WorldWideScience

Sample records for folding transition states

  1. Geometrical Frustration in Interleukin-33 Decouples the Dynamics of the Functional Element from the Folding Transition State Ensemble.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Fisher

    Full Text Available Interleukin-33 (IL-33 is currently the focus of multiple investigations into targeting pernicious inflammatory disorders. This mediator of inflammation plays a prevalent role in chronic disorders such as asthma, rheumatoid arthritis, and progressive heart disease. In order to better understand the possible link between the folding free energy landscape and functional regions in IL-33, a combined experimental and theoretical approach was applied. IL-33 is a pseudo- symmetrical protein composed of three distinct structural elements that complicate the folding mechanism due to competition for nucleation on the dominant folding route. Trefoil 1 constitutes the majority of the binding interface with the receptor whereas Trefoils 2 and 3 provide the stable scaffold to anchor Trefoil 1. We identified that IL-33 folds with a three-state mechanism, leading to a rollover in the refolding arm of its chevron plots in strongly native conditions. In addition, there is a second slower refolding phase that exhibits the same rollover suggesting similar limitations in folding along parallel routes. Characterization of the intermediate state and the rate limiting steps required for folding suggests that the rollover is attributable to a moving transition state, shifting from a post- to pre-intermediate transition state as you move from strongly native conditions to the midpoint of the transition. On a structural level, we found that initially, all independent Trefoil units fold equally well until a QCA of 0.35 when Trefoil 1 will backtrack in order to allow Trefoils 2 and 3 to fold in the intermediate state, creating a stable scaffold for Trefoil 1 to fold onto during the final folding transition. The formation of this intermediate state and subsequent moving transition state is a result of balancing the difficulty in folding the functionally important Trefoil 1 onto the remainder of the protein. Taken together our results indicate that the functional element of

  2. Geometrical Frustration in Interleukin-33 Decouples the Dynamics of the Functional Element from the Folding Transition State Ensemble.

    Science.gov (United States)

    Fisher, Kaitlin M; Haglund, Ellinor; Noel, Jeffrey K; Hailey, Kendra L; Onuchic, José N; Jennings, Patricia A

    2015-01-01

    Interleukin-33 (IL-33) is currently the focus of multiple investigations into targeting pernicious inflammatory disorders. This mediator of inflammation plays a prevalent role in chronic disorders such as asthma, rheumatoid arthritis, and progressive heart disease. In order to better understand the possible link between the folding free energy landscape and functional regions in IL-33, a combined experimental and theoretical approach was applied. IL-33 is a pseudo- symmetrical protein composed of three distinct structural elements that complicate the folding mechanism due to competition for nucleation on the dominant folding route. Trefoil 1 constitutes the majority of the binding interface with the receptor whereas Trefoils 2 and 3 provide the stable scaffold to anchor Trefoil 1. We identified that IL-33 folds with a three-state mechanism, leading to a rollover in the refolding arm of its chevron plots in strongly native conditions. In addition, there is a second slower refolding phase that exhibits the same rollover suggesting similar limitations in folding along parallel routes. Characterization of the intermediate state and the rate limiting steps required for folding suggests that the rollover is attributable to a moving transition state, shifting from a post- to pre-intermediate transition state as you move from strongly native conditions to the midpoint of the transition. On a structural level, we found that initially, all independent Trefoil units fold equally well until a QCA of 0.35 when Trefoil 1 will backtrack in order to allow Trefoils 2 and 3 to fold in the intermediate state, creating a stable scaffold for Trefoil 1 to fold onto during the final folding transition. The formation of this intermediate state and subsequent moving transition state is a result of balancing the difficulty in folding the functionally important Trefoil 1 onto the remainder of the protein. Taken together our results indicate that the functional element of the protein is

  3. Even with nonnative interactions, the updated folding transition states of the homologs Proteins G & L are extensive and similar.

    Science.gov (United States)

    Baxa, Michael C; Yu, Wookyung; Adhikari, Aashish N; Ge, Liang; Xia, Zhen; Zhou, Ruhong; Freed, Karl F; Sosnick, Tobin R

    2015-07-07

    Experimental and computational folding studies of Proteins L & G and NuG2 typically find that sequence differences determine which of the two hairpins is formed in the transition state ensemble (TSE). However, our recent work on Protein L finds that its TSE contains both hairpins, compelling a reassessment of the influence of sequence on the folding behavior of the other two homologs. We characterize the TSEs for Protein G and NuG2b, a triple mutant of NuG2, using ψ analysis, a method for identifying contacts in the TSE. All three homologs are found to share a common and near-native TSE topology with interactions between all four strands. However, the helical content varies in the TSE, being largely absent in Proteins G & L but partially present in NuG2b. The variability likely arises from competing propensities for the formation of nonnative β turns in the naturally occurring proteins, as observed in our TerItFix folding algorithm. All-atom folding simulations of NuG2b recapitulate the observed TSEs with four strands for 5 of 27 transition paths [Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517-520]. Our data support the view that homologous proteins have similar folding mechanisms, even when nonnative interactions are present in the transition state. These findings emphasize the ongoing challenge of accurately characterizing and predicting TSEs, even for relatively simple proteins.

  4. Temperature-dependent Hammond behavior in a protein-folding reaction: analysis of transition-state movement and ground-state effects.

    Science.gov (United States)

    Taskent, Humeyra; Cho, Jae-Hyun; Raleigh, Daniel P

    2008-05-02

    Characterization of the transition-state ensemble and the nature of the free-energy barrier for protein folding are areas of intense activity and some controversy. A key issue that has emerged in recent years is the width of the free-energy barrier and the susceptibility of the transition state to movement. Here we report denaturant-induced and temperature-dependent folding studies of a small mixed alpha-beta protein, the N-terminal domain of L9 (NTL9). The folding of NTL9 was determined using fluorescence-detected stopped-flow fluorescence measurements conducted at seven different temperatures between 11 and 40 degrees C. Plots of the log of the observed first-order rate constant versus denaturant concentration, "chevron plots," displayed the characteristic V shape expected for two-state folding. There was no hint of deviation from linearity even at the lowest denaturant concentrations. The relative position of the transition state, as judged by the Tanford beta parameter, beta(T), shifts towards the native state as the temperature is increased. Analysis of the temperature dependence of the kinetic and equilibrium m values indicates that the effect is due to significant movement of the transition state and also includes a contribution from temperature-dependent ground-state effects. Analysis of the Leffler plots, plots of Delta G versus Delta G degrees, and their cross-interaction parameters confirms the transition-state movement. Since the protein is destabilized at high temperature, the shift represents a temperature-dependent Hammond effect. This provides independent confirmation of a recent theoretical prediction. The magnitude of the temperature-denaturant cross-interaction parameter is larger for NTL9 than has been reported for the few other cases studied. The implications for temperature-dependent studies of protein folding are discussed.

  5. The nature of folded states of globular proteins.

    Science.gov (United States)

    Honeycutt, J D; Thirumalai, D

    1992-06-01

    We suggest, using dynamical simulations of a simple heteropolymer modelling the alpha-carbon sequence in a protein, that generically the folded states of globular proteins correspond to statistically well-defined metastable states. This hypothesis, called the metastability hypothesis, states that there are several free energy minima separated by barriers of various heights such that the folded conformations of a polypeptide chain in each of the minima have similar structural characteristics but have different energies from one another. The calculated structural characteristics, such as bond angle and dihedral angle distribution functions, are assumed to arise from only those configurations belonging to a given minimum. The validity of this hypothesis is illustrated by simulations of a continuum model of a heteropolymer whose low temperature state is a well-defined beta-barrel structure. The simulations were done using a molecular dynamics algorithm (referred to as the "noisy" molecular dynamics method) containing both friction and noise terms. It is shown that for this model there are several distinct metastable minima in which the structural features are similar. Several new methods of analyzing fluctuations in structures belonging to two distinct minima are introduced. The most notable one is a dynamic measure of compactness that can in principle provide the time required for maximal compactness to be achieved. The analysis shows that for a given metastable state in which the protein has a well-defined folded structure the transition to a state of higher compactness occurs very slowly, lending credence to the notion that the system encounters a late barrier in the process of folding to the most compact structure. The examination of the fluctuations in the structures near the unfolding----folding transition temperature indicates that the transition state for the unfolding to folding process occurs closer to the folded state.

  6. Variational Transition State Theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, Donald G. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-09-29

    This is the final report on a project involving the development and applications of variational transition state theory. This project involved the development of variational transition state theory for gas-phase reactions, including optimized multidimensional tunneling contributions and the application of this theory to gas-phase reactions with a special emphasis on developing reaction rate theory in directions that are important for applications to combustion. The development of variational transition state theory with optimized multidimensional tunneling as a useful computational tool for combustion kinetics involved eight objectives.

  7. Fast mapping of global protein folding states by multivariate NMR:

    DEFF Research Database (Denmark)

    Malmendal, Anders; Underhaug, Jarl; Otzen, Daniel

    2010-01-01

    that provides such an overview. GPS NMR exploits the unique ability of NMR to simultaneously record signals from individual hydrogen atoms in complex macromolecular systems and of multivariate analysis to describe spectral variations from these by a few variables for establishment of, and positioning in......, protein-folding state maps. The method is fast, sensitive, and robust, and it works without isotope-labelling. The unique capabilities of GPS NMR to identify different folding states and to compare different unfolding processes are demonstrated by mapping of the equilibrium folding space of bovine alpha......To obtain insight into the functions of proteins and their specific roles, it is important to establish efficient procedures for exploring the states that encapsulate their conformational space. Global Protein folding State mapping by multivariate NMR (GPS NMR) is a powerful high-throughput method...

  8. Variational transition state theory

    Energy Technology Data Exchange (ETDEWEB)

    Truhlar, D.G. [Univ. of Minnesota, Minneapolis (United States)

    1993-12-01

    This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.

  9. Variational transition state theory

    International Nuclear Information System (INIS)

    Truhlar, D.G.

    1986-01-01

    This project is concerned with the development and applications of generalized transition state theory and multidimensional tunneling approximations to chemical reaction rates. They have developed and implemented several practical versions of variational transition state theory (VTST), namely canonical variational theory (CVT), improved canonical variational theory (ICVT), and microcanonical variational theory (μVT). They have also developed and implemented several accurate multidimensional semiclassical tunneling approximations, the most accurate of which are the small-curvature semiclassical adiabatic (SCSA), large-curvature version-3 (LC3), and least-action (LA) approximations. They have applied the methods to thermal rate constants, using transmission coefficients based on ground-state tunneling, and they have also presented and applied adiabatic and diabatic extensions to calculated rate constants for vibrationally excited reactants. Their general goal is to develop accurate methods for calculating chemical reaction rate constants that remain practical even for reasonably complicated molecules. The approximations mentioned above yield rate constants for systems whose potential energy surface is known or assumed. Thus a second, equally important aspect of their work is the determination or modeling, semi-empirically and/or from electronic structure calculations, of potential energy surfaces

  10. Multiple molecule effects on the cooperativity of protein folding transitions in simulations

    Science.gov (United States)

    Lewis, Jacob I.; Moss, Devin J.; Knotts, Thomas A.

    2012-06-01

    Though molecular simulation of proteins has made notable contributions to the study of protein folding and kinetics, disagreement between simulation and experiment still exists. One of the criticisms levied against simulation is its failure to reproduce cooperative protein folding transitions. This weakness has been attributed to many factors such as a lack of polarizability and adequate capturing of solvent effects. This work, however, investigates how increasing the number of proteins simulated simultaneously can affect the cooperativity of folding transitions — a topic that has received little attention previously. Two proteins are studied in this work: phage T4 lysozyme (Protein Data Bank (PDB) ID: 7LZM) and phage 434 repressor (PDB ID: 1R69). The results show that increasing the number of proteins molecules simulated simultaneously leads to an increase in the macroscopic cooperativity for transitions that are inherently cooperative on the molecular level but has little effect on the cooperativity of other transitions. Taken as a whole, the results identify one area of consideration to improving simulations of protein folding.

  11. α-cluster states in {sup 46,54}Cr from double-folding potentials

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, Peter [Diakonie-Klinikum, Schwaebisch Hall (Germany); Institute for Nuclear Research (Atomki), Debrecen (Hungary)

    2017-10-15

    α-cluster states in {sup 46}Cr and {sup 54}Cr are investigated in the double-folding model. This study complements a recent similar work by Souza and Miyake, Eur. Phys. J. A 53, 146 (2017), which was based on a specially shaped potential. Excitation energies, reduced widths, intercluster separations, and intra-band transition strengths are calculated and compared to experimental values for the ground state bands in {sup 46}Cr and {sup 54}Cr. The α-cluster potential is also applied to elastic scattering at low and intermediate energies. Here, as a byproduct, a larger radial extent of the neutron density in {sup 50}Ti is found. (orig.)

  12. Phase transition in polypeptides: a step towards the understanding of protein folding

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2006-01-01

    We present a formalism which turns out to be very successful in the description of the polypeptide folding. We consider this process as a first-order phase transition and develop a theory which is free of model parameters and is based solely on fundamental physical principles. It describes...... essential thermodynamical properties of the system such as heat capacity, the phase transition temperature and others from the analysis of the polypeptide potential energy surface calculated within ab initio density functional theory and parameterized by two dihedral angles. This problem is viewed...

  13. Combination of Markov state models and kinetic networks for the analysis of molecular dynamics simulations of peptide folding.

    Science.gov (United States)

    Radford, Isolde H; Fersht, Alan R; Settanni, Giovanni

    2011-06-09

    Atomistic molecular dynamics simulations of the TZ1 beta-hairpin peptide have been carried out using an implicit model for the solvent. The trajectories have been analyzed using a Markov state model defined on the projections along two significant observables and a kinetic network approach. The Markov state model allowed for an unbiased identification of the metastable states of the system, and provided the basis for commitment probability calculations performed on the kinetic network. The kinetic network analysis served to extract the main transition state for folding of the peptide and to validate the results from the Markov state analysis. The combination of the two techniques allowed for a consistent and concise characterization of the dynamics of the peptide. The slowest relaxation process identified is the exchange between variably folded and denatured species, and the second slowest process is the exchange between two different subsets of the denatured state which could not be otherwise identified by simple inspection of the projected trajectory. The third slowest process is the exchange between a fully native and a partially folded intermediate state characterized by a native turn with a proximal backbone H-bond, and frayed side-chain packing and termini. The transition state for the main folding reaction is similar to the intermediate state, although a more native like side-chain packing is observed.

  14. Effect of superconductivity on the cubic to tetragonal structural transition due to a two-fold degenerate electronic band

    International Nuclear Information System (INIS)

    Ghatak, S.K.; Khanra, B.C.; Ray, D.K.

    1978-01-01

    The effect of the BCS superconductivity on the cubic to tetragonal structural transition arising from a two-fold degenerate electronic band is investigated within the mean field approximation. The phase diagram of the two transitions is given for a half filled esub(g)-band. Modification of the two transitions when they are close together is also discussed. (author)

  15. Two states or not two states: Single-molecule folding studies of protein L

    Science.gov (United States)

    Aviram, Haim Yuval; Pirchi, Menahem; Barak, Yoav; Riven, Inbal; Haran, Gilad

    2018-03-01

    Experimental tools of increasing sophistication have been employed in recent years to study protein folding and misfolding. Folding is considered a complex process, and one way to address it is by studying small proteins, which seemingly possess a simple energy landscape with essentially only two stable states, either folded or unfolded. The B1-IgG binding domain of protein L (PL) is considered a model two-state folder, based on measurements using a wide range of experimental techniques. We applied single-molecule fluorescence resonance energy transfer (FRET) spectroscopy in conjunction with a hidden Markov model analysis to fully characterize the energy landscape of PL and to extract the kinetic properties of individual molecules of the protein. Surprisingly, our studies revealed the existence of a third state, hidden under the two-state behavior of PL due to its small population, ˜7%. We propose that this minority intermediate involves partial unfolding of the two C-terminal β strands of PL. Our work demonstrates that single-molecule FRET spectroscopy can be a powerful tool for a comprehensive description of the folding dynamics of proteins, capable of detecting and characterizing relatively rare metastable states that are difficult to observe in ensemble studies.

  16. Analysis of transitions at two-fold redundant sites in mammalian genomes. Transition redundant approach-to-equilibrium (TREx distance metrics

    Directory of Open Access Journals (Sweden)

    Liberles David A

    2006-03-01

    Full Text Available Abstract Background The exchange of nucleotides at synonymous sites in a gene encoding a protein is believed to have little impact on the fitness of a host organism. This should be especially true for synonymous transitions, where a pyrimidine nucleotide is replaced by another pyrimidine, or a purine is replaced by another purine. This suggests that transition redundant exchange (TREx processes at the third position of conserved two-fold codon systems might offer the best approximation for a neutral molecular clock, serving to examine, within coding regions, theories that require neutrality, determine whether transition rate constants differ within genes in a single lineage, and correlate dates of events recorded in genomes with dates in the geological and paleontological records. To date, TREx analysis of the yeast genome has recognized correlated duplications that established a new metabolic strategies in fungi, and supported analyses of functional change in aromatases in pigs. TREx dating has limitations, however. Multiple transitions at synonymous sites may cause equilibration and loss of information. Further, to be useful to correlate events in the genomic record, different genes within a genome must suffer transitions at similar rates. Results A formalism to analyze divergence at two fold redundant codon systems is presented. This formalism exploits two-state approach-to-equilibrium kinetics from chemistry. This formalism captures, in a single equation, the possibility of multiple substitutions at individual sites, avoiding any need to "correct" for these. The formalism also connects specific rate constants for transitions to specific approximations in an underlying evolutionary model, including assumptions that transition rate constants are invariant at different sites, in different genes, in different lineages, and at different times. Therefore, the formalism supports analyses that evaluate these approximations. Transitions at synonymous

  17. Kinetic model for the coupling between allosteric transitions in GroEL and substrate protein folding and aggregation.

    Science.gov (United States)

    Tehver, Riina; Thirumalai, D

    2008-04-04

    The bacterial chaperonin GroEL and the co-chaperonin GroES assist in the folding of a number of structurally unrelated substrate proteins (SPs). In the absence of chaperonins, SP folds by the kinetic partitioning mechanism (KPM), according to which a fraction of unfolded molecules reaches the native state directly, while the remaining fraction gets trapped in a potentially aggregation-prone misfolded state. During the catalytic reaction cycle, GroEL undergoes a series of allosteric transitions (TR-->R"-->T) triggered by SP capture, ATP binding and hydrolysis, and GroES binding. We developed a general kinetic model that takes into account the coupling between the rates of the allosteric transitions and the folding and aggregation of the SP. Our model, in which the GroEL allosteric rates and SP-dependent folding and aggregation rates are independently varied without prior assumption, quantitatively fits the GroEL concentration-dependent data on the yield of native ribulose bisphosphate carboxylase/oxygenase (Rubisco) as a function of time. The extracted kinetic parameters for the GroEL reaction cycle are consistent with the available values from independent experiments. In addition, we also obtained physically reasonable parameters for the kinetic steps in the reaction cycle that are difficult to measure. If experimental values for GroEL allosteric rates are used, the time-dependent changes in native-state yield at eight GroEL concentrations can be quantitatively fit using only three SP-dependent parameters. The model predicts that the differences in the efficiencies (as measured by yields of the native state) of GroEL, single-ring mutant (SR1), and variants of SR1, in the rescue of mitochondrial malate dehydrogenase, citrate synthase, and Rubisco, are related to the large variations in the allosteric transition rates. We also show that GroEL/S mutants that efficiently fold one SP at the expense of all others are due to a decrease in the rate of a key step in the

  18. A 9-state hidden Markov model using protein secondary structure information for protein fold recognition.

    Science.gov (United States)

    Lee, Sun Young; Lee, Jong Yun; Jung, Kwang Su; Ryu, Keun Ho

    2009-06-01

    In protein fold recognition, the main disadvantage of hidden Markov models (HMMs) is the employment of large-scale model architectures which require large data sets and high computational resources for training. Also, HMMs must consider sequential information about secondary structures of proteins, to improve prediction performance and reduce model parameters. Therefore, we propose a novel method for protein fold recognition based on a hidden Markov model, called a 9-state HMM. The method can (i) reduce the number of states using secondary structure information about proteins for each fold and (ii) recognize protein folds more accurately than other HMMs.

  19. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    International Nuclear Information System (INIS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space

  20. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    Science.gov (United States)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  1. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions.

    Science.gov (United States)

    Nedialkova, Lilia V; Amat, Miguel A; Kevrekidis, Ioannis G; Hummer, Gerhard

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small--but nontrivial--differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  2. State Transitions in Semiarid Landscapes

    Science.gov (United States)

    Phillips, J. D.

    2012-04-01

    The U.S. Department of Agriculture has developed a large number of state-and-transition models (STM) to predict and interpret changes in vegetation communities in drylands of the southwestern U.S. These are represented as box-and-arrow models indicating potential changes in response to various combinations of management practices and environmental forcings. Analysis of the 320 STMs developed for areas within the state of Texas reveals two important aspects of environmental change in semiarid environments. First, the STMs are highly local—they are specific to very particular combinations of landform, soil, and climate. This is consistent with the perfect landscape concept in geomorphology, which emphasizes the irreducible importance of geographically and historically contingent local factors in addition to universal laws or principles in determining the state or condition of landscapes. Second, analysis of the STMs using algebraic graph theory shows that a majority of them have structures that tend to amplify effects of change and disturbances. In many cases the STMs represent a form of self-organization characterized by the potential of divergent behavior rather than convergence toward a dominant pattern or outcome. These results indicate that geomorphic, hydrologic, and ecological responses to climate and land use change are likely to be highly variable and idiosyncratic, both within and between semiarid landscapes of Texas.

  3. An optical flow-based state-space model of the vocal folds

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation....... A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...

  4. Dependency in State Transitions of Wind Turbines

    DEFF Research Database (Denmark)

    Herp, Jürgen; Ramezani, Mohammad Hossein; S. Nadimi, Esmaeil

    2017-01-01

    © 2017 IEEE. Turbine states and predicting the transition into failure states ahead of time is important in operation and maintenance of wind turbines. This study presents a method to monitor state transitions of a wind turbine based on the online inference on residuals. In a Bayesian framework...... the impact machine learning concepts have on the predictive performance of the presented models. In conclusion, a study on model residuals is performed to highlight the contribution to wind turbine monitoring. The presented algorithm can consistently detect the state transition under various configurations...

  5. Single-molecule folding mechanisms of the apo- and Mg2+-bound states of human neuronal calcium sensor-1

    DEFF Research Database (Denmark)

    Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R

    2015-01-01

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca(2+) concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting...... in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated...... by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions...

  6. Bifurcations of transition states: Morse bifurcations

    International Nuclear Information System (INIS)

    MacKay, R S; Strub, D C

    2014-01-01

    A transition state for a Hamiltonian system is a closed, invariant, oriented, codimension-2 submanifold of an energy level that can be spanned by two compact codimension-1 surfaces of unidirectional flux whose union, called a dividing surface, locally separates the energy level into two components and has no local recrossings. For this to happen robustly to all smooth perturbations, the transition state must be normally hyperbolic. The dividing surface then has locally minimal geometric flux through it, giving an upper bound on the rate of transport in either direction. Transition states diffeomorphic to S 2m−3 are known to exist for energies just above any index-1 critical point of a Hamiltonian of m degrees of freedom, with dividing surfaces S 2m−2 . The question addressed here is what qualitative changes in the transition state, and consequently the dividing surface, may occur as the energy or other parameters are varied? We find that there is a class of systems for which the transition state becomes singular and then regains normal hyperbolicity with a change in diffeomorphism class. These are Morse bifurcations. Various examples are considered. Firstly, some simple examples in which transition states connect or disconnect, and the dividing surface may become a torus or other. Then, we show how sequences of Morse bifurcations producing various interesting forms of transition state and dividing surface are present in reacting systems, by considering a hypothetical class of bimolecular reactions in gas phase. (paper)

  7. Transitions between compound states of spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskii, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Wigner's statistical matrices are used to study the average reduced g widths and their dispersion for g transitions from a compound state c to another state f, with a lower excitation energy but of arbitrary complexity, for spherical nuclei. It is found that the Porter--Thomas distribution holds for the g widths for all cases of practical interest. In g transitions between compound states c and c' with E/sub g/< or =2 MeV, the most important transitions are M1 transitions involving the major many-quasiparticle components of state c and E1 transitions involving the minor components of state c. It is shown that the strength functions predicted by the various theories for M1 and E1 transitions between compound states with E/sub g/< or =2 MeV are similar. Preference is assigned to the M1-transition version because of experimental results on (n,ga) reactions with thermal and resonance neutrons

  8. Six-state, three-level, six-fold ferromagnetic wire system

    International Nuclear Information System (INIS)

    Blachowicz, T.; Ehrmann, A.

    2013-01-01

    Six stable states at remanence were identified in iron wire samples of 6-fold spatial symmetry using micromagnetic simulations and the finite element method. Onion and domain-wall magnetic states were tailored by sample shape and guided by an applied magnetic field with a fixed in-plane direction. Different directions of externally applied magnetic fields revealed a tendency for stability or nonstability of the considered states. -- Highlights: ► In a ferromagnetic wire sample six stable states at remanence were discovered. ► Presented wires provide new effects not met in classical thin-layered solutions. ► The mechanism of working results from competing demagnetizing and exchange fields. ► For different physical conditions onion and domain-wall states were observed. ► Wire samples of 6-fold symmetry can lead to many-level information storage devices

  9. Six-state, three-level, six-fold ferromagnetic wire system

    Energy Technology Data Exchange (ETDEWEB)

    Blachowicz, T., E-mail: tomasz.blachowicz@polsl.pl [Institute of Physics, Silesian University of Technology, 44-100 Gliwice (Poland); Ehrmann, A. [Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, 41065 Mönchengladbach (Germany)

    2013-04-15

    Six stable states at remanence were identified in iron wire samples of 6-fold spatial symmetry using micromagnetic simulations and the finite element method. Onion and domain-wall magnetic states were tailored by sample shape and guided by an applied magnetic field with a fixed in-plane direction. Different directions of externally applied magnetic fields revealed a tendency for stability or nonstability of the considered states. -- Highlights: ► In a ferromagnetic wire sample six stable states at remanence were discovered. ► Presented wires provide new effects not met in classical thin-layered solutions. ► The mechanism of working results from competing demagnetizing and exchange fields. ► For different physical conditions onion and domain-wall states were observed. ► Wire samples of 6-fold symmetry can lead to many-level information storage devices.

  10. Exploring the correlation between the folding rates of proteins and the entanglement of their native states

    Science.gov (United States)

    Baiesi, Marco; Orlandini, Enzo; Seno, Flavio; Trovato, Antonio

    2017-12-01

    The folding of a protein towards its native state is a rather complicated process. However, there is empirical evidence that the folding time correlates with the contact order, a simple measure of the spatial organization of the native state of the protein. Contact order is related to the average length of the main chain loops formed by amino acids that are in contact. Here we argue that folding kinetics can also be influenced by the entanglement that loops may undergo within the overall three-dimensional protein structure. In order to explore such a possibility, we introduce a novel descriptor, which we call ‘maximum intrachain contact entanglement’. Specifically, we measure the maximum Gaussian entanglement between any looped portion of a protein and any other non-overlapping subchain of the same protein, which is easily computed by discretized line integrals on the coordinates of the Cα atoms. By analyzing experimental data sets of two-state and multi-state folders, we show that the new index is also a good predictor of the folding rate. Moreover, being only partially correlated with previous methods, it can be integrated with them to yield more accurate predictions.

  11. Sampling-based exploration of folded state of a protein under kinematic and geometric constraints

    KAUST Repository

    Yao, Peggy

    2011-10-04

    Flexibility is critical for a folded protein to bind to other molecules (ligands) and achieve its functions. The conformational selection theory suggests that a folded protein deforms continuously and its ligand selects the most favorable conformations to bind to. Therefore, one of the best options to study protein-ligand binding is to sample conformations broadly distributed over the protein-folded state. This article presents a new sampler, called kino-geometric sampler (KGS). This sampler encodes dominant energy terms implicitly by simple kinematic and geometric constraints. Two key technical contributions of KGS are (1) a robotics-inspired Jacobian-based method to simultaneously deform a large number of interdependent kinematic cycles without any significant break-up of the closure constraints, and (2) a diffusive strategy to generate conformation distributions that diffuse quickly throughout the protein folded state. Experiments on four very different test proteins demonstrate that KGS can efficiently compute distributions containing conformations close to target (e.g., functional) conformations. These targets are not given to KGS, hence are not used to bias the sampling process. In particular, for a lysine-binding protein, KGS was able to sample conformations in both the intermediate and functional states without the ligand, while previous work using molecular dynamics simulation had required the ligand to be taken into account in the potential function. Overall, KGS demonstrates that kino-geometric constraints characterize the folded subset of a protein conformation space and that this subset is small enough to be approximated by a relatively small distribution of conformations. © 2011 Wiley Periodicals, Inc.

  12. The folding mechanism and key metastable state identification of the PrP127-147 monomer studied by molecular dynamics simulations and Markov state model analysis.

    Science.gov (United States)

    Zhou, Shuangyan; Wang, Qianqian; Wang, Yuwei; Yao, Xiaojun; Han, Wei; Liu, Huanxiang

    2017-05-10

    The structural transition of prion proteins from a native α-helix (PrP C ) to a misfolded β-sheet-rich conformation (PrP Sc ) is believed to be the main cause of a number of prion diseases in humans and animals. Understanding the molecular basis of misfolding and aggregation of prion proteins will be valuable for unveiling the etiology of prion diseases. However, due to the limitation of conventional experimental techniques and the heterogeneous property of oligomers, little is known about the molecular architecture of misfolded PrP Sc and the mechanism of structural transition from PrP C to PrP Sc . The prion fragment 127-147 (PrP127-147) has been reported to be a critical region for PrP Sc formation in Gerstmann-Straussler-Scheinker (GSS) syndrome and thus has been used as a model for the study of prion aggregation. In the present study, we employ molecular dynamics (MD) simulation techniques to study the conformational change of this fragment that could be relevant to the PrP C -PrP Sc transition. Employing extensive replica exchange molecular dynamics (REMD) and conventional MD simulations, we sample a huge number of conformations of PrP127-147. Using the Markov state model (MSM), we identify the metastable conformational states of this fragment and the kinetic network of transitions between the states. The resulting MSM reveals that disordered random-coiled conformations are the dominant structures. A key metastable folded state with typical extended β-sheet structures is identified with Pro137 being located in a turn region, consistent with a previous experimental report. Conformational analysis reveals that intrapeptide hydrophobic interaction and two key residue interactions, including Arg136-His140 and Pro137-His140, contribute a lot to the formation of ordered extended β-sheet states. However, network pathway analysis from the most populated disordered state indicates that the formation of extended β-sheet states is quite slow (at the millisecond

  13. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  14. Factorised steady states and condensation transitions in ...

    Indian Academy of Sciences (India)

    I will then consider a more general class of mass trans- port models, encompassing continuous mass variables and discrete time updating, and present a necessary and sufficient condition for the steady state to factorise. The prop- erty of factorisation again allows an analysis of the condensation transitions which may occur.

  15. Transition state theory for enzyme kinetics

    Science.gov (United States)

    Truhlar, Donald G.

    2015-01-01

    This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling. PMID:26008760

  16. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  17. Constructing multi-resolution Markov State Models (MSMs) to elucidate RNA hairpin folding mechanisms.

    Science.gov (United States)

    Huang, Xuhui; Yao, Yuan; Bowman, Gregory R; Sun, Jian; Guibas, Leonidas J; Carlsson, Gunnar; Pande, Vijay S

    2010-01-01

    Simulating biologically relevant timescales at atomic resolution is a challenging task since typical atomistic simulations are at least two orders of magnitude shorter. Markov State Models (MSMs) provide one means of overcoming this gap without sacrificing atomic resolution by extracting long time dynamics from short simulations. MSMs coarse grain space by dividing conformational space into long-lived, or metastable, states. This is equivalent to coarse graining time by integrating out fast motions within metastable states. By varying the degree of coarse graining one can vary the resolution of an MSM; therefore, MSMs are inherently multi-resolution. Here we introduce a new algorithm Super-level-set Hierarchical Clustering (SHC), to our knowledge, the first algorithm focused on constructing MSMs at multiple resolutions. The key insight of this algorithm is to generate a set of super levels covering different density regions of phase space, then cluster each super level separately, and finally recombine this information into a single MSM. SHC is able to produce MSMs at different resolutions using different super density level sets. To demonstrate the power of this algorithm we apply it to a small RNA hairpin, generating MSMs at four different resolutions. We validate these MSMs by showing that they are able to reproduce the original simulation data. Furthermore, long time folding dynamics are extracted from these models. The results show that there are no metastable on-pathway intermediate states. Instead, the folded state serves as a hub directly connected to multiple unfolded/misfolded states which are separated from each other by large free energy barriers.

  18. How Kinetics within the Unfolded State Affects Protein Folding: an Analysis Based on Markov State Models and an Ultra-Long MD Trajectory

    Science.gov (United States)

    Deng, Nan-jie; Dai, Wei

    2013-01-01

    Understanding how kinetics in the unfolded state affects protein folding is a fundamentally important yet less well-understood issue. Here we employ three different models to analyze the unfolded landscape and folding kinetics of the miniprotein Trp-cage. The first is a 208 μs explicit solvent molecular dynamics (MD) simulation from D. E. Shaw Research containing tens of folding events. The second is a Markov state model (MSM-MD) constructed from the same ultra-long MD simulation; MSM-MD can be used to generate thousands of folding events. The third is a Markov state model built from temperature replica exchange MD simulations in implicit solvent (MSM-REMD). All the models exhibit multiple folding pathways, and there is a good correspondence between the folding pathways from direct MD and those computed from the MSMs. The unfolded populations interconvert rapidly between extended and collapsed conformations on time scales ≤ 40 ns, compared with the folding time of ≈ 5 μs. The folding rates are independent of where the folding is initiated from within the unfolded ensemble. About 90 % of the unfolded states are sampled within the first 40 μs of the ultra-long MD trajectory, which on average explores ~27 % of the unfolded state ensemble between consecutive folding events. We clustered the folding pathways according to structural similarity into “tubes”, and kinetically partitioned the unfolded state into populations that fold along different tubes. From our analysis of the simulations and a simple kinetic model, we find that when the mixing within the unfolded state is comparable to or faster than folding, the folding waiting times for all the folding tubes are similar and the folding kinetics is essentially single exponential despite the presence of heterogeneous folding paths with non-uniform barriers. When the mixing is much slower than folding, different unfolded populations fold independently leading to non-exponential kinetics. A kinetic partition of

  19. A Folded Excited State of Ligand-Free Nuclear Coactivator Binding Domain (NCBD) Underlies Plasticity in Ligand Recognition

    DEFF Research Database (Denmark)

    Kjaergaard, Magnus; Andersen, Lisbeth; Nielsen, Lau Dalby

    2013-01-01

    Intrinsically disordered proteins are renowned for their structural plasticity when they undergo coupled folding and binding to partner proteins. The nuclear coactivator binding domain of CBP is a remarkable example of this adaptability as it folds into two different conformations depending...... experience conformational exchange. The dispersion data can be described by a global two-state exchange process between a ground state and an excited state populated to 8%. The three helices are still folded in the excited state but have a different packing from the ground state; the contact between helices...... with that of NCBD in complex with the ligand IRF-3. The energy landscape of this domain is thus proposed to resemble the fold-switching proteins that have two coexisting native states, which may serve as a starting point for binding via conformational selection....

  20. Transition-state theory and dynamical corrections

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Hansen, Flemming Yssing

    2002-01-01

    . The correction factor due to non-adiabatic dynamics is considered in relation to the non-activated dissociative sticking of N-2 on Fe(111). For this process, conventional transition-state theory gives a sticking probability which is about 10 times too large (at T = 300 K). We estimate that the sticking......We consider conventional transition-state theory, and show how quantum dynamical correction factors can be incorporated in a simple fashion, as a natural extension of the fundamental formulation. Corrections due to tunneling and non-adiabatic dynamics are discussed, with emphasis on the latter...... probability is reduced by a factor of 2 due to non-adiabatic dynamics....

  1. Quantum phase transitions in matrix product states

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous. (authors)

  2. Quantum Phase Transitions in Matrix Product States

    International Nuclear Information System (INIS)

    Jing-Min, Zhu

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous

  3. State-transition diagrams for biologists.

    Directory of Open Access Journals (Sweden)

    Hugues Bersini

    Full Text Available It is clearly in the tradition of biologists to conceptualize the dynamical evolution of biological systems in terms of state-transitions of biological objects. This paper is mainly concerned with (but obviously not limited too the immunological branch of biology and shows how the adoption of UML (Unified Modeling Language state-transition diagrams can ease the modeling, the understanding, the coding, the manipulation or the documentation of population-based immune software model generally defined as a set of ordinary differential equations (ODE, describing the evolution in time of populations of various biological objects. Moreover, that same UML adoption naturally entails a far from negligible representational economy since one graphical item of the diagram might have to be repeated in various places of the mathematical model. First, the main graphical elements of the UML state-transition diagram and how they can be mapped onto a corresponding ODE mathematical model are presented. Then, two already published immune models of thymocyte behavior and time evolution in the thymus, the first one originally conceived as an ODE population-based model whereas the second one as an agent-based one, are refactored and expressed in a state-transition form so as to make them much easier to understand and their respective code easier to access, to modify and run. As an illustrative proof, for any immunologist, it should be possible to understand faithfully enough what the two software models are supposed to reproduce and how they execute with no need to plunge into the Java or Fortran lines.

  4. Steady-State Magneto-Optical Trap with 100-Fold Improved Phase-Space Density

    Science.gov (United States)

    Bennetts, Shayne; Chen, Chun-Chia; Pasquiou, Benjamin; Schreck, Florian

    2017-12-01

    We demonstrate a continuously loaded 88Sr magneto-optical trap (MOT) with a steady-state phase-space density of 1.3 (2 )×10-3 . This is 2 orders of magnitude higher than reported in previous steady-state MOTs. Our approach is to flow atoms through a series of spatially separated laser cooling stages before capturing them in a MOT operated on the 7.4-kHz linewidth Sr intercombination line using a hybrid slower+MOT configuration. We also demonstrate producing a Bose-Einstein condensate at the MOT location, despite the presence of laser cooling light on resonance with the 30-MHz linewidth transition used to initially slow atoms in a separate chamber. Our steady-state high phase-space density MOT is an excellent starting point for a continuous atom laser and dead-time free atom interferometers or clocks.

  5. Jump transition observed in translocation time for ideal poly-X proteinogenic chains as a result of competing folding and anchoraging contributions

    Science.gov (United States)

    Vélez-Pérez, José Antonio; Olivares-Quiroz, Luis

    2017-01-01

    In this work we analyze the translocation of homopolymer chains poly-X , where X represents any of the 20 naturally occurring amino acid residues, in terms of size N and single-helical propensity ω . We provide an analytical framework to calculate both the free energy F of translocation and the translocation time τ as a function of chain size N , energies U and ɛ of the unfolded and folded states, respectively. Our results show that free energy F has a characteristic bell-shaped barrier as function of the percentage of monomers translocated. Inclusion of single-helical propensity ω associated to monomer X and chain's native energy ɛ in the translocation model increases the energy barrier Δ F up to one order of magnitude as compared with the well-known Gaussian chain model. Computation of the mean first-passage time as function of chain size N shows that the translocation time τ exhibits a significant jump of several orders of magnitude at a critical chain size N . This jump markedly slows down translocation of chains larger than N . Existence of the transition jump of τ has been observed experimentally at least in poly(ethylene oxide) chains [R. P. Choudhury, P. Galvosas, and M. Schönhoff, J. Phys. Chem. B 112, 13245 (2008)], 10.1021/jp804680q. Our results suggest the transition jump of τ as a function of N may be a very well spread feature throughout translocation of poly-X chains.

  6. Algebraic analysis of the electromagnetic wave interaction with the two-level system with two-fold degenerated states

    International Nuclear Information System (INIS)

    Rustamov, K.A.

    1988-11-01

    Algebraic properties of the analytical model, describing electro-magnetic weak interaction with the two-level system with two-fold degenerate state are considered. The expressions for the coherent states and Green function of the system are obtained. (author). 9 refs

  7. Vibrational nonadiabaticity and tunneling effects in transition state theory

    International Nuclear Information System (INIS)

    Marcus, R.A.

    1979-01-01

    The usual quantum mechanical derivation of transition state theory is a statistical one (a quasi-equilibrium is assumed) or dynamical. The typical dynamical one defines a set of internal states and assumes vibrational adiabaticity. Effects of nonadiabaticity before and after the transition state are included in the present derivation, assuming a classical treatment of the reaction coordinate. The relation to a dynamical derivation of classical mechanical transition state theory is described, and tunneling effects are considered

  8. Parallel tiled Nussinov RNA folding loop nest generated using both dependence graph transitive closure and loop skewing.

    Science.gov (United States)

    Palkowski, Marek; Bielecki, Wlodzimierz

    2017-06-02

    RNA secondary structure prediction is a compute intensive task that lies at the core of several search algorithms in bioinformatics. Fortunately, the RNA folding approaches, such as the Nussinov base pair maximization, involve mathematical operations over affine control loops whose iteration space can be represented by the polyhedral model. Polyhedral compilation techniques have proven to be a powerful tool for optimization of dense array codes. However, classical affine loop nest transformations used with these techniques do not optimize effectively codes of dynamic programming of RNA structure predictions. The purpose of this paper is to present a novel approach allowing for generation of a parallel tiled Nussinov RNA loop nest exposing significantly higher performance than that of known related code. This effect is achieved due to improving code locality and calculation parallelization. In order to improve code locality, we apply our previously published technique of automatic loop nest tiling to all the three loops of the Nussinov loop nest. This approach first forms original rectangular 3D tiles and then corrects them to establish their validity by means of applying the transitive closure of a dependence graph. To produce parallel code, we apply the loop skewing technique to a tiled Nussinov loop nest. The technique is implemented as a part of the publicly available polyhedral source-to-source TRACO compiler. Generated code was run on modern Intel multi-core processors and coprocessors. We present the speed-up factor of generated Nussinov RNA parallel code and demonstrate that it is considerably faster than related codes in which only the two outer loops of the Nussinov loop nest are tiled.

  9. Group theoretical classification of broken symmetry states of the two-fold degenerate Hubbard model on a triangular lattice

    International Nuclear Information System (INIS)

    Masago, Akira; Suzuki, Naoshi

    2001-01-01

    By a group theoretical procedure we derive the possible spontaneously broken-symmetry states for the two-fold degenerate Hubbard model on a two-dimensional triangular lattice. For ordering wave vectors corresponding to the points Γ and K in the first BZ we find 22 states which include 16 collinear and six non-collinear states. The collinear states include the usual SDW and CDW states which appear also in the single-band Hubbard model. The non-collinear states include exotic ordering states of orbitals and spins as well as the triangular arrangement of spins

  10. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states

    Science.gov (United States)

    Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui

    2016-04-01

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

  11. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states

    International Nuclear Information System (INIS)

    Qiao, Qin; Zhang, Hou-Dao; Huang, Xuhui

    2016-01-01

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

  12. Enhancing pairwise state-transition weights: A new weighting scheme in simulated tempering that can minimize transition time between a pair of conformational states

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Qin, E-mail: qqiao@ust.hk; Zhang, Hou-Dao [Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Huang, Xuhui, E-mail: xuhuihuang@ust.hk [Department of Chemistry, Division of Biomedical Engineering, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); The HKUST Shenzhen Research Institute, Shenzhen (China)

    2016-04-21

    Simulated tempering (ST) is a widely used enhancing sampling method for Molecular Dynamics simulations. As one expanded ensemble method, ST is a combination of canonical ensembles at different temperatures and the acceptance probability of cross-temperature transitions is determined by both the temperature difference and the weights of each temperature. One popular way to obtain the weights is to adopt the free energy of each canonical ensemble, which achieves uniform sampling among temperature space. However, this uniform distribution in temperature space may not be optimal since high temperatures do not always speed up the conformational transitions of interest, as anti-Arrhenius kinetics are prevalent in protein and RNA folding. Here, we propose a new method: Enhancing Pairwise State-transition Weights (EPSW), to obtain the optimal weights by minimizing the round-trip time for transitions among different metastable states at the temperature of interest in ST. The novelty of the EPSW algorithm lies in explicitly considering the kinetics of conformation transitions when optimizing the weights of different temperatures. We further demonstrate the power of EPSW in three different systems: a simple two-temperature model, a two-dimensional model for protein folding with anti-Arrhenius kinetics, and the alanine dipeptide. The results from these three systems showed that the new algorithm can substantially accelerate the transitions between conformational states of interest in the ST expanded ensemble and further facilitate the convergence of thermodynamics compared to the widely used free energy weights. We anticipate that this algorithm is particularly useful for studying functional conformational changes of biological systems where the initial and final states are often known from structural biology experiments.

  13. Probing the transition state for nucleic acid hybridization using phi-value analysis.

    Science.gov (United States)

    Kim, Jandi; Shin, Jong-Shik

    2010-04-27

    Genetic regulation by noncoding RNA elements such as microRNA and small interfering RNA (siRNA) involves hybridization of a short single-stranded RNA with a complementary segment in a target mRNA. The physical basis of the hybridization process between the structured nucleic acids is not well understood primarily because of the lack of information about the transition-state structure. Here we use transition-state theory, inspired by phi-value analysis in protein folding studies, to provide quantitative analysis of the relationship between changes in the secondary structure stability and the activation free energy. Time course monitoring of the hybridization reaction was performed under pseudo-steady-state conditions using a single fluorophore. The phi-value analysis indicates that the native secondary structure remains intact in the transition state. The nativelike transition state was confirmed via examination of the salt dependence of the hybridization kinetics, indicating that the number of sodium ions associated with the transition state was not substantially affected by changes in the native secondary structure. These results propose that hybridization between structured nucleic acids undergoes a transition state leading to formation of a nucleation complex and then is followed by sequential displacement of preexisting base pairings involving successive small energy barriers. The proposed mechanism might provide new insight into physical processes during small RNA-mediated gene silencing, which is essential to selection of a target mRNA segment for siRNA design.

  14. Current Treatment Options for Bilateral Vocal Fold Paralysis: A State-of-the-Art Review

    Science.gov (United States)

    Li, Yike; Garrett, Gaelyn; Zealear, David

    2017-01-01

    Vocal fold paralysis (VFP) refers to neurological causes of reduced or absent movement of one or both vocal folds. Bilateral VFP (BVFP) is characterized by inspiratory dyspnea due to narrowing of the airway at the glottic level with both vocal folds assuming a paramedian position. The primary objective of intervention for BVFP is to relieve patients’ dyspnea. Common clinical options for management include tracheostomy, arytenoidectomy and cordotomy. Other options that have been used with varying success include reinnervation techniques and botulinum toxin (Botox) injections into the vocal fold adductors. More recently, research has focused on neuromodulation, laryngeal pacing, gene therapy, and stem cell therapy. These newer approaches have the potential advantage of avoiding damage to the voicing mechanism of the larynx with an added goal of restoring some physiologic movement of the affected vocal folds. However, clinical data are scarce for these new treatment options (i.e., reinnervation and pacing), so more investigative work is needed. These areas of research are expected to provide dramatic improvements in the treatment of BVFP. PMID:28669149

  15. Microscopic model of the glass transition and the glassy state

    International Nuclear Information System (INIS)

    Shukla, P.

