amino acids, and vitamins (vitamin A, B1, B2, B6, B12, E, K, niacin, biotin, pantothenic acid, and folic acid). It contained five kinds of organic acids, and a large amount of dietary fiber and plant phytochemicals. Sucrose from brown sugar, used as a material, was completely resolved into glucose and fructose. Some physiological functions of the fermented paste were examined in vitro. It was demonstrated that the paste possessed antioxidant, antihypertensive, antibacterial, anti-inflammatory, anti-allergy and anti-tyrosinase activities in vitro. It was thought that the fermented paste would be a helpful functional food with various nutrients to help prevent lifestyle diseases. PMID:25114554

  12. Microbial terroir and food innovation: The case of yeast biodiversity in wine.

    Science.gov (United States)

    Capozzi, Vittorio; Garofalo, Carmela; Chiriatti, Maria Assunta; Grieco, Francesco; Spano, Giuseppe

    2015-12-01

    Saccharomyces and non-Saccharomyces represents a heterogeneous class in the grape/must/wine environments including several yeast genera (e.g., Saccharomyces, Hanseniaspora, Pichia, Candida, Metschnikowia, Kluyveromyces, Zygosaccharomyces, Torulaspora, Dekkera and Schizosaccharomyces) and species. Since, each species may differently contribute to the improvement/depreciation of wine qualities, it appears clear the reason why species belong to non-Saccharomyces are also considered a biotechnological resource in wine fermentation. Here, we briefly review the oenological significance of this specific part of microbiota associated with grapes/musts/wine. Moreover, the diversity of cultivable non-Saccharomyces genera and their contribute to typical wines fermentations will be discussed.

  13. Potential benefits of the application of yeast starters in table olive processing.

    Science.gov (United States)

    Arroyo-López, Francisco N; Romero-Gil, Verónica; Bautista-Gallego, Joaquín; Rodríguez-Gómez, Francisco; Jiménez-Díaz, Rufino; García-García, Pedro; Querol, Amparo; Garrido-Fernández, Antonio

    2012-01-01

    Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, improve lactic acid bacteria growth, and inhibit spoilage microorganisms. Nowadays, they are being considered as probiotic agents because many species are able to resist the passage through the gastrointestinal tract and show favorable effects on the host. In this way, yeasts may improve the health of consumers by means of the degradation of non-assimilated compounds (such as phytate complexes), a decrease in cholesterol levels, the production of vitamins and antioxidants, the inhibition of pathogens, an adhesion to intestinal cell line Caco-2, and the maintenance of epithelial barrier integrity. Many yeast species, usually found in table olive processing (Wickerhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens, and Kluyveromyces lactis, among others), have exhibited some of these properties. Thus, the selection of the most appropriate strains to be used as starters in this fermented vegetable, alone or in combination with lactic acid bacteria, is a promising research line to develop in the near future.

  14. Potential benefits of the application of yeast starters in table olive processing

    Directory of Open Access Journals (Sweden)

    Francisco Noé eArroyo López

    2012-04-01

    Full Text Available Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, improve lactic acid bacteria growth and inhibit spoilage microorganisms. Nowadays, they are being considered as probiotic agents because many species are able to resist the passage through the gastrointestinal tract and show favourable effects on the host. In this way, yeasts may improve the health of consumers by means of the degradation of non assimilated compounds (such as phytate complexes, a decrease in cholesterol levels, the production of vitamins and antioxidants, the inhibition of pathogens, an adhesion to intestinal cell line Caco-2 and the maintenance of epithelial barrier integrity. Many yeast species, usually found in table olive processing (Wicherhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens, Kluyveromyces lactis, among others, have exhibited some of these properties. Thus, the selection of the most appropriate strains to be used as starters in this fermented vegetable, alone or in combination with lactic acid bacteria, is a promising research line to develop in the near future.

  15. Lactic acid bacteria associated with vacuum-packed cooked meat product spoilage: population analysis by rDNA-based methods.

    Science.gov (United States)

    Chenoll, E; Macián, M C; Elizaquível, P; Aznar, R

    2007-02-01

    To determine the lactic acid bacteria (LAB) implicated in bloating spoilage of vacuum-packed and refrigerated meat products. A total of 18 samples corresponding to four types of meat products, with and without spoilage symptoms, were studied. In all, 387 colonies growing on de Man, Rogosa and Sharpe, yeast glucose lactose peptone and trypticase soy yeast extract plates were identified by internal spacer region (ISR), ISR-restriction fragment length polymorphism and rapid amplified ribosomal DNA restriction analysis profiles as Lactobacillus (37%), Leuconostoc (43%), Carnobacterium (11%), Enterococcus (4%) and Lactococcus (2%). Leuconostoc mesenteroides dominated the microbial population of spoiled products and was always present at the moment bloating occurred. Lactobacillus sakei, Lactobacillus plantarum and Lactobacillus curvatus were found in decreasing order of abundance. The analysis of two meat products, 'morcilla' and 'fiambre de magro adobado' obtained from production lines revealed a common succession pattern in LAB populations in both products and showed that Leuc. mesenteroides became the main species during storage, despite being below the detection level of culture methods after packing. Our results pointed to Leuc. mesenteroides as the main species responsible for bloating spoilage in vacuum-packed meat products. Prevention of bloating spoilage in vacuum-packed cooked meat products requires the sensitive detection of Leuc. mesenteroides (i.e. by PCR).

  16. Bioactive proteins against pathogenic and spoilage bacteria

    Directory of Open Access Journals (Sweden)

    Mahmoud Z. Sitohy

    2014-10-01

    Full Text Available Background: It is likely that both human nutrition and the nutrition of livestock are benefited by the presence of bioactive proteins within their respective diet regimes. Bioactive proteins have been defined as specific protein fragments that positively impact bodily functions or conditions and may, ultimately, influence overall human health. The ingestion of bioactive proteins may have an effect on the major body systems—namely, the cardiovascular, digestive, immune and nervous systems. According to their functional properties, bioactive proteins may be classified as antimicrobial, antithrombotic, antihypertensive, opioid, immune-modulatory, mineral binding and anti-oxidative. There are many examples of biologically active food proteins and active peptides that can be obtained from various food protein sources. They have a physiological significance beyond the pure nutritional requirements; in other wordsthey have the acquisition of nitrogen for normal growth and maintenance. Objective: This study aims to specify and characterize the extent and mode of action of bioactive proteins in their native form, (glycinin, glycinin basic sub-unit and β-conglycinin against specific main pathogens (Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis. We will be using standard media while identifying the main constituents responsible for this action. Methods: Glycinin, basic sub-unit and β-conglycinin were isolated from soybean protein and tested for their antimicrobial action against pathogenic and spoilage bacteria, They were thencompared to the properties of penicillin. Methylated soybean protein and also methylated chickpea protein (MSP and MCP, with isoelectric points around pI 8, were prepared by esterifying. 83 % of their free carboxyl groups and their interactions with Gram positive and Gram negative bacteria were examined. Results: The three divisions of cationic proteins exhibited antibacterial

  17. Cytotoxic monacolins from red yeast rice, a Chinese medicine and food.

    Science.gov (United States)

    Zhang, Zhihao; Ali, Zulfiqar; Khan, Shabana I; Khan, Ikhlas A

    2016-07-01

    Seven new monacolins, monacolins Q-S (1-3), α,β-dehydromonacolin S (4), 3α-hydroxy-3,5-dihydromonacolin L (5), 3β-hydroxy-3,5-dihydromonacolin L (6), and α,β-hydromonacolin Q (7) were isolated and characterized from the methanol extract of red yeast rice. In addition, six known monacolins, α,β-dehydrodihydromonacolin K (8), dehydromonacolin K (9), dehydromonacolin L (10), monacolin K (11), dihydromonacolin K (12), dihydromonacolin L (13) and two compounds other than monacolins (14, 15) were also isolated. Structure elucidation of the isolates was achieved by means of NMR and mass spectroscopic data analyses. Compounds 1-5, 8, 9, 11, and 13 were evaluated for their cytotoxic activity against four cancer cell lines (SK-MEL, KB, BT-549, SK-OV-3) and two noncancerous kidney cell lines (LLC-PK1 and Vero). Monacolin Q (1), monacolin R (2) α,β-dehydrodihydromonacolin K (8), dehydromonacolin K (9), and monacolin K (11) showed cytotoxicity to most of these cell lines in terms of inhibition of cell proliferation. The cytotoxicity of monacolin K (11) was the most potent among all the tested monacolins.

  18. An Overview on the Effects of Sodium Benzoate as a Preservative in Food Products

    OpenAIRE

    Shahmohammadi; Javadi; Nassiri-Asl

    2016-01-01

    Context Food spoilage has been a common problem throughout history, and much of the spoilage is caused the activity of microorganisms or enzymatic reactions during the storage of food. Thus, using chemical substances could prevent or delay food spoilage and this has led to the great success of these compounds in the treatment of human diseases. Sodium benzoate is one of the synthetic additives that are widely used in the food industry. Evidenc...

  19. NMR evaluation of total statin content and HMG-CoA reductase inhibition in red yeast rice (Monascus spp. food supplements

    Directory of Open Access Journals (Sweden)

    Lachenmeier Dirk W

    2012-03-01

    Full Text Available Abstract Background Red yeast rice (i.e., rice fermented with Monascus spp., as a food supplement, is claimed to be blood cholesterol-lowering. The red yeast rice constituent monacolin K, also known as lovastatin, is an inhibitor of the hydroxymethylglutaryl-CoA (HMG-CoA reductase. This article aims to develop a sensitive nuclear magnetic resonance (NMR method to determine the total statin content of red yeast rice products. Methods The total statin content was determined by a 400 MHz 1H NMR spectroscopic method, based on the integration of the multiplet at δ 5.37-5.32 ppm of a hydrogen at the hexahydronaphthalene moiety in comparison to an external calibration with lovastatin. The activity of HMG-CoA reductase was measured by a commercial spectrophotometric assay kit. Results The NMR detection limit for total statins was 6 mg/L (equivalent to 0.3 mg/capsule, if two capsules are dissolved in 50 mL ethanol. The relative standard deviations were consistently lower than 11%. The total statin concentrations of five red yeast rice supplements were between 1.5 and 25.2 mg per specified daily dose. A dose-dependent inhibition of the HMG-CoA reductase enzyme activity by the red yeast rice products was demonstrated. Conclusion A simple and direct NMR assay was developed to determine the total statin content in red yeast rice. The assay can be applied for the determination of statin content for the regulatory control of red yeast rice products.

  20. Principles and application of high pressure-based technologies in the food industry.

    Science.gov (United States)

    Balasubramaniam, V M Bala; Martínez-Monteagudo, Sergio I; Gupta, Rockendra

    2015-01-01

    High pressure processing (HPP) has emerged as a commercially viable food manufacturing tool that satisfies consumers' demand for mildly processed, convenient, fresh-tasting foods with minimal to no preservatives. Pressure treatment, with or without heat, inactivates pathogenic and spoilage bacteria, yeast, mold, viruses, and also spores and extends shelf life. Pressure treatment at ambient or chilled temperatures has minimal impact on product chemistry. The product quality and shelf life are often influenced more by storage conditions and packaging material barrier properties than the treatment itself. Application of pressure reduces the thermal exposure of the food during processing, thereby protecting a variety of bioactive compounds. This review discusses recent scientific advances of high pressure technology for food processing and preservation applications such as pasteurization, sterilization, blanching, freezing, and thawing. We highlight the importance of in situ engineering and thermodynamic properties of food and packaging materials in process design. Current and potential future promising applications of pressure technology are summarized.

  1. Psychrotrophic lactic acid bacteria associated with production batch recalls and sporadic cases of early spoilage in Belgium between 2010 and 2014.

    Science.gov (United States)

    Pothakos, Vasileios; Taminiau, Bernard; Huys, Geert; Nezer, Carine; Daube, Georges; Devlieghere, Frank

    2014-11-17

    Between 2010 and 2014 several spoilage cases in Belgium occurring in retail foodstuffs prior to the end of shelf-life have been reported to our laboratory. Overall, seven cases involved strictly psychrotrophic lactic acid bacteria (LAB) contamination in packaged and chilled-stored food products. The products derived either from recalls of entire production batches or as specimens of sporadic spoilage manifestations. Some of these samples were returned to the manufacturing companies by consumers who observed the alterations after purchasing the products. The products covered a wide range of foodstuffs (i.e. meat, dairy, vegetable, egg products and composite food) and denoted different spoilage defects. However, the microbiota determined by means of 16S rRNA gene high-throughput sequencing analysis underpin few LAB genera (i.e. Leuconostoc, Lactobacillus, Weissella and Lactococcus), which are frequently encountered nowadays as specific spoilage organisms (SSO) albeit overlooked by mesophilic enumeration methods due to their strictly psychrotrophic character. The present study confirms the spreading of psychrotrophic LAB in Belgian food processing environments leading to unexpected spoilage, corroborating their spoilage dynamics and prevalence in all kinds of packaged and refrigerated foodstuffs in Northern Europe. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage.

    Science.gov (United States)

    Lücking, Genia; Stoeckel, Marina; Atamer, Zeynep; Hinrichs, Jörg; Ehling-Schulz, Monika

    2013-09-02

    Due to changes in the design of industrial food processing and increasing international trade, highly thermoresistant spore-forming bacteria are an emerging problem in food production. Minimally processed foods and products with extended shelf life, such as milk products, are at special risk for contamination and subsequent product damages, but information about origin and food quality related properties of highly heat-resistant spore-formers is still limited. Therefore, the aim of this study was to determine the biodiversity, heat resistance, and food quality and safety affecting characteristics of aerobic spore-formers in the dairy sector. Thus, a comprehensive panel of strains (n=467), which originated from dairy processing environments, raw materials and processed foods, was compiled. The set included isolates associated with recent food spoilage cases and product damages as well as isolates not linked to product spoilage. Identification of the isolates by means of Fourier-transform infrared spectroscopy and molecular methods revealed a large biodiversity of spore-formers, especially among the spoilage associated isolates. These could be assigned to 43 species, representing 11 genera, with Bacillus cereus s.l. and Bacillus licheniformis being predominant. A screening for isolates forming thermoresistant spores (TRS, surviving 100°C, 20 min) showed that about one third of the tested spore-formers was heat-resistant, with Bacillus subtilis and Geobacillus stearothermophilus being the prevalent species. Strains producing highly thermoresistant spores (HTRS, surviving 125°C, 30 min) were found among mesophilic as well as among thermophilic species. B. subtilis and Bacillus amyloliquefaciens were dominating the group of mesophilic HTRS, while Bacillus smithii and Geobacillus pallidus were dominating the group of thermophilic HTRS. Analysis of spoilage-related enzymes of the TRS isolates showed that mesophilic strains, belonging to the B. subtilis and B. cereus

  3. Preparation and characteristics of beta-glucan concentrate from brewer's yeast as the additive substance in foods

    Directory of Open Access Journals (Sweden)

    Ľubomír Mikuš

    2013-02-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE The brewer¢s yeast was used for preparation of concentrate with content of β-glucan. Hot water extraction (100°C, 5 hours and subsequently an alkaline extraction of sediment using 1 M NaOH at 90°C for 1 hour were used. β-glucan concentrate containing 59,15 % of β-glucan had good functional properties (water binding capacity 13,34 g water/1 g concentrate, fat binding capacity 6,86 g fat/1 g concentrate and indicated biological action too.  At concentration of 2 mg/ml DMSO (dimethylsulfoxid was viability of murine L1210 leukemic cells reduced to 76.15 %. When observing the antioxidant activity it was identified, that the lipid peroxidation in linoleic acid samples was decreased during the presence of β-glucan concentrate. These results and good sensory properties like a bright colour and the pleasant taste and smell indicate, that prepared β-glucan concentrate has a potential to be used to improve the health – beneficial substances in the foods.doi:10.5219/258

  4. Spoilage fungi and their mycotoxins in commercially marketed chestnuts.

    Science.gov (United States)

    Overy, David P; Seifert, Keith A; Savard, Marc E; Frisvad, Jens C

    2003-11-15

    A nationwide survey was carried out to assess mould spoilage of Castanea sativa nuts sold in Canadian grocery stores in 1998-99. Morphological and cultural characters, along with secondary metabolite profiles derived from thin-layer chromatography, were used to sort and identify fungi cultured from nut tissue. Three mycotoxigenic fungi dominated (Penicillium crustosum, Penicillium glabrum/spinulosum and Penicillium discolor) and were isolated at frequencies of 67.1%, 18.6% and 17.7%, respectively, from a total sample size of 350 nuts. Another mycotoxin producer, Aspergillus ochraceus was also isolated, but at a much lower frequency. HPLC and diode array detection were used to confirm the suspected presence of the mycotoxins penitrem A, chaetoglobosin A and C, emodin and ochratoxin A in extracts prepared from naturally infected nut tissue. To the best of our knowledge, this is the first time emodin has been found in a naturally contaminated food source.

  5. Development of a portable spectrofluorimeter for measuring the microbial spoilage of minced beef.

    Science.gov (United States)

    Aït-Kaddour, Abderrahmane; Boubellouta, Tahar; Chevallier, Isabelle

    2011-08-01

    The evaluation of meat spoilage is based on sensory and microbiological analyses. The disadvantages of sensory analyses are its reliance on highly trained panelists, a procedure which makes it costly and unattractive for routine analyses. Moreover, the classical microbiological analyses are lengthy, costly and destructive. In this study a portable fluorescence spectrometer was tested to quantify minced beef spoilage. This study was investigated on samples stored aerobically and under vacuum at 5 and 15 °C. Total viable counts (TVC), Pseudomonas, lactic acid bacteria, and yeast/molds counts were investigated with classical culture methods. Fluorescence spectra were recorded on the same samples using different excitation LEDs (280, 320, and 380 nm). PLS-R with leave-one-out cross validation was used to perform calibration and validation models. The PLS-R models presented good R²(CV) (0.50-0.99) and ratio of standard deviation (RPD(CV): 1.40-8.95) values after cross-validation. It could be concluded that portable spectrofluorimeters are promising devices to evaluate spoilage in minced beef.

  6. The Influence of Brewer’s Yeast Autolysate and Lactic Acid Bacteria on the Production of a Functional Food Additive Based on Beetroot Juice Fermentation

    Directory of Open Access Journals (Sweden)

    Josip Baras

    2004-01-01

    Full Text Available The importance of »functional foods« in the world is increasing, and the procedures for their production are under intense development. The goal of this paper is to optimise the production of a functional food additive based on beetroot juice (Beta vulgaris L. using brewer’s yeast autolysate. In order to improve the nutritive properties of the product and to preserve it, the possibility of beetroot juice fermentation using a Lactobacillus species has been investigated. Comparative investigations of three bacteria cultures (L. plantarum A112, L. acidophilus BGSJ15-3 and L. acidophilus NCDO1748 during fermentation in two media, beetroot juice and a mixture of beetroot juice with an autolysate of brewer´s yeast, have been performed. The poorest fermentative activity and growth in both substrates was observed using the L. acidophilus NCDO1748 culture. The two cultures demonstrated better fermentative activity in the mixture of tested substrates, while acidifying activity (production of lactic acid and a decrease in pH of the L. acidophilus BGSJ15-3 culture was considerably better than that of the L. plantarum A112 culture. L. plantarum A112 culture showed better growth than L. acidophilus BGSJ15-3. From the results obtained, it has been concluded that the L. plantarum A112 and L. acidophilus BGSJ15-3 can be successfully used for fermentation of the mixture of beetroot juice and brewer’s yeast autolysate in order to obtain a functional food additive.

  7. Food availability and accessibility in the local food distribution ...

    African Journals Online (AJOL)

    Spaza shops stocked sweetened products, basic staples and processed food. ... not kept because of spoilage, space limitations, storage issues and lack of transport. ... with residents indicated a need for fruit, vegetables and meat outlets within ...

  8. PCR detection of psychrophilic Clostridium spp. causing 'blown pack' spoilage of vacuum-packed chilled meats.

    Science.gov (United States)

    Broda, D M; Boerema, J A; Bell, R G

    2003-01-01

    To develop a practical molecular procedure that directly, without isolation, and specifically detects the presence of clostridia which cause 'blown pack' spoilage of vacuum-packed meat. Primer sets and PCR amplification procedures were developed that detect the presence of 16S rDNA gene and/or 16S-23S rDNA internal transcribed spacer fragments of 'blown pack' causing clostridia in meat. The specificity of the developed procedures was evaluated with DNA obtained from close phylogenetic neighbours of 'blown pack' causing clostridia, food clostridia and common meat spoilage microorganisms. The sensitivity of detection was assessed in non-enriched and low-temperature-enriched beef mince inoculated with serially diluted pure cultures of Clostridium estertheticum DSMZ 8809T and Cl. gasigenes DB1AT. The efficacy of detection procedures was evaluated for naturally contaminated vacuum-packed meat samples. Three primer sets, 16SE, 16SDB and EISR, produced amplicons of the expected size with DNA templates from target clostridia, but failed to yield PCR products with DNAs from any other microorganisms tested. With 16SE and 16SDB primers, minimum levels of detection were 104 CFU g(-1) for non-enriched, and 102 CFU g(-1) for enriched meat samples. Based on the established specificity of these primers, as well as DNA sequencing of amplicons, Cl. gasigenes was confirmed as the causative agent of 'blown pack' spoilage in two packs, and Cl. estertheticum as the causative agent in the third. The developed method can be used for rapid detection of 'blown pack' causing clostridia in commercial blown packs, or following low temperature enrichment, for detection of these microorganisms in meat containing as few as 100 clostridial cells per gram. The paper reports practical procedures that can be used for rapid confirmation of the causative agents of clostridial 'blown pack' spoilage in commercial spoiled packs, or for detection of psychrophilic clostridia in epidemiological trace back of

  9. Xanthine oxidase biosensor for monitoring meat spoilage

    Science.gov (United States)

    Vanegas, D. C.; Gomes, C.; McLamore, E. S.

    2014-05-01

    In this study, we have designed an electrochemical biosensor for real-time detection of specific biomarkers of bacterial metabolism related to meat spoilage (hypoxanthine and xanthine). The selective biosensor was developed by assembling a `sandwich' of nanomaterials and enzymes on a platinum-iridium electrode (1.6 mm tip diameter). The materials deposited on the sensor tip include amorphous platinum nanoclusters (i.e. Pt black), reduced graphene oxide, nanoceria, and xanthine oxidase. Xanthine oxidase was encapsulated in laponite hydrogel and used for the biorecognition of hypoxanthine and xanthine (two molecules involved in the rotting of meat by spoilage microorganisms). The developed biosensor demonstrated good electrochemical performance toward xanthine with sensitivity of 2.14 +/- 1.48 μA/mM, response time of 5.2 +/- 1.5 sec, lower detection limit of 150 +/- 39 nM, and retained at least 88% of its activity after 7 days of continuous use.

  10. Comparison of three Bacillus amyloliquefaciens strains growth behaviour and evaluation of the spoilage risk during bread shelf-life.

    Science.gov (United States)

    Valerio, F; Di Biase, M; Huchet, V; Desriac, N; Lonigro, S L; Lavermicocca, P; Sohier, D; Postollec, F

    2015-02-01

    This study aims at the characterisation of growth behaviour of three strains of Bacillus amyloliquefaciens, isolated from ropy bread (ATCC8473), wheat grain (ISPA-S109.3) and semolina (ISPA-N9.1) to estimate rope spoilage risk in pan bread during shelf-life using the Sym'Previus tool. Cardinal values and growth/no growth boundaries were determined in broth, while artificial spore inoculations were performed in dough for various pan bread recipes to compare experimental counts with in silico growth simulations. Finally, two storage scenarios were tested to determine the probability to reach a spoilage threshold during bread shelf-life. Similarly to the safety criteria fixed for Listeria monocytogenes contamination in foodstuff complying with EC regulation, a potential rope spoilage threshold was arbitrary fixed at 5 log CFU/g for B. amyloliquefaciens. This study further underlines a higher rope spoilage potential of the ISPA strains as compared to the ATCC strain, thus emphasizing the interest to characterise both wild strains and reference strain to account for biological variability. In conclusion, this study showed that available decision making tools which are largely recognized to predict behaviour of pathogenic strains, shall also be used with spoilage strains to help maintain food quality and extend shelf-life.

  11. Investigation of spoilage in saveloy samples inoculated with four potential spoilage bacteria

    DEFF Research Database (Denmark)

    Holm, Esben Skibsted; Schäfer, A.; Koch, A.G.

    2013-01-01

    Sliced saveloy samples were inoculated with monocultures of four potential spoilage bacteria and studied during a four week storage period. The objective was to investigate the resulting changes in the composition of Volatile Organic Compounds (VOCs) and the sensory quality of the product. Based...... on the sensory scores and the VOC composition Brochothrix thermosphacta, Chryseomonas luteola and Carnobacterium maltaromaticum were found to have a high spoilage potential in saveloy samples subjected to consumer simulated storage during the fourth week. Inoculation with Leuconostoc carnosum only resulted...... in a low level of spoilage. The sensory changes in the saveloy samples were modeled based on the VOC composition using Partial Least Squares Regression. The changes in the six sensory descriptors were closely related to the amount of diacetyl, acetoin, 2- and 3-methylbutanol, 2- and 3-methylbutanal and 2...

  12. Beer spoilage bacteria and hop resistance.

    Science.gov (United States)

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  13. Evaluation of a novel dry sheet culture method (Sanita-kun(R)) for rapid enumeration of yeasts and molds in foods.

    Science.gov (United States)

    Teramura, Hajime; Ushiyama, Masashi; Ogihara, Hirokazu

    2015-02-01

    Sanita-kun(R) Yeasts and Molds (SkYM), a novel dry sheet culture method for rapid enumeration of fungi, has been developed. This re-hydrated plate consists of a unique adhesive sheet, non-woven fabric coated with nutrients, antibiotic, water absorption polymer and uniquely synthesized 2-(2-methoxyphenyl)-3-(4-nitrophenyl)-5-phenyl-tetrazolium chloride for rapid enumeration of yeasts and molds. When SkYM was assessed using 37 microbes including 33 fungal strains, 29 fungal strains (87.9%) were formed red colored colonies within 48h whereas all yeasts and molds tested formed colonies within 72 h. All tested bacteria failed to grow. The SkYM method, with both 48 and 72 h of incubation, was compared with Dichloran Rose-Bengal Chloramphenicol Agar (DRBC; 5 days) according to ISO 21527-1, and with 3M Petrifilm YM (PYM; 5 days) and Nissui Compact Dry YM (CDYM; 5 days) commercially available dry culture methods using 100 naturally contaminated foods. The linear correlation coefficients of SkYM (48h) with DRBC, PYM and CDYM were 0.921, 0.929 and 0.947, respectively, whereas the linear correlation coefficients between SkYM (72 h) and DRBC, SkYM (72h) and PYM, SkYM (72h) and CDYM were 0.948, 0.877 and 0.911, respectively. These results demonstrated that SkYM was a useful alternative for rapid enumeration of yeasts and molds in foods.

  14. 21 CFR 172.325 - Bakers yeast protein.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is the...

  15. Preventing spoilage of poultry meat: focus on spoilage microorganisms and their control

    Science.gov (United States)

    The shelf-life of fresh poultry meat is determined by the level of contamination of processed meat by spoilage microorganisms, storage temperature and storage atmosphere. This chapter looks at the various ways by which to extend the shelf-life of poultry meat: vacuum and modified atmosphere packagin...

  16. Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

    OpenAIRE

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.; Verstrepen, Kevin J.; Lievens, Bart

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic a...

  17. Microbial, physical-chemical and sensory spoilage during the refrigerated storage of cooked pork loin processed by the sous vide method.

    Science.gov (United States)

    Díaz, Pedro; Nieto, Gema; Garrido, María Dolores; Bañón, Sancho

    2008-10-01

    The aim was to study spoilage during the refrigerated storage of cooked pork loin processed by the sous vide method. Samples were packaged under vacuum into polyamide-polypropylene pouches, cooked at an oven temperature/time of 70°C/12h, chilled at 3°C and stored at 2°C for 0, 5 or 10 weeks. Microbial (psychrotrophs, lactic acid bacteria, Enterobacteriaceae, moulds and yeasts), physical-chemical (pH, water activity, TBARS, acidity, L(∗)a(∗)b(∗) colour, texture profile analysis and shear force) and sensory (appearance, odour, flavour, texture and acceptance) parameters were determined. The results showed that sensory spoilage preceded microbiological spoilage of sous vide pork loin. Counts bellow 1logcfu/g of psychrotrophs, anaerobic psychrotrophs, Enterobacteriaceae and lactic acid bacteria were detected in any control week, while moderate counts (2-3logcfu/g) of moulds and yeasts were found. Minor changes in water activity, lipid oxidation, CIELab colour, hardness, cohesiveness or gumminess were associated with spoilage of pork loin, only decreases of lactic acid, springiness and shear force were observed. The pork loin was unacceptable after 10 weeks. This loss of acceptance was mainly due to the deterioration of meaty flavour and odour, although the loss of appearance, juiciness and firmness also contributed. Moderate warmed-over and rancidity were detected. The sensory analysis was the most effective method for determining the shelf life of the sous vide pork-based dishes.

  18. Bacterial Ecology of Fermented Cucumber Rising pH Spoilage as Determined by Nonculture-Based Methods.

    Science.gov (United States)

    Medina, Eduardo; Pérez-Díaz, Ilenys M; Breidt, Fred; Hayes, Janet; Franco, Wendy; Butz, Natasha; Azcarate-Peril, María Andrea

    2016-01-01

    Fermented cucumber spoilage (FCS) characterized by rising pH and the appearance of manure- and cheese-like aromas is a challenge of significant economical impact for the pickling industry. Previous culture-based studies identified the yeasts Pichia manshurica and Issatchenkia occidentalis, 4 Gram-positive bacteria, Lactobacillus buchneri, Lactobacillus parrafaraginis, Clostridium sp., and Propionibacterium and 1 Gram-negative genus, Pectinatus, as relevant in various stages of FCS given their ability to metabolize lactic acid. It was the objective of this study to augment the current knowledge of FCS using culture-independent methods to microbiologically characterize commercial spoilage samples. Ion Torrent data and 16S rRNA cloning library analyses of samples collected from commercial fermentation tanks confirmed the presence of L. rapi and L. buchneri and revealed the presence of additional species involved in the development of FCS such as Lactobacillus namurensis, Lactobacillus acetotolerans, Lactobacillus panis, Acetobacter peroxydans, Acetobacter aceti, and Acetobacter pasteurianus at pH below 3.4. The culture-independent analyses also revealed the presence of species of Veillonella and Dialister in spoilage samples with pH above 4.0 and confirmed the presence of Pectinatus spp. during lactic acid degradation at the higher pH. Acetobacter spp. were successfully isolated from commercial samples collected from tanks subjected to air purging by plating on Mannitol Yeast Peptone agar. In contrast, Lactobacillus spp. were primarily identified in samples of FCS collected from tanks not subjected to air purging for more than 4 mo. Thus, it is speculated that oxygen availability may be a determining factor in the initiation of spoilage and the leading microbiota.

  19. Bacterial Ecology of Fermented Cucumber Rising pH Spoilage as Determined by Non-Culture Based Methods

    Science.gov (United States)

    Medina, Eduardo; Pérez-Díaz, Ilenys M.; Breidt, Fred; Hayes, Janet; Franco, Wendy; Butz, Natasha; Azcarate-Peril, María Andrea

    2016-01-01

    Fermented cucumber spoilage (FCS) characterized by rising pH and the appearance of manure and cheese like aromas is a challenge of significant economical impact for the pickling industry. Previous culture based studies identified the yeasts Pichia manshurica and Issatchenkia occidentalis, four gram positive bacteria, Lactobacillus buchneri, Lactobacillus parrafaraginis, Clostridium sp. and Propionibacterium and one gram-negative genus, Pectinatus as relevant in various stages of FCS given their ability to metabolize lactic acid. It was the objective of this study to augment the current knowledge of FCS using culture independent methods to microbiologically characterize commercial spoilage samples. Ion Torrent data and 16S rRNA cloning library analyses of samples collected from commercial fermentation tanks confirmed the presence of L. rapi and L. buchneri and revealed the presence of additional species involved in the development of FCS such as Lactobacillus namurensis, Lactobacillus acetotolerans, Lactobacillus panis, Acetobacter peroxydans, Acetobacter aceti, and Acetobacter pasteurianus at pH below 3.4. The culture independent analyses also revealed the presence of species of Veillonella and Dialister in spoilage samples with pH above 4.0 and confirmed the presence of Pectinatus spp. during lactic acid degradation at the higher pH. Acetobacter spp. were successfully isolated from commercial samples collected from tanks subjected to air purging by plating on Mannitol Yeast Peptone agar. In contrast, Lactobacillus spp. were primarily identified in samples of FCS collected from tanks not subjected to air purging for more than 4 months. Thus, it is speculated that oxygen availability may be a determining factor in the initiation of spoilage and the leading microbiota. Practical Application Understanding of the underlying microbiology and biochemistry driving FCS is essential to enhancing the sodium chloride (NaCl)-free cucumber fermentation technology and in

  20. 21 CFR 73.355 - Phaffia yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells...

  1. Scientific Opinion on ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2012-11-01

    Full Text Available The Panel on Food Additives and Nutrient Sources added to Food (ANS provides a scientific opinion re-evaluating the safety of ChromoPrecise® cellular bound chromium yeast added for nutritional purposes as a source of chromium in food supplements and the bioavailability of chromium from this source. ChromoPrecise® is a yeast preparation with an enriched trivalent chromium content, obtained by culture of Saccharomyces cerevisiae in the presence of chromium chloride. A daily intake of 100 µg chromium(III. There are limited data on the nature and identity of the organic chromium(III compounds contained in chromium-enriched yeast and on their toxicokinetic and toxicodynamic behaviour in the body. Overall, the Panel concluded that the bioavailability in man of chromium from chromium-enriched yeast is potentially up to approximately ten times higher than that of chromium from chromium chloride. A NOAEL of 2500 mg/kg bw/day ChromoPrecise® was identified in a 90-day feeding study in rats; no evidence of adverse effects of chromium yeasts were reported in other animal studies investigating the effects of dietary supplementation with chromium yeast. ChromoPrecise® chromium yeast was non-genotoxic in a range of in vitro genotoxicity studies. Although no information was available on the chronic toxicity, carcinogenicity or reproductive toxicity of ChromoPrecise® chromium yeast, the ANS Panel has previously concluded that trivalent chromium is not carcinogenic, and limited data on other chromium yeasts provide no evidence of an effect on reproductive endpoints. No adverse effects have been reported in clinical efficacy trials with chromium yeasts. The Panel concluded that the use of ChromoPrecise® chromium yeast in food supplements is not of concern, despite the lack of data on the nature and identity of the organic chromium(III compounds contained in the product, provided that the intake does not exceed 250 μg/day, as recommended by the WHO.

  2. 仙人掌醇溶物的超声波辅助提取及其对食品腐败菌的抑制作用研究%Study on Ultrasound-assisted Extraction of the Alcohol Soluble Substance from Opuntia and Its Antimicrobial Activity on Food Spoilage Bacteria

    Institute of Scientific and Technical Information of China (English)

    豁银强; 郑建荣; 汤尚文; 吴进菊

    2012-01-01

    为开发仙人掌在食品工业上的应用,尤其是仙人掌醇溶物在食品防腐和押菌上的应用,采用超声波辅助乙醇提取仙人掌醇溶物,通过正交试验对主要工艺参数进行优化,确定最佳提取工艺,并通过体外抑菌试验分析其抑菌活性。结果表明:超声波辅助乙醇提取仙人掌醇溶物的最佳工艺为粉碎度60-80目,乙醇体积分数75%,料液比1:20,超声波提取时间30min,在此工艺条件下,仙人掌醇溶物得率为15.63%;体外抑菌试验表明,仙人掌醇溶物对细菌(大肠杆菌)、霉菌(黄曲霉)和酵母菌(鲁氏酵母)等常见食品腐败菌都有良好的抑制作用。%In order to explore the application of Opuntia stricta in food industry,especially for its application in antimicrobiai activity,the main technical parameters of the ultrasonic-assisted extraction of the alcohol soluble substance from opuntia were optimized by the orthogonal experiment, and its antimicrobial activity were analyzed. The best technical parameters were as follows: fragmentation degree was 60-80 mesh,the volume fraction of ethanol was 75%, the proportion of material to liquid was 1:20, time of Ultrasonic extraction was 30 min. In this condition,the yield of alcohol soluble substance from opuntia was 15.63%. By using filter paper diffusion method,inhibitory activity of alcohol soluble substance from opuntia on food spoilage bacteria:bacteria (E. coli), mold (Aspergillus flavus ) and yeast(Saccharomyces rouxii ) was studied, and the minimal concentration(MIC)was determined by concentration gradient method. Results indicated that alcohol soluble substance of opuntia had effective inhibition on three kinds of tested bacteria.

  3. Brettanomyces bruxellensis yeasts: impact on wine and winemaking.

    Science.gov (United States)

    Agnolucci, Monica; Tirelli, Antonio; Cocolin, Luca; Toffanin, Annita

    2017-09-21

    Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed. Chemical, physical and biological tools, devised for the prevention and control of such a detrimental species during winemaking are also presented. Finally, the mini-review identifies future research areas relevant to the improvement of wine safety and sensory profiles.

  4. Using Multispectral Imaging for Spoilage Detection of Pork Meat

    DEFF Research Database (Denmark)

    Dissing, Bjørn Skovlund; Papadopoulou, Olga S.; Tassou, Chrysoula

    2013-01-01

    The quality of stored minced pork meat was monitored using a rapid multispectral imaging device to quantify the degree of spoilage. Bacterial counts of a total of 155 meat samples stored for up to 580 h have been measured using conventional laboratory methods. Meat samples were maintained under two...... different storage conditions: aerobic and modified atmosphere packages as well as under different temperatures. Besides bacterial counts, a sensory panel has judged the spoilage degree of all meat samples into one of three classes. Results showed that the multispectral imaging device was able to classify 76...... for the detection of spoilage degree in minced pork meat....

  5. Probiotics: a comprehensive approach toward health foods.

    Science.gov (United States)

    Sharma, Monika; Devi, Mridula

    2014-01-01

    Food products containing probiotics and prebiotics are an important development in Health foods, which enhance health promoting microbial flora in the intestine. Probiotic refers to viable microorganism that promotes or support a beneficial balance of the autochthonous microbial population of the gastrointestinal tract. A number of genera of bacteria (and yeast) are used as probiotics, including Lactobacillus, Leuconostoc, Pediococcus, Bifidobacterium, Saccharomyces, and Enterococcus, but the main species believed to have probiotic characteristics are Lactobacillus acidophilus, Bifidobacterium spp., and L. casei. Probiotics can reduce diarrheal incidence, lactose intolerance, lower serum cholesterol, stimulate the immune system, control infections, act as antibiotics, suppress tumors, and protect against colon or bladder cancer by maintaining a healthy intestinal microflora balance. Lactic acid bacteria produce biopreservatives such as lactic acid, hydrogen peroxide, and bacteriocins that are used to retard both spoilage and the growth of pathogenic bacteria. Food, particularly dairy products are considered as an ideal vehicle for delivering probiotic bacteria to the human gastrointestinal tract. Cereals being rich source of prebiotics such as β-glucan and arabinoxylan, galacto-, and fructooligosaccharides are considered for development of probiotic foods. Good manufacturing practices must be applied in the manufacture of probiotic foods with quality assurance, and shelf-life conditions established.

  6. Classification of photobacteria associated with spoilage of fish products by numerical taxanomy and pyrolysis mass spectrometry

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Manfio, G.P.; Goodfellow, M.

    1997-01-01

    , from spoiled products and by using a specific detection method. The data were analysed using the similarity coefficient and the unweighted pair-group with arithmetic averages algorithm. In addition twenty-six of the fish isolates and five reference strains were analysed by Curie-point pyrolysis mass...... sub-groups. One sub-group of psychrotolerant P. phosphoreum strains, which was selected in modified atmosphere packed fish stored at low temperature, was also highlighted using each of the methods. The importance of classifying food spoilage bacteria has been shown and a simple key generated...

  7. Psychrotrophic Clostridia Causing Spoilage in Cooked Meat and Poultry Products

    National Research Council Canada - National Science Library

    Kalinowski, Robin M; Tompkin, R. Bruce

    1999-01-01

    ...°C or below, and typically given use by dates of greater than 50 days. While of rare, sporadic occurrence, an unpleasant spoilage characterized by strong H2S odor and gas production has been observed in these products...

  8. Enriched cultures of lactic acid bacteria from selected Zimbabwean fermented food and medicinal products with potential as therapy or prophylaxis against yeast infections

    Directory of Open Access Journals (Sweden)

    Alec Chabwinja

    2017-10-01

    Full Text Available Objective: To investigate the antifungal activity of crude cultures of putative strains of lactic acid bacteria (LAB from a selection of Zimbabwean traditional and commercial food/ medicinal products against yeasts (strains of environmental isolates of Candida albicans and Rhodotorula spp.. Methods: Cultures of putative LAB from our selection of fermented products were enriched in de Man, Rogosa and Sharpe and isolated on de Man, Rogosa and Sharpe agar. Results: The crude microbial cultures from the products that showed high antifungal activities (zone of inhibition, mm were as follows: supernatant-free microbial pellet (SFMP from an extract of Melia azedarach leaves [(27.0 ± 2.5 mm] > cell-free culture supernatants (CFCS from Maaz Dairy sour milk and Mnandi sour milk [approximately (26.0 ± 1.8/2.5 mm] > CFCS and SFMP from Amansi hodzeko [(25.0 ± 1.5 mm] > CFCS from Parinari curatellifolia fruit [(24.0 ± 1.5 mm], SFMP from Parinari curatellifolia fruit [(24.0 ± 1.4 mm] and SFMP from mahewu [(20.0 ± 1.5 mm]. These cultures also showed high tolerance to acidic conditions (pH 4.0 and pH 5.0. However, culture from WAYA LGG (shown elsewhere to harbour antimicrobial activities showed no antifungal activity. The LAB could have inhibited yeasts by either competitive exclusion or the release of antimicrobial metabolites. Conclusions: Our cultures of LAB from a selection of Zimbabwean fermented products, especially Ziziphus mauritiana and fermented milk products have great potential for use as antifungal probiotics against yeast infections. Studies are ongoing to determine the exact mechanisms that are employed by the putative LAB to inhibit Candida albicans.

  9. Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review

    OpenAIRE

    D. Dave; Abdel E. Ghaly

    2011-01-01

    Problem statement: Extremely perishable meat provides favorable growth condition for various microorganisms. Meat is also very much susceptible to spoilage due to chemical and enzymatic activities. The breakdown of fat, protein and carbohydrates of meat results in the development of off-odors, off-flavor and slim formation which make the meat objectionable for human consumption. It is, therefore, necessary to control meat spoilage in order to increase its shelf life and maintain its nutrition...

  10. Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation--a review.

    Science.gov (United States)

    Al Bulushi, Ismail; Poole, Susan; Deeth, Hilton C; Dykes, Gary A

    2009-04-01

    Biogenic amines are non-volatile amines formed by decarboxylation of amino acids. Although many biogenic amines have been found in fish, only histamine, cadaverine, and putrescine have been found to be significant in fish safety and quality determination. Despite a widely reported association between histamine and scombroid food poisoning, histamine alone appears to be insufficient to cause food toxicity. Putrescine and cadaverine have been suggested to potentiate histamine toxicity. With respect to spoilage on the other hand, only cadaverine has been found to be a useful index of the initial stage of fish decomposition. The relationship between biogenic amines, sensory evaluation, and trimethylamine during spoilage are influenced by bacterial composition and free amino acid content. A mesophilic bacterial count of log 6-7 cfu/g has been found to be associated with 5 mg histamine/100 g fish, the Food and Drug Administration (FDA) maximum allowable histamine level. In vitro studies have shown the involvement of cadaverine and putrescine in the formation of nitrosamines, nitrosopiperidine (NPIP), and nitrosopyrrolidine (NPYR), respectively. In addition, impure salt, high temperature, and low pH enhance nitrosamine formation, whereas pure sodium chloride inhibits their formation. Understanding the relationships between biogenic amines and their involvement in the formation of nitrosamines could explain the mechanism of scombroid poisoning and assure the safety of many fish products.

  11. Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices.

    Science.gov (United States)

    Aneja, Kamal Rai; Dhiman, Romika; Aggarwal, Neeraj Kumar; Aneja, Ashish

    2014-01-01

    Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed.

  12. Emerging Preservation Techniques for Controlling Spoilage and Pathogenic Microorganisms in Fruit Juices

    Directory of Open Access Journals (Sweden)

    Kamal Rai Aneja

    2014-01-01

    Full Text Available Fruit juices are important commodities in the global market providing vast possibilities for new value added products to meet consumer demand for convenience, nutrition, and health. Fruit juices are spoiled primarily due to proliferation of acid tolerant and osmophilic microflora. There is also risk of food borne microbial infections which is associated with the consumption of fruit juices. In order to reduce the incidence of outbreaks, fruit juices are preserved by various techniques. Thermal pasteurization is used commercially by fruit juice industries for the preservation of fruit juices but results in losses of essential nutrients and changes in physicochemical and organoleptic properties. Nonthermal pasteurization methods such as high hydrostatic pressure, pulsed electric field, and ultrasound and irradiations have also been employed in fruit juices to overcome the negative effects of thermal pasteurization. Some of these techniques have already been commercialized. Some are still in research or pilot scale. Apart from these emerging techniques, preservatives from natural sources have also shown considerable promise for use in some food products. In this review article, spoilage, pathogenic microflora, and food borne outbreaks associated with fruit juices of last two decades are given in one section. In other sections various prevention methods to control the growth of spoilage and pathogenic microflora to increase the shelf life of fruit juices are discussed.

  13. Sodium Reduction and Its Effect on Food Safety, Food Quality, and Human Health

    National Research Council Canada - National Science Library

    Doyle, Marjorie Ellin; Glass, Kathleen A

    2010-01-01

    ... organizations recommend that sodium intake be significantly decreased. Traditionally, salt (sodium chloride) has been used as a food preservative that kills or limits the growth of foodborne pathogens and spoilage organisms by decreasing water activity...

  14. Fermentation of Apple Juice with a Selected Yeast Strain Isolated from the Fermented Foods of Himalayan Regions and Its Organoleptic Properties

    Science.gov (United States)

    Kanwar, S. S.; Keshani

    2016-01-01

    Twenty-three Saccharomyces cerevisiae strains isolated from different fermented foods of Western Himalayas have been studied for strain level and functional diversity in our department. Among these 23 strains, 10 S. cerevisiae strains on the basis of variation in their brewing traits were selected to study their organoleptic effect at gene level by targeting ATF1 gene, which is responsible for ester synthesis during fermentation. Significant variation was observed in ATF1 gene sequences, suggesting differences in aroma and flavor of their brewing products. Apple is a predominant fruit in Himachal Pradesh and apple cider is one of the most popular drinks all around the world hence, it was chosen for sensory evaluation of six selected yeast strains. Organoleptic studies and sensory analysis suggested Sc21 and Sc01 as best indigenous strains for soft and hard cider, respectively, indicating their potential in enriching the local products with enhanced quality. PMID:27446050

  15. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains.

    Science.gov (United States)

    Greppi, Anna; Krych, Łukasz; Costantini, Antonella; Rantsiou, Kalliopi; Hounhouigan, D Joseph; Arneborg, Nils; Cocolin, Luca; Jespersen, Lene

    2015-07-16

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best growing species. A phytase coding gene of P. kudriavzevii (PHYPk) was identified and its expression was studied during growth by RT-qPCR. The expression level of PHYPk was significantly higher in phytate-medium, compared to phosphate-medium. In phytate-medium expression was seen in the lag phase. Significant differences in gene expression were detected among the strains as well as between the media. A correlation was found between the PHYPk expression and phytase extracellular activity.

  16. 水产食品特定腐败菌与货架期的预测和延长%Specific spoilage organisms from aquatic product and prediction & prolongation of the shelf life

    Institute of Scientific and Technical Information of China (English)

    杨宪时; 许钟; 肖琳琳

    2004-01-01

    Fresh fish and lightly preserved fish products are welcome by the global market, however, they are also among the most perishable food products. The research on specific spoilage organisms (SSO) reveals the spoilage process of aquatic product. This paper reviews the current knowledge (past ten years) on SSO of fresh fish and lightly preserved fish products with particular emphasis on characteristics of SSO and how to apply this concept to determine, predict and extend the shelf life of aquatic product. During storage, the microflora changes owing to different abilities of the microorganisms to tolerate the preservation conditions. SSO is defined as special microorganisms which can increase rapidly during preservation and has the ability to produce off- odours and off- flavours associated with spoilage, and spoilage metabolites. Identification of an SSO relies on comparison of the sensory and chemical characteristics of spoiled product with those of isolates from the spoilage microflora. Generally, the SSO of fresh fish may be a single species or genus, but the ones of lightly preserved fish products will be more complex. One exciting area for use of SSO aims to obtain quantitative knowledge about probable behavior of SSO and their function during the progression of spoilage. Thus mathematical models on the growth of SSO are established to evaluate the quality lost degree of product, which provide a sound information for the rational development of devices to monitor loss of products shelf life. Models for the growth of Pseudomonas spp, S. putrefaciens, P. phosphoreum have been established, and validated for shelf life prediction of seafood successfully. Another application field of SSO intends to develop the techniques to prolong the shelf life of food products by inhibiting SSO targetedly. Targeted inhibition of spoilage bacteria during preservation reduces their growth and results in a significant extension of shelf life in despite of the activity of non

  17. Characterization of the spoilage lactic acid bacteria in "sliced vacuum-packed cooked ham".

    Science.gov (United States)

    Kalschne, Daneysa Lahis; Womer, Rute; Mattana, Ademir; Sarmento, Cleonice Mendes Pereira; Colla, Luciane Maria; Colla, Eliane

    2015-03-01

    The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc / Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus , following by Lactobacillus sakei and Leuconostoc mesentereoides ; the Enterococcus sp. was not present in the samples.

  18. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    Science.gov (United States)

    Espitia, Paula Judith Perez; Soares, Nilda de Fátima Ferreira; Teófilo, Reinaldo F.; Vitor, Débora M.; Coimbra, Jane Sélia dos Reis; de Andrade, Nélio José; de Sousa, Frederico B.; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves

    2013-01-01

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na4P2O7), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  19. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”

    Directory of Open Access Journals (Sweden)

    Daneysa Lahis Kalschne

    2015-03-01

    Full Text Available The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc/Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus, following by Lactobacillus sakei and Leuconostoc mesentereoides; the Enterococcus sp. was not present in the samples.

  20. Influence of type of microorganism, food ingredients and food properties on high-pressure carbon dioxide inactivation of microorganisms.

    Science.gov (United States)

    Garcia-Gonzalez, L; Geeraerd, A H; Elst, K; Van Ginneken, L; Van Impe, J F; Devlieghere, F

    2009-02-28

    High pressure carbon dioxide (HPCD) treatment is currently considered as an attractive non-thermal process for preserving food. Industrial application of this technique requires, among others, systematic (quantitative) data on the inactivation of food relevant pathogenic and spoilage microorganisms, and in-depth information on the effect that the composition and the properties of a food matrix have on the inactivation efficacy. The first objective of this study, therefore, is to evaluate and compare the HPCD susceptibility of several food pathogens and spoilage microorganisms under the same treatment conditions. In the second part, the influence of different food components (NaCl, oil, starch, whey protein and emulsifier) and food properties (pH, fluid viscosity and water activity) on the inactivation efficacy of HPCD was determined. For the first aim, a range of Gram-negative and Gram-positive bacteria, yeasts and spores were treated with pressurized CO(2) at 10.5 MPa and 35 degrees C during 20 min. Bacterial susceptibility towards HPCD treatments followed the sequence Gram-negative approximately Gram-positive>yeasts>spores and appeared to be related to the acid resistance of the organisms. To study the effect of different food compounds on HPCD inactivation, the reduction degree of Pseudomonas fluorescens was determined in media with and without these components at 10.5 MPa and 35 degrees C after 5 or 20 min, depending on the tested component. NaCl and the emulsifiers Tween 80 and sucrose stearate enhanced bacterial reduction, while oil reduced the bactericidal efficacy of HPCD. Starch and whey proteins did not influence inactivation. Finally, the influence of pH, fluid viscosity and water activity was investigated by determining the reduction of P. fluorescens at 10.5 MPa and 35 degrees C in suspensions from which the pH, viscosity and water activity were adjusted with respectively NaOH or HCl, gelatin or polyethylene glycol, and sucrose, NaCl or glycerol

  1. Oxygen absorbers in food preservation: a review

    OpenAIRE

    Cichello, Simon Angelo

    2014-01-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen imperme...

  2. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    for prolonging shelf-life of food without the addition of specific preservatives. Increased interest in the use of these bacteria for biopreservation has led to identification of a range of potent strains, and in addition, isolation and identification of various antifungal metabolites produced by these cultures......Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... defined interaction medium (CDIM) was developed allowing growth of protective Lb. paracasei and P. freudenreichii subsp. shermaniii as well as the spoilage fungi, Penicillium spp., Rhodotorula mucilaginosa and Debaryomyces hansenii isolated from fermented dairy products. Lb. paracasei and P...

  3. Characterization of the bacterial spoilage flora in marinated pork products.

    Science.gov (United States)

    Schirmer, B C; Heir, E; Langsrud, S

    2009-06-01

    To investigate the microbiota in marinated, vacuum-packed pork and to characterize isolated bacteria with regard to their spoilage potential. Laboratory marinated pork meat and commercial products from three Norwegian producers were examined. Lactic acid bacteria dominated in all products at the expiration date. The flora in marinated products was similar only for products from the same plant. Strains of Lactobacillus algidus, Lactobacillus sakei, Lactobacillus curvatus, Carnobacterium divergens, Carnobacterium maltaromaticum, Leuconostoc mesenteroides, Leuconostoc carnosum and Leuconostoc sp. were isolated and tested for their spoilage potential. Samples inoculated with Lact. algidus or Leuc. mesenteroides were rated as most unpleasant by randomly selected people. A sensory panel scored samples with Lact. algidus highest for sour and intense odour. Lactobacillus algidus was found in products from two out of three production plants. Culture-independent DNA isolation confirmed that cultivation on Blood agar at 20 degrees C yielded a representative picture of the total flora in marinated flintsteak. Lactobacillus algidus may be an important, but underestimated, spoilage organism that needs to be focused on more when spoilage of vacuum-packed meat is considered. Routine microbial testing may have to be revised in order to detect spoilage LAB that are unable to grow under currently used conditions.

  4. Bacterial spoilage of meat and cured meat products.

    Science.gov (United States)

    Borch, E; Kant-Muermans, M L; Blixt, Y

    1996-11-01

    The influence of environmental factors (product composition and storage conditions) on the selection, growth rate and metabolic activity of the bacterial flora is presented for meat (pork and beef) and cooked, cured meat products. The predominant bacteria associated with spoilage of refrigerated beef and pork, are Brochothrix thermosphacta, Carnobacterium spp., Enterobacteriaceae, Lactobacillus spp., Leuconostoc spp., Pseudomonas spp. and Shewanella putrefaciens. The main defects in meat are off-odours and off-flavours, but discolouration and gas production also occur. Bacteria associated with the spoilage of refrigerated meat products, causing defects such as sour off-flavours, discolouration, gas production, slime production and decrease in pH, consist of B. thermosphacta, Carnobacterium spp. Luctobacillus spp. Leuconostoc spp. and Weissella spp. Analysis of spoilage as measured by bacterial and chemical indicators is discussed. It is concluded that a multivariate approach based on spectra of chemical compounds, may be helpful in order to analyse spoilage, at least for spoilage caused by lactic acid bacteria. The consequences of bacteria bacteria interactions should be evaluated more.

  5. The influence of bacterial inoculants on the microbial ecology of aerobic spoilage of barley silage.

    Science.gov (United States)

    Inglis, G D; Yanke, L J; Kawchuk, L M; McAllister, T A

    1999-01-01

    The aerobic decomposition of barley silage treated with two inoculants (LacA and LacB) containing mixtures of Lactobacillus plantarum and Enterococcus faecium was investigated over a 28-day period. Initially, yeast and bacterial populations were larger in silage inoculated with LacA than in silage treated with LacB or water alone (control). Differences in the succession of yeasts in silage treated with LacA were observed relative to the other two treatments. From silage treatment with LacA, Issatchenkia orientalis was the most prevalent yeast taxon over all of the sample times, and the filamentous fungus Microascus brevicaulis was also frequently isolated at later sample dates (> or = 14 days). In contrast, Saccharomyces exiguus was the most prominent yeast recovered from silage treated with LacB and water alone on days 2 and 4, although it was supplanted by I. orientalis at later sample times. Successional trends of bacteria were similar for all three treatments. Lactobacillus spp. were initially the most prevalent bacteria isolated, followed by Bacillus spp. (primarily Bacillus pumilus). However, the onset of Bacillus spp. prominence was faster in LacA silage, and Klebsiella planticola was frequently recovered at later sample times (> or = 14 days). More filamentous fungi were recovered from LacA silage on media containing carboxylmethylcellulose, pectin, or xylan. The most commonly isolated taxa were Absidia sp., Aspergillus flavus, Aspergillus fumigatus, Byssochlamys nivea, Monascus ruber, Penicillium brevicompactum, Pseudoallescheria boydii, and M. brevicaulis. The results of this study indicated that the two bacterial inoculants incorporated into barley at the time of ensilage affected the microbial ecology of silage decomposition following exposure to air. However, neither of the microbial inoculants effectively delayed aerobic spoilage of barley silage, and the rate of decomposition of silage treated with one of the inoculants (LacA) was actually enhanced.

  6. Yeast adaptation to weak acids prevents futile energy expenditure

    Directory of Open Access Journals (Sweden)

    Azmat eUllah

    2013-06-01

    Full Text Available Weak organic acids (WOA are widely used preservatives to prevent fungal spoilage of foods and beverages. Exposure of baker’s yeast Saccharomyces cerevisiae to WOA leads to cellular acidification and anion accumulation. Pre-adaptation of cultures reduced the rate of acidification caused by weak acid exposure, most likely as a result of changes in plasma membrane or cell wall composition. In order to adapt to sublethal concentrations of the acids and grow, yeast cells activate ATP consuming membrane transporters to remove protons and anions. We explored to what extent ATP depletion contributes to growth inhibition in sorbic or acetic acid treated cells. Therefore, we analyzed the effect of the reduction of proton and anion pumping activity on intracellular pH (pHi, growth, and energy status upon exposure to the hydrophilic acetic acid (HA and the lipophilic sorbic acid (HS. ATP concentrations were dependent on the severity of the stress. Unexpectedly, we observed a stronger reduction of ATP with growth reducing than with growth inhibitory concentrations of both acids. We deduce that the not the ATP reduction caused by proton pumping, but rather the cost of sorbate anion pumping contributes to growth inhibition. A reduction of proton pumping activity may reduce ATP consumption, but the resulting decrease of intracellular pH affects growth more. ATP utilization was differentially regulated during moderate and severe stress conditions. We propose that the energy depletion alone is not the cause of growth inhibition during HA or HS stress. Rather, the cells appear to reduce ATP consumption in high stress conditions, likely to prevent futile cycling and maintain energy reserves for growth resumption in more favorable conditions. The mechanism for such decision making remains to be established.

  7. Meat spoilage: a critical review of a neglected alteration due to ropy slime producing bacteria

    Directory of Open Access Journals (Sweden)

    Maria F. Iulietto

    2015-07-01

    Full Text Available The shelf-life of a product is the period of time during which the food retains its qualitative characteristics. Bacteria associated with meat spoilage produce unattractive odours and flavours, discolouration, gas and slime. There are several neglected alterations that deserve more attention from food business operators and competent authorities. Ropy slime is a typical alteration of the surface of vacuum and modified atmosphere packed cooked meat products, that causes major economic losses due to the increasingly sophisticated consumer requirements. This is a review article that aims at raising awareness of an old problem of new concern, in the light of new advances and trends for understanding the aetiology of the phenomenon, the origins of contamination and the prevention measures.

  8. Food toxin detection with atomic force microscope

    Science.gov (United States)

    Externally introduced toxins or internal spoilage correlated pathogens and their metabolites are all potential sources of food toxins. To prevent and protect unsafe food, many food toxin detection techniques have been developed to detect various toxins for quality control. Although several routine m...

  9. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream.

    Science.gov (United States)

    Arslan, Seza; Eyi, Ayla; Küçüksarı, Rümeysa

    2014-02-01

    Bacillus spp. can be recovered from almost every environment. It is also found readily in foods, where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature, and extracellular enzymes. In this study, 29 Bacillus cereus group strains from ice cream were examined for the presence of following virulence genes hblC, nheA, cytK and ces genes, and tested for a range of the extracellular enzymes, and antimicrobial susceptibility. The strains were found to produce extracellular enzymes: proteolytic and lipolytic activity, gelatin hydrolysis and lecithinase production (100%), DNase production (93.1%) and amylase activity (93.1%). Of 29 strains examined, 24 (82.8%) showed hemolytic activity on blood agar. Beta-lactamase enzyme was only produced by 20.7% of B. cereus group. Among 29 B. cereus group from ice cream, nheA was the most common virulence gene detected in 44.8% of the strains, followed by hblC gene with 17.2%. Four (13.8%) of the 29 strains were positive for both hblC gene and nheA gene. Contrarily, cytK and ces genes were not detected in any of the strains. Antimicrobial susceptibility of ice cream isolates was tested to 14 different antimicrobial agents using the disc diffusion method. We detected resistance to penicillin and ampicillin with the same rate of 89.7%. Thirty-one percent of the strains were multiresistant to three or more antibiotics. This study emphasizes that the presence of natural isolates of Bacillus spp. harboring one or more enterotoxin genes, producing extracellular enzymes which may cause spoilage and acquiring antibiotic resistance might hold crucial importance in the food safety and quality.

  10. EVALUATION OF INHIBITORY MEASURES FOR FOOD SPOILER YEAST CANDIDA KRUSEI DURING FERMENTATION PROCESS BY CHEMICAL, BIOCHEMICAL AND NANOPARTICLE APPROACHES

    Directory of Open Access Journals (Sweden)

    Indrani Bhattacharya

    2016-06-01

    Full Text Available Screening of chemical, biochemical and biomolecule-nanoparticle methods for the inhibition of Candida krusei were evaluated without hampering the growth of dairy yeast Kluyveromyces marxianus. The effective inhibition was observed with the help of H2O2, Williopsis saturnus, at specific combination of pH and temperature (pH 5.0 and 40 °C and Ag-KT4561 nanoparticles among the various methods used. However, the most efficient inhibition was observed with Ag-KT4561 nanoparticles. In general H2O2 works best at pH range 4.0 to 10.0 and at temperature 30 °C or above. H2O2 concentration of 4000 ppm at 45 °C and pH 5.5 exhibited significant inhibition of C. krusei, while K. marxianus remains unaffected. But, when used with lyophilized supernatant of W. saturnus, 2400 ppm H2O2 was effective. Further, nanoparticle with silver was synthesized to reduce the quantity of killer protein and enhance the efficiency of protein. Complete inhibition of C. krusei was observed at 350 µM of synthesized silver nano-particle (AgNPs of the killer protein from W. saturnus, with little effect on K. marxianus concentration. A stability test confirms the effect of protein silver nanoparticles on C. krusei for more than 20 weeks without any change in pH and temperature. Thus, the nanoparticles could be potentially used for inhibition of C. krusei without affecting the growth of K. marxianus and the process could be run non-aseptically.

  11. Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress.

    Science.gov (United States)

    Guerreiro, Joana F; Muir, Alexander; Ramachandran, Subramaniam; Thorner, Jeremy; Sá-Correia, Isabel

    2016-12-01

    Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for Saccharomyces cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the target of rapamycin (TOR) complex 2 (TORC2). We show in the present study by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of l-serine:palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks.

  12. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  13. Proteomic assessment of the role of N-acyl homoserine lactone in Shewanella putrefaciens spoilage.