    1982-07-01

    A microscopic model of the glass transition and the glassy state is presented. It is exactly solvable, and offers a unified view of the equilibrium and non-equilibrium aspects of the glass transition. It also provides a statistical-mechanical justification of the irreversible thermodynamic models of the glass transition proposed earlier. (author)

  16. M1 transitions between superdeformed states in 195Tl

    International Nuclear Information System (INIS)

    Zheng Xing; Xingqu Chen; Xiaochun Wang

    1996-01-01

    Using a triaxial-particle-rotor model, the quadrupole and dipole transition energies, kinematic and dynamic moments of inertia, electromagnetic transition probabilities and the relative intensity of the E2 γ-transitions are calculated for superdeformed bands in 195 Tl. A strong perturbation effect of rotation on transition energies and M1 and E2 transitions of superdeformed states is investigated. The total M1 transitions, enhanced by internal conversion, are expected to compete strongly with the E2 γ-ray at low spins in the superdeformed 195 Tl nucleus. (author)

  17. Eight-fold quantum states blossom in a high-temperature superconductor

    CERN Multimedia

    2003-01-01

    "Researchers based at Lawrence Berkeley National Laboratory and the University of California at Berkeley have used a scanning tunneling microscope (STM) to reveal eight-fold patterns of quasiparticle interference in the high-temperature superconductor Bi-2212 (bismuth strontium calcium copper oxide)" (2 pages).

  18. Minimal transition state charge stabilization of the oxyanion during peptide bond formation by the ribosome.

    Science.gov (United States)

    Carrasco, Nicolas; Hiller, David A; Strobel, Scott A

    2011-12-06

    Peptide bond formation during ribosomal protein synthesis involves an aminolysis reaction between the aminoacyl α-amino group and the carbonyl ester of the growing peptide via a transition state with a developing negative charge, the oxyanion. Structural and molecular dynamic studies have suggested that the ribosome may stabilize the oxyanion in the transition state of peptide bond formation via a highly ordered water molecule. To biochemically investigate this mechanistic hypothesis, we estimated the energetic contribution to catalytic charge stabilization of the oxyanion using a series of transition state mimics that contain different charge distributions and hydrogen bond potential on the functional group mimicking the oxyanion. Inhibitors containing an oxyanion mimic that carried a neutral charge and a mimic that preserved the negative charge but could not form hydrogen bonds had less than a 3-fold effect on inhibitor binding affinity. These observations argue that the ribosome provides minimal transition state charge stabilization to the oxyanion during peptide bond formation via the water molecule. This is in contrast to the substantial level of oxyanion stabilization provided by serine proteases. This suggests that the oxyanion may be neutralized via a proton shuttle, resulting in an uncharged transition state.

  19. Improving Upon String Methods for Transition State Discovery.

    Science.gov (United States)

    Chaffey-Millar, Hugh; Nikodem, Astrid; Matveev, Alexei V; Krüger, Sven; Rösch, Notker

    2012-02-14

    Transition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method. The developed methods have led to a reduction in the number of gradient calls required to optimize a transition state, as compared to existing methods. The Searching String method reported here places new beads on a reaction pathway at the midpoint between existing beads, such that the resolution of the path discretization in the region containing the transition state grows exponentially with the number of beads. This approach leads to favorable convergence behavior and generates more accurate estimates of transition states from which convergence to the final transition states occurs more readily. Several techniques for generating improved estimates of transition states from a converged string or nudged elastic band have been developed and benchmarked on 13 chemical test cases. Optimization approaches for string methods, and pitfalls therein, are discussed.

  20. Factorised steady states and condensation transitions in ...

    Indian Academy of Sciences (India)

    Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase transitions in one-dimensional systems. In this talk I will review a simple model of a nonequilibrium system known as the `zero-range process' and its recent developments. The nonequilibrium ...

  1. Arab States in Transition | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... and investigate the interplay between political and economic factors. Workshops will be convened involving experts, activists, policymakers and other actors involved in their country's transition. The workshops will allow the participants to define the problems as they see them, and point the researchers in new directions.

  2. Structural models of intrinsically disordered and calcium-bound folded states of a protein adapted for secretion

    OpenAIRE

    O’Brien, Darragh P.; Hernandez, Belen; Durand, Dominique; Hourdel, Véronique; Sotomayor-Pérez, Ana-Cristina; Vachette, Patrice; Ghomi, Mahmoud; Chamot-Rooke, Julia; Ladant, Daniel; Brier, Sébastien; Chenal, Alexandre

    2016-01-01

    International audience; Many Gram-negative bacteria use Type I secretion systems, T1SS, to secrete virulence factors that contain calcium-binding Repeat-in-ToXin (RTX) motifs. Here, we present structural models of an RTX protein, RD, in both its intrinsically disordered calcium-free Apo-state and its folded calcium-bound Holo-state. Apo-RD behaves as a disordered polymer chain comprising several statistical elements that exhibit local rigidity with residual secondary structure. Holo-RD is a f...

  3. Quantifying the limits of transition state theory in enzymatic catalysis.

    Science.gov (United States)

    Zinovjev, Kirill; Tuñón, Iñaki

    2017-11-21

    While being one of the most popular reaction rate theories, the applicability of transition state theory to the study of enzymatic reactions has been often challenged. The complex dynamic nature of the protein environment raised the question about the validity of the nonrecrossing hypothesis, a cornerstone in this theory. We present a computational strategy to quantify the error associated to transition state theory from the number of recrossings observed at the equicommittor, which is the best possible dividing surface. Application of a direct multidimensional transition state optimization to the hydride transfer step in human dihydrofolate reductase shows that both the participation of the protein degrees of freedom in the reaction coordinate and the error associated to the nonrecrossing hypothesis are small. Thus, the use of transition state theory, even with simplified reaction coordinates, provides a good theoretical framework for the study of enzymatic catalysis. Copyright © 2017 the Author(s). Published by PNAS.

  4. Swelling pressure induced phase-volume transition in hybrid biopolymer gels caused by unfolding of folded crosslinks: A model

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková, Miroslava; Ilavský, Michal; Steward, R.; Kopeček, J.

    2003-01-01

    Roč. 4, č. 6 (2003), s. 1818-1826 ISSN 1525-7797 R&D Projects: GA AV ČR KSK4050111 Keywords : thermodynamic model * swelling transitions * hybrid gels Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.824, year: 2003

  5. Religion, state, society and identity in transition: Ukraine

    NARCIS (Netherlands)

    van der Laarse, R.; Cherenkov, M.N.; Proshak, V.V.; Mykhalchuk, T.

    2015-01-01

    State-society-identity relations could be defined as interaction(s) between state institutions, societal groups and individuals living within the borders of a (political) community/ state. These relations are never static, but vibrant, being in constant transition under the influence of cultural,

  6. Policy to Performance: State ABE Transition Systems Report. Transitioning Adults to Opportunity

    Science.gov (United States)

    Alamprese, Judith A.

    2012-01-01

    The U.S. Department of Education's Policy to Performance project was funded in 2009 to build the capacity of state adult basic education (ABE) staff to develop and implement policies and practices that would support an ABE transition system. Policy to Performance states were selected though a competitive process. State adult education directors…

  7. Growth, economic development and structural transition in small vulnerable states

    OpenAIRE

    Read, Robert

    2001-01-01

    This paper reviews the critical theoretical and policy issues relating to growth, economic development and structural transition in small states. The paper discusses alternative perspectives on small size and highlights the salient characteristics which give rise to their economic sub-optimality. The theoretical and empirical relationship between size and growth is reviewed, including recent inferences relating to structural transition and comparative advantage in small states. This discussio...

  8. Magnetic Ground State Properties of Transition Metals

    DEFF Research Database (Denmark)

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.

    1977-01-01

    We review a simple one-electron theory of the magnetic and cohesive properties of ferro- and nearly ferromagnetic transition metals at 0 K. The theory is based on the density functional formalism, it makes use of the local spin density and atomic sphere approximations and it may, with further...... approximations, be reduced to the Stoner model. Results for the volume dependence of the ferromagnetic moment and the electronic pressure of bcc, fcc and hcp Fe are presented, together with theoretical values for the equilibrium atomic volume, the bulk modulus, the ferromagnetic moment, the spin susceptibility...

  9. Extreme Folding

    Science.gov (United States)

    Demaine, Erik

    2012-02-01

    Our understanding of the mathematics and algorithms behind paper folding, and geometric folding in general, has increased dramatically over the past several years. These developments have found a surprisingly broad range of applications. In the art of origami, it has helped spur the technical origami revolution. In engineering and science, it has helped solve problems in areas such as manufacturing, robotics, graphics, and protein folding. On the recreational side, it has led to new kinds of folding puzzles and magic. I will give an overview of the mathematics and algorithms of folding, with a focus on new mathematics and sculpture.

  10. Gamma transitions between compound states in spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Average values of the reduced γ widths and their dispersions are investigated, basing on the Wigner statistical matrix method, for γ transitions from a compound state c into a less-energy excited state f of an arbitrary complexity in spherical nuclei. It is shown that in all the cases of practical interest the Porter-Thomas distribution is valid for the γ widths. It is found that in the γ transitions between compound states c and c' with Esub(γ) <= 2 MeV the dominating role is played by the M1 transitions due to the main multiquasiparticle states of c, and by the E1 transitions, due to small components of the state c. In framework of the existent theoretical schemes it is shown that the strength functions of the M1 and E1 transitions between the compound states with Esub(γ) <2 MeV are close. It is deduced thet the variant of the M1 transitions is preferable in view of the experimental results on the (n, γα) reactions induced by thermal and resonance neutrons

  11. Combinatorial identities and quantum state densities of sigma models on N-folds

    International Nuclear Information System (INIS)

    Abdalla, M.C.B.; Bytsenko, A.A.; Guimaraes, M.E.X.

    2005-07-01

    There is a remarkable connection between the number of quantum states of conformal theories and the sequence of dimensions of Lie algebras. In this paper, we explore this connection by computing the asymptotic expansion of the elliptic genus and the microscopic entropy of black holes associated with (supersymmetric) sigma models. The new features of these results are the appearance of correct prefactors in the state density expansion and in the coefficient of the logarithmic correction to the entropy. (author)

  12. Factorised steady states and condensation transitions in ...

    Indian Academy of Sciences (India)

    Scotland. E-mail: martin@ph.ed.ac.uk. Abstract. Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase ... weights rather it will be a nonequilibrium steady state. ... particular cases are: if u(m) = m then the dynamics of each particle is independent.

  13. Graph-representation of oxidative folding pathways

    Directory of Open Access Journals (Sweden)

    Kaján László

    2005-01-01

    Full Text Available Abstract Background The process of oxidative folding combines the formation of native disulfide bond with conformational folding resulting in the native three-dimensional fold. Oxidative folding pathways can be described in terms of disulfide intermediate species (DIS which can also be isolated and characterized. Each DIS corresponds to a family of folding states (conformations that the given DIS can adopt in three dimensions. Results The oxidative folding space can be represented as a network of DIS states interconnected by disulfide interchange reactions that can either create/abolish or rearrange disulfide bridges. We propose a simple 3D representation wherein the states having the same number of disulfide bridges are placed on separate planes. In this representation, the shuffling transitions are within the planes, and the redox edges connect adjacent planes. In a number of experimentally studied cases (bovine pancreatic trypsin inhibitor, insulin-like growth factor and epidermal growth factor, the observed intermediates appear as part of contiguous oxidative folding pathways. Conclusions Such networks can be used to visualize folding pathways in terms of the experimentally observed intermediates. A simple visualization template written for the Tulip package http://www.tulip-software.org/ can be obtained from V.A.

  14. TPmsm: Estimation of the Transition Probabilities in 3-State Models

    Directory of Open Access Journals (Sweden)

    Artur Araújo

    2014-12-01

    Full Text Available One major goal in clinical applications of multi-state models is the estimation of transition probabilities. The usual nonparametric estimator of the transition matrix for non-homogeneous Markov processes is the Aalen-Johansen estimator (Aalen and Johansen 1978. However, two problems may arise from using this estimator: first, its standard error may be large in heavy censored scenarios; second, the estimator may be inconsistent if the process is non-Markovian. The development of the R package TPmsm has been motivated by several recent contributions that account for these estimation problems. Estimation and statistical inference for transition probabilities can be performed using TPmsm. The TPmsm package provides seven different approaches to three-state illness-death modeling. In two of these approaches the transition probabilities are estimated conditionally on current or past covariate measures. Two real data examples are included for illustration of software usage.

  15. Folding 19 proteins to their native state and stability of large proteins from a coarse-grained model.

    Science.gov (United States)

    Kapoor, Abhijeet; Travesset, Alex

    2014-03-01

    We develop an intermediate resolution model, where the backbone is modeled with atomic resolution but the side chain with a single bead, by extending our previous model (Proteins (2013) DOI: 10.1002/prot.24269) to properly include proline, preproline residues and backbone rigidity. Starting from random configurations, the model properly folds 19 proteins (including a mutant 2A3D sequence) into native states containing β sheet, α helix, and mixed α/β. As a further test, the stability of H-RAS (a 169 residue protein, critical in many signaling pathways) is investigated: The protein is stable, with excellent agreement with experimental B-factors. Despite that proteins containing only α helices fold to their native state at lower backbone rigidity, and other limitations, which we discuss thoroughly, the model provides a reliable description of the dynamics as compared with all atom simulations, but does not constrain secondary structures as it is typically the case in more coarse-grained models. Further implications are described. Copyright © 2013 Wiley Periodicals, Inc.

  16. GENESIS - The GENEric SImulation System for Modelling State Transitions.

    Science.gov (United States)

    Gillman, Matthew S

    2017-09-20

    This software implements a discrete time Markov chain model, used to model transitions between states when the transition probabilities are known a priori . It is highly configurable; the user supplies two text files, a "state transition table" and a "config file", to the Perl script genesis.pl. Given the content of these files, the script generates a set of C++ classes based on the State design pattern, and a main program, which can then be compiled and run. The C++ code generated is based on the specification in the text files. Both multiple branching and bi-directional transitions are allowed. The software has been used to model the natural histories of colorectal cancer in Mexico. Although written primarily to model such disease processes, it can be used in any process which depends on discrete states with known transition probabilities between those states. One suitable area may be in environmental modelling. A test suite is supplied with the distribution. Due to its high degree of configurability and flexibility, this software has good re-use potential. It is stored on the Figshare repository.

  17. Complexity and state-transitions in social dependence networks

    Directory of Open Access Journals (Sweden)

    Giuliano Pistolesi

    2001-01-01

    Full Text Available Computation of complexity in Social Dependence Networks is an interesting research domain to understand evolution processes and group exchange dynamics in natural and artificial intelligent Multi-Agent Systems. We perform an agent-based simulation by NET-PLEX (Conte and Pistolesi, 2000, a new software system able both to build interdependence networks tipically emerging in Multi-Agent System scenarios and to investigate complexity phenomena, i.e., unstability and state-transitions like Hopf bifurcation (Nowak and Lewenstein, 1994, and to describe social self organization phenomena emerging in these artificial social systems by means of complexity measures similar to those introduced by Hubermann and Hogg (1986. By performing analysis of complexity in these kind of artificial societies we observed interesting phenomena in emerging organizations that suggest state-transitions induced by critical configurations of parameters describing the social system similar to those observed in many studies on state-transitions in bifurcation chaos (Schuster, 1988; Ruelle, 1989.

  18. Protein folding and the organization of the protein topology universe

    DEFF Research Database (Denmark)

    Lindorff-Larsen,, Kresten; Røgen, Peter; Paci, Emanuele

    2005-01-01

    of protein folds that is based on the topological features of the polypeptide backbone, rather than the conventional view that depends on the arrangement of different types of secondary-structure elements. By linking the folding process to the organization of the protein structure universe, we propose......The mechanism by which proteins fold to their native states has been the focus of intense research in recent years. The rate-limiting event in the folding reaction is the formation of a conformation in a set known as the transition-state ensemble. The structural features present within...

  19. Evolution and Structural Architecture of the Cenozoic Southern Sivas Fold-Thrust Belt: Implications for the Transition from Arabian Collision to Tectonic Escape in Anatolia

    Science.gov (United States)

    Darin, M. H.; Gürer, D.; Umhoefer, P. J.; Van Hinsbergen, D. J. J.

    2016-12-01

    The Anatolian Plate formed as a result of a major yet poorly understood plate boundary reconfiguration in the eastern Mediterranean involving a transition from distributed contraction to strain localization and tectonic escape along large strike-slip faults. The Sivas Basin is a E-W-elongate retro-foreland basin that formed above the Inner Tauride suture zone following Paleocene collision of the Tauride micro-continent with Eurasia, but prior to Arabian collision. Basin exhumation began in the Eocene with development of the thin-skinned Southern Sivas Fold and Thrust Belt (SSFTB), a >300 km-long by 30 km-wide, convex-north arcuate belt of contractional structures in Late Cretaceous to Miocene strata. Because of its age and geographic position north of the Arabian indenter, the SSFTB provides an important record of pre-, syn- and post-collisional processes in the Anatolian Orogen, including the transition from collision to escape tectonics. We use geologic mapping, apatite fission track (AFT) thermochronology, paleomagnetism, and 40Ar/39Ar geochronology to characterize the architecture, deformation style, and structural evolution of the SSFTB. NE- to E-trending upright folds with slight northward asymmetry, south-dipping thrust faults, and overturned folds in Paleogene strata indicate an overall northward vergence in the SSFTB. However, several thrusts, including some that were previously unmapped, are south-vergent and typically displace younger (Miocene) units. Structural relationships and AFT data indicate that crustal shortening and rapid basin exhumation began in the late Eocene and ended by latest Miocene time. Pliocene and younger units are only locally deformed by either halokinesis or transpressional faulting along the sinistral Central Anatolian fault zone (CAFZ) and where the dextral Northern Anatolian fault zone (NAFZ) intersects the SSFTB. Paleomagnetic data from sedimentary units reveal moderate counter-clockwise and clockwise vertical-axis block

  20. Identifying Conformational-Selection and Induced-Fit Aspects in the Binding-Induced Folding of PMI from Markov State Modeling of Atomistic Simulations.

    Science.gov (United States)

    Paul, Fabian; Noé, Frank; Weikl, Thomas R

    2018-03-27

    Unstructured proteins and peptides typically fold during binding to ligand proteins. A challenging problem is to identify the mechanism and kinetics of these binding-induced folding processes in experiments and atomistic simulations. In this Article, we present a detailed picture for the folding of the inhibitor peptide PMI into a helix during binding to the oncoprotein fragment 25-109 Mdm2 obtained from atomistic, explicit-water simulations and Markov state modeling. We find that binding-induced folding of PMI is highly parallel and can occur along a multitude of pathways. Some pathways are induced-fit-like with binding occurring prior to PMI helix formation, while other pathways are conformational-selection-like with binding after helix formation. On the majority of pathways, however, binding is intricately coupled to folding, without clear temporal ordering. A central feature of these pathways is PMI motion on the Mdm2 surface, along the binding groove of Mdm2 or over the rim of this groove. The native binding groove of Mdm2 thus appears as an asymmetric funnel for PMI binding. Overall, binding-induced folding of PMI does not fit into the classical picture of induced fit or conformational selection that implies a clear temporal ordering of binding and folding events. We argue that this holds in general for binding-induced folding processes because binding and folding events in these processes likely occur on similar time scales and do exhibit the time-scale separation required for temporal ordering.

  1. seniority changing transitions in yrast states and systematics of Sn ...

    Indian Academy of Sciences (India)

    Bhoomika Maheshwari

    2017-10-26

    Oct 26, 2017 ... 1 states; Sn isotopes; generalized seniority; odd-tensor E3 transitions; shell model. PACS Nos 23.20.Js; 27.60.+j; 21.60.Cs. 1. Introduction. Symmetries in physics play a fundamental role in the theoretical description of a wide range of phenomena and are particularly useful in systematizing the prop-.

  2. Tracking the embryonic stem cell transition from ground state pluripotency

    NARCIS (Netherlands)

    Kalkan, T.; Olova, N.; Roode, M.; Mulas, C.; Lee, H.J.; Nett, I.; Marks, H.; Walker, R.; Stunnenberg, H.; Lilley, K.S.; Nichols, J.; Reik, W.; Bertone, P.; Smith, A.

    2017-01-01

    Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition process. The ES cell

  3. Religion, state, society and identity in transition Ukraine

    NARCIS (Netherlands)

    van der Laarse, R.; Cherenkov, M.N.; Proshak, V.V.; Mykhalchuk, T.

    2015-01-01

    BookCover Religion, state, society and identity in transition Ukraine Rob van der Laarse, Mykhailo N. Cherenkov, Vitaliy V. Proshak, and Tetiana Mykhalchuk, eds. Pages: 800 pages Shipping Weight: 1000 gram Published: 11-2015 Publisher: WLP Language: US ISBN (softcover) : 9789462402652 Product

  4. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Khoa, Dao T.; Thang, Dang Ngoc [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); Loc, Bui Minh [VINATOM, Institute for Nuclear Science and Technique, Hanoi (Viet Nam); University of Pedagogy, Ho Chi Minh City (Viet Nam)

    2014-02-15

    The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ({sup 3}He, t) reaction, can be considered as ''elastic'' scattering of proton or {sup 3}He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ({sup 3}He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or {sup 3}He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or {sup 3}He optical potential to the cross section of the charge-exchange (p, n) or ({sup 3}He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ({sup 3}He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)

  5. Folding model study of the charge-exchange scattering to the isobaric analog state and implication for the nuclear symmetry energy

    International Nuclear Information System (INIS)

    Khoa, Dao T.; Thang, Dang Ngoc; Loc, Bui Minh

    2014-01-01

    The Fermi transition (ΔL = ΔS = 0 and ΔT = 1) between the nuclear isobaric analog states (IAS), induced by the charge-exchange (p, n) or ( 3 He, t) reaction, can be considered as ''elastic'' scattering of proton or 3 He by the isovector term of the optical potential (OP) that flips the projectile isospin. The accurately measured (p, n) or ( 3 He, t) scattering cross section to the IAS can be used, therefore, to probe the isospin dependence of the proton or 3 He optical potential. Within the folding model, the isovector part of the OP is determined exclusively by the neutron-proton difference in the nuclear densities and the isospin dependence of the effective nucleon-nucleon (NN) interaction. Because the isovector coupling explicitly links the isovector part of the proton or 3 He optical potential to the cross section of the charge-exchange (p, n) or ( 3 He, t) scattering to the IAS, the isospin dependence of the effective (in-medium) NN interaction can be well tested in the folding model analysis of these charge-exchange reactions. On the other hand, the same isospin- and density-dependent NN interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part (the nuclear symmetry energy). As a result, the fine-tuning of the isospin dependence of the effective NN interaction against the measured (p, n) or ( 3 He, t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. (orig.)

  6. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.

    Science.gov (United States)

    Wulff, Günter; Liu, Junqiu

    2012-02-21

    electrostatic stabilization for the transition state through the amidinium group as well as a synergism of transition state recognition and metal ion catalysis. The result was an excellent catalyst for carbonate hydrolysis. These enzyme mimics represent the most active catalysts ever prepared through the molecular imprinting strategy. Their catalytic activity, catalytic efficiency, and catalytic proficiency clearly surpass those of the corresponding catalytic antibodies. The active structures in natural enzymes evolve within soluble proteins, typically by the refining of the folding of one polypeptide chain. To incorporate these characteristics into synthetic polymers, we used the concept of transition state stabilization to develop soluble, nanosized carboxypeptidase A models using a new polymerization method we term the "post-dilution polymerization method". With this methodology, we were able to prepare soluble, highly cross-linked, single-molecule nanoparticles. These particles have controlled molecular weights (39 kDa, for example) and, on average, one catalytically active site per particle. Our strategies have made it possible to obtain efficient new enzyme models and further advance the structural and functional analogy with natural enzymes. Moreover, this bioinspired design based on molecular imprinting in synthetic polymers offers further support for the concept of transition state stabilization in catalysis.

  7. Molecular dynamics studies of protein folding and aggregation

    Science.gov (United States)

    Ding, Feng

    This thesis applies molecular dynamics simulations and statistical mechanics to study: (i) protein folding; and (ii) protein aggregation. Most small proteins fold into their native states via a first-order-like phase transition with a major free energy barrier between the folded and unfolded states. A set of protein conformations corresponding to the free energy barrier, Delta G >> kBT, are the folding transition state ensemble (TSE). Due to their evasive nature, TSE conformations are hard to capture (probability ∝ exp(-DeltaG/k BT)) and characterize. A coarse-grained discrete molecular dynamics model with realistic steric constraints is constructed to reproduce the experimentally observed two-state folding thermodynamics. A kinetic approach is proposed to identify the folding TSE. A specific set of contacts, common to the TSE conformations, is identified as the folding nuclei which are necessary to be formed in order for the protein to fold. Interestingly, the amino acids at the site of the identified folding nuclei are highly conserved for homologous proteins sharing the same structures. Such conservation suggests that amino acids that are important for folding kinetics are under selective pressure to be preserved during the course of molecular evolution. In addition, studies of the conformations close to the transition states uncover the importance of topology in the construction of order parameter for protein folding transition. Misfolded proteins often form insoluble aggregates, amyloid fibrils, that deposit in the extracellular space and lead to a type of disease known as amyloidosis. Due to its insoluble and non-crystalline nature, the aggregation structure and, thus the aggregation mechanism, has yet to be uncovered. Discrete molecular dynamics studies reveal an aggregate structure with the same structural signatures as in experimental observations and show a nucleation aggregation scenario. The simulations also suggest a generic aggregation mechanism

  8. Protein-Folding Landscapes in Multi-Chain Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cellmer, Troy; Bratko, Dusan; Prausnitz, John M.; Blanch, Harvey

    2005-06-20

    Computational studies of proteins have significantly improved our understanding of protein folding. These studies are normally carried out using chains in isolation. However, in many systems of practical interest, proteins fold in the presence of other molecules. To obtain insight into folding in such situations, we compare the thermodynamics of folding for a Miyazawa-Jernigan model 64-mer in isolation to results obtained in the presence of additional chains. The melting temperature falls as the chain concentration increases. In multi-chain systems, free-energy landscapes for folding show an increased preference for misfolded states. Misfolding is accompanied by an increase in inter-protein interactions; however, near the folding temperature, the transition from folded chains to misfolded and associated chains isentropically driven. A majority of the most probable inter-protein contacts are also native contacts, suggesting that native topology plays a role in early stages of aggregation.

  9. Antiferrodistortive phase transitions and ground state of PZT ceramics

    International Nuclear Information System (INIS)

    Pandey, Dhananjai

    2013-01-01

    The ground state of the technologically important Pb(Zr x Ti (1-x) )O 3 , commonly known as PZT, ceramics is currently under intense debate. The phase diagram of this material shows a morphotropic phase boundary (MPB) for x∼0.52 at 300K, across which a composition induced structural phase transition occurs leading to maximization of the piezoelectric properties. In search for the true ground state of the PZT in the MPB region, Beatrix Noheda and coworkers first discovered a phase transition from tetragonal (space group P4mm) to an M A type monoclinic phase (space group Cm) at low temperatures for x=0.52. Soon afterwards, we discovered yet another low temperature phase transition for the same composition in which the M A type (Cm) monoclinic phase transforms to another monoclinic phase with Cc space group. We have shown that the Cm to Cc phase transition is an antiferrodistortive (AFD) transition involving tilting of oxygen octahedra leading to unit cell doubling and causing appearance of superlattice reflections which are observable in the electron and neutron diffraction patterns only and not in the XRD patterns, as a result of which Noheda and coworkers missed the Cc phase in their synchrotron XRD studies at low temperatures. Our findings were confirmed by leading groups using neutron, TEM, Raman and high pressure diffraction studies. The first principles calculations also confirmed that the true ground state of PZT in the MPB region has Cc space group. However, in the last couple of years, the Cc space group of the ground state has become controversial with an alternative proposal of R3c as the space group of the ground state phase which is proposed to coexist with the metastable Cm phase. In order to resolve this controversy, we recently revisited the issue using pure PZT and 6% Sr 2+ substituted PZT, the latter samples show larger tilt angle on account of the reduction in the average cationic radius at the Pb 2+ site. Using high wavelength neutrons and high

  10. Physiologic Measures of Animal Stress during Transitional States of Consciousness

    Directory of Open Access Journals (Sweden)

    Robert E. Meyer

    2015-08-01

    Full Text Available Determination of the humaneness of methods used to produce unconsciousness in animals, whether for anesthesia, euthanasia, humane slaughter, or depopulation, relies on our ability to assess stress, pain, and consciousness within the contexts of method and application. Determining the subjective experience of animals during transitional states of consciousness, however, can be quite difficult; further, loss of consciousness with different agents or methods may occur at substantially different rates. Stress and distress may manifest behaviorally (e.g., overt escape behaviors, approach-avoidance preferences [aversion] or physiologically (e.g., movement, vocalization, changes in electroencephalographic activity, heart rate, sympathetic nervous system [SNS] activity, hypothalamic-pituitary axis [HPA] activity, such that a one-size-fits-all approach cannot be easily applied to evaluate methods or determine specific species applications. The purpose of this review is to discuss methods of evaluating stress in animals using physiologic methods, with emphasis on the transition between the conscious and unconscious states.

  11. Communication: Electronic flux induced by crossing the transition state

    Science.gov (United States)

    Jia, Dongming; Manz, Jörn; Yang, Yonggang

    2018-01-01

    We present a new effect of chemical reactions, e.g., isomerizations, that occurs when the reactants pass along the transition state, on the way to products. It is based on the well-known fact that at the transition state, the electronic structure of one isomer changes to the other. We discover that this switch of electronic structure causes a strong electronic flux that is well distinguishable from the usual flux of electrons that travel with the nuclei. As a simple but clear example, the effect is demonstrated here for bond length isomerization of Na2 (21Σu+), with adiabatic crossing the barrier between the inner and outer wells of the double minimum potential that support different "Rydberg" and "ionic" type electronic structures, respectively.

  12. Optimal control of transitions between nonequilibrium steady states.

    Directory of Open Access Journals (Sweden)

    Patrick R Zulkowski

    Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.

  13. Electromagnetic transitions between states satisfying free-boundary conditions

    International Nuclear Information System (INIS)

    Nikolopoulos, L. A. A.

    2006-01-01

    We address the problem of calculating electromagnetic transition matrix elements between states of a particle in spherically symmetrical potentials with no assumed boundary conditions at finite distance (free-boundary-condition method). For this, the Schroedinger equation is solved in a finite box of radius R and bound and continuum states, appropriately normalized, are numerically represented, through a variational finite-basis-set (B-spline) approach. The equivalence between the three transition operator forms (length, velocity, acceleration), within this approach, is discussed, and bound-continuum and continuum-continuum matrix elements are calculated in all three gauges. Results for the strong electromagnetic radiation of hydrogen are presented through the calculation of two-photon ionization cross sections and photoelectron angular distributions. It is demonstrated that the present approach is well suited for the calculation of multiphoton transitions when ionization in the continuum is allowed (above-threshold ionization). With the free-boundary-condition method complete control over the density of scattering states is feasible and, as the result of that, the degeneracy in the continuum between partial waves is preserved

  14. Reliable Transition State Searches Integrated with the Growing String Method.

    Science.gov (United States)

    Zimmerman, Paul

    2013-07-09

    The growing string method (GSM) is highly useful for locating reaction paths connecting two molecular intermediates. GSM has often been used in a two-step procedure to locate exact transition states (TS), where GSM creates a quality initial structure for a local TS search. This procedure and others like it, however, do not always converge to the desired transition state because the local search is sensitive to the quality of the initial guess. This article describes an integrated technique for simultaneous reaction path and exact transition state search. This is achieved by implementing an eigenvector following optimization algorithm in internal coordinates with Hessian update techniques. After partial convergence of the string, an exact saddle point search begins under the constraint that the maximized eigenmode of the TS node Hessian has significant overlap with the string tangent near the TS. Subsequent optimization maintains connectivity of the string to the TS as well as locks in the TS direction, all but eliminating the possibility that the local search leads to the wrong TS. To verify the robustness of this approach, reaction paths and TSs are found for a benchmark set of more than 100 elementary reactions.

  15. Biosynthetic consequences of multiple sequential post-transition-state bifurcations

    Science.gov (United States)

    Hong, Young Joo; Tantillo, Dean J.

    2014-02-01

    Selectivity in chemical reactions that form complex molecular architectures from simpler precursors is usually rationalized by comparing competing transition-state structures that lead to different possible products. Herein we describe a system for which a single transition-state structure leads to the formation of many isomeric products via pathways that feature multiple sequential bifurcations. The reaction network described connects the pimar-15-en-8-yl cation to miltiradiene, a tricyclic diterpene natural product, and isomers via cyclizations and/or rearrangements. The results suggest that the selectivity of the reaction is controlled by (post-transition-state) dynamic effects, that is, how the carbocation structure changes in response to the distribution of energy in its vibrational modes. The inherent dynamical effects revealed herein (characterized through quasiclassical direct dynamics calculations using density functional theory) have implications not only for the general principles of selectivity prediction in systems with complex potential energy surfaces, but also for the mechanisms of terpene synthase enzymes and their evolution. These findings redefine the challenges faced by nature in controlling the biosynthesis of complex natural products.

  16. [Artificial Cysteine Bridges on the Surface of Green Fluorescent Protein Affect Hydration of Its Transition and Intermediate States].

    Science.gov (United States)

    Melnik, T N; Nagibina, G S; Surin, A K; Glukhova, K A; Melnik, B S

    2018-01-01

    Studying the effect of cysteine bridges on different energy levels of multistage folding proteins will enable a better understanding of the process of folding and functioning of globular proteins. In particular, it will create prospects for directed change in the stability and rate of protein folding. In this work, using the method of differential scanning microcalorimetry, we have studied the effect of three cysteine bridges introduced in different structural elements of the green fluorescent protein on the denaturation enthalpies, activation energies, and heat-capacity increments when this protein passes from native to intermediate and transition states. The studies have allowed us to confirm that, with this protein denaturation, the process hardly damages the structure initially, but then changes occur in the protein structure in the region of 4-6 beta sheets. The cysteine bridge introduced in this region decreases the hydration of the second transition state and increases the hydration of the second intermediate state during the thermal denaturation of the green fluorescent protein.

  17. Transition-state structures for enzymatic and alkaline phosphotriester hydrolysis

    International Nuclear Information System (INIS)

    Caldwell, S.R.; Raushel, F.M.; Weiss, P.M.; Cleland, W.W.

    1991-01-01

    The primary and secondary 18 O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [ 15 N, phosphoryl- 18 O]-,[ 15 N, phenolic- 18 O]-, and [ 15 N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18 O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 ± 0.0001, whereas for compound II they are 1.027±0.002 and 1.025 ± 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a S N 2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18 O isotope effects are very small, 1.0020 and 1.0021±0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18 O isotope effects for the enzymatic hydrolysis of compound II are 1.036±0.001 and 1.0181±0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18 O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction

  18. Finite-state transition system analysis of disturbed foundation stiffness

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2018-01-01

    Foundations erected in sand can become disturbed during dynamic loading, as sand stiffness can both increase and decrease episodically. Paradigms outside geotechnics analyze similar problems as finite-state transition systems. Therefore, patterns governing disturbed foundation stiffness change......, the unconventional analysis technique delivers substantial descriptive and predictive power. To demonstrate the utility, stiffness of a foundation prototype is manipulated: during real-life, real-time testing, the initial stiffness path is disturbed and recovered 5 times in one loading sequence. Thus, the "memory...

  19. Transitional states of central serotonin receptors in Parkinson's disease

    International Nuclear Information System (INIS)

    Kienzl, E.; Riederer, P.; Jellinger, K.; Wesemann, W.; Marburg Univ.

    1981-01-01

    Crude membrane preparations from the frontal cortex of controls and pakinsonian patients were used to demonstrate affinity changes of the specific 3 H-5-hydroxytryptamine (5-HT) binding sites. Two such sites were noteable in controls, a finding consistent with earlier observations. In Parkinson's disease, both high- and low-affinity sites are significantly decreased. Additional experiments either with prolonged incubation times or pre-incubation with N-ethylmaleimide change the two affinities to a single high-affinity or low-affinity constant. The concept of transitional states of 5-HT receptors is discussed and seems to have important implications in the treatment of parkinsonism. (author)

  20. Tracking the embryonic stem cell transition from ground state pluripotency.

    Science.gov (United States)

    Kalkan, Tüzer; Olova, Nelly; Roode, Mila; Mulas, Carla; Lee, Heather J; Nett, Isabelle; Marks, Hendrik; Walker, Rachael; Stunnenberg, Hendrik G; Lilley, Kathryn S; Nichols, Jennifer; Reik, Wolf; Bertone, Paul; Smith, Austin

    2017-04-01

    Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naïve pluripotency. Here, we examine the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naïve status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naïve cells transition to a distinct formative phase of pluripotency preparatory to lineage priming. © 2017. Published by The Company of Biologists Ltd.

  1. Protein folding: Defining a standard set of experimental conditions and a preliminary kinetic data set of two-state proteins

    DEFF Research Database (Denmark)

    Maxwell, Karen L.; Wildes, D.; Zarrine-Afsar, A.

    2005-01-01

    Recent years have seen the publication of both empirical and theoretical relationships predicting the rates with which proteins fold. Our ability to test and refine these relationships has been limited, however, by a variety of difficulties associated with the comparison of folding and unfolding ...... efforts is to set uniform standards for the experimental community and to initiate an accumulating, self-consistent data set that will aid ongoing efforts to understand the folding process....... constructs. The lack of a single approach to data analysis and error estimation, or even of a common set of units and reporting standards, further hinders comparative studies of folding. In an effort to overcome these problems, we define here a consensus set of experimental conditions (25°C at pH 7.0, 50 m...... rates, thermodynamics, and structure across diverse sets of proteins. These difficulties include the wide, potentially confounding range of experimental conditions and methods employed to date and the difficulty of obtaining correct and complete sequence and structural details for the characterized...

  2. Order through disorder: hyper-mobile C-terminal residues stabilize the folded state of a helical peptide. a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Kalliopi K Patapati

    Full Text Available Conventional wisdom has it that the presence of disordered regions in the three-dimensional structures of polypeptides not only does not contribute significantly to the thermodynamic stability of their folded state, but, on the contrary, that the presence of disorder leads to a decrease of the corresponding proteins' stability. We have performed extensive 3.4 µs long folding simulations (in explicit solvent and with full electrostatics of an undecamer peptide of experimentally known helical structure, both with and without its disordered (four residue long C-terminal tail. Our simulations clearly indicate that the presence of the apparently disordered (in structural terms C-terminal tail, increases the thermodynamic stability of the peptide's folded (helical state. These results show that at least for the case of relatively short peptides, the interplay between thermodynamic stability and the apparent structural stability can be rather subtle, with even disordered regions contributing significantly to the stability of the folded state. Our results have clear implications for the understanding of peptide energetics and the design of foldable peptides.

  3. Steady-state structural fluctuation is a predictor of the necessity of pausing-mediated co-translational folding for small proteins.

    Science.gov (United States)

    Huang, Wenxi; Liu, Wanting; Jin, Jingjie; Xiao, Qilan; Lu, Ruibin; Chen, Wei; Xiong, Sheng; Zhang, Gong

    2018-03-25

    Translational pausing coordinates protein synthesis and co-translational folding. It is a common factor that facilitates the correct folding of large, multi-domain proteins. For small proteins, pausing sites rarely occurs in the gene body, and the 3'-end pausing sites are only essential for the folding of a fraction of proteins. The determinant of the necessity of the pausings remains obscure. In this study, we demonstrated that the steady-state structural fluctuation is a predictor of the necessity of pausing-mediated co-translational folding for small proteins. Validated by experiments with 5 model proteins, we found that the rigid protein structures do not, while the flexible structures do need 3'-end pausings to fold correctly. Therefore, rational optimization of translational pausing can improve soluble expression of small proteins with flexible structures, but not the rigid ones. The rigidity of the structure can be quantitatively estimated in silico using molecular dynamic simulation. Nevertheless, we also found that the translational pausing optimization increases the fitness of the expression host, and thus benefits the recombinant protein production, independent from the soluble expression. These results shed light on the structural basis of the translational pausing and provided a practical tool for industrial protein fermentation. Copyright © 2017. Published by Elsevier Inc.

  4. The Complexity of Folding Self-Folding Origami

    Directory of Open Access Journals (Sweden)

    Menachem Stern

    2017-12-01

    Full Text Available Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of “distractor” folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal’s paradox and other NP-hard satisfiability (SAT problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out (“folding islands”. Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  5. The Complexity of Folding Self-Folding Origami

    Science.gov (United States)

    Stern, Menachem; Pinson, Matthew B.; Murugan, Arvind

    2017-10-01

    Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of "distractor" folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out ("folding islands"). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  6. Short-wavelength contractional structures in crustal plateau fold belts on Venus: constraints on early thermal state

    Science.gov (United States)

    Ghent, R. R.; Phillips, R. J.; Hansen, V. L.; Nunes, D. C.

    2002-05-01

    Marginal fold belts within Venusian crustal plateaus are characterized by contractional tectonic features showing a range of spatial wavelengths from 30 km. Previous studies have proposed that these features are folds formed by layer-normal compression during crustal plateau formation [e.g., 1] and that the characteristic deformation wavelength(s) expressed by these features reflect the thickness of a competent surface layer during deformation [1, 2]. We investigate the conditions under which the shortest wavelength features represented in these fold belts may have formed. Specifically, we report on finite element simulations of concurrent shortening and cooling in models with uniform composition and elasto-visco-plastic (EVP) rheology. The models are constrained by observations of crustal plateau marginal fold belts using Magellan SAR imagery and are motivated by the current plume tectonic hypothesis for crustal plateau formation [2, 3]. The models are unique because a) the EVP rheology more accurately represents the actual crust than viscous or viscoelastic models; and b) our models incorporate spatially uniform material properties but temperature-dependent rheology [4], so that the strength profile through the crust evolves with cooling. This allows local thermal and stress conditions to determine the instantaneous effective surface layer thickness and strength, which in turn determines surface topographic wavelengths. We find that short-wavelength contractional features can form under hot conditions consistent with the plume scenario but do not form under cooler conditions. The final model topography results from simultaneous brittle faulting and viscous folding. We conclude that the shortest-wavelength features preserved in marginal fold belts record an early stage of crustal plateau evolution and require an elevated thermal gradient and surface temperature. [1] Ghent, R.R., and V.L. Hansen 1999. Structural and kinematic analysis of eastern Ovda Regio

  7. Transit Car Performance Comparison, State-of-the-Art Car vs. PATCO Transit Car, NYCTA R-46, MBTA Silverbirds

    Science.gov (United States)

    1978-02-01

    The first phase of this contract authorized the design, development, and demonstration of two State-Of-The-Art Cars (SOAC). This document reports on the gathering of comparative test data on existing in-service transit cars. The three transit cars se...

  8. Folding equilibrium constants of telomere G-quadruplexes in free state or associated with proteins determined by isothermal differential hybridization.

    Science.gov (United States)

    Wang, Quan; Ma, Li; Hao, Yu-Hua; Tan, Zheng

    2010-11-15

    Guanine rich (G-rich) nucleic acids form G-quadruplex structures that are implicated in many biological processes, pharmaceutical applications, and molecular machinery. The folding equilibrium constant (K(F)) of the G-quadruplex not only determines its stability and competition against duplex formation in genomic DNA but also defines its recognition by proteins and drugs and technical specifications. The K(F) is most conveniently derived from thermal melting analysis that has so far yielded extremely diversified results for the human telomere G-quadruplex. Melting analysis cannot be used for nucleic acids associated with proteins, thus has difficulty to study how protein association affects the folding equilibrium of G-quadruplex structure. In this work, we established an isothermal differential hybridization (IDH) method that is able to determine the K(F) of G-quadruplex, either alone or associated with proteins. Using this method, we studied the folding equilibrium of the core sequence G(3)(T(2)AG(3))(3) from vertebrate telomere in K(+) and Na(+) solutions and how it is affected by proteins associated at its adjacent regions. Our results show that the K(F) obtained for the free G-quadruplex is within 1 order of magnitude of most of those obtained by melting analysis and protein binding beside a G-quadruplex can dramatically destabilize the G-quadruplex.

  9. Bound states of quarks and gluons and hadronic transitions

    International Nuclear Information System (INIS)

    Castro, Antonio Soares de.

    1990-05-01

    A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs

  10. Mott transition and anomalous resistive state in the pyrochlore molybdates

    Science.gov (United States)

    Swain, Nyayabanta; Majumdar, Pinaki

    2017-07-01

    The rare-earth based pyrochlore molybdates involve orbitally degenerate electrons Hund's coupled to local moments. The large Hund's coupling promotes ferromagnetism, the superexchange between the local moments prefers antiferromagnetism, and Hubbard repulsion tries to open a Mott gap. The phase competition is tuned by the rare-earth ionic radius, decreasing which leads to change from a ferromagnetic metal to a spin disordered highly resistive ground state, and ultimately an “Anderson-Mott” insulator. We attempt a quantitative theory of the molybdates by studying their minimal model on a pyrochlore geometry, using a static auxiliary field based Monte Carlo. We establish a thermal phase diagram that closely corresponds to the experiments, predict the hitherto unexplored orbital correlations, quantify and explain the origin of the anomalous resistivity, and present dynamical properties across the metal-insulator transition.

  11. PREFACE Protein folding: lessons learned and new frontiers Protein folding: lessons learned and new frontiers

    Science.gov (United States)

    Pappu, Rohit V.; Nussinov, Ruth

    2009-03-01

    In appropriate physiological milieux proteins spontaneously fold into their functional three-dimensional structures. The amino acid sequences of functional proteins contain all the information necessary to specify the folds. This remarkable observation has spawned research aimed at answering two major questions. (1) Of all the conceivable structures that a protein can adopt, why is the ensemble of native-like structures the most favorable? (2) What are the paths by which proteins manage to robustly and reproducibly fold into their native structures? Anfinsen's thermodynamic hypothesis has guided the pursuit of answers to the first question whereas Levinthal's paradox has influenced the development of models for protein folding dynamics. Decades of work have led to significant advances in the folding problem. Mean-field models have been developed to capture our current, coarse grain understanding of the driving forces for protein folding. These models are being used to predict three-dimensional protein structures from sequence and stability profiles as a function of thermodynamic and chemical perturbations. Impressive strides have also been made in the field of protein design, also known as the inverse folding problem, thereby testing our understanding of the determinants of the fold specificities of different sequences. Early work on protein folding pathways focused on the specific sequence of events that could lead to a simplification of the search process. However, unifying principles proved to be elusive. Proteins that show reversible two-state folding-unfolding transitions turned out to be a gift of natural selection. Focusing on these simple systems helped researchers to uncover general principles regarding the origins of cooperativity in protein folding thermodynamics and kinetics. On the theoretical front, concepts borrowed from polymer physics and the physics of spin glasses led to the development of a framework based on energy landscape theories. These

  12. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    Science.gov (United States)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  13. Studies of transition states and radicals by negative ion photodetachment

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Ricardo Baer [Univ. of California, Berkeley, CA (United States)

    1991-12-01

    Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY- anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY → XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH2NO2 by photoelectron spectroscopy of CH2NO2-, determining the electron affinity of CH2NO2, gaining insight on the bonding of the 2B1 ground state and observing the 2A2 excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH2NO2 at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.

  14. Studies of transition states and radicals by negative ion photodetachment

    Energy Technology Data Exchange (ETDEWEB)

    Metz, R.B.

    1991-12-01

    Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY{sup {minus}} anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY {yields} XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH{sub 2}NO{sub 2} by photoelectron spectroscopy of CH{sub 2}NO{sub 2}{sup {minus}}, determining the electron affinity of CH{sub 2}NO{sub 2}, gaining insight on the bonding of the {sup 2}B{sub 1} ground state and observing the {sup 2}A{sub 2} excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH{sub 2}NO{sub 2} at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.

  15. Account of states with indefinite spin in calculations of intercombination collisional transitions

    International Nuclear Information System (INIS)

    Gordeev, S.V.; Chirtsov, A.S.

    1986-01-01

    States with indefinite spin are used in the second order of the perturbation theory as intermediate states for calculating electronic collisional transitions with changing spin between excited states of atoms. The rate coefficient for 4 1 P-4 3 D transition in helium is estimated

  16. Detecting critical state before phase transition of complex biological systems by hidden Markov model.

    Science.gov (United States)

    Chen, Pei; Liu, Rui; Li, Yongjun; Chen, Luonan

    2016-07-15

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e. before-transition state, pre-transition state and after-transition state, which can be considered as three different Markov processes. By exploring the rich dynamical information provided by high-throughput data, we present a novel computational method, i.e. hidden Markov model (HMM) based approach, to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e. the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin and HCV-induced dysplasia and hepatocellular carcinoma. Both functional and pathway enrichment analyses validate the computational results. The source code and some supporting files are available at https://github.com/rabbitpei/HMM_based-method lnchen@sibs.ac.cn or liyj@scut.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Discovering Unique, Low-Energy Transition States Using Evolutionary Molecular Memetic Computing

    DEFF Research Database (Denmark)

    Ellabaan, Mostafa M Hashim; Ong, Y.S.; Handoko, S.D.

    2013-01-01

    be accurately identified through the transition states. Transition states describe the paths of molecular systems in transiting across stable states. In this article, we present the discovery of unique, low-energy transition states and showcase the efficacy of their identification using the memetic computing...... for the global search, Berny algorithm for individual learning, and make use of the valley-adaptive clearing scheme as the niching strategy in the spirit of Lamarckian learning. Experiments with a number of small non-cyclic molecules demonstrated excellent efficacy of the MMC compared to recent advances...

  18. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  19. Using swarm intelligence for finding transition states and reaction paths.

    Science.gov (United States)

    Fournier, René; Bulusu, Satya; Chen, Stephen; Tung, Jamie

    2011-09-14

    We describe an algorithm that explores potential energy surfaces (PES) and finds approximate reaction paths and transition states. A few (≈6) evolving atomic configurations ("climbers") start near a local minimum M1 of the PES. The climbers seek a shallow ascent, low energy, path toward a saddle point S12, cross over to another valley of the PES, and climb down to a new minimum M2 that was not known beforehand. Climbers use both energy and energy derivatives to make individual decisions, and they use relative fitness to make team-based decisions. In sufficiently long runs, they keep exploring and may go through a sequence M1-S12-M2-S23-M3 ... of minima and saddle points without revisiting any of the critical points. We report results on eight small test systems that highlight advantages and disadvantages of the method. We also investigated the PES of Li(8), Al(7)(+), Ag(7), and Ag(2)NH(3) to illustrate potential applications of this new method. © 2011 American Institute of Physics

  20. Fourth-Order Vibrational Transition State Theory and Chemical Kinetics

    Science.gov (United States)

    Stanton, John F.; Matthews, Devin A.; Gong, Justin Z.

    2015-06-01

    Second-order vibrational perturbation theory (VPT2) is an enormously successful and well-established theory for treating anharmonic effects on the vibrational levels of semi-rigid molecules. Partially as a consequence of the fact that the theory is exact for the Morse potential (which provides an appropriate qualitative model for stretching anharmonicity), VPT2 calculations for such systems with appropriate ab initio potential functions tend to give fundamental and overtone levels that fall within a handful of wavenumbers of experimentally measured positions. As a consequence, the next non-vanishing level of perturbation theory -- VPT4 -- offers only slight improvements over VPT2 and is not practical for most calculations since it requires information about force constants up through sextic. However, VPT4 (as well as VPT2) can be used for other applications such as the next vibrational correction to rotational constants (the ``gammas'') and other spectroscopic parameters. In addition, the marriage of VPT with the semi-classical transition state theory of Miller (SCTST) has recently proven to be a powerful and accurate treatment for chemical kinetics. In this talk, VPT4-based SCTST tunneling probabilities and cumulative reaction probabilities are give for the first time for selected low-dimensional model systems. The prospects for VPT4, both practical and intrinsic, will also be discussed.

  1. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wenjun, E-mail: wjzheng@buffalo.edu; Glenn, Paul [Department of Physics, University at Buffalo, Buffalo, New York 14260 (United States)

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  2. Youth and administrator perspectives on transition in Kentucky's state agency schools.

    Science.gov (United States)

    Marshall, Amy; Powell, Norman; Pierce, Doris; Nolan, Ronnie; Fehringer, Elaine

    2012-01-01

    Students, a large percentage with disabilities, are at high risk for poor post-secondary outcomes in state agency education programs. This mixed-methods study describes the understandings of student transitions in state agency education programs from the perspectives of youth and administrators. Results indicated that: transition is more narrowly defined within alternative education programs; key strengths of transition practice are present in nontraditional schools; and the coordination barriers within this fluid inter-agency transition system are most apparent in students' frequent inter-setting transitions between nontraditional and home schools.

  3. Arab States in Transition | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Researchers will study key participants in transitions, their motivation, goals and organization; examine the role of institutions in ensuring a successful transition; document the nature of the small revolutions that are accompanying the big ones; and investigate the interplay between ... Date de début. 22 septembre 2011 ...

  4. Discontinuous jamming transitions in soft materials: coexistence of flowing and jammed states

    International Nuclear Information System (INIS)

    Dennin, Michael

    2008-01-01

    Many systems in nature exhibit transitions between fluid-like states and solid-like states, or 'jamming transitions'. There is a strong theoretical foundation for understanding equilibrium phase transitions that involve solidification, or jamming. Other jamming transitions, such as the glass transition, are less well understood. The jamming phase diagram has been proposed to unify the description of equilibrium phase transitions, the glass transitions, and other nonequilibrium jamming transitions. As with equilibrium phase transitions, which can either be first order (discontinuous in a relevant order parameter) or second order (continuous), one would expect that generalized jamming transitions can be continuous or discontinuous. In studies of flow in complex fluids, there is a wide range of evidence for discontinuous transitions, mostly in the context of shear localization, or shear banding. In this paper, I review the experimental evidence for discontinuous transitions. I focus on systems in which there is a discontinuity in the rate of strain between two, coexisting states: one in which the material is flowing and the other in which it is solid-like. (topical review)

  5. Transitions in the computational power of thermal states for measurement-based quantum computation

    International Nuclear Information System (INIS)

    Barrett, Sean D.; Bartlett, Stephen D.; Jennings, David; Doherty, Andrew C.; Rudolph, Terry

    2009-01-01

    We show that the usefulness of the thermal state of a specific spin-lattice model for measurement-based quantum computing exhibits a transition between two distinct 'phases' - one in which every state is a universal resource for quantum computation, and another in which any local measurement sequence can be simulated efficiently on a classical computer. Remarkably, this transition in computational power does not coincide with any phase transition, classical, or quantum in the underlying spin-lattice model.

  6. Applications of neural network prediction of conformational states for small peptides from spectra and of fold classes

    DEFF Research Database (Denmark)

    Bohr, Henrik; Røgen, Peter; Jalkanen, Karl J.

    2001-01-01

    . The calculations were done both with solvent atoms (up to ten water molecules) and without, and hence the neural networks could be used to monitor the influence of the solvent on hydrogen bond formation. The calculations at this stage only involved very short peptide fragments of a few alanine amino acids...... to construct vibrational spectra for each of the conformational states with low energy. From the spectra, neural networks could be trained to distinguish between the various states and thus be able to generate a larger set of relevant structures and their relation to secondary structures of the peptides...

  7. Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR.

    Science.gov (United States)

    Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Böckmann, Anja; Meier, Beat H; Blocker, Ariel J

    2015-12-01

    T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ∼50 nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Fast Transition between High-soft and Low-soft States in GRS 1915 ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    intensity in GRS 1758 − 258. Though transition from low-hard to high-soft states are seen in many Galactic black hole candidate sources, a transition between two different intensity states (high and low) with similar physical parameters of the accretion disk was not observed in GRS 1915 + 105 or in any other black hole ...

  9. 31 CFR 560.406 - Transshipment or transit through United States prohibited.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Transshipment or transit through United States prohibited. 560.406 Section 560.406 Money and Finance: Treasury Regulations Relating to... TRANSACTIONS REGULATIONS Interpretations § 560.406 Transshipment or transit through United States prohibited...

  10. Status of Credentialing Structures Related to Secondary Transition: A State-Level Policy Analysis

    Science.gov (United States)

    Simonsen, Monica L.; Novak, Jeanne A.; Mazzotti, Valerie L.

    2018-01-01

    To understand the current status of transition-related credentialing systems in driving personnel preparation, it is necessary to identify which state education and rehabilitation services agencies are currently providing certification and licensure in the area of secondary transition. The purpose of this study was to examine the current state of…

  11. Predicting landscape vegetation dynamics using state-and-transition simulation models

    Science.gov (United States)

    Colin J. Daniel; Leonardo. Frid

    2012-01-01

    This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...

  12. Migration transition in small Northern and Eastern Caribbean states.

    Science.gov (United States)

    Mcelroy, J L; De Albuquerque, K

    1988-01-01

    1 area of intra-Caribbean migration that has been overlooked is the "migration transition"--the transformation of rapidly modernizing societies from net labor exporters to net labor importers. This article assembles 8 case studies to 1) briefly present a spectrum of migration experiences in the Caribbean, 2) uncover some transitions under way, 3) pinpoint the forces that underlie the migration transition, and 4) point out some of the more important policy implications of labor migration reversals. The 8 island societies sampled for illustration purposes include 1) the Bahamas and the US Virgin Islands as post-migration transition societies (Zelinsky's advanced society), 2) the British Virgin Islands and the Cayman Islands as undergoing transition (Zelinsky's late transitional society), and 3) Anguilla, St. Kitts-Nevis, Turks and Caicos, and Montserrat as premigration transition societies (Zelinsky's early transitional society). Population data for the islands were derived primarily from the West Indian censuses and government statistics. These 8 historical sketches reveal certain commonalities. All are at various stages in a long-term economic restructuring to displace traditional staple crops with more income elastic, high value export services. In such societies, population growth and progress along the migration transition is an increasing function of this kind of successful export substitution. In addition, along the migration and economic transitions, such insular economies exhibit a relatively large public sector (20-30% of all activity), declining unemployment, increasing fiscal autonomy, and are committed to a development strategy remarkably similar to the "successful" model of the Bahamas and the US Virgin Islands. Cursory evidence suggests that, because of intersectoral competition for land and labor, there is an inverse relationship between farm effort/manufacturing employment and tourism intensity. This review suggests that small islands undergoing

  13. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...

  14. Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods.

    Science.gov (United States)

    Duchêne, Sebastian; Lanfear, Robert

    2015-09-01

    Ancestral state reconstruction (ASR) is a popular method for exploring the evolutionary history of traits that leave little or no trace in the fossil record. For example, it has been used to test hypotheses about the number of evolutionary origins of key life-history traits such as oviparity, or key morphological structures such as wings. Many studies that use ASR have suggested that the number of evolutionary origins of such traits is higher than was previously thought. The scope of such inferences is increasing rapidly, facilitated by the construction of very large phylogenies and life-history databases. In this paper, we use simulations to show that the number of evolutionary origins of a trait tends to be overestimated when the phylogeny is not perfect. In some cases, the estimated number of transitions can be several fold higher than the true value. Furthermore, we show that the bias is not always corrected by standard approaches to account for phylogenetic uncertainty, such as repeating the analysis on a large collection of possible trees. These findings have important implications for studies that seek to estimate the number of origins of a trait, particularly those that use large phylogenies that are associated with considerable uncertainty. We discuss the implications of this bias, and methods to ameliorate it. © 2015 Wiley Periodicals, Inc.

  15. Impact of hydrodynamic interactions on protein folding rates depends on temperature

    Science.gov (United States)

    Zegarra, Fabio C.; Homouz, Dirar; Eliaz, Yossi; Gasic, Andrei G.; Cheung, Margaret S.

    2018-03-01

    We investigated the impact of hydrodynamic interactions (HI) on protein folding using a coarse-grained model. The extent of the impact of hydrodynamic interactions, whether it accelerates, retards, or has no effect on protein folding, has been controversial. Together with a theoretical framework of the energy landscape theory (ELT) for protein folding that describes the dynamics of the collective motion with a single reaction coordinate across a folding barrier, we compared the kinetic effects of HI on the folding rates of two protein models that use a chain of single beads with distinctive topologies: a 64-residue α /β chymotrypsin inhibitor 2 (CI2) protein, and a 57-residue β -barrel α -spectrin Src-homology 3 domain (SH3) protein. When comparing the protein folding kinetics simulated with Brownian dynamics in the presence of HI to that in the absence of HI, we find that the effect of HI on protein folding appears to have a "crossover" behavior about the folding temperature. This means that at a temperature greater than the folding temperature, the enhanced friction from the hydrodynamic solvents between the beads in an unfolded configuration results in lowered folding rate; conversely, at a temperature lower than the folding temperature, HI accelerates folding by the backflow of solvent toward the folded configuration of a protein. Additionally, the extent of acceleration depends on the topology of a protein: for a protein like CI2, where its folding nucleus is rather diffuse in a transition state, HI channels the formation of contacts by favoring a major folding pathway in a complex free energy landscape, thus accelerating folding. For a protein like SH3, where its folding nucleus is already specific and less diffuse, HI matters less at a temperature lower than the folding temperature. Our findings provide further theoretical insight to protein folding kinetic experiments and simulations.

  16. Quantifying the Sources of Kinetic Frustration in Folding Simulations of Small Proteins

    Science.gov (United States)

    2015-01-01

    Experiments and atomistic simulations of polypeptides have revealed structural intermediates that promote or inhibit conformational transitions to the native state during folding. We invoke a concept of “kinetic frustration” to quantify the prevalence and impact of these behaviors on folding rates within a large set of atomistic simulation data for 10 fast-folding proteins, where each protein’s conformational space is represented as a Markov state model of conformational transitions. Our graph theoretic approach addresses what conformational features correlate with folding inhibition and therefore permits comparison among features within a single protein network and also more generally between proteins. Nonnative contacts and nonnative secondary structure formation can thus be quantitatively implicated in inhibiting folding for several of the tested peptides. PMID:25136267

  17. Energy Demand Modeling Methodology of Key State Transitions of Turning Processes

    Directory of Open Access Journals (Sweden)

    Shun Jia

    2017-04-01

    Full Text Available Energy demand modeling of machining processes is the foundation of energy optimization. Energy demand of machining state transition is integral to the energy requirements of the machining process. However, research focus on energy modeling of state transition is scarce. To fill this gap, an energy demand modeling methodology of key state transitions of the turning process is proposed. The establishment of an energy demand model of state transition could improve the accuracy of the energy model of the machining process, which also provides an accurate model and reliable data for energy optimization of the machining process. Finally, case studies were conducted on a CK6153i CNC lathe, the results demonstrating that predictive accuracy with the proposed method is generally above 90% for the state transition cases.

  18. The dominant folding route minimizes backbone distortion in SH3.

    Directory of Open Access Journals (Sweden)

    Heiko Lammert

    Full Text Available Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein folding.

  19. Analyzing the effect of homogeneous frustration in protein folding.

    Science.gov (United States)

    Contessoto, Vinícius G; Lima, Debora T; Oliveira, Ronaldo J; Bruni, Aline T; Chahine, Jorge; Leite, Vitor B P

    2013-10-01

    The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. Copyright © 2013 Wiley Periodicals, Inc.

  20. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    International Nuclear Information System (INIS)

    Gu Hua-Guang; Chen Sheng-Gen; Li Yu-Ye

    2015-01-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. (paper)

  1. Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction

    Science.gov (United States)

    Das, Payel; Moll, Mark; Stamati, Hernán; Kavraki, Lydia E.; Clementi, Cecilia

    2006-01-01

    The definition of reaction coordinates for the characterization of a protein-folding reaction has long been a controversial issue, even for the “simple” case in which one single free-energy barrier separates the folded and unfolded ensemble. We propose a general approach to this problem to obtain a few collective coordinates by using nonlinear dimensionality reduction. We validate the usefulness of this method by characterizing the folding landscape associated with a coarse-grained protein model of src homology 3 as sampled by molecular dynamics simulations. The folding free-energy landscape projected on the few relevant coordinates emerging from the dimensionality reduction can correctly identify the transition-state ensemble of the reaction. The first embedding dimension efficiently captures the evolution of the folding process along the main folding route. These results clearly show that the proposed method can efficiently find a low-dimensional representation of a complex process such as protein folding. PMID:16785435

  2. State of corruption in transition: case of the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Lízal, Lubomír; Kočenda, Evžen

    2001-01-01

    Roč. 2, č. 2 (2001), s. 137-160 ISSN 1566-0141 R&D Projects: GA AV ČR KSK9058117 Institutional research plan: CEZ:AV0Z7085904 Keywords : Czech Republic * transition * corruption Subject RIV: AH - Economics

  3. State of the Art of Current Practices for Transit Transfers.

    Science.gov (United States)

    1981-07-01

    The major objectives of the study are to: (1) describe and summarize the transfer policies currently in use on U.S. transit properties; (2) identify reasons why properties use or do not use particular transfer policies; (3) determine the consequences...

  4. Chaotic Dynamics Mediate Brain State Transitions, Driven by Changes in Extracellular Ion Concentrations

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Jensen, Mogens H.; Heltberg, Mathias L.

    2017-01-01

    the transition from sleep to wakefulness. We find that sleep is governed by stable, self-sustained oscillations in neuronal firing patterns, whereas the quiet awake state and active awake state are both governed by irregular oscillations and chaotic dynamics; transitions between these separable awake states......Previous studies have suggested that changes in extracellular ion concentrations initiate the transition from an activity state that characterizes sleep in cortical neurons to states that characterize wakeful- ness. However, because neuronal activity and extra- cellular ion concentrations...... are interdependent, isolating their unique roles during sleep-wake transitions is not possible in vivo. Here, we extend the Averaged-Neuron model and demonstrate that, although changes in extracellular ion concentrations occur concurrently, decreasing the conductance of calcium-dependent potassium channels initiates...

  5. UP-DOWN cortical dynamics reflect state transitions in a bistable network.

    Science.gov (United States)

    Jercog, Daniel; Roxin, Alex; Barthó, Peter; Luczak, Artur; Compte, Albert; de la Rocha, Jaime

    2017-08-04

    In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.

  6. Transition probabilities of health states for workers in Malaysia using a Markov chain model

    Science.gov (United States)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2017-04-01

    The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.

  7. Exploration of the transition state of the alcohol oxidase catalytic reaction using quantum chemistry methods

    OpenAIRE

    Lasavičius, Edvinas

    2016-01-01

    Alcohol oxidases (AO) have a great potential for the use organic synthesis and manufacturing of biosensors. In this study, a transition state of oxidation of alcohol by AO was investigated using computational chemistry methods. First, the transition state and the intrinsic reaction path were de-termined using Hartree-Fock (HF) theory and STO-3G minimal basis set. Further the calculations of the transition states, reactants and products were expanded to include 3-21G and 6-31*G basis sets at t...

  8. Coherent state approach for the Φ6-lattice model and phase transitions

    International Nuclear Information System (INIS)

    Aguero-Granados, M.A.; Makhan'kov, V.G.

    1991-01-01

    Phase transitions in the lattice version of the Φ 6 -field theory are studied. The generalized coherent states approach to is used. In such a way the roles of kinks and bubbles in phase transitions have been reexamined. It is shown via a numerical analysis that first and second order phase transitions appear due to the behaviour of kinks and bubbles excitations. 12 refs.; 10 figs

  9. Protein folding and the organization of the protein topology universe

    DEFF Research Database (Denmark)

    Lindorff-Larsen,, Kresten; Røgen, Peter; Paci, Emanuele

    2005-01-01

    such ensembles have now been analysed for a series of proteins using data from a combination of biochemical and biophysical experiments together with computer-simulation methods. These studies show that the topology of the transition state is determined by a set of interactions involving a small number of key...... of protein folds that is based on the topological features of the polypeptide backbone, rather than the conventional view that depends on the arrangement of different types of secondary-structure elements. By linking the folding process to the organization of the protein structure universe, we propose...

  10. Shape transition of state density for bosonic systems

    Indian Academy of Sciences (India)

    For a finite boson system, the ensemble-averaged state density has been computed with respect to the body interaction rank . The shape of such a state density changes from Gaussian to semicircle as the body rank of the interaction increases. This state density is expressed as a linear superposition of Gaussian and ...

  11. M1 and E2 transitions in the ground-state configuration of atomic ...

    Indian Academy of Sciences (India)

    state configuration are particularly useful because their relatively long wavelengths make them convenient for spectroscopic studies [1]. Although the atomic kinetics depend on, in particular, optical allowed transitions (E1), the weak forbidden transitions (in particular, magnetic dipole, M1 and electric quadrupole, E2) have ...

  12. Estimation and asymptotic theory for transition probabilities in markov renewal multi-state models

    NARCIS (Netherlands)

    Spitoni, Cristian|info:eu-repo/dai/nl/304625957; Verduijn, Marion; Putter, Hein

    2014-01-01

    In this paper we discuss estimation of transition probabilities for semi-Markov multi-state models. Non-parametric and semi-parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional delta

  13. Transition Metal Oxides: Many Body Physics Meets Solid State ...

    Indian Academy of Sciences (India)

    New two-fluid (localized + band electron) model for manganites · Slide 19 · Picturizing the ferro-insulator to ferro-metal transition and the 2-fluid model · Material Systematics (varying Do) ( For fixed EJT = 0.5 eV , U = 5 eV, JF ~ (Do)2 ) · Real space structure in the presence of long range Coulomb interactions · Slide 23.

  14. Marketing planning: state of the art in a transitional economy

    OpenAIRE

    Marjanova Jovanov, Tamara; Temjanovski, Riste; Fotov, Risto

    2014-01-01

    This paper is provoked by the distorted marketing practices of companies that operate in a transitional economy, specifically Republic of Macedonia. The analysis has two main purposes: 1. to identify the weaknesses in the marketing planning process, 2. to prove the connection of continuous formal marketing planning with business performance, i.e. profitability and market share. Data was obtained from primary and secondary research. Primary research was conducted in the food, i.e. confectioner...

  15. Liquid state properties of certain noble and transition metals

    International Nuclear Information System (INIS)

    Bhuiyan, G.M.; Rahman, A.; Khaleque, M.A.; Rashid, R.I.M.A.; Mujibur Rahman, S.M.

    1998-07-01

    Certain structural, thermodynamic and atomic transport properties of a number of liquid noble and transition metals are reported. The underlying theory combines together a simple form of the N-body potential and the thermodynamically self-consistent variational modified hypernetted chain (VMHNC) theory of liquid. The static structure factors calculated by using the VMHNC resemble the hard sphere (HS) values. Consequently the HS model is used to calculate the thermodynamic properties viz. specific heat, entropy, isothermal compressibility and atomic transport properties. (author)

  16. State and Federal project development procedures for bus rapid transit : managing differences and reducing implementation delays

    Science.gov (United States)

    2011-08-01

    This report documents an investigation into the transportation project development process in the : context of the implementation of bus rapid transit systems on the State Highway System as well as such : systems being part of the Federal New Starts ...

  17. Determining Transition State Geometries in Liquids Using 2D-IR

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Charles; Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.

    2007-12-11

    Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.

  18. Modeling of charge-transfer transitions and excited states in d6 transition metal complexes by DFT techniques

    Czech Academy of Sciences Publication Activity Database

    Vlček, Antonín; Záliš, Stanislav

    2007-01-01

    Roč. 251, 3-4 (2007), s. 258-287 ISSN 0010-8545 R&D Projects: GA MŠk 1P05OC068; GA MŠk OC 139 Institutional research plan: CEZ:AV0Z40400503 Keywords : charge-transfer transition * DFT technique * excited states * spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 8.568, year: 2007

  19. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.

    Science.gov (United States)

    Nicolas, A; Egmond, M; Verrips, C T; de Vlieg, J; Longhi, S; Cambillau, C; Martinez, C

    1996-01-16

    Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively.

  20. New transition in the vortex liquid state of YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Kwok, Wai-Kwong; Karapetrov, Goran; Welp, Ulrich; Rydh, Andreas; Crabtree, George W.; Paulius, Lisa; Figueras, Jordi; Puig, Teresa; Obradors, X.

    2006-01-01

    We have carried out angular dependent magneto-transport measurements on optimally doped, untwinned YBa 2 Cu 3 O 7-δ crystals irradiated with high energy heavy ions to determine the onset of vortex line tension in the vortex liquid state. The dose matching field was controlled and kept at a low level to partially preserve the first order vortex lattice melting transition. A Bose glass transition is observed below the lower critical point which then transforms into a first order phase transition near 4 T. We find that the locus of points which indicates the onset of vortex line tension overlaps with the Bose glass transition line at low fields and then deviates at higher fields, indicating a new transition line in the vortex liquid state. This new line in the vortex liquid phase is dose independent and extends beyond the upper critical point

  1. Molten Globule-Like Partially Folded State of Bacillus licheniformis α-Amylase at Low pH Induced by 1,1,1,3,3,3-Hexafluoroisopropanol

    Directory of Open Access Journals (Sweden)

    Adyani Azizah Abd Halim

    2014-01-01

    Full Text Available Effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP on acid-denatured Bacillus licheniformis α-amylase (BLA at pH 2.0 was investigated by far-UV CD, intrinsic fluorescence, and ANS fluorescence measurements. Addition of increasing HFIP concentrations led to an increase in the mean residue ellipticity at 222 nm (MRE222 nm up to 1.5 M HFIP concentration beyond which it sloped off. A small increase in the intrinsic fluorescence and a marked increase in the ANS fluorescence were also observed up to 0.4 M HFIP concentration, both of which decreased thereafter. Far- and near-UV CD spectra of the HFIP-induced state observed at 0.4 M HFIP showed significant retention of the secondary structures closer to native BLA but a disordered tertiary structure. Increase in the ANS fluorescence intensity was also observed with the HFIP-induced state, suggesting exposure of the hydrophobic clusters to the solvent. Furthermore, thermal denaturation of HFIP-induced state showed a non-cooperative transition. Taken together, all these results suggested that HFIP-induced state of BLA represented a molten globule-like state at pH 2.0.

  2. Hydrogen-assisted laser-induced resonant transitions between metastable states of antiprotonic helium atoms

    International Nuclear Information System (INIS)

    Ketzer, B.; Hartmann, F.J.; Egidy, T. von

    1996-11-01

    Laser resonance transitions between normally metastable states of antiprotonic helium atoms were observed making use of state dependent quenching effects caused by small admixtures of H 2 molecules. By selectively shortening the lifetimes of states with higher principal quantum number n as compared to those of lower n, this method for the first time provides access to all initially populated metastable states of p-bar He + atoms. This was demonstrated by observing the transitions (n,l) = (38,l) → (39,l+1), l 35, 36, 37 and (n,l) = (37,l) → (38,l+1), l = 34, 35, 36. (author)

  3. Hydrogen-assisted laser-induced resonant transitions between metastable states of antiprotonic helium atoms

    CERN Document Server

    Ketzer, B; Von Egidy, T; Maierl, C; Pohl, R; Eades, John; Widmann, E; Yamazaki, T; Kumakura, M; Morita, N; Hayano, R S; Hori, Masaki; Ishikawa, T; Torii, H A; Sugai, I; Horváth, D

    1997-01-01

    Laser resonance transitions between normally metastable states of antiprotonic helium atoms were observed making use of state dependent quenching effects caused by small admixtures of \\htwo\\ molecules. By selectively shortening the lifetimes of states with higher principal quantum number $n$ as compared to those of lower $n$, this method for the first time provides access to all initially populated metastable states of \\pbar\\hep\\ atoms. This was demonstrated by observing the transitions $(n,l)=(38,l)\\rightarrow (39,l+1),\\ l=35,36,37$ and $(n,l)=(37,l)\\rightarrow (38,l+1),\\ l=34,35,36$.

  4. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer

    2014-05-01

    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  5. Fast events in protein folding: structural volume changes accompanying the early events in the N-->I transition of apomyoglobin induced by ultrafast pH jump.

    OpenAIRE

    Abbruzzetti, S; Crema, E; Masino, L; Vecli, A; Viappiani, C; Small, J R; Libertini, L J; Small, E W

    2000-01-01

    Ultrafast, laser-induced pH jump with time-resolved photoacoustic detection has been used to investigate the early protonation steps leading to the formation of the compact acid intermediate (I) of apomyoglobin (ApoMb). When ApoMb is in its native state (N) at pH 7.0, rapid acidification induced by a laser pulse leads to two parallel protonation processes. One reaction can be attributed to the binding of protons to the imidazole rings of His24 and His119. Reaction with imidazole leads to an u...

  6. Study of Transitions between Wetting States on Microcavity Arrays by Optical Transmission Microscopy

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Smistrup, Kristian

    2014-01-01

    In this article, we present a simple and fast optical method based on transmission microscopy to study the stochastic wetting transitions on micro- and nanostructured polymer surfaces immersed in water. We analyze the influence of immersion time and the liquid pressure on the degree of water...... this threshold, the transitions between the Cassie and the Cassie-impregnating states are reversible, whereas above this threshold, irreversible transitions to the Wenzel state start to occur. The transitions between the different wetting states can be explained by taking into account both the Young-Laplace...... compared the contact angle properties of two polymeric materials (COC and PP) with moderate hydrophobicity. We attributed the difference in the water repellency of the two materials to a difference in the wetting of their nanostructures. Our experimental observations thus indicate that both the diffusion...

  7. Evidence from n=2 fine structure transitions for the production of fast excited state positronium

    International Nuclear Information System (INIS)

    Ley, R.; Niebling, K.D.; Schwarz, R.; Werth, G.

    1990-01-01

    Fine structure transitions in the first excited state of positronium (Ps) have been measured using 'Backscatter Ps' production on a Mo surface by observation of a change in the emitted Lyman-α intensity under resonant microwave irradiation. Production, fine structure transitions and Lyman-α decay of the Ps atoms took place inside a waveguide designed to transmit the microwave frequencies of 8.6, 13.0 and 18.5 GHz for the transitions from the 2 3 S 1 state to the 2 3 P J , J=2, 1, 0, states, respectively. In the presence of a magnetic field, all transitions observed show a shift to higher frequencies, compared with earlier calculations and measurements in zero magnetic field. The deviations exceed the expected Zeeman shift significantly but may be explained by assuming a motional Stark effect for Ps with kinetic energies of several eV. (author)

  8. Shape transition of state density for bosonic systems

    Indian Academy of Sciences (India)

    ... while the shape of the state density for EGOE(2) with m ≫ 2, is close to Gaussian. The change in shape of the state density, from semicircle to Gaussian for EGOE(k), as m increases from k to m ≫ k for fermions, has been explained mathematically by Mon and French [4] and also by Benet. Pramana – J. Phys., Vol. 81, No.

  9. A modified PATH algorithm rapidly generates transition states comparable to those found by other well established algorithms

    Directory of Open Access Journals (Sweden)

    Srinivas Niranj Chandrasekaran

    2016-01-01

    Full Text Available PATH rapidly computes a path and a transition state between crystal structures by minimizing the Onsager-Machlup action. It requires input parameters whose range of values can generate different transition-state structures that cannot be uniquely compared with those generated by other methods. We outline modifications to estimate these input parameters to circumvent these difficulties and validate the PATH transition states by showing consistency between transition-states derived by different algorithms for unrelated protein systems. Although functional protein conformational change trajectories are to a degree stochastic, they nonetheless pass through a well-defined transition state whose detailed structural properties can rapidly be identified using PATH.

  10. Quantum phase transitions between a class of symmetry protected topological states

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming; Lee, Dung-Hai

    2015-07-01

    The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.

  11. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  12. Travel Patterns And Characteristics Of Transit Users In New York State

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho-Ling [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Daniel W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reuscher, Tim [Macrosys, Arlington, VA (United States); Chin, Shih-Miao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Taylor, Rob D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    This research is a detailed examination of the travel behaviors and patterns of transit users within New York State (NYS), primarily based on travel data provided by the National Household Travel Survey (NHTS) in 2009 and the associated Add-on sample households purchased by the New York State Department of Transportation (NYSDOT). Other data sources analyzed in this study include: NYS General Transit Feed Specification (GTFS) to assist in analyzing spatial relationships for access to transit and the creation of Transit Shed geographic areas of 1, 2.5, and 5 miles from transit stop locations, LandScan population database to understand transit coverage, and Census Bureau s American Community Survey (ACS) data to examine general transit patterns and trends in NYS over time. The majority of analyses performed in this research aimed at identifying transit trip locations, understanding differences in transit usage by traveler demographics, as well as producing trip/mode-specific summary statistics including travel distance, trip duration, time of trip, and travel purpose of transit trips made by NYS residents, while also analyzing regional differences and unique travel characteristics and patterns. The analysis was divided into two aggregated geographic regions: New York Metropolitan Transportation Council (NYMTC) and NYS minus NYMTC (Rest of NYS). The inclusion of NYMTC in all analysis would likely produce misleading conclusions for other regions in NYS. TRANSIT COVERAGE The NYS transit network has significant coverage in terms of transit stop locations across the state s population. Out of the 19.3 million NYS population in 2011, about 15.3 million (or 79%) resided within the 1-mile transit shed. This NYS population transit coverage increased to 16.9 million (or 88%) when a 2.5-mile transit shed was considered; and raised to 17.7 million (or 92%) when the 5-mile transit shed was applied. KEY FINDINGS Based on 2009 NHTS data, about 40% of NYMTC households used transit

  13. Fast events in protein folding: structural volume changes accompanying the early events in the N-->I transition of apomyoglobin induced by ultrafast pH jump.

    Science.gov (United States)

    Abbruzzetti, S; Crema, E; Masino, L; Vecli, A; Viappiani, C; Small, J R; Libertini, L J; Small, E W

    2000-01-01

    Ultrafast, laser-induced pH jump with time-resolved photoacoustic detection has been used to investigate the early protonation steps leading to the formation of the compact acid intermediate (I) of apomyoglobin (ApoMb). When ApoMb is in its native state (N) at pH 7.0, rapid acidification induced by a laser pulse leads to two parallel protonation processes. One reaction can be attributed to the binding of protons to the imidazole rings of His24 and His119. Reaction with imidazole leads to an unusually large contraction of -82 +/- 3 ml/mol, an enthalpy change of 8 +/- 1 kcal/mol, and an apparent bimolecular rate constant of (0.77 +/- 0.03) x 10(10) M(-1) s(-1). Our experiments evidence a rate-limiting step for this process at high ApoMb concentrations, characterized by a value of (0. 60 +/- 0.07) x 10(6) s(-1). The second protonation reaction at pH 7. 0 can be attributed to neutralization of carboxylate groups and is accompanied by an apparent expansion of 3.4 +/- 0.2 ml/mol, occurring with an apparent bimolecular rate constant of (1.25 +/- 0.02) x 10(11) M(-1) s(-1), and a reaction enthalpy of about 2 kcal/mol. The activation energy for the processes associated with the protonation of His24 and His119 is 16.2 +/- 0.9 kcal/mol, whereas that for the neutralization of carboxylates is 9.2 +/- 0.9 kcal/mol. At pH 4.5 ApoMb is in a partially unfolded state (I) and rapid acidification experiments evidence only the process assigned to carboxylate protonation. The unusually large contraction and the high energetic barrier observed at pH 7.0 for the protonation of the His residues suggests that the formation of the compact acid intermediate involves a rate-limiting step after protonation.

  14. MODELS OF PROTEIN FOLDING

    Directory of Open Access Journals (Sweden)

    Unnati Ahluwalia

    2012-12-01

    Full Text Available In an attempt to explore the understanding of protein folding mechanism, various models have been proposed in the literature. Advances in recent experimental and computational techniques rationalized our understanding on some of the fundamental features of the protein folding pathways. The goal of this review is to revisit the various models and outline the essential aspects of the folding reaction.

  15. Structural Operational Semantics for Continuous State Stochastic Transition Systems

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Miculan, Marino

    2015-01-01

    In this paper we show how to model syntax and semantics of stochastic processes with continuous states, respectively as algebras and coalgebras of suitable endofunctors over the category of measurable spaces Meas. Moreover, we present an SOS-like rule format, called MGSOS , representing abstract ...

  16. Rapid Communication: seniority changing transitions in yrast states ...

    Indian Academy of Sciences (India)

    Bhoomika Maheshwari

    2017-10-26

    Oct 26, 2017 ... of seniority has proved to be a powerful tool in explor- ing nuclei close to the magic numbers, and may also be related to the symmetry in pairing of nucleons. The seniority scheme was first introduced by Racah [1] in the atomic context to distinguish the states having same values of L, S and J in LS coupling, ...

  17. Shape transition of state density for bosonic systems

    Indian Academy of Sciences (India)

    density for EGOE(2) with m ≫ 2, is close to Gaussian. The change in shape of the state density, from semicircle to Gaussian for EGOE(k), as m increases from k to m ≫ k for fermions, has been explained mathematically by Mon and French [4] and also by Benet. Pramana – J. Phys., Vol. 81, No. 6, December 2013. 1045 ...

  18. State Isomorphism in the Post-Socialist Transition

    Directory of Open Access Journals (Sweden)

    Ioannis Kyvelidis

    2000-02-01

    Full Text Available With the collapse of the communist regimes, the post-socialist countries are facing the problem of building new legal and institutional systems which will adequately address the needs of the markets. They also try to implement new reforms. But the transition towards economic and market reforms across the bloc has been very uneven, producing the countries-winners, countries-laggards, and countries-losers. There have been some attempts to explain that unevenness from the temporal path dependency perspective and from geographic proximity perspective. Can we explain this unevenness better drawing upon the theory of institutional isomorphism? This paper is not ambitious and built exclusively on literature review. It attempts to borrow from some middle-range social theories of institution building and, especially, the theory of institutional isomorphism by DiMaggio and Powell. It shows that some parts of the bloc seem to be surprisingly isomorphic. The paper suggests an explanation of the possible causes and applicability of the phenomenon of isomorphism in the post-Soviet bloc. In particular, it: 1 contrasts the facts of the transformation with the theory of institutional and organizational isomorphism, 2 makes a fair causal comparison with other explanations, 3 claims the adequate causal depth for the explanation, 4 points at an adequate causal mechanism of the transformation.

  19. Magnetic field effect on state energies and transition frequency of a ...

    Indian Academy of Sciences (India)

    Abstract. By employing a variational method of the Pekar-type, which has different variational parameters in the x–y plane and the z-direction, we study the ground and the first excited state ener- gies and transition frequency between the ground and the first excited states of a strong-coupling polaron in an anisotropic ...

  20. Magnetic field effect on state energies and transition frequency of a ...

    Indian Academy of Sciences (India)

    By employing a variational method of the Pekar-type, which has different variational parameters in the – plane and the z -direction, we study the ground and the first excited state energies and transition frequency between the ground and the first excited states of a strong-coupling polaron in an anisotropic quantum dot ...

  1. State-and-transition models as guides for adaptive management: What are the needs?

    Science.gov (United States)

    State and transaction models (STMs) were conceived as a means to organize information about land potential and vegetation dynamics in rangelands to be used in their management. The basic idea is to describe the plant community states that can occur on a site and the causes of transitions between the...

  2. From War to Politics : Non-State Armed Groups in Transition, 2009 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    An earlier project (103613) resulted in the creation of a research network on the experience of non-state armed groups (NSAGs) who have made the transition from armed resistance during protracted violent conflicts to political engagement in peace negotiations and post-war state building. This project will continue the ...

  3. Theoretical expression of the internal conversion coefficient of a M1 transition between two atomic states

    International Nuclear Information System (INIS)

    Attallah, F.; Chemin, J.F.; Scheurer, J.N.; Karpeshin, F.; Harston, M.

    1997-01-01

    We have established a general relation for the expression of the internal conversion of an M 1 transition a 1s electronic state to an empty ns electronic bound state. Under the hypothesis that the density of the electron level ρ n satisfies the condition ρ n Γ >> 1 (where Γ is the total width of the excited atomic state) a calculation in the first order gives a relation for the internal conversion coefficient.This relation shows that the internal conversion coefficient takes a resonant character when the nuclear energy transition is smaller than the binding energy of the 1s electron. An application of this relation to an M 1 transition in the case of the ion 125 T e with a charge state Q = 45 and an 1s electron binding energy E B 45 = 35.581 KeV gives the value for the internal conversion coefficient R = 5.7

  4. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    Science.gov (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  5. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms

    Directory of Open Access Journals (Sweden)

    Anne ePetzold

    2015-10-01

    Full Text Available Cholinergic neurons of the pedunculopontine nucleus (PPN are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state. During the transition, neurons were predominantly excited (phasically or tonically, but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.

  6. Automated Transition State Searches without Evaluating the Hessian.

    Science.gov (United States)

    Mallikarjun Sharada, Shaama; Zimmerman, Paul M; Bell, Alexis T; Head-Gordon, Martin

    2012-12-11

    Accurate and speedy determination of transition structures (TSs) is essential for computational studies on reaction pathways, particularly when the process involves expensive electronic structure calculations. Many search algorithms require a good initial guess of the TS geometry, as well as a Hessian input that possesses a structure consistent with the desired saddle point. Among the double-ended interpolation methods for generation of the guess for the TS, the freezing string method (FSM) is proven to be far less expensive compared to its predecessor, the growing string method (GSM). In this paper, it is demonstrated that the efficiency of this technique can be improved further by replacing the conjugate gradient optimization step (FSM-CG) with a quasi-Newton line search coupled with a BFGS Hessian update (FSM-BFGS). A second crucial factor that affects the speed with which convergence to the TS is achieved is the quality and cost of the Hessian of the energy for the guessed TS. For electronic structure calculations, the cost of calculating an exact Hessian increases more rapidly with system size than the energy and gradient. Therefore, to sidestep calculation of the exact Hessian, an approximate Hessian is constructed, using the tangent direction and local curvature at the TS guess. It is demonstrated that the partitioned-rational function optimization algorithm for locating TSs with this approximate Hessian input performs at least as well as with an exact Hessian input in most test cases. The two techniques, FSM and approximate Hessian construction, therefore can significantly reduce costs associated with finding TSs.

  7. Transition state-finding strategies for use with the growing string method

    Science.gov (United States)

    Goodrow, Anthony; Bell, Alexis T.; Head-Gordon, Martin

    2009-06-01

    Efficient identification of transition states is important for understanding reaction mechanisms. Most transition state search algorithms require long computational times and a good estimate of the transition state structure in order to converge, particularly for complex reaction systems. The growing string method (GSM) [B. Peters et al., J. Chem. Phys. 120, 7877 (2004)] does not require an initial guess of the transition state; however, the calculation is still computationally intensive due to repeated calls to the quantum mechanics code. Recent modifications to the GSM [A. Goodrow et al., J. Chem. Phys. 129, 174109 (2008)] have reduced the total computational time for converging to a transition state by a factor of 2 to 3. In this work, three transition state-finding strategies have been developed to complement the speedup of the modified-GSM: (1) a hybrid strategy, (2) an energy-weighted strategy, and (3) a substring strategy. The hybrid strategy initiates the string calculation at a low level of theory (HF/STO-3G), which is then refined at a higher level of theory (B3LYP/6-31G∗). The energy-weighted strategy spaces points along the reaction pathway based on the energy at those points, leading to a higher density of points where the energy is highest and finer resolution of the transition state. The substring strategy is similar to the hybrid strategy, but only a portion of the low-level string is refined using a higher level of theory. These three strategies have been used with the modified-GSM and are compared in three reactions: alanine dipeptide isomerization, H-abstraction in methanol oxidation on VOx/SiO2 catalysts, and C-H bond activation in the oxidative carbonylation of toluene to p-toluic acid on Rh(CO)2(TFA)3 catalysts. In each of these examples, the substring strategy was proved most effective by obtaining a better estimate of the transition state structure and reducing the total computational time by a factor of 2 to 3 compared to the modified

  8. The formation of a native-like structure containing eight conserved hydrophobic residues is rate limiting in two-state protein folding of ACBP

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Osmark, Peter; Neergaard, Thomas B.

    1999-01-01

    probed, that are critical for fast productive folding. The residues are all hydrophobic and located in the interface between the N- and C-terminal helices. The results suggest that one specific site dominated by conserved hydrophobic residues forms the structure of the productive rate-determining folding...

  9. A DETERMINATION OF RADIATIVE TRANSITIONS WIDTHS OF EXCITED STATES IN C(12),

    Science.gov (United States)

    the -2 power to 3.14 F to the -2 power. A new method of analysis has been employed to obtain the radiative widths for the first three excited states...in C(12) from the measured inelastic cross sections. This method of analysis does not depend on a model for the transition charge distribution and is useful in determining the multipolarity of the transition. (Author)

  10. Markov-chain model of classified atomistic transition states for discrete kinetic Monte Carlo simulations.

    Science.gov (United States)

    Numazawa, Satoshi; Smith, Roger

    2011-10-01

    Classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The scheme is then used to determine transitions that can be applied in a lattice-based kinetic Monte Carlo (KMC) atomistic simulation model. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multidimensional Boolean valued functions in three-dimensional lattice space. The events inhibited by the barriers under a certain level are regarded as thermal fluctuations of the canonical ensemble and accepted freely. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology-dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. Excellent agreement with observed experimental results is obtained.

  11. Measuring quantum-chromodynamic anomalies in hadronic transitions between quarkonium states

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, M.; Zakharov, V.

    1980-09-01

    It is argued that the ratio GAMMA((Q-barQ)'..-->..(Q-barQ)eta)/GAMMA((Q-barQ)' ..-->..(Q-barQ)..pi pi..) of hadronic transition rates between heavy quarkonium states is calculable within quantum chromodynamics in terms of triangle anaomalies in the divergence of the axial current and in the trace of the energy-momentum tensor. In the case of transitions between psi' and J/psi the present analysis is consistent with the data. More reliable test can be provided by experimental study of the transitions between UPSILON'' and UPSILON.