    Science.gov (United States)

    Zhang, Caili; Zhu, Suqin; Jatt, Abdul-Nabi; Pan, Yurong; Zeng, Mingyong

    2017-08-21

    Shewanella spp. are the common spoilage organisms found in aquatic food products stored at low temperature and their spoilage mechanism has been reported to be mediated by quorum sensing (QS). However, the specifically expressed proteins responding to N-acyl homoserine-lactone (AHLs) were seldom reported. The present study aims to evaluate the effects of different AHL signal molecules on Shewanella putrefaciens Z4 isolated from refrigerated turbot (Scophthalmus maximus) at the proteome level. The results revealed that exogenous AHLs were utilized as QS signal molecules by S. putrefaciens Z4, and AHLs were not degraded by intracellular or extracellular enzymes secreted by S. putrefaciens Z4. Twenty-three differently expressed spots upon the addition of AHLs were selected and identified by liquid chromatography-mass spectrometry (LC-MS). The results indicated that proteins involving in growth and metabolism (i.e., citrate synthase, succinate semialdehyde dehydrogenase), environment adaptation and regulators (i.e., polysaccharide deacetylases, transaldolase) were down-regulated upon three kinds of AHLs (C4-HSL, C6-HSL, and O-C6-HSL), whereas the abundance of stress response protein and DNA ligase were elevated by the addition of exogenous AHLs. Moreover, the effects of exogenous C6-HSL and O-C6-HSLwere prominent. These results provide evidence that AHL-based QS signal molecules affected some important metabolic properties of S. putrefaciens. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Antagonistic intestinal microflora produces antimicrobial substance inhibitory to Pseudomonas species and other spoilage organisms.

    Science.gov (United States)

    Hatew, Bayissa; Delessa, Tenagne; Zakin, Vered; Gollop, Natan

    2011-10-01

    Chicken intestine harbors a vast number of bacterial strains. In the present study, antimicrobial substance produced by lactic acid bacteria (LAB) isolated from the gastrointestinal tract of healthy chicken was detected, characterized, and purified. Based on 16S rRNA sequencing, the bacteria were identified as Lactobacillus plantarum vN. The antimicrobial substance produced by this bacterium was designated vN-1 and exhibited a broad-spectrum of activity against many important pathogenic and spoilage microorganisms, including Pseudomonas aeruginosa, Staphylococcus aureus, Micrococcus luteus, Salmonella Typhimurium, and Erwinia amylovova. vN-1 was determined to be thermostable, insensitive to pH values ranging from 2.0 to 8.0, resistant to various organic solvents and to enzymatic inactivation. The inhibition kinetics displayed a bactericidal mode of action. This study revealed an antimicrobial substance with low molecular mass of less than 1 kDa as determined by ultrafiltration and having features not previously reported for LAB isolated from chicken intestines. The detection of this antimicrobial substance addresses an important aspect of biotechnological control agents of spoilage caused by Pseudomonas spp. and promises the possibility for preservation of refrigerated poultry meat. Practical Application:  The newly characterized antimicrobial substance and designated as vN-1 may have the potential to be used in food preservation.

  15. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage

    Directory of Open Access Journals (Sweden)

    Ziola Barry

    2009-09-01

    Full Text Available Abstract Background Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol. Use of antimicrobial compounds (e.g., hop-compounds, Penicillin by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Results Lactic acid bacteria susceptibility test broth medium (LSM used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Conclusion Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed.

  16. Susceptibility of Pediococcus isolates to antimicrobial compounds in relation to hop-resistance and beer-spoilage

    Science.gov (United States)

    2009-01-01

    Background Though important in the context of food microbiology and as potential pathogens in immuno-compromised humans, bacterial isolates belonging to the genus Pediococcus are best known for their association with contamination of ethanol fermentation processes (beer, wine, or fuel ethanol). Use of antimicrobial compounds (e.g., hop-compounds, Penicillin) by some industries to combat Pediococcus contaminants is long-standing, yet knowledge about the resistance of pediococci to antimicrobial agents is minimal. Here we examined Pediococcus isolates to determine whether antibiotic resistance is associated with resistance to hops, presence of genes known to correlate with beer spoilage, or with ability to grow in beer. Results Lactic acid bacteria susceptibility test broth medium (LSM) used in combination with commercially available GPN3F antimicrobial susceptibility plates was an effective method for assessing antimicrobial susceptibility of Pediococcus isolates. We report the finding of Vancomycin-susceptible Pediococcus isolates from four species. Interestingly, we found that hop-resistant, beer-spoilage, and beer-spoilage gene-harbouring isolates had a tendency to be more susceptible, rather than more resistant, to antimicrobial compounds. Conclusion Our findings indicate that the mechanisms involved in conferring hop-resistance or ability to spoil beer by Pediococcus isolates are not associated with resistance to antibiotics commonly used for treatment of human infections. Also, Vancomycin-resistance was found to be isolate-specific and not intrinsic to the genus as previously believed. PMID:19735560

  17. Identification and growth dynamics of meat spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-TOF MS.

    Science.gov (United States)

    Höll, Linda; Behr, Jürgen; Vogel, Rudi F

    2016-12-01

    Modified atmosphere packaging (MAP) is widely used in food industry to extend the microbiological shelf-life of meat. Typically, poultry meat has been packaged in a CO2/N2 atmosphere (with residual low O2). Recently, some producers use high O2 MAP for poultry meat to empirically reach comparable shelf lifes. In this work, we compared spoilage microbiota of skinless chicken breast in high (80% O2, 20% CO2) and low O2 MAP (65% N2 and 35% CO2). Two batches of meat were incubated in each atmosphere for 14 days at 4 °C and 10 °C. Atmospheric composition of each pack and colony forming units (25 °C, 48 h, BHI agar) of poultry samples were determined at seven timepoints. Identification of spoilage organisms was carried out by MALDI-TOF MS. Brochothrix thermosphacta, Carnobacterium sp. and Pseudomonas sp. were the main organisms found after eight days at 4 °C and 10 °C in high O2 MAP. In low O2 MAP, the main spoilage microbiota was represented by species Hafnia alvei at 10 °C, and genera Carnobacterium sp., Serratia sp., and Yersinia sp. at 4 °C. High O2 MAP is suggested as preferential gas because were less detrimental and pathogens like Yersinia were not observed.

  18. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape.

    Science.gov (United States)

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2015-05-01

    Strains belonging to the species Saccharomyces cerevisiae, Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans, isolated from different food sources, were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic mold Botrytis cinerea. All yeast strains demonstrated antifungal activity at different levels depending on species and medium. Killer strains of W. anomalus and S. cerevisiae showed the highest biocontrol in vitro activity, as demonstrated by largest inhibition halos. The competition for iron and the ability to form biofilm and to colonize fruit wounds were hypothesized as the main action mechanisms for M. pulcherrima. The production of hydrolytic enzymes and the ability to colonize the wounds were the most important mechanisms for biocontrol activity in A. pullulans and W. anomalus, which also showed high ability to form biofilm. The production of volatile organic compounds (VOCs) with in vitro and in vivo inhibitory effect on pathogen growth was observed for the species W. anomalus, S. cerevisiae and M. pulcherrima. Our study clearly indicates that multiple modes of action may explain as M. pulcherrima provide excellent control of postharvest botrytis bunch rot of grape.

  19. Spoilage fungi and their mycotoxins in commercially marketed chestnuts

    DEFF Research Database (Denmark)

    Overy, David Patrick; Seifert, K.A.; Savard, M.E.

    2003-01-01

    A nationwide survey was carried out to assess mould spoilage of Castanea sativa nuts sold in Canadian grocery stores in 1998-99. Morphological and cultural characters, along with secondary metabolite profiles derived from thin-layer chromatography, were used to sort and identify fungi cultured fr...

  20. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Science.gov (United States)

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-04

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.

  1. Bacterial spoilage of meat and cured meat products

    NARCIS (Netherlands)

    Borch, E.; Kant-Muermans, M.L.T.; Blixt, Y.

    1996-01-01

    The influence of environmental factors (product composition and storage conditions) on the selection, growth rate and metabolic activity of the bacterial flora is presented for meat (pork and beef) and cooked, cured meat products. The predominant bacteria associated with spoilage of refrigerated

  2. Bacterial spoilage of meat and cured meat products

    NARCIS (Netherlands)

    Borch, E.; Kant-Muermans, M.L.T.; Blixt, Y.

    1996-01-01

    The influence of environmental factors (product composition and storage conditions) on the selection, growth rate and metabolic activity of the bacterial flora is presented for meat (pork and beef) and cooked, cured meat products. The predominant bacteria associated with spoilage of refrigerated bee

  3. Meat Spoilage Mechanisms and Preservation Techniques: A Critical Review

    Directory of Open Access Journals (Sweden)

    D. Dave

    2011-01-01

    Full Text Available Problem statement: Extremely perishable meat provides favorable growth condition for various microorganisms. Meat is also very much susceptible to spoilage due to chemical and enzymatic activities. The breakdown of fat, protein and carbohydrates of meat results in the development of off-odors, off-flavor and slim formation which make the meat objectionable for human consumption. It is, therefore, necessary to control meat spoilage in order to increase its shelf life and maintain its nutritional value, texture and flavor. Approach: A comprehensive literature review was performed on the spoliage mechanisms of meat and meat products and preservation techniques. Results: Historical data reveals that salting, drying, smoking, fermentation and canning were the traditional methods used to prevent meat spoilage and extend its shelf life. However, in order to prevent wholesomeness, appearance, composition, tenderness, flavor, juiciness and nutritive value, new methods were developed. These included: cooling, freezing and chemical preservation. Wide range of physical and chemical reactions and actions of microorganisms or enzymes are responsible for the meat spoilage. Microbial growth, oxidation and enzymatic autolysis are three basic mechanisms responsible for spoilage of meat. Microbial growth and metabolism depends on various factors including: pre-slaughter husbandry practices, age of the animal at the time of slaughtering, handling during slaughtering, evisceration and processing, temperature controls during slaughtering, processing and distribution, preservation methods, type of packaging and handling and storage by consumer. Microbial spoilage causes pH change, slime formation, structural components degradation, off odors and appearance change. Autoxidation of lipids and the production of free radicals are natural processes which affect fatty acids and lead to oxidative deterioration of meat and off-flavour development. Lipid hydrolysis can take

  4. Antimicrobial Effect of Filipendula ulmaria Plant Extract Against Selected Foodborne Pathogenic and Spoilage Bacteria in Laboratory Media, Fish Flesh and Fish Roe Product

    Directory of Open Access Journals (Sweden)

    Charalampos Proestos

    2011-01-01

    Full Text Available Water-methanol extract from Filipendula ulmaria contains a variety of phenolic compounds, such as caffeic, p-coumaric and vanillic acid, myricetin, etc, which demonstrate antibacterial activity. Monitoring this activity in the broth using absorbance measurements showed that species of the Enterobacteriaceae family were more resistant than other Gram-negative and Gram-positive bacteria tested. Acidic environment enhanced the antibacterial activity of Filipendula ulmaria extract when it was tested against Salmonella Enteritidis PT4 and Listeria monocytogenes Scott A. The efficacy of Filipendula ulmaria extract against selected foodborne psychrotrophic bacteria was also tested using solid laboratory media and low incubation temperatures for better simulation of food preservation conditions. Higher concentrations of the extract, compared to minimum inhibitory concentration determined in the broth, were needed for satisfactory inhibition of spoilage bacteria. Potential use of Filipendula ulmaria extract as natural food preservative was also examined against natural spoilage flora and inoculated pathogenic bacteria on fish flesh and fish roe product (tarama salad. No significant differences of viable populations of spoilage or pathogenic bacteria were found between the treated samples and controls. Further trials of Filipendula ulmaria extract should be carried out in acidic foods with low fat and protein content, supplemented with additional adjuncts, in order to explore its potential as effective natural food antimicrobial agent.

  5. Presence of acylated homoserine lactones (AHLs) and AHL-producing bacteria in meat and potential role of AHL in spoilage of meat.

    Science.gov (United States)

    Bruhn, Jesper Bartholin; Christensen, Allan Beck; Flodgaard, Lars Ravn; Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld; Givskov, Michael; Gram, Lone

    2004-07-01

    Quorum-sensing (QS) signals (N-acyl homoserine lactones [AHLs]) were extracted and detected from five commercially produced vacuum-packed meat samples. Ninety-six AHL-producing bacteria were isolated, and 92 were identified as Enterobacteriaceae. Hafnia alvei was the most commonly identified AHL-producing bacterium. Thin-layer chromatographic profiles of supernatants from six H. alvei isolates and of extracts from spoiling meat revealed that the major AHL species had an R(f) value and shape similar to N-3-oxo-hexanoyl homoserine lactone (OHHL). Liquid chromatography-mass spectrometry (MS) (high-resolution MS) analysis confirmed the presence of OHHL in pure cultures of H. alvei. Vacuum-packed meat spoiled at the same rate when inoculated with the H. alvei wild type compared to a corresponding AHL-lacking mutant. Addition of specific QS inhibitors to the AHL-producing H. alvei inoculated in meat or to naturally contaminated meat did not influence the spoilage of vacuum-packed meat. An extracellular protein of approximately 20 kDa produced by the H. alvei wild-type was not produced by the AHL-negative mutant but was restored in the mutant when complemented by OHHL, thus indicating that AHLs do have a regulatory role in H. alvei. Coinoculation of H. alvei wild-type with an AHL-deficient Serratia proteamaculans B5a, in which protease secretion is QS regulated, caused spoilage of liquid milk. By contrast, coinoculation of AHL-negative strains of H. alvei and S. proteamaculans B5a did not cause spoilage. In conclusion, AHL and AHL-producing bacteria are present in vacuum-packed meat during storage and spoilage, but AHL does not appear to influence the spoilage of this particular type of conserved meat. Our data indicate that AHL-producing H. alvei may induce food quality-relevant phenotypes in other bacterial species in the same environment. H. alvei may thus influence spoilage of food products in which Enterobacteriaceae participate in the spoilage process.

  6. Activity of R(+) limonene on the maximum growth rate of fish spoilage organisms and related effects on shelf-life prolongation of fresh gilthead sea bream fillets.

    Science.gov (United States)

    Giarratana, Filippo; Muscolino, Daniele; Beninati, Chiara; Ziino, Graziella; Giuffrida, Alessandro; Panebianco, Antonio

    2016-11-21

    R(+)limonene (LMN) is the major aromatic compound in essential oils obtained from oranges, grapefruits, and lemons. The improvement of preservation techniques to reduce the growth and activity of spoilage microorganisms in foods is crucial to increase their shelf life and to reduce the losses due to spoilage. The aim of this work is to evaluate the effect of LMN on the shelf life of fish fillets. Its effectiveness was preliminarily investigated in vitro against 60 strains of Specific Spoilage Organisms (SSOs) and then on gilt-head sea bream fillets stored at 2±0.5°C for 15days under vacuum. LMN showed a good inhibitory effect against tested SSOs strains. On gilt-head sea bream fillets, LMN inhibited the growth SSOs effectively, and its use resulted in a shelf-life extension of ca. 6-9days of treated fillets, compared to the control samples. The LMN addition in Sparus aurata fillets giving a distinctive smell and like-lemon taste to fish fillets that resulted pleasant to panellists. Its use contributed to a considerable reduction of fish spoilage given that the fillets treated with LMN were still sensory acceptable after 15days of storage. LMN may be used as an effective antimicrobial system to reduce the microbial growth and to improve the shelf life of fresh gilt-head sea bream fillets.

  7. Microbial Growth, Sensory Characteristic and pH as Potential Spoilage Indicators of Chinese Yellow Wet Noodles from Commercial Processing Plants

    Directory of Open Access Journals (Sweden)

    Suwaibah Ghaffar

    2009-01-01

    Full Text Available Problem statement: This study was conducted to evaluate the potential use of microbial growth, sensory characteristic (odour and pH as potential spoilage indicators of Chinese yellow wet noodles. Approach: Samples were collected from 3 commercial processing plants namely, Automated Processing (AP, Semi-automated Processing (SP and Manual Processing (MP. The samples were kept at ambient temperature (28±2 °C and monitored microbiologically for ten days. Standard Plate Count (TPC and Yeast and Mould Count (YMC were determined using conventional spread plate methods. Sensory evaluation of noodles was carried out using Quantitative Descriptive Analysis (QDA. Results: Initial TPC for all samples were around log 3 CFU/g which significantly increased to around log 7 CFU/g towards the end of storage period. The same pattern was observed for YMC for all samples. Odour of AP, SP and MP samples began to deteriorate and samples became unacceptable to panelists on 3, 4 and 2 days of storage, respectively. Linear regression analyses between storage period and the various potential spoilage indicators demonstrated the strongest correlation for all samples between the storage time and odour (r = 0.81243 - 0.93856 and p=Conclusion/Recommendation: Taken together, odor is the most suitable to be used as spoilage indicator for Chinese yellow wet noodles.

  8. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Perez Espitia, Paula Judith; Ferreira Soares, Nilda de Fatima, E-mail: nfsoares1@gmail.com [Department of Food Technology, Federal University of Vicosa (Brazil); Teofilo, Reinaldo F. [Federal University of Vicosa, Department of Chemistry (Brazil); Vitor, Debora M.; Reis Coimbra, Jane Selia dos; Andrade, Nelio Jose de [Department of Food Technology, Federal University of Vicosa (Brazil); Sousa, Frederico B. de; Sinisterra, Ruben D. [Federal University of Minas Gerais, Department of Chemistry (Brazil); Medeiros, Eber Antonio Alves [Department of Food Technology, Federal University of Vicosa (Brazil)

    2013-01-15

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na{sub 4}P{sub 2}O{sub 7}), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  9. Decontamination of food packaging using electron beam--status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Mittendorfer, J. E-mail: htcmitt@eunet.at; Bierbaumer, H.P.; Gratzl, F.; Kellauer, E

    2002-03-01

    In this paper the status of food packaging disinfection decontamination using electron beam at Mediscan GmbH is presented. The first section of the paper describes the activities at the service center, where food packaging materials, e.g. yoghurt cups are decontaminated in their final shipment containers. As important step in the hazard analysis and critical control point of food processing, microbiological uncontaminated food packaging material is of public interest and attracts a lot of attention from packaging material producers and food processors. The dose ranges for different sterility assurance levels are discussed and results from microbiological test are presented. Studies at Mediscan have demonstrated, that an electron beam treatment at a dose of 5-7 kGy is most effective against yeast and mold, which are mainly responsible for spoilage and short shelf-life of a variety of products. The second section is devoted to the field of inline decontamination of food packaging and sterilization of pharmaceutical packaging material and the research currently conducted at Mediscan. The requirements for industrial inline electron beam systems are summarized and design concepts discussed in terms of beam energy, beam current, irradiation topology, product handling and shielding.

  10. Decontamination of food packaging using electron beam—status and prospects

    Science.gov (United States)

    Mittendorfer, J.; Bierbaumer, H. P.; Gratzl, F.; Kellauer, E.

    2002-03-01

    In this paper the status of food packaging disinfection decontamination using electron beam at Mediscan GmbH is presented. The first section of the paper describes the activities at the service center, where food packaging materials, e.g. yoghurt cups are decontaminated in their final shipment containers. As important step in the hazard analysis and critical control point of food processing, microbiological uncontaminated food packaging material is of public interest and attracts a lot of attention from packaging material producers and food processors. The dose ranges for different sterility assurance levels are discussed and results from microbiological test are presented. Studies at Mediscan have demonstrated, that an electron beam treatment at a dose of 5-7 kGy is most effective against yeast and mold, which are mainly responsible for spoilage and short shelf-life of a variety of products. The second section is devoted to the field of inline decontamination of food packaging and sterilization of pharmaceutical packaging material and the research currently conducted at Mediscan. The requirements for industrial inline electron beam systems are summarized and design concepts discussed in terms of beam energy, beam current, irradiation topology, product handling and shielding.

  11. Current strategies for improving food bacteria

    NARCIS (Netherlands)

    Kuipers, O P; Buist, Girbe; Kok, Jan

    2000-01-01

    Novel concepts and methodologies are emerging that hold great promise for the directed improvement of food-related bacteria, specifically lactic acid bacteria. Also, the battle against food spoilage and pathogenic bacteria can now be fought more effectively. Here we describe recent advances in micro

  12. Multi spectral imaging analysis for meat spoilage discrimination

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Carstensen, Jens Michael; Papadopoulou, Olga

    with corresponding sensory data would be of great interest. The purpose of this research was to produce a method capable of quantifying and/or predicting the spoilage status (e.g. express in TVC counts as well as on sensory evaluation) using a multi spectral image of a meat sample and thereby avoid any time...... classification methods: Naive Bayes Classifier as a reference model, Canonical Discriminant Analysis (CDA) and Support Vector Classification (SVC). As the final step, generalization of the models was performed using k-fold validation (k=10). Results showed that image analysis provided good discrimination of meat...... samples. In the case where all data were taken together the misclassification error amounted to 16%. When spoilage status was based on visual sensory data, the model produced a MER of 22% for the combined dataset. These results suggest that it is feasible to employ a multi spectral image...

  13. Effect of Carbon Dioxide on Growth of Meat Spoilage Bacteria

    OpenAIRE

    Gill, C O; Tan, K.H.

    1980-01-01

    The ability of CO2 to inhibit respiration and growth of representative strains of seven species of meat spoilage bacteria was examined. Enterobacter and Microbacterium thermosphactum were unaffected by CO2. Both respiration and growth of the other species were inhibited. With four of the species (fluorescent and nonfluorescent Pseudomonas, Alteromonas putrefaciens, and Yersinia enterocolitica), the inhibition pattern in a complex medium was similar, and inhibition was incomplete and reached a...

  14. Binary combination of epsilon-poly-L-lysine and isoeugenol affect progression of spoilage microbiota in fresh turkey meat, and delay onset of spoilage in Pseudomonas putida challenged meat.

    Science.gov (United States)

    Hyldgaard, Morten; Meyer, Rikke L; Peng, Min; Hibberd, Ashley A; Fischer, Jana; Sigmundsson, Arnar; Mygind, Tina

    2015-12-23

    Proliferation of microbial population on fresh poultry meat over time elicits spoilage when reaching unacceptable levels, during which process slime production, microorganism colony formation, negative organoleptic impact and meat structure change are observed. Spoilage organisms in raw meat, especially Gram-negative bacteria can be difficult to combat due to their cell wall composition. In this study, the natural antimicrobial agents ε-poly-L-lysine (ε-PL) and isoeugenol were tested individually and in combinations for their activities against a selection of Gram-negative strains in vitro. All combinations resulted in additive interactions between ε-PL and isoeugenol towards the bacteria tested. The killing efficiency of different ratios of the two antimicrobial agents was further evaluated in vitro against Pseudomonas putida. Subsequently, the most efficient ratio was applied to a raw turkey meat model system which was incubated for 96 h at spoilage temperature. Half of the samples were challenged with P. putida, and the bacterial load and microbial community composition was followed over time. CFU counts revealed that the antimicrobial blend was able to lower the amount of viable Pseudomonas spp. by one log compared to untreated samples of challenged turkey meat, while the single compounds had no effect on the population. However, the compounds had no effect on Pseudomonas spp. CFU in unchallenged meat. Next-generation sequencing offered culture-independent insight into population diversity and changes in microbial composition of the meat during spoilage and in response to antimicrobial treatment. Spoilage of unchallenged turkey meat resulted in decreasing species diversity over time, regardless of whether the samples received antimicrobial treatment. The microbiota composition of untreated unchallenged meat progressed from a Pseudomonas spp. to a Pseudomonas spp., Photobacterium spp., and Brochothrix thermosphacta dominated food matrix on the expense of low

  15. Estimation of bacteriological spoilage of pork cutlets by electronic nose.

    Science.gov (United States)

    Horváth, Kinga M; Seregély, Zs; Dalmadi, I; Andrássy, Eva; Farkas, J

    2007-06-01

    The utility of chemosensor array (EN) signals of head-space volatiles of aerobically stored pork cutlets as a non-invasive technique for monitoring their microbiological load was studied during storage at 4, 8 and 12 degrees C, respectively. The bacteriological quality of the meat samples was determined by standard total aerobic plate counts (TAPC) and colony count of selectively estimated Pseudomonas (PS) spp., the predominant aerobic spoilage bacteria. Statistical analysis of the electronic nose measurements were principal component analysis (PCA), and canonical discriminant analysis (CDA). Partial least squares (PLS) regression was used to model correlation between microbial loads and EN signal responses, the degree of bacteriological spoilage, independently of the temperature of the refrigerated storage. Sensor selection techniques were applied to reduce the dimensionality and more robust calibration models were computed by determining few individual sensors having the smallest cross correlations and highest correlations with the reference data. Correlations between the predicted and "real" values were given on cross-validated data from both data reduced models and for full calibrations using the 23 sensor elements. At the same time, sensorial quality of the raw cutlets was noted subjectively on faultiness of the odour and colour, and drip formation of the samples. These preliminary studies indicated that the electronic nose technique has a potential to detect bacteriological spoilage earlier or at the same time as olfactory quality deterioration.

  16. Food irradiation and sterilization

    Science.gov (United States)

    Josephson, Edward S.

    Radiation sterilization of food (radappertization) requires exposing food in sealed containers to ionizing radiation at absorbed doses high enough (25-70 kGy) to kill all organisms of food spoilage and public health significance. Radappertization is analogous to thermal canning is achieving shelf stability (long term storage without refrigeration). Except for dry products in which autolysis is negligible, the radappertization process also requires that the food be heated to an internal temperature of 70-80°C (bacon to 53°C) to inactivate autolytic enzymes which catalyze spoilage during storage without refrigeration. To minimize the occurence of irradiation induced off-flavors and odors, undesirable color changes, and textural and nutritional losses from exposure to the high doses required for radappertization, the foods are vacuum sealed and irradiated frozen (-40°C to -20°C). Radappertozed foods have the characteristic of fresh foods prepared for eating. Radappertization can substitute in whole or in part for some chemical food additives such as ethylene oxide and nitrites which are either toxic, carcinogenic, mutagenic, or teratogenic. After 27 years of testing for "wholesomeness" (safety for consumption) of radappertized foods, no confirmed evidence has been obtained of any adverse effecys of radappertization on the "wholesomeness" characteristics of these foods.

  17. Development of the aerobic spoilage flora of chilled rabbit meat.

    Science.gov (United States)

    Rodríguez-Calleja, José M; García-López, María-Luisa; Santos, Jesús A; Otero, Andrés

    2005-06-01

    Even though worldwide production of rabbit meat is over 1,000,000ton, little information is available on rabbit meat microbiology. This paper reports on the microflora developing on chill-stored rabbit carcasses. Four different lots of 24h post-mortem rabbit carcasses dressed and kept at 0°C in a medium-size abattoir were collected and evaluated for sensory, physicochemical and microbiological changes during aerobic storage at 3±1°C. Mean initial pH value (pH(24)), extract-release volume (ERV) and lactate content of Biceps femoris muscle, were 6.26±0.20, 13.50±3.50ml and 0.70±0.07%, respectively. As with other muscle foods kept chilled in air, pH increased and ERV and lactate decreased as storage progressed. Initial levels (logcfu/g) of aerobes (APC), psychrotrophic flora, Pseudomonas spp., Brochothrix thermosphacta, lactic acid bacteria, Enterobacteriaceae and yeasts were 4.76±0.31, 4.81±0.81, 3.39±1.12, 2.01±0.92, 2.76±0.51, 0.49±0.45 and 3.46±0.32, respectively. Pseudomonads, most of them fluorescent, and to a lesser extent B. thermosphacta and yeasts grew faster than the remaining microorganisms and became predominant at the end of the shelf life. Carcasses spoiled when mean APC, psychrotrophic and pseudomonads numbers were ca. 8logcfu/g, their mean shelf life being estimated at 6.8 days. A lot of DFD-like rabbit carcasses, with higher pH and lower ERV values but similar microbial loads to normal meat, developed a strong putrid odour after 4 days.

  18. Detection and identification of wild yeasts in lager breweries.

    Science.gov (United States)

    van der Aa Kühle, A; Jespersen, L

    1998-09-08

    Wild yeasts were detected in 41 out of 101 brewery yeast samples investigated using six different selective principles. Malt extract, yeast extract, glucose, peptone (MYGP) agar supplemented with 195 ppm CuSO4 was found to be the most effective selective principle, detecting wild yeasts in 80% of the contaminated samples. Both Saccharomyces and non-Saccharomyces wild yeasts were detected on this medium. Lysine medium, crystal violet medium and incubation of non-selective media at 37 degrees C detected wild yeasts in 46-56% of the contaminated samples. On using actidione medium, only 20% of the wild yeasts were detected. The combined use of MYGP supplemented with 195 ppm CuSO4 and one of the other selective principles did not improve the recovery of the wild yeasts. The wild yeasts found consisted of Saccharomyces cerevisiae (57%), Pichia spp. (28%) and Candida spp. (15%). Using the API ID 32 C kit, 35 different assimilation profiles were obtained for the 124 wild yeast isolates investigated. All isolates were capable of glucose assimilation, whereas only 79% of the isolates assimilated saccharose, 75% maltose, 70% galactose, 65% raffinose and 65% lactate. Lactose, inositol, rhamnose and glucuronate were not assimilated by any of the isolates. The differences in assimilation pattern did not reflect any differences in recovery by the selective principles investigated. The majority of the wild yeast isolates investigated were capable of growth in wort and beer, indicating their possible role as spoilage organisms. The Sacch. cerevisiae isolates were found to be the most hazardous, with some isolates being capable of extensive growth in bottled beer within seventeen days at ambient temperature.

  19. 21 CFR 172.590 - Yeast-malt sprout extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Flavoring Agents and Related Substance...

  20. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface.

    Science.gov (United States)

    Proulx, J; Hsu, L C; Miller, B M; Sullivan, G; Paradis, K; Moraru, C I

    2015-09-01

    Cheese products are susceptible to postprocessing cross-contamination by bacterial surface contamination during slicing, handling, or packaging, which can lead to food safety issues and significant losses due to spoilage. This study examined the effectiveness of pulsed-light (PL) treatment on the inactivation of the spoilage microorganism Pseudomonas fluorescens, the nonenterohemorrhagic Escherichia coli ATCC 25922 (nonpathogenic surrogate of Escherichia coli O157:H7), and Listeria innocua (nonpathogenic surrogate of Listeria monocytogenes) on cheese surface. The effects of inoculum level and cheese surface topography and the presence of clear polyethylene packaging were evaluated in a full factorial experimental design. The challenge microorganisms were grown to early stationary phase and subsequently diluted to reach initial inoculum levels of either 5 or 7 log cfu/slice. White Cheddar and process cheeses were cut into 2.5×5 cm slices, which were spot-inoculated with 100 µL of bacterial suspension. Inoculated cheese samples were exposed to PL doses of 1.02 to 12.29 J/cm(2). Recovered survivors were enumerated by standard plate counting or the most probable number technique, as appropriate. The PL treatments were performed in triplicate and data were analyzed using a general linear model. Listeria innocua was the least sensitive to PL treatment, with a maximum inactivation level of 3.37±0.2 log, followed by P. fluorescens, with a maximum inactivation of 3.74±0.8 log. Escherichia coli was the most sensitive to PL, with a maximum reduction of 5.41±0.1 log. All PL inactivation curves were nonlinear, and inactivation reached a plateau after 3 pulses (3.07 J/cm(2)). The PL treatments through UV-transparent packaging and without packaging consistently resulted in similar inactivation levels. This study demonstrates that PL has strong potential for decontamination of the cheese surface. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc

  1. [Food irradiation].

    Science.gov (United States)

    Migdał, W

    1995-01-01

    A worldwide standard on food irradiation was adopted in 1983 by Codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and the World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Institute of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19MeV, 1 kW) and an industrial unit Elektronika (10MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permission for irradiation for: spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables.

  2. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    Science.gov (United States)

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.

  3. Guide to the Salvage of Temperature-Abused Food Products in Military Commissaries

    Science.gov (United States)

    1988-04-01

    the meat section, (3) the bakery section, and (4) the fruit/vegetable section. These are further subdivided into frozen and chilled products . The... products and conditions that result in least food spoilage upon refrigeration time-temperature interruption and SAFE-4 for highest chance of spoilage . See...TECHNICAL REPORT NAVICK/TR-88/050 A /% iatoA GUIDE TO THE SALVAGE OF TEMPERATURE-ABUSED FOOD PRODUCTS IN MILITARY COMMISSARIES BY R.V

  4. Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, on sweet bell pepper (SBP) simulation medium under different gas compositions.