  12. Walk, Bicycle, and Transit Trips of Transit-Dependent and Choice Riders in the 2009 United States National Household Travel Survey.

    Science.gov (United States)

    Lachapelle, Ugo

    2015-08-01

    Previous research has shown that public transit use may be associated with active transportation. Access to a car may influence active transportation of transit riders. Using the 2009 United States National Household Travel Survey (NHTS), transit users ≥ 16 years old (n = 25,550) were categorized according to driver status and number of cars and drivers in the household. This typology ranged from choice transit riders (ie, "fully motorized drivers") to transit-dependent riders (ie, "unmotorized nondriver"). Transit trips, walking trips, and bicycling trips of transit users are estimated in negative binomial models against the car availability typology. Sixteen percent of participants took transit in the past month; most (86%) lived in car-owning households. As income increased, car availability also increased. Transit user groups with lower car availability were generally more likely than fully motorized drivers to take more public transit, walking, and bicycle trips. Transit riders have varying levels of vehicle access; their use of combinations of alternative modes of transportation fluctuates accordingly. Transit-dependent individuals without cars or sharing cars used active transportation more frequently than car owners. Policies to reduce vehicle ownership in households may enable increases in the use of alternative modes of transportation for transit users, even when cars are still owned.

  13. Structural transition, subgap states, and carrier transport in anion-engineered zinc oxynitride nanocrystalline films

    International Nuclear Information System (INIS)

    Xian, Fenglin; Ye, Jiandong; Gu, Shulin; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers through thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.

  14. Structural transition, subgap states, and carrier transport in anion-engineered zinc oxynitride nanocrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Fenglin [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601 (Australia); Ye, Jiandong, E-mail: yejd@nju.edu.cn [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601 (Australia); School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 (China); Gu, Shulin [School of Electronics Science and Engineering, Nanjing University, Nanjing 210093 (China); Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601 (Australia)

    2016-07-11

    In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers through thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.

  15. Oscillator strength, transition rates and lifetimes for n=3 states in Al-like ions

    CERN Document Server

    Safronova, U I; Safronova, M S; Sataka, M

    2002-01-01

    Transition rates, oscillator strengths, and line strengths are calculated for the 3220 possible electric-dipole (E1) transitions between the 73 even-parity 3s3p sup 2 , 3s sup 2 3d, 3p sup 2 3d, 3d sup 2 3s and 3d sup 3 states and the 75 odd-parity 3s sup 2 3p, 3p sup 3 , 3s3p3d, and 3d sup 2 3p states in Al-like ions with the nuclear charges ranging from Z=15 to 100. Relativistic many-body perturbation theory (MBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s sup 2 2s sup 2 2p sup 6 Dirac-Fock potential. First-order MBPT is used to obtain intermediate coupling coefficients and second-order MBPT is used to calculate transition matrix elements. Contributions from negative-energy states are included in the second order E1 matrix elements to ensure gauge-independence of transition amplitudes. The transition energies used in the calculation of oscillator strengths and transition rates are from second-order MBPT. T...

  16. State safety oversight program : audit of the tri-state oversight committee and the Washington metropolitan area transit authority, final audit report, March 4, 2010.

    Science.gov (United States)

    2010-03-04

    The Federal Transit Administration (FTA) conducted an on-site audit of the safety program implemented by the Washington Metropolitan Area Transit Authority (WMATA) and overseen by the Tri-State Oversight Committee (TOC) between December 14 and 17, 20...

  17. Wrinkles and folds in a fluid-supported sheet of finite size.

    Science.gov (United States)

    Oshri, Oz; Brau, Fabian; Diamant, Haim

    2015-05-01

    A laterally confined thin elastic sheet lying on a liquid substrate displays regular undulations, called wrinkles, characterized by a spatially extended energy distribution and a well-defined wavelength λ. As the confinement increases, the deformation energy is progressively localized into a single narrow fold. An exact solution for the deformation of an infinite sheet was previously found, indicating that wrinkles in an infinite sheet are unstable against localization for arbitrarily small confinement. We present an extension of the theory to sheets of finite length L, accounting for the experimentally observed wrinkle-to-fold transition. We derive an exact solution for the periodic deformation in the wrinkled state, and an approximate solution for the localized, folded state. We find that a second-order transition between these two states occurs at a critical confinement Δ(F)=λ(2)/L.

  18. The first observation of EO transitions from negative parity states in even-even nucleus 160Dy

    International Nuclear Information System (INIS)

    Grigoriev, E.P.

    1988-01-01

    In even-even deformed nuclei up to now EO-transitions were found only between the states of the same spin belonging to Κ π = O + rotational bands. There is no forbidenness for EO-transitions between states belonging to bands with any other quantum number Κ provided both initial and final states have the same J π Κ values. EO-transitions may depopulate odd-parity states. In odd nuclei β-vibrational states are identified by transition with EO-components. Here transitions also proceed between states with the same J π K numbers. Even-even nuclide 160 Dy is the first nucleus where the EO-transitions between odd-parity states have been found

  19. Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36.

    Science.gov (United States)

    Poulin, Myles B; Schneck, Jessica L; Matico, Rosalie E; McDevitt, Patrick J; Huddleston, Michael J; Hou, Wangfang; Johnson, Neil W; Thrall, Sara H; Meek, Thomas D; Schramm, Vern L

    2016-02-02

    Nuclear receptor SET domain containing protein 2 (NSD2) catalyzes the methylation of histone H3 lysine 36 (H3K36). It is a determinant in Wolf-Hirschhorn syndrome and is overexpressed in human multiple myeloma. Despite the relevance of NSD2 to cancer, there are no potent, selective inhibitors of this enzyme reported. Here, a combination of kinetic isotope effect measurements and quantum chemical modeling was used to provide subangstrom details of the transition state structure for NSD2 enzymatic activity. Kinetic isotope effects were measured for the methylation of isolated HeLa cell nucleosomes by NSD2. NSD2 preferentially catalyzes the dimethylation of H3K36 along with a reduced preference for H3K36 monomethylation. Primary Me-(14)C and (36)S and secondary Me-(3)H3, Me-(2)H3, 5'-(14)C, and 5'-(3)H2 kinetic isotope effects were measured for the methylation of H3K36 using specifically labeled S-adenosyl-l-methionine. The intrinsic kinetic isotope effects were used as boundary constraints for quantum mechanical calculations for the NSD2 transition state. The experimental and calculated kinetic isotope effects are consistent with an SN2 chemical mechanism with methyl transfer as the first irreversible chemical step in the reaction mechanism. The transition state is a late, asymmetric nucleophilic displacement with bond separation from the leaving group at (2.53 Å) and bond making to the attacking nucleophile (2.10 Å) advanced at the transition state. The transition state structure can be represented in a molecular electrostatic potential map to guide the design of inhibitors that mimic the transition state geometry and charge.

  20. Kinetic Analysis for Macrocyclizations Involving Anionic Template at the Transition State

    Directory of Open Access Journals (Sweden)

    Vicente Martí-Centelles

    2012-01-01

    competitive oligomerization/polymerization processes yielding undesired oligomeric/polymeric byproducts. The effect of anions has also been included in the kinetic models, as they can act as catalytic templates in the transition state reducing and stabilizing the transition state. The corresponding differential equation systems for each kinetic model can be solved numerically. Through a comprehensive analysis of these results, it is possible to obtain a better understanding of the different parameters that are involved in the macrocyclization reaction mechanism and to develop strategies for the optimization of the desired processes.

  1. A Semi-Continuous State-Transition Probability HMM-Based Voice Activity Detector

    Directory of Open Access Journals (Sweden)

    H. Othman

    2007-02-01

    Full Text Available We introduce an efficient hidden Markov model-based voice activity detection (VAD algorithm with time-variant state-transition probabilities in the underlying Markov chain. The transition probabilities vary in an exponential charge/discharge scheme and are softly merged with state conditional likelihood into a final VAD decision. Working in the domain of ITU-T G.729 parameters, with no additional cost for feature extraction, the proposed algorithm significantly outperforms G.729 Annex B VAD while providing a balanced tradeoff between clipping and false detection errors. The performance compares very favorably with the adaptive multirate VAD, option 2 (AMR2.

  2. Evidence of departure from transition-state statistical model in different mass regions

    International Nuclear Information System (INIS)

    Das, P.; Ray, A.; Bhattacharya, C.; Mullick, K.; Bhattacharjee, T.; Banerjee, S.R.; Basu, D.N.; Bhattacharya, S.

    2000-01-01

    The emission of complex fragments from compound nucleus can be understood very well using transition-state method calculations, that have shown that for a large number of excitation functions of compound nuclei near A = 100, the reduced decay rates after the removal of phase space dependence are identical for all fragments, thus implying statistical emission. One can consider two scenarios for departure from statistical transition-state model. An experiment was performed to look for orbiting effect in 16 O+ 93 Nb reaction

  3. Diels-Alder reactions of allene with benzene and butadiene: concerted, stepwise, and ambimodal transition states.

    Science.gov (United States)

    Pham, Hung V; Houk, K N

    2014-10-03

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels-Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate.

  4. Diels–Alder Reactions of Allene with Benzene and Butadiene: Concerted, Stepwise, and Ambimodal Transition States

    Science.gov (United States)

    2015-01-01

    Multiconfigurational complete active space methods (CASSCF and CASPT2) have been used to investigate the (4 + 2) cycloadditions of allene with butadiene and with benzene. Both concerted and stepwise radical pathways were examined to determine the mechanism of the Diels–Alder reactions with an allene dienophile. Reaction with butadiene occurs via a single ambimodal transition state that can lead to either the concerted or stepwise trajectories along the potential energy surface, while reaction with benzene involves two separate transition states and favors the concerted mechanism relative to the stepwise mechanism via a diradical intermediate. PMID:25216056

  5. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel Beom Soo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Proliferation Signatures Discovery and Exploitation Department

    2017-08-01

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  6. A Semi-Continuous State-Transition Probability HMM-Based Voice Activity Detector

    Directory of Open Access Journals (Sweden)

    Othman H

    2007-01-01

    Full Text Available We introduce an efficient hidden Markov model-based voice activity detection (VAD algorithm with time-variant state-transition probabilities in the underlying Markov chain. The transition probabilities vary in an exponential charge/discharge scheme and are softly merged with state conditional likelihood into a final VAD decision. Working in the domain of ITU-T G.729 parameters, with no additional cost for feature extraction, the proposed algorithm significantly outperforms G.729 Annex B VAD while providing a balanced tradeoff between clipping and false detection errors. The performance compares very favorably with the adaptive multirate VAD, option 2 (AMR2.

  7. Thermally activated state transition technique for femto-Newton-level force measurement.

    Science.gov (United States)

    Chen, Feng-Jung; Wong, Jhih-Sian; Hsu, Ken Y; Hsu, Long

    2012-05-01

    We develop and test a thermally activated state transition technique for ultraweak force measurement. As a force sensor, the technique was demonstrated on a classical Brownian bead immersed in water and restrained by a bistable optical trap. A femto-Newton-level flow force imposed on this sensor was measured by monitoring changes in the transition rates of the bead hopping between two energy states. The treatment of thermal disturbances as a requirement instead of a limiting factor is the major feature of the technique, and provides a new strategy by which to measure other ultraweak forces beyond the thermal noise limit.

  8. Analysis of Tax Revenues to the State Budget of Economies in Transition Countries

    Directory of Open Access Journals (Sweden)

    Julia V. Koval

    2013-01-01

    Full Text Available The article, using statistical data, analyzes tax revenues to the state budget of the economies in transition countries, namely Russia, Georgia, Ukraine and the Czech Republic. Such analysis is necessary to identify the main ways to pump up the budget and, using comparative analysis, to draw conclusions about the methods, applied by economies in transition countries to come out of the crisis and restore the economy. The main reasons of tax revenues increase or decrease as the main source of pumping up the state budget are examined. Methods of taxation policy, the countries used for the economy restoration are described.

  9. Divorcing folding from function: how acylation affects the membrane-perturbing properties of an antimicrobial peptide

    DEFF Research Database (Denmark)

    Vad, Brian Stougaard; Thomsen, Line Aagot Hede; Bertelsen, Kresten

    2010-01-01

    Many small cationic peptides, which are unstructured in aqueous solution, have antimicrobial properties. These properties are assumed to be linked to their ability to permeabilize bacterial membranes, accompanied by the transition to an alpha-helical folding state. Here we show that there is no d...

  10. State-Transition-Aware Spilling Heuristic for MLC STT-RAM-Based Registers

    Directory of Open Access Journals (Sweden)

    Yuanhui Ni

    2017-01-01

    Full Text Available Multilevel Cell Spin-Transfer Torque Random Access Memory (MLC STT-RAM is a promising nonvolatile memory technology to build registers for its natural immunity to electromagnetic radiation in rad-hard space environment. Unlike traditional SRAM-based registers, MLC STT-RAM exhibits unbalanced write state transitions due to the fact that the magnetization directions of hard and soft domains cannot be flipped independently. This feature leads to nonuniform costs of write states in terms of latency and energy. However, current SRAM-targeting register allocations do not have a clear understanding of the impact of the different write state-transition costs. As a result, those approaches heuristically select variables to be spilled without considering the spilling priority imposed by MLC STT-RAM. Aiming to address this limitation, this paper proposes a state-transition-aware spilling cost minimization (SSCM policy, to save power when MLC STT-RAM is employed in register design. Specifically, the spilling cost model is first constructed according to the linear combination of different state-transition frequencies. Directed by the proposed cost model, the compiler picks up spilling candidates to achieve lower power and higher performance. Experimental results show that the proposed SSCM technique can save energy by 19.4% and improve the lifetime by 23.2% of MLC STT-RAM-based register design.

  11. Glass transition of PCBM, P3HT and their blends in quenched state

    International Nuclear Information System (INIS)

    Ngo, Trinh Tung; Nguyen, Duc Nghia; Nguyen, Van Tuyen

    2012-01-01

    In this work the thermal behavior with the glass transition of phenyl-C 61 -butyric acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT) and their blends was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Both TGA and DSC measurements show that PCBM contains around 1% residual solvent in the crystalline structure. The glass transition of PCBM, P3HT and their blends was determined by quenching techniques. The quenched state of the materials has a strong effect on the glass transition of the materials, especially in the case of PCBM. In all blend compositions only one glass transition temperature was found. These results indicate that PCBM and P3HT are thermodynamically miscible in all blend compositions. (paper)

  12. Columbus State University Global Observation and Outreach for the 2012 Transit of Venus

    Science.gov (United States)

    Perry, Matthew; McCarty, C.; Bartow, M.; Hood, J. C.; Lodder, K.; Johnson, M.; Cruzen, S. T.; Williams, R. N.

    2013-01-01

    Faculty, staff and students from Columbus State University’s (CSU’s) Coca-Cola Space Science Center presented a webcast of the 2012 Transit of Venus from three continents to a global audience of 1.4 million unique viewers. Team members imaged the transit with telescopes using white-light, hydrogen-alpha, and calcium filters, from Alice Springs, Australia; the Gobi Desert, Mongolia; Bryce Canyon, UT; and Columbus, GA. Images were webcast live during the transit in partnership with NASA’s Sun-Earth Day program, and Science Center staff members were featured on NASA TV. Local members of the public were brought in for a series of outreach initiatives, in both Georgia and Australia, before and during the transit. The data recorded from the various locations have been archived for use in demonstrating principles such as the historical measurement of the astronomical unit.

  13. Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction

    Science.gov (United States)

    Das, Payel; Moll, Mark; Stamati, Hernán; Kavraki, Lydia E.; Clementi, Cecilia

    2006-06-01

    The definition of reaction coordinates for the characterization of a protein-folding reaction has long been a controversial issue, even for the "simple" case in which one single free-energy barrier separates the folded and unfolded ensemble. We propose a general approach to this problem to obtain a few collective coordinates by using nonlinear dimensionality reduction. We validate the usefulness of this method by characterizing the folding landscape associated with a coarse-grained protein model of src homology 3 as sampled by molecular dynamics simulations. The folding free-energy landscape projected on the few relevant coordinates emerging from the dimensionality reduction can correctly identify the transition-state ensemble of the reaction. The first embedding dimension efficiently captures the evolution of the folding process along the main folding route. These results clearly show that the proposed method can efficiently find a low-dimensional representation of a complex process such as protein folding. reaction coordinate | transition state | manifold | embedding | ISOMAP

  14. A New Computational Approach for Mechanical Folding Kinetics of RNA Hairpins

    Science.gov (United States)

    Cao, Song; Chen, Shi-Jie

    2009-01-01

    Based on an ensemble of kinetically accessible conformations, we propose a new analytical model for RNA folding kinetics. The model gives populational kinetics, kinetic rates, transition states, and pathways from the rate matrix. Applications of the new kinetic model to mechanical folding of RNA hairpins such as trans-activation-responsive RNA reveal distinct kinetic behaviors in different force regimes, from zero force to forces much stronger than the critical force for the folding-unfolding transition. In the absence of force or a low force, folding can be initiated (nucleated) at any position by forming the first base stack and there exist many pathways for the folding process. In contrast, for a higher force, the folding/unfolding would predominantly proceed along a single zipping/unzipping pathway. Studies for different hairpin-forming sequences indicate that depending on the nucleotide sequence, a kinetic intermediate can emerge in the low force regime but disappear in high force regime, and a new kinetic intermediate, which is absent in the low and high force regimes, can emerge in the medium force range. Variations of the force lead to changes in folding cooperativity and rate-limiting steps. The predicted network of pathways for trans-activation-responsive RNA suggests two parallel dominant pathways. The rate-limiting folding steps (at f = 8 pN) are the formation of specific basepairs that are 2–4 basepairs away from the loop. At a higher force (f = 11 pN), the folding rate is controlled by the formation of the bulge loop. The predicted rates and transition states are in good agreement with the experimental data for a broad force regime. PMID:19450474

  15. Specification, construction, and exact reduction of state transition system models of biochemical processes.

    Science.gov (United States)

    Bugenhagen, Scott M; Beard, Daniel A

    2012-10-21

    Biochemical reaction systems may be viewed as discrete event processes characterized by a number of states and state transitions. These systems may be modeled as state transition systems with transitions representing individual reaction events. Since they often involve a large number of interactions, it can be difficult to construct such a model for a system, and since the resulting state-level model can involve a huge number of states, model analysis can be difficult or impossible. Here, we describe methods for the high-level specification of a system using hypergraphs, for the automated generation of a state-level model from a high-level model, and for the exact reduction of a state-level model using information from the high-level model. Exact reduction is achieved through the automated application to the high-level model of the symmetry reduction technique and reduction by decomposition by independent subsystems, allowing potentially significant reductions without the need to generate a full model. The application of the method to biochemical reaction systems is illustrated by models describing a hypothetical ion-channel at several levels of complexity. The method allows for the reduction of the otherwise intractable example models to a manageable size.

  16. Facilitating a Major Staffing Transition in a State Psychiatric Hospital With Changes to Nursing Orientation.

    Science.gov (United States)

    Birnbaum, Shira; Sperber-Weiss, Doreen; Dimitrios, Timothy; Eckel, Donald; Monroy-Miller, Cherry; Monroe, Janet J; Friedman, Ross; Ologbosele, Mathias; Epo, Grace; Sharpe, Debra; Zarski, Yongsuk

    A large state psychiatric hospital experienced a state-mandated Reduction in Force that resulted in the abrupt loss and rapid turnover of more than 40% of its nursing and paraprofessional staff. The change exemplified current national trends toward downsizing and facility closure. This article describes revisions to the nursing orientation program that supported cost containment and fidelity to mission and clinical practices during the transition. An existing nursing orientation program was reconfigured in alignment with principles of rational instructional design and a core-competencies model of curriculum development, evidence-based practices that provided tactical clarity and commonality of purpose during a complex and emotionally charged transition period. Program redesign enabled efficiencies that facilitated the transition, with no evidence of associated negative effects. The process described here offers an example for hospitals facing similar workforce reorganization in an era of public sector downsizing.

  17. State-and-transition simulation models: a framework for forecasting landscape change

    Science.gov (United States)

    Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée

    2016-01-01

    SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of

  18. Critical behaviour of continuous phase transitions with infinitely many absorbing states

    International Nuclear Information System (INIS)

    Hua Dayin; Wang Lieyan; Chen Ting

    2006-01-01

    A lattice gas model is proposed for the A 2 + 2B 2 → 2B 2 A reaction system with particle diffusion. In the model, A 2 dissociates in the random dimer-filling mechanism and B 2 dissociation is in the end-on dimer-filling mechanism. A reactive window appears and the system exhibits a continuous phase transition from a reactive state to a covered state with infinitely many absorbing states. When the diffusion of particle A and AB is included, there are still infinitely many absorbing states for the continuous phase transition, but it is found that the critical behaviour changes from the directed percolation (DP) class to the pair contact process with diffusion (PCPD) class

  19. Fast Step Transition and State Identification (STaSI) for Discrete Single-Molecule Data Analysis.

    Science.gov (United States)

    Shuang, Bo; Cooper, David; Taylor, J Nick; Kisley, Lydia; Chen, Jixin; Wang, Wenxiao; Li, Chun Biu; Komatsuzaki, Tamiki; Landes, Christy F

    2014-09-18

    We introduce a step transition and state identification (STaSI) method for piecewise constant single-molecule data with a newly derived minimum description length equation as the objective function. We detect the step transitions using the Student's t test and group the segments into states by hierarchical clustering. The optimum number of states is determined based on the minimum description length equation. This method provides comprehensive, objective analysis of multiple traces requiring few user inputs about the underlying physical models and is faster and more precise in determining the number of states than established and cutting-edge methods for single-molecule data analysis. Perhaps most importantly, the method does not require either time-tagged photon counting or photon counting in general and thus can be applied to a broad range of experimental setups and analytes.

  20. The Multi-state Latent Factor Intensity Model for Credit Rating Transitions

    NARCIS (Netherlands)

    Koopman, S.J.; Lucas, A.; Monteiro, A.

    2008-01-01

    A new empirical reduced-form model for credit rating transitions is introduced. It is a parametric intensity-based duration model with multiple states and driven by exogenous covariates and latent dynamic factors. The model has a generalized semi-Markov structure designed to accommodate many of the

  1. Approaches to incorporating climate change effects in state and transition simulation models of vegetation

    Science.gov (United States)

    Becky K. Kerns; Miles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham

    2012-01-01

    Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes...

  2. Forecasting timber, biomass, and tree carbon pools with the output of state and transition models

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2012-01-01

    The Integrated Landscape Assessment Project (ILAP) uses spatial vegetation data and state and transition models (STM) to forecast future vegetation conditions and the interacting effects of natural disturbances and management activities. Results from ILAP will help land managers, planners, and policymakers evaluate management strategies that reduce fire risk, improve...

  3. Educational Transitions in the United States: Reflections on the American Dream

    Science.gov (United States)

    Crawford, Paul T.

    2012-01-01

    Education involves socialization so that individuals become productive members of society. At present, in the United States, educational transitions are primarily viewed in terms of their location in an outcomes-oriented process and framed as helping people achieve the American Dream, but in terms of the status quo national economic interest. But…

  4. Converting Chair-like Transition States into Zig-Zag Projections A ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Converting Chair-like Transition States into Zig-Zag Projections: A Method of Drawing Stereochemical Structures. Syed R Hussaini. Classroom Volume 19 Issue 9 September 2014 pp 846-850 ...

  5. Converting Chair-like Transition States into Zig-Zag Projections A ...

    Indian Academy of Sciences (India)

    IAS Admin

    Department of Chemistry and. Biochemistry. The University of Tulsa 800. South Tucker Driver. Tulsa, OK 74104, USA. Email: syedhussaini@utulsa.edu. A short and easy method for the conversion of chair-like transition states into zig-zag projections using planar cyclohexane structures, and also the concepts of change of.

  6. Excitonic instability at the spin-state transition in the two-band Hubbard model

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Augustinský, Pavel

    2014-01-01

    Roč. 89, č. 11 (2014), "115134-1"-"115134-8" ISSN 1098-0121 R&D Projects: GA ČR GA13-25251S Institutional support: RVO:68378271 Keywords : excitonic condensation * spin-state transition * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  7. Magnetic field effect on state energies and transition frequency of a ...

    Indian Academy of Sciences (India)

    polaron in an anisotropic quantum dot (AQD) under an applied magnetic field along the z-direction. The effects of the magnetic field and the electron–phonon coupling strength are taken into account. It is found that the ground and the first excited state energies and the transition frequency are increas- ing functions of the ...

  8. State-and-transition model archetypes: a global taxonomy of rangeland change

    Science.gov (United States)

    State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...

  9. Efficient Computation of Transition State Resonances and Reaction Rates from a Quantum Normal Form

    NARCIS (Netherlands)

    Schubert, Roman; Waalkens, Holger; Wiggins, Stephen

    2006-01-01

    A quantum version of a recent formulation of transition state theory in phase space is presented. The theory developed provides an algorithm to compute quantum reaction rates and the associated Gamov-Siegert resonances with very high accuracy. The algorithm is especially efficient for

  10. A Visualization System for Predicting Learning Activities Using State Transition Graphs

    Science.gov (United States)

    Okubo, Fumiya; Shimada, Atsushi; Taniguchi, Yuta

    2017-01-01

    In this paper, we present a system for visualizing learning logs of a course in progress together with predictions of learning activities of the following week and the final grades of students by state transition graphs. Data are collected from 236 students attending the course in progress and from 209 students attending the past course for…

  11. A delayed transition to the hard state for 4U 1630-47 at the end of its 2010 outburst

    Energy Technology Data Exchange (ETDEWEB)

    Tomsick, John A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Yamaoka, Kazutaka [Solar-Terrestrial Environment Laboratory, Department of Particles and Astronomy, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Corbel, Stephane [AIM - Unité Mixte de Recherche CEA - CNRS - Université Paris VII - UMR 7158, CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette Cedex (France); Kalemci, Emrah [Sabanci University, Orhanli-Tuzla, Istanbul 34956 (Turkey); Migliari, Simone [Department d' Astronomia i Meteorologia, Universitat de Barcelona, Marti I Franques 1, E-08028 Barcelona (Spain); Kaaret, Philip, E-mail: jtomsick@ssl.berkeley.edu [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States)

    2014-08-10

    Here we report on Swift and Suzaku observations near the end of an outburst from the black hole transient 4U 1630-47 and Chandra observations when the source was in quiescence. 4U 1630-47 made a transition from a soft state to the hard state ∼50 days after the main outburst ended. During this unusual delay, the flux continued to drop, and one Swift measurement found the source with a soft spectrum at a 2-10 keV luminosity of L = 1.07 × 10{sup 35} erg s{sup –1} for an estimated distance of 10 kpc. While such transients usually make a transition to the hard state at L/L{sub Edd} = 0.3%-3%, where L{sub Edd} is the Eddington luminosity, the 4U 1630-47 spectrum remained soft at L/L{sub Edd} = 0.008 M{sub 10}{sup −1}% (as measured in the 2-10 keV band), where M{sub 10} is the mass of the black hole in units of 10 M{sub ☉}. An estimate of the luminosity in the broader 0.5-200 keV bandpass gives L/L{sub Edd} = 0.03 M{sub 10}{sup −1}%, which is still an order of magnitude lower than typical. We also measured an exponential decay of the X-ray flux in the hard state with an e-folding time of 3.39 ± 0.06 days, which is much less than previous measurements of 12-15 days during decays by 4U 1630-47 in the soft state. With the ∼100 ks Suzaku observation, we do not see evidence for a reflection component, and the 90% confidence limits on the equivalent width of a narrow iron Kα emission line are <40 eV for a narrow line and <100 eV for a line of any width, which is consistent with a change of geometry (either a truncated accretion disk or a change in the location of the hard X-ray source) in the hard state. Finally, we report a 0.5-8 keV luminosity upper limit of <2 × 10{sup 32} erg s{sup –1} in quiescence, which is the lowest value measured for 4U 1630-47 to date.

  12. WW domain folding complexity revealed by infrared spectroscopy.

    Science.gov (United States)

    Davis, Caitlin M; Dyer, R Brian

    2014-09-02

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  13. High transition frequencies of dynamic functional connectivity states in the creative brain.

    Science.gov (United States)

    Li, Junchao; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-04-06

    Creativity is thought to require the flexible reconfiguration of multiple brain regions that interact in transient and complex communication patterns. In contrast to prior emphases on searching for specific regions or networks associated with creative performance, we focused on exploring the association between the reconfiguration of dynamic functional connectivity states and creative ability. We hypothesized that a high frequency of dynamic functional connectivity state transitions will be associated with creative ability. To test this hypothesis, we recruited a high-creative group (HCG) and a low-creative group (LCG) of participants and collected resting-state fMRI (R-fMRI) data and Torrance Tests of Creative Thinking (TTCT) scores from each participant. By combining an independent component analysis with a dynamic network analysis approach, we discovered the HCG had more frequent transitions between dynamic functional connectivity (dFC) states than the LCG. Moreover, a confirmatory analysis using multiplication of temporal derivatives also indicated that there were more frequent dFC state transitions in the HCG. Taken together, these results provided empirical evidence for a linkage between the flexible reconfiguration of dynamic functional connectivity states and creative ability. These findings have the potential to provide new insights into the neural basis of creativity.

  14. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.

    Science.gov (United States)

    Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E

    2015-03-01

    The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.

  15. Marianne in the Home. Political Revolution and Demographic Transition in France and the United States {Population, 1, 2000)

    OpenAIRE

    R. Binion

    2001-01-01

    Binion Rudolph.- Marianne in the Home. Political Revolution and Demographic Transition in France and the United States Historians of France agree about the precocity of the French demographic transition while disagreeing about its causes and its possible links with the partly coterminous Revolution of 1789. They ignore the American transition which began at the time of the American Revolution some years earlier. An analysis of these two transitions using the comparative method advocated by Ma...

  16. "Wet" Versus "Dry" Folding of Polyproline

    Science.gov (United States)

    Shi, Liuqing; Holliday, Alison E.; Bohrer, Brian C.; Kim, Doyong; Servage, Kelly A.; Russell, David H.; Clemmer, David E.

    2016-06-01

    When the all- cis polyproline-I helix (PPI, favored in 1-propanol) of polyproline-13 is introduced into water, it folds into the all- trans polyproline-II (PPII) helix through at least six intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we show that the solvent-free intermediates refold into the all- cis PPI helix with high (>90%) efficiency. Moreover, in the absence of solvent, each intermediate appears to utilize the same small set of pathways observed for the solution-phase PPII → PPI transition upon immersion of PPIIaq in 1-propanol. That folding in solution (under conditions where water is displaced by propanol) and folding in vacuo (where energy required for folding is provided by collisional activation) occur along the same pathway is remarkable. Implicit in this statement is that 1-propanol mimics a "dry" environment, similar to the gas phase. We note that intermediates with structures that are similar to PPIIaq can form PPII under the most gentle activation conditions—indicating that some transitions observed in water (i.e. , "we t" folding, are accessible (albeit inefficient) in vacuo. Lastly, these "dry" folding experiments show that PPI (all cis) is favored under "dry" conditions, which underscores the role of water as the major factor promoting preference for trans proline.

  17. Immigration transition and depressive symptoms: four major ethnic groups of midlife women in the United States.

    Science.gov (United States)

    Im, Eun-Ok; Chang, Sun Ju; Chee, Wonshik; Chee, Eunice; Mao, Jun James

    2015-01-01

    The purpose of this study was to explore the relationships between immigration transition and depressive symptoms among 1,054 midlife women in the United States. This was a secondary analysis of the data from two national Internet survey studies. Questions on background characteristics and immigration transition and the Depression Index for Midlife Women were used to collect the data. The data were analyzed using inferential statistics including multiple regressions. Immigrants reported lower numbers of symptoms and less severe symptoms than nonimmigrants (p immigration status were significant predictors of depressive symptoms (R(2) =.01, p <.05).

  18. Theory of collisional excitation transition between Rydberg states of atoms. Non-inertial mechanism

    International Nuclear Information System (INIS)

    Kaulakys, B.P.

    1982-01-01

    The transitions between highly states of an atom due to the collision of its core with another atom are considered. The cross sections of the change of highly excited electron angular momentum, in the case of the transitions when the main quantum number is constant, are expressed in terms of transport cross sections of the perturbing atom scattering on the ion of Rydberg atom. It is shown that the cross sections of the momentum mixing at thermal rapidities are lower than the cross sections of the atom-ion elastic scattering

  19. Suppression of angular forces in collisions of non-S-state transition metal atoms

    International Nuclear Information System (INIS)

    Krems, R.V.; Klos, J.; Rode, M.F.; Szczesniak, M.M.; Chalasinski, G.; Dalgarno, A.

    2005-01-01

    Angular momentum transfer is expected to occur rapidly in collisions of atoms in states of nonzero angular momenta due to the large torque of angular forces. We show that despite the presence of internal angular momenta transition metal atoms interact in collisions with helium effectively as spherical atoms and angular momentum transfer is slow. Thus, magnetic trapping and sympathetic cooling of transition metal atoms to ultracold temperatures should be readily achievable. Our results open up new avenues of research with a broad class of ultracold atoms

  20. Dynamically Switching the Polarization State of Light Based on the Phase Transition of Vanadium Dioxide

    Science.gov (United States)

    Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu

    2018-03-01

    There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.

  1. Chaotic state to self-organized critical state transition of serrated flow dynamics during brittle-to-ductile transition in metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Wang, W. H.; Bai, H. Y., E-mail: hybai@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, B. A. [Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2016-02-07

    We study serrated flow dynamics during brittle-to-ductile transition induced by tuning the sample aspect ratio in a Zr-based metallic glass. The statistical analysis reveals that the serrated flow dynamics transforms from a chaotic state characterized by Gaussian-distribution serrations corresponding to stick-slip motion of randomly generated and uncorrelated single shear band and brittle behavior, into a self-organized critical state featured by intermittent scale-free distribution of shear avalanches corresponding to a collective motion of multiple shear bands and ductile behavior. The correlation found between serrated flow dynamics and plastic deformation might shed light on the plastic deformation dynamic and mechanism in metallic glasses.

  2. The energy landscape, folding pathways and the kinetics of a knotted protein.

    Directory of Open Access Journals (Sweden)

    Michael C Prentiss

    2010-07-01

    Full Text Available The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N or C terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N terminus portion of the knot and a rate-determining step where the C terminus is incorporated. The low-lying minima with the N terminus knotted and the C terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N and C termini into the knot occurs late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.

  3. Vocal Fold Paralysis

    Science.gov (United States)

    ... decades-long project to develop an electrical stimulation technology to help people avoid having a tracheotomy when both vocal folds are paralyzed. The device, which currently is being tested in animals and people, uses an implanted pacemaker to stimulate ...

  4. Generalization of the second law for a transition between nonequilibrium states

    Energy Technology Data Exchange (ETDEWEB)

    Takara, K. [Department of Mathematical Sciences, Ibaraki University, Bunkyo, Mito 310-8512 (Japan); Hasegawa, H.-H., E-mail: hhh@mx.ibaraki.ac.j [Department of Mathematical Sciences, Ibaraki University, Bunkyo, Mito 310-8512 (Japan); Center for Complex Quantum Systems, Univ. of Texas, Austin, TX 78712 (United States); Driebe, D.J. [Embry-Riddle Aeronautical University Worldwide, Fort Lauderdale, FL 33309 (United States)

    2010-12-01

    The maximum work formulation of the second law of thermodynamics is generalized for a transition between nonequilibrium states. The relative entropy, the Kullback-Leibler divergence between the nonequilibrium states and the canonical distribution, determines the maximum ability to work. The difference between the final and the initial relative entropies with an effective temperature gives the maximum dissipative work for both adiabatic and isothermal processes. Our formulation reduces to both the Vaikuntanathan-Jarzynski relation and the nonequilibrium Clausius relation in certain situations. By applying our formulation to a heat engine the Carnot cycle is generalized to a circulation among nonequilibrium states.

  5. Structure of transition nuclei states in fermion dynamic-symmetry model

    International Nuclear Information System (INIS)

    Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.

    2007-01-01

    In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature

  6. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Yurii M [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-01-31

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  7. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    International Nuclear Information System (INIS)

    Kiselev, Yurii M

    2009-01-01

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  8. On the origins of the weak folding cooperativity of a designed ββα ultrafast protein FSD-1.

    Directory of Open Access Journals (Sweden)

    Chun Wu

    Full Text Available FSD-1, a designed small ultrafast folder with a ββα fold, has been actively studied in the last few years as a model system for studying protein folding mechanisms and for testing of the accuracy of computational models. The suitability of this protein to describe the folding of naturally occurring α/β proteins has recently been challenged based on the observation that the melting transition is very broad, with ill-resolved baselines. Using molecular dynamics simulations with the AMBER protein force field (ff96 coupled with the implicit solvent model (IGB = 5, we shed new light into the nature of this transition and resolve the experimental controversies. We show that the melting transition corresponds to the melting of the protein as a whole, and not solely to the helix-coil transition. The breadth of the folding transition arises from the spread in the melting temperatures (from ∼325 K to ∼302 K of the individual transitions: formation of the hydrophobic core, β-hairpin and tertiary fold, with the helix formed earlier. Our simulations initiated from an extended chain accurately predict the native structure, provide a reasonable estimate of the transition barrier height, and explicitly demonstrate the existence of multiple pathways and multiple transition states for folding. Our exhaustive sampling enables us to assess the quality of the Amber ff96/igb5 combination and reveals that while this force field can predict the correct native fold, it nonetheless overstabilizes the α-helix portion of the protein (Tm = ∼387K as well as the denatured structures.

  9. Folded supersymmetry with a twist

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Lou, Hou Keong [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Pinner, David [Princeton Center for Theoretical Science, Princeton University,Princeton, NJ 08544 (United States)

    2016-03-30

    Folded supersymmetry (f-SUSY) stabilizes the weak scale against radiative corrections from the top sector via scalar partners whose gauge quantum numbers differ from their Standard Model counterparts. This non-trivial pairing of states can be realized in extra-dimensional theories with appropriate supersymmetry-breaking boundary conditions. We present a class of calculable f-SUSY models that are parametrized by a non-trivial twist in 5D boundary conditions and can accommodate the observed Higgs mass and couplings. Although the distinctive phenomenology associated with the novel folded states should provide strong evidence for this mechanism, the most stringent constraints are currently placed by conventional supersymmetry searches. These models remain minimally fine-tuned in light of LHC8 data and provide a range of both standard and exotic signatures accessible at LHC13.

  10. A universal indicator of critical state transitions in noisy complex networked systems.

    Science.gov (United States)

    Liang, Junhao; Hu, Yanqing; Chen, Guanrong; Zhou, Tianshou

    2017-02-23

    Critical transition, a phenomenon that a system shifts suddenly from one state to another, occurs in many real-world complex networks. We propose an analytical framework for exactly predicting the critical transition in a complex networked system subjected to noise effects. Our prediction is based on the characteristic return time of a simple one-dimensional system derived from the original higher-dimensional system. This characteristic time, which can be easily calculated using network data, allows us to systematically separate the respective roles of dynamics, noise and topology of the underlying networked system. We find that the noise can either prevent or enhance critical transitions, playing a key role in compensating the network structural defect which suffers from either internal failures or environmental changes, or both. Our analysis of realistic or artificial examples reveals that the characteristic return time is an effective indicator for forecasting the sudden deterioration of complex networks.

  11. Characteristics of homeless adults with serious mental illness served by a state mental health transitional shelter.

    Science.gov (United States)

    Viron, Mark; Bello, Iruma; Freudenreich, Oliver; Shtasel, Derri

    2014-07-01

    Specialized transitional shelters are available in various cities to provide assistance to homeless individuals with serious mental illness. Little is known about the population using such shelters. The authors conducted a retrospective chart review to collect demographic, social, and clinical data of residents in a state-operated mental health transitional shelter in Massachusetts. A total of 74 subjects were included. Schizophrenia-spectrum disorders were present in 67.6 % of the sample and mood disorders in 35.1 %. Substance use disorders were documented in 44.6 %. Chronic medical illness (mostly hypertension, dyslipidemia, asthma, and diabetes) was found in 82.4 %. The co-occurrence of a psychiatric and substance use disorder and chronic medical illness was found in 36.5 %. The majority (75.7 %) of patients had a history of legal charges. Homeless individuals with serious mental illness served by specialized transitional shelters represent a population with complex psychiatric, medical and social needs.

  12. 19 CFR 123.64 - Baggage in transit through the United States between ports in Canada or in Mexico.

    Science.gov (United States)

    2010-04-01

    ... between ports in Canada or in Mexico. 123.64 Section 123.64 Customs Duties U.S. CUSTOMS AND BORDER... MEXICO Baggage § 123.64 Baggage in transit through the United States between ports in Canada or in Mexico. (a) Procedure. Baggage in transit from point to point in Canada or Mexico through the United States...

  13. Integrating continuous stocks and flows into state-and-transition simulation models of landscape change

    Science.gov (United States)

    Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée

    2018-01-01

    State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between

  14. Integrating continuous stocks and flows into state-and-transition simulation models of landscape change

    Science.gov (United States)

    Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée

    2017-01-01

    State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between

  15. Stochastic transitions between neural states in taste processing and decision-making.

    Science.gov (United States)

    Miller, Paul; Katz, Donald B

    2010-02-17

    Noise, which is ubiquitous in the nervous system, causes trial-to-trial variability in the neural responses to stimuli. This neural variability is in turn a likely source of behavioral variability. Using Hidden Markov modeling, a method of analysis that can make use of such trial-to-trial response variability, we have uncovered sequences of discrete states of neural activity in gustatory cortex during taste processing. Here, we advance our understanding of these patterns in two ways. First, we reproduce the experimental findings in a formal model, describing a network that evinces sharp transitions between discrete states that are deterministically stable given sufficient noise in the network; as in the empirical data, the transitions occur at variable times across trials, but the stimulus-specific sequence is itself reliable. Second, we demonstrate that such noise-induced transitions between discrete states can be computationally advantageous in a reduced, decision-making network. The reduced network produces binary outputs, which represent classification of ingested substances as palatable or nonpalatable, and the corresponding behavioral responses of "spit" or "swallow". We evaluate the performance of the network by measuring how reliably its outputs follow small biases in the strengths of its inputs. We compare two modes of operation: deterministic integration ("ramping") versus stochastic decision-making ("jumping"), the latter of which relies on state-to-state transitions. We find that the stochastic mode of operation can be optimal under typical levels of internal noise and that, within this mode, addition of random noise to each input can improve optimal performance when decisions must be made in limited time.

  16. Relationship of Topology, Multiscale Phase Synchronization, and State Transitions in Human Brain Networks

    Directory of Open Access Journals (Sweden)

    Minkyung Kim

    2017-06-01

    Full Text Available How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are “progressive and earlier” or “abrupt but delayed” account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious

  17. The transition between energy efficient and energy inefficient states in Cameroon

    International Nuclear Information System (INIS)

    Adom, Philip Kofi

    2016-01-01

    I use a two-state (energy efficient/inefficient) Markov-switching dynamic model to study energy efficiency in Cameroon in a novel manner, employing yearly data covering 1971 to 2012. I find that the duration of an energy inefficient state is about twice as long as an energy efficient state, mainly due to fuel subsidies, low income, high corruption, regulatory inefficiencies, poorly developed infrastructure and undeveloped markets. To escape from an energy inefficient state a broad policy overhaul is needed. Trade liberalization and related growth policies together with the removal of fuel subsidies are useful, but insufficient policy measures; the results suggest that they should be combined with structural policies, aiming at institutional structure and investment in infrastructure. - Highlights: • I investigate the transition between energy efficient/inefficient states. • On the average, energy inefficient state persists more than energy efficient state. • The duration of energy inefficient state is about twice as long as energy efficient state. • Price, income and trade openness have distinct energy saving effect irrespective of state. • A broad policy overhaul is needed to escape the energy inefficient state.

  18. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  19. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  20. Pattern transitions in a compressible floating elastic sheet.

    Science.gov (United States)

    Oshri, Oz; Diamant, Haim

    2017-09-13

    Thin rigid sheets floating on a liquid substrate appear, for example, in coatings and surfactant monolayers. Upon uniaxial compression the sheet undergoes transitions from a compressed flat state to a periodic wrinkled pattern to a localized folded pattern. The stability of these states is determined by the in-plane elasticity of the sheet, its bending rigidity, and the hydrostatics of the underlying liquid. Wrinkles and folds, and the wrinkle-to-fold transition, were previously studied for incompressible sheets. In the present work we extend the theory to include finite compressibility. We analyze the details of the flat-to-wrinkle transition, the effects of compressibility on wrinkling and folding, and the compression field associated with pattern formation. The state diagram of the floating sheet including all three states is presented.

  1. Pressure controlled transition into a self-induced topological superconducting surface state

    KAUST Repository

    Zhu, Zhiyong

    2014-02-07

    Ab-initio calculations show a pressure induced trivial-nontrivial-trivial topological phase transition in the normal state of 1T-TiSe2. The pressure range in which the nontrivial phase emerges overlaps with that of the superconducting ground state. Thus, topological superconductivity can be induced in protected surface states by the proximity effect of superconducting bulk states. This kind of self-induced topological surface superconductivity is promising for a realization of Majorana fermions due to the absence of lattice and chemical potential mismatches. For appropriate electron doping, the formation of the topological superconducting surface state in 1T-TiSe 2 becomes accessible to experiments as it can be controlled by pressure.

  2. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  3. Degree of Rate Control: How Much the Energies of Intermediates and Transition States Control Rates

    DEFF Research Database (Denmark)

    Stegelmann, Carsten; Andreasen, Anders; Campbell, Charles T.

    2009-01-01

    recently introduced, via the “degree of rate control” of elementary steps. By extending that idea, we argue that even more useful than identifying the rate-determining step is identifying the rate-controlling transition states and the rate-controlling intermediates. These identify a few distinct chemical...... electronic or steric control on the relative energies of the key species. Since these key species are the ones whose relative energies most strongly influence the net reaction rate, they also identify the species whose energetics must be most accurately measured or calculated to achieve an accurate kinetic...... model for any reaction mechanism. Thus, it is very important to identify these rate-controlling transition states and rate-controlling intermediates for both applied and basic research. Here, we present a method for doing that....

  4. Energetic frustrations in protein folding at residue resolution: a homologous simulation study of Im9 proteins.

    Directory of Open Access Journals (Sweden)

    Yunxiang Sun

    Full Text Available Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.

  5. A Study to Identify the Transitional Training Needs for United States Army Medical Residents

    Science.gov (United States)

    1988-07-29

    of no current effort tinder way to ascertain the transitional training needs for members of this most vital segment of the health care team. The goal...leadership development, office communi-ations, professional and legal obligations, Rawls 8 and practice marketing . Because these newly trained physicians...specialty. It is felt, though, that insufficient data were obtained on which to state such inferences. It is conceivable that psychographic

  6. Chapter 5: Application of state-and-transition models to evaluate wildlife habitat

    Science.gov (United States)

    Anita T. Morzillo; Pamela Comeleo; Blair Csuti; Stephanie Lee

    2014-01-01

    Wildlife habitat analysis often is a central focus of natural resources management and policy. State-and-transition models (STMs) allow for simulation of landscape level ecological processes, and for managers to test “what if” scenarios of how those processes may affect wildlife habitat. This chapter describes the methods used to link STM output to wildlife habitat to...