    Science.gov (United States)

    Pothakos, Vasileios; Nyambi, Clarice; Zhang, Bao-Yu; Papastergiadis, Antonios; De Meulenaer, Bruno; Devlieghere, Frank

    2014-05-16

    Sweet bell peppers are a significant constituent of retail, chilled-stored and packaged food products like fresh salads, marinades and ready-to-eat (RTE) meals. Previously, through general screening of the Belgian market and by means of source tracking analysis in a plant manufacturing minimally processed, vegetable salads the susceptibility of fresh-cut sweet bell peppers to lactic acid bacterium (LAB) contamination was substantiated. The determination of the metabolic profiles of Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, two major psychrotrophic, spoilage-related LAB species, on sweet bell pepper (SBP) simulation medium under different packaging conditions - 1.) vacuum: 100% N2, 2.) air: 21% O2, 79% N2, 3.) MAP1: 30% CO2, 70% N2 and 4.) MAP2: 50% O2, 50% CO2 - facilitated a better understanding of the spoilage potential of these microbes as well as the presumptive contribution of O2 in the spectrum of produced volatile organic compounds (VOCs) associated with poor organoleptic properties of food products. Generally, none of the applied gas compositions inhibited the growth of the 4 L. gelidum subsp. gasicomitatum isolates, however the presence of O2 resulted in buttery off-odors by inducing primarily the accumulation of diacetyl and pungent "vinegar" smell due to acetic acid. The 3 tested isolates of L. piscium varied greatly among their growth dynamics and inhibition at MAP2. They exhibited either weak spoilage profile or very offensive metabolism confirming significant intraspecies diversity.

  5. Yeasts: from genetics to biotechnology.

    Science.gov (United States)

    Russo, S; Berkovitz Siman-Tov, R; Poli, G

    1995-01-01

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the "biotechnological revolution" by virtue of both their features and their very long and safe use in human nutrition and industry.

  6. [Food additives and healthiness].

    Science.gov (United States)

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects.

  7. Genome Sequence and Transcriptome Analysis of Meat-Spoilage-Associated Lactic Acid Bacterium Lactococcus piscium MKFS47.

    Science.gov (United States)

    Andreevskaya, Margarita; Johansson, Per; Laine, Pia; Smolander, Olli-Pekka; Sonck, Matti; Rahkila, Riitta; Jääskeläinen, Elina; Paulin, Lars; Auvinen, Petri; Björkroth, Johanna

    2015-06-01

    Lactococcus piscium is a psychrotrophic lactic acid bacterium and is known to be one of the predominant species within spoilage microbial communities in cold-stored packaged foods, particularly in meat products. Its presence in such products has been associated with the formation of buttery and sour off-odors. Nevertheless, the spoilage potential of L. piscium varies dramatically depending on the strain and growth conditions. Additional knowledge about the genome is required to explain such variation, understand its phylogeny, and study gene functions. Here, we present the complete and annotated genomic sequence of L. piscium MKFS47, combined with a time course analysis of the glucose catabolism-based transcriptome. In addition, a comparative analysis of gene contents was done for L. piscium MKFS47 and 29 other lactococci, revealing three distinct clades within the genus. The genome of L. piscium MKFS47 consists of one chromosome, carrying 2,289 genes, and two plasmids. A wide range of carbohydrates was predicted to be fermented, and growth on glycerol was observed. Both carbohydrate and glycerol catabolic pathways were significantly upregulated in the course of time as a result of glucose exhaustion. At the same time, differential expression of the pyruvate utilization pathways, implicated in the formation of spoilage substances, switched the metabolism toward a heterofermentative mode. In agreement with data from previous inoculation studies, L. piscium MKFS47 was identified as an efficient producer of buttery-odor compounds under aerobic conditions. Finally, genes and pathways that may contribute to increased survival in meat environments were considered. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. 671-nm microsystem diode laser based on portable Raman sensor device for in-situ identification of meat spoilage

    Science.gov (United States)

    Sowoidnich, Kay; Schmidt, Heinar; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2011-05-01

    Based on a miniaturized optical bench with attached 671 nm microsystem diode laser we present a portable Raman system for the rapid in-situ characterization of meat spoilage. It consists of a handheld sensor head (dimensions: 210 x 240 x 60 mm3) for Raman signal excitation and collection including the Raman optical bench, a laser driver, and a battery pack. The backscattered Raman radiation from the sample is analyzed by means of a custom-designed miniature spectrometer (dimensions: 200 x 190 x 70 mm3) with a resolution of 8 cm-1 which is fiber-optically coupled to the sensor head. A netbook is used to control the detector and for data recording. Selected cuts from pork (musculus longissimus dorsi and ham) stored refrigerated at 5 °C were investigated in timedependent measurement series up to three weeks to assess the suitability of the system for the rapid detection of meat spoilage. Using a laser power of 100 mW at the sample meat spectra can be obtained with typical integration times of 5 - 10 seconds. The complex spectra were analyzed by the multivariate statistical tool PCA (principal components analysis) to determine the spectral changes occurring during the storage period. Additionally, the Raman data were correlated with reference analyses performed in parallel. In that way, a distinction between fresh and spoiled meat can be found in the time slot of 7 - 8 days after slaughter. The applicability of the system for the rapid spoilage detection of meat and other food products will be discussed.

  9. Prediction of spoilage of tropical shrimp (Penaeus notialis) under dynamic temperature regimes

    NARCIS (Netherlands)

    Dabade, D.S.; Azokpota, P.; Nout, M.J.R.; Hounhouigan, D.J.; Zwietering, M.H.; Besten, den H.M.W.

    2015-01-01

    The spoilage activity of Pseudomonas psychrophila and Carnobacterium maltaromaticum, two tropical shrimp (Penaeus notialis) spoilage organisms, was assessed in cooked shrimps stored at 0 to 28 °C. Microbiological, chemical and sensory analyses were performed during storage. P. psychrophila had a hig

  10. Draft Genome Sequence of the Beer Spoilage Bacterium Megasphaera cerevisiae Strain PAT 1T

    OpenAIRE

    Kutumbaka, Kirthi K.; Pasmowitz, Joshua; Mategko, James; Reyes, Dindo; Friedrich, Alex; Han, Sukkyun; Martens-Habbena, Willm; Neal-McKinney, Jason; Janagama, Harish K.; Nadala, Cesar; Samadpour, Mansour

    2015-01-01

    The genus Megasphaera harbors important spoilage organisms that cause beer spoilage by producing off flavors, undesirable aroma, and turbidity. Megasphaera cerevisiae is mainly found in nonpasteurized low-alcohol beer. In this study, we report the draft genome of the type strain of the genus, M. cerevisiae strain PAT 1T.

  11. Lactobacilli and tartrazine as causative agents of a red colored spoilage in cucumber pickle products

    Science.gov (United States)

    The cucumber pickling industry has sporadically experienced spoilage outbreaks in fermented cucumber products characterized by development of red color on the surface of the cucumbers. Lactobacillus casei and Lactobacillus paracasei were isolated from two outbreaks of this spoilage which occurred a...

  12. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers

    Science.gov (United States)

    Lactobacillus buchneri has recently been associated with anaerobic spoilage of fermented cucumbers due to its ability to metabolize lactic acid into acetic acid and 1,2-propanediol. However, we have limited knowledge of other chemical components in fermented cucumber that may be related to spoilage ...

  13. Spoilage evaluation, shelf-life prediction, and potential spoilage organisms of tropical brackish water shrimp (Penaeus notialis) at different storage temperatures

    NARCIS (Netherlands)

    Dabade, D.S.; Besten, den H.M.W.; Azokpota, P.; Nout, M.J.R.; Hounhouigan, D.J.; Zwietering, M.H.

    2015-01-01

    Maintaining the freshness of shrimp is a concern to shrimp stakeholders. To improve shrimp quality management, it is of importance to evaluate shrimp spoilage characteristics. Therefore, microbiological, sensory, and chemical changes of naturally contaminated tropical brackish water shrimp (Penaeus

  14. Brettanomyces yeasts - From spoilage organisms to valuable contributors to industrial fermentations

    OpenAIRE

    Steensels, Jan; Daenen, Luk; Malcorps, Philippe; Derdelinckx, Guy; Verachtert, Hubert; Verstrepen, Kevin

    2015-01-01

    Ever since the introduction of controlled fermentation processes, alcoholic fermentations and Saccharomyces cerevisiae starter cultures proved to be a match made in heaven. The ability of S. cerevisiae to produce and withstand high ethanol concentrations, its pleasant flavour profile and the absence of health-threatening toxin production are only a fewof the features that make it the ideal alcoholic fermentation organism. However, in certain conditions or for certain specific fermentation pro...

  15. Influence of ethanol and temperature on the cellular fatty acid composition of Zygosaccharomyces bailii spoilage yeasts

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Huis in 't Veld, J.H.J.

    1995-01-01

    Changes in the fatty acid profile of Zygosaccharomyces bailii strains, isolated from different sources, after growth at increasing concentrations of ethanol and/or decreasing temperatures were determined. Differences in fatty acid composition between Zygosaccharomyces bailii strains at standard

  16. Volatile components associated with bacterial spoilage of tropical prawns

    DEFF Research Database (Denmark)

    Chinivasagam, H.N.; Bremner, Allan; Wood, A.F.

    1998-01-01

    Analysis of headspace volatiles by gas chromatography/mass spectrometry from king (Penaeus plebejus), banana (P. merguiensis), tiger (P. esculentus/semisulcatus) and greasy (Metapenaeus bennettae) prawns stored in ice or ice slurry, which is effectively an environment of low oxygen tension......, whereas sulphides and amines occurred whether the predominant spoilage organism was Ps.fragi or Shewanella putrefaciens. The free amino acid profiles of banana and king prawns were high in arginine (12-14%) and low in cysteine (0.1-0.17%) and methionine (0.1-0.2%). Filter sterilised raw banana prawn broth...

  17. Modeling and predicting spoilage of cooked, cured meat products by multivariate analysis.

    Science.gov (United States)

    Mataragas, Marios; Skandamis, Panagiotis; Nychas, George-John E; Drosinos, Eleftherios H

    2007-11-01

    A cooked, cured meat product is a perishable product spoiled mainly by lactic acid bacteria (LAB). LAB cause discoloration, slime formation, off-odors and off-flavors as the result of their metabolic activity producing various products. These microbial products in conjunction with the microbial population could be used to assess the degree of spoilage of this type of product. The spoilage evaluation was achieved by following a multivariate approach. Cluster analysis, principal component analysis and partial least square regression were employed to associate spoilage with microbiological and physicochemical parameters. The developed model was capable of giving accurate predictions of spoilage describing the spoilage associations. The study might contribute to the improvement of quality assurance systems of meat enterprises.

  18. Behaviour of Brochothrix thermosphacta in presence of other meat spoilage microbial groups.

    Science.gov (United States)

    Russo, F; Ercolini, D; Mauriello, G; Villani, F

    2006-12-01

    The microbial flora of fresh meat stored aerobically at 5 degrees C up to spoilage was enumerated and collected in order to have mixed spoilage bacterial groups to be used in competition tests against Brochothrix thermosphacta. The bacterial groups collected as bulk colonies were identified by PCR-DGGE followed by partial 16S rDNA sequencing. The predominant bacteria associated with the spoilage of the refrigerated beef were B. thermosphacta, Pseudomonas spp, Enterobacteriaceae and lactic acid bacteria (LAB). The interactions between B. thermosphacta and the other spoilage microbial groups were studied in vitro at 5 degrees C. The results showed that a decrease of the growth of B. thermosphacta was evidenced in presence of LAB at 5 degrees C while the bacterium is the dominant organism when inoculated with mixtures of Pseudomonas spp., LAB and Enterobacteriaceae. A better understanding of bacterial meat spoilage interactions may lead to improved quality of fresh meat stored in refrigerated conditions.

  19. Physicochemical, microbiological and spoilage analysis of probiotic processed cheese analogues with reduced emulsifying salts during refrigerated storage.

    Science.gov (United States)

    Ehsannia, Sheida; Sanjabi, Mohammad Reza

    2016-02-01

    Microbial quality of low-salt processed cheeses supplemented with Bacillus coagulans spores (10(7)-10(8) CFU/g) relying on their physicochemical characteristics during 60 day-cold storage was evaluated. A reduction in moisture content, water activity and pH value and a significant enhancement in proteolytic index of control and probiotic samples were obtained by prolonging storage time. Survival rate of the probiotic cells significantly decreased up to day 30, while total count of the viable cells increased by increasing storage time. A 20 and 67 % increase in total counts of coliforms and mold-yeast of the control sample were respectively observed after 60 days of cold storage. A considerable decrease in the total counts of coliforms and mold-yeast was also found in the processed cheeses containing probiotic supplement. According to the macroscopic and sensory assessment, off-odors and off-flavors in the control sample were diagnosed after day 1 of cold-storage. Noticeably, the resistance to spoilage was more prominent in samples containing the probiotic cells.

  20. Composition and antimicrobial properties of Sardinian Juniperus essential oils against foodborne pathogens and spoilage microorganisms.

    Science.gov (United States)

    Cosentino, Sofia; Barra, Andrea; Pisano, Barbara; Cabizza, Maddalena; Pirisi, Filippo Maria; Palmas, Francesca

    2003-07-01

    In this work, the chemical compositions and antimicrobial properties of Juniperus essential oils and of their main components were determined. Five berry essential oils obtained from different species of Juniperus growing wild in Sardinia were analyzed. The components of the essential oils were identified by gas chromatography-mass spectrometry (GC-MS) analysis. The antimicrobial activities of the oils and their components against food spoilage and pathogenic microorganisms were determined by a broth microdilution method. The GC-MS analysis showed a certain variability in the concentrations of the main constituents of the oils. Alpha-pinene was largely predominant in the oils of the species J. phoenicea subsp. turbinata and J. oxycedrus. Alpha-pinene and myrcene constituted the bulk (67.56%) of the essential oil of J. communis. Significant quantitative differences were observed for myrcene, delta-3-carene, and D-germacrene. The results of the antimicrobial assay show that the oils of J. communis and J. oxycedrus failed to inhibit any of the microorganisms at the highest concentrations tested (MLC > or = 900 microg/ml), while the oils extracted from J. turbinata specimens were active against fungi, particularly against a strain of Aspergillus flavus (an aflatoxin B1 producer). Of the single compounds tested, delta-3-carene was found to possess the broadest spectrum of activity and appeared to contribute significantly to the antifungal activity observed for J. turbinata oils. This activity may be helpful in the prevention of aflatoxin contamination for many foods.

  1. Corning and Kroger turn whey to yeast

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-16

    It is reported that Corning and Kroger intend to build a 35,000 sq. ft. plant in Winchester, Ky., that will turn whey into bakers' yeast. The plant will convert whey from Kroger's dairies into bakers' yeast, supplying about 60% of the yeast needed for nine Kroger bakeries. It will also produce syrups and whey protein concentrate for use in other food processing activities. In addition to making useful products, the project will convert the whey to glucose and galactose. The protein component of the whey will be concentrated and used in various foods and feeds.

  2. Draft Genome Sequences of Four Bacillus thermoamylovorans Strains Isolated from Milk and Acacia Gum, a Food Ingredient

    NARCIS (Netherlands)

    Krawczyk, Antonina O; Berendsen, Erwin M; Eijlander, Robyn T; de Jong, Anne; Wells-Bennik, Marjon H J; Kuipers, Oscar P

    2015-01-01

    The thermophilic bacterium Bacillus thermoamylovorans produces highly heat-resistant spores that can contaminate food products, leading to their spoilage. Here, we present the whole-genome sequences of four B. thermoamylovorans strains, isolated from milk and acacia gum.

  3. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pichia pastoris dried yeast. 573.750 Section 573.750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.750 Pichia...

  4. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 18...

  5. Antimicrobial Activity of Emilia sonchifolia DC., Tridax procumbens L. and Vernonia cinerea L. of Asteracea Family: Potential as Food Preservatives.

    Science.gov (United States)

    Yoga Latha, L; Darah, I; Sasidharan, S; Jain, K

    2009-09-01

    Chemical preservatives have been used in the food industry for many years. However, with increased health concerns, consumers prefer additive-free products or food preservatives based on natural products. This study evaluated antimicrobial activities of extracts from Emilia sonchifolia L. (Common name: lilac tassel flower), Tridax procumbens L. (Common name: tridax daisy) and Vernonia cinerea L. (Common name: Sahadevi), belonging to the Asteracea family, to explore their potential for use against general food spoilage and human pathogens so that new food preservatives may be developed. Three methanol extracts of these plants were tested in vitro against 20 bacterial species, 3 yeast species, and 12 filamentous fungi by the agar diffusion and broth dilution methods. The V. cinerea extract was found to be most effective against all of the tested organisms and the methanol fraction showed the most significant (p extracts determined by the broth dilution method ranged from 1.56 to 100.00mg/mL. The MIC of methanol fraction was the lowest in comparison to the other four extracts. The study findings indicate that bioactive natural products from these plants may be isolated for further testing as leads in the development of new pharmaceuticals in food preservation as well as natural plant-based medicine.

  6. Evaluation of natural antimicrobials on typical meat spoilage bacteria in vitro and in vacuum-packed pork meat.

    Science.gov (United States)

    Schirmer, Bjørn Christian; Langsrud, Solveig

    2010-03-01

    The aim of this study was to investigate the inhibitory effect of natural antimicrobials on the growth of typical spoilage bacteria from marinated pork. Minimum inhibitory concentrations (MIC) of thymol, cinnamaldehyde, allyl isothiocyanate, citric acid, ascorbic acid, a rosemary extract, and a grapefruit seed extract against Lactobacillus algidus, Leuconostoc mesenteroides, Leuconostoc carnosum, Carnobacterium maltaromaticum, Carnobacterium divergens, Brochothrix thermosphacta, and Serratia proteamaculans were determined in a microplate assay. Combinations of antimicrobials were tested and several combinations showed synergistic effects in inhibiting bacterial growth. Single and combined antimicrobials were added to vacuum-packed pork meat to evaluate preserving effects. Antimicrobial concentrations of up to 10 times the MIC values showed no effect on total bacterial growth in vacuum packed pork meaning that although most antimicrobials inhibited the growth of spoilage bacteria in vitro, results from the microplate assay could not be transferred to the meat system. Most natural antimicrobials possess strong odor and flavor that limit their use as a food preservative. In conclusion, this study showed that the use of natural antimicrobials in meat products is limited and that bacterial quality and shelf life was not enhanced under the chosen conditions.

  7. Psychrotrophic clostridia causing spoilage in cooked meat and poultry products.

    Science.gov (United States)

    Kalinowski, R M; Tompkin, R B

    1999-07-01

    Certain types of commercially produced noncured turkey breast and roast beef are precooked in situ, stored at 4 degrees C or below, and typically given use by dates of greater than 50 days. While of rare, sporadic occurrence, an unpleasant spoilage characterized by strong H2S odor and gas production has been observed in these products. This spoilage is due to the growth of psychrotrophic anaerobic sporeformers. Isolates from roast beef resemble Clostridium laramie while isolates from uncured turkey have been designated C. ctm for cooked turkey meat. The turkey breast isolates were characterized by temperature growth ranges, carbohydrate fermentations, and other biochemical reactions. Growth of all isolates was inhibited in broth media by 3.0% NaCl, 100 ppm nitrite, 2.0% sodium lactate, or 0.2% sodium diacetate. Inoculated studies were performed with three isolates in cooked turkey product. All three isolates grew and spoiled product at 10 and 3.3 degrees C, and one isolate grew at 0.5 and -3 degrees C. Some differences in growth were observed with the lactate and diacetate treatments in turkey meat among the three isolates. One isolate appeared to utilize the lactate, two were inhibited. Overall, 0.1% diacetate consistently delayed growth, although to different degrees, for all isolates.

  8. Application of Bacillus sp. as a biopreservative for food preservation

    OpenAIRE

    S. Nath,; Chowdhury, S.

    2015-01-01

    Food preservation is enhancing shelf-life and food quality to eliminate food-related illness and product spoilage, especially by the use of food additives.The growing consumer demand for effective preservation of food without altering its nutritional quality and free of potential health risks andto find an attractive and alternative approach to chemical preservatives, have stimulated research in the field of biopreservation by the use of natural or controlled microbiota and/or the...

  9. Yeast Lab

    OpenAIRE

    Lewis, Matt; Powell, Jim

    2016-01-01

    Yeast are grown in a small, capped ask, generating carbon dioxide which is trapped in an inverted jar full of colored water. The volume of carbon dioxide produced can either be measured directly or using time-lapse imagery on an iPad or similar. Students are then challenged to model the resulting data. From this exercise students gain greater understand- ing of ODE compartment models, parameter estimation, population dynamics and limiting factors.

  10. Progress in food-related research focussing on Bacillus cereus

    NARCIS (Netherlands)

    Vries, de Y.P.; Voort, van der M.; Schaik, van W.; Hornstra, L.M.; Vos, de W.M.; Abee, T.

    2004-01-01

    Bacillus cereus is a gram-positive, rod-shaped, endospore-forming bacterium that occurs ubiquitously and is frequently isolated from soil and food products. When B. cereus is present in foods, it can cause spoilage and poisoning. The work of our group is focussed on several properties of B. cereus t

  11. Lactic acid bacteria and their controversial role in fresh meat spoilage.

    Science.gov (United States)

    Pothakos, Vasileios; Devlieghere, Frank; Villani, Francesco; Björkroth, Johanna; Ercolini, Danilo

    2015-11-01

    Lactic acid bacteria (LAB) constitute a heterogeneous group that has been widely associated with fresh meat and cooked meat products. They represent a controversial cohort of microbial species that either contribute to spoilage through generation of offensive metabolites and the subsequent organoleptic downgrading of meat or serve as bioprotective agents with strains of certain species causing unperceivable or no alterations. Therefore, significant distinction among biotypes is substantiated by studies determining spoilage potential as a strain-specific trait corroborating the need to revisit the concept of spoilage.

  12. Intake assessment of the food additives nitrite (E 249 and E 250) and nitrate (E 251 and E 252)

    NARCIS (Netherlands)

    Sprong RC; Niekerk EM; Beukers MH; VVH; V&Z

    2017-01-01

    Nitrate and nitrite are authorised as preservatives in certain food products, such as salami, ham (nitrite) and cheese (nitrate). They prevent food spoilage and protect the consumer against food-borne pathogens. Next to that, nitrate and nitrite play a role in food colour retention and contribute to

  13. The Role of Cold-Shock Proteins in Low-Temperature Adaptation of Food-Related Bacteria

    NARCIS (Netherlands)

    Wouters, Jeroen A.; Rombouts, Frank M.; Kuipers, Oscar P.; Vos, Willem M. de; Abee, T.

    2000-01-01

    There is a considerable interest in the cold adaptation of food-related bacteria, including starter cultures for industrial food fermentations, food spoilage bacteria and food-borne pathogens. Mechanisms that permit low-temperature growth involve cellular modifications for maintaining membrane fluid

  14. Reducing the bloater spoilage incidence in fermented green olives during storage

    Directory of Open Access Journals (Sweden)

    Brito, D.

    2002-09-01

    Full Text Available Fermented green olives of the variety “Picholine” were brined in 5% NaCl solutions, which were adjusted to pH 4.00 and 5.00 with lactic acid. Potassium sorbate was added to the brine at 0.05 % and the assays were inoculated with Lactobacillus plantarum strain I159, and Pichia anomala strains S18 from our collection. The pH values and microbial counts including Gram negative bacteria, yeasts and moulds, and lactic acid bacteria were followed during 6 months of storage. Results showed that even if the olives were inoculated with a high gas producing yeast (P. anomala S18, the attack of the fruits by the “bloater” spoilage was drastically reduced in the assays adjusted to pH4, added with potassium sorbate and inoculated with L. plantarum, without affecting the organoleptic characteristics of the product.Aceitunas verdes fermentadas de la variedad Picholine fueron colocadas en soluciones de salmuera al 5% en NaCl, ajustando el pH a 4,00 y 5,00 con ácido láctico. Se agregó sorbato potásico a la salmuera a una concentración del 0,05% y las muestras se inocularon con cepas de Lactobacllius plantarum I159 y Pichia anomala S18 de nuestra procedencia. Los valores del pH y el recuento microbiano incluyendo a las bacterias Gram-negativas, levaduras y mohos y bacterias del ácido láctico se siguieron durante los seis meses de almacenamiento. Los resultados mostraron que incluso inoculando las aceitunas con la levadura (P. anomala S18, productora de alta cantidad de gas, el ataque de los frutos por el alambrado se redujo drásticamente en las muestras ajustadas a pH4, a las que se añadió sorbato potásico e inoculó con Lactobacllius plantarum, sin verse afectadas las características organolépticas del producto.

  15. Volatile components associated with bacterial spoilage of tropical prawns

    DEFF Research Database (Denmark)

    Chinivasagam, H.N.; Bremner, Allan; Wood, A.F.

    1998-01-01

    , whereas sulphides and amines occurred whether the predominant spoilage organism was Ps.fragi or Shewanella putrefaciens. The free amino acid profiles of banana and king prawns were high in arginine (12-14%) and low in cysteine (0.1-0.17%) and methionine (0.1-0.2%). Filter sterilised raw banana prawn broth...... inoculated with a total of 15 cultures of Ps. fragi and S. putrefaciens and incubated for two weeks at 5°C, showed the presence of 17 major compounds in the headspace volatiles analysed using gas chromatography/mass spectrometry (GC/MS). These were mainly amines, sulphides, ketones and esters. Principal...... Component Analysis of the results for the comparative levels of the volatiles produced by pure cultures, inoculated into sterile prawn broth, indicated three subgroupings of the organisms; I, Ps. fragi from a particular geographic location; II, S. putrefaciens from another geographic location; and III...

  16. Multi spectral imaging analysis for meat spoilage discrimination

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Carstensen, Jens Michael; Papadopoulou, Olga

    ) was performed in parallel with videometer image snapshots and sensory analysis. Odour and colour characteristics of meat were determined by a test panel and attributed into three pre-characterized quality classes, namely Fresh; Semi Fresh and Spoiled during the days of its shelf life. So far, different...... classification methods: Naive Bayes Classifier as a reference model, Canonical Discriminant Analysis (CDA) and Support Vector Classification (SVC). As the final step, generalization of the models was performed using k-fold validation (k=10). Results showed that image analysis provided good discrimination of meat...... samples regarding the spoilage process as evaluated from sensory as well as from microbiological data. The support vector classification (SVC) model outperformed other models. Specifically, the misclassification error rate (MER), derived from odour characteristics, was 18% for both aerobic and MAP meat...

  17. THE DEVELOPMENT OF APPLICATION AND RESEARCH ON FEED YEAST FROM THE WASTAGE OF FOOD INDUSTRY%食品工业废料生产饲料酵母的研究进展

    Institute of Scientific and Technical Information of China (English)

    王桂妮; 史小峰; 史红岗; 赵光远

    2001-01-01

    The wastage of food industry have extensive organic materials;butavailability is low,both waste resoure and poison environment.With biotechnology,feed yeast would be changed from wastage,and its nutritional value and feed value were improved.The technology is mature and easy,have obvious economical and societal benefit,longer growth foreground for future.%论述了以食品工业废液、废渣为原料,采用生物技术生产饲料酵母的生产工艺,并对其营养价值及饲用价值进行了分析。技术经济分析表明:有显著的经济效益和社会效益。

  18. Incorporation of nisin in natural casing for the control of spoilage microorganisms in vacuum packaged sausage

    Directory of Open Access Journals (Sweden)

    Joyce Regina de Barros

    2010-12-01

    Full Text Available This study aimed to evaluate the effectiveness of natural casing treatment with nisin and phosphoric acid on control of spoilage microorganisms in vacuum packaged sausages. Ovine casings were dipped in the following baths: 1 0.1% food grade phosphoric acid; 2 5.0 mg/L nisin; 3 0.1% phosphoric acid and 5.0 mg/L nisin; and 4 sterile water (control. The sausages were produced in a pilot plant, stuffed into the pretreated natural casings, vacuum packaged and stored at 4 and 10 °C for 56 days. The experiments were performed according to a full factorial design 2³, totalizing 8 treatments that were repeated in 3 blocks. Aerobic plate counts and lactic acid bacteria analysis were conducted at 1, 14, 28, 42 and 56 days of storage. Treatment of casings with phosphoric acid 0.1% alone did not inhibit the growth of lactic acid bacteria and reduced the aerobic plate count by 1 log. The activity of nisin against lactic acid bacteria was enhanced by the addition of phosphoric acid, demonstrating a synergistic effect. Furthermore nisin activity was more evident at lower storage temperature (4 ºC. Therefore treatment of the natural casings with nisin and phosphoric acid, combined with low storage temperature, are obstacles that present a potential for controlling the growth of lactic acid bacteria in vacuum packaged sausage.

  19. Survival of spoilage bacteria subjected to sequential eugenol and temperature treatments.

    Science.gov (United States)

    Manrique, Yudith; Suriyarak, Sarisa; Gibis, Monika; Schmidt, Herbert; Weiss, Jochen

    2016-02-02

    Effects of a sequential application of eugenol and temperature on the survival of two model spoilage organisms, Staphylococcus carnosus LTH1502 and Escherichia coli K12 C600, were studied. To assess effects of a "temperature first-antimicrobial later" treatment, cultures were treated with eugenol at 20, 37 and 42 °C at the beginning of the incubation period, and after 3h and 8h. To assess effects of an "antimicrobial first-temperature later" treatment, eugenol was added at the beginning of the incubation period at 37 °C and temperature was changed to 20 or 42 °C after 3 or 8h. Cell numbers were determined in regular intervals during the incubation period using plate counts. Partitioning of eugenol was measured by HPLC, and cell morphology was assessed by electron microscopy. Combined treatments were more effective against the Gram negative E. coli than against S. carnosus. Order of application influenced the effectiveness of treatments, especially at 42 °C. There, the temperature first-eugenol later treatment was less effective than other treatments, likely due to temperature-induced adaptation processes occurring in cellular membranes making them more resistant against a later eugenol treatment. Results are of significance in situations where combinations of sublethal stresses are used to build a hurdle concept for food preservation.

  20. South Brazilian wines: culturable yeasts associated to bottled wines produced in Rio Grande do Sul and Santa Catarina.

    Science.gov (United States)

    Ramírez-Castrillón, Mauricio; Mendes, Sandra Denise Camargo; Valente, Patricia

    2017-04-01

    A comprehensive understanding of the presence and role of yeasts in bottled wines helps to know and control the organoleptic quality of the final product. The South Region of Brazil is an important wine producer, and the state of "Rio Grande do Sul" (RS) accounts for 90% of Brazilian wines. The state of "Santa Catarina" (SC) started the production in 1975, and is currently the fifth Brazilian producer. As there is little information about yeasts present in Brazilian wines, our main objective was to assess the composition of culturable yeasts associated to bottled wines produced in RS and SC, South of Brazil. We sampled 20 RS and 29 SC bottled wines produced between 2003 and 2011, and we isolated culturable yeasts in non-selective agar plates. We identified all isolates by sequencing of the D1/D2 domain of LSU rDNA or ITS1-5.8 S-ITS2 region, and comparison with type strain sequences deposited in GenBank database. Six yeast species were shared in the final product in both regions. We obtained two spoilage yeast profiles: RS with Zygosaccharomyces bailii and Pichia membranifaciens (Dekkera bruxellensis was found only in specific table wines); and SC with Dekkera bruxellensis and Pichia manshurica. Knowledge concerning the different spoilage profiles is important for winemaking practices in both regions.

  1. Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon.