  7. Stereoselective synthesis of phosphoramidate alpha(2-6)sialyltransferase transition-state analogue inhibitors.

    Science.gov (United States)

    Skropeta, Danielle; Schwörer, Ralf; Schmidt, Richard R

    2003-10-06

    The asymmetric synthesis of novel, potent phosphoramidate alpha(2-6)sialyltransferase transition-state analogue inhibitors such as (R)-9 (K(i)=68 microM) is described, via condensation of cytidine phosphitamide 6 with key chiral, non-racemic alpha-aminophosphonates, prepared in >98% ee by Mitsunobu azidation followed by Staudinger reduction of the corresponding chiral, non-racemic alpha-hydroxyphosphonates.

  8. Transition State Theory for solvated reactions beyond recrossing-free dividing surfaces

    OpenAIRE

    Revuelta, F.; Bartsch, Thomas; Garcia-Muller, P. L.; Hernandez, Rigoberto; Benito, R. M.; Borondo, F.

    2016-01-01

    The accuracy of rate constants calculated using transition state theory depends crucially on the correct identification of a recrossing--free dividing surface. We show here that it is possible to define such optimal dividing surface in systems with non--Markovian friction. However, a more direct approach to rate calculation is based on invariant manifolds and avoids the use of a dividing surface altogether, Using that method we obtain an explicit expression for the rate of crossing an anharmo...

  9. Guiding the folding pathway of DNA origami.

    Science.gov (United States)

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan

    2015-09-03

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  10. Afghanistan's Post-Taliban Transition: The State of State-Building After War

    National Research Council Canada - National Science Library

    Johnson, Thomas H

    2006-01-01

    ...: will it be stability and democracy, or a return to its chaotic and turbulent past? On the one hand, after decades of fighting, this volatile state has witnessed watershed elections and important infrastructure rebuilding...

  11. Muon-Substituted Malonaldehyde: Transforming a Transition State into a Stable Structure by Isotope Substitution.

    Science.gov (United States)

    Goli, Mohammad; Shahbazian, Shant

    2016-02-12

    Isotope substitutions are usually conceived to play a marginal role on the structure and bonding pattern of molecules. However, a recent study [Angew. Chem. Int. Ed. 2014, 53, 13706-13709; Angew. Chem. 2014, 126, 13925-13929] further demonstrates that upon replacing a proton with a positively charged muon, as the lightest radioisotope of hydrogen, radical changes in the nature of the structure and bonding of certain species may take place. The present report is a primary attempt to introduce another example of structural transformation on the basis of the malonaldehyde system. Accordingly, upon replacing the proton between the two oxygen atoms of malonaldehyde with the positively charged muon a serious structural transformation is observed. By using the ab initio nuclear-electronic orbital non-Born-Oppenheimer procedure, the nuclear configuration of the muon-substituted species is derived. The resulting nuclear configuration is much more similar to the transition state of the proton transfer in malonaldehyde rather than to the stable configuration of malonaldehyde. The comparison of the "atoms in molecules" (AIM) structure of the muon-substituted malonaldehyde and the AIM structure of the stable and the transition-state configurations of malonaldehyde also unequivocally demonstrates substantial similarities of the muon-substituted malonaldehyde to the transition state. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Vocal Fold Collision Modeling

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas; Misztal, M. K.

    2015-01-01

    When vocal folds vibrate at normal speaking frequencies, collisions occurs. The numerics and formulations behind a position-based continuum model of contact is an active field of research in the contact mechanics community. In this paper, a frictionless three-dimensional finite element model...... of the vocal fold collision is proposed, which incorporates different procedures used in contact mechanics and mathematical optimization theories. The penalty approach and the Lagrange multiplier method are investigated. The contact force solution obtained by the penalty formulation is highly dependent...

  13. Vison states and confinement transitions of Z2 spin liquids on the kagome lattice

    Science.gov (United States)

    Huh, Yejin; Punk, Matthias; Sachdev, Subir

    2011-09-01

    We present a projective symmetry group (PSG) analysis of the spinless excitations of Z2 spin liquids on the kagome lattice. In the simplest case, vortices carrying Z2 magnetic flux (“visons”) are shown to transform under the 48 element group GL(2,Z3). Alternative exchange couplings can also lead to a second case with visons transforming under 288-element group GL(2,Z3)×D3. We study the quantum phase transition in which visons condense into confining states with valence bond solid order. The critical field theories and confining states are classified using the vison PSGs.

  14. Increased Firing Irregularity as an Emergent Property of Neural-State Transition in Monkey Prefrontal Cortex

    Science.gov (United States)

    Sakamoto, Kazuhiro; Katori, Yuichi; Saito, Naohiro; Yoshida, Shun; Aihara, Kazuyuki; Mushiake, Hajime

    2013-01-01

    Flexible behaviors are organized by complex neural networks in the prefrontal cortex. Recent studies have suggested that such networks exhibit multiple dynamical states, and can switch rapidly from one state to another. In many complex systems such as the brain, the early-warning signals that may predict whether a critical threshold for state transitions is approaching are extremely difficult to detect. We hypothesized that increases in firing irregularity are a crucial measure for predicting state transitions in the underlying neuronal circuits of the prefrontal cortex. We used both experimental and theoretical approaches to test this hypothesis. Experimentally, we analyzed activities of neurons in the prefrontal cortex while monkeys performed a maze task that required them to perform actions to reach a goal. We observed increased firing irregularity before the activity changed to encode goal-to-action information. Theoretically, we constructed theoretical generic neural networks and demonstrated that changes in neuronal gain on functional connectivity resulted in a loss of stability and an altered state of the networks, accompanied by increased firing irregularity. These results suggest that assessing the temporal pattern of neuronal fluctuations provides important clues regarding the state stability of the prefrontal network. We also introduce a novel scheme that the prefrontal cortex functions in a metastable state near the critical point of bifurcation. According to this scheme, firing irregularity in the prefrontal cortex indicates that the system is about to change its state and the flow of information in a flexible manner, which is essential for executive functions. This metastable and/or critical dynamical state of the prefrontal cortex may account for distractibility and loss of flexibility in the prefrontal cortex in major mental illnesses such as schizophrenia. PMID:24349020

  15. Spin-state transition and phase separation in multi-orbital Hubbard model

    Science.gov (United States)

    Ishihara, Sumio; Suzuki, Ryo; Watanabe, Tsutomu

    2010-03-01

    Exotic phenomena in correlated electron systems are responsible for competition and cooperation between multi-electronic phases. In particular, in perovskite cobaltites, there is the spin-state degree of freedom, i.e., multiple spin states due to the different electron configurations in a single ion. The multiple spin states occur by changes in the carrier concentration, temperature and other parameters. In the lightly hole doped region between the low-spin band insulator (BI) and the high-spin (HS) ferromagnetic metallic (FM) states, several inhomogeneous features have been reported experimentally. We address the issues of the spin-state transition and the phase separation (PS) associated with this transition by analyzing the multi-orbital Hubbard model [1]. We examine the electronic structures in hole doped and undoped systems by the variational Monte-Carlo (VMC) method. We find that the electronic PS is realized between the nonmagnetic BI and the HS FM metal. We conclude that the different band widths play an essential role in the present electronic PS. [1] R. Suzuki, T. Watanabe, and S. Ishihara, Phys. Rev. B 80, 054410 (2009).

  16. State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.

    2014-01-01

    Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.

  17. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed

    2017-09-01

    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order, and folding angles for each part of the model, enabling it to transform into a spatially efficient configuration while keeping its original functionality as intact as possible. That is, if a model is supposed to withstand several forces in its initial state to serve its functionality, our framework places the joints between the parts of the model such that the model can withstand forces with magnitudes that are comparable to the magnitudes applied on the unedited model. Furthermore, if the folded shape is not compact, our framework proposes further segmentation of the model to improve its compactness in its folded state.

  18. Cycle 24 COS/NUV Fold Distribution

    Science.gov (United States)

    Wheeler, Thomas; Welty, Alan

    2018-02-01

    We summarize the Cycle 24 COS/NUV Fold Distribution for the Cosmic Origins Spectrograph's (COS) MAMA detector on the Hubble Space Telescope. The detector micro-channel plate's health state is determined and the results presented.

  19. Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.

    Science.gov (United States)

    Banerjee, Rahul; Cukier, Robert I

    2014-03-20

    Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ

  20. Folds and Etudes

    Science.gov (United States)

    Bean, Robert

    2007-01-01

    In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…

  1. Folding worlds between pages

    CERN Document Server

    Meier, Matthias

    2010-01-01

    "We all remember pop-up books form our childhood. As fascinated as we were back then, we probably never imagined how much engineering know-how went into these books. Pop-up engineer Anton Radevsky has even managed to fold a 27-kilometre particle accelerator into a book" (4 pages)

  2. Simulations of viscoelastic fluids using a coupled lattice Boltzmann method: Transition states of elastic instabilities

    Directory of Open Access Journals (Sweden)

    Jin Su

    2017-11-01

    Full Text Available Elastic instabilities could happen in viscoelastic flows as the Weissenberg number is enlarged, and this phenomenon makes the numerical simulation of viscoelastic fluids more difficult. In this study, we introduce a coupled lattice Boltzmann method to solve the equations of viscoelastic fluids, which has a great capability of simulating the high Weissenberg number problem. Different from some traditional methods, two kinds of distribution functions are defined respectively for the evolution of the momentum and stress tensor equations. We mainly aim to investigate some key factors of the symmetry-breaking transition induced by elastic instability of viscoelastic fluids using this numerical coupled lattice Boltzmann method. In the results, we firstly find that the ratio of kinematical viscosity has an important influence on the transition of the elastic instability; the transition between the single stationary and cycling dominant vortex can be controlled via changing the ratio of kinematical viscosity in a periodic extensional flow. Finally, we can also observe a new transition state of instability for the flow showing the banded structure at higher Weissenberg number.

  3. Agricultural Drought Transition Periods In the United States Corn Belt Region

    Science.gov (United States)

    Schiraldi, Nicholas J.

    Agricultural drought in the U.S. Corn Belt region (CBR) has tremendous global socioeconomic implications. Unfortunately, the weather and climate factors that contribute to transition events toward or away from such droughts, and how well those factors are predicted, are poorly understood. This dissertation focuses on the atmospheric circulation signals associated with agricultural drought transitions periods in the CBR that evolve over 20 and 60 days, and how well those circulation signals are predicted on seasonal to sub-seasonal time scales. Results show that amplification of an intraseasonal Rossby wave train across the Pacific Ocean into North America, which occurs coincident with intraseasonal tropical convection on its equatorward side, triggers these transition events, not shifts in the low frequency base state. This result is confirmed through composite analysis, trajectory analysis and a vertically integrated moisture budget. Trajectory analysis reveals similar source regions for air parcels associated with drought development and breakdown, but with a shift toward more parcels originating over the Gulf of Mexico during transitions away from drought. The primary result from the vertically integrated moisture budget demonstrates that advection and convergence of moisture on intraseasonal time scales dominates during these transitions. The primary conclusion drawn is that weather events are the primary driver of agricultural drought transitions occurring over 20 and 60 days. The seasonal to sub-seasonal hindcast dataset is used to investigate the prediction of the low frequency, intraseasonal and synoptic circulation patterns associated with 20 and 60-day drought transition periods. The forecast models assessed are the European Centre for Medium Range Prediction (ECMWF), National Center for Environment Prediction Climate Forecast System (NCEP) and the Australian Bureau of Meteorology (BoM). Results demonstrate that ECMWF and NCEP are not skillful in

  4. Why Do Protein Folding Rates Correlate with Metrics of Native Topology?

    Science.gov (United States)

    Faísca, Patrícia F. N.; Travasso, Rui D. M.; Parisi, Andrea; Rey, Antonio

    2012-01-01

    For almost 15 years, the experimental correlation between protein folding rates and the contact order parameter has been under scrutiny. Here, we use a simple simulation model combined with a native-centric interaction potential to investigate the physical roots of this empirical observation. We simulate a large set of circular permutants, thus eliminating dependencies of the folding rate on other protein properties (e.g. stability). We show that the rate-contact order correlation is a consequence of the fact that, in high contact order structures, the contact order of the transition state ensemble closely mirrors the contact order of the native state. This happens because, in these structures, the native topology is represented in the transition state through the formation of a network of tertiary interactions that are distinctively long-ranged. PMID:22558173

  5. Using a State-and-Transition Approach to Manage Endangered Eucalyptus albens (White Box) Woodlands

    Science.gov (United States)

    Spooner, Peter G.; Allcock, Kimberly G.

    2006-11-01

    Eucalyptus albens (White Box) woodlands are among the most poorly conserved and threatened communities in Australia. Remnants are under further threat from stock grazing, deteriorating soil conditions, weed invasion, and salinity. There is an urgent need to restore degraded White Box and other woodland ecosystems to improve landscape function. However, there is still a poor understanding of the ecology of degraded woodland ecosystems in fragmented agricultural landscapes, and consequently a lack of precise scientific guidelines to manage these ecosystems in a conservation context. State and Transition Models (STMs) have received a great deal of attention, mainly in rangeland applications, as a suitable framework for understanding the ecology of complex ecosystems and to guide management. We have developed a STM for endangered White Box woodlands and discuss the merits of using this approach for land managers of other endangered ecosystems. An STM approach provides a greater understanding of the range of states, transitions, and thresholds possible in an ecosystem, and provides a summary of processes driving the system. Importantly, our proposed STM could be used to clarify the level of “intactness” of degraded White Box woodland sites, and provide the impetus to manage different states in complementary ways, rather than attempting to restore ecosystems to one pristine stable state. We suggest that this approach has considerable potential to integrate researcher and land manager knowledge, focus future experimental studies, and ultimately serve as a decision support tool in setting realistic and achievable conservation and restoration goals.

  6. Direct observation of parallel folding pathways revealed using a symmetric repeat protein system.

    Science.gov (United States)

    Aksel, Tural; Barrick, Doug

    2014-07-01

    Although progress has been made to determine the native fold of a polypeptide from its primary structure, the diversity of pathways that connect the unfolded and folded states has not been adequately explored. Theoretical and computational studies predict that proteins fold through parallel pathways on funneled energy landscapes, although experimental detection of pathway diversity has been challenging. Here, we exploit the high translational symmetry and the direct length variation afforded by linear repeat proteins to directly detect folding through parallel pathways. By comparing folding rates of consensus ankyrin repeat proteins (CARPs), we find a clear increase in folding rates with increasing size and repeat number, although the size of the transition states (estimated from denaturant sensitivity) remains unchanged. The increase in folding rate with chain length, as opposed to a decrease expected from typical models for globular proteins, is a clear demonstration of parallel pathways. This conclusion is not dependent on extensive curve-fitting or structural perturbation of protein structure. By globally fitting a simple parallel-Ising pathway model, we have directly measured nucleation and propagation rates in protein folding, and have quantified the fluxes along each path, providing a detailed energy landscape for folding. This finding of parallel pathways differs from results from kinetic studies of repeat-proteins composed of sequence-variable repeats, where modest repeat-to-repeat energy variation coalesces folding into a single, dominant channel. Thus, for globular proteins, which have much higher variation in local structure and topology, parallel pathways are expected to be the exception rather than the rule. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Role of entropy and structural parameters in the spin-state transition of LaCoO3

    Science.gov (United States)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    2017-11-01

    The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.

  8. Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Ashworth, Justin; Coesel, Sacha; Lee, Allison; Armbrust, E Virginia; Orellana, Mónica V; Baliga, Nitin S

    2013-04-30

    Marine diatoms are important primary producers that thrive in diverse and dynamic environments. They do so, in theory, by sensing changing conditions and adapting their physiology accordingly. Using the model species Thalassiosira pseudonana, we conducted a detailed physiological and transcriptomic survey to measure the recurrent transcriptional changes that characterize typical diatom growth in batch culture. Roughly 40% of the transcriptome varied significantly and recurrently, reflecting large, reproducible cell-state transitions between four principal states: (i) "dawn," following 12 h of darkness; (ii) "dusk," following 12 h of light; (iii) exponential growth and nutrient repletion; and (iv) stationary phase and nutrient depletion. Increases in expression of thousands of genes at the end of the reoccurring dark periods (dawn), including those involved in photosynthesis (e.g., ribulose-1,5-bisphosphate carboxylase oxygenase genes rbcS and rbcL), imply large-scale anticipatory circadian mechanisms at the level of gene regulation. Repeated shifts in the transcript levels of hundreds of genes encoding sensory, signaling, and regulatory functions accompanied the four cell-state transitions, providing a preliminary map of the highly coordinated gene regulatory program under varying conditions. Several putative light sensing and signaling proteins were associated with recurrent diel transitions, suggesting that these genes may be involved in light-sensitive and circadian regulation of cell state. These results begin to explain, in comprehensive detail, how the diatom gene regulatory program operates under varying environmental conditions. Detailed knowledge of this dynamic molecular process will be invaluable for new hypothesis generation and the interpretation of genetic, environmental, and metatranscriptomic data from field studies.

  9. Ground state and magnetic phase transitions of orthoferrite DyFeO3

    Science.gov (United States)

    Zhao, Z. Y.; Zhao, X.; Zhou, H. D.; Zhang, F. B.; Li, Q. J.; Fan, C.; Sun, X. F.; Li, X. G.

    2014-06-01

    Low-temperature thermal conductivity (κ), as well as magnetization (M) and electric polarization (P), of multiferroic orthoferrite DyFeO3 single crystals are studied with H ∥c. When the crystal is cooled in zero field, M, P, and κ all consistently exhibit irreversible magnetic-field dependencies. In particular, with 500 mK ultra-low-T (T mK) κ (H) shows a different irreversibility and there is only one transition when the field is swept both up and down. All the results indicate a complex low-T H-T phase diagram involving successive magnetic phase transitions of the Fe3+ spins. In particular, the ground state, obtained with cooling to sub-Kelvin temperatures in zero field, is found to be an unexplored phase.

  10. A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding.

    Science.gov (United States)

    Hu, Jie; Chen, Tao; Wang, Moye; Chan, Hue Sun; Zhang, Zhuqing

    2017-05-31

    Structure-based coarse-grained Gō-like models have been used extensively in deciphering protein folding mechanisms because of their simplicity and tractability. Meanwhile, explicit-solvent molecular dynamics (MD) simulations with physics-based all-atom force fields have been applied successfully to simulate folding/unfolding transitions for several small, fast-folding proteins. To explore the degree to which coarse-grained Gō-like models and their extensions to incorporate nonnative interactions are capable of producing folding processes similar to those in all-atom MD simulations, here we systematically compare the computed unfolded states, transition states, and transition paths obtained using coarse-grained models and all-atom explicit-solvent MD simulations. The conformations in the unfolded state in common Gō models are more extended, and are thus more in line with experiment, than those from all-atom MD simulations. Nevertheless, the structural features of transition states obtained by the two types of models are largely similar. In contrast, the folding transition paths are significantly more sensitive to modeling details. In particular, when common Gō-like models are augmented with nonnative interactions, the predicted dimensions of the unfolded conformations become similar to those computed using all-atom MD. With this connection, the large deviations of all-atom MD from simple diffusion theory are likely caused in part by the presence of significant nonnative effects in folding processes modelled by current atomic force fields. The ramifications of our findings to the application of coarse-grained modeling to more complex biomolecular systems are discussed.

  11. The role of atomic level steric effects and attractive forces in protein folding.

    Science.gov (United States)

    Lammert, Heiko; Wolynes, Peter G; Onuchic, José N

    2012-02-01

    Protein folding into tertiary structures is controlled by an interplay of attractive contact interactions and steric effects. We investigate the balance between these contributions using structure-based models using an all-atom representation of the structure combined with a coarse-grained contact potential. Tertiary contact interactions between atoms are collected into a single broad attractive well between the C(β) atoms between each residue pair in a native contact. Through the width of these contact potentials we control their tolerance for deviations from the ideal structure and the spatial range of attractive interactions. In the compact native state dominant packing constraints limit the effects of a coarse-grained contact potential. During folding, however, the broad attractive potentials allow an early collapse that starts before the native local structure is completely adopted. As a consequence the folding transition is broadened and the free energy barrier is decreased. Eventually two-state folding behavior is lost completely for systems with very broad attractive potentials. The stabilization of native-like residue interactions in non-perfect geometries early in the folding process frequently leads to structural traps. Global mirror images are a notable example. These traps are penalized by the details of the repulsive interactions only after further collapse. Successful folding to the native state requires simultaneous guidance from both attractive and repulsive interactions. Copyright © 2011 Wiley Periodicals, Inc.

  12. Symptoms experienced during menopausal transition: Korean women in South Korea and the United States.

    Science.gov (United States)

    Im, Eun-Ok

    2003-10-01

    This article reports on cultural influences on symptoms experienced during menopausal transition of Korean women in South Korea and Korean immigrant women in the United States. Data from independent studies of two groups of Korean women were triangulated and analyzed using descriptive and inferential statistics. The analysis indicated that Korean women in South Korea tended to report more symptoms than Korean immigrant women in the United States. Types and severity of prevalent symptoms were also found to be different between the two groups. The findings suggest that recent introduction of menopausal industries in South Korea and contextual influences on Korean women's work and immigration in the United States would be the reason for differences. Based on the findings, implications for future research are proposed.

  13. Nonequilibrium steady states in correlated electron systems - Photoinduced insulator-metal transition and optical response

    International Nuclear Information System (INIS)

    Tsuji, Naoto; Oka, Takashi; Aoki, Hideo

    2010-01-01

    To reveal the nature of the photoinduced insulator-metal transition, we show that an exact analysis of the Falicov-Kimball model subject to external ac electric fields becomes possible with Floquet's method combined with the nonequilibrium dynamical mean-field theory. The nonequilibrium steady state that appears during irradiation of a pump light is shown to be determined if the dissipation in a certain heat-bath model is introduced. This has enabled us to predict that novel features characteristic of the photoexcited steady states, i.e., negative weight (gain) in the low-energy region and dip structures around the photon energy of the pump light, should be observed in the optical conductivity. Special emphasis is put on the role of dissipation, for which we elaborate the dependence of the steady state on the strength of dissipation and the temperature of the heat bath.

  14. Enhanced Prognostic Model for Lithium Ion Batteries Based on Particle Filter State Transition Model Modification

    Directory of Open Access Journals (Sweden)

    Buddhi Arachchige

    2017-11-01

    Full Text Available This paper focuses on predicting the End of Life and End of Discharge of Lithium ion batteries using a battery capacity fade model and a battery discharge model. The proposed framework will be able to estimate the Remaining Useful Life (RUL and the Remaining charge through capacity fade and discharge models. A particle filter is implemented that estimates the battery’s State of Charge (SOC and State of Life (SOL by utilizing the battery’s physical data such as voltage, temperature, and current measurements. The accuracy of the prognostic framework has been improved by enhancing the particle filter state transition model to incorporate different environmental and loading conditions without retuning the model parameters. The effect of capacity fade in the reduction of the EOD (End of Discharge time with cycling has also been included, integrating both EOL (End of Life and EOD prediction models in order to get more accuracy in the estimations.

  15. Powder keg divisions in the critical state regime: transition from continuous to explosive percolation

    Science.gov (United States)

    Zhou, Zongzheng; Tordesillas, Antoinette

    2017-06-01

    The underlying microstructure and dynamics of a dense granular material as it evolves towards the "critical state", a limit state in which the system deforms with an essentially constant volume and stress ratio, remains widely debated in the micromechanics of granular media community. Strain localization, a common mechanism in the large strain regime, further complicates the characterization of this limit state. Here we revisit the evolution to this limit state within the framework of modern percolation theory. Attention is paid to motion transfer: in this context, percolation translates to the emergence of a large-scale connectivity in graphs that embody information on individual grain displacements. We construct each graph G(r) by connecting nodes, representing the grains, within a distance r in the displacement-state-space. As r increases, we observe a percolation transition on G(r). The size of the jump discontinuity increases in the lead up to failure, indicating that the nature of percolation transition changes from continuous to explosive. We attribute this to the emergence of collective motion, which manifests in increasingly isolated communities in G(r). At the limit state, where the jump discontinuity is highest and invariant across the different unjamming cycles (drops in stress ratio), G(r) encapsulates multiple kinematically distinct communities that are mediated by nodes corresponding to those grains in the shear band. This finding casts light on the dual and opposing roles of the shear band: a mechanism that creates powder keg divisions in the sample, while simultaneously acting as a mechanical link that transfers motion through such subdivisions moving in relative rigid-body motion.

  16. SDF1-CXCR4 Signaling Contributes to the Transition from Acute to Chronic Pain State.

    Science.gov (United States)

    Yang, Fei; Sun, Wei; Luo, Wen-Jun; Yang, Yan; Yang, Fan; Wang, Xiao-Liang; Chen, Jun

    2017-05-01

    Emerging evidence has demonstrated the involvement of stromal cell-derived factor 1 (SDF1, also known as CXCL12)-CXCR4 signaling in a variety of pain state. However, the underlying mechanisms of SDF1-CXCR4 signaling leading to the maintenance of chronic pain states are poorly understood. In the present study, we sought to explore the role of SDF1-CXCR4 signaling in the forming of neuroplasticity by applying a model of the transition from acute to chronic pain state, named as hyperalgesic priming. Utilizing intraplantar bee venom (BV) injection, we successfully established hyperalgesic priming state and found that peripheral treating with AMD3100, a CXCR4 antagonist, or knocking down CXCR4 by intraganglionar CXCR4 small interfering RNA (siRNA) injection could prevent BV-induced primary mechanical hyperalgesia and hyperalgesic priming. Moreover, we showed that single intraplantar active SDF1 protein injection is sufficient to induce acute mechanical hyperalgesia and hyperalgesic priming through CXC4. Intraplantar coinjection of ERK inhibitor, U0126, and PI3K inhibitor, LY294002, as well as two protein translation inhibitors, temsirolimus and cordycepin, prevented the development of SDF1-induced acute mechanical hyperalgesia and hyperalgesic priming. Finally, on the models of complete Freund's adjuvant (CFA)-induced chronic inflammatory pain and spared nerve injury (SNI)-induced chronic neuropathic pain, we observed that knock-down of CXCR4 could both prevent the development and reverse the maintenance of chronic pain state. In conclusion, our present data suggested that through regulating ERK and PI3K-AKT pathways-mediated protein translation SDF1-CXCR4 signaling mediates the transition from acute pain to chronic pain state and finally contributes to the development and maintenance of chronic pain.

  17. The Folded Horn Antenna

    Science.gov (United States)

    Farr, E. G.; Bowen, L. H.; Baum, C. E.; Prather, W. D.

    Antennas for radiating high-power mesoband (medium-bandwidth) electromagnetic signals are critical to the mission of upsetting electronics at a distance. When operated at frequencies of a few hundred megahertz, RF weapons require highly efficient antennas that can fit into a small volume. Most of the existing antennas, such as pyramidal horns, are too large to fit onto certain platforms of interest. To address this challenge, we investigate the folded horn, which has aperture dimensions of 0.5 × 2 wavelengths, and a depth of 1.5-2 wavelengths. This antenna has a nearly focused aperture field, due to a parabolic fold in the H-plane. We report here on the fabrication and testing of the first folded horn, operating at 3 GHz. After a number of iterations, we obtained a realized gain of at least 10 dBi over 3-5 GHz, an aperture efficiency of 80%, and a return loss below -10 dB over 2.8-3.35 GHz. This design could be adapted to high-voltages, and it could work well in a two-antenna array, with two antennas positioned back to back, driven by a differential source.

  18. Edge states in the climate system: exploring global instabilities and critical transitions

    Science.gov (United States)

    Lucarini, Valerio; Bódai, Tamás

    2017-07-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system’s response to perturbations. Near critical transitions small causes can lead to large effects and—for all practical purposes—irreversible changes in the properties of the system. As is well known, the Earth climate is multistable: present astronomical and astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches to the problem. Following an idea developed by Eckhardt and collaborators for the investigation of multistable turbulent fluid dynamical systems, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the climatic edge state, a saddle embedded in the boundary between the two basins of attraction of the stable climates. The edge state attracts initial conditions belonging to such a boundary and, while being defined by the deterministic dynamics, is the gate facilitating noise-induced transitions between competing attractors. We use a simplified yet Earth-like intermediate complexity climate model constructed by coupling a primitive equations model of the atmosphere with a simple diffusive ocean. We refer to the climatic edge states as Melancholia states and provide an extensive analysis of their features. We study their dynamics, their symmetry properties, and we follow a complex set of bifurcations. We find situations where the Melancholia state has chaotic dynamics. In these cases, we have that the basin boundary between the two basins of attraction is a strange geometric set with a nearly zero

  19. Analysis of the chloroplast protein kinase Stt7 during state transitions.

    Directory of Open Access Journals (Sweden)

    Sylvain Lemeille

    2009-03-01

    Full Text Available State transitions allow for the balancing of the light excitation energy between photosystem I and photosystem II and for optimal photosynthetic activity when photosynthetic organisms are subjected to changing light conditions. This process is regulated by the redox state of the plastoquinone pool through the Stt7/STN7 protein kinase required for phosphorylation of the light-harvesting complex LHCII and for the reversible displacement of the mobile LHCII between the photosystems. We show that Stt7 is associated with photosynthetic complexes including LHCII, photosystem I, and the cytochrome b6f complex. Our data reveal that Stt7 acts in catalytic amounts. We also provide evidence that Stt7 contains a transmembrane region that separates its catalytic kinase domain on the stromal side from its N-terminal end in the thylakoid lumen with two conserved Cys that are critical for its activity and state transitions. On the basis of these data, we propose that the activity of Stt7 is regulated through its transmembrane domain and that a disulfide bond between the two lumen Cys is essential for its activity. The high-light-induced reduction of this bond may occur through a transthylakoid thiol-reducing pathway driven by the ferredoxin-thioredoxin system which is also required for cytochrome b6f assembly and heme biogenesis.

  20. Dynamics of Number of Packets in Transit in Free Flow State of Data Network

    International Nuclear Information System (INIS)

    Shengkun Xie; Lawniczak, A.T.

    2011-01-01

    We study how the dynamics of Number of Packets in Transit (NPT) is affected by the coupling of a routing type with a volume of incoming packet traffic in a data network model of packet switching type. The NPT is a network performance indicator of an aggregate type that measures in '' real time '', how many packets are in the network on their routes to their destinations. We conduct our investigation using a time-discrete simulation model that is an abstraction of the Network Layer of the ISO OSI Seven Layer Reference Model. This model focuses on packets and their routing. We consider a static routing and two different types of dynamic routings coupled with different volumes of incoming packet traffic in the network free flow state. Our study shows that the order of the values of the NPT mean value time series depends on the coupling of a routing type with a volume of incoming packet traffic and changes when the volume of incoming packet traffic increases and is closed to the critical source load values, i.e. when it is closed to the phase transition points from the network free flow state to its congested states. (authors)

  1. Variational transition-state theory. Progress report, February 1981-January 1983

    International Nuclear Information System (INIS)

    Truhlar, D.G.

    1983-01-01

    During the past two years we have extended the variational transition-state theory in several ways. Especially notable is that we have developed several new methods for calculating tunneling probabilities, including two general techniques applicable to systems with small and large reaction-path curvature. We have tested these methods successfully against accurate quantal calculations, and we have applied them to real systems in three dimensions. We have also developed general algorithms for variational transition state theory calculations on polyatomic systems and we have applied these to the combustion reaction OH + H 2 → H 2 O + H. We have developed and successfully applied a statistical-diabatic theory for state-selected rates. We made a totally ab initio prediction of an absolute chemical reaction rate, for the reaction Mu + H 2 → MuH + H, using an accurate potential energy surface and ethods that we had demonstrated to be reliable by tests against accurate quantal collinear results. This prediction has now been confirmed by unpublished experiments; I believe that this is the first reliable ab initio prediction of a chemical rection rate prior to its measurement. In the rest of this technical progress report we give further details of these and other studies we have carried out in the last two years under this contract

  2. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions.

    Science.gov (United States)

    Kirilovsky, Diana

    2015-10-01

    Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated.

  3. Expression of coxsackie and adenovirus receptor distinguishes transitional cancer states in therapy-induced cellular senescence.

    Science.gov (United States)

    Wu, P C; Wang, Q; Dong, Z M; Chu, E; Roberson, R S; Ivanova, I C; Wu, D Y

    2010-09-02

    Therapy-induced cellular senescence describes the phenomenon of cell cycle arrest that can be invoked in cancer cells in response to chemotherapy. Sustained proliferative arrest is often overcome as a contingent of senescent tumor cells can bypass this cell cycle restriction. The mechanism regulating cell cycle re-entry of senescent cancer cells remains poorly understood. This is the first report of the isolation and characterization of two distinct transitional states in chemotherapy-induced senescent cells that share indistinguishable morphological senescence phenotypes and are functionally classified by their ability to escape cell cycle arrest. It has been observed that cell surface expression of coxsackie and adenovirus receptor (CAR) is downregulated in cancer cells treated with chemotherapy. We show the novel use of surface CAR expression and adenoviral transduction to differentiate senescent states and also show in vivo evidence of CAR downregulation in colorectal cancer patients treated with neoadjuvant chemoradiation. This study suggests that CAR is a candidate biomarker for senescence response to antitumor therapy, and CAR expression can be used to distinguish transitional states in early senescence to study fundamental regulatory events in therapy-induced senescence.

  4. Are boat transition states likely to occur in Cope rearrangements? A DFT study of the biogenesis of germacranes

    Directory of Open Access Journals (Sweden)

    José Enrique Barquera-Lozada

    2017-09-01

    Full Text Available It has been proposed that elemanes are biogenetically formed from germacranes by Cope sigmatropic rearrangements. Normally, this reaction proceeds through a transition state with a chair conformation. However, the transformation of schkuhriolide (germacrane into elemanschkuhriolide (elemane may occur through a boat transition state due to the final configuration of the elemanschkuhriolide, but this transition state is questionable due to its high energy. The possible mechanisms of this transformation were studied in the density functional theory frame. The mechanistic differences between the transformation of (Z,E-germacranes and (E,E-germacranes were also studied. We found that (Z,E-germacranolides are significantly more stable than (E,E-germacranolides and elemanolides. In the specific case of schkuhriolide, even when the boat transition state is not energetically favored, a previous hemiacetalization lowers enough the energetic barrier to allow the formation of a very stable elemanolide that is even more stable than its (Z,E-germacrane.

  5. Study of the strength distribution of primary γ-transitions in the decay from superdeformed states in 194Hg

    International Nuclear Information System (INIS)

    Lopez-Martens, A.P.; Doessing, T.; Khoo, T.L.; Korichi, A.; Hannachi, F.; Calderin, I.J.; Lauritsen, T.; Ahmad, I.; Carpenter, M.P.; Fischer, S.M.; Hackman, G.; Janssens, R.V.F.; Nisius, D.; Reiter, P.; Amro, H.; Moore, E.F.

    1999-01-01

    The strength distribution of the primary γ rays in the decay from superdeformed (SD) states is investigated by applying the maximum likelihood method. For the 194 Hg nucleus, 41 primary transitions are identified above 2600 keV. It is concluded that they represent the strongest 10% of the transitions selected stochastically from a Porter-Thomas distribution. This would support the scenario of a statistical decay of SD states via coupling to a compound state at normal deformation. However, the occurrence of several very strong 'one-step linking' transitions is found to have a very small probability. Based on the absence of strong primary transitions from SD states in adjacent nuclei, the situation in 194 Hg is viewed as a very lucky incidence

  6. Transition state theory demonstrated at the micron scale with out-of-equilibrium transport in a confined environment

    DEFF Research Database (Denmark)

    Vestergaard, Christian L.; Mikkelsen, Morten Bo Lindholm; Reisner, Walter

    2016-01-01

    Transition state theory (TST) provides a simple interpretation of many thermally activated processes. It applies successfully on timescales and length scales that differ several orders of magnitude: to chemical reactions, breaking of chemical bonds, unfolding of proteins and RNA structures...

  7. Tropical Forest Restoration within Galapagos National Park: Application of a State-transition Model

    Directory of Open Access Journals (Sweden)

    S. R. Wilkinson

    2005-06-01

    Full Text Available Current theory on non-equilibrium communities, thresholds of irreversibility, and ecological resilience suggests the goal of ecological restoration of degraded communities is not to achieve one target, but to reestablish the temporal and spatial diversity inherent in natural ecosystems. Few restoration models, however, address ecological and management issues across the vegetation mosaic of a landscape. Because of a lack of scientific knowledge and funds, restoration practitioners focus instead on site-specific prescriptions and reactive rather than proactive approaches to restoration; this approach often dooms restoration projects to failure. We applied a state-transition model as a decision-making tool to identify and achieve short- and long-term restoration goals for a tropical, moist, evergreen forest on the island of Santa Cruz, Galapagos. The model guided the process of identifying current and desirable forest states, as well as the natural and human disturbances and management actions that caused transitions between them. This process facilitated assessment of opportunities for ecosystem restoration, expansion of the definition of restoration success for the system, and realization that, although site- or species-specific prescriptions may be available, they cannot succeed until broader landscape restoration issues are identified and addressed. The model provides a decision-making framework to allocate resources effectively to maximize these opportunities across the landscape, and to achieve long-term restoration success. Other restoration models have been limited by lack of scientific knowledge of the system. State-transition models for restoration incorporate current knowledge and funds, are adaptive, and can provide direction for restoration research and conservation management in other degraded systems.

  8. Recycling nicotinamide. The transition-state structure of human nicotinamide phosphoribosyltransferase

    Science.gov (United States)

    Burgos, Emmanuel S.; Vetticatt, Mathew J.; Schramm, Vern L.

    2013-01-01

    Human nicotinamide phosphoribosyltransferase (NAMPT) replenishes the NAD pool and controls the activities of sirtuins (SIRT), mono- and poly-(ADP-ribose) polymerases (PARP) and NAD nucleosidase (CD38). The nature of the enzymatic transition-state (TS) is central to understanding the function of NAMPT. We determined the TS structure for pyrophosphorolysis of nicotinamide mononucleotide (NMN) by kinetic isotope effects (KIEs). With the natural substrates, NMN and pyrophosphate (PPi), the intrinsic KIEs of [1′-14C], [1-15N], [1′-3H] and [2′-3H] are 1.047, 1.029, 1.154 and 1.093, respectively. A unique quantum computational approach was used for TS analysis that included structural elements of the catalytic site. Without constraints (e.g. imposed torsion angles), the theoretical and experimental data are in good agreement. The quantum-mechanical calculations incorporated a crucial catalytic site residue (D313), two magnesium atoms and coordinated water molecules. The transition state model predicts primary 14C, α-secondary 3H, β-secondary 3H and primary 15N KIE close to the experimental values. The analysis reveals significant ribocation character at the TS. The attacking PPi nucleophile is weakly interacting (rC-O = 2.60 Å) and the N-ribosidic C1′-N bond is highly elongated at the TS (rC-N = 2.35 Å), consistent with an ANDN mechanism. Together with the crystal structure of the NMN•PPi•Mg2•enzyme complex, the reaction coordinate is defined. The enzyme holds the nucleophile and leaving group in relatively fixed positions to create a reaction coordinate with C1′-anomeric migration from nicotinamide to the PPi. The transition state is reached by a 0.85 Å migration of C1′. PMID:23373462

  9. A transition-state based rotational sudden (TSRS) approximation for polyatomic reactive scattering.

    Science.gov (United States)

    Zhao, Bin; Manthe, Uwe

    2017-10-14

    A transition-state based rotational sudden (TSRS) approximation for the calculation of differential and integral cross sections is introduced. The TSRS approach only requires data obtained from reactive scattering calculations for the vanishing total angular momentum (J = 0). It is derived within the quantum transition state framework and can be viewed as a generalization and improvement of existing J-shifting schemes. The TSRS approach assumes a sudden decay of the activated complex and separability of the overall rotation and motion in the internal coordinates. Depending on the choice of the body fixed frame, different variants of the TSRS can be derived. The TSRS approach is applied to the calculation of integral cross sections of various isotopomers of the H 2 O+H→H 2 +OH reaction, the reverse reaction H 2 +OH→H 2 O+H, and the H 2 O+Cl→HCl+OH reaction. Comparison with accurate close-coupling calculations and established approximate schemes shows that a scattering frame based TSRS approximation yields more accurate results than the centrifugal sudden approximation and standard J-shifting for the H 2 O+H→H 2 +OH reaction and all isotopomers studied. For the H 2 +OH→H 2 O+H and the H 2 O+Cl→HCl+OH reactions, the TSRS results as well as the results of the other approximate schemes agree well with the exact ones. The findings are rationalized by an analysis of the different contributions to the moment of inertia matrix at the transition state geometry.

  10. Density induced phase transitions in the Schwinger model. A study with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-02-15

    We numerically study the zero temperature phase structure of the multiflavor Schwinger model at nonzero chemical potential. Using matrix product states, we reproduce analytical results for the phase structure for two flavors in the massless case and extend the computation to the massive case, where no analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-chemical potential plane with great precision and provide a concrete example of tensor networks overcoming the sign problem in a lattice gauge theory calculation.

  11. An experimental spatio-temporal state transition of coupled magneto-elastic system.

    Science.gov (United States)

    Hikihara, Takashi; Okamoto, Yoshinobu; Ueda, Yoshisuke

    1997-12-01

    In this paper the vibration and the traveling wave in a coupled magneto-elastic beam system are discussed experimentally. The vibration excited by the periodical forcing at the beam system propagates to another as a wave through the coupling elastic beams. Each magneto-elastic beam shows the variety of vibrations caused by the nonlinearity of the potential well and the wave propagation with time delay. The temporal vibration of the magneto-elastic beam is explained with relations to the spatial state transition based on the experimental results. (c) 1997 American Institute of Physics.

  12. Transition state determination of enzyme reaction on free energy surface: Application to chorismate mutase

    Science.gov (United States)

    Higashi, Masahiro; Hayashi, Shigehiko; Kato, Shigeki

    2007-04-01

    The transition state on the free energy surface for Claisen rearrangement of chorismate in Bacillus subtilis chorismate mutase is calculated with a method based on a linear response theory. The calculated activation free energy is 16.9 kcal/mol, which is in good agreement with the experimental one. The catalytic ability of the enzyme is examined by comparing the activation barrier with that in aqueous solution and found to be mainly attributed to the conformational restriction of the substrate. We also calculate the kinetic isotope effects, which are in accord with the experimental estimates.

  13. Monte Carlo method for determining free-energy differences and transition state theory rate constants

    International Nuclear Information System (INIS)

    Voter, A.F.

    1985-01-01

    We present a new Monte Carlo procedure for determining the Helmholtz free-energy difference between two systems that are separated in configuration space. Unlike most standard approaches, no integration over intermediate potentials is required. A Metropolis walk is performed for each system, and the average Metropolis acceptance probability for a hypothetical step along a probe vector into the other system is accumulated. Either classical or quantum free energies may be computed, and the procedure is also ideally suited for evaluating generalized transition state theory rate constants. As an application we determine the relative free energies of three configurations of a tungsten dimer on the W(110) surface

  14. The Welfare to Work Transition in the United States: Implications for Work-Related Learning

    Science.gov (United States)

    Fisher, James C.; Martin, Larry G.

    2000-11-01

    This paper summarizes the legislation upon which the current welfare-to-work transition in the United States is based and describes characteristics of the former welfare population from which various tiers of employment options have emerged: unsubsidized-employed workers, subsidized-employed workers, subsidized-unemployed recipients, and unsubsidized-unemployed individuals. It also discusses current program emphases, and presents a format for directions for future program development which includes academic programs, situated cognition programs, integrated literacy/occupational skills programs, and integrated literacy/soft skills training.

  15. Core-state models for fuel management of equilibrium and transition cycles in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J.M.; Martinez-Val, J.M.; Corella, M.R.

    1977-08-01

    Fuel management requires that mass, energy, and reactivity balance be satisfied in each reload cycle. Procedures for selection of alternatives, core-state models, and fuel cost calculations have been developed for both equilibrium and transition cycles. Effective cycle lengths and fuel cycle variables--namely, reload batch size, schedule of incore residence for the fuel, feed enrichments, energy sharing cycle by cycle, and discharge burnup and isotopics--are the variables being considered for fuel management planning with a given energy generation plan, fuel design, recycling strategy, and financial assumptions.

  16. Surface hopping, transition state theory and decoherence. I. Scattering theory and time-reversibility.

    Science.gov (United States)

    Jain, Amber; Herman, Michael F; Ouyang, Wenjun; Subotnik, Joseph E

    2015-10-07

    We provide an in-depth investigation of transmission coefficients as computed using the augmented-fewest switches surface hopping algorithm in the low energy regime. Empirically, microscopic reversibility is shown to hold approximately. Furthermore, we show that, in some circumstances, including decoherence on top of surface hopping calculations can help recover (as opposed to destroy) oscillations in the transmission coefficient as a function of energy; these oscillations can be studied analytically with semiclassical scattering theory. Finally, in the spirit of transition state theory, we also show that transmission coefficients can be calculated rather accurately starting from the curve crossing point and running trajectories forwards and backwards.

  17. Transition state theory for solvated reactions beyond recrossing-free dividing surfaces.

    Science.gov (United States)

    Revuelta, F; Bartsch, Thomas; Garcia-Muller, P L; Hernandez, Rigoberto; Benito, R M; Borondo, F

    2016-06-01

    The accuracy of rate constants calculated using transition state theory depends crucially on the correct identification of a recrossing-free dividing surface. We show here that it is possible to define such optimal dividing surface in systems with non-Markovian friction. However, a more direct approach to rate calculation is based on invariant manifolds and avoids the use of a dividing surface altogether, Using that method we obtain an explicit expression for the rate of crossing an anharmonic potential barrier. The excellent performance of our method is illustrated with an application to a realistic model for LiNC⇌LiCN isomerization.

  18. Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, June 14–16, 2011, Portland, Oregon

    Science.gov (United States)

    Becky K. Kerns; Ayn J. Shlisky; Colin J. Daniel

    2012-01-01

    The first ever Landscape State-and-Transition Simulation Modeling Conference was held from June 14–16, 2011, in Portland Oregon. The conference brought together over 70 users of state-and-transition simulation modeling tools—the Vegetation Dynamics Development Tool (VDDT), the Tool for Exploratory Landscape Analysis (TELSA) and the Path Landscape Model. The goal of the...

  19. An explanation for the pseudogap states and the quantum phase transitions beneath the Dome

    Science.gov (United States)

    Cabo, Alejandro Genaro; Vielza, Yoandri; Domingues, Mauricio

    The work present the results of a model proposed to improve the understanding of the normal state of cuprate superconductors. The analysis reproduces the antiferromagnetic correlations and insulator character of these materials. Further, the discussion led to an outstanding prediction: the existence of well defined pseudogap states, which physical origin constitutes still today a debated question. The pseudogap emerges as a paramagnetic excited state, breaking the square crystal symmetry of the CuO planes in the same way as the AF order does it in the real material. The results defined the pseudogap effect as being of pure Coulomb origin. The Fermi surface exhibits the property defining its name: a momentum dependent gap which, that closes at the four corners of the Brillouin cell. The effect of the hole doping on both the AF-Insulator and the pseudogap states was investigated. The evolutions of the energy and band structure with hole doping, became able to predict the quantum phase transition (QPT) which La2CuO4 and other cuprate materials show at doping value, laying ``beneath'' the superconductor ``Dome''. The energies of the insulator and pseudogap states, both tend to coincide at a critical doping value of 0.2, at which the QPT is observed in the material. The doping evolution of the Fermi surface evaluated in for the insulator state, reproduce the experimental results for La2CuO4. We acknoweledge the support received from the Network of the ICTP Net-35.