    Science.gov (United States)

    Fernández, Avelina; Picouet, Pierre; Lloret, Elsa

    2010-08-15

    The antimicrobial activity of newly developed cellulose-silver nanoparticle hybrid materials was investigated during storage of minimally processed "Piel de Sapo" melon. Silver nanoparticles were produced after in-situ reduction by physical methods of 1% silver nitrate adsorbed on cellulose fibres; they accounted between 5 and 35 nm diameter, and were not aggregated. Fresh-cut melon pieces were stored for 10 days at 4 degrees C under natural modified atmosphere packaging, in presence or absence of silver loaded absorbent pads. The evolution of headspace gas composition, quality parameters, and the antimicrobial activity against spoilage-related microorganisms were investigated. The cellulose-silver nanoparticle hybrid materials released silver ions after melon juice impregnated the pad. The released silver ions were particularly useful to control the population of spoilage-related microorganisms in cellulose based absorbent pads in contact with vegetable matrices, showing a low chelating effect against silver ions; the lag phases of the microorganisms were considerably incremented and microbial loads in the pads remained in average approx. 3 log(10) CFU/g below the control during the investigated storage period. Furthermore, the presence of silver loaded absorbent pads retarded the senescence of the melon cuts, presenting remarkably lower yeast counts, lower degrees Brix values, and a juicier appearance after 10 days of storage.

  2. Isolation of lactic acid bacteria with inhibitory activity against pathogens and spoilage organisms associated with fresh meat.

    Science.gov (United States)

    Jones, Rhys J; Hussein, Hassan M; Zagorec, Monique; Brightwell, Gale; Tagg, John R

    2008-04-01

    The use of lactic acid bacteria (LAB) as protective cultures in vacuum-packed chill-stored meat has potential application for assuring and improving food quality, safety and market access. In a study to identify candidate strains suitable for evaluation in a meat model, agar-based methods were employed to screen 181 chilled meat and meat process-related LAB for strains inhibitory to pathogens and spoilage organisms of importance to the meat industry. Six meat-derived strains, including Lactobacillus sakei and Lactococcus lactis, were found to be inhibitory to one or more of the target strains Listeria monocytogenes, Brochothrix thermosphacta, Campylobacter jejuni and Clostridium estertheticum. The inhibitory agents appeared to be either cell-associated or molecules released extracellularly with bacteriocin-like properties. Variations detected in the antimicrobial activity of LAB associated with changes to test parameters such as substrate composition underlined the importance of further in situ evaluation of the inhibitory strains in stored meat trials.

  3. Food-borne fungi in fruit and cereals and their production of mycotoxins

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Thrane, Ulf

    2006-01-01

    The growth of filamentous fungi in foods and food products results in waste and is costly as well as sometimes hazardous. Many different fungal species can spoil food products or produce mycotoxins or both. As each fungal species produces its own specific, limited number of metabolites...... it is possible to predict which fungi and mycotoxins a given product may contain, when the type of food product and the history of production and storage are known. In Europe, fruit has received minor attention in relation to fungal spoilage, whereas fungal spoilage of cereals has been studied extensively...

  4. Role Of Biopreservation In Improving Food Safety And Storage

    OpenAIRE

    Swarnadyuti Nath; Chowdhury, S.

    2014-01-01

    Biopreservation refers to the use of antagonistic microorganisms or their metabolic products to inhibit or destroy undesired microorganisms in foods to enhance food safety and extend shelf life. In order to achieve improved food safety and to harmonize consumer demands with the necessary safety standards, traditional means of controlling microbial spoilage and safety hazards in foods are being replaced by combinations of innovative technologies that include biological antimicrobial systems su...

  5. Adhesive Property of Bacteria and Its Relationship to Microbial Spoilage of Shrimp.

    Science.gov (United States)

    1983-01-04

    Pseudomonas and Staphylococcus spp.) tend to be found in greater proportions and, hence, contribute more to the spoilage of shrimp. Accession For...on the meat surface. They also showed the adhesion process of Pseudomonas fragi when it came in contact with the beef stew meat . Thirdly, they...to indicate that Moraxella spp. would grow readily on shrimp and are a major contrib- utor to seafood spoilage . Staphylococcus spp. and Pseudomonas

  6. Characterization and Dynamic Behavior of Wild Yeast during Spontaneous Wine Fermentation in Steel Tanks and Amphorae

    Science.gov (United States)

    Díaz, Cecilia; Molina, Ana María; Nähring, Jörg; Fischer, Rainer

    2013-01-01

    We studied the dynamic behavior of wild yeasts during spontaneous wine fermentation at a winery in the Valais region of Switzerland. Wild yeasts in the winery environment were characterized using a PCR-RFLP method. Up to 11 different yeast species were isolated from the vineyard air, whereas only seven were recovered from the grapes surface. We initially investigated a cultureindependent method in pilot-scale steel fermentation tanks and found a greater diversity of yeasts in the musts from two red grape varieties compared to three white grape varieties. We found that the yeasts Metschnikowia pulcherrima, Rhodotorula mucilaginosa, Pichia kluyveri, P. membranifaciens and Saccharomyces cerevisiae remained active at the end of the fermentation. We also studied the dynamic behavior of yeasts in Qvevris for the first time using a novel, highlysensitive quantitative real-time PCR method. We found that non-Saccharomyces yeasts were present during the entire fermentation process, with R. mucilaginosa and P. anomala the most prominent species. We studied the relationship between the predominance of different species and the output of the fermentation process. We identified so-called spoilage yeasts in all the fermentations, but high levels of acetic acid accumulated only in those fermentations with an extended lag phase. PMID:23738327

  7. Characterization and dynamic behavior of wild yeast during spontaneous wine fermentation in steel tanks and amphorae.

    Science.gov (United States)

    Díaz, Cecilia; Molina, Ana María; Nähring, Jörg; Fischer, Rainer

    2013-01-01

    We studied the dynamic behavior of wild yeasts during spontaneous wine fermentation at a winery in the Valais region of Switzerland. Wild yeasts in the winery environment were characterized using a PCR-RFLP method. Up to 11 different yeast species were isolated from the vineyard air, whereas only seven were recovered from the grapes surface. We initially investigated a cultureindependent method in pilot-scale steel fermentation tanks and found a greater diversity of yeasts in the musts from two red grape varieties compared to three white grape varieties. We found that the yeasts Metschnikowia pulcherrima, Rhodotorula mucilaginosa, Pichia kluyveri, P. membranifaciens and Saccharomyces cerevisiae remained active at the end of the fermentation. We also studied the dynamic behavior of yeasts in Qvevris for the first time using a novel, highlysensitive quantitative real-time PCR method. We found that non-Saccharomyces yeasts were present during the entire fermentation process, with R. mucilaginosa and P. anomala the most prominent species. We studied the relationship between the predominance of different species and the output of the fermentation process. We identified so-called spoilage yeasts in all the fermentations, but high levels of acetic acid accumulated only in those fermentations with an extended lag phase.

  8. Efficacy of commercial natural antimicrobials alone and in combinations against pathogenic and spoilage microorganisms.

    Science.gov (United States)

    Techathuvanan, Chayapa; Reyes, Fatima; David, Jairus R D; Davidson, P Michael

    2014-02-01

    Microbial control strategies are needed in the food industry to prevent foodborne illnesses and outbreaks and prolong product shelf life. The aim of this study was to investigate and compare the efficacy of the commercial natural antimicrobials white mustard essential oil (WMEO), citrus flavonoid and acid blend (CFAB), olive extract (OE), Nisaplin (a compound containing nisin), and lauric arginate (LAE) alone and in combinations against foodborne pathogens and spoilage microorganisms. MICs of individual and combined antimicrobials against Escherichia coli, Salmonella Enteritidis, Enterobacter aerogenes, Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus were determined at pH 6.0 and 25 °C. WMEO was most effective against B. cereus and S. aureus, with MICs of 250 and 500 mg/liter, respectively. CFAB inhibited all tested microorganisms, requiring only 12 to 35 mg/liter for gram-positive bacteria. For OE, 2,000 mg/liter was needed to achieve microbial inhibition. Nisaplin at 400 to 1,200 mg/liter inhibited only gram-positive bacteria. LAE was effective at low concentrations and required only 20 to 50 mg/liter to inhibit all tested microorganisms. When WMEO was combined with other antimicrobials, the effects were usually additive except for WMEO plus Nisaplin and WMEO+OE, which had synergistic activity against L. monocytogenes and Salmonella Enteritidis, respectively. An antagonistic effect was observed for WMEO+CFAB against E. aerogenes. For WMEO+LAE+CFAB, additive antimicrobial effects were noted against all strains tested except S. aureus, where a synergistic effect occurred. These findings suggest that these commercial natural antimicrobials have potential to enhance food safety by inhibiting foodborne pathogens and extending product shelf life.

  9. Biopreservative in Foods: Nisin (E234)

    OpenAIRE

    Başar Uymaz; Pınar Şanlıbaba

    2015-01-01

    Fermentation is the oldest traditional method in order to protect against spoilage and pathogenic microorganisms. Thermal treatment, pH and water activity lowering and preservative addition other food preservation techniques that are commonly used. Although, as preservatives, many improved antibiotic and chemical agents have been gained, there are some other factors such as rapid resistance to antibiotics used in bacteria, in order to limit their use in food, to be found dimensions of threate...

  10. Spoilage potential of Pseudomonas species isolated from goat milk.

    Science.gov (United States)

    Scatamburlo, T M; Yamazi, A K; Cavicchioli, V Q; Pieri, F A; Nero, L A

    2015-02-01

    Pseudomonas spp. are usually associated with spoilage microflora of dairy products due to their proteolytic potential. This is of particular concern for protein-based products, such as goat milk cheeses and fermented milks. Therefore, the goal of the present study was to characterize the proteolytic activity of Pseudomonas spp. isolated from goat milk. Goat milk samples (n=61) were obtained directly from bulk tanks on dairy goat farms (n=12), and subjected to a modified International Organization for Standardization (ISO) protocol to determine the number and proteolytic activity of Pseudomonas spp. Isolates (n=82) were obtained, identified by PCR, and subjected to pulsed-field gel electrophoresis with XbaI macro-restriction. Then, the isolates were subjected to PCR to detect the alkaline protease gene (apr), and phenotypic tests were performed to check proteolytic activity at 7°C, 25°C, and 35°C. Mean Pseudomonas spp. counts ranged from 2.9 to 4.8 log cfu/mL, and proteolytic Pseudomonas spp. counts ranged from 1.9 to 4.6 log cfu/mL. All isolates were confirmed to be Pseudomonas spp., and 41 were identified as Pseudomonas fluorescens, which clustered into 5 groups sharing approximately 82% similarity. Thirty-six isolates (46.9%) were positive for the apr gene; and 57 (69.5%) isolates presented proteolytic activity at 7°C, 82 (100%) at 25°C, and 64 (78%) at 35°C. The isolates were distributed ubiquitously in the goat farms, and no relationship among isolates was observed when the goat farms, presence of apr, pulsotypes, and proteolytic activity were taken into account. We demonstrated proteolytic activity of Pseudomonas spp. present in goat milk by phenotypic and genotypic tests and indicated their spoilage potential at distinct temperatures. Based on these findings and the ubiquity of Pseudomonas spp. in goat farm environments, proper monitoring and control of Pseudomonas spp. during production are critical.

  11. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation.

    Science.gov (United States)

    Giovani, Giovanna; Rosi, Iolanda; Bertuccioli, Mario

    2012-11-15

    In order to improve knowledge about the oenological characteristics of non-Saccharomyces yeast strains, and to reconsider their contribution to wine quality, we studied the release of polysaccharides by 13 non-Saccharomyces strains of different species (three wine yeasts, six grape yeasts, and three spoilage yeasts) during alcoholic fermentation in synthetic must. Three Saccharomyces cerevisiae strains were included for comparison. All of the non-Saccharomyces strains released polysaccharides into fermentation medium; the amount released depended on the yeast species, the number of cells formed and their physiological conditions. Normalizing the quantity of macromolecules released to the cell biomass revealed that most non-Saccharomyces strains produced a greater quantity of polysaccharides compared to S. cerevisiae strains after 7 and 14days of fermentation. This capacity was particularly expressed in the studied wine spoilage yeasts (Saccharomycodes ludwigii, Zygosaccharomyces bailii, and Brettanomyces bruxellensis). Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 93% for S'codes. ludwigii to 73-74% for Pichia anomala and Starmerella bombicola. Protein contents varied from 9% for P. anomala to 29% for Z. bailii. These compositions were very similar to those of the S. cerevisiae strains, and to the chemical composition of the cell wall mannoproteins of different yeast species. The presence of galactose, in addition to mannose and glucose, in the exocellular polysaccharides released by Schizosaccharomyces pombe, confirmed the parietal nature of the polysaccharides released by non-Saccharomyces yeasts; only this species has a galactomannan located in the outer layer of the cell wall.

  12. Presence and changes in populations of yeasts on raw and processed poultry products stored at refrigeration temperature.

    Science.gov (United States)

    Ismail, S A; Deak, T; El-Rahman, H A; Yassien, M A; Beuchat, L R

    2000-12-05

    A study was undertaken to determine populations and profiles of yeast species on fresh and processed poultry products upon purchase from retail supermarkets and after storage at 5 degrees C until shelf life expiration, and to assess the potential role of these yeasts in product spoilage. Fifty samples representing 15 commercial raw, marinated, smoked, or roasted chicken and turkey products were analyzed. Yeast populations were determined by plating on dichloran rose bengal chloramphenicol (DRBC) agar and tryptone glucose yeast extract (TGY) agar. Proteolytic activity was determined using caseinate and gelatin agars and lipolytic activity was determined on plate count agar supplemented with tributyrin. Populations of aerobic microorganisms were also determined. Initial populations of yeasts (log10 cfu/g) ranged from less than 1 (detection limit) to 2.89, and increased by the expiration date to 0.37-5.06, indicating the presence of psychrotrophic species. Highest initial populations were detected in raw chicken breast, wings, and ground chicken, as well as in turkey necks and legs, whereas roasted chicken and turkey products contained less than 1 log10 cfu/g. During storage, yeast populations increased significantly (P sausage. Isolates (152 strains) of yeasts from poultry products consisted of 12 species. Yarrowia lipolytica and Candida zeylanoides were predominant, making up 39 and 26% of the isolates, respectively. Six different species of basidiomycetous yeasts representing 24% of the isolates were identified. Most Y. lipolytica strains showed strong proteolytic and lipolytic activities, whereas C. zeylanoides was weakly lipolytic. Results suggest that yeasts, particularly Y. lipolytica, may play a more prominent role than previously recognized in the spoilage of fresh and processed poultry stored at 5 degrees C.

  13. Red Yeast Rice

    Science.gov (United States)

    Nguyen, Thu; Karl, Mitchell; Santini, Antonello

    2017-01-01

    Red yeast rice (RYR), produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterol-reducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, non-augmented, standardized amount of monacolins. PMID:28257063

  14. Red Yeast Rice

    Directory of Open Access Journals (Sweden)

    Thu Nguyen

    2017-03-01

    Full Text Available Red yeast rice (RYR, produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterolreducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, nonaugmented, standardized amount of monacolins.

  15. Impact of available nitrogen and sugar concentration in musts on alcoholic fermentation and subsequent wine spoilage by Brettanomyces bruxellensis.

    Science.gov (United States)

    Childs, Bradford C; Bohlscheid, Jeffri C; Edwards, Charles G

    2015-04-01

    The level of yeast assimilable nitrogen (YAN) supplementation required for Saccharomyces cerevisiae to complete fermentation of high sugar musts in addition to the impact of non-metabolized nitrogen on post-alcoholic spoilage by Brettanomyces bruxellensis was studied. A 2 × 3 factorial design was employed using a synthetic grape juice medium with YAN (150 or 250 mg N/L) and equal proportions of glucose/fructose (230, 250, or 270 g/L) as variables. S. cerevisiae ECA5 (low nitrogen requirement) or Uvaferm 228 (high nitrogen requirement) were inoculated at 10(5) cfu/mL while B. bruxellensis E1 or B2 were added once alcoholic fermentation ceased. Regardless of YAN concentration, musts that contained 230 or 250 g/L glucose/fructose at either nitrogen level attained dryness (mean = 0.32 g/L fructose) while those containing 270 g/L generally did not (mean = 2.5 g/L fructose). Higher concentrations of YAN present in musts yielded wines with higher amounts of α-amino acids and ammonium but very little (≤ 6 mg N/L) was needed by B. bruxellensis to attain populations ≥ 10(7) cfu/mL. While adding nitrogen to high sugar musts does not necessarily ensure completion of alcoholic fermentation, residual YAN did not affect B. bruxellensis growth as much as ethanol concentration.

  16. Prediction of Mold Spoilage for Soy/Polyethylene Composite Fibers

    Directory of Open Access Journals (Sweden)

    Chinmay Naphade

    2015-01-01

    Full Text Available Mold spoilage was determined over 109 days on soy/PE fibers held under controlled temperatures (T ranging from 10°C to 40°C and water activities (aw from 0.11 to 0.98. Water activities were created in sealed containers using saturated salt solutions and placed in temperature-controlled incubators. Soy/PE fibers that were held at 0.823 aw or higher exhibited mold growth at all temperatures. As postulated, increased water activity (greater than 0.89 and temperature (higher than 25°C accelerated mold growth on soy/PE fibers. A slower mold growth was observed on soy/PE fibers that were held at 0.87 aw and 10°C. A Weibull model was employed to fit the observed logarithmic values of T, aw, and an interaction term log⁡T×log⁡aw and was chosen as the final model as it gave the best fit to the raw mold growth data. These growth models predict the expected mold-free storage period of soy/PE fibers when exposed to various environmental temperatures and humidities.

  17. Ancient Item Spoilage Ritual Used in Nomadic Burial Rite

    Directory of Open Access Journals (Sweden)

    Beisenov Arman Z.

    2017-07-01

    Full Text Available The article considers the findings of items in ancient burials which were intentionally spoiled prior to deposition in graves. This tradition was widely spread both in terms of chronology and geography, and therefore cannot be attributed to any individual cultures or regions. The authors present new information on the ritual obtained during an investigation of Borsyk burial mound of the Middle Sarmatian period located in West Kazakhstan. The central grave of barrow 6 contained a heavily damaged bronze cauldron. The grave was looted in antiquity. Individual scattered bones of a human skeleton and minor gold foil adornments from the ceremonial dress of a nobleman were discovered in the grave. The authors suggest that the cauldron was intentionally deformed by the participants of an ancient mortuary and memorial ritual. According to the principal hypothesis concerning the essence of this ritual, spoilage of the items was related to the idea of assign the items with “different” and “transcendent” properties, which resulted from the necessity of burying the owner. Cauldrons played an important role in the life of steppe leaders. The authors assume a sacral nature of the use of cauldrons in the culture of steppe peoples associated with feasts, battles, and sacred hunting. Perhaps, there was a tradition of burying cauldrons together with their owners after spoiling the items in view of the concept of the other world and the role of a heroic leader therein.

  18. Thymus Vulgaris (Red Thyme) and Caryophyllus Aromaticus (Clove) Essential Oils to Control Spoilage Microorganisms in Pork Under Modified Atmosphere.

    Science.gov (United States)

    D'Amato, Serena; Mazzarrino, Giovanni; Rossi, Chiara; Serio, Annalisa; López, Clemencia Chaves; Celano, Gaetano Vitale; Paparella, Antonello

    2016-06-03

    In recent years, it has been confirmed that essential oils (EOs) exert antimicrobial activity as they are able to inhibit cell growth and inactivate microbial cells. The application of biopreservation strategies by means of EOs opens up interesting perspectives in the food industry, including meat production. The paper aims to evaluate the effects of Thymus vulgaris (red thyme) and Caryophyllus aromaticus (cloves) EOs on the development of the spoilage population of fresh pork packaged under modified atmosphere (MAP). In particular, the research was focused on Brochothrix thermosphacta, a specific spoilage microorganism of fresh meat packed in anaerobic conditions or under MAP. Amongst seven EOs, those that showed the highest antimicrobial activity on 5 B. thermosphacta strains in vitro were: cloves [minimum inhibitory concentration (MIC) 0.6-2.5 mg/mL], savory (MIC 2.5-5.0 mg/mL), and red thyme (MIC 2.5 to 20 mg/mL). Red thyme and cloves EOs were selected for meat treatment, by increasing the dose at 20 and 40 mg/mL respectively, to take into account the matrix effect that can reduce EO availability. In spite of the minor efficacy observed in vitro, 40 mg/mL red thyme EO strongly limited the growth of B. thermosphacta in pork samples up to day 6 of storage [below 3.0 Log colony forming unit (CFU)/g, starting from 2.0 Log CFU/g at time 0], and exerted an antimicrobial effect also on the aerobic mesophilic count. Good results were obtained also with 20 mg/mL red thyme EO. The control of B. thermosphacta growth through EOs encourages research on alternative methods for extending the shelf life of fresh meat under MAP.

  19. Thymus Vulgaris (Red Thyme) and Caryophyllus Aromaticus (Clove) Essential Oils to Control Spoilage Microorganisms in Pork Under Modified Atmosphere

    Science.gov (United States)

    D’Amato, Serena; Mazzarrino, Giovanni; Rossi, Chiara; Serio, Annalisa; López, Clemencia Chaves; Celano, Gaetano Vitale; Paparella, Antonello

    2016-01-01

    In recent years, it has been confirmed that essential oils (EOs) exert antimicrobial activity as they are able to inhibit cell growth and inactivate microbial cells. The application of biopreservation strategies by means of EOs opens up interesting perspectives in the food industry, including meat production. The paper aims to evaluate the effects of Thymus vulgaris (red thyme) and Caryophyllus aromaticus (cloves) EOs on the development of the spoilage population of fresh pork packaged under modified atmosphere (MAP). In particular, the research was focused on Brochothrix thermosphacta, a specific spoilage microorganism of fresh meat packed in anaerobic conditions or under MAP. Amongst seven EOs, those that showed the highest antimicrobial activity on 5 B. thermosphacta strains in vitro were: cloves [minimum inhibitory concentration (MIC) 0.6-2.5 mg/mL], savory (MIC 2.5-5.0 mg/mL), and red thyme (MIC 2.5 to 20 mg/mL). Red thyme and cloves EOs were selected for meat treatment, by increasing the dose at 20 and 40 mg/mL respectively, to take into account the matrix effect that can reduce EO availability. In spite of the minor efficacy observed in vitro, 40 mg/mL red thyme EO strongly limited the growth of B. thermosphacta in pork samples up to day 6 of storage [below 3.0 Log colony forming unit (CFU)/g, starting from 2.0 Log CFU/g at time 0], and exerted an antimicrobial effect also on the aerobic mesophilic count. Good results were obtained also with 20 mg/mL red thyme EO. The control of B. thermosphacta growth through EOs encourages research on alternative methods for extending the shelf life of fresh meat under MAP. PMID:27853710

  20. Thymus vulgaris (red thyme and Caryophyllus aromaticus (clove essential oils to control spoilage microorganisms in pork under modified atmosphere

    Directory of Open Access Journals (Sweden)

    Serena D'Amato

    2016-08-01

    Full Text Available In recent years, it has been confirmed that essential oils (EOs exert antimicrobial activity as they are able to inhibit cell growth and inactivate microbial cells. The application of biopreservation strategies by means of EOs opens up interesting perspectives in the food industry, including meat production. The paper aims to evaluate the effects of Thymus vulgaris (red thyme and Caryophyllus aromaticus (cloves EOs on the development of the spoilage population of fresh pork packaged under modified atmosphere (MAP. In particular, the research was focused on Brochothrix thermosphacta, a specific spoilage microorganism of fresh meat packed in anaerobic conditions or under MAP. Amongst seven EOs, those that showed the highest antimicrobial activity on 5 B. thermosphacta strains in vitro were: cloves [minimum inhibitory concentration (MIC 0.6-2.5 mg/mL], savory (MIC 2.5-5.0 mg/mL, and red thyme (MIC 2.5 to 20 mg/mL. Red thyme and cloves EOs were selected for meat treatment, by increasing the dose at 20 and 40 mg/mL respectively, to take into account the matrix effect that can reduce EO availability. In spite of the minor efficacy observed in vitro, 40 mg/mL red thyme EO strongly limited the growth of B. thermosphacta in pork samples up to day 6 of storage [below 3.0 Log colony forming unit (CFU/g, starting from 2.0 Log CFU/g at time 0], and exerted an antimicrobial effect also on the aerobic mesophilic count. Good results were obtained also with 20 mg/mL red thyme EO. The control of B. thermosphacta growth through EOs encourages research on alternative methods for extending the shelf life of fresh meat under MAP.

  1. Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage.

    Science.gov (United States)

    Gupta, Ruchi; Srivastava, Sheela

    2014-09-01

    The concern for food safety has led to an increased interest in the development of novel antimicrobials. Keeping this aim in mind, we have investigated the antifungal effect of antimicrobial peptides (AMPs LR14) produced by Lactobacillus plantarum strain LR/14 against four spoilage fungi, namely, Aspergillus niger, Rhizopus stolonifer, Mucor racemosus and Penicillium chrysogenum. Interestingly, all the four fungi were inhibited, suggesting that AMPs LR14 exhibited anti-fungal property. The peptides inhibited both, the spore germination and hyphal growth, however, the former stage was found to be more susceptible. The hyphal extensions were also inhibited in a dose-dependent manner. Viability test of treated spores confirmed the fungicidal activity of AMPs LR14. AMPs LR14 were also studied for the prevention of wheat grain spoilage under storage. Unhygienic conditions in damp godowns and store-houses, lead to loss of food grains and make them unfit for human consumption due to microbial deterioration. The treatment of wheat seeds with AMPs LR14 prevented fungal growth even after a prolonged storage under laboratory conditions for ∼2.5 years. The carbohydrate and protein content of the AMPs LR14-treated seeds denoted no significant loss, but the seed viability was affected as germination was retarded. Such studies have not been reported for any bacteriocin/AMP to the best of our knowledge.

  2. Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components.

    Science.gov (United States)

    Gutierrez, J; Barry-Ryan, C; Bourke, P

    2009-04-01

    The aim of this study was to optimise the antimicrobial efficacy of plant essential oils (EOs) for control of Listeria spp. and spoilage bacteria using food model media based on lettuce, meat and milk. The EOs evaluated were lemon balm, marjoram, oregano and thyme and their minimum inhibitory concentrations (MIC) were determined against Enterobacter spp., Listeria spp., Lactobacillus spp., and Pseudomonas spp. using the agar dilution method and/or the absorbance based microplate assay. MICs were significantly lower in lettuce and beef media than in TSB. Listeria strains were more sensitive than spoilage bacteria, and oregano and thyme were the most active EOs. EO combinations were investigated using the checkerboard method and Oregano combined with thyme had additive effects against spoilage organisms. Combining lemon balm with thyme yielded additive activity against Listeria strains. The effect of simple sugars and pH on antimicrobial efficacy of oregano and thyme was assessed in a beef extract and tomato serum model media. EOs retained greater efficacy at pH 5 and 2.32% sugar, but sugar concentrations above 5% did not negatively impact EO efficacy. In addition to proven antimicrobial efficacy, careful selection and investigation of EOs appropriate to the sensory profile of foods and composition of the food system is required. This work shows that EOs might be more effective against food-borne pathogens and spoilage bacteria when applied to foods containing a high protein level at acidic pH, as well as moderate levels of simple sugars.

  3. Yeast diversity and native vigor for flavor phenotypes.

    Science.gov (United States)

    Carrau, Francisco; Gaggero, Carina; Aguilar, Pablo S

    2015-03-01

    Saccharomyces cerevisiae, the yeast used widely for beer, bread, cider, and wine production, is the most resourceful eukaryotic model used for genetic engineering. A typical concern about using engineered yeasts for food production might be negative consumer perception of genetically modified organisms. However, we believe the true pitfall of using genetically modified yeasts is their limited capacity to either refine or improve the sensory properties of fermented foods under real production conditions. Alternatively, yeast diversity screening to improve the aroma and flavors could offer groundbreaking opportunities in food biotechnology. We propose a 'Yeast Flavor Diversity Screening' strategy which integrates knowledge from sensory analysis and natural whole-genome evolution with information about flavor metabolic networks and their regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses.

    Science.gov (United States)

    Gharsallaoui, Adem; Oulahal, Nadia; Joly, Catherine; Degraeve, Pascal

    2016-06-10

    Nisin is a natural preservative for many food products. This bacteriocin is mainly used in dairy and meat products. Nisin inhibits pathogenic food borne bacteria such as Listeria monocytogenes and many other Gram-positive food spoilage microorganisms. Nisin can be used alone or in combination with other preservatives or also with several physical treatments. This paper reviews physicochemical and biological properties of nisin, the main factors affecting its antimicrobial effectiveness, and its food applications as an additive directly incorporated into food matrices.

  5. Efficacy of lactoferricin B in controlling ready-to-eat vegetable spoilage caused by Pseudomonas spp.

    Science.gov (United States)

    Federico, Baruzzi; Pinto, Loris; Quintieri, Laura; Carito, Antonia; Calabrese, Nicola; Caputo, Leonardo

    2015-12-23

    The microbial content of plant tissues has been reported to cause the spoilage of ca. 30% of chlorine-disinfected fresh vegetables during cold storage. The aim of this work was to evaluate the efficacy of antimicrobial peptides in controlling microbial vegetable spoilage under cold storage conditions. A total of 48 bacterial isolates were collected from ready-to-eat (RTE) vegetables and identified as belonging to Acinetobacter calcoaceticus, Aeromonas media, Pseudomonas cichorii, Pseudomonas fluorescens, Pseudomonas jessenii, Pseudomonas koreensis, Pseudomonas putida, Pseudomonas simiae and Pseudomonas viridiflava species. Reddish or brownish pigmentation was found when Pseudomonas strains were inoculated in wounds on leaves of Iceberg and Trocadero lettuce and escarole chicory throughout cold storage. Bovine lactoferrin (BLF) and its hydrolysates (LFHs) produced by pepsin, papain and rennin, were assayed in vitro against four Pseudomonas spp. strains selected for their heavy spoiling ability. As the pepsin-LFH showed the strongest antimicrobial effect, subsequent experiments were carried out using the peptide lactoferricin B (LfcinB), well known to be responsible for its antimicrobial activity. LfcinB significantly reduced (P ≤ 0.05) spoilage by a mean of 36% caused by three out of four inoculated spoiler pseudomonads on RTE lettuce leaves after six days of cold storage. The reduction in the extent of spoilage was unrelated to viable cell density in the inoculated wounds. This is the first paper providing direct evidence regarding the application of an antimicrobial peptide to control microbial spoilage affecting RTE leafy vegetables during cold storage.

  6. Changes of Bacterial Diversity Depend on the Spoilage of Fresh Vegetables

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2011-04-01

    Full Text Available Almost 10~30% of vegetables were discarded by the spoilage from farms to tables. After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. This investigation was conducted to extent the knowledge of relationship the spoilage of vegetables and the diversity of microbes. The total aerobic bacterial numbers in fresh lettuce, perilla leaf, and chicory were 2.6~2.7×106, 4.6×105, 1.2×106 CFU/g of fresh weight, respectively. The most common bacterial species were Pseudomonas spp., Alysiella spp., and Burkholderia spp., and other 18 more genera were involved in. After one week of incubation of those vegetables at 28℃, the microbial diversity had been changed. The total aerobic bacterial numbers increased to 1.1~4.6×108, 4.9×107, and 7.6×108 CFU/g of fresh weight for lettuce, perilla leaf, and chicory that is about 102 times increased bacterial numbers than that before spoilage. However, the diversity of microbes isolated had been simplified and fewer bacterial species had been isolated. The most bacterial population (~48% was taken up by Pseudomonas spp., and followed by Arthrobacter spp. and Bacillus spp. The spoilage activity of individual bacterial isolates had been tested using axenic lettuce plants. Among tested isolates, Pseudomonas fluorescence and Pantoea agglomerans caused severe spoilage on lettuce.

  7. Use of non-saccharomyces Torulaspora delbrueckii yeast strains in winemaking and brewing

    Directory of Open Access Journals (Sweden)

    Tataridis Panagiotis

    2013-01-01

    Full Text Available Selected Saccharomyces yeast strains have been used for more than 150 years in brewing and for several decades in winemaking. They are necessary in brewing because of the boiling of the wort, which results in the death of all yeast cells, with the exception of some Belgian style beers (ex. Lambic, where the wort is left to be colonized by indigenous yeast and bacteria from the environment and ferment naturally. In winemaking their use is also pertinent because they provide regular and timely fermentations, inhibit the growth of indigenous spoilage microorganisms and contribute to the desired sensory characters. Even though the use of selected Saccharomyces strains provides better quality assurance in winemaking in comparison to the unknown microbial consortia in the must, it has been debated for a long time now whether the use of selected industrial Saccharomyces strains results in wines with less sensory complexity and “terroir” character. In previous decades, non-Saccharomyces yeasts were mainly considered as spoilage/problematic yeast, since they exhibited low fermentation ability and other negative traits. In the last decades experiments have shown that there are some non-Saccharomyces strains (Candida, Pichia, Kluyveromyces, Torulaspora, etc which, even though they are not able to complete the fermentation they can still be used in sequential inoculation-fermentation with Saccharomyces to increase sensory complexity of the wines. Through fermentation in a laboratory scale, we have observed that the overall effects of selected Torulaspora delbrueckii yeast strains, is highly positive, leading to products with pronounced sensory complexity and floral/fruity aroma in winemaking and brewing.

  8. Growth kinetics of Listeria monocytogenes and spoilage microorganisms in fresh-cut cantaloupe.

    Science.gov (United States)

    Fang, Ting; Liu, Yanhong; Huang, Lihan

    2013-05-01

    The main objective of this study was to investigate the growth kinetics of Listeria monocytogenes and background microorganisms in fresh-cut cantaloupe. Fresh-cut cantaloupe samples, inoculated with three main serotypes (1/2a, 1/2b, and 4b) of L. monocytogenes, were incubated at different temperatures, ranging from 4 to 43 °C, to develop kinetic growth models. During storage studies, the population of both background microorganisms and L. monocytogenes began to increase almost immediately, with little or no lag phase for most growth curves. All growth curves, except for two growth curves of L. monocytogenes 1/2a at 4 °C, developed to full curves (containing exponential and stationary phases), and can be described by a 3-parameter logistic model. There was no significant difference (P = 0.28) in the growth behaviors and the specific growth rates of three different serotypes of L. monocytogenes inoculated to fresh-cut cantaloupe. The effect of temperature on the growth of L. monocytogenes and spoilage microorganisms was evaluated using three secondary models. For L. monocytogenes, the minimum and maximum growth temperatures were estimated by both the Ratkowsky square-root and Cardinal parameter models, and the optimum temperature and the optimum specific growth rate by the Cardinal parameter model. An Arrhenius-type model provided more accurate estimation of the specific growth rate of L. monocytogenes at temperatures <4 °C. The kinetic models developed in this study can be used by regulatory agencies and food processors for conducting risk assessment of L. monocytogenes in fresh-cut cantaloupe, and for estimating the shelf-life of fresh-cut products.

  9. Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations

    Science.gov (United States)

    Recent evidence suggests that Lactobacillus buchneri may play an important role in spoilage-associated secondary fermentation of cucumbers. Lactic acid degradation during fermented cucumber spoilage is influenced by sodium chloride (NaCl) concentration, pH, and presence of oxygen. Objectives were to...

  10. Inventions on baker's yeast strains and specialty ingredients.

    Science.gov (United States)

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  11. "Green preservatives": combating fungi in the food and feed industry by applying antifungal lactic acid bacteria.

    Science.gov (United States)

    Pawlowska, Agata M; Zannini, Emanuele; Coffey, Aidan; Arendt, Elke K

    2012-01-01

    Fungal food spoilage plays a pivotal role in the deterioration of food and feed systems and some of them are also able to produce toxic compounds for humans and animals. The mycotoxins produced by fungi can cause serious health hazards, including cancerogenic, immunotoxic, teratogenic, neurotoxic, nephrotoxic and hepatotoxic effects, and Kashin-Beck disease. In addition to this, fungal spoilage/pathogens are causing losses of marketable quality and hygiene of foodstuffs, resulting in major economic problem throughout the world. Nowadays, food spoilage can be prevented using physical and chemical methods, but no efficient strategy has been proposed so far to reduce the microbial growth ensuring public health. Therefore, lactic acid bacteria (LAB) can play an important role as natural preservatives. The protection of food products using LAB is mainly due to the production of antifungal compounds such as carboxylic acids, fatty acids, ethanol, carbon dioxide, hydrogen peroxide, and bacteriocins. In addition to this, LAB can also positively contribute to the flavor, texture, and nutritional value of food products. This review mainly focuses on the use of LAB for food preservation given their extensive industrial application in a wide range of foods and feeds. The attention points out the several industrial patents concerning the use of antifungal LAB as biocontrol agent against spoilage organisms in different fermented foods and feeds.

  12. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads

    Science.gov (United States)

    Active antimicrobial packaging interacts with packaged food and headspace to reduce, retard, or even inhibit the growth of spoilage and pathogenic microorganisms. Sachets and pads are one of the most successful applications of active food packaging. This review discusses recent developments of antim...

  13. Reducing the Bloater Spoilage During Lactic Fermentation of Moroccan Green Olives

    Directory of Open Access Journals (Sweden)

    Zahra Lamzira

    2005-01-01

    Full Text Available The process of natural lactic fermentation of green olives is too long and usually associated with several types of olive deteriorations, mainly the »bloater spoilage«. The control of pH and salt level in brine, a practice mostly used in the olive industry, is not sufficient to avoid these problems. The main objective of this work is the control of the fermentationprocess in order to reduce the duration of the process and the olive spoilage incidence.Therefore, some Moroccan green olives were alkali-treated and brined at 5 % NaCl. The controlled fermentation was carried out by adjusting pH, by inoculation with Lactobacillus plantarum I159 and the addition of potassium sorbate (0.05 % brine. The results showed arapid development of lactic fermentation with a remarkable reduction in »bloater spoilage «, without affecting the organoleptic properties, colour and texture of the final product.

  14. 21 CFR 172.898 - Bakers yeast glycan.

    Science.gov (United States)

    2010-04-01

    ...) Less than 10,000 organisms/gram by aerobic plate count. (2) Less than 10 yeasts and molds/gram. (3... used or intended for use in the following foods when standards of identity established under...

  15. Managing uncertainty about food risks - Consumer use of food labelling.

    Science.gov (United States)

    Tonkin, Emma; Coveney, John; Meyer, Samantha B; Wilson, Annabelle M; Webb, Trevor

    2016-12-01

    General consumer knowledge of and engagement with the production of food has declined resulting in increasing consumer uncertainty about, and sensitivity to, food risks. Emphasis is therefore placed on providing information for consumers to reduce information asymmetry regarding food risks, particularly through food labelling. This study examines the role of food labelling in influencing consumer perceptions of food risks. In-depth, 1-h interviews were conducted with 24 Australian consumers. Participants were recruited based on an a priori defined food safety risk scale, and to achieve a diversity of demographic characteristics. The methodological approach used, adaptive theory, was chosen to enable a constant interweaving of theoretical understandings and empirical data throughout the study. Participants discussed perceiving both traditional (food spoilage/microbial contamination) and modern (social issues, pesticide and 'chemical' contamination) risks as present in the food system. Food labelling was a symbol of the food system having managed traditional risks, and a tool for consumers to personally manage perceived modern risks. However, labelling also raised awareness of modern risks not previously considered. The consumer framing of risk presented demonstrates the need for more meaningful consumer engagement in policy decision making to ensure risk communication and management meet public expectations. This research innovatively identifies food labelling as both a symbol of, and a tool for, the management of perceived risks for consumers. Therefore it is imperative that food system actors ensure the authenticity and trustworthiness of all aspects of food labelling, not only those related to food safety.

  16. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  17. The impact of the quality of silage on animal health and food safety: a review.

    Science.gov (United States)

    Driehuis, F; Oude Elferink, S J

    2000-10-01

    This paper reviews the microbiological aspects of forage preserved by ensilage. The main principles of preservation by ensilage are a rapid achievement of a low pH by lactic acid fermentation and the maintenance of anaerobic conditions. The silage microflora consists of beneficial micro-organisms, i.e. the lactic acid bacteria responsible for the silage fermentation process, and a number of harmful micro-organisms that are involved in anaerobic or aerobic spoilage processes. Micro-organisms that can cause anaerobic spoilage are enterobacteria and clostridia. Clostridium tyrobutyricum is of particular importance because of its ability to use lactic acid as a substrate. Silage-derived spores of C. tyrobutyricum can cause problems in cheese making. Aerobic spoilage of silage is associated with penetration of oxygen into the silage during storage or feeding. Lactate-oxidizing yeasts are generally responsible for the initiation of aerobic spoilage. The secondary aerobic spoilage flora consists of moulds, bacilli, listeria, and enterobacteria. Mycotoxin-producing moulds, Bacillus cereus, and Listeria monocytogenes in aerobically deteriorated silage form a serious risk to the quality and safety of milk and to animal health.

  18. A gaseous acetic acid treatment to disinfect fenugreek seeds and black pepper inoculated with pathogenic and spoilage bacteria.

    Science.gov (United States)

    Nei, Daisuke; Enomoto, Katsuyoshi; Nakamura, Nobutaka

    2015-08-01

    Contamination of spices by pathogenic and/or spoilage bacteria can be deleterious to consumer's health and cause deterioration of foods, and inactivation of such bacteria is necessary for the food industry. The present study examined the effect of gaseous acetic acid treatment in reducing Escherichia coli O157:H7, Salmonella Enteritidis and Bacillus subtilis populations inoculated on fenugreek seeds and black pepper. Treatment with gaseous acetic acid at 0.3 mmol/L, 0.6 mmol/L and 4.7 mmol/L for 1-3 h significantly reduced the populations of E. coli O157:H7 and Salmonella Enteritidis on black pepper and fenugreek seeds at 55 °C (p acetic acid. No significant reductions in the population of B. subtilis spores inoculated on fenugreek seeds and black pepper were obtained after the gas treatments at 0.3 mmol/L or 0.6 mmol/L (p > 0.05). However, the gas treatment at 4.7 mmol/L significantly reduced B. subtilis spores (p < 0.05), and 4.0 log CFU/g and 3.5 log CFU/g reductions on fenugreek seeds and black pepper, respectively, were obtained after 3 h of treatment.

  19. Ecophysiology of ochratoxigenic Aspergillus ochraceus and Penicillium verrucosum isolates. Predictive models for fungal spoilage prevention - a review.

    Science.gov (United States)

    Pardo, E; Marín, S; Ramos, A J; Sanchis, V

    2006-04-01

    Ochratoxin A (OTA) is a secondary metabolite produced by several species of Aspergillus and Penicillium; among them Aspergillus ochraceus and Penicillium verrucosum are two ochratoxigenic species capable of growing in different climates and thus contamination of food crops with OTA can occur worldwide. OTA can be found in a wide range of foods such as cereals, coffee, cocoa, spices, beer, wine, dried vine fruit, grapes and meat products. OTA is toxic to animals, it presents neurotoxic, immunotoxic and nephrotoxic effects. It has been implicated in a human kidney disorder known as Balkan Endemic Nephropathy. This review focuses on the ecophysiology of ochratoxin-producing Aspergillus ochraceus and Penicillium verrucosum, the effect of environmental factors on their germination, mycelial growth, and OTA production. Knowledge of environmental conditions required for sucessive stages of fungal development represent the first step towards preventing mycotoxin formation. Predictive models for different stages of fungal development are presented, which allow prediction of the time before spoilage as a function of the abiotic factors. Finally, the implications of these studies in management of barley, coffee and grapes are described. This can help to identify the critical control points in their production, storage and distribution processes.

  20. Yeast That Smell

    Directory of Open Access Journals (Sweden)

    Eugenia Y Xu

    2008-08-01

    Full Text Available The fundamental mechanism of olfactory receptor activation has been conserved from yeast to humans. Engineered yeast cells can smell some of the same odorants as humans can, which makes yeast an ideal model system for studying human olfaction. Furthermore, if engineered yeast cells are incorporated into sensory arrays, they can be used as biosensors or artificial noses.Keywords: Yeast, olfactory receptor, G protein-coupled receptor, biosensor, smellReceived: 31 July 2008 / Received in revised form: 6 August 2008, Accepted: 13 August 2008, Published online: 17 August 2008

  1. 海水鱼优势腐败菌腐败能力分析%Analysis on spoilage ability of dominant spoilage bacteria from marine fish

    Institute of Scientific and Technical Information of China (English)

    许振伟; 李学英; 杨宪时; 郭全友; 姜朝军

    2011-01-01

    研究大黄鱼和大菱鲆无菌鱼块接种优势腐败菌后5℃贮藏中的感官、腐败产物和腐败菌的变化,以生长动力学参数和腐败产物的产量因子(YTvBn/CFU和YTMA/CFU)为指标,探讨两种冷藏海水鱼优势腐败菌希瓦氏菌和假单胞菌的腐败能力.结果表明,大菱鲆鱼块接种腐败希瓦氏菌和恶臭假单胞菌的货架期分别为60,72 h,货架期终点时的TVBN含量分别为35.48,37.56 mg/100 g,腐败菌菌数分别为8.14,8.32lg (CFU/g),产量因子YTVBN/CFU分别为1.86×10-7,1.35×10-7 mg TVBN/CFU.大黄鱼鱼块接种腐败希瓦氏菌和荧光假单胞菌的货架期分别为162,174 h,货架期终点时的TVBN含量分别为31.74,39.01 mg/100 g,腐败菌菌数分别为8.71,8.91lg(CFU/g),产量因子YTVBN/CFU分别为4.49×10-8,3.72×10-8 mg TVBN/CFU.大黄鱼鱼块的货架期比大菱鲆的明显长,接种假单胞菌的两种鱼块的货架期比接种希瓦氏菌的稍长.两种海水鱼低温有氧贮剂优势腐败菌希瓦氏菌和假单胞菌都有很强的腐败能力.%Sensory, metabolites, change of spoilage bacteria, grow dynamics parameter and the yield factor of metabolites (Ytvhn/cfu and Wma/cfu) were investigated and compared for sterile Pitudosciaena crocea and Scophthatmus maximus blocks inoculated spoilage bacteria stored at 5 ℃ aerobically. Spoilage ability of two dominant spoilage bacte-ria Sinuanella and Pseudomonas spp. From two marine fish cold storage were analyzed. The results demonstrate that shelf life was 60 h and 72 hfor Scophthalmus maximus blocks inoculated Siewanella putrefitciens and Pseudomonas puiida, respectively. TVBN was 35. 48 mg/100 g and 37. 56 mg/100 mg, counts of spoilage bacteria were 8. 14 lg(CFU/g)and 8. 32 lg (CFU/g), YTVBN/CFU was 1. 86 X 10~7 mg TVBN/CFU and 1. 35× 10-7 mg TVBN/CFU. Shelf life was 162 h and 174 h for Pseudosciaena crocea blocks inoculated Shewanella putrefaciens and Pseudomonas fluorescent , respectively. TVBN were 31. 74 mg/100 g and

  2. Metabolic Profiling of Food Protective Cultures by in vitro NMR Spectroscopy

    DEFF Research Database (Denmark)

    Ebrahimi, Parvaneh

    Food spoilage is of major concern to the food industry, because it leads to considerable economic losses, a deteriorated environmental food-print, and to possible public health hazards. In order to limit food spoilage, research on the preservation of food products has always received particular...... attention by the food industry. Traditionally, such efforts have mainly relied on the application of chemical preservatives or drastic physical treatments. However, chemical preservatives are becoming increasingly unpopular by the consumers, and some have even proven to be toxic and linked to cancer......-called protective cultures) has unexploited potential to inhibit the growth of pathogenic microorganisms and enhance the shelf life of the final food product. In order to apply biopreservation in food products effectively, detailed knowledge on the metabolism of protective cultures is required. The present Ph...

  3. Isolation of a bacteriocin-producing lactococcus lactis and application of its bacteriocin to manage spoilage bacteria in high-value marine fish under different storage temperatures.

    Science.gov (United States)

    Sarika, A R; Lipton, A P; Aishwarya, M S; Dhivya, R S

    2012-07-01

    The bacteriocins of lactic acid bacteria have considerable potential for biopreservation. The Lactococcus lactis strain PSY2 (GenBank account no. JF703669) isolated from the surface of marine perch Perca flavescens produced antibacterial activity against pathogenic and spoilage-causing Gram-positive and Gram-negative bacteria viz. Arthrobacter sp., Acinetobacter sp., Bacillus subtilis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus and possessed broad inhibitory spectrum. The biopreservative efficacy of the bacteriocin PSY2 was evaluated using fillets of reef cod, Epinephelus diacanthus. The fillets (10 g) were sprayed with 2.0 ml of 1,600 AU/ml bacteriocin, wrapped and kept under different storage temperatures viz., 4, 0 and -18 °C. The biopreservative extended the shelf-life of fillets stored at 4 °C to >21 days as against bacteriocin-treated samples stored for 21 days at 4 °C while the untreated samples became unacceptable by the 14th day. The biopreservative gave no significant effect at -18 °C. Thus, the bacteriocin derived from L. lactis PSY2 gave increased protection against spoilage bacteria and offers an alternative for the preservation of high-value sea foods.

  4. [Moulds and yeasts in bottled water and soft drinks].

    Science.gov (United States)

    Ancasi, E G; Carrillo, L; Benítez Ahrendts, M R

    2006-01-01

    Some damaged cartons of soft drinks and carbonated water were analyzed to detect the microorganisms that caused the damage. The contaminants of sugar used in the production of one of the drinks were also studied. The methods of Déak & Beuchat and Pitt & Hocking were used for the identification of yeasts and moulds, respectively. The agents of the spoilage of soft drinks were Debaryomyces hansenii, Debaryomyces polymorphus, Galactomyces geotrichum, Metschnikowia pulcherrima, Mucor circinelloides, Pichia anomala, Pichia jadinii, Pichia subpelliculosa, Rhodotorula glutinis and Zygosaccharomyces bailii. The microorganisms found in sugar were Aspergillus niger, Aspergillus penicilloides, Aspergillus versicolor, Cladosporium sphaerospermum, Mucor racemosus, P. anomala and Rhizopus stolonifer. Paecilomyces fulvus and Penicillium glabrum were observed in carbonated water.

  5. Genetic diversity of Dekkera bruxellensis yeasts isolated from Australian wineries.

    Science.gov (United States)

    Curtin, Chris D; Bellon, Jennifer R; Henschke, Paul A; Godden, Peter W; de Barros Lopes, Miguel A

    2007-05-01

    Yeasts of the genus Dekkera and its anamorph Brettanomyces represent a significant spoilage issue for the global wine industry. Despite this, there is limited knowledge of genetic diversity and strain distribution within wine and winery-related environments. In this study, amplified fragment length polymorphism (AFLP) analysis was conducted on 244 Dekkera bruxellensis isolates from red wine made in 31 winemaking regions of Australia. The results indicated there were eight genotypes among the isolates, and three of these were commonly found across multiple winemaking regions. Analysis of 26S rRNA gene sequences provided further evidence of three common, conserved groups, whereas a phylogeny based upon the AFLP data demonstrated that the most common D. bruxellensis genotype (I) in Australian red wine was highly divergent from the D. bruxellensis type strain (CBS 74).

  6. Chemical composition and antimicrobial activity of essential oils from selected herbs cultivated in the South of Brazil against food spoilage and foodborne pathogens Composição química e atividade antimicrobiana de óleos essenciais de plantas selecionadas cultivadas no Sul do Brasil contra micro-organismos patogênicos e deteriorantes de alimentos

    Directory of Open Access Journals (Sweden)

    Sheila Mello da Silveira

    2012-07-01

    Full Text Available The chemical composition of 10 selected plant essential oils obtained by steam distillation was determined by GC and GC/MS. The antimicrobial activity of the essential oils was screened against 12 important food-related bacterial strains by agar disc-diffusion assay. MIC and MBC were determined for the essential oils that presented the highest activity in the agar disc-diffusion test. The most active essential oils against the tested bacteria were, in descending order, lemongrass (Cymbopogon flexuosus, basil (Ocimum basilicum, oregano (Origanum vulgare, cinnamon leaf (Cinnamomum zeylanicum, and laurel (Laurus nobilis. Except for S. Typhimurium, the tested bateria were inhibited at MIC values lower or equal to 0.62mg mL-1 by lemongrass (Cymbopogon flexuosus essential oil. Yersinia enterocolitica presented the highest sensitivity to all essential oils tested (CMI≤0.62mg mL-1. There was a significant correlation (PA composição química de 10 óleos essenciais obtidos por destilação a vapor foi determinada por CG/DIC e CG/EM. A atividade antimicrobiana dos óleos essenciais foi detectada através do método de difusão em ágar frente a 12 espécies de bactérias de importância em alimentos. As CMI e CMB foram determinadas para os óleos essenciais que na difusão em ágar evidenciaram maior atividade. Os óleos essenciais que apresentaram maior atividade contra as bactérias testadas foram, em ordem decrescente, os de capim-limão (Cymbopogon flexuosus, manjericão (Ocimum basilicum, orégano (Origanum vulgare, folha de canela (Cinnamomum zeylanicum e louro (Laurus nobilis. Com exceção de S. Typhimurium, o óleo essencial de capim limão (Cymbopogon flexuosus apresentou valores de CMI e CMB iguais ou inferiores a 0,62mg mL-1 contra os micro-organismos testados. Yersinia enterocolitica foi o patógeno mais sensível frente a todos os óleos essenciais avaliados (CMI≤0,62mg mL-1. Foi detectada correlação significativa (P<0,05 entre os n

  7. Recycled palm oil spoilage: Correlation between physicochemical properties and oleophilicity

    Science.gov (United States)

    Kadir, Ili Afiqa Ab; Zubairi, Saiful Irwan; Jurid, Lailatul Syema

    2016-11-01

    Palm oil is widely used for domestic and commercial frying due to its techno-economic advantages as compared to other vegetable oils. However, if the oil is used beyond its recommended usage cycle, it might lead to oil spoilage. Therefore this study focuses on the comprehensive analysis of chemical and physical properties of recycled palm oil. Recycled palm oil was prepared by frying potato strips up to 4 batches; 5 cycles for each batch) was carried out with potato (g)-to-oil (ml) ratio of 3/20 prior to physico-chemical analysis (moisture content, color measurement, viscosity, density and iodine value. From 5 tests used to indicate physico-chemical properties of recycled palm oil, only color measurement, viscosity and IV shows results accordingly to theories. Whereas moisture content and density were not comply to theories. With increasing frying times, recycled palm oil color has been darker due to chemical reaction that occurs during frying. The trend line illustrates that with increasing frying times, recycled palm oil lightness decreases. It also means that its color has been darker. Meanwhile, b* rate increase indicating that recycled palm oil show tendency towards green color. Whereas, a* rate decreased, showing low tendency towards red color. Viscosity and moisture content increase with frying cycle. This situation occurred might be due to formation of hydrolysis products which are volatile while frying process. But the remaining non-volatile compounds among the hydrolysis products might also accumulate in palm oil and thus affect the total oil/fat chemical changes. Meanwhile the density of palm oil was quite constant at 0.15 g/cm3 except for cycle 2 with 0.17 g/cm3. The result obtained from this experiment were comply with previous study that stated frying batch number is a significant variable (a = 0.05) affecting the density of oil only after 20 frying batch. The contact angle of recycled palm oil on PHBV thin film was more than 90 °. Hence it shows

  8. A chemometrics approach applied to Fourier transform infrared spectroscopy (FTIR) for monitoring the spoilage of fresh salmon (Salmo salar) stored under modified atmospheres.

    Science.gov (United States)

    Saraiva, C; Vasconcelos, H; de Almeida, José M M M

    2017-01-16

    The aim of this work was to investigate the potential of Fourier transform infrared spectroscopy (FTIR) to detect and predict the bacterial load of salmon fillets (Salmo salar) stored at 3, 8 and 30°C under three packaging conditions: air packaging (AP) and two modified atmospheres constituted by a mixture of 50%N2/40%CO2/10%O2 with lemon juice (MAPL) and without lemon juice (MAP). Fresh salmon samples were periodically examined for total viable counts (TVC), specific spoilage organisms (SSO) counts, pH, FTIR and sensory assessment of freshness. Principal components analysis (PCA) allowed identification of the wavenumbers potentially correlated with the spoilage process. Linear discriminant analysis (LDA) of infrared spectral data was performed to support sensory data and to accurately identify samples freshness. The effect of the packaging atmospheres was assessed by microbial enumeration and LDA was used to determine sample packaging from the measured infrared spectra. It was verified that modified atmospheres can decrease significantly the bacterial load of fresh salmon. Lemon juice combined with MAP showed a more pronounced delay in the growth of Brochothrix thermosphacta, Photobacterium phosphoreum, psychrotrophs and H2S producers. Partial least squares regression (PLS-R) allowed estimates of TVC and psychrotrophs, lactic acid bacteria, molds and yeasts, Brochothrix thermosphacta, Enterobacteriaceae, Pseudomonas spp. and H2S producer counts from the infrared spectral data. For TVC, the root mean square error of prediction (RMSEP) value was 0.78logcfug(-1) for an external set of samples. According to the results, FTIR can be used as a reliable, accurate and fast method for real time freshness evaluation of salmon fillets stored under different temperatures and packaging atmospheres.

  9. The effects of packaging method (vacuum pouch vs. plastic tray) on spoilage in a cook-chill pork-based dish kept under refrigeration.

    Science.gov (United States)

    Díaz, Pedro; Garrido, María Dolores; Bañón, Sancho

    2010-03-01

    The effects of two packaging methods on the spoilage of a cook-chill pork-based dish kept under refrigeration were studied. Raw pork cuts and pre-cooked tomato sauce were packed under vacuum "sous vide" in polyamide-polypropylene pouches (SV) or into translucent polypropylene trays under modified atmosphere (80% N(2)+20% CO(2)) and sealed with a top film (PT). Samples were cooked inside the pack at an oven temperature/time of 70 degrees C/7h, chilled at 3 degrees C and stored at 2 degrees C for up to 90days. Microbial (psychrotrophs, lactic-acid bacteria, Enterobacteriaceae, moulds and yeasts), physical-chemical (pH, water activity and total acidity) and sensory (colour, odour, flavour, texture and acceptance) parameters were determined. Heat penetration was faster in SV (2 degrees C/min) than in PT (1 degrees C/min) (core temperature). Both packaging methods were equally effective in protecting against microbial spoilage for 90 day at 2 degrees C. Minor counts were only detected for lactic-acid bacteria and anaerobic psychrotrophs in SV. No Enterobacteriaceae growth was found. Slight differences between SV and PT in pH and total acidity were observed. SV and PT had similar effects on the sensory preservation of the dishes. A gradual loss of acceptance of the cooked pork and tomato sauce was observed. Rancid flavour in PT and warmed-over-flavour in SV were noted in the final stages of storage. According to acceptance scores, the shelf-life of both SV and PT was 56 days at 2 degrees C. Both packaging methods can be used to manufacture sous vide meat-based dishes subsequently stored under refrigeration for catering use. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Production Method that Leads to TiO2 Nanofibrous Structure Usable in Food Packaging

    Directory of Open Access Journals (Sweden)

    Kovář Radovan

    2016-12-01

    Full Text Available Burned inorganic nanofibers most often occur in the nature in two forms: rutile and anatase. Today, the production of rutile is about to end, while anatase provides more application possibilities. The resulting fiber structure is determined by calcination. It is necessary to find the optimal temperature as well as time, during which the fibers must withstand temperature load. For such method of calcination, it is necessary to create a special design of continuous furnace. Anatase has application in food packaging. Packages containing anatase are used for: food safety, improved packaging for spoilage reduction, sensors for detection of pathogens and spoilage, disinfectants and antimicrobial surfaces.

  11. Asian fungal fermented food

    NARCIS (Netherlands)

    Nout, M.J.R.; Aidoo, K.E.

    2010-01-01

    In Asian countries, there is a long history of fermentation of foods and beverages. Diverse micro-organisms, including bacteria, yeasts and moulds, are used as starters, and a wide range of ingredients can be made into fermented foods. The main raw materials include cereals, leguminous seeds,

  12. Asian fungal fermented food

    NARCIS (Netherlands)

    Nout, M.J.R.; Aidoo, K.E.

    2010-01-01

    In Asian countries, there is a long history of fermentation of foods and beverages. Diverse micro-organisms, including bacteria, yeasts and moulds, are used as starters, and a wide range of ingredients can be made into fermented foods. The main raw materials include cereals, leguminous seeds, vegeta

  13. Asian fungal fermented food

    NARCIS (Netherlands)

    Nout, M.J.R.; Aidoo, K.E.

    2010-01-01

    In Asian countries, there is a long history of fermentation of foods and beverages. Diverse micro-organisms, including bacteria, yeasts and moulds, are used as starters, and a wide range of ingredients can be made into fermented foods. The main raw materials include cereals, leguminous seeds, vegeta

  14. Food irradiation; Napromieniowanie zywnosci

    Energy Technology Data Exchange (ETDEWEB)

    Migdal, W. [Instytut Chemii i Techniki Jadrowej, Doswiadczalna Stacja Radiacyjnego Utrwalania Plodow Rolnych, Warsaw (Poland)

    1995-12-31

    A worldwide standard on food irradiation was adopted in 1983 by codex Alimentarius Commission of the Joint Food Standard Programme of the Food and Agriculture Organization (FAO) of the United Nations and The World Health Organization (WHO). As a result, 41 countries have approved the use of irradiation for treating one or more food items and the number is increasing. Generally, irradiation is used to: food loses, food spoilage, disinfestation, safety and hygiene. The number of countries which use irradiation for processing food for commercial purposes has been increasing steadily from 19 in 1987 to 33 today. In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in Inst. of Nuclear Chemistry and Technology. The plant is equipped with a small research accelerator Pilot (19 MeV, 1 kW) and industrial unit Electronika (10 MeV, 10 kW). On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for irradiation for; spices, garlic, onions, mushrooms, potatoes, dry mushrooms and vegetables. (author) 14 refs, 3 tabs

  15. Photocatalytic disinfection of spoilage bacteria Pseudomonas fluorescens and Macrococcus caseolyticus by nano-TiO2

    Science.gov (United States)

    Photocatalytic disinfection of spoilage bacteria gram-negative (G-) P. fluorescens and gram-positive (G+) M. caseolyticus by nano-TiO2 under different experimental conditions and the disinfection mechanism were investigated. The experimental conditions included the initial bacterial populations, nan...

  16. Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts

    DEFF Research Database (Denmark)

    Rasch, Maria; Andersen, Jens Bo; Nielsen, Kristian Fog

    2005-01-01

    sprouts. Thin-layer chromatography and liquid chromatography-high-resolution mass spectrometry revealed the presence of N-3-oxo-hexanoyl-l-homoserine lactone in spoiled bean sprouts and in extracts from pure cultures of bacteria. During normal spoilage, the pH of the sprouts increased due to proteolytic...

  17. The influence of substrate on siderophore production by fish spoilage bacteria

    DEFF Research Database (Denmark)

    Gram, Lone

    1996-01-01

    Siderophore production of fish spoilage bacteria (5 isolates of Shewanella putrefaciens and 5 of Pseudomonas sp.) was determined in fish extract, Tris-succinate medium, a liquid medium of the Chrome-Azurol-S (CAS) agar and in M9 medium supplemented with glucose and casamino acids (M9GC). One Pseu...

  18. The fungal flora of loganberries in relation to storage and spoilage.

    Science.gov (United States)

    Davis, R P; Dennis, C

    1977-03-01

    Botrytis cinerea, Cladosporium spp., Penicillium spp., Aureobasidium pullulans, Mucor mucedo, Phoma state of Didymella applanata, Cryptococcus laurentii var. laurentii, C. albidus var. albidus, Candida sake and Sporobolomyces roseus were consistently present on freshly harvested loganberries. Botrytis cinerea was the main spoilage organism with Mucor mucedo of minor importance. The importance of benomyl-resistant strains of B. cinerea is discussed.

  19. Spoilage of lightly salted lumpfish (Cyclopterus lumpus) roe at 5°C

    DEFF Research Database (Denmark)

    Basby, Merethe; Jeppesen, V.F.; Huss, Hans Henrik

    1998-01-01

    sulphury, sour odors. The microflora consisted of lactic acid bacteria, Enterobacteriaceae and Vibrio spp. Concentration of lactic acid, acetic acid, trimethylamine and total volatile bases were unrelated to spoilage odors. Volatile sulfur compounds (H2S, probably CS2, CH3SH and CH3CH2SH or CH3SCH3...

  20. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  1. The Challenges of Eliminating or Substituting Antimicrobial Preservatives in Foods.