  20. Modeling and Performance Analysis of State Transitions for Energy-Efficient Femto Base Stations

    Directory of Open Access Journals (Sweden)

    YunWon Chung

    2015-05-01

    Full Text Available Lowering the energy required by base stations (BSs is one of the hot issues nowadays in order to achieve green cellular networks. The energy consumption of femto BSs can be reduced, by turning off the radio interface when there is no mobile station (MS under the coverage area of the femto BSs or MSs served by the femto BSs do not transmit or receive data packets for a long time, especially late at night. In the energy-efficient femto BSs, if MSs have any data packet to transmit and the radio interface of femto BSs is in the off state, MSs wake up the radio interface of femto BSs by using an additional low-power radio interface. In this paper, active (data, idle, active (signaling, sleep entering, sleep and waking up states are defined for the state model for the energy-efficient femto BSs, and the state transitions are modeled analytically. The steady-state probability of each state is derived thoroughly using a semi-Markov approach. Then, the performance of the energy-efficient femto BSs is analyzed in detail, from the aspects of energy consumption, cumulative average delay, cost and low-power radio signaling load. From the results, the tradeoff relationship between energy consumption and cumulative average delay is analyzed in detail, and it was concluded that an appropriate inactivity timer value should be selected to balance the tradeoff.

  1. Photoelectron spectroscopy studies of mixed-valence states of Sm overlayers on transition-metal surfaces

    International Nuclear Information System (INIS)

    Tao Lian.

    1990-01-01

    To investigate and understand how the mixed-valent state of rare earths (RE) is formed and affected by their interactions with transition metals (TM), synchrotron-radiation-excited photoelectron spectroscopy was used to systematically study valence states of Sm overlayers on three TM surfaces as functions of Sm coverages. On polycrystalline Ta, Sm always has a mixed-valent state, consisting of the trivalent state and the divalent state. At a coverage of 0.02 monolayer, Sm has an average valence of 2.24. As the coverage increases, the Sm 3+ and Sm 2+ components increase at different rates. Sm on polycrystalline Cu behaves quite differently. At coverages below one monolayer, all the Sm ions adopt the trivalent state. When the coverage exceeds one monolayer, Sm 2+ ions appear, with a resulting average valence of 2.52. After that the average valence does not change significantly. On a Cu(110) single crystal surface, the situation is found to closely resemble that observed on polycrystalline Cu. These results indicate that the Sm-Ta interaction is weak compared to the Sm-Sm interaction, while the Sm-Cu interaction is stronger and affects the electronic structure

  2. A hyperactive transcriptional state marks genome reactivation at the mitosis–G1 transition

    Science.gov (United States)

    Hsiung, Chris C.-S.; Bartman, Caroline R.; Huang, Peng; Ginart, Paul; Stonestrom, Aaron J.; Keller, Cheryl A.; Face, Carolyne; Jahn, Kristen S.; Evans, Perry; Sankaranarayanan, Laavanya; Giardine, Belinda; Hardison, Ross C.; Raj, Arjun; Blobel, Gerd A.

    2016-01-01

    During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis–G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis–G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer–promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis–G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis–G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis–G1 transition might predispose cells to diverge in gene expression states. PMID:27340175

  3. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition.

    Science.gov (United States)

    Hsiung, Chris C-S; Bartman, Caroline R; Huang, Peng; Ginart, Paul; Stonestrom, Aaron J; Keller, Cheryl A; Face, Carolyne; Jahn, Kristen S; Evans, Perry; Sankaranarayanan, Laavanya; Giardine, Belinda; Hardison, Ross C; Raj, Arjun; Blobel, Gerd A

    2016-06-15

    During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis-G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis-G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer-promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis-G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis-G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis-G1 transition might predispose cells to diverge in gene expression states. © 2016 Hsiung et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Cell-State Transitions Regulated by SLUG Are Critical for Tissue Regeneration and Tumor Initiation

    Directory of Open Access Journals (Sweden)

    Sarah Phillips

    2014-05-01

    Full Text Available Perturbations in stem cell activity and differentiation can lead to developmental defects and cancer. We use an approach involving a quantitative model of cell-state transitions in vitro to gain insights into how SLUG/SNAI2, a key developmental transcription factor, modulates mammary epithelial stem cell activity and differentiation in vivo. In the absence of SLUG, stem cells fail to transition into basal progenitor cells, while existing basal progenitor cells undergo luminal differentiation; together, these changes result in abnormal mammary architecture and defects in tissue function. Furthermore, we show that in the absence of SLUG, mammary stem cell activity necessary for tissue regeneration and cancer initiation is lost. Mechanistically, SLUG regulates differentiation and cellular plasticity by recruiting the chromatin modifier lysine-specific demethylase 1 (LSD1 to promoters of lineage-specific genes to repress transcription. Together, these results demonstrate that SLUG plays a dual role in repressing luminal epithelial differentiation while unlocking stem cell transitions necessary for tumorigenesis.

  5. Factors Influencing Transitions Between Frailty States in Elderly Adults: The Progetto Veneto Anziani Longitudinal Study.

    Science.gov (United States)

    Trevisan, Caterina; Veronese, Nicola; Maggi, Stefania; Baggio, Giovannella; Toffanello, Elena Debora; Zambon, Sabina; Sartori, Leonardo; Musacchio, Estella; Perissinotto, Egle; Crepaldi, Gaetano; Manzato, Enzo; Sergi, Giuseppe

    2017-01-01

    To investigate frailty state transitions in a cohort of older Italian adults to identify factors exacerbating or improving frailty conditions. Population-based longitudinal study with mean follow-up of 4.4 years. Community. Individuals enrolled in the Progetto Veneto Anziani (Pro.V.A.) (N = 2,925; n = 1,179 male, n = 1,746 female; mean age 74.4 ± 7.3). Frailty was identified at baseline and follow-up based on the presence of at least three Fried criteria; prefrailty was defined as the presence of one or two Fried criteria. Anthropometric, socioeconomic, and clinical characteristics were assessed at baseline in a personal interview and clinical examination using validated scales and medical history. During the study period, 1,114 (38.1%) subjects retained their baseline frailty status, 1,066 (36.4%) had a transition in frailty status, and the remainder of the sample died. Older age, female sex, obesity, cardiovascular disease, osteoarthritis, smoking, loss of vision, low levels of self-sufficiency and physical performance, cognitive impairment, hypovitaminosis D, hyperuricemia, and polypharmacy were associated with increasing frailty and greater mortality. Conversely, overweight, low to moderate drinking, high educational level, and living alone were associated with decreasing frailty. Frailty was confirmed as a dynamic syndrome, with socioeconomic and clinical factors that could be targets of preventive actions influencing transitions to better or worse frailty status. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  6. A hard-to-soft state transition of Aquila X-1 observed with Suzaku

    Science.gov (United States)

    Ono, Ko; Makishima, Kazuo; Sakurai, Soki; Zhang, Zhongli; Yamaoka, Kazutaka; Nakazawa, Kazuhiro

    2017-04-01

    The recurrent soft X-ray transient Aquila X-1 was observed with Suzaku for a gross duration of 79.9 ks, on 2011 October 21 when the object was in a rising phase of an outburst. During the observation, the source exhibited a clear spectral transition from the hard state to the soft state, on a time scale of ∼30 ks. Across the transition, the 0.8-10 keV X-Ray Imaging Spectrometer count rate increased by a factor ∼3, that of Hard X-ray Detector PIN (HXD-PIN) in 15-60 keV decreased by a similar factor, and the unabsorbed 0.1-100 keV luminosity increased from 3.5 × 1037 erg s-1 to 5.1 × 1037 erg s-1. The broadband spectral shape changed continuously, from a power-law-like one with a high-energy cut-off to a more convex one. Throughout the transition, the 0.8-60 keV spectra were successfully described with a model consisting of a multi-color blackbody and a Comptonized blackbody, which are considered to arise from a standard accretion disk and a closer vicinity of the neutron star, respectively. All the model parameters were confirmed to change continuously, from those typical in the hard state to those typical of the soft state. More specifically, the inner disk radius decreased from 31 km to 18 km, the effects of Comptonization on the blackbody photons weakened, and the electron temperature of Comptonization decreased from 10 keV to 3 keV. The derived parameters imply that the Comptonizing corona shrinks towards the final soft state, and/or the radial infall velocity of the corona decreases. These results reinforce the view that the soft and hard states of Aql X-1 (and of similar objects) are described by the same “disk plus Comptonized blackbody” model, but with considerably different parameters.

  7. The nuclear industry's transition to risk-informed regulation and operation in the United States

    International Nuclear Information System (INIS)

    Kadak, Andrew C.; Matsuo, Toshihiro

    2007-01-01

    This paper summarizes a study of the transition of the United States nuclear industry from a prescriptive regulatory structure to a more risk informed approach to operations and regulations. The transition occurred over a 20 yr period in which gradual changes were made in the fundamental regulations and to the approach to nuclear safety and operations. While the number of actual regulatory changes were few, they are continuing. The utilities that embraced risk informed operations made dramatic changes in the way they approached operations and outage management. Those utilities that used risk in operations showed dramatic improvement in safety based on Institute of Nuclear Power Operations (INPO) performance indicators. It was also shown that the use of risk did not negatively affect safety performance of the plants compared to standard prescriptive approaches. This was despite having greater flexibility in compliance to regulatory standards and the use of the newly instituted risk-informed reactor oversight process. Key factors affecting the successful transition to a more risk-informed approach to regulations and operations are: strong top management support and leadership both at the regulator and the utility; education and training in risk principles and probabilistic risk Assessment tools for engineers, operators and maintenance staff; a slow and steady introduction of risk initiatives in areas that can show value to both the regulator and the industry; a transparent regulatory foundation built around a safety goal policy and the development of a strong safety culture at the utility to allow for more independence in safety compliance and risk management. The experience of the United States shows positive results in both safety and economics. The INPO and NRC metrics presented show that the use of risk information in operations and regulation is marginally better with no degradation in safety when plants that have embraced risk-informed approaches are compared

  8. Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers.

    Science.gov (United States)

    Liu, Jun-qiu; Wulff, Günter

    2008-06-25

    An artificial model for the natural enzyme carboxypeptidase A has been constructed by molecular imprinting in synthetic polymers. The tetrahedral transition state analogues (TSAs 4 and 5) for the carbonate hydrolysis have been designed as templates to allow incorporation of the main catalytic elements, an amidinium group and a Zn(2+) or Cu(2+) center, in a defined orientation in the transition state imprinted active site. The complexation of the functional monomer and the template in presence of Cu(2+) through stoichiometric noncovalent interaction was established on the basis of (1)H NMR studies and potentiometric titration. The Cu(2+) center was introduced into the imprinted cavity during polymerization or by substitution of Zn(2+) in Zn(2+) imprinted polymers. The direct introduction displayed obvious advantages in promoting catalytic efficiency. With substrates exhibiting a very similar structure to the template, an extraordinarily high enhancement of the rate of catalyzed to uncatalyzed reaction (k(cat)/k(uncat)) of 10(5)-fold was observed. If two amidinium moieties are introduced in proximity to one Cu(2+) center in the imprinted cavity by complexation of the functional monomer 3 with the template 5, the imprinted catalysts exhibited even higher activities and efficiencies for the carbonate hydrolysis with k(cat)/k(uncat) as high as 410,000. These are by far the highest values obtained for molecularly imprinted catalysts, and they are also considerably higher compared to catalytic antibodies. Our kinetic studies and competitive inhibition experiments with the TSA template showed a clear indication of a very efficient imprinting procedure. In addition, this demonstrates the important role of the transition state stabilization during the catalysis of this reaction.

  9. A molecular symmetry analysis of the electronic states and transition dipole moments for molecules with two torsional degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, R. [Institut für Theoretische Chemie, Universität Wien, Währinger Straße 17, 1090 Vienna (Austria); Applied Chemistry Department, Palestine Polytechnic University, Hebron, Palestine (Country Unknown); Leibscher, M., E-mail: monika.leibscher@itp.uni-hannover.de [Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2015-02-14

    We present a molecular symmetry analysis of electronic states and transition dipole moments for molecules which undergo large amplitude intramolecular torsions. The method is based on the correlation between the point group of the molecule at highly symmetric configurations and the molecular symmetry group. As an example, we determine the global irreducible representations of the electronic states and transition dipole moments for the quinodimethane derivative 2-[4-(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1, 3-dioxole for which two torsional degrees of freedom can be activated upon photo-excitation and construct the resulting symmetry adapted transition dipole functions.

  10. Circuit topology of self-interacting chains: implications for folding and unfolding dynamics.

    Science.gov (United States)

    Mugler, Andrew; Tans, Sander J; Mashaghi, Alireza

    2014-11-07

    Understanding the relationship between molecular structure and folding is a central problem in disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological property because rearranging the contacts requires discontinuous deformations. Conversely, the topology is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology of contact arrangements. We formalize the topology by describing the relations between any two contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each other. We show that even when other determinants of folding rate such as contact order and size are kept constant, this 'circuit' topology determines folding kinetics. In particular, we find that the folding rate increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology constrains the conformational phase space explored during folding and unfolding: the number of forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease with the fraction of series relations. Finally, we find that circuit topology influences whether distinct intermediate states are present, with crossed contacts being the key factor. The approach presented here can be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering, and single-molecule biophysics.

  11. Effects of knot type in the folding of topologically complex lattice proteins

    Science.gov (United States)

    Soler, Miguel A.; Nunes, Ana; Faísca, Patrícia F. N.

    2014-07-01

    The folding properties of a protein whose native structure contains a 52 knot are investigated by means of extensive Monte Carlo simulations of a simple lattice model and compared with those of a 31 knot. A 52 knot embedded in the native structure enhances the kinetic stability of the carrier lattice protein in a way that is clearly more pronounced than in the case of the 31 knot. However, this happens at the expense of a severe loss in folding efficiency, an observation that is consistent with the relative abundance of 31 and 52 knots in the Protein Data Bank. The folding mechanism of the 52 knot shares with that of the 31 knot the occurrence of a threading movement of the chain terminus that lays closer to the knotted core. However, co-concomitant knotting and folding in the 52 knot occurs with negligible probability, in sharp contrast to what is observed for the 31 knot. The study of several single point mutations highlights the importance in the folding of knotted proteins of the so-called structural mutations (i.e., energetic perturbations of native interactions between residues that are critical for knotting but not for folding). On the other hand, the present study predicts that mutations that perturb the folding transition state may significantly enhance the kinetic stability of knotted proteins provided they involve residues located within the knotted core.

  12. Accelerated molecular dynamics simulations of protein folding.

    Science.gov (United States)

    Miao, Yinglong; Feixas, Ferran; Eun, Changsun; McCammon, J Andrew

    2015-07-30

    Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies. © 2015 Wiley Periodicals, Inc.

  13. Gyral Folding Pattern Analysis via Surface Profiling

    Science.gov (United States)

    Li, Kaiming; Guo, Lei; Li, Gang; Nie, Jingxin; Faraco, Carlos; Cui, Guangbin; Zhao, Qun; Miller, L. Stephen; Liu, Tianming

    2010-01-01

    Folding is an essential shape characteristic of the human cerebral cortex. Descriptors of cortical folding patterns have been studied for decades. However, many previous studies are either based on local shape descriptors such as curvature, or based on global descriptors such as gyrification index or spherical wavelets. This paper proposes a gyrus-scale folding pattern analysis technique via cortical surface profiling. Firstly, we sample the cortical surface into 2D profiles and model them using a power function. This step provides both the flexibility of representing arbitrary shape by profiling and the compactness of representing shape by parametric modeling. Secondly, based on the estimated model parameters, we extract affine-invariant features on the cortical surface, and apply the affinity propagation clustering algorithm to parcellate the cortex into cortical regions with strict hierarchy and smooth transitions among them. Finally, a second-round surface profiling is performed on the parcellated cortical surface, and the number of hinges is detected to describe the gyral folding pattern. We have applied the surface profiling method to two normal brain datasets and a Schizophrenia patient dataset. The experimental results demonstrate that the proposed method can accurately classify human gyri into 2-hinge, 3-hinge and 4-hinge patterns. The distribution of these folding patterns on brain lobes and the relationship between fiber density and gyral folding patterns are further investigated. Results from the Schizophrenia dataset are consistent with commonly found abnormality in former studies by others, which demonstrates the potential clinical applications of the proposed technique. PMID:20472071

  14. Coarsely resolved topography along protein folding pathways

    Science.gov (United States)

    Fernández, Ariel; Kostov, Konstantin S.; Berry, R. Stephen

    2000-03-01

    The kinetic data from the coarse representation of polypeptide torsional dynamics described in the preceding paper [Fernandez and Berry, J. Chem. Phys. 112, 5212 (2000), preceding paper] is inverted by using detailed balance to obtain a topographic description of the potential-energy surface (PES) along the dominant folding pathway of the bovine pancreatic trypsin inhibitor (BPTI). The topography is represented as a sequence of minima and effective saddle points. The dominant folding pathway displays an overall monotonic decrease in energy with a large number of staircaselike steps, a clear signature of a good structure-seeker. The diversity and availability of alternative folding pathways is analyzed in terms of the Shannon entropy σ(t) associated with the time-dependent probability distribution over the kinetic ensemble of contact patterns. Several stages in the folding process are evident. Initially misfolded states form and dismantle revealing no definite pattern in the topography and exhibiting high Shannon entropy. Passage down a sequence of staircase steps then leads to the formation of a nativelike intermediate, for which σ(t) is much lower and fairly constant. Finally, the structure of the intermediate is refined to produce the native state of BPTI. We also examine how different levels of tolerance to mismatches of side chain contacts influence the folding kinetics, the topography of the dominant folding pathway, and the Shannon entropy. This analysis yields upper and lower bounds of the frustration tolerance required for the expeditious and robust folding of BPTI.

  15. Discrete-line transitions from superdeformed to yrast states in 194Hg and 192Hg

    International Nuclear Information System (INIS)

    Hackman, G.; Khoo, T.L.; Ackermann, D.

    1996-01-01

    Discrete-line γ-ray decay from superdeformed (SD) to yrast states in 194,192 Hg has been studied with the Gammasphere spectrometer. The previously established decay for the yrast SD band of 194 Hg has been characterized further. In addition, one-step decays have been observed for 194 Hg SD band 3, which fixes the excitation energy and spin of the last observed level of this band at E* = 7.455 MeV, J = 11ℎ. So far no direct decays from superdeformed to yrast states have been observed in 192 Hg or in 194 Hg band 2, a result which is consistent with fluctuations of the transition strengths

  16. Probing the transition state region in catalytic CO oxidation on Ru

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, H. [Stockholm Univ. (Sweden); Oberg, H. [Stockholm Univ. (Sweden); Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Gladh, J. [Stockholm Univ. (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [Stockholm Univ. (Sweden); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hantschmann, M. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Kuhn, D. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mitra, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Moeller, S. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Persson, M. [The Univ. of Liverpool, Liverpool (United Kingdom); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Abild-Pedersen, F. [Stanford Univ., Stanford, CA (United States); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pettersson, L. G. M. [Stockholm Univ. (Sweden); Nilsson, A. [Stockholm Univ. (Sweden); SLAC National Accelerator Lab., Menlo Park, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-12

    Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

  17. Structural analysis of silanediols as transition-state-analogue inhibitors of the benchmark metalloprotease thermolysin.

    Science.gov (United States)

    Juers, Douglas H; Kim, Jaeseung; Matthews, Brian W; Sieburth, Scott McN

    2005-12-20

    Dialkylsilanediols have been found to be an effective functional group for the design of active-site-directed protease inhibitors, including aspartic (HIV protease) and metallo (ACE and thermolysin) proteases. The use of silanediols is predicated on its resemblance to the hydrated carbonyl transition-state structure of amide hydrolysis. This concept has been tested by replacing the presumed tetrahedral carbon of a thermolysin substrate with a silanediol group, resulting in an inhibitor with an inhibition constant K(i) = 40 nM. The structure of the silanediol bound to the active site of thermolysin was found to have a conformation very similar to that of a corresponding phosphonamidate inhibitor (K(i) = 10 nM). In both cases, a single oxygen is within bonding distance to the active-site zinc ion, mimicking the presumed tetrahedral transition state. There are binding differences that appear to be related to the presence or absence of protons on the oxygens attached to the silicon or phosphorus. This is the first crystal structure of an organosilane bound to the active site of a protease.

  18. The peptide-receptive transition state of MHC-1 molecules: Insight from structure and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Robinson H.; Mage, M.; Dolan, M.; Wang, R.; Boyd, L.; Revilleza, M.; Natarajan, K.; Myers, N.; Hansen, T.; Margulies, D.

    2012-05-01

    MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed 'open' position in the PR transition state to a 'closed' position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.

  19. Flexible transition state theory for a variable reaction coordinate: Derivation of canonical and microcanonical forms

    International Nuclear Information System (INIS)

    Robertson, Struan; Wagner, Albert F.; Wardlaw, David M.

    2000-01-01

    A completely general canonical and microcanonical (energy-resolved) flexible transition state theory (FTST) expression for the rate constant is derived for an arbitrary choice of reaction coordinate. The derivation is thorough and rigorous within the framework of FTST and replaces our previous treatments [Robertson et al., J. Chem. Phys. 103, 2917 (1995); Robertson et al., Faraday Discuss. Chem. Soc. 102, 65 (1995)] which implicitly involved some significant assumptions. The canonical rate expressions obtained here agree with our earlier results. The corresponding microcanonical results are new. The rate expressions apply to any definition of the separation distance between fragments in a barrierless recombination (or dissociation) that is held fixed during hindered rotations at the transition state, and to any combination of fragment structure (atom, linear top, nonlinear top). The minimization of the rate constant with respect to this definition can be regarded as optimizing the reaction coordinate within a canonical or microcanonical framework. The expression is analytic except for a configuration integral whose evaluation generally requires numerical integration over internal angles (from one to five depending on the fragment structures). The form of the integrand in this integral has important conceptual and computational implications. The primary component of the integrand is the determinant of the inverse G-matrix associated with the external rotations and the relative internal motion of the fragments. (c) 2000 American Institute of Physics

  20. A structural analysis of the A5/1 state transition graph

    Directory of Open Access Journals (Sweden)

    Andreas Beckmann

    2012-10-01

    Full Text Available We describe efficient algorithms to analyze the cycle structure of the graph induced by the state transition function of the A5/1 stream cipher used in GSM mobile phones and report on the results of the implementation. The analysis is performed in five steps utilizing HPC clusters, GPGPU and external memory computation. A great reduction of this huge state transition graph of 2^64 nodes is achieved by focusing on special nodes in the first step and removing leaf nodes that can be detected with limited effort in the second step. This step does not break the overall structure of the graph and keeps at least one node on every cycle. In the third step the nodes of the reduced graph are connected by weighted edges. Since the number of nodes is still huge an efficient bitslice approach is presented that is implemented with NVIDIA's CUDA framework and executed on several GPUs concurrently. An external memory algorithm based on the STXXL library and its parallel pipelining feature further reduces the graph in the fourth step. The result is a graph containing only cycles that can be further analyzed in internal memory to count the number and size of the cycles. This full analysis which previously would take months can now be completed within a few days and allows to present structural results for the full graph for the first time. The structure of the A5/1 graph deviates notably from the theoretical results for random mappings.

  1. Crossing the dividing surface of transition state theory. III. Once and only once. Selecting reactive trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Lorquet, J. C., E-mail: jc.lorquet@ulg.ac.be [Department of Chemistry, University of Liège, Sart-Tilman (Bâtiment B6), B-4000 Liège 1 (Belgium)

    2015-09-14

    The purpose of the present work is to determine initial conditions that generate reacting, recrossing-free trajectories that cross the conventional dividing surface of transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) without ever returning to it. Local analytical equations of motion valid in the neighborhood of this planar surface have been derived as an expansion in Poisson brackets. We show that the mere presence of a saddle point implies that reactivity criteria can be quite simply formulated in terms of elements of this series, irrespective of the shape of the potential energy function. Some of these elements are demonstrated to be equal to a sum of squares and thus to be necessarily positive, which has a profound impact on the dynamics. The method is then applied to a three-dimensional model describing an atom-diatom interaction. A particular relation between initial conditions is shown to generate a bundle of reactive trajectories that form reactive cylinders (or conduits) in phase space. This relation considerably reduces the phase space volume of initial conditions that generate recrossing-free trajectories. Loci in phase space of reactive initial conditions are presented. Reactivity is influenced by symmetry, as shown by a comparative study of collinear and bent transition states. Finally, it is argued that the rules that have been derived to generate reactive trajectories in classical mechanics are also useful to build up a reactive wave packet.

  2. Efficient Sampling of the Structure of Crypto Generators' State Transition Graphs

    Science.gov (United States)

    Keller, Jörg

    Cryptographic generators, e.g. stream cipher generators like the A5/1 used in GSM networks or pseudo-random number generators, are widely used in cryptographic network protocols. Basically, they are finite state machines with deterministic transition functions. Their state transition graphs typically cannot be analyzed analytically, nor can they be explored completely because of their size which typically is at least n = 264. Yet, their structure, i.e. number and sizes of weakly connected components, is of interest because a structure deviating significantly from expected values for random graphs may form a distinguishing attack that indicates a weakness or backdoor. By sampling, one randomly chooses k nodes, derives their distribution onto connected components by graph exploration, and extrapolates these results to the complete graph. In known algorithms, the computational cost to determine the component for one randomly chosen node is up to O(√n), which severely restricts the sample size k. We present an algorithm where the computational cost to find the connected component for one randomly chosen node is O(1), so that a much larger sample size k can be analyzed in a given time. We report on the performance of a prototype implementation, and about preliminary analysis for several generators.

  3. Post-transition state dynamics and product energy partitioning following thermal excitation of the F⋯HCH2CN transition state: Disagreement with experiment.

    Science.gov (United States)

    Pratihar, Subha; Ma, Xinyou; Xie, Jing; Scott, Rebecca; Gao, Eric; Ruscic, Branko; Aquino, Adelia J A; Setser, Donald W; Hase, William L

    2017-10-14

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH 3 CN → HF + CH 2 CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. The experiments were performed at 300 K, and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F⋯HCH 2 CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH 2 CN and then trapping in the CH 2 CN⋯HF post-reaction potential energy well of ∼10 kcal/mol with respect to the HF + CH 2 CN products. In contrast to this IRC, five different trajectory types were observed: the majority proceeded by direct H-atom transfer and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH 2 CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. Simulations with an anharmonic zero-point energy constraint gave product distributions for relative translation, HF rotation, HF vibration, CH 2 CN rotation, and CH 2 CN vibration as 5%, 11%, 60%, 7%, and 16%, respectively. In contrast, the experimental energy partitioning percentages to HF rotation and vibration are 6% and 41%. Comparisons are made between the current simulation and those for other F + H-atom abstraction reactions. The simulation product energy partitioning and HF vibrational population for F + CH 3 CN

  4. Heat capacity changes in RNA folding: application of perturbation theory to hammerhead ribozyme cold denaturation.

    Science.gov (United States)

    Mikulecky, Peter J; Feig, Andrew L

    2004-01-01

    In proteins, empirical correlations have shown that changes in heat capacity (DeltaC(P)) scale linearly with the hydrophobic surface area buried upon folding. The influence of DeltaC(P) on RNA folding has been widely overlooked and is poorly understood. In addition to considerations of solvent reorganization, electrostatic effects might contribute to DeltaC(P)s of folding in polyanionic species such as RNAs. Here, we employ a perturbation method based on electrostatic theory to probe the hot and cold denaturation behavior of the hammerhead ribozyme. This treatment avoids much of the error associated with imposing two-state folding models on non-two-state systems. Ribozyme stability is perturbed across a matrix of solvent conditions by varying the concentration of NaCl and methanol co-solvent. Temperature-dependent unfolding is then monitored by circular dichroism spectroscopy. The resulting array of unfolding transitions can be used to calculate a DeltaC(P) of folding that accurately predicts the observed cold denaturation temperature. We confirm the accuracy of the calculated DeltaC(P) by using isothermal titration calorimetry, and also demonstrate a methanol-dependence of the DeltaC(P). We weigh the strengths and limitations of this method for determining DeltaC(P) values. Finally, we discuss the data in light of the physical origins of the DeltaC(P)s for RNA folding and consider their impact on biological function.

  5. The Complex Kinetics of Protein Folding in Wide Temperature Ranges

    OpenAIRE

    Wang, Jin

    2004-01-01

    The complex protein folding kinetics in wide temperature ranges is studied through diffusive dynamics on the underlying energy landscape. The well-known kinetic chevron rollover behavior is recovered from the mean first passage time, with the U-shape dependence on temperature. The fastest folding temperature T0 is found to be smaller than the folding transition temperature Tf. We found that the fluctuations of the kinetics through the distribution of first passage time show rather universal b...

  6. Development of isothermal-isobaric replica-permutation method for molecular dynamics and Monte Carlo simulations and its application to reveal temperature and pressure dependence of folded, misfolded, and unfolded states of chignolin

    Science.gov (United States)

    Yamauchi, Masataka; Okumura, Hisashi

    2017-11-01

    We developed a two-dimensional replica-permutation molecular dynamics method in the isothermal-isobaric ensemble. The replica-permutation method is a better alternative to the replica-exchange method. It was originally developed in the canonical ensemble. This method employs the Suwa-Todo algorithm, instead of the Metropolis algorithm, to perform permutations of temperatures and pressures among more than two replicas so that the rejection ratio can be minimized. We showed that the isothermal-isobaric replica-permutation method performs better sampling efficiency than the isothermal-isobaric replica-exchange method and infinite swapping method. We applied this method to a β-hairpin mini protein, chignolin. In this simulation, we observed not only the folded state but also the misfolded state. We calculated the temperature and pressure dependence of the fractions on the folded, misfolded, and unfolded states. Differences in partial molar enthalpy, internal energy, entropy, partial molar volume, and heat capacity were also determined and agreed well with experimental data. We observed a new phenomenon that misfolded chignolin becomes more stable under high-pressure conditions. We also revealed this mechanism of the stability as follows: TYR2 and TRP9 side chains cover the hydrogen bonds that form a β-hairpin structure. The hydrogen bonds are protected from the water molecules that approach the protein as the pressure increases.

  7. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states.

    Directory of Open Access Journals (Sweden)

    Rachel Herndon Klein

    2017-04-01

    Full Text Available Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.

  8. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  9. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    International Nuclear Information System (INIS)

    Tolley, George S.; Jones, Donald W.; Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-01-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, 'Overall Employment in a Hydrogen Economy', requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment (types) in the United States. As required by Section 1820, the present report considers: (1) Replacement effects of new goods and services; (2) International competition; (3) Workforce training requirements; (4) Multiple possible fuel cycles, including usage of raw materials; (5) Rates of market penetration of technologies; (6) Regional variations based on geography; and (7) Specific recommendations of the study Both the Administration's National Energy Policy and the Department's Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America's future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  10. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.

    Science.gov (United States)

    Burschowsky, Daniel; van Eerde, André; Ökvist, Mats; Kienhöfer, Alexander; Kast, Peter; Hilvert, Donald; Krengel, Ute

    2014-12-09

    For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.

  11. The B(E2) value of the first-excited to ground-state transition in 49Ti

    International Nuclear Information System (INIS)

    Mando, P.A.; Sona, P.; Taccetti, N.; Liberati, G.

    1978-01-01

    The B(E2) value of the 1381 keV transition connecting the J=3/2 - first excited state to the J=7/2 - ground state in 49 Ti has been determined by means of Coulomb excitation measurements. The value obtained is B(E2)=(33.5+- 4.5) e 2 fm 4

  12. State and transition models: Theory, applications, and challenges. In: Briske, D.D. Rangeland Systems: Processes, Management and Challenges

    Science.gov (United States)

    State and transition models (STMs) are used for communicating about ecosystem change in rangelands and other ecosystems, especially the implications for management. The fundamental premise that rangelands can exhibit multiple states is now widely accepted. The current application of STMs for managem...

  13. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    Science.gov (United States)

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for

  14. Surface-Induced Frustration in Solid State Polymorphic Transition of Native Cellulose Nanocrystals.

    Science.gov (United States)

    Salminen, Reeta; Baccile, Niki; Reza, Mehedi; Kontturi, Eero

    2017-06-12

    The presence of an interface generally influences crystallization of polymers from melt or from solution. Here, by contrast, we explore the effect of surface immobilization in a direct solid state polymorphic transition on individual cellulose nanocrystals (CNCs), extracted from a plant-based origin. The conversion from native cellulose I to cellulose III crystal occurred via a host-guest inclusion of ethylene diamine inside the crystal. A 60% reduction in CNC width (height) in atomic force microscopy images suggested that when immobilized on a flat modified silica surface, the stresses caused by the inclusion or the subsequent regeneration resulted in exfoliation, hypothetically, between the van der Waals bonded sheets within the crystal. Virtually no changes in dimensions were visible when the polymorphic transition was performed to nonimmobilized CNCs in bulk dispersion. With reservations and by acknowledging the obvious dissimilarities, the exfoliation of cellulose crystal sheets can be viewed as analogous to exfoliation of 2D structures like graphene from a van der Waals stacked solid. Here, the detachment is triggered by an inclusion of a guest molecule inside a host cellulose crystal and the stresses caused by the firm attachment of the CNC on a solid substrate, leading to detachment of molecular sheets or stacks of sheets.

  15. Why and how does native topology dictate the folding speed of a protein?

    Science.gov (United States)

    Rustad, Mark; Ghosh, Kingshuk

    2012-11-01

    Since the pioneering work of Plaxco, Simons, and Baker, it is now well known that the rates of protein folding strongly correlate with the average sequence separation (absolute contact order (ACO)) of native contacts. In spite of multitude of papers, our understanding to the basis of the relation between folding speed and ACO is still lacking. We model the transition state as a Gaussian polymer chain decorated with weak springs between native contacts while the unfolded state is modeled as a Gaussian chain only. Using these hamiltonians, our perturbative calculation explicitly shows folding speed and ACO are linearly related when only the first order term in the series is considered. However, to the second order, we notice the existence of two new topological metrics, termed COC1 and COC2 (COC stands for contact order correction). These additional correction terms are needed to properly account for the entropy loss due to overlapping (nested or linked) loops that are not well described by simple addition of entropies in ACO. COC1 and COC2 are related to fluctuations and correlations among different sequence separations. The new metric combining ACO, COC1, and COC2 improves folding speed dependence on native topology when applied to three different databases: (i) two-state proteins with only α/β and β proteins, (ii) two-state proteins (α/β, β and purely helical proteins all combined), and (iii) master set (multi-state and two-state) folding proteins. Furthermore, the first principle calculation provides us direct physical insights to the meaning of the fit parameters. The coefficient of ACO, for example, is related to the average strength of the contacts, while the constant term is related to the protein folding speed limit. With the new scaling law, our estimate of the folding speed limit is in close agreement with the widely accepted value of 1 μs observed in proteins and RNA. Analyzing an exhaustive set (7367) of monomeric proteins from protein data bank

  16. Transition by breaking of analyticity in the ground state of Josephson junction arrays as a static signature of the vortex jamming transition

    KAUST Repository

    Nogawa, Tomoaki

    2012-05-22

    We investigate the ground state of the irrationally frustrated Josephson junction array with a controlling anisotropy parameter λ that is the ratio of the longitudinal Josephson coupling to the transverse one. We find that the ground state has one-dimensional periodicity whose reciprocal lattice vector depends on λ and is incommensurate with the substrate lattice. Approaching the isotropic point λ=1, the so-called hull function of the ground state exhibits analyticity breaking similar to the Aubry transition in the Frenkel-Kontorova model. We find a scaling law for the harmonic spectrum of the hull functions, which suggests the existence of a characteristic length scale diverging at the isotropic point. This critical behavior is directly connected to the jamming transition previously observed in the current-voltage characteristics by a numerical simulation. On top of the ground state there is a gapless continuous band of metastable states, which exhibit the same critical behavior as the ground state. © 2012 American Physical Society.

  17. Post-transition state dynamics and product energy partitioning following thermal excitation of the F∙∙∙HCH2 CN transition state: Disagreement with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pratihar, Subha [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Ma, Xinyou [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Xie, Jing [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA; Scott, Rebecca [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Gao, Eric [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; Ruscic, Branko [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA and Computation Institute, University of Chicago, Chicago, Illinois 60637, USA; Aquino, Adelia J. A. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People’s Republic of China; Institute for Soil Research University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria; Setser, Donald W. [Institute for Soil Research University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria; Hase, William L. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA

    2017-10-14

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH3CN → HF + CH2CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. In accord with experiment and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F-HCH2CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST for the simulation. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH2CN and then trapping in the CH2CN-HF post-reaction potential energy well of ~10 kcal/mol with respect to the HF + CH2CN products. In contrast to this IRC, five different trajectory types were observed, with the majority involving direct dissociation and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH2CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. From the simulations and with an anharmonic zero-point energy constraint, the percentage partitioning of the product energy to relative translation, HF rotation, HF vibration, CH2CN rotation and CH2CN vibration is 5, 11, 60, 7, and 16%, respectively. In contrast the experimental energy partitioning percentages to HF rotation and vibration are 6 and 41%. Comparisons are made between the current simulation and those for other F + H

  18. Alpha-decay-induced fracturing in zircon - The transition from the crystalline to the metamict state

    Science.gov (United States)

    Chakoumakos, Bryan C.; Murakami, Takashi; Lumpkin, Gregory R.; Ewing, Rodney C.

    1987-01-01

    Zonation due to alpha-decay damage in a natural single crystal of zircon from Sri Lanka is discussed. The zones vary in thickness on a scale from one to hundreds of microns. The uranium and thorium concentrations vary from zone to zone such that the alpha decay dose is between 0.2 x 10 to the 16th and 0.8 x 10 to the 16th alpha-events per milligram. The transition from the crystalline to the aperiodic metamict state occurs over this dose range. At doses greater than 0.8 x 10 to the 16th alpha events/mg there is no evidence for long-range order. This type of damage will accumulate in actinide-bearing, ceramic nuclear waste forms. The systematic pattern of fractures would occur in crystalline phases that are zoned with respect to actinide radionuclides.

  19. Isotope Substitution of Promiscuous Alcohol Dehydrogenase Reveals the Origin of Substrate Preference in the Transition State.

    Science.gov (United States)

    Behiry, Enas M; Ruiz-Pernia, J Javier; Luk, Louis; Tuñón, Iñaki; Moliner, Vicent; Allemann, Rudolf K

    2018-03-12

    The origin of substrate preference in promiscuous enzymes was investigated by enzyme isotope labelling of the alcohol dehydrogenase from Geobacillus stearothermophilus (BsADH). At physiological temperature, protein dynamic coupling to the reaction coordinate was insignificant. However, the extent of dynamic coupling was highly substrate-dependent at lower temperatures. For benzyl alcohol, an enzyme isotope effect larger than unity was observed, whereas the enzyme isotope effect was close to unity for isopropanol. Frequency motion analysis on the transition states revealed that residues surrounding the active site undergo substantial displacement during catalysis for sterically bulky alcohols. BsADH prefers smaller substrates, which cause less protein friction along the reaction coordinate and reduced frequencies of dynamic recrossing. This hypothesis allows a prediction of the trend of enzyme isotope effects for a wide variety of substrates. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Quantum variational transition state theory for hydrogen tunneling in enzyme catalysis.

    Science.gov (United States)

    Pollak, Eli

    2012-11-01

    Experiments in recent years have shown that there is a large kinetic isotope effect in the rate of transfer of hydrogen or deuterium in enzymatic reactions of soybean lipoxygenase-1. The kinetic isotope effect (KIE) is only weakly temperature dependent but varies significantly in the presence of mutants whose functional groups are located rather far from the reaction center. In this paper we suggest that variational transition state theory as applied to dissipative systems, above the crossover temperature between deep tunneling and thermal activation, may be used as a paradigm for understanding the dynamics of these reactions. We find that the theory fits the experimental data rather well. The effects of different mutants are readily interpreted in terms of the friction they exert on the reaction center. Increasing the distal functional group increases the friction and thus lowers the kinetic isotope effect.

  1. Spin-Forbidden Reactions: Adiabatic Transition States Using Spin-Orbit Coupled Density Functional Theory.

    Science.gov (United States)

    Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola

    2017-10-31

    A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering.

    Science.gov (United States)

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-28

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.

  3. Optimal precursors triggering the Kuroshio Extension state transition obtained by the Conditional Nonlinear Optimal Perturbation approach

    Science.gov (United States)

    Zhang, Xing; Mu, Mu; Wang, Qiang; Pierini, Stefano

    2017-06-01

    In this study, the initial perturbations that are the easiest to trigger the Kuroshio Extension (KE) transition connecting a basic weak jet state and a strong, fairly stable meandering state, are investigated using a reduced-gravity shallow water ocean model and the CNOP (Conditional Nonlinear Optimal Perturbation) approach. This kind of initial perturbation is called an optimal precursor (OPR). The spatial structures and evolutionary processes of the OPRs are analyzed in detail. The results show that most of the OPRs are in the form of negative sea surface height (SSH) anomalies mainly located in a narrow band region south of the KE jet, in basic agreement with altimetric observations. These negative SSH anomalies reduce the meridional SSH gradient within the KE, thus weakening the strength of the jet. The KE jet then becomes more convoluted, with a high-frequency and large-amplitude variability corresponding to a high eddy kinetic energy level; this gradually strengthens the KE jet through an inverse energy cascade. Eventually, the KE reaches a high-energy state characterized by two well defined and fairly stable anticyclonic meanders. Moreover, sensitivity experiments indicate that the spatial structures of the OPRs are not sensitive to the model parameters and to the optimization times used in the analysis.

  4. Using state-and-transition modeling to account for imperfect detection in invasive species management

    Science.gov (United States)

    Frid, Leonardo; Holcombe, Tracy; Morisette, Jeffrey T.; Olsson, Aaryn D.; Brigham, Lindy; Bean, Travis M.; Betancourt, Julio L.; Bryan, Katherine

    2013-01-01

    Buffelgrass, a highly competitive and flammable African bunchgrass, is spreading rapidly across both urban and natural areas in the Sonoran Desert of southern and central Arizona. Damages include increased fire risk, losses in biodiversity, and diminished revenues and quality of life. Feasibility of sustained and successful mitigation will depend heavily on rates of spread, treatment capacity, and cost–benefit analysis. We created a decision support model for the wildland–urban interface north of Tucson, AZ, using a spatial state-and-transition simulation modeling framework, the Tool for Exploratory Landscape Scenario Analyses. We addressed the issues of undetected invasions, identifying potentially suitable habitat and calibrating spread rates, while answering questions about how to allocate resources among inventory, treatment, and maintenance. Inputs to the model include a state-and-transition simulation model to describe the succession and control of buffelgrass, a habitat suitability model, management planning zones, spread vectors, estimated dispersal kernels for buffelgrass, and maps of current distribution. Our spatial simulations showed that without treatment, buffelgrass infestations that started with as little as 80 ha (198 ac) could grow to more than 6,000 ha by the year 2060. In contrast, applying unlimited management resources could limit 2060 infestation levels to approximately 50 ha. The application of sufficient resources toward inventory is important because undetected patches of buffelgrass will tend to grow exponentially. In our simulations, areas affected by buffelgrass may increase substantially over the next 50 yr, but a large, upfront investment in buffelgrass control could reduce the infested area and overall management costs.

  5. Prediction of monomer reactivity in radical copolymerizations from transition state quantum chemical descriptors

    Directory of Open Access Journals (Sweden)

    Zhengde Tan

    2013-01-01

    Full Text Available In comparison with the Q-e scheme, the Revised Patterns Scheme: the U, V Version (the U-V scheme has greatly improved both its accessibility and its accuracy in interpreting and predicting the reactivity of a monomer in free-radical copolymerizations. Quantitative structure-activity relationship (QSAR models were developed to predict the reactivity parameters u and v of the U-V scheme, by applying genetic algorithm (GA and support vector machine (SVM techniques. Quantum chemical descriptors used for QSAR models were calculated from transition state species with structures C¹H3 - C²HR³• or •C¹H2 - C²H2R³ (formed from vinyl monomers C¹H²=C²HR³ + H•, using density functional theory (DFT, at the UB3LYP level of theory with 6-31G(d basis set. The optimum support vector regression (SVR model of the reactivity parameter u based on Gaussian radial basis function (RBF kernel (C = 10, ε = 10- 5 and γ = 1.0 produced root-mean-square (rms errors for the training, validation and prediction sets being 0.220, 0.326 and 0.345, respectively. The optimal SVR model for v with the RBF kernel (C = 20, ε = 10- 4 and γ = 1.2 produced rms errors for the training set of 0.123, the validation set of 0.206 and the prediction set of 0.238. The feasibility of applying the transition state quantum chemical descriptors to develop SVM models for reactivity parameters u and v in the U-V scheme has been demonstrated.

  6. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  7. Ion Mobility-Mass Spectrometry Reveals the Energetics of Intermediates that Guide Polyproline Folding

    Science.gov (United States)

    Shi, Liuqing; Holliday, Alison E.; Glover, Matthew S.; Ewing, Michael A.; Russell, David H.; Clemmer, David E.

    2016-01-01

    Proline favors trans-configured peptide bonds in native proteins. Although cis/ trans configurations vary for non-native and unstructured states, solvent also influences these preferences. Water induces the all- cis right-handed polyproline-I (PPI) helix of polyproline to fold into the all- trans left-handed polyproline-II (PPII) helix. Our recent work has shown that this occurs via a sequential mechanism involving six resolved intermediates [Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from PPI to PPII using ion mobility-mass spectrometry. J. Am. Chem. Soc. 136, 12702-12711 (2014)]. Here, we use ion mobility-mass spectrometry to make the first detailed thermodynamic measurements of the folding intermediates, which inform us about how and why this transition occurs. It appears that early intermediates are energetically favorable because of the hydration of the peptide backbone, whereas late intermediates are enthalpically unfavorable. However, folding continues, as the entropy of the system increases upon successive formation of each new structure. When PPII is immersed in 1-propanol, the PPII→PPI transition occurs, but this reaction occurs through a very different mechanism. Early on, the PPII population splits onto multiple pathways that eventually converge through a late intermediate that continues on to the folded PPI helix. Nearly every step is endothermic. Folding results from a stepwise increase in the disorder of the system, allowing a wide-scale search for a critical late intermediate. Overall, the data presented here allow us to establish the first experimentally determined energy surface for biopolymer folding as a function of solution environment.

  8. Kinetic studies of the folding of heterodimeric monellin: evidence for switching between alternative parallel pathways.

    Science.gov (United States)

    Aghera, Nilesh; Udgaonkar, Jayant B

    2012-07-13

    Determining whether or not a protein uses multiple pathways to fold is an important goal in protein folding studies. When multiple pathways are present, defined by transition states that differ in their compactness and structure but not significantly in energy, they may manifest themselves by causing the dependence on denaturant concentration of the logarithm of the observed rate constant of folding to have an upward curvature. In this study, the folding mechanism of heterodimeric monellin [double-chain monellin (dcMN)] has been studied over a range of protein and guanidine hydrochloride (GdnHCl) concentrations, using the intrinsic tryptophan fluorescence of the protein as the probe for the folding reaction. Refolding is shown to occur in multiple kinetic phases. In the first stage of refolding, which is silent to any change in intrinsic fluorescence, the two chains of monellin bind to one another to form an encounter complex. Interrupted folding experiments show that the initial encounter complex folds to native dcMN via two folding routes. A productive folding intermediate population is identified on one route but not on both of these routes. Two intermediate subpopulations appear to form in a fast kinetic phase, and native dcMN forms in a slow kinetic phase. The chevron arms for both the fast and slow phases of refolding are shown to have upward curvatures, suggesting that at least two pathways each defined by a different intermediate are operational during these kinetic phases of structure formation. Refolding switches from one pathway to the other as the GdnHCl concentration is increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. How the genome folds

    Science.gov (United States)

    Lieberman Aiden, Erez

    2012-02-01

    I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  10. Analysis of the free-energy surface of proteins from reversible folding simulations.

    Directory of Open Access Journals (Sweden)

    Lucy R Allen

    2009-07-01

    Full Text Available Computer generated trajectories can, in principle, reveal the folding pathways of a protein at atomic resolution and possibly suggest general and simple rules for predicting the folded structure of a given sequence. While such reversible folding trajectories can only be determined ab initio using all-atom transferable force-fields for a few small proteins, they can be determined for a large number of proteins using coarse-grained and structure-based force-fields, in which a known folded structure is by construction the absolute energy and free-energy minimum. Here we use a model of the fast folding helical lambda-repressor protein to generate trajectories in which native and non-native states are in equilibrium and transitions are accurately sampled. Yet, representation of the free-energy surface, which underlies the thermodynamic and dynamic properties of the protein model, from such a trajectory remains a challenge. Projections over one or a small number of arbitrarily chosen progress variables often hide the most important features of such surfaces. The results unequivocally show that an unprojected representation of the free-energy surface provides important and unbiased information and allows a simple and meaningful description of many-dimensional, heterogeneous trajectories, providing new insight into the possible mechanisms of fast-folding proteins.

  11. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia.

    Science.gov (United States)

    Friedman, Eliot B; Sun, Yi; Moore, Jason T; Hung, Hsiao-Tung; Meng, Qing Cheng; Perera, Priyan; Joiner, William J; Thomas, Steven A; Eckenhoff, Roderic G; Sehgal, Amita; Kelz, Max B

    2010-07-30

    One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states.

  12. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia.

    Directory of Open Access Journals (Sweden)

    Eliot B Friedman

    2010-07-01

    Full Text Available One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS. If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states.

  13. Transit Marketing : Review of the State-of-the-Art and a Handbook of Current Practice

    Science.gov (United States)

    1985-04-01

    Over the past decade, marketing has been given increased emphasis as a way to improve both transit rideship and productivity. While there is near universal agreement among transit managers that some level of marketing is necessary, there is far from ...

  14. An accurate, residue-level, pair potential of mean force for folding and binding based on the distance-scaled, ideal-gas reference state.

    Science.gov (United States)

    Zhang, Chi; Liu, Song; Zhou, Hongyi; Zhou, Yaoqi

    2004-02-01

    Structure prediction on a genomic scale requires a simplified energy function that can efficiently sample the conformational space of polypeptide chains. A good energy function at minimum should discriminate native structures against decoys. Here, we show that a recently developed, residue-specific, all-atom knowledge-based potential (167 atomic types) based on distance-scaled, finite ideal-gas reference state (DFIRE-all-atom) can be substantially simplified to 20 residue types located at side-chain center of mass (DFIRE-SCM) without a significant change in its capability of structure discrimination. Using 96 standard multiple decoy sets, we show that there is only a small reduction (from 80% to 78%) in success rate of ranking native structures as the top 1. The success rate is higher than two previously developed, all-atom distance-dependent statistical pair potentials. Applied to structure selections of 21 docking decoys without modification, the DFIRE-SCM potential is 29% more successful in recognizing native complex structures than an all-atom statistical potential trained by a database of dimeric interfaces. The potential also achieves 92% accuracy in distinguishing true dimeric interfaces from artificial crystal interfaces. In addition, the DFIRE potential with the C(alpha) positions as the interaction centers recognizes 123 native structures out of a comprehensive 125-protein TOUCHSTONE decoy set in which each protein has 24,000 decoys with only C(alpha) positions. Furthermore, the performance by DFIRE-SCM on newly established 25 monomeric and 31 docking Rosetta-decoy sets is comparable to (or better than in the case of monomeric decoy sets) that of a recently developed, all-atom Rosetta energy function enhanced with an orientation-dependent hydrogen bonding potential.

  15. Microsecond simulations of the folding/unfolding thermodynamics of the Trp-cage mini protein

    Science.gov (United States)

    Day, Ryan; Paschek, Dietmar; Garcia, Angel E.

    2012-01-01

    We study the unbiased folding/unfolding thermodynamics of the Trp-cage miniprotein using detailed molecular dynamics simulations of an all-atom model of the protein in explicit solvent, using the Amberff99SB force field. Replica-exchange molecular dynamics (REMD) simulations are used to sample the protein ensembles over a broad range of temperatures covering the folded and unfolded states, and at two densities. The obtained ensembles are shown to reach equilibrium in the 1 μs per replica timescale. The total simulation time employed in the calculations exceeds 100 μs. Ensemble averages of the fraction folded, pressure, and energy differences between the folded and unfolded states as a function of temperature are used to model the free energy of the folding transition, ΔG(P,T), over the whole region of temperature and pressures sampled in the simulations. The ΔG(P,T) diagram describes an ellipse over the range of temperatures and pressures sampled, predicting that the system can undergo pressure induced unfolding and cold denaturation at low temperatures and high pressures, and unfolding at low pressures and high temperatures. The calculated free energy function exhibits remarkably good agreement with the experimental folding transition temperature (Tf = 321 K), free energy and specific heat changes. However, changes in enthalpy and entropy are significantly different than the experimental values. We speculate that these differences may be due to the simplicity of the semi-empirical force field used in the simulations and that more elaborate force fields may be required to describe appropriately the thermodynamics of proteins. PMID:20408169

  16. Do spatially homogenising and heterogenising processes affect transitions between alternative stable states?

    NARCIS (Netherlands)

    Groen, Thomas A.; Vijver, Van de Claudius A.D.M.; Langevelde, Van Frank

    2017-01-01

    Large-scale sudden transitions in ecosystems are expected as result of changing global climate or land use. Current theory predicts such sudden transitions especially to occur in spatially homogeneous ecosystems, whereas transitions in spatially heterogeneous systems will be more gradual. The

  17. Hydrostatic pressure effects on the state density and optical transitions in quantum dots

    International Nuclear Information System (INIS)

    Galindez-Ramirez, G; Perez-Merchancano, S T; Paredes Gutierrez, H; Gonzalez, J D

    2010-01-01

    Using the effective mass approximation and variational method we have computed the effects of hydrostatic pressure on the absorption and photoluminescence spectra in spherical quantum dot GaAs-(Ga, Al) As, considering a finite confinement potential of this particular work we show the optical transitions in quantum of various sizes in the presence of hydrogenic impurities and hydrostatic pressure effects. Our first result describes the spectrum of optical absorption of 500 A QD for different values of hydrostatic pressure P = 0, 20 and 40 Kbar. The absorption peaks are sensitive to the displacement of the impurity center to the edge of the quantum dot and even more when the hydrostatic pressure changes in both cases showing that to the extent that these two effects are stronger quantum dots respond more efficiently. Also this result can be seen in the study of the photoluminescence spectrum as in the case of acceptor impurities consider them more efficiently capture carriers or electrons that pass from the conduction band to the valence band. Density states with randomly distributed impurity show that the additional peaks in the curves of the density of impurity states appear due to the presence of the additional hydrostatic pressure effects.

  18. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states.

    Science.gov (United States)

    Salina, Elena G; Waddell, Simon J; Hoffmann, Nadine; Rosenkrands, Ida; Butcher, Philip D; Kaprelyants, Arseny S

    2014-10-01

    Dormancy in non-sporulating bacteria is an interesting and underexplored phenomenon with significant medical implications. In particular, latent tuberculosis may result from the maintenance of Mycobacterium tuberculosis bacilli in non-replicating states in infected individuals. Uniquely, growth of M. tuberculosis in aerobic conditions in potassium-deficient media resulted in the generation of bacilli that were non-culturable (NC) on solid media but detectable in liquid media. These bacilli were morphologically distinct and tolerant to cell-wall-targeting antimicrobials. Bacterial counts on solid media quickly recovered after washing and incubating bacilli in fresh resuscitation media containing potassium. This resuscitation of growth occurred too quickly to be attributed to M. tuberculosis replication. Transcriptomic and proteomic profiling through adaptation to, and resuscitation from, this NC state revealed a switch to anaerobic respiration and a shift to lipid and amino acid metabolism. High concordance with mRNA signatures derived from M. tuberculosis infection models suggests that analogous NC mycobacterial phenotypes may exist during disease and may represent unrecognized populations in vivo. Resuscitation of NC bacilli in potassium-sufficient media was characterized by time-dependent activation of metabolic pathways in a programmed series of processes that probably transit bacilli through challenging microenvironments during infection.

  19. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states

    Science.gov (United States)

    Salina, Elena G.; Waddell, Simon J.; Hoffmann, Nadine; Rosenkrands, Ida; Butcher, Philip D.; Kaprelyants, Arseny S.

    2014-01-01

    Dormancy in non-sporulating bacteria is an interesting and underexplored phenomenon with significant medical implications. In particular, latent tuberculosis may result from the maintenance of Mycobacterium tuberculosis bacilli in non-replicating states in infected individuals. Uniquely, growth of M. tuberculosis in aerobic conditions in potassium-deficient media resulted in the generation of bacilli that were non-culturable (NC) on solid media but detectable in liquid media. These bacilli were morphologically distinct and tolerant to cell-wall-targeting antimicrobials. Bacterial counts on solid media quickly recovered after washing and incubating bacilli in fresh resuscitation media containing potassium. This resuscitation of growth occurred too quickly to be attributed to M. tuberculosis replication. Transcriptomic and proteomic profiling through adaptation to, and resuscitation from, this NC state revealed a switch to anaerobic respiration and a shift to lipid and amino acid metabolism. High concordance with mRNA signatures derived from M. tuberculosis infection models suggests that analogous NC mycobacterial phenotypes may exist during disease and may represent unrecognized populations in vivo. Resuscitation of NC bacilli in potassium-sufficient media was characterized by time-dependent activation of metabolic pathways in a programmed series of processes that probably transit bacilli through challenging microenvironments during infection. PMID:25320096

  20. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Zhao, Bin; Guo, Hua; Sun, Zhigang

    2015-01-01

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H 2 O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H 2 O → H 2 + OH reaction. The strong enhancement of reactivity by the H 2 O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  1. First Passage Analysis of the Folding of a β-Sheet Miniprotein: Is it More Realistic Than the Standard Equilibrium Approach?

    Science.gov (United States)

    2015-01-01

    Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed ”streamlines”, the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations. PMID:24669953

  2. First passage analysis of the folding of a β-sheet miniprotein: is it more realistic than the standard equilibrium approach?

    Science.gov (United States)

    Kalgin, Igor V; Chekmarev, Sergei F; Karplus, Martin

    2014-04-24

    Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed "streamlines", the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations.

  3. Zero-momentum coupling induced transitions of ground states in Rashba spin-orbit coupled Bose-Einstein condensates

    Science.gov (United States)

    Jin, Jingjing; Zhang, Suying; Han, Wei

    2014-06-01

    We investigate the transitions of ground states induced by zero momentum (ZM) coupling in pseudospin-1/2 Rashba spin-orbit coupled Bose-Einstein condensates confined in a harmonic trap. In a weak harmonic trap, the condensate presents a plane wave (PW) state, a stripe state or a spin polarized ZM state, and the particle distribution of the stripe state is weighted equally at two points in the momentum space without ZM coupling. The presence of ZM coupling induces an imbalanced particle distribution in the momentum space, and leads to the decrease of the amplitude of the stripe state. When its strength exceeds a critical value, the system experiences the transition from stripe phase to PW phase. The boundary of these two phases is shifted and a new phase diagram spanned by the ZM coupling and the interatomic interactions is obtained. The presence of ZM coupling can also achieve the transition from ZM phase to PW phase. In a strong harmonic trap, the condensate exhibits a vortex lattice state without ZM coupling. For the positive effective Rabi frequency of ZM coupling, the condensate is driven from a vortex lattice state to a vortex-free lattice state and finally to a PW state with the increase of coupling strength. In addition, for the negative effective Rabi frequency, the condensate is driven from a vortex lattice state to a stripe state, and finally to a PW state. The stripe state found in the strong harmonic trap is different from that in previous works because of its nonzero superfluid velocity along the stripes. We also discuss the influences of the ZM coupling on the spin textures, and indicate that the spin textures are squeezed transversely by the ZM coupling.

  4. RNA folding: structure prediction, folding kinetics and ion electrostatics.

    Science.gov (United States)

    Tan, Zhijie; Zhang, Wenbing; Shi, Yazhou; Wang, Fenghua

    2015-01-01

    Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.

  5. Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway

    Science.gov (United States)

    Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Pavlichin, Dmitri S.; Mabuchi, Hideo; Herschlag, Daniel

    2016-01-01

    The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA. We enumerated structural states and possible folding transitions and determined rate and equilibrium constants for the transitions between these states using single-molecule FRET with a series of mutant P4-P6 variants. Comparisons with simplified constructs containing an isolated tertiary contact suggest that a given tertiary interaction has a stereotyped rate for breaking that may help identify structural transitions within complex RNAs and simplify the prediction of folding kinetics and thermodynamics for structured RNAs from their parts. The preferred folding pathway involves initial formation of the proximal tertiary contact. However, this preference was only ∼10 fold and could be reversed by a single point mutation, indicating that a model akin to a protein-folding contact order model will not suffice to describe RNA folding. Instead, our results suggest a strong analogy with a modified RNA diffusion-collision model in which tertiary elements within preformed secondary structures collide, with the success of these collisions dependent on whether the tertiary elements are in their rare binding-competent conformations. PMID:27493222

  6. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.

    Science.gov (United States)

    Ryham, Rolf J; Klotz, Thomas S; Yao, Lihan; Cohen, Fredric S

    2016-03-08

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Single-ended transition state finding with the growing string method.

    Science.gov (United States)

    Zimmerman, Paul M

    2015-04-05

    Reaction path finding and transition state (TS) searching are important tasks in computational chemistry. Methods that seek to optimize an evenly distributed set of structures to represent a chemical reaction path are known as double-ended string methods. Such methods can be highly reliable because the endpoints of the string are fixed, which effectively lowers the dimensionality of the reaction path search. String methods, however, require that the reactant and product structures are known beforehand, which limits their ability for systematic exploration of reactive steps. In this article, a single-ended growing string method (GSM) is introduced which allows for reaction path searches starting from a single structure. The method works by sequentially adding nodes along coordinates that drive bonds, angles, and/or torsions to a desired reactive outcome. After the string is grown and an approximate reaction path through the TS is found, string optimization commences and the exact TS is located along with the reaction path. Fast convergence of the string is achieved through use of internal coordinates and eigenvector optimization schemes combined with Hessian estimates. Comparison to the double-ended GSM shows that single-ended method can be even more computationally efficient than the already rapid double-ended method. Examples, including transition metal reactivity and a systematic, automated search for unknown reactivity, demonstrate the efficacy of the new method. This automated reaction search is able to find 165 reaction paths from 333 searches for the reaction of NH3 BH3 and (LiH)4 , all without guidance from user intuition. © 2015 Wiley Periodicals, Inc.

  8. Use of solid-state phase transitions for thermal energy storage. Final report, June 1, 1977--August 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Leffler, A.J.; Myers, J.; Weinstein, D.

    1978-01-01

    A study has been carried out on the feasibility of using solid-state phase transitions for thermal energy storage. As part of this study a literature search was made to identify the most promising types of compounds and a synthesis program was carried out to prepare certain of these substances. In addition a large number of compounds for testing were obtained from commercial sources. All of the compounds were screened for transitions using a Perkin Elmer DSC-1B differential scanning calorimeter. From this program seven compounds were found that have transition energies from 20-30 cal/g in the temperatre range of 335-405 K. The most promising compound found is 5-norbornene-2,3-dicarboxylic acid anhydride having a transition of 22.6 cal/g at 366 K and an estimated cost of peparation of $0.40/lb..

  9. Evolutionary optimization of protein folding.

    Directory of Open Access Journals (Sweden)

    Cédric Debès

    Full Text Available Nature has shaped the make up of proteins since their appearance, [Formula: see text]3.8 billion years ago. However, the fundamental drivers of structural change responsible for the extraordinary diversity of proteins have yet to be elucidated. Here we explore if protein evolution affects folding speed. We estimated folding times for the present-day catalog of protein domains directly from their size-modified contact order. These values were mapped onto an evolutionary timeline of domain appearance derived from a phylogenomic analysis of protein domains in 989 fully-sequenced genomes. Our results show a clear overall increase of folding speed during evolution, with known ultra-fast downhill folders appearing rather late in the timeline. Remarkably, folding optimization depends on secondary structure. While alpha-folds showed a tendency to fold faster throughout evolution, beta-folds exhibited a trend of folding time increase during the last [Formula: see text]1.5 billion years that began during the "big bang" of domain combinations. As a consequence, these domain structures are on average slow folders today. Our results suggest that fast and efficient folding of domains shaped the universe of protein structure. This finding supports the hypothesis that optimization of the kinetic and thermodynamic accessibility of the native fold reduces protein aggregation propensities that hamper cellular functions.

  10. Performance of TD-DFT for Excited States of Open-Shell Transition Metal Compounds.

    Science.gov (United States)

    Suo, Bingbing; Shen, Kaiyuan; Li, Zhendong; Liu, Wenjian

    2017-05-25

    Time-dependent density functional theory (TD-DFT) has been very successful in accessing low-lying excited states of closed-shell systems. However, it is much less so for excited states of open-shell systems: unrestricted Kohn-Sham based TD-DFT (U-TD-DFT) often produces physically meaningless excited states due to heavy spin contaminations, whereas restricted Kohn-Sham based TD-DFT often misses those states of lower energies. A much better variant is the explicitly spin-adapted TD-DFT (X-TD-DFT) [J. Chem. Phys. 2011, 135, 194106] that can capture all the spin-adapted singly excited states yet without computational overhead over U-TD-DFT. While the superiority of X-TD-DFT over U-TD-DFT has been demonstrated for open-shell systems of main group elements, it remains to be seen if this is also the case for open-shell transition metal compounds. Taking as benchmark the results by MS-CASPT2 (multistate complete active space second-order perturbation theory) and ic-MRCISD (internally contracted multireference configuration interaction with singles and doubles), it is shown that X-TD-DFT is indeed superior to U-TD-DFT for the vertical excitation energies of ZnH, CdH, ScH 2 , YH 2 , YO, and NbO 2 . Admittedly, there exist a few cases where U-TD-DFT appears to be better than X-TD-DFT. However, this is due to a wrong reason: the underestimation (due to spin contamination) and the overestimation (due to either the exchange-correlation functional itself or the adiabatic approximation to the exchange-correlation kernel) happen to be compensated in the case of U-TD-DFT. As for [Cu(C 6 H 6 ) 2 ] 2+ , which goes beyond the capability of both MS-CASPT2 and ic-MRCISD, X-TD-DFT revises the U-TD-DFT assignment of the experimental spectrum.

  11. Identification of predictive biomarkers of disease state in transition dairy cows.

    Science.gov (United States)

    Hailemariam, D; Mandal, R; Saleem, F; Dunn, S M; Wishart, D S; Ametaj, B N

    2014-05-01

    In dairy cows, periparturient disease states, such as metritis, mastitis, and laminitis, are leading to increasingly significant economic losses for the dairy industry. Treatments for these pathologies are often expensive, ineffective, or not cost-efficient, leading to production losses, high veterinary bills, or early culling of the cows. Early diagnosis or detection of these conditions before they manifest themselves could lower their incidence, level of morbidity, and the associated economic losses. In an effort to identify predictive biomarkers for postpartum or periparturient disease states in dairy cows, we undertook a cross-sectional and longitudinal metabolomics study to look at plasma metabolite levels of dairy cows during the transition period, before and after becoming ill with postpartum diseases. Specifically we employed a targeted quantitative metabolomics approach that uses direct flow injection mass spectrometry to track the metabolite changes in 120 different plasma metabolites. Blood plasma samples were collected from 12 dairy cows at 4 time points during the transition period (-4 and -1 wk before and 1 and 4 wk after parturition). Out of the 12 cows studied, 6 developed multiple periparturient disorders in the postcalving period, whereas the other 6 remained healthy during the entire experimental period. Multivariate data analysis (principal component analysis and partial least squares discriminant analysis) revealed a clear separation between healthy controls and diseased cows at all 4 time points. This analysis allowed us to identify several metabolites most responsible for separating the 2 groups, especially before parturition and the start of any postpartum disease. Three metabolites, carnitine, propionyl carnitine, and lysophosphatidylcholine acyl C14:0, were significantly elevated in diseased cows as compared with healthy controls as early as 4 wk before parturition, whereas 2 metabolites, phosphatidylcholine acyl-alkyl C42:4 and

  12. Calculation of the state-to-state S-matrix for tetra-atomic reactions with transition-state wave packets: H₂/D₂ + OH → H/D + H₂O/HOD.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2014-10-21

    This work is concerned with the calculation of state-to-state S-matrix elements for four-atom reactions using a recently proposed method based on the quantum transition-state theory. In this approach, the S-matrix elements are computed from the thermal flux cross-correlation functions obtained in both the reactant and product arrangement channels. Since transition-state wave packets are propagated with only single arrangement channels, the bases/grids required are significantly smaller than those needed in state-to-state approaches based on a single set of scattering coordinates. Furthermore, the propagation of multiple transition-state wave packets can be carried out in parallel. This method is demonstrated for the H2/D2 + OH → H/D + H2O/HOD reactions (J = 0) and the reaction probabilities are in excellent agreement with benchmark results.

  13. Mechanism of Coupled Folding and Binding in the siRNA-PAZ Complex.

    Science.gov (United States)

    Chen, Hai-Feng

    2008-08-01

    The PAZ domain plays a key role in gene silencing pathway. The PAZ domain binds with siRNAs to form the multimeric RNA-induced silencing complex (RISC). RISC identifies mRNAs homologous to the siRNAs and promotes their degradation. It was found that binding with siRNA significantly enhances apo-PAZ folding. However, the mechanism by which folding is coupled to binding is poorly understood. Thus, the coupling relationship between binding and folding is very important for understanding the function of gene silencing. We have performed molecular dynamics (MD) of both bound and apo-PAZ to study the coupling mechanism between binding and folding in the siRNA-PAZ complex. Room-temperature MD simulations suggest that both PAZ and siRNA become more rigid and stable upon siRNA binding. Kinetic analysis of high-temperature MD simulations shows that both bound and apo-PAZ unfold via a two-state process. The unfolding pathways are different between bound and apo-PAZ: the order of helix III and helices I & II unfolding is switched. Furthermore, transition probability was used to determine the transition state ensemble for both bound and apo-PAZ. It was found that the transition state of bound PAZ is more compact than that of apo-PAZ. The predicted Φ-values suggest that the Φ-values of helix III and sheets of β3-β7 for bound PAZ are more native-like than those of apo-PAZ upon the binding of siRNA. The results can help us to understand the mechanism of gene silencing.

  14. Coal Transition in the United States. An historical case study for the project 'Coal Transitions: Research and Dialogue on the Future of Coal'

    International Nuclear Information System (INIS)

    Kok, Irem

    2017-01-01

    This is one of the 6 country case-studies commissioned to collect experience on past coal transitions. The 6 countries are: Czech Republic, the Netherlands, Poland, Spain, UK, USA. Their role in the Coal Transitions project was to provide background information for a Synthesis Report for decision makers, and provide general lessons for national project teams to take into account in developing their coal transitions pathways for the future. Over the past decade, the US started to cut down the production and the use of coal, which was affected by unfavorable market dynamics and changing federal regulatory environment. Even before the shale gas revolution and uptake of renewables diminish the use of coal in power generation, coal communities were struggling to meet ends. The regional cost differences between producing states, such as the Appalachian and the Powder River Basins, indicates that coal-impacted communities and workers have lived through the impacts of coal transition at varying magnitudes and time periods. In the period between 2014 and 2016, we have seen the crash of major US coal companies due to declining demand for US coal domestically and internationally. Furthermore, Obama administration's climate change policies negatively impacted coal-fired power plants with additional GHG emission requirements, contributing to declining domestic demand for coal. Combined with market downturn, US coal producers already struggle to pay for high operational costs and legal liabilities under bankruptcy conditions. With under-funded state budgets, coal states are also grappling with financial exposure resulting from pension, health care and reclamation liabilities of bankrupt coal companies. In 2016, former President Obama announced the Power Plus Plan to aid coal-impacted communities and workers to prepare for a low carbon future. The federal budget plan targeted diversification of local economies, funding of health and pension funds of miners and retraining for

  15. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method.

    Science.gov (United States)

    Heyden, Andreas; Bell, Alexis T; Keil, Frerich J

    2005-12-08

    A combination of interpolation methods and local saddle-point search algorithms is probably the most efficient way of finding transition states in chemical reactions. Interpolation methods such as the growing-string method and the nudged-elastic band are able to find an approximation to the minimum-energy pathway and thereby provide a good initial guess for a transition state and imaginary mode connecting both reactant and product states. Since interpolation methods employ usually just a small number of configurations and converge slowly close to the minimum-energy pathway, local methods such as partitioned rational function optimization methods using either exact or approximate Hessians or minimum-mode-following methods such as the dimer or the Lanczos method have to be used to converge to the transition state. A modification to the original dimer method proposed by [Henkelman and Jonnson J. Chem. Phys. 111, 7010 (1999)] is presented, reducing the number of gradient calculations per cycle from six to four gradients or three gradients and one energy, and significantly improves the overall performance of the algorithm on quantum-chemical potential-energy surfaces, where forces are subject to numerical noise. A comparison is made between the dimer methods and the well-established partitioned rational function optimization methods for finding transition states after the use of interpolation methods. Results for 24 different small- to medium-sized chemical reactions covering a wide range of structural types demonstrate that the improved dimer method is an efficient alternative saddle-point search algorithm on medium-sized to large systems and is often even able to find transition states when partitioned rational function optimization methods fail to converge.

  16. Global dynamics and transition state theories: Comparative study of reaction rate constants for gas-phase chemical reactions.

    Science.gov (United States)

    Ju, Li-Ping; Han, Ke-Li; Zhang, John Z H

    2009-01-30

    In this review article, we present a systematic comparison of the theoretical rate constants for a range of bimolecular reactions that are calculated by using three different classes of theoretical methods: quantum dynamics (QD), quasi-classical trajectory (QCT), and transition state theory (TST) approaches. The study shows that the difference of rate constants between TST results and those of the global dynamics methods (QD and QCT) are seen to be related to a number of factors including the number of degrees-of-freedom (DOF), the density of states at transition state (TS), etc. For reactions with more DOF and higher density of states at the TS, it is found that the rate constants from TST calculations are systematically higher than those obtained from global dynamics calculations, indicating large recrossing effect for these systems. The physical insight of this phenomenon is elucidated in the present review. (c) 2008 Wiley Periodicals, Inc.

  17. Equi-Gaussian curvature folding

    Indian Academy of Sciences (India)

    have the same equi-Gaussian curvature 1/a2, where a is the radius of the sphere. Now let f : S2 → Pn be a cellular folding. Then we have the following possibilities: Firstly, there are no cellular foldings f : S2 → Pn, for any n > 3 [2]. Secondly, any cellular folding f : S2 → P3 for which Gf forms a regular graph is equivalent to ...

  18. Developing ecological site and state-and-transition models for grazed riparian pastures at Tejon Ranch, California

    Science.gov (United States)

    Felix P. Ratcliff; James Bartolome; Michele Hammond; Sheri Spiegal; Michael White

    2015-01-01

    Ecological site descriptions and associated state-and-transition models are useful tools for understanding the variable effects of management and environment on range resources. Models for woody riparian sites have yet to be fully developed. At Tejon Ranch, in the southern San Joaquin Valley of California, we are using ecological site theory to investigate the role of...

  19. Effects of a transition to a hydrogen economy on employment in the United States Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-07-01

    DOE's Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress estimates the employment effects of a transformation of the U.S. economy to the use of hydrogen in the 2020 to 2050 timeframe. This report fulfills requirements of section 1820 of the Energy Policy Act of 2005.

  20. Elastic and transition form factors for the collexuctive states of magic and near magic nuclei in the GHF method

    International Nuclear Information System (INIS)

    Steshenko, A.I.; Maksimenko, V.N.

    1983-01-01

    A method for calculating the matrix elements of a nuclear form factor operator in the basis of collective functions Sp(2,R) is proposed. The formulas obtained can be used in the calculatings of the charged elastic and transition form factors for the collective states of maqic and near magic nuclei by means of the generalized hyperspherical function method

  1. Rupture and Adaptation: British Technical Expertise to the Singapore Polytechnic and the Transition to a Nation-State

    Science.gov (United States)

    Seng, Loh Kah

    2015-01-01

    The Singapore Polytechnic underwent a period of both rupture and adaptation as British advisers worked with the post-colonial government to facilitate technical education reform and Singapore's transition to a nation-state. Established in 1958 and based on the metropolitan model, the Singapore Polytechnic constituted an imperial project for…

  2. Serum 25-hydroxyvitamin D, transitions between frailty states, and mortality in older adults: the Invecchiare in Chianti Study

    NARCIS (Netherlands)

    Shardell, M.; D'Adamo, C.; Alley, D.E.; Miller, R.R.; Hicks, G.E.; Milaneschi, Y.; Semba, R.D.; Cherubini, A.; Bandinelli, S.; Ferrucci, L.

    2012-01-01

    Objectives To assess whether serum 25-hydroxyvitamin D (25(OH)D) concentrations relate to transitions between the states of robustness, prefrailty, and frailty and to mortality in older adults. Design The Invecchiare in Chianti (InCHIANTI) Study, a prospective cohort study. Setting Tuscany, Italy.

  3. The political-economic transition and the building of the welfare state in Spain (1975-1986

    Directory of Open Access Journals (Sweden)

    Rafael Muñoz de Bustillo Llorente

    2008-12-01

    Full Text Available This article analyses the economic policy in Spain during the govern- ments of the Spanish political transition from 1975 to 1986. It considers the different areas of economic policy with special emphasis on the development of welfare state issues in this period. Taking into account the difficult economic and political situation in 1975, there were some important advances in social policy and progressive taxation during the period. The transition to democracy in Spain changed the role and size of the public sector above all from 1975 to 1986. The social demands over the political system were possible improvements in the progressive and redistributive policies in education, health, and social programs. Spain’s transition to democracy and the first period of welfare state show a mutually reinforcing and its consequences were the modernization of the Spanish economy. However, from 1986 the economic develop- ment and the progress of welfare state have had a different growth.Key words: Welfare state, Economic transition, Spain.

  4. Fire rehabilitation decisions at landscape scales: utilizing state-and-transition models developed through disturbance response grouping of ecological sites

    Science.gov (United States)

    Recognizing the utility of ecological sites and the associated state-and-transition model (STM) for decision support, the Bureau of Land Management in Nevada partnered with Nevada NRCS and the University of Nevada, Reno (UNR) in 2009 with the goal of creating a team that could (1) expedite developme...

  5. NuSTAR Observations of the State Transition of Millisecond Pulsar Binary PSR J1023+0038

    DEFF Research Database (Denmark)

    Tendulkar, Shriharsh P.; Yang, Chengwei; An, Hongjun

    2014-01-01

    . Consecutive dip separations are log-normal in distribution with a typical separation of approximately 400 s. These dips are distinct from dipping activity observed in LMXBs. We compare and contrast these dips to observations of dips and state changes in the similar transition systems PSR J1824-2452I and XSS J...

  6. Simultaneous spin-state-insulator-metal transition in Pr0.5Ca0.5CoO3

    International Nuclear Information System (INIS)

    Saitoh, T.; Yamashita, Y.; Todoroki, N.; Kyomen, T.; Itoh, M.; Higashiguchi, M.; Shimada, K.

    2004-01-01

    The temperature-induced paramagnetism in LaCoO 3 around 100 K has long been known as a characteristic phenomenon of this compound, but its interpretation is not settled yet. One reason is that the low-spin (LS) ground state and other intermediate-spin (IS) or high-spin (HS) states cannot be resolved completely because such states are populated by thermal excitation. Here we present a first observation of a distinct change in the electronic structure due to a pure LS-IS transition of a Co oxide; Pr 0.5 Ca 0.5 CoO 3 exhibits a simultaneous LS-IS and insulator-metal first-order phase transition around 90 K with increasing temperature. Because of the first- order nature of the transition, the IS phase is not populated by thermal excitation, which enables us to investigate the electronic structure of the LS- and IS-Co 3d states, independently. Figure 1 shows temperature-dependent photoemission spec- tra of Pr 0.5 Ca 0.5 CoO 3 . The leading peak A, which is Co 3d t 2g states, is rapidly suppressed from 70 K to 100 K. Compared with a theoretical calculation, this change should be representing the LS to IS spin-state transition. The observed change between the 'pure' LS and IS spectra will exclude the simple LS-HS scenario in LaCoO 3 and hence demonstrates the importance of the IS state in both excited states and the carrier-doped region

  7. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2015-12-15

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  8. pH-jump induced leucine zipper folding beyond the diffusion limit.

    Science.gov (United States)

    Donten, Mateusz L; Hassan, Shabir; Popp, Alexander; Halter, Jonathan; Hauser, Karin; Hamm, Peter

    2015-01-29

    The folding of a pH-sensitive leucine zipper, that is, a GCN4 mutant containing eight glutamic acid residues, has been investigated. A pH-jump induced by a caged proton (o-nitrobenzaldehyde, oNBA) is employed to initiate the process, and time-resolved IR spectroscopy of the amide I band is used to probe it. The experiment has been carefully designed to minimize the buffer capacity of the sample solution so that a large pH jump can be achieved, leading to a transition from a completely unfolded to a completely folded state with a single laser shot. In order to eliminate the otherwise rate-limiting diffusion-controlled step of the association of two peptides, they have been covalently linked. The results for the folding kinetics of the cross-linked peptide are compared with those of an unlinked peptide, which reveals a detailed picture of the folding mechanism. That is, folding occurs in two steps, one on an ∼1-2 μs time scale leading to a partially folded α-helix even in the monomeric case and a second one leading to the final coiled-coil structure on distinctively different time scales of ∼30 μs for the cross-linked peptide and ∼200 μs for the unlinked peptide. By varying the initial pH, it is found that the folding mechanism is consistent with a thermodynamic two-state model, despite the fact that a transient intermediate is observed in the kinetic experiment.

  9. Ca-Dependent Folding of Human Calumenin

    Science.gov (United States)

    Mazzorana, Marco; Hussain, Rohanah; Sorensen, Thomas

    2016-01-01

    Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range. PMID:26991433

  10. Line strengths of rovibrational and rotational transitions within the X^3Σ {^-} ground state of NH

    Science.gov (United States)

    Brooke, James S. A.; Bernath, Peter F.; Western, Colin M.; van Hemert, Marc C.; Groenenboom, Gerrit C.

    2014-08-01

    A new line list for rovibrational and rotational transitions, including fine structure, within the NH X^3Σ {^-} ground state has been created. It contains line intensities in the form of Einstein A and f-values, for all possible bands up to v' = 6, and for J up to between 25 and 44. The intensities are based on a new dipole moment function (DMF), which has been calculated using the internally contracted multi-reference configuration interaction method with an aug-cc-pV6Z basis set. The programs RKR1, LEVEL, and PGOPHER were used to calculate line positions and intensities using the most recent spectroscopic line position observations and the new DMF, including the rotational dependence on the matrix elements. The Hund's case (b) matrix elements from the LEVEL output (available as Supplement 1 of the supplementary material) have been transformed to the case (a) form required by PGOPHER. New relative intensities for the (1,0) band have been measured, and the calculated and observed Herman-Wallis effects are compared, showing good agreement. The line list (see Supplement 5 of the supplementary material) will be useful for the study of NH in astronomy, cold and ultracold molecular systems, and in the nitrogen chemistry of combustion.

  11. Evidence that pH can drive state transitions in isolated thylakoid membranes from spinach.

    Science.gov (United States)

    Singh-Rawal, Pooja; Jajoo, Anjana; Mathur, Sonal; Mehta, Pooja; Bharti, Sudhakar

    2010-06-01

    Our observation that the F735/F685 ratio at 77 K increased when the lumenal pH decreased led us to investigate the role of pH in explaining the mechanism of state transitions in spinach (Spinacea oleracea L.) thylakoid membranes. As the lumenal pH was changed from pH 7.5 to 5.5, the quantum yield of PS II decreased, while that of PS I increased. In the presence of an uncoupler, NH(4)Cl, which sequesters protons, a reversal of the effects observed at pH 5.5 were noticed. The thylakoid membranes treated with NaF at pH 5.5, when suspended in a buffer of pH 7.5, showed enhanced PS II fluorescence and a decreased PS I fluorescence, suggesting migration of LHC II back to PS II from PS I. The results presented here suggest for the first time that the lumenal pH of thylakoid membranes regulates the migration of antenna, and hence the energy distribution, between the two photosystems, i.e. a low lumenal pH (pH 5.5) favors antenna migration from PS II to PS I. At pH 7.5, the deprotonation of LHC II antenna attached to PS I leads to back migration of LHC II to PS II.

  12. Numerical Computation of a Continuous-thrust State Transition Matrix Incorporating Accurate Hardware and Ephemeris Models

    Science.gov (United States)

    Ellison, Donald; Conway, Bruce; Englander, Jacob

    2015-01-01

    A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.

  13. Variational transition state theory. Progress report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    Truhlar, D.G.

    1980-02-01

    The variational transition state theory (VTST) of chemical reaction rates has been further developed and two previously developed and one new version have been illustrated and tested by various applications to collinear and three-dimensional reactions of the type A + BC → AB + C. The first two versions considered are canonical variational theory (CVT), which is based on curves of free energy of activation as functions of location of the VTST dividing surface, and microcanonical variational theory (μVT), which is based on minimizing the reactive flux through the VTST dividing surface at each total energy. CVT is simpler but μVT is more accurate. The new theory, improved canonical variational theory (ICVT), is almost as simple as CVT but almost as accurate as μVT. This has been demonstrated by applications to H, O, F, Cl, and I reacting with H 2 , H reacting with F 2 and Cl 2 , and various isotopic analogs and model systems. It was also demonstrated that VTST leads to very good agreement with accurate quantal results for several collinear reactions. Another project used VTST to explore the systematics of kinetic isotope effects for three-dimensional reactions. The predictions sometimes differ considerably from those of the conventional theory

  14. Tools for Resilience Management: Multidisciplinary Development of State-and-Transition Models for Northwest Colorado

    Directory of Open Access Journals (Sweden)

    Emily J. Kachergis

    2013-12-01

    Full Text Available Building models is an important way of integrating knowledge. Testing and updating models of social-ecological systems can inform management decisions and, ultimately, improve resilience. We report on the outcomes of a six-year, multidisciplinary model development process in the sagebrush steppe, USA. We focused on creating state-and-transition models (STMs, conceptual models of ecosystem change that represent nonlinear dynamics and are being adopted worldwide as tools for managing ecosystems. STM development occurred in four steps with four distinct sets of models: (1 local knowledge elicitation using semistructured interviews; (2 ecological data collection using an observational study; (3 model integration using participatory workshops; and (4 model simplification upon review of the literature by a multidisciplinary team. We found that different knowledge types are ultimately complementary. Many of the benefits of the STM-building process flowed from the knowledge integration steps, including improved communication, identification of uncertainties, and production of more broadly credible STMs that can be applied in diverse situations. The STM development process also generated hypotheses about sagebrush steppe dynamics that could be tested by future adaptive management and research. We conclude that multidisciplinary development of STMs has great potential for producing credible, useful tools for managing resilience of social-ecological systems. Based on this experience, we outline a streamlined, participatory STM development process that integrates multiple types of knowledge and incorporates adaptive management.

  15. Design of amino acid sulfonamides as transition-state analogue inhibitors of arginase.

    Science.gov (United States)

    Cama, Evis; Shin, Hyunshun; Christianson, David W

    2003-10-29

    Arginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine to form L-ornithine plus urea. Chiral L-amino acids bearing sulfonamide side chains have been synthesized in which the tetrahedral sulfonamide groups are designed to target bridging coordination interactions with the binuclear manganese cluster in the arginase active site. Syntheses of the amino acid sulfonamides have been accomplished by the amination of sulfonyl halide derivatives of (S)-(tert-butoxy)-[(tert-butoxycarbonyl)amino]oxoalkanoic acids. Amino acid sulfonamides with side chains comparable in length to that of L-arginine exhibit inhibition in the micromolar range, and the X-ray crystal structure of arginase I complexed with one of these inhibitors, S-(2-sulfonamidoethyl)-L-cysteine, has been determined at 2.8 A resolution. In the enzyme-inhibitor complex, the sulfonamide group displaces the metal-bridging hydroxide ion of the native enzyme and bridges the binuclear manganese cluster with an ionized NH(-) group. The binding mode of the sulfonamide inhibitor may mimic the binding of the tetrahedral intermediate and its flanking transition states in catalysis. It is notable that the ionized sulfonamide group is an excellent bridging ligand in this enzyme-inhibitor complex; accordingly, the sulfonamide functionality can be considered in the design of inhibitors targeting other binuclear metalloenzymes.

  16. Lithium impurity recombination in solid para-hydrogen: A path integral quantum transition state theory study

    Science.gov (United States)

    Jang, Seogjoo; Voth, Gregory A.

    1998-03-01

    The recombination of two lithium atoms trapped in one-vacancy defect sites of solid para-hydrogen at 4 K and zero external pressure is studied as a quantum activated process. The quantum activation free energy is calculated using path integral quantum transition state theory along with the method of path integral molecular dynamics simulation. The equilibrium volume of the system is determined by a constant pressure method that scales the sides of the rectangular simulation box. At a fixed equilibrium volume of the system, a constraint dynamics path integral simulation is then employed to determine the quantum path centroid free energy barrier along the reaction coordinate, which is taken to be the relative Li-Li separation. The two lithium atoms begin to recombine at a distance of approximately twice the lattice spacing, and the height of the barrier relative to the metastable well is 78±10 K. The rate of the intrinsic recombination step is estimated to be 1.3×103s-1 at 4 K. It is found that the lithium nuclei exhibit significant tunneling behavior over their classical limit.

  17. Valence density of states of group IVA transition-metal dichalcogenides

    International Nuclear Information System (INIS)

    Boehm, J. von; Isomaeki, H.

    1980-01-01

    The valence densities of states (VDOS) of the IVA transition-metal dichalcogenides ZrS 2 , ZrSe 2 , TiSe 2 are calculated using the Gilat-Raubenheimer method and analysed in detail VDOS based on quadratic Lagrangian interpolation (QLI) of the energies evaluated in the final self-consistent symmetrised OPW (SCSOPW) potential at 131 symmetry independent k points are found to show close resemblance to XPS measurements and recent LCAO VDOS. Using an analysis based on the division of the SCSOPW QLI VDOS into partial VDOS from individual bands we find that four pairs of valence bands (1-2, 3-4, 5-6 and 7-8) give rise to four main peaks of SCSOPW QLI VDOS. A similar analysis shows that the use of the Slater-Koster interpolation caused some artificial deep valleys into the earlier SCSOPW LCAO VDOS. The methods used to calculate SCSOPW QLI VDOS and SCSOPW LCAO VDOS are also described. (author)

  18. Ensemble of Transition State Structures for the Cis-Trans Isomerization of N-Methylacetamide

    Energy Technology Data Exchange (ETDEWEB)

    Mantz, Yves A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Branduardi, Davide [Italian Inst. of Technology, Genoa (Italy); Bussi, Giovanni [Univ. of Modena and Reggio Emilia and INFM-CNR (Italy); Parrinello, Michele [ETH Zurich, Lugano (Switzerland). Dept. of Chemistry and Applied Biosciences

    2009-09-17

    The cis-trans isomerization of N-methylacetamide (NMA), a model peptidic fragment, is studied theoretically in vacuo and in explicit water solvent at 300 K using the metadynamics technique. The computed cis-trans free energy difference is very similar for NMA(g) and NMA(aq), in agreement with experimental measurements of population ratios and theoretical studies at 0 K. By exploiting the flexibility in the definition of a pair of recently introduced collective variables (Branduardi, D.; Gervasio, F. L.; Parrinello, M. J. Chem. Phys. 2007, 126, 054103), an ensemble of transition state structures is generated at finite temperature for both NMA(g) and NMA(aq), as verified by computing committor distribution functions. Ensemble members of NMA(g) are shown to have correlated values of the backbone dihedral angle and a second dihedral angle involving the amide hydrogen atom. The dynamical character of these structures is preserved in the presence of solvent, whose influence on the committor functions can be modeled using effective friction/noise terms.

  19. Dicke phase transition with multiple superradiant states in quantum chaotic resonators

    KAUST Repository

    Liu, C.

    2014-06-12

    We experimentally investigate the Dicke phase transition in chaotic optical resonators realized with two-dimensional photonics crystals. This setup circumvents the constraints of the system originally investigated by Dicke and allows a detailed study of the various properties of the superradiant transition. Our experimental results, analytical prediction, and numerical modeling based on random-matrix theory demonstrate that the probability density P? of the resonance widths provides a new criterion to test the occurrence of the Dicke transition.

  20. Towards a systematic classification of protein folds

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Bohr, Henrik

    1997-01-01

    structures are given a unique name, which simultaneously represent a linear string of physical coupling constants describing hinge spin interactions. We have defined a metric and a precise distance measure between the fold classes. An automated procedure is constructed in which any protein structure...... magic number of secondary structures. Thermodynamic arguments for the increased abundance and a phase diagram for the folding scenario are given. This includes an intermediate high symmetry phase, the parent structures, between the molten globule and the native states. We have made an exhaustive...

  1. Symmetric Circular Matchings and RNA Folding

    DEFF Research Database (Denmark)

    Hofacker, Ivo L.; Reidys, Christian; Stadler, Peter F.