    Science.gov (United States)

    Erickson, Marilyn C; Doyle, Michael P

    2017-02-28

    Consumers' criteria for evaluating food safety have evolved recently from considering the food's potential to cause immediate physical harm to considering the potential long-term effects that consumption of artificial ingredients, including antimicrobial preservatives, would have on health. As bacteriostatic and bactericidal agents to prevent microbial spoilage, antimicrobials not only extend shelf life, but they also enhance the product's safety. Antimicrobials and their levels that may be used in foods are specified by regulatory agencies. This review addresses the safety of antimicrobials and the potential consequences of removing those that are chemically synthesized or replacing them with antimicrobials from so-called natural sources. Such changes can affect the microbiological safety and spoilage of food as well as reduce shelf life, increase wastage, and increase the occurrence of foodborne illnesses.

  2. Metabolic Profiling of Food Protective Cultures by in vitro NMR Spectroscopy

    DEFF Research Database (Denmark)

    Ebrahimi, Parvaneh

    D project is mainly focused on the application of in vitro NMR spectroscopy for studying the metabolism of protective cultures. As an important part of this work, an analytical protocol was developed for realtime in vitro NMR measurements of bacterial fermentation, which includes guidelines from the sample......Food spoilage is of major concern to the food industry, because it leads to considerable economic losses, a deteriorated environmental food-print, and to possible public health hazards. In order to limit food spoilage, research on the preservation of food products has always received particular......-called protective cultures) has unexploited potential to inhibit the growth of pathogenic microorganisms and enhance the shelf life of the final food product. In order to apply biopreservation in food products effectively, detailed knowledge on the metabolism of protective cultures is required. The present Ph...

  3. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions.

    Science.gov (United States)

    Ercolini, Danilo; Russo, Federica; Torrieri, Elena; Masi, Paolo; Villani, Francesco

    2006-07-01

    The microbial spoilage of beef was monitored during storage at 5 degrees C under three different conditions of modified-atmosphere packaging (MAP): (i) air (MAP1), (ii) 60% O2 and 40% CO2 (MAP2), and (iii) 20% O2 and 40% CO2 (MAP3). Pseudomonas, Enterobacteriaceae, Brochothrix thermosphacta, and lactic acid bacteria were monitored by viable counts and PCR-denaturing gradient gel electrophoresis (DGGE) analysis during 14 days of storage. Moreover, headspace gas composition, weight loss, and beef color change were also determined at each sampling time. Overall, MAP2 was shown to have the best protective effect, keeping the microbial loads and color change to acceptable levels in the first 7 days of refrigerated storage. The microbial colonies from the plate counts of each microbial group were identified by PCR-DGGE of the variable V6-V8 region of the 16S rRNA gene. Thirteen different genera and at least 17 different species were identified after sequencing of DGGE fragments that showed a wide diversity of spoilage-related bacteria taking turns during beef storage in the function of the packaging conditions. The countable species for each spoilage-related microbial group were different according to packaging conditions and times of storage. In fact, the DGGE profiles displayed significant changes during time and depending on the initial atmosphere used. The spoilage occurred between 7 and 14 days of storage, and the microbial species found in the spoiled meat varied according to the packaging conditions. Rahnella aquatilis, Rahnella spp., Pseudomonas spp., and Carnobacterium divergens were identified as acting during beef storage in air (MAP1). Pseudomonas spp. and Lactobacillus sakei were found in beef stored under MAP conditions with high oxygen content (MAP2), while Rahnella spp. and L. sakei were the main species found during storage using MAP3. The identification of the spoilage-related microbiota by molecular methods can help in the effective establishment of

  4. Electronic Nose for Microbiological Quality Control of Food Products

    OpenAIRE

    Falasconi, M.; I. Concina; E. Gobbi; Sberveglieri, V.; A. Pulvirenti; G. Sberveglieri

    2012-01-01

    Electronic noses (ENs) have recently emerged as valuable candidates in various areas of food quality control and traceability, including microbial contamination diagnosis. In this paper, the EN technology for microbiological screening of food products is reviewed. Four paradigmatic and diverse case studies are presented: (a) Alicyclobacillus spp. spoilage of fruit juices, (b) early detection of microbial contamination in processed tomatoes, (c) screening of fungal and fumonisin contamination ...

  5. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  6. Improving industrial yeast strains: exploiting natural and artificial diversity

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  7. Real-Time Quantitative PCR (QPCR) and Reverse Transcription-QPCR for Detection and Enumeration of Total Yeasts in Wine▿

    Science.gov (United States)

    Hierro, Núria; Esteve-Zarzoso, Braulio; González, Ángel; Mas, Albert; Guillamón, Jose M.

    2006-01-01

    Real-time PCR, or quantitative PCR (QPCR), has been developed to rapidly detect and quantify the total number of yeasts in wine without culturing. Universal yeast primers were designed from the variable D1/D2 domains of the 26S rRNA gene. These primers showed good specificity with all the wine yeasts tested, and they did not amplify the most representative wine species of acetic acid bacteria and lactic acid bacteria. Numerous standard curves were constructed with different strains and species grown in yeast extract-peptone-dextrose medium or incubated in wine. The small standard errors with these replicas proved that the assay is reproducible and highly robust. This technique was validated with artificially contaminated and natural wine samples. We also performed a reverse transcription-QPCR (RT-QPCR) assay from rRNA for total viable yeast quantification. This technique had a low detection limit and was more accurate than QPCR because the dead cells were not quantified. As far as we know, this is the first time that RT-QPCR has been performed to quantify viable yeasts from rRNA. RT-QPCR is a rapid and accurate technique for enumerating yeasts during industrial wine fermentation and controlling the risk of wine spoilage. PMID:17088381

  8. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  9. Comparison of adhesion of the food spoilage bacterium Shewanella putrefaciens to stainless steel and silver surfaces

    DEFF Research Database (Denmark)

    Hjelm, Mette; Hilbert, Lisbeth Rischel; Møller, Per;

    2002-01-01

    (new silver, tarnished silver and sulphide treated silver) was compared to adhesion to stainless steel (AISI 316). Numbers of attached bacteria (cfu cm-2) were estimated using the Malthus indirect conductance method. A lower number of attached bacteria were measured on new silver surfaces compared...... to stainless steel for samples taken after 24 hours. However this was not significant (P > 0.05). The numbers of attached bacteria were consistently lower when tarnished silver surfaces were compared to stainless steel and some, but not all, experiments showed statistically significant. A difference of more...... than one log unit in bacterial numbers on the two types of materials was observed, but for most samples the difference was within one log unit. Treating new silver with sulphide to try to reproduce a tarnished silver surface did not result in a similar lowering of adhering cells when compared to steel...

  10. Development of Rapid Identification and Risk Analysis of Moniliella Spp. in Acidic Processed Foods.

    Science.gov (United States)

    Nakayama, Motokazu; Hosoya, Kouichi; Shimizu-Imanishi, Yumi; Chibana, Hiroji; Yaguchi, Takashi

    2016-01-01

    The number of spoilage incidents in the food industry attributable to a species of the genus Moniliella has recently increased, but the risk of food spoilage has not yet been evaluated. The purpose of this study was to develop a method to rapidly identify high-risk species and to conduct a risk analysis study of Moniliella spp. Acetic acid resistance of M. acetoabutens and ethanol resistance of M. suaveolens were higher than for other Moniliella species. All examined strains of M. acetoabutens developed a high tolerance to acetic acid by being cultured twice in liquid media containing low concentrations of acetic acid. These findings indicate that M. acetoabutens and M. suaveolens are high-risk species for food spoilage and must be discriminated from other fungi. We developed species-specific primers to identify M. acetoabutens and M. suaveolens using the polymerase chain reaction (PCR) to amplify the D1/D2 domain of 28S rDNA. The PCR using the primer sets designed for M. acetoabutens (Mac_F1/R1) and M. suaveolens (Msu_F1/R1) was specific to the target species and did not detect other fungi involved in food spoilage or environmental contamination. This method is expected to be effective for the monitoring of raw materials and components of the food production process.

  11. UV Tolerance of Spoilage Microorganisms and Acid-Shocked and Acid-Adapted Escherichia coli in Apple Juice Treated with a Commercial UV Juice-Processing Unit.

    Science.gov (United States)

    Usaga, Jessie; Padilla-Zakour, Olga I; Worobo, Randy W

    2016-02-01

    The enhanced thermal tolerance and survival responses of Escherichia coli O157:H7 in acid and acidified foods is a major safety concern for the production of low-pH products, including beverages. Little is known about this phenomenon when using UV light treatments. This study was conducted to evaluate the effects of strain (E. coli O157:H7 strains C7927, ATCC 35150, ATCC 43895, and ATCC 43889 and E. coli ATCC 25922) and physiological state (control-unadapted, acid adapted, and acid shocked) on the UV tolerance of E. coli in apple juice treated under conditions stipulated in current U.S. Food and Drug Administration regulations. A greater than 5-log reduction of E. coli was obtained under all tested conditions. A significant effect of strain (P < 0.05) was observed, but the physiological state did not influence pathogen inactivation (P ≥ 0.05). The UV sensitivity of three spoilage microorganisms (Aspergillus niger, Penicillium commune, and Alicyclobacillus acidoterrestris) was also determined at UV doses of 0 to 98 mJ/cm(2). Alicyclobacillus was the most UV sensitive, followed by Penicillium and Aspergillus. Because of the nonsignificant differences in UV sensitivity of E. coli in different physiological states, the use of an unadapted inoculum would be adequate to conduct challenge studies with the commercial UV unit used in this study at a UV dose of 14 mJ/cm(2). The high UV tolerance of spoilage microorganisms supports the need to use a hurdle approach (e.g., coupling of refrigeration, preservatives, and/or other technologies) to extend the shelf life of UV-treated beverages.

  12. Quorum sensing signals affect spoilage of refrigerated large yellow croaker (Pseudosciaena crocea) by Shewanella baltica.

    Science.gov (United States)

    Zhu, Junli; Zhao, Aifei; Feng, Lifang; Gao, Haichun

    2016-01-18

    In this work we investigated the specific spoilage organism (SSO) of large yellow croaker (Pseudosciaena crocea) stored at 4°C and role of quorum sensing (QS) system of SSO isolated from the spoiled fish. According to microbial count and 16S rRNA gene of the isolated pure strains, Shewanella, mainly Shewanella baltica and Shewanella putrefaciens, was predominant genera at the end of shelf-life of P. crocea. Among Shewanella isolates, S.baltica02 was demonstrated as SSO in spoilage potential characteristics by inoculation into sterile fish juice using sensory and chemical analyses. Autoinducer 2 and two cyclic dipeptides (DKPs) including cyclo-(l-Pro-l-Leu) and cyclo-(l-Pro-l-Phe), no any AHLs, were detected in cell-free S. baltica culture. Interestingly, S.baltica02 had the highest QS activity among three spoilers of S. baltica. The production of biofilm, trimethylamines (TMA) and putrescine in these spoilers significantly increased in the presence of cyclo-(l-Pro-l-Leu), rather than cyclo-(l-Pro-l-Phe) and 4,5-dihydroxy-2,3-pentanedione (the AI-2 precursor, DPD). In accordance with the effect of signal molecules on the spoilage phenotype, exposure to exogenous cyclo-(l-Pro-l-Leu) was also showed to up-regulate the transcription levels of luxR, torA and ODC, and no effect of luxS indicated that S. baltica could sense cyclo-(l-Pro-l-Leu). In the fish homogenate, exogenous cyclo-(l-Pro-l-Leu) shortened lag phase durations and enhanced growth rates of the dominant bacteria, H2S producing bacteria, under refrigerated storage, while exogenous DPD retarded growth of competing bacteria, such as Enterobacteriaceae. Meanwhile, cyclo-(l-Pro-l-Leu) also promoted the accumulation of metabolites on the spoilage process of homogenate. S.baltica02 luxS mutant preliminarily proved that AI-2 might not play a signaling role in the spoilage. The present study suggested that the spoilage potential of S. baltica in P. crocea might be regulated by DKP-based quorum sensing.

  13. Influence of food preservation parameters and associated microbiota on production rate, profile and stability of acylated homoserine lactones from food-derived Enterobacteriaceae

    DEFF Research Database (Denmark)

    Flodgaard, Lars; Christensen, Allan Beck; Molin, Søren

    2003-01-01

    by Gram-negative bacteria participating in spoilage. As part of our investigation of the role of AHLs in food quality, we studied the AHL production in two Enterobacteriaceae isolated from cold-smoked salmon under growth conditions typical of those found in cold-smoked salmon. We tested the influence...

  14. Inventions on baker's yeast storage and activation at the bakery plant.

    Science.gov (United States)

    Gélinas, Pierre

    2010-01-01

    Baker's yeast is the gas-forming ingredient in bakery products. Methods have been invented to properly handle baker's yeast and optimize its activity at the bakery plant. Over the years, incentives for inventions on yeast storage and activation have greatly changed depending on trends in the baking industry. For example, retailer's devices for cutting bulk pressed yeast and techniques for activating dry yeast have now lost their importance. Review of patents for invention indicates that activation of baker's yeast activity has been a very important issue for bakers, for example, with baking ingredients called yeast foods. In the recent years and especially for highly automated bakeries, interest has moved to equipments and processes for optimized storage of liquid cream yeast to thoroughly control dough fermentation and bread quality.

  15. The yeast Golgi apparatus.

    Science.gov (United States)

    Suda, Yasuyuki; Nakano, Akihiko

    2012-04-01

    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms.

  16. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment.

    Science.gov (United States)

    Brovko, Lubov Y; Anany, Hany; Griffiths, Mansel W

    2012-01-01

    This chapter presents recent advances in bacteriophage research and their application in the area of food safety. Section 1 describes general facts on phage biology that are relevant to their application for control and detection of bacterial pathogens in food and environmental samples. Section 2 summarizes the recently acquired data on application of bacteriophages to control growth of bacterial pathogens and spoilage organisms in food and food-processing environment. Section 3 deals with application of bacteriophages for detection and identification of bacterial pathogens. Advantages of bacteriophage-based methods are presented and their shortcomings are discussed. The chapter is intended for food scientist and food product developers, and people in food inspection and health agencies with the ultimate goal to attract their attention to the new developing technology that has a tremendous potential in providing means for producing wholesome and safe food.

  17. Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates.

    Science.gov (United States)

    Haakensen, M; Schubert, A; Ziola, B

    2009-03-15

    Identification of the beer-spoilage Lactobacillus and Pediococcus bacteria has largely taken two approaches; identification of spoilage-associated genes or identification of specific species of bacteria regardless of ability to grow in beer. The problem with these two approaches is that they are either overly inclusive (i.e., detect all bacteria of a given species regardless of spoilage potential) or overly selective (i.e., rely upon individual, putative spoilage-associated genes). Our goal was to design a method to assess the ability of Lactobacillus and Pediococcus to spoil beer that is independent of speciation or genetic background. In searching for a method by which to differentiate between beer-spoilage bacteria and bacteria that cannot grow in beer, we explored the ability of lactobacilli and pediococci isolates to grow in the presence of varying concentrations of hop-compounds and ethanol in broth medium versus on agar medium. The best method for differentiating between bacteria that can grow in beer and bacteria that do not pose a threat as beer-spoilage organisms was found to be a hop-gradient agar plate containing ethanol. This hop-gradient agar plate technique provides a rapid and simple solution to the dilemma of assessing the ability of Lactobacillus and Pediococcus isolates to grow in beer, and provides new insights into the different strategies used by these bacteria to survive under the stringent conditions of beer.

  18. 77 FR 52228 - Food Additives Permitted for Direct Addition to Food for Human Consumption; Vitamin D2

    Science.gov (United States)

    2012-08-29

    ... to Food for Human Consumption; Vitamin D2 Bakers Yeast AGENCY: Food and Drug Administration, HHS... regulations to provide for the safe use of vitamin D 2 bakers yeast as a source of vitamin D 2 and as a... vitamin D 2 per 100 grams (g) in the finished food. This action is in response to a petition filed...

  19. Production of acylated homoserine lactones by psychrotrophic members of the Enterobacteriaceae isolated from foods

    DEFF Research Database (Denmark)

    Gram, Lone; Christensen, A.B.; Flodgaard, Lars

    1999-01-01

    Bacteria are able to communicate and gene regulation can be mediated through the production of acylated homoserine lactone (AHL) signal molecules. These signals play important roles in several pathogenic and symbiotic bacteria. The following study was undertaken to investigate whether AHLs...... of indigenous Enterobacteriaceae reached 106 CFU/g. This level of Enterobacteriaceae is often found in lightly preserved foods, and AHL-mediated gene regulation may play a role in bacteria associated with food spoilage or food toxicity...

  20. Pulsed-light system as a novel food decontamination technology: a review

    OpenAIRE

    Elmnasser, Noura; Guillou, Sandrine; Leroi, Francoise; Orange, Nicole; Bakhrouf, Amina; Federighi, Michel

    2007-01-01

    In response to consumer preferences for high quality foods that are as close as possible to fresh products, athermal technologies are being developed to obtain products with high levels of organoleptic and nutritional quality but free of any health risks. Pulsed light is a novel technology that rapidly inactivates pathogenic and food spoilage microorganisms. It appears to constitute a good alternative or a complement to conventional thermal or chemical decontamination processes. This food pre...

  1. Bacterial surface antigen-specific monoclonal antibodies used to detect beer spoilage pediococci.

    Science.gov (United States)

    Whiting, M S; Ingledew, W M; Lee, S Y; Ziola, B

    1999-08-01

    Fourteen monoclonal antibodies (Mabs) were isolated that react with surface antigens of Pediococcus beer spoilage organisms, including P. damnosus, P. pentosaceous, P. acidilactici, and unspeciated isolates. Immunoblotting, enzyme immunoassays (EIAs) of protease- and neuraminidase-treated surface antigen extracts, carbohydrate competition EIAs, and cardiolipin EIAs were used to characterize the bacterial antigens involved in Mab binding. Antigen stability in situ was tested by protease treatment or surface antigen extraction of washed bacteria. In most cases, the Mabs bind to Pediococcus surface antigens that appear to be covalently bound cell wall polymers resistant to alteration or removal from the bacterial surface. These bacterial surface antigen reactive Mabs show good potential for rapid, sensitive, and specific immunoassay detection of Pediococcus beer spoilage organisms.

  2. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack.

    Science.gov (United States)

    Pennacchia, C; Ercolini, D; Villani, F

    2011-02-01

    In order to study the spoilage-related microbiota of beef at species level, a combination of culture-independent and culture-dependent methods was used to analyse nine different beef samples stored at 4°C in air or in vacuum pack. Plate counts on selective agars after 0, 7 and 20 days of storage showed that vacuum packaging reduced the viable counts of Brochothrix thermosphacta, Pseudomonas spp. and Enterobacteriaceae, whereas the growth of lactic acid bacteria (LAB) was unaffected. Storage in vacuum pack mainly affected viable counts and not necessarily the species diversity of microbial populations on meat. Such populations were studied by PCR-DGGE of DNA directly extracted from meat and from bulk cells from culture media, followed by sequencing of DGGE fragments. Pseudomonas spp., Carnobacterium divergens, B. thermosphacta, Rahnella spp. and Serratia grimesii, or close relatives were detected in the meat at time zero. The use of the culture-independent method highlighted the occurrence of species that were not detected by plating. Photobacterium spp. occurred in most meat samples stored in air or in vacuum pack, which indicates this organism probably has a role in spoilage. In contrast, culture-dependent analysis allowed detection of bacterial species that were not found in DNA extracted directly from meat. This was the case for several species of Serratia or Rhanella among the enterobacteria, and Leuconostoc spp. among the LAB. Besides advancing our knowledge of the species involved in the spoilage of vacuum-packaged meat, this study shows the benefits of combining culture-based and direct approaches to enhance understanding of populations of spoilage bacteria.

  3. Using an electronic nose for determining the spoilage of vacuum-packaged beef.

    Science.gov (United States)

    Blixt, Y; Borch, E

    1999-02-02

    The use of an electronic nose in the quantitative determination of the degree of spoilage of vacuum-packaged beef was evaluated. Beef from four different slaughterhouses was sliced, vacuum-packaged and stored at 4 degrees C for 8 weeks. Samples were withdrawn for bacterial (aerobic bacteria, lactic acid bacteria, Brochothrix thermosphacta, Pseudomonas and Enterobacteriaceae) and sensorial analyses and analysis of the volatile compounds during the storage period. A trained panel was used for the sensorial evaluations. The volatile compounds were analysed using an electronic nose containing a sensory array composed of 10 metal oxide semiconductor field-effect transistors, four Tagushi type sensors and one CO2-sensitive sensor. Four of the 15 sensors were excluded due to lack of response or overloading. Partial least-squares regression was used to define the mathematical relationships between the degree of spoilage of vacuum-packaged beef, as determined by the sensory panel, and the signal magnitudes of the sensors of the electronic nose. The mathematical models were validated after 6 months using a new set of samples. The stability of the sensors during this period was examined and it was shown that the sensitivity of five of the 11 sensors used had changed. Using the six remaining sensors, the signal patterns obtained from the meat from the different slaughterhouses did not change over a period of 6 months. It was shown that the degree of spoilage, as calculated using a model based on two Tagushi sensors, correlated well with the degree of spoilage determined by the sensory panel (r2 = 0.94).

  4. ENHANCING FOOD SAFETY AND STABILITY THROUGH IRRADIATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    Manzoor Ahmad Shah

    2014-04-01

    Full Text Available Food irradiation is one of the non thermal food processing methods. It is the process of exposing food materials to the controlled amounts of ionizing radiations such as gamma rays, X-rays and accelerated electrons, to improve microbiological safety and stability. Irradiation disrupts the biological processes that lead to decay of food quality. It is an effective tool to reduce food-borne pathogens, spoilage microorganisms and parasites; to extend shelf-life and for insect disinfection. The safety and consumption of irradiated foods have been extensively studied at national levels and in international cooperations and have concluded that foods irradiated under appropriate technologies are both safe and nutritionally adequate. Specific applications of food irradiation have been approved by national legislations of more than 55 countries worldwide. This review aims to discuss the applications of irradiation in food processing with the emphasis on food safety and stability.

  5. Noninvasive Qualitative and Quantitative Assessment of Spoilage Attributes of Chilled Pork Using Hyperspectral Scattering Technique.

    Science.gov (United States)

    Zhang, Leilei; Peng, Yankun

    2016-08-01

    The objective of this research was to develop a rapid noninvasive method for quantitative and qualitative determination of chilled pork spoilage. Microbiological, physicochemical, and organoleptic characteristics such as the total viable count (TVC), Pseudomonas spp., total volatile basic-nitrogen (TVB-N), pH value, and color parameter L* were determined to appraise pork quality. The hyperspectral scattering characteristics from 54 meat samples were fitted by four-parameter modified Gompertz function accurately. Support vector machines (SVM) was applied to establish quantitative prediction model between scattering fitting parameters and reference values. In addition, partial least squares discriminant analysis (PLS-DA) and Bayesian analysis were utilized as supervised and unsupervised techniques for the qualitative identification of meat spoilage. All stored chilled meat samples were classified into three grades: "fresh," "semi-fresh," and "spoiled." Bayesian classification model was superior to PLS-DA with overall classification accuracy of 92.86%. The results demonstrated that hyperspectral scattering technique combined with SVM and Bayesian possessed a powerful capability for meat spoilage assessment rapidly and noninvasively. © The Author(s) 2016.

  6. Spoilage and shelf-life extension of fresh fish and shellfish.

    Science.gov (United States)

    Ashie, I N; Smith, J P; Simpson, B K

    1996-01-01

    Fresh fish and shellfish are highly perishable products due to their biological composition. Under normal refrigerated storage conditions, the shelf life of these products is limited by enzymatic and microbiological spoilage. However, with increasing consumer demands for fresh products with extended shelf life and increasing energy costs associated with freezing and frozen storage, the fish-processing industry is actively seeking alternative methods of shelf life preservation and marketability of fresh, refrigerated fish and at the same time economizing on energy costs. Additional methods that could fulfill these objectives include chemical decontamination, low-dose irradiation, ultra-high pressure, and modified atmosphere packaging (MAP). This review focuses on the biochemical and microbiological composition of fresh fish/shellfish, the spoilage patterns in these products, factors influencing spoilage, and the combination treatments that can be used in conjunction with refrigeration to extend the shelf life and keeping quality of fresh fish/shellfish. The safety concerns of minimally processed/MAP fish, specifically with respect to the growth of Clostridium botulinum type E, is also addressed.

  7. Molecular characterization of spoilage bacteria as a means to observe the microbiological quality of carrot.

    Science.gov (United States)

    Kahala, Minna; Blasco, Lucia; Joutsjoki, Vesa

    2012-03-01

    This study characterized the bacteria causing decay of carrots during storage and marketing. Spoilage strains were identified by 16S-amplified rDNA restriction analysis and intergenic transcribed spacer-PCR-restriction fragment length polymorphism (ITS-PCR-RFLP). Genotypic fingerprinting by RFLP-pulsed-field gel electrophoresis was used to assess the genetic diversity of the isolates. A total of 252 Pseudomonas isolates from carrots were identified and classified into eight separate groups. Most strains belonged to group A (Pseudomonas fluorescens, Pseudomonas marginalis, and Pseudomonas veronii) and group B (Pseudomonas putida). The strains identified as Pectobacterium carotovorum subsp. carotovorum, Pectobacterium atrosepticum, Dickeya chrysanthemi, and Erwinia rhapontici were distinguished by ITS-PCR-RFLP. All isolates belonging to the genera Pectobacterium and Erwinia were responsible for carrot spoilage. This work has led to the development of new strategies for the identification and genotyping of vegetable-spoiling strains of Pseudomonas, Pectobacterium, and Erwinia. This is also the first report describing the occurrence of carrot-spoiling E. rhapontici. Early recognition of spoilage bacteria in vegetables is important for the implementation of effective handling strategies. Pectolytic bacteria may cause considerable financial losses because they account for a large proportion of bacterial rot of fruits and vegetables during storage, transit, and marketing.

  8. An Overview on the Effects of Sodium Benzoate as a Preservative in Food Products

    Directory of Open Access Journals (Sweden)

    Shahmohammadi

    2016-05-01

    Full Text Available Context Food spoilage has been a common problem throughout history, and much of the spoilage is caused the activity of microorganisms or enzymatic reactions during the storage of food. Thus, using chemical substances could prevent or delay food spoilage and this has led to the great success of these compounds in the treatment of human diseases. Sodium benzoate is one of the synthetic additives that are widely used in the food industry. Evidence Acquisition In this review we summarized the history and role of benzoate sodium in the food industry, its limited value in different food, other uses, pharmacokinetics, and its toxicity in animal studies. A literature search was carried out using MEDLINE, Scopus, Science Direct, and Scientific Information Databases (SID. Results Sodium benzoate is used in different industries as well as the food industry and it has adverse effects similar to other food additives. Conclusions Studies on natural ingredients in foods to find compounds with similar effects as benzoate with less adverse effects is necessary.

  9. Yeast biotechnology: teaching the old dog new tricks

    Science.gov (United States)

    2014-01-01

    Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature. PMID:24602262

  10. Bacterial spores in food : how phenotypic variability complicates prediction of spore properties and bacterial behavior

    NARCIS (Netherlands)

    Eijlander, Robyn T.; Abee, Tjakko; Kuipers, Oscar P.

    2011-01-01

    Bacillus spores are a known cause of food spoilage and their increased resistance poses a major challenge in efficient elimination. Recent studies on bacterial cultures at the single cell level have revealed how minor differences in essential spore properties, such as core water content or germinant

  11. Bacterial spores in food: how phenotypic variability complicates prediction of spore properties and bacterial behavior

    NARCIS (Netherlands)

    Eijlander, R.T.; Abee, T.; Kuipers, O.P.

    2011-01-01

    Bacillus spores are a known cause of food spoilage and their increased resistance poses a major challenge in efficient elimination. Recent studies on bacterial cultures at the single cell level have revealed how minor differences in essential spore properties, such as core water content or germinant

  12. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores

    NARCIS (Netherlands)

    Warda, A.K.; Besten, den H.M.W.; Sha, N.; Abee, T.; Nierop Groot, M.N.

    2015-01-01

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments

  13. Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores

    NARCIS (Netherlands)

    Warda, A.K.; Besten, den H.M.W.; Sha, N.; Abee, T.; Nierop Groot, M.N.

    2015-01-01

    Spoilage of heat treated foods can be caused by the presence of surviving spore-formers. It is virtually impossible to prevent contamination at the primary production level as spores are ubiquitous present in the environment and can contaminate raw products. As a result spore inactivation treatments

  14. Potential use of Rosemary, Propolis and Thyme as Natural Food Preservatives

    NARCIS (Netherlands)

    Tzima, K.; Makris, D.; Nikiforidis, C.V.; Mourtzinos, I.

    2015-01-01

    The use of preservatives in food stuffs and beverages is essential in order to prevent spoilage due to microbial growth or undesirable chemical changes. However, the use of synthetic additives has been associated with various health problems. Therefore, consumers have turned suspicious and obverted

  15. Potential use of Rosemary, Propolis and Thyme as Natural Food Preservatives

    NARCIS (Netherlands)

    Tzima, K.; Makris, D.; Nikiforidis, C.V.; Mourtzinos, I.

    2015-01-01

    The use of preservatives in food stuffs and beverages is essential in order to prevent spoilage due to microbial growth or undesirable chemical changes. However, the use of synthetic additives has been associated with various health problems. Therefore, consumers have turned suspicious and obverted

  16. Flow cytometry applications in the food industry.

    Science.gov (United States)

    Comas-Riu, Jaume; Rius, Núria

    2009-08-01

    Flow cytometry has become a valuable tool in food microbiology. By analysing large numbers of cells individually using light-scattering and fluorescence measurements, this technique reveals both cellular characteristics and the levels of cellular components. Flow cytometry has been developed to rapidly enumerate microorganisms; to distinguish between viable, metabolically active and dead cells, which is of great importance in food development and food spoilage; and to detect specific pathogenic microorganisms by conjugating antibodies with fluorochromes, which is of great use in the food industry. In addition, high-speed multiparametric data acquisition, analysis and cell sorting, which allow other characteristics of individual cells to be studied, have increased the interest of food microbiologists in this technique. This mini-review gives an overview of the principles of flow cytometry and examples of the application of this technique in the food industry.

  17. Challenges and advances in systems biology analysis of Bacillus spore physiology; molecular differences between an extreme heat resistant spore forming Bacillus subtilis food isolate and a laboratory strain

    NARCIS (Netherlands)

    Brul, S.; van Beilen, J.; Caspers, M.; O'Brien, A.; de Koster, C.; Oomes, S.; Smelt, J.; Kort, R.; ter Beek, A.

    2011-01-01

    Bacterial spore formers are prime organisms of concern in the food industry. Spores from the genus Bacillus are extremely stress resistant, most notably exemplified by high thermotolerance. This sometimes allows surviving spores to germinate and grow out to vegetative cells causing food spoilage and

  18. African fermented dairy products - Overview of predominant technologically important microorganisms focusing on African Streptococcus infantarius variants and potential future applications for enhanced food safety and security.

    Science.gov (United States)

    Jans, Christoph; Meile, Leo; Kaindi, Dasel Wambua Mulwa; Kogi-Makau, Wambui; Lamuka, Peter; Renault, Pierre; Kreikemeyer, Bernd; Lacroix, Christophe; Hattendorf, Jan; Zinsstag, Jakob; Schelling, Esther; Fokou, Gilbert; Bonfoh, Bassirou

    2017-06-05

    Milk is a major source of nutrients, but can also be a vehicle for zoonotic foodborne diseases, especially when raw milk is consumed. In Africa, poor processing and storage conditions contribute to contamination, outgrowth and transmission of pathogens, which lead to spoilage, reduced food safety and security. Fermentation helps mitigate the impact of poor handling and storage conditions by enhancing shelf life and food safety. Traditionally-fermented sour milk products are culturally accepted and widely distributed in Africa, and rely on product-specific microbiota responsible for aroma, flavor and texture. Knowledge of microbiota and predominant, technologically important microorganisms is critical in developing products with enhanced quality and safety, as well as sustainable interventions for these products, including Africa-specific starter culture development. This narrative review summarizes current knowledge of technologically-important microorganisms of African fermented dairy products (FDP) and raw milk, taking into consideration novel findings and taxonomy when re-analyzing data of 29 publications covering 25 products from 17 African countries. Technologically-important lactic acid bacteria such as Lactococcus lactis and Streptococcus infantarius subsp. infantarius (Sii), Lactobacillus spp. and yeasts predominated in raw milk and FDP across Africa. Re-analysis of data also suggests a much wider distribution of Sii and thus a potentially longer history of use than previously expected. Therefore, evaluating the role and safety of African Sii lineages is important when developing interventions and starter cultures for FDP in Africa to enhance food safety and food security. In-depth functional genomics, epidemiologic investigations and latest identification approaches coupled with stakeholder involvement will be required to evaluate the possibility of African Sii lineages as novel food-grade Streptococcus lineage. Copyright © 2017 The Authors. Published by

  19. Identification of lactic acid bacteria from spoilage associations of cooked and brined shrimps stored under modified atmosphere between 0 degrees C and 25 degrees C

    DEFF Research Database (Denmark)

    Dalgaard, Paw; Vancanneyt, M.; Vilalta, N.E.