    2012-01-01

    or the co-folding of two or more identical RNAs. Here, we show that the RNA folding problem with symmetry terms can still be solved with polynomial-time algorithms. Empirically, the fraction of symmetric ground state structures decreases with chain length, so that the error introduced by neglecting......RNA secondary structures can be computed as optimal solutions of certain circular matching problems. An accurate treatment of this energy minimization problem has to account for the small --- but non-negligible --- entropic destabilization of secondary structures with non-trivial automorphisms...

  2. Theoretical spectroscopic studies of the atomic transitions and lifetimes of low-lying states in Ti IV

    International Nuclear Information System (INIS)

    Mandal, Subhasish; Dixit, Gopal; Majumder, Sonjoy; Sahoo, B K; Chaudhuri, R K

    2008-01-01

    The astrophysically important electric quadrupole (E2) and magnetic dipole (M1) transitions for the low-lying states of triply ionized titanium (Ti IV) are calculated very accurately using a state-of-the-art all-order many-body theory called coupled cluster (CC) method in the relativistic framework. Different many-body correlations of the CC theory has been estimated by studying the core and valence electron excitations to the unoccupied states. The calculated excitation energies of different states are in excellent agreement with the measurements. Also, we compare our calculated electric dipole (E1) amplitudes of few transitions with recent many-body calculations by others. The lifetimes of the low-lying states of Ti IV have been estimated and long lifetime is found for the first excited 3d 2 D 5/2 state, which suggested that Ti IV may be one of the useful candidates for many fundamental studies of physics. Most of the forbidden transition results reported here are not available in the literature, to the best of our knowledge

  3. Folding of polymer chains with short-range binormal interactions

    International Nuclear Information System (INIS)

    Craig, A; Terentjev, E M

    2006-01-01

    We study the structure of chains which have anisotropic short-range contact interactions that depend on the alignment of the binormal vectors of chain segments. This represents a crude model of hydrogen bonding or 'stacking' interactions out of the plane of curvature. The polymers are treated as ribbon-like semi-flexible chains, where the plane of the ribbon is determined by the local binormal. We show that with dipole-dipole interactions between the binormals of contacting chain segments, mean-field theory predicts a first-order transition to a binormally aligned state. We describe the onset of this transition as a function of the temperature-dependent parameters that govern the chain stiffness and the strength of the binormal interaction, as well as the binormal alignment's coupling to chain collapse. We also examine a metastable state governing the folding kinetics. Finally, we discuss the possible mesoscopic structure of the aligned phase, and application of our model to secondary structure motifs like β-sheets and α-helices, as well as composite structures like β-(amyloid) fibrils

  4. Manganese Deficiency Leads to Genotype-Specific Changes in Fluorescence Induction Kinetics and State Transitions1[C][OA

    Science.gov (United States)

    Husted, Søren; Laursen, Kristian H.; Hebbern, Christopher A.; Schmidt, Sidsel B.; Pedas, Pai; Haldrup, Anna; Jensen, Poul E.

    2009-01-01

    Barley (Hordeum vulgare) genotypes display a marked difference in their ability to tolerate growth at low manganese (Mn) concentrations, a phenomenon designated as differential Mn efficiency. Induction of Mn deficiency in two genotypes differing in Mn efficiency led to a decline in the quantum yield efficiency for both, although faster in the Mn-inefficient genotype. Leaf tissue and thylakoid Mn concentrations were reduced under Mn deficiency, but no difference between genotypes was observed and no visual Mn deficiency symptoms were developed. Analysis of the fluorescence induction kinetics revealed that in addition to the usual O-J-I-P steps, clear K and D steps were developed in the Mn-inefficient genotype under Mn deficiency. These marked changes indicated damages to photosystem II (PSII). This was further substantiated by state transition measurements, indicating that the ability of plants to redistribute excitation energy was reduced. The percentage change in state transitions for control plants with normal Mn supply of both genotypes was 9% to 11%. However, in Mn-deficient leaves of the Mn-inefficient genotypes, state transitions were reduced to less than 1%, whereas no change was observed for the Mn-efficient genotypes. Immunoblotting and the chlorophyll a/b ratio confirmed that Mn deficiency in general resulted in a significant reduction in abundance of PSII reaction centers relative to the peripheral antenna. In addition, PSII appeared to be significantly more affected by Mn limitation than PSI. However, the striking genotypic differences observed in Mn-deficient plants, when analyzing state transitions and fluorescence induction kinetics, could not be correlated with specific changes in photosystem proteins. Thus, there is no simple linkage between protein expression and the differential reduction in state transition and fluorescence induction kinetics observed for the genotypes under Mn deficiency. PMID:19369593

  5. Teaching computers to fold proteins

    DEFF Research Database (Denmark)

    Winther, Ole; Krogh, Anders Stærmose

    2004-01-01

    A new general algorithm for optimization of potential functions for protein folding is introduced. It is based upon gradient optimization of the thermodynamic stability of native folds of a training set of proteins with known structure. The iterative update rule contains two thermodynamic averages...

  6. Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough.

    Science.gov (United States)

    O'Brien, Darragh P; Perez, Ana Cristina Sotomayor; Karst, Johanna; Cannella, Sara E; Enguéné, Véronique Yvette Ntsogo; Hessel, Audrey; Raoux-Barbot, Dorothée; Voegele, Alexis; Subrini, Orso; Davi, Marilyne; Guijarro, J Inaki; Raynal, Bertrand; Baron, Bruno; England, Patrick; Hernandez, Belen; Ghomi, Mahmoud; Hourdel, Véronique; Malosse, Christian; Chamot-Rooke, Julia; Vachette, Patrice; Durand, Dominique; Brier, Sébastien; Ladant, Daniel; Chenal, Alexandre

    2018-01-12

    The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the

  7. M1 and E2 transitions in the ground-state configuration of atomic ...

    Indian Academy of Sciences (India)

    forbidden. The lowest-order metastable levels which radiatively decay correspond to magnetic dipole (M1) and electric quadrupole (E2) transitions [16]. M1 and E2 transi- tion rates are several orders of magnitude smaller than those for electric dipole (E1) tran- sitions with a similar energy level separation. These transitions ...

  8. Divergence of relative difference in Gaussian distribution function and stochastic resonance in a bistable system with frictionless state transition

    Science.gov (United States)

    Kasai, Seiya; Ichiki, Akihisa; Tadokoro, Yukihiro

    2018-03-01

    A bistable system efficiently detects a weak signal by adding noise, which is referred to as stochastic resonance. A previous theory deals with friction in state transition; however, this hypothesis is inadequate when friction force is negligible such as in nano- and molecular-scale systems. We show that, when the transition occurs without friction, the sensitivity of the bistable system to a Gaussian-noise-imposed weak signal becomes significantly high. The sensitivity is determined by the relative difference in noise distribution function. We find that the relative difference in Gaussian distribution function diverges in its tail edge, resulting in a high sensitivity in the present system.

  9. Electronic and thermodynamic properties of the transition between metallic and nonmetallic states in dense media

    International Nuclear Information System (INIS)

    Fortin, Xavier

    1971-01-01

    The effects of thermal excitation are introduced in the study of a simple electronic structure model for condensed media. The choice of a particle-interaction potential leads to a self-consistent calculation performed on a computer. This calculation gives a metal - nonmetal transition similar to the MOTT transition. We consider the effects of temperature and density variations upon this transition. It is possible to make use of this electronic structure to obtain the thermodynamic properties near the transition: pressure, free energy, sound velocity. The numerical results of this simple model are satisfactory. Particularly, if a dielectric constant is taken into account, the transition temperature and density are of the same order of magnitude as those observed experimentally in semiconductors. (author) [fr

  10. A detailed study on the transition from the blocked to the superparamagnetic state of reduction-precipitated iron oxide nanoparticles

    Science.gov (United States)

    Witte, K.; Bodnar, W.; Mix, T.; Schell, N.; Fulda, G.; Woodcock, T. G.; Burkel, E.

    2016-04-01

    Magnetic iron oxide nanoparticles were prepared by salt-assisted solid-state chemical precipitation method with alternating fractions of the ferric iron content. The physical properties of the precipitated nanoparticles mainly consisting of magnetite were investigated by means of transmission electron microscopy, high energy X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. With particle sizes ranging from 16.3 nm to 2.1 nm, a gradual transition from the blocked state to the superparamagnetic state was observed. The transition was described as a dependence of the ferric iron content used during the precipitation. Composition, mean particle size, coercivity, saturation polarisation, as well as hyperfine interaction parameters and their evolution were studied systematically over the whole series of iron oxide nanoparticles.

  11. Vortex dynamics at the transition to the normal state in YBa2Cu3O7-δ films

    International Nuclear Information System (INIS)

    Bernstein, P.; Hamet, J.F.; Gonzalez, M.T.; Ruibal Acuna, M.

    2007-01-01

    We propose a description of the vortex dynamics in YBa 2 Cu 3 O 7-δ films from the critical to the normal states. This description supposes that the vortex motion is thermally activated along the twin boundaries of the films. The discontinuity observed in the current-voltage curves at the transition to the normal state is explained by the sudden increase in the dissipated power rate due to vortex depinning. However, near the critical temperature, this phenomenon does not occur because the vortex activation energy is near zero. We also show how the current at the transition to the normal state can be computed from the current-voltage curves measured at low currents. The predictions of this description are compared to the data published by [M.T. Gonzalez, J. Vina, S.R. Curras, J.A. Veira, J. Maza, F. Vidal, Phys. Rev. B 68 (2003) 054514

  12. Non-symmetric localized fold of a floating sheet

    Science.gov (United States)

    Rivetti, Marco

    2013-03-01

    An elastic sheet lying on the surface of a liquid, if axially compressed, shows a transition from a smooth sinusoidal pattern to a well-localized fold. This wrinkle-to-fold transition is a manifestation of a localized buckling. The symmetric and antisymmetric shapes of the fold have recently been described by Diamant and Witten (2011), who found two exact solutions of the nonlinear equilibrium equations. In this Note, we show that these solutions can be generalized to a continuous family of solutions, which yields non-symmetric shapes of the fold. We prove that non-symmetric solutions also describe the shape of a soft strip withdrawn from a liquid bath, a physical problem that allows us to easily observe portions of non-symmetric profiles.

  13. State transitions between wake and sleep, and within the ultradian cycle, with focus on the link to neuronal activity.

    Science.gov (United States)

    Merica, Helli; Fortune, Ronald D

    2004-12-01

    The structure of sleep across the night as expressed by the hypnogram, is characterised by repeated transitions between the different states of vigilance: wake, light and deep non-rapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. This review is concerned with current knowledge on these state transitions, focusing primarily on those findings that allow the integration of data at cellular level with spectral time-course data at the encephalographic (EEG) level. At the cellular level it has been proposed that, under the influence of circadian and homeostatic factors, transitions between wake and sleep may be determined by mutually inhibitory interaction between sleep-active neurons in the hypothalamic preoptic area and wake-active neurons in multiple arousal centres. These two fundamentally different behavioural states are separated by the sleep onset and the sleep inertia periods each characterised by gradual changes in which neither true wake nor true sleep patterns are present. The results of sequential spectral analysis of EEG data on moves towards and away from deep sleep are related to findings at the cellular level on the generating mechanisms giving rise to the various NREM oscillatory modes under the neuromodulatory control of brainstem-thalamic activating systems. And there is substantial evidence at cellular level that transition to and from REM sleep is governed by the reciprocal interaction between cholinergic REM-on neurons and aminergic REM-off neurons located in the brainstem. Similarity between the time-course of the REM-on neuronal activity and that of EEG power in the high beta range (approximately 18-30 Hz) allows a tentative parallelism to be drawn between the two. This review emphasises the importance of the thalamically projecting brainstem activating systems in the orchestration of the transitions that give rise to state progression across the sleep-wake cycle.

  14. Feshbach to ultracold molecular state Raman transitions in a seven-level system using optical frequency combs

    Science.gov (United States)

    Liu, Gengyuan; Malinovskaya, Svetlana

    2015-05-01

    A method for creation of molecules in the ultracold state from the Feshbach molecules by stepwise adiabatic passage using an optical frequency comb is investigated in the framework of a semiclassical seven-level system. Sinusoidal modulation across an individual pulse in the pulse train is applied that leads to a creation of a quasi-dark state minimizing population of the transitional, vibrational state manifold and efficiently mitigating decoherence in the system. The parity of the temporal chirp shown to be an important factor in designing population dynamics in the system. This work is supported by National Science Foundation.

  15. Many body effects on the formal charge state of 3d - Transition Metal Doped BaTiO3

    Science.gov (United States)

    Mandal, Subhasish; Cohen, R. E.; Haule, K.

    2015-03-01

    Using density functional theory in combination with dynamical mean field theory in Mn doped BaTiO3, we find a different charge state and 3d - orbital occupations than obtained from either DFT or DFT+U. We find that the explicit treatment of many-body effects induced by the Hund's rule coupling in Mn shows a donor charge state of Mn2+, instead of usual acceptor charge state of Mn4+ as is found in both DFT and DFT+U. The differences in electron density reveal that charge transfer due to strong Hubbard interactions is not sufficient to describe the electron correlations in transition metal doped ferroelectrics.

  16. Ab initio study of vibronic transitions between x2π and 12Σ+ electronic states of HCP+ ion

    Directory of Open Access Journals (Sweden)

    Stojanović Ljiljana

    2013-01-01

    Full Text Available The ground and low-lying excited doublet electronic states of the HCP+ ion were studied by means of multireference configuration interaction method. Vibronic energy levels of the X2Π state of Σ, Π, Δ, and Φ symmetry, up to the 2500 cm-1, have been calculated variationally, employing previously developed ab initio methods which take into account vibronic and spin-orbit interactions. Obtained vibronic wave functions were used to estimate transition moments between vibronic energy levels of the X2Π and 12Σ+ electronic states. Results were compared to available experimental and theoretical data. [Projekat Ministarstva nauke Republike Srbije, br. 172040

  17. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments

    Science.gov (United States)

    Chambers, Jeanne C.; Miller, Richard F.; Board, David I.; Pyke, David A.; Roundy, Bruce A.; Grace, James B.; Schupp, Eugene W.; Tausch, Robin J.

    2014-01-01

    In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma [Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.

  18. Evaluation of spina bifida transitional care practices in the United States.

    Science.gov (United States)

    Kelly, Maryellen S; Thibadeau, Judy; Struwe, Sara; Ramen, Lisa; Ouyang, Lijing; Routh, Jonathan

    2017-12-11

    Recent studies have revealed that the lack of continuity in preparing patients with spina bifida to transition into adult-centered care may have detrimental health consequences. We sought to describe current practices of transitional care services offered at spina bifida clinics in the US. Survey design followed the validated transitional care survey by the National Cystic Fibrosis center. Survey was amended for spina bifida. Face validity was completed. Survey was distributed to registered clinics via the Spina Bifida Association. Results were analyzed via descriptive means. Total of 34 clinics responded. Over 90 characteristics were analyzed per clinic. The concept of transition is discussed with most patients. Most clinics discuss mobility, bowel and bladder management, weight, and education plans consistently. Most do not routinely evaluate their process or discuss insurance coverage changes with patients. Only 30% communicate with the adult providers. Sexuality, pregnancy and reproductive issues are not readily discussed in most clinics. Overall clinics self-rate themselves as a 5/10 in their ability to provide services for their patients during transition. Characteristics of current transitional care services and formal transitional care programs at US clinics show wide variances in what is offered to patients and families.

  19. Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition.

    Science.gov (United States)

    Amini, Abbas; Cheng, Chun

    2013-01-01

    Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips.

  20. Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition

    Science.gov (United States)

    Amini, Abbas; Cheng, Chun

    2013-01-01

    Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips. PMID:23963305

  1. RNA folding inside a virus capsid and dimensional reduction.

    Science.gov (United States)

    Ghafouri, Rouzbeh; Bruinsma, Robijn; Rudnick, Joseph

    2006-03-01

    As RNA folds on itself , in certain conditions, it takes the form of a branched polymer. So the problem of RNA folding in a virus capsid is essentially the problem of a branched polymer in a confined environment. In this paper we attack the problem using the technique of dimensional reduction which relates a branched polymer with self interation in D dimension to a hardcore classical gas in (D-2) dimension. We look for phase transitions and intersting physical quantities such as pressure.

  2. Empirical assessment of state-and-transition models with a long-term vegetation record from the Sonoran Desert.

    Science.gov (United States)

    Bagchi, Sumanta; Briske, David D; Wu, X B; McClaran, Mitchel P; Bestelmeyer, Brandon T; Fernández-Giménez, Maria E

    2012-03-01

    Resilience-based frameworks, including state-and-transition models (STM), are being increasingly called upon to inform policy and guide ecosystem management, particularly in rangelands. Yet, multiple challenges impede their effective implementation: (1) paucity of empirical tests of resilience concepts, such as alternative states and thresholds, and (2) heavy reliance on expert models, which are seldom tested against empirical data. We developed an analytical protocol to identify unique plant communities and their transitions, and applied it to a long-term vegetation record from the Sonoran Desert (1953-2009). We assessed whether empirical trends were consistent with resilience concepts, and evaluated how they may inform the construction and interpretation of expert STMs. Seven statistically distinct plant communities were identified based on the cover of 22 plant species in 68 permanent transects. We recorded 253 instances of community transitions, associated with changes in species composition between successive samplings. Expectedly, transitions were more frequent among proximate communities with similar species pools than among distant communities. But unexpectedly, communities and transitions were not strongly constrained by soil type and topography. Only 18 transitions featured disproportionately large compositional turnover (species dissimilarity ranged between 0.54 and 0.68), and these were closely associated with communities that were dominated by the common shrub (burroweed, Haplopappus tenuisecta); indicating that only some, and not all, communities may be prone to large compositional change. Temporal dynamics in individual transects illustrated four general trajectories: stability, nondirectional drift, reversibility, and directional shifts that were not reversed even after 2-3 decades. The frequency of transitions and the accompanying species dissimilarity were both positively correlated with fluctuation in precipitation, indicating that climatic

  3. Energetics of the spin-state transition in LaCoO3: Total energy calculations using DFT +DMFT

    Science.gov (United States)

    Nanguneri, Ravindra; Park, Hyowon

    In this talk, we will present the energetics of the spin-state transition in strongly correlated LaCoO3 by adopting total energy calculations within density functional theory plus dynamical mean field theory (DFT +DMFT). We computed total energy curves as a function of volume for different spin states including low spin (LS), high spin (HS), and 1:1 mixed HS-LS states. We will show that as the volume is expanded, the mixed HS-LS state becomes energetically stable with a reasonable energy gap to the ground-state LS state. The nature of the HS-LS state is a paramagnetic insulator consistent with experiment while the homogeneous HS state is energetically much higher compared to the LS state. To analyze the dynamical fluctuation effect on the energetics, we also computed DFT +U energy curves by adopting the maximally localized Wannier function as correlated orbitals, same as used in DFT +DMFT calculations. The static correlation effect treated in DFT +U overestimates the tendency to higher spin states and the mixed spin state is wrongly predicted to be the ground state. The effect of the Coulomb interaction U, the Hund's coupling J, and the double counting potential on the energetics will be also discussed.

  4. Transition paths in single-molecule force spectroscopy.

    Science.gov (United States)

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2018-03-28

    In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule plus linkers, is measured as a function of time. In the simplest systems, the measured extension fluctuates about two values characteristic of folded and unfolded states, with occasional transitions between them. We have recently shown that molecular (un)folding rates can be recovered from such trajectories, with a small linker correction, as long as the characteristic time of the bead fluctuations is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate measurements of the molecular transition path times require an even faster apparatus response. Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore, over a wide regime, the measured rates may be meaningful but not the transition path times. Analytic expressions for the measured mean transition path times are obtained for systems diffusing anisotropically on a two-dimensional free energy surface. The transition path times depend on the properties both of the molecule and of the pulling device.

  5. Excited State Dynamics and Semiconductor-to-Metallic Phase Transition of VO2 Thin Film

    National Research Council Canada - National Science Library

    Liu, Huimin

    2004-01-01

    .... Vanadium dioxide shows an ultrafast, passive phase transition (PT) from a monoclinic semiconductor phase to a metallic tetragonal rutile structure when the sample temperature is above 68 degrees C...

  6. Determining effective roadway design treatments for transitioning from rural areas to urban areas on state highways.

    Science.gov (United States)

    2008-09-01

    This report reviews an Oregon research effort to identify ways to calm operating speeds as the vehicles transition into developed suburban/urban areas from rural roads. Drivers of vehicles approaching the urban environment have few visual cues to red...

  7. Memo Clarifying Requirements and State Reporting Guidance to Transition to the Revised Total Coliform Rule

    Science.gov (United States)

    This memorandum provides guidance to primacy agencies with enforcement responsibility under the Safe Drinking Water Act (SDWA) concerning the requirements to transition public water systems (PWSs) from the Total Coliform Rule (TCR) to the RTCR

  8. Rate constant and reaction coordinate of Trp-cage folding in explicit water

    NARCIS (Netherlands)

    Juraszek, J.; Bolhuis, P.G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the

  9. Ultraviolet transitions from the 2 3P states of helium-like argon

    International Nuclear Information System (INIS)

    Davis, W.A.

    1976-09-01

    This thesis describes the observation of two allowed electric dipole transitions in helium-like argon. The transitions are 2 3 P 2 --2 3 S 1 and 2 3 P 0 --2 3 S 1 . These transitions were observed by using a vacuum ultraviolet monochromator to collect photons from decays-in-flight of a beam-foil excited argon ion beam. The ion beam was generated by the Lawrence Berkeley Laboratory heavy ion linear accelerator (SuperHILAC) and had a beam energy of 138 MeV with a charge current of roughly 500 nanoamperes. After initial observation, the lifetimes and absolute wavelengths of these transitions were measured. The results are tau(2 3 P 2 ) = 1.62 +- 0.08 X 10 -9 sec, tau(2 3 P 0 ) = 4.87 +- 0.44 X 10 -9 sec, lambda(2 3 P 2 --2 3 S 1 ) = 560.2 +- 0.9A, and lambda(2 3 P 0 --2 3 S 1 ) = 660.7 +- 1.1A. This work has demonstrated the observability of these transitions in high-Z ions using beam-foil excitation. Employing a new grazing-incidence spectrometer this work will be pursued in ions of higher Z. Accuracies of at least one part in a thousand should be attainable and will probe the radiative contributions to these transitions to better than 10 percent in a previously unstudied region

  10. Multiple folding pathways for heterologously expressed human prion protein.

    Science.gov (United States)

    Jackson, G S; Hill, A F; Joseph, C; Hosszu, L; Power, A; Waltho, J P; Clarke, A R; Collinge, J

    1999-04-12

    Human PrP (residues 91-231) expressed in Escherichia coli can adopt several conformations in solution depending on pH, redox conditions and denaturant concentration. Oxidised PrP at neutral pH, with the disulphide bond intact, is a soluble monomer which contains 47% alpha-helix and corresponds to PrPC. Denaturation studies show that this structure has a relatively small, solvent-excluded core and unfolds to an unstructured state in a single, co-operative transition with a DeltaG for folding of -5.6 kcal mol-1. The unfolding behaviour is sensitive to pH and at 4.0 or below the molecule unfolds via a stable folding intermediate. This equilibrium intermediate has a reduced helical content and aggregates over several hours. When the disulphide bond is reduced the protein adopts different conformations depending upon pH. At neutral pH or above, the reduced protein has an alpha-helical fold, which is identical to that observed for the oxidised protein. At pH 4 or below, the conformation rearranges to a fold that contains a high proportion of beta-sheet structure. In the reduced state the alpha- and beta-forms are slowly inter-convertible whereas when oxidised the protein can only adopt an alpha-conformation in free solution. The data we present here shows that the human prion protein can exist in multiple conformations some of which are known to be capable of forming fibrils. The precise conformation that human PrP adopts and the pathways for unfolding are dependent upon solvent conditions. The conditions we examined are within the range that a protein may encounter in sub-cellular compartments and may have implications for the mechanism of conversion of PrPC to PrPSc in vivo. Since the conversion of PrPC to PrPSc is accompanied by a switch in secondary structure from alpha to beta, this system provides a useful model for studying major structural rearrangements in the prion protein.

  11. On the Folded Normal Distribution

    Directory of Open Access Journals (Sweden)

    Michail Tsagris

    2014-02-01

    Full Text Available The characteristic function of the folded normal distribution and its moment function are derived. The entropy of the folded normal distribution and the Kullback–Leibler from the normal and half normal distributions are approximated using Taylor series. The accuracy of the results are also assessed using different criteria. The maximum likelihood estimates and confidence intervals for the parameters are obtained using the asymptotic theory and bootstrap method. The coverage of the confidence intervals is also examined.

  12. Generalized parametric model for phase transitions in the presence of an intermediate metastable state and its application

    Science.gov (United States)

    Barsuk, Alexandr A.; Paladi, Florentin

    2017-12-01

    The previously proposed model for the kinetics of first-order phase transitions (Barsuk et al., 2013) is generalized for r order and m control parameters. Bifurcation and stability analyses of the equilibrium states in thermodynamic systems described by the Landau-type kinetic potential with two order parameters is performed both in the absence of an external field, and in the presence of constant and periodic external fields. Kinetics of thermodynamic systems described by such potential in a small neighborhood of the equilibrium states is also studied. Mean transition time for lysozyme protein in dependence of control parameters is obtained based on the developed model. A detailed bifurcation analysis of the cubic equation solutions is given in Appendix.

  13. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Science.gov (United States)

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  14. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Directory of Open Access Journals (Sweden)

    Rachel R. Sleeter

    2015-06-01

    Full Text Available Spatially-explicit state-and-transition simulation models of land use and land cover (LULC increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS, a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age, spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest. Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  15. Spin-symmetric solution of an interacting quantum dot attached to superconducting leads: Andreev states and the 0-pi transition

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Pokorný, Vladislav; Žonda, M.

    2016-01-01

    Roč. 89, č. 9 (2016), 1-12, č. článku 197. ISSN 1434-6028 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : mesoscopic and nanoscale systems * And reev bound states * 0-pi transition * perturbation theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.461, year: 2016

  16. Exotic topological insulator states and topological phase transitions in Sb2Se3-Bi2Se3 heterostructures

    KAUST Repository

    Zhang, Qianfan

    2012-03-27

    Topological insulator is a new state of matter attracting tremendous interest due to its gapless linear dispersion and spin momentum locking topological states located near the surface. Heterostructures, which have traditionally been powerful in controlling the electronic properties of semiconductor devices, are interesting for topological insulators. Here, we studied the spatial distribution of the topological state in Sb 2Se 3-Bi 2Se 3 heterostructures by first-principle simulation and discovered that an exotic topological state exists. Surprisingly, the state migrates from the nontrivial Bi 2Se 3 into the trivial Sb 2Se 3 region and spreads across the entire Sb 2Se 3 slab, extending beyond the concept of "surface" state while preserving all of the topological surface state characteristics. This unusual topological state arises from the coupling between different materials and the modification of electronic structure near Fermi energy. Our study demonstrates that heterostructures can open up opportunities for controlling the real-space distribution of the topological state and inducing quantum phase transitions between topologically trivial and nontrivial states. © 2012 American Chemical Society.

  17. A detailed study on the transition from the blocked to the superparamagnetic state of reduction-precipitated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witte, K.; Bodnar, W. [University of Rostock, Institute of Physics, August – Bebel – Str. 55, D-18055 Rostock (Germany); Mix, T. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, D-01171 Dresden (Germany); Schell, N. [Helmholtz-Center Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht (Germany); Fulda, G. [University Medicine Rostock, Medical Biology and Electron Microscopy Centre, Strempelstr. 14, D-18057 Rostock (Germany); Woodcock, T.G. [IFW Dresden, Institute for Metallic Materials, PO Box 270116, D-01171 Dresden (Germany); Burkel, E. [University of Rostock, Institute of Physics, August – Bebel – Str. 55, D-18055 Rostock (Germany)

    2016-04-01

    Magnetic iron oxide nanoparticles were prepared by salt-assisted solid-state chemical precipitation method with alternating fractions of the ferric iron content. The physical properties of the precipitated nanoparticles mainly consisting of magnetite were investigated by means of transmission electron microscopy, high energy X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. With particle sizes ranging from 16.3 nm to 2.1 nm, a gradual transition from the blocked state to the superparamagnetic state was observed. The transition was described as a dependence of the ferric iron content used during the precipitation. Composition, mean particle size, coercivity, saturation polarisation, as well as hyperfine interaction parameters and their evolution were studied systematically over the whole series of iron oxide nanoparticles. - Highlights: • Study of superparamagnetic transition of magnetite varying ferric iron content. • Coercivity is mainly influenced by the particle size. • Saturation polarisation influenced by the goethite content and the particle size. • Number of vacancies tend to increase with increasing ferric iron content. • Fe{sub 3}O{sub 4} B-sites are stronger effected by the reduction of particle size than A-sites.

  18. Estimating transition probability of different states of type 2 diabetes and its associated factors using Markov model.

    Science.gov (United States)

    Nazari, Mahsa; Hashemi Nazari, Saeed; Zayeri, Farid; Gholampour Dehaki, Mehrzad; Akbarzadeh Baghban, Alireza

    2018-01-30

    Type 2 diabetes is a chronic metabolic disorder and one of the most common non-contagious diseases which is on the rise all over the world. The present study aims to assess the trend of change in fasting blood sugar (FBS) and factors associated with the progression and regression of type 2 diabetes. Moreover, this study estimates transition intensities and transition probabilities among various states using the multi-state Markov model. In this study Multi-Ethnic Study of Atherosclerosis (MESA) dataset, from a longitudinal study, was used. The study, at the beginning, included 6814 individuals who were followed during the five phases of the study. FBS, serving as the criterion to assess the progression of diabetes, was classified into four states including (a) normal (FBS126mg/dl). A continuous-time Markov process was used to describe the evaluation of disease changes over the four states. The model estimated the mean sojourn time for each state. Based on the results obtained from fitting the Markov model, the transition probability for a normal individual to remain in the same status over a 10-year period was 0.63, while the probability for a person in the diabetes state was 0.40. The mean sojourn time for the normal and diabetic individuals aged 45-84 years was 6.26 and 5.20 respectively. The covariates of age, race, body mass index (BMI), physical activity, waist-to-hip ratio (WHR) and blood pressure, significantly affected the progression and regression of diabetes. An increase in physical activity could be the most important factor in the regression of diabetes, while an increase in WHR and BMI could be the most significant factors in progression of the disease. Copyright © 2018 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  19. Dynamics of folding: Impact of fault bend folds on earthquake cycles

    Science.gov (United States)

    Sathiakumar, S.; Barbot, S.; Hubbard, J.

    2017-12-01

    Earthquakes in subduction zones and subaerial convergent margins are some of the largest in the world. So far, forecasts of future earthquakes have primarily relied on assessing past earthquakes to look for seismic gaps and slip deficits. However, the roles of fault geometry and off-fault plasticity are typically overlooked. We use structural geology (fault-bend folding theory) to inform fault modeling in order to better understand how deformation is accommodated on the geological time scale and through the earthquake cycle. Fault bends in megathrusts, like those proposed for the Nepal Himalaya, will induce folding of the upper plate. This introduces changes in the slip rate on different fault segments, and therefore on the loading rate at the plate interface, profoundly affecting the pattern of earthquake cycles. We develop numerical simulations of slip evolution under rate-and-state friction and show that this effect introduces segmentation of the earthquake cycle. In crustal dynamics, it is challenging to describe the dynamics of fault-bend folds, because the deformation is accommodated by small amounts of slip parallel to bedding planes ("flexural slip"), localized on axial surface, i.e. folding axes pinned to fault bends. We use dislocation theory to describe the dynamics of folding along these axial surfaces, using analytic solutions that provide displacement and stress kernels to simulate the temporal evolution of folding and assess the effects of folding on earthquake cycles. Studies of the 2015 Gorkha earthquake, Nepal, have shown that fault geometry can affect earthquake segmentation. Here, we show that in addition to the fault geometry, the actual geology of the rocks in the hanging wall of the fault also affect critical parameters, including the loading rate on parts of the fault, based on fault-bend folding theory. Because loading velocity controls the recurrence time of earthquakes, these two effects together are likely to have a strong impact on the

  20. Evolution under Drug Pressure Remodels the Folding Free-Energy Landscape of Mature HIV-1 Protease.

    Science.gov (United States)

    Louis, John M; Roche, Julien

    2016-07-03

    Using high-pressure NMR spectroscopy and differential scanning calorimetry, we investigate the folding landscape of the mature HIV-1 protease homodimer. The cooperativity of unfolding was measured in the absence or presence of a symmetric active site inhibitor for the optimized wild type protease (PR), its inactive variant PRD25N, and an extremely multidrug-resistant mutant, PR20. The individual fit of the pressure denaturation profiles gives rise to first order, ∆GNMR, and second order, ∆VNMR (the derivative of ∆GNMR with pressure); apparent thermodynamic parameters for each amide proton considered. Heterogeneity in the apparent ∆VNMR values reflects departure from an ideal cooperative unfolding transition. The narrow to broad distribution of ∆VNMR spanning the extremes from inhibitor-free PR20D25N to PR-DMP323 complex, and distinctively for PRD25N-DMP323 complex, indicated large variations in folding cooperativity. Consistent with this data, the shape of thermal unfolding transitions varies from asymmetric for PR to nearly symmetric for PR20, as dimer-inhibitor ternary complexes. Lack of structural cooperativity was observed between regions located close to the active site, including the hinge and tip of the glycine-rich flaps, and the rest of the protein. These results strongly suggest that inhibitor binding drastically decreases the cooperativity of unfolding by trapping the closed flap conformation in a deep energy minimum. To evade this conformational trap, PR20 evolves exhibiting a smoother folding landscape with nearly an ideal two-state (cooperative) unfolding transition. This study highlights the malleability of retroviral protease folding pathways by illustrating how the selection of mutations under drug pressure remodels the free-energy landscape as a primary mechanism. Published by Elsevier Ltd.

  1. Study of near-critical states of liquid-vapor phase transition of magnesium

    International Nuclear Information System (INIS)

    Emelyanov, A N; Shakhray, D V; Golyshev, A A

    2015-01-01

    Study of thermodynamic parameters of magnesium in the near-critical point region of the liquid-vapor phase transition and in the region of metal-nonmetal transition was carried out. Measurements of the electrical resistance of magnesium after shock compression and expansion into gas (helium) environment in the process of isobaric heating was carried out. Heating of the magnesium surface by heat transfer with hot helium was performed. The registered electrical resistance of expanded magnesium was about 10 4 -10 5 times lower than the electrical resistance of the magnesium under normal condition at the density less than the density of the critical point. Thus, metal-nonmetal transition was found in magnesium. (paper)

  2. Electronic differentiation competes with transition state sensitivity in palladium-catalyzed allylic substitutions

    Directory of Open Access Journals (Sweden)

    Goldfuss Bernd

    2007-10-01

    Full Text Available Abstract Electronic differentiations in Pd-catalyzed allylic substitutions are assessed computationally from transition structure models with electronically modified phospha-benzene-pyridine ligands. Although donor/acceptor substitutions at P and N ligand sites were expected to increase the site selectivity, i.e. the preference for "trans to P" attack at the allylic intermediate, acceptor/acceptor substitution yields the highest selectivity. Energetic and geometrical analyses of transition structures show that the sensitivity for electronic differentiation is crucial for this site selectivity. Early transition structures with acceptor substituted ligands give rise to more intensive Pd-allyl interactions, which transfer electronic P,N differentiation of the ligand more efficiently to the allyl termini and hence yield higher site selectivities.

  3. Transitions among Health States Using 12 Measures of Successful Aging in Men and Women: Results from the Cardiovascular Health Study

    Directory of Open Access Journals (Sweden)

    Stephen Thielke

    2012-01-01

    Full Text Available Introduction. Successful aging has many dimensions, which may manifest differently in men and women at different ages. Methods. We characterized one-year transitions among health states in 12 measures of successful aging among adults in the Cardiovascular Health Study. The measures included self-rated health, ADLs, IADLs, depression, cognition, timed walk, number of days spent in bed, number of blocks walked, extremity strength, recent hospitalizations, feelings about life as a whole, and life satisfaction. We dichotomized variables into “healthy” or “sick,” states, and estimated the prevalence of the healthy state and the probability of transitioning from one state to another, or dying, during yearly intervals. We compared men and women and three age groups (65–74, 75–84, and 85–94. Findings. Measures of successful aging showed similar results by gender. Most participants remained healthy even into advanced ages, although health declined for all measures. Recuperation, although less common with age, still occurred frequently. Men had a higher death rate than women regardless of health status, and were also more likely to remain in the healthy state. Discussion. The results suggest a qualitatively different experience of successful aging between men and women. Men did not simply “age faster” than women.

  4. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Stránský, Pavel [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Macek, Michal [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic); Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States); Leviatan, Amiram [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Cejnar, Pavel, E-mail: pavel.cejnar@mff.cuni.cz [Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague (Czech Republic)

    2015-05-15

    This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.

  5. Surfing the free energy landscape of flavodoxin folding

    NARCIS (Netherlands)

    Bollen, Y.J.M.

    2004-01-01

    The research described in this thesis has been carried out to obtain a better understanding of the fundamental rules describing protein folding. Protein folding is the process in which a linear chain of amino acids contracts to a compact state in which it is active. Flavodoxin from Azotobacter

  6. Gravitational wave background from neutron star phase transition for a new class of equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, J C N de [Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos/SP (Brazil); Marranghello, G F [Universidade Federal do Pampa, Bage/RS (Brazil)], E-mail: jcarlos@das.inpe.br

    2008-07-15

    We study the generation of a stochastic gravitational wave (GW) background produced by a population of neutron stars (NSs) which go over a hadron-quark phase transition in its inner shells. We obtain, for example, that the NS phase transition, in cold dark matter scenarios, could generate a stochastic GW background with a maximum amplitude of hBG {approx} 10{sup -24}, in the frequency band {approx_equal} 20-2000 Hz for stars forming at redshifts of up to z {approx_equal} 20. We study the possibility of detection of this isotropic GW background by correlating signals of a pair of 'advanced' LIGO observatories.

  7. First identification of the 0{sub 2}{sup +} state in {sup 30}Mg via its E0 transition

    Energy Technology Data Exchange (ETDEWEB)

    Schwerdtfeger, Wolfgang Norbert Erik

    2008-08-28

    The known 1789 keV level in {sup 30}Mg turned out to be a candidate for the 0{sub 2}{sup +} state due to its long lifetime of 3.9(4) ns and the absence of a {gamma} transition to the ground state. This triggered our search on the 0{sub 2}{sup +}{yields}0{sub 1}{sup +} E0 transition in {sup 30}Mg following the {beta} decay of {sup 30}Na: {beta} decay electrons were detected in a scintillation detector, while conversion electrons were focused onto a cooled Si(Li) detector using a Mini-Orange and detected with high resolution, which simultaneously suppresses the high background of {beta} decay electrons. Due to the large Q value of the {beta} decay of {sup 30}Na (17.3 MeV) the suppression of the coincident background induced by high-energy {gamma} rays and subsequently Compton-scattered electrons turned out to be the key challenge for the success of this experiment. In order to optimise the background suppression and thus the sensitivity to weak E0 transitions, offline test measurements using an {sup 90}Y and a {sup 152}Eu source were performed together with GEANT4 simulations. Resulting from these test measurements a highly sensitive experimental setup was designed and built, consequently minimising the amount of high-Z material in the target chamber, reducing X-ray production. As a by-product from test measurements the database value of the half-life of the 0{sub 2}{sup +} state in {sup 90}Zr could be corrected by more than 30 % to be t{sub 1/2}=41(1) ns. Finally, in a {beta} decay experiment at the ISOLDE facility at CERN the 0{sub 2}{sup +}{yields}0{sub 1}{sup +} E0 transition in {sup 30}Mg could be identified at the expected transition energy of 1788 keV proving for the first time shape coexistence at the borderline of the 'Island of Inversion'. This identification allows to determine the electric monopole strength as {rho}{sup 2}(E0)=26.2(7.5) x 10{sup -3}, indicating a rather weak mixing between the states in two potential minima in a simplified two

  8. Folding-type coupling potentials in the context of the generalized rotation-vibration model

    Science.gov (United States)

    Chamon, L. C.; Morales Botero, D. F.

    2018-03-01

    The generalized rotation-vibration model was proposed in previous works to describe the structure of heavy nuclei. The model was successfully tested in the description of experimental results related to the electron-nucleus elastic and inelastic scattering. In the present work, we consider heavy-ion collisions and assume this model to calculate folding-type coupling potentials for inelastic states, through the corresponding transition densities. As an example, the method is applied to coupled-channel data analyses for the α + 70,72,74,76Ge systems.

  9. Mid-UV studies of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states

    Science.gov (United States)

    Rivera Sandoval, L. E.; Hernández Santisteban, J. V.; Degenaar, N.; Wijnands, R.; Knigge, C.; Miller, J. M.; Reynolds, M.; Altamirano, D.; van den Berg, M.; Hill, A.

    2018-05-01

    We report mid-UV (MUV) observations taken with Hubble Space Telescope (HST)/WFC3, Swift/UVOT, and GALEX/NUV of the transitional millisecond pulsars XSS J12270-4859 and PSR J1023+0038 during their radio pulsar states. Both systems were detected in our images and showed MUV variability. At similar orbital phases, the MUV luminosities of both pulsars are comparable. This suggests that the emission processes involved in both objects are similar. We estimated limits on the mass ratio, companion's temperature, inclination, and distance to XSS J12270-4859 by using a Markov Chain Monte Carlo algorithm to fit published folded optical light curves. Using the resulting parameters, we modelled MUV light curves in our HST filters. The resulting models failed to fit our MUV observations. Fixing the mass ratio of XSS J12270-4859 to the value reported in other studies, we obtained a distance of ˜3.2 kpc. This is larger than the one derived from dispersion measure (˜1.4 kpc). Assuming a uniform prior for the mass ratio, the distance is similar to that from radio measurements. However, it requires an undermassive companion (˜0.01M⊙). We conclude that a direct heating model alone cannot fully explain the observations in optical and MUV. Therefore, an additional radiation source is needed. The source could be an intrabinary shock which contributes to the MUV flux and likely to the optical one as well. During the radio pulsar state, the MUV orbital variations of PSR J1023+0038 detected with GALEX, suggest the presence of an asymmetric intrabinary shock.

  10. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG).

    Science.gov (United States)

    Pehkonen, K S; Roos, Y H; Miao, S; Ross, R P; Stanton, C

    2008-06-01

    The frozen and dehydrated state transitions of lactose and trehalose were determined and studied as factors affecting the stability of probiotic bacteria to understand physicochemical aspects of protection against freezing and dehydration of probiotic cultures. Lactobacillus rhamnosus GG was frozen (-22 or -43 degrees C), freeze-dried and stored under controlled water vapour pressure (0%, 11%, 23% and 33% relative vapour pressure) conditions. Lactose, trehalose and their mixture (1 : 1) were used as protective media. These systems were confirmed to exhibit relatively similar state transition and water plasticization behaviour in freeze-concentrated and dehydrated states as determined by differential scanning calorimetry. Ice formation and dehydrated materials were studied using cold-stage microscopy and scanning electron microscopy. Trehalose and lactose-trehalose gave the most effective protection of cell viability as observed from colony forming units after freezing, dehydration and storage. Enhanced cell viability was observed when the freezing temperature was -43 degrees C. State transitions of protective media affect ice formation and cell viability in freeze-drying and storage. Formation of a maximally freeze-concentrated matrix with entrapped microbial cells is essential in freezing prior to freeze-drying. Freeze-drying must retain a solid amorphous state of protectant matrices. Freeze-dried matrices contain cells entrapped in the protective matrices in the freezing process. The retention of viability during storage seems to be controlled by water plasticization of the protectant matrix and possibly interactions of water with the dehydrated cells. Highest cell viability was obtained in glassy protective media. This study shows that physicochemical properties of protective media affect the stability of dehydrated cultures. Trehalose and lactose may be used in combination, which is particularly important for the stabilization of probiotic bacteria in dairy

  11. Modelling of arc jet plasma flow in transitional regime by Navier Stokes and state-to-state coupling

    International Nuclear Information System (INIS)

    Alexandrova, T.; Izrar, B.; Lino da Silva, M.; Dudeck, M.

    2005-01-01

    The combination of 2D Navier-Stokes and state-to-state approaches has been used to describe the air plasma flow in an arc-jet. The gas dynamic parameters were calculated in Navier-Stokes approximation in a steady state description without chemical reaction and vibrational exchanges. And then, the set of equations of vibrational level densities and atomic species densities was locally solved. Experimental validations have been performed

  12. Transitions From Violence to Politics: Conditions for the Politicization of Violent Non-State Actors

    Science.gov (United States)

    2015-12-01

    hunger strike generated drove the republican movement toward political mobilization in a way not seen since “the troubles” in 1969.108 During that...attacks against the group prompt retaliatory violence, however, as well as jeopardize a successful PKK political transition. The pendulum of moderation

  13. From War to Politics : Non State Armed Groups in Transition | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to draw out the experience of groups who have made the transition from armed resistance movement to political party, and to make that experience available to others contemplating or engaged in the same move. The project will be jointly managed by the Berghof Research Center for Constructive Conflict ...

  14. 31 CFR 545.404 - Transshipment or transit through the United States prohibited.

    Science.gov (United States)

    2010-07-01

    ... Money and Finance (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TALIBAN... intended or destined for the Taliban or the territory of Afghanistan controlled by the Taliban. (b) The... transit to third countries, of goods owned or controlled by the Taliban or from the territory of...

  15. Governance and law in transition states : [doktoritöö] / Taavi Annus ; juhendaja: Wolfgang Drechsler

    Index Scriptorium Estoniae

    Annus, Taavi, 1977-

    2004-01-01

    Sisaldab artikleid: Comparative constitutional reasoning : the law and strategy of selecting the right arguments ; Die Verfassungsentwicklung in Estland von 1992 bis 2001 ; Judicial behavior in transition : the effects of judge and defendant characteristics ; The right to health protection in the Estonian Constitution ; German authors on Estonian minority rights

  16. NoFold: RNA structure clustering without folding or alignment.

    Science.gov (United States)

    Middleton, Sarah A; Kim, Junhyong

    2014-11-01

    Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY

    International Nuclear Information System (INIS)

    Shi, Jade; Schwantes, Christian; Bilsel, Osman

    2017-01-01

    The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. We report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. The resulting prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. We then predict incisive single molecule FRET experiments, using these results, as a means of model validation. Our study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.

  18. Atomistic structural ensemble refinement reveals non-native structure stabilizes a sub-millisecond folding intermediate of CheY

    Science.gov (United States)

    Shi, Jade; Nobrega, R. Paul; Schwantes, Christian; Kathuria, Sagar V.; Bilsel, Osman; Matthews, C. Robert; Lane, T. J.; Pande, Vijay S.

    2017-03-01

    The dynamics of globular proteins can be described in terms of transitions between a folded native state and less-populated intermediates, or excited states, which can play critical roles in both protein folding and function. Excited states are by definition transient species, and therefore are difficult to characterize using current experimental techniques. Here, we report an atomistic model of the excited state ensemble of a stabilized mutant of an extensively studied flavodoxin fold protein CheY. We employed a hybrid simulation and experimental approach in which an aggregate