    2003-01-01

    Aims: To evaluate spoilage and identify lactic acid bacteria (LAB) from spoilage associations of cooked and brined shrimps stored under modified atmosphere packaging (MAP) at 0, 5, 8, 15 and 25degreesC. Methods and Results: Bacterial isolates (102) from spoilage associations of cooked and brined...... to chemical changes in spoiled products. Carnobacterium divergens , a non-motile Carnobacterium sp. nov. and Lactobacillus curvatus were the LAB species observed in spoilage associations of products stored at 0degreesC, 5degreesC and 8degreesC. Conclusions: Enterococcus spp. and Carnobacterium spp. were...

  20. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  1. Nanotechnology for Food Packaging and Food Quality Assessment.

    Science.gov (United States)

    Rossi, Marco; Passeri, Daniele; Sinibaldi, Alberto; Angjellari, Mariglen; Tamburri, Emanuela; Sorbo, Angela; Carata, Elisabetta; Dini, Luciana

    Nanotechnology has paved the way to innovative food packaging materials and analytical methods to provide the consumers with healthier food and to reduce the ecological footprint of the whole food chain. Combining antimicrobial and antifouling properties, thermal and mechanical protection, oxygen and moisture barrier, as well as to verify the actual quality of food, e.g., sensors to detect spoilage, bacterial growth, and to monitor incorrect storage conditions, or anticounterfeiting devices in food packages may extend the products shelf life and ensure higher quality of foods. Also the ecological footprint of food chain can be reduced by developing new completely recyclable and/or biodegradable packages from natural and eco-friendly resources. The contribution of nanotechnologies to these goals is reviewed in this chapter, together with a description of portable devices ("lab-on-chip," sensors, nanobalances, etc.) which can be used to assess the quality of food and an overview of regulations in force on food contact materials. © 2017 Elsevier Inc. All rights reserved.

  2. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  3. Vaginal Yeast Infections

    Science.gov (United States)

    ... tight or made of materials like nylon that trap heat and moisture might make yeast infections more ... Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart.com

  4. Modeling brewers' yeast flocculation

    Science.gov (United States)

    van Hamersveld EH; van der Lans RG; Caulet; Luyben

    1998-02-01

    Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.

  5. Forces in yeast flocculation.

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F

    2015-02-07

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  6. Stereo and scanning electron microscopy of in-shell Brazil nut (Bertholletia excelsa H.B.K.): part two-surface sound nut fungi spoilage susceptibility.

    Science.gov (United States)

    Scussel, Vildes M; Manfio, Daniel; Savi, Geovana D; Moecke, Elisa H S

    2014-11-01

    This work reports the in-shell Brazil nut spoilage susceptible morpho-histological characteristics and fungi infection (shell, edible part, and brown skin) through stereo and scanning electron microscopies (SEM). The following characteristics related to shell (a) morphology-that allow fungi and insects' entrance to inner nut, and (b) histology-that allow humidity absorption, improving environment conditions for living organisms development, were identified. (a.1) locule in testae-the nut navel, which is a cavity formed during nut detaching from pods (located at 1.0 to 2.0/4th of the shell B&C nut faces linkage). It allows the nut brown skin (between shell and edible part) first contact to the external environment, through the (a.2) nut channel-the locule prolongation path, which has the water/nutrients cambium function for their transport and distribution to the inner seed (while still on the tree/pod). Both, locule followed by the channel, are the main natural entrance of living organisms (fungi and insects), including moisture to the inner seed structures. In addition, the (a.3) nut shell surface-which has a crinkled and uneven surface morphology-allows water absorption, thus adding to the deterioration processes too. The main shell histological characteristic, which also allows water absorption (thus improving environment conditions for fungi proliferation), is the (b.1) cell wall porosity-the multilayered wall and porous rich cells that compose the shell faces double tissue layers and the (b.2) soft tissue-the mix of tissues 2 faces corner/linkage. This work also shows in details the SEM nut spoilage susceptible features highly fungi infected with hyphae and reproductive structures distribution. © 2014 Institute of Food Technologists®

  7. Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

    Science.gov (United States)

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. PMID:24814796

  8. Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing.

    Science.gov (United States)

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A; Verstrepen, Kevin J; Lievens, Bart

    2014-07-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Potential benefits of the application of yeast starters in table olive processing

    OpenAIRE

    Francisco Noé eArroyo López; Veronica eRomero Gil; Joaquin eBautista Gallego; Francisco eRodriguez Gomez; Rufino eJimenez Diaz; Pedro eGarcía García; Amparo eQuerol Simon; Antonio eGarrido Fernandez

    2012-01-01

    Yeasts play an important role in the food and beverage industry, especially in products such as bread, wine, and beer, among many others. However, their use as a starter in table olive processing has not yet been studied in detail. The candidate yeast strains should be able to dominate fermentation, together with lactic acid bacteria, but should also provide a number of beneficial advantages. Technologically, yeasts should resist low pH and high salt concentrations, produce desirable aromas, ...

  10. In vitro and in situ growth characteristics and behaviour of spoilage organisms associated with anaerobically stored cooked meat products.

    Science.gov (United States)

    Vermeiren, L; Devlieghere, F; De Graef, V; Debevere, J

    2005-01-01

    Understanding spoilage caused by different types of spoilage organisms, associated with vacuum-packaged sliced cooked meat products (CMP). First, strains were characterized in a broth at 7 degrees C under anaerobic conditions to compare their growth rate, acidifying character and metabolite production under conditions simulating refrigerated vacuum-packaged conditions. Brochotrix thermosphacta grew faster than the lactic acid bacteria (LAB). Within the group of the LAB, all strains grew fast except Leuconostoc mesenteroides subsp. dextranicum and Leuconostoc carnosum. Secondly, the organisms were inoculated on a model cooked ham to better understand the relationship between spoilage, microbial growth, pH, metabolite production and accompanying sensory changes. Most rapidly growing strains were Leuc. mesenteroides subsp. mesenteroides followed by B. thermosphacta, while Leuc. mesenteroides subsp. dextranicum and Leuc. carnosum grew very slowly compared with the other LAB. Brochotrix thermosphacta caused sensory deviations at a lower cell number compared with the LAB. The related pH changes, metabolite production and sensory perception are presented. In this pure culture study, B. thermosphacta and Leuc. mesenteroides subsp. mesenteroides had the highest potential to cause rapid spoilage on CMP. A systematic study on the behaviour of spoilage organisms on a model cooked ham to establish the relationship between microbial growth, pH, metabolite formation and organoleptic deviations.

  11. Microbiological investigation of Raphanus sativus L. grown hydroponically in nutrient solutions contaminated with spoilage and pathogenic bacteria.

    Science.gov (United States)

    Settanni, Luca; Miceli, Alessandro; Francesca, Nicola; Cruciata, Margherita; Moschetti, Giancarlo

    2013-01-01

    The survival of eight undesired (spoilage/pathogenic) food related bacteria (Citrobacter freundii PSS60, Enterobacter spp. PSS11, Escherichia coli PSS2, Klebsiella oxytoca PSS82, Serratia grimesii PSS72, Pseudomonas putida PSS21, Stenotrophomonas maltophilia PSS52 and Listeria monocytogenes ATCC 19114(T)) was investigated in mineral nutrient solution (MNS) during the crop cycle of radishes (Raphanus sativus L.) cultivated in hydroponics in a greenhouse. MNSs were microbiologically analyzed weekly by plate count. The evolution of the pure cultures was also evaluated in sterile MNS in test tubes. The inoculated trials contained an initial total mesophilic count (TMC) ranging between 6.69 and 7.78Log CFU/mL, while non-sterile and sterile control trials showed levels of 4.39 and 0.97Log CFU/mL, respectively. In general, all inoculated trials showed similar levels of TMC in MNS during the experimentation, even though the levels of the inoculated bacteria decreased. The presence of the inoculums was ascertained by randomly amplified polymorphic DNA (RAPD) analysis applied on the isolates collected at 7-day intervals. At harvest, MNSs were also analyzed by denaturing gradient gel electrophoresis (DGGE). The last analysis, except P. putida PSS21 in the corresponding trial, did not detect the other bacteria, but confirmed that pseudomonads were present in un-inoculated MNSs. Despite the high counts detected (6.44 and 7.24CFU/g), only C. freundii PSS60, Enterobacter spp. PSS11 and K. oxytoca PSS82 were detected in radishes in a living form, suggesting their internalization. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Antarctic Yeasts: Biodiversity and Potential Applications

    Science.gov (United States)

    Shivaji, S.; Prasad, G. S.

    This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

  13. Predictive microbiology combined with metagenomic analysis targeted on the 16S rDNA : A new approach for food quality

    OpenAIRE

    Delhalle, Laurent; Ellouze, Mariem; Taminiau, Bernard; Korsak Koulagenko, Nicolas; Nezer, Carine; Daube,Georges

    2013-01-01

    OBJECTIVES The food spoilage process is mainly caused by alteration micro-organisms and classical culture-based methods have therefore been used to assess the microbiological quality of food. These techniques are simple to implement but may not be relevant to understand the modifications of the microbial ecology which occur in the food product in response to different changes in the environmental conditions. Metagenomic analysis targeted on 16S ribosomal DNA can bring about a solution to t...

  14. Mapping yeast transcriptional networks.

    Science.gov (United States)

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  15. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    Directory of Open Access Journals (Sweden)

    M Bayarjargal

    2014-09-01

    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: http://dx.doi.org/10.5564/mjc.v12i0.179 Mongolian Journal of Chemistry Vol.12 2011: 88-91

  16. Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon ( Salmo salar ) at 2 degrees C

    DEFF Research Database (Denmark)

    Emborg, Jette; Laursen, B.G.; Rathjen, T.;

    2002-01-01

    -2 weeks. Carnobacterium piscicola dominated the spoilage microflora of thawed MAP salmon and probably produced the ca 40 mg kg-1 tyramine detected in this product at the end of its shelf life.Conclusions: Photobacterium phosphoreum dominated the spoilage microflora of fresh MAP salmon but produced only...

  17. Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla

    NARCIS (Netherlands)

    Dashko, Sofia; Zhou, Nerve; Tinta, Tinkara; Sivilotti, Paolo; Lemut, Melita Sternad; Trost, Kajetan; Gamero, Amparo; Boekhout, Teun; Butinar, Lorena; Vrhovsek, Urska; Piskur, Jure

    Consumer wine preferences are changing rapidly towards exotic flavours and tastes. In this work, we tested five non-conventional yeast strains for their potential to improve Ribolla Gialla wine quality. These strains were previously selected from numerous yeasts interesting as food production

  18. Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla

    NARCIS (Netherlands)

    Dashko, Sofia; Zhou, Nerve; Tinta, Tinkara; Sivilotti, Paolo; Lemut, Melita Sternad; Trost, Kajetan; Gamero, Amparo; Boekhout, Teun; Butinar, Lorena; Vrhovsek, Urska; Piskur, Jure

    2015-01-01

    Consumer wine preferences are changing rapidly towards exotic flavours and tastes. In this work, we tested five non-conventional yeast strains for their potential to improve Ribolla Gialla wine quality. These strains were previously selected from numerous yeasts interesting as food production candid

  19. Role of Plasmids in Lactobacillus brevis BSO 464 Hop Tolerance and Beer Spoilage

    Science.gov (United States)

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa

    2014-01-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate. PMID:25501474

  20. Characterization and evaluation of the spoilage potential of Lactococcus piscium isolates from modified atmosphere packaged meat.

    Science.gov (United States)

    Rahkila, Riitta; Nieminen, Timo; Johansson, Per; Säde, Elina; Björkroth, Johanna

    2012-05-01

    A total of 222 psychrotrophic lactococci isolated from use-by day, modified atmosphere packaged (MAP) meat were identified to the species level by numerical analyses of EcoRI and ClaI ribopatterns and phylogenetic sequence analyses of 16S, rpoA and pheS genes. In addition, their meat spoilage potential was studied. The majority of the isolates (n=215) were identified as Lactococcus piscium, while seven isolates belonged to Lactococcus raffinolactis. L. piscium was shown to be adapted to growing in a variety of MAP meat products including broiler, turkey, pork, and minced meat from beef and pork, where they belonged to the predominating microbiota at the end of the storage. Numerical analyses of EcoRI and ClaI ribopatterns, and phylogenetic sequence analyses of rpoA and pheS genes were shown to be reliable tools in species level identification of meat lactococci. The spoilage potential of L. piscium was evaluated by inoculating representative isolates to MAP pork stored at 6 °C for 22 days. Development of spoilage population was monitored using a culture-independent T-RFLP approach. The sensory shelf life of pork inoculated with L. piscium was shortened compared to the uninoculated control. Alongside with the inoculated L. piscium isolates, Leuconostoc spp. present as initial contaminants in the samples thrived. This shows that even though lactococci were inoculated at higher levels compared to the natural microbiota, they did not occupy the niche and prevent the growth of other lactic acid bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage.

    Science.gov (United States)

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry

    2015-02-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.

  2. High pressure inactivation of Escherichia coli, Campylobacter jejuni, and spoilage microbiota on poultry meat.

    Science.gov (United States)

    Liu, Yang; Betti, Mirko; Gänzle, Michael G

    2012-03-01

    This study evaluated the high pressure inactivation of Campylobacter jejuni, Escherichia coli, and poultry meat spoilage organisms. All treatments were performed in aseptically prepared minced poultry meat. Treatment of 19 strains of C. jejuni at 300 MPa and 30°C revealed a large variation of pressure resistance. The recovery of pressure-induced sublethally injured C. jejuni depended on the availability of iron. The addition of iron content to enumeration media was required for resuscitation of sublethally injured cells. Survival of C. jejuni during storage of refrigerated poultry meat was analyzed in fresh and pressuretreated poultry meat, and in the presence or absence of spoilage microbiota. The presence of spoilage microbiota did not significantly influence the survival of C. jejuni. Pressure treatment at 400 MPa and 40°C reduced cell counts of Brochothrix thermosphacta, Carnobacterium divergens, C. jejuni, and Pseudomonas fluorescens to levels below the detection limit. Cell counts of E. coli AW1.7, however, were reduced by only 3.5 log (CFU/g) and remained stable during subsequent refrigerated storage. The resistance to treatment at 600 MPa and 40°C of E. coli AW1.7 was compared with Salmonella enterica, Shiga toxin-producing E. coli and nonpathogenic E. coli strains, and Staphylococcus spp. Cell counts of all organisms except E. coli AW 1.7 were reduced by more than 6 log CFU/g. Cell counts of E. coli AW1.7 were reduced by 4.5 log CFU/g only. Moreover, the ability of E. coli AW1.7 to resist pressure was comparable to the pressure-resistant mutant E. coli LMM1030. Our results indicate that preservation of fresh meat requires a combination of high pressure with high temperature (40 to 60°C) or other antimicrobial hurdles.

  3. Oxygen absorbers in food preservation: a review.

    Science.gov (United States)

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world.

  4. Microscopic findings for the study of biofilms in food environments.

    Science.gov (United States)

    Olszewska, Magdalena A

    2013-01-01

    The capability of bacteria to colonize food processing surfaces and to form biofilm has become an emerging concern for food industry. The presence and persistence of biofilm on food processing surfaces may pose a risk of food spoilage or food poisoning. A better understanding of bacterial adhesion and resistance of biofilms is needed to ensure quality and safety of food products. This review focuses on microscopic approaches incorporated to explore biofilm mode of existence in food processing environments. An application of antimicrobial agents for the biofilm control, in particular for bacteria connected with food processing environments, is also highlighted. In addition, some aspects of biofilm resistance, especially the phenomenon of persister cells, are discussed.

  5. [Fructose transporter in yeasts].

    Science.gov (United States)

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells.

  6. Yeast Biomass Production in Brewery's Spent Grains Hemicellulosic Hydrolyzate

    Science.gov (United States)

    Duarte, Luís C.; Carvalheiro, Florbela; Lopes, Sónia; Neves, Ines; Gírio, Francisco M.

    Yeast single-cell protein and yeast extract, in particular, are two products which have many feed, food, pharmaceutical, and biotechnological applications. However, many of these applications are limited by their market price. Specifically, the yeast extract requirements for culture media are one of the major technical hurdles to be overcome for the development of low-cost fermentation routes for several top value chemicals in a biorefinery framework. A potential biotechnical solution is the production of yeast biomass from the hemicellulosic fraction stream. The growth of three pentose-assimilating yeast cell factories, Debaryomyces hansenii, Kluyveromyces marxianus, and Pichia stipitis was compared using non-detoxified brewery's spent grains hemicellulosic hydrolyzate supplemented with mineral nutrients. The yeasts exhibited different specific growth rates, biomass productivities, and yields being D. hansenii as the yeast species that presented the best performance, assimilating all sugars and noteworthy consuming most of the hydrolyzate inhibitors. Under optimized conditions, D. hansenii displayed a maximum specific growth rate, biomass yield, and productivity of 0.34 h-1, 0.61 g g-1, and 0.56 g 1-1 h-1, respectively. The nutritional profile of D. hansenii was thoroughly evaluated, and it compares favorably to others reported in literature. It contains considerable amounts of some essential amino acids and a high ratio of unsaturated over saturated fatty acids.

  7. The involvement of bacterial quorum sensing in the spoilage of refrigerated Litopenaeus vannamei.

    Science.gov (United States)

    Zhu, Suqin; Wu, Haohao; Zeng, Mingyong; Liu, Zunying; Wang, Ying

    2015-01-02

    Quorum-sensing signals in refrigerated shrimp (Litopenaeus vannamei) undergoing spoilage were examined using bioreporter assays, thin-layer chromatography and gas chromatography-mass spectrometry, and the results revealed the presence of three types of autoinducers including acetylated homoserine lactones (AHLs) (i.e., N-hexanoyl-homoserine lactone, N-oxohexanoyl-homoserine lactone and N-octanoyl-homoserine lactone), autoinducer-2, and cyclic dipeptides (i.e., cyclo-(L-Pro-L-Leu), cyclo-(L-Leu-L-Leu) and cyclo-(L-Pro-L-Phe)). Autoinducer-2, rather than any AHL, was detected in extracts from pure cultures of the specific spoilage organisms (SSO), i.e., Shewanella putrefaciens (SS01) and Shewanella baltica (SA02). As for the cyclic peptides, only SA02 was determined to produce cyclo-(L-Pro-L-Leu). According to the transcription levels of LuxR (the master quorum-sensing regulator) in the SSO in response to exogenous autoinducers, the SSO could sense AHLs and cyclo-(L-Leu-L-Leu), rather than autoinducer-2, cyclo-(L-Leu-L-Leu) and cyclo-(L-Pro-L-Phe). In accordance with the results of LuxR expression, the production of biofilm matrixes and extracellular proteases in the SSO was regulated by exogenous AHLs and cyclo-(L-Pro-L-Leu), rather than 4,5-dihydroxy-2,3-pentanedione (the autoinducer-2 precursor), cyclo-(L-Leu-L-Leu) and cyclo-(L-Pro-L-Phe). Exogenous N-hexanoyl-homoserine lactone and cyclo-(L-Pro-L-Leu) increased the growth rates and population percentages of the SSO in shrimp samples under refrigerated storage, and interestingly, exogenous 4,5-dihydroxy-2,3-pentanedione also increased the population percentages of the SSO in vivo by inhibiting the growth of the competing bacteria. However, according to the levels of TVB-N and the volatile organic components in the shrimp samples, exogenous 4,5-dihydroxy-2,3-pentanedione did not accelerate the shrimp spoilage process as N-hexanoyl-homoserine lactone and cyclo-(L-Pro-L-Leu) did. In summary, our results suggest that

  8. Role of Plasmids in Lactobacillus brevis BSO 464 Hop Tolerance and Beer Spoilage

    OpenAIRE

    Bergsveinson, Jordyn; Baecker, Nina; Pittet, Vanessa; Ziola, Barry

    2014-01-01

    Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organi...

  9. Behaviour of co-inoculated pathogenic and spoilage bacteria on poultry following several decontamination treatments.

    Science.gov (United States)

    Alonso-Hernando, Alicia; Capita, Rosa; Alonso-Calleja, Carlos

    2012-10-01

    The potential of chemical decontaminants to cause harmful effects on human health is among the causes of the rejection of antimicrobial treatments for removing surface contamination from poultry carcasses in the European Union. This study was undertaken to determine whether decontaminants might give a competitive advantage to pathogenic bacteria on poultry and involve a potential risk to consumer. A total of 144 chicken legs were co-inoculated with similar concentrations of pathogenic bacteria (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica serotype Enteritidis or Escherichia coli) and spoilage bacteria (Brochothrix thermosphacta or Pseudomonas fluorescens). Samples were dipped for 15min in solutions (w/v) of trisodium phosphate (12%; TSP), acidified sodium chlorite (1200ppm; ASC), citric acid (2%; CA), peroxyacids (220ppm; PA) or chlorine dioxide (50ppm; CD), or were left untreated (control). Microbiological analyses were carried out on day 0 and every 24h until day 7 of storage (at 10±1°C). The modified Gompertz equation was used as the primary model to fit observed data. TSP, ASC and CA were effective in extending the lag phase (L, ranging from 1.47±1.34days to 4.06±1.16days) and in decreasing the concentration of bacteria during the stationary phase (D, ranging from 2.46±0.51 log(10) cfu/cm(2) to 8.64±0.53 log(10) cfu/cm(2)), relative to the control samples (L values ranging from 0.59±0.38days and 2.52±2.28days, and D values ranging from 6.32±0.89 log(10) cfu/cm(2) to 9.39±0.39 log(10) cfu/cm(2), respectively). Both on untreated and on most decontaminated samples the overgrowth of spoilage bacteria among the species tested was observed throughout storage, suggesting that spoilage would occur prior to any noteworthy increase in the levels of pathogenic microorganisms. However, L. monocytogenes counts similar to, or higher than, those for spoilage bacteria were observed on samples treated with TSP, ASC or CA, suggesting that these

  10. The influence of different preservation methods on spoilage bacteria populations inoculated in morcilla de Burgos during anaerobic cold storage.

    Science.gov (United States)

    Diez, Ana M; Jaime, Isabel; Rovira, Jordi

    2009-06-30

    Blood sausage is a widely consumed traditional product that would benefit from an extended shelf life. The two main spoilage bacteria in vacuum-packaged morcilla de Burgos are Weissella viridescens and Leuconostoc mesenteroides. This study examines the way in which three preservation treatments--organic acid salts (OAS), high-pressure processing (HPP) and pasteurization--influence these bacterial populations and their spoilage behaviour. HPP and pasteurization treatments were found to inhibit growth of the inoculated species and delay sensory spoilage of the product. In both treatments, L. mesenteroides was observed to have a longer recovery time; even so, once its growth started, it grew faster than W. viridescens. This longer recovery time might be due to metabolic modification following treatment, which would affect the production of metabolites such as acetic acid and some aldehydes. W. viridescens was the first strain to recover from the two treatments. It preserved its spoilage behaviour and even increased the production of certain compounds such as acetoin or ethanol. The extended product shelf life following HPP and pasteurization treatments might be due to a combination of various factors such as the fall in both microbial populations, as well as the delay in spoilage caused by damage to L. mesenteroides cells, as this strain is the fastest-acting, most intensive spoilage microorganism. It was observed that the addition of organic salts neither diminished nor delayed the growth of the two inoculated species. Nevertheless, the results also indicate that this treatment inhibits the metabolic activity of L. mesenteroides, resulting once again in an extended product shelf life.

  11. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.

    Science.gov (United States)

    Gallone, Brigida; Steensels, Jan; Prahl, Troels; Soriaga, Leah; Saels, Veerle; Herrera-Malaver, Beatriz; Merlevede, Adriaan; Roncoroni, Miguel; Voordeckers, Karin; Miraglia, Loren; Teiling, Clotilde; Steffy, Brian; Taylor, Maryann; Schwartz, Ariel; Richardson, Toby; White, Christopher; Baele, Guy; Maere, Steven; Verstrepen, Kevin J

    2016-09-01

    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.

  12. The Effect of High Hydrostatic Pressure on Microorganisms in Food Preservation

    Directory of Open Access Journals (Sweden)

    M. Arici

    2006-01-01

    Full Text Available High hydrostatic pressure is a new food preservation technology known for its capacity to inactivate spoilage and pathogenic microorganisms. High-pressure treatments are receiving a great deal of attention for the inactivation of microorganisms in food processing, pressure instead of temperature is used as stabilizing factor. High hydrostatic pressure treatment is the most studied alternative process, many works reported successful results in inactivating a wide range of microorganisms under different operative conditions such as temperature, pressure, exposure time.

  13. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  14. Behaviour and Biological Control of Bacteriocin-Producing Leuconostocs Associated with Spoilage of Vacuum-Packaged Sucuk

    OpenAIRE

    OSMANAĞAOĞLU, Özlem

    2014-01-01

    Non-motile, Gram-positive and catalase-negative anaerobic Leuconostoc sp. were found to be involved in the spoilage of vacuum-packaged refrigerated sucuk samples. The spoilage was associated with an accumulation of large quantities of foul-smelling gas and purge in the bag and loss of colour and texture in the meat. Many of these isolates produce bacteriocins, to which the predominant Gram-positive bacteria normally found in these products are sensitive. As the leuconostocs grew at low temper...

  15. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F

    2010-05-01

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but spoilage then occurred due to growth of fermentative yeasts, which produced ethanol in the cucumbers. Allyl isothiocyanate (2 mM) prevented growth of Zygosaccharomyces globiformis, which has been responsible for commercial pickle spoilage, as well as the yeasts that were present on fresh cucumbers. However, allyl isothiocyanate did not prevent growth of Lactobacillus plantarum. When these compounds were added in combination to acidified cucumbers, the cucumbers were successfully preserved as indicated by the fact that neither yeasts or lactic acid bacteria increased in numbers nor were lactic acid or ethanol produced by microorganisms when cucumbers were stored at 30 degrees C for at least 2 mo. This combination of 2 naturally occurring preservative compounds may serve as an alternative approach to the use of sodium benzoate or sodium metabisulfite for preservation of acidified vegetables without a thermal process.

  16. Modeling the efficacy of triplet antimicrobial combinations: yeast suppression by lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate as a case study.

    Science.gov (United States)

    Dai, Yumei; Normand, Mark D; Weiss, Jochen; Peleg, Micha

    2010-03-01

    The growth of four spoilage yeasts, Saccharomyces cerevisiae, Zygosaccharomyces bailii, Brettanomyces bruxellensis, and Brettanomyces naardenensis, was inhibited with three-agent (triplet) combinations of lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate. The inhibition efficacy was determined by monitoring the optical density of yeast cultures grown in microtiter plates for 7 days. The relationship between the optical density and the sodium benzoate and potassium sorbate concentrations followed a single-term exponential decay model. The critical effective concentration was defined as the concentration at which the optical density was 0.05, which became an efficacy criterion for the mixtures. Critical concentrations of sodium benzoate or potassium sorbate as a function of the lauric arginate and cinnamic acid concentrations were then fitted with an empirical model that mapped three-agent combinations of equal efficacy. The contours of this function are presented in tabulated form and as two- and three-dimensional plots. Triplet combinations were highly effective against all four spoilage yeasts at three practical pH levels, especially at pH 3.0. The triplet combinations were particularly effective for inhibiting growth of Z. bailii, and combinations containing potassium sorbate had synergistic activities. The equal efficacy concentration model also allowed tabulation of the cost of the various combinations of agents and identification of those most economically feasible.

  17. Yeasts for Global Happiness: report of the 14th International Congress on Yeasts (ICY14) held in Awaji Island.

    Science.gov (United States)

    Watanabe, Daisuke; Takagi, Hiroshi

    2017-02-01

    The 14th International Congress on Yeasts (ICY14) was held at Awaji Yumebutai International Conference Center (Awaji, Hyogo) in Japan from 11 to 15 September 2016. The main slogan of ICY14 was 'Yeasts for Global Happiness', which enabled us to acknowledge the high-potential usefulness of yeasts contributing to the global happiness in terms of food/beverage, health/medicine and energy/environment industries, as well as to basic biosciences. In addition, two more concepts were introduced: 'from Japan to the world' and 'from senior to junior'. As it was the first ICY meeting held in Japan or other Asian countries, ICY14 provided a good opportunity to widely spread the great achievements by Japanese and Asian yeast researchers, such as those by the 2016 Nobel Laureate Dr. Yoshinori Ohsumi, and also, to convey the fun and importance of yeasts to the next generation of researchers from Asia and all over the world. As a result, a total of 426 yeast lovers from 42 countries (225 overseas and 201 domestic participants) with different generations attended ICY14 to share the latest knowledge of a wide range of yeast research fields and to join active and constructive scientific discussions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  18. Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production.

    Science.gov (United States)

    Hansen, J; Kielland-Brandt, M C

    1996-11-01

    Sulfite is widely used as an antioxidant in food production. In beer brewing, sulfite has the additional role of stabilizing the flavor by forming adducts with aldehydes. Inadequate amounts of sulfite are sometimes produced by brewer's yeasts, so means of controlling the sulfite production are desired. In Saccharomyces yeasts, MET10 encodes a subunit of sulfite reductase. Partial or full elimination of MET10 gene activity in a brewer's yeast resulted in increased sulfite accumulation. Beer produced with such yeasts was quite satisfactory and showed increased flavor stability.

  19. Antioxidants in foods: state of the science important to the food industry.

    Science.gov (United States)

    Finley, John W; Kong, Ah-Ng; Hintze, Korry J; Jeffery, Elizabeth H; Ji, Li Li; Lei, Xin Gen

    2011-07-13

    Antioxidant foods and ingredients are an important component of the food industry. In the past, antioxidants were used primarily to control oxidation and retard spoilage, but today many are used because of putative health benefits. However, the traditional message that oxidative stress, which involves the production of reactive oxygen species (ROS), is the basis for chronic diseases and aging is being reexamined. Accumulating evidence suggests that ROS exert essential metabolic functions and that removal of too many ROS can upset cell signaling pathways and actually increase the risk of chronic disease. It is imperative that the food industry be aware of progress in this field to present the science relative to foods in a forthright and clear manner. This may mean reexamining the health implications of adding large amounts of antioxidants to foods.

  20. Application of natural antimicrobials for food preservation.

    Science.gov (United States)

    Tiwari, Brijesh K; Valdramidis, Vasilis P; O'Donnell, Colm P; Muthukumarappan, Kasiviswanathan; Bourke, Paula; Cullen, P J

    2009-07-22

    In this review, antimicrobials from a range of plant, animal, and microbial sources are reviewed along with their potential applications in food systems. Chemical and biochemical antimicrobial compounds derived from these natural sources and their activity against a range of pathogenic and spoilage microorganisms pertinent to food, together with their effects on food organoleptic properties, are outlined. Factors influencing the antimicrobial activity of such agents are discussed including extraction methods, molecular weight, and agent origin. These issues are considered in conjunction with the latest developments in the quantification of the minimum inhibitory (and noninhibitory) concentration of antimicrobials and/or their components. Natural antimicrobials can be used alone or in combination with other novel preservation technologies to facilitate the replacement of traditional approaches. Research priorities and future trends focusing on the impact of product formulation, intrinsic product parameters, and extrinsic storage parameters on the design of efficient food preservation systems are also presented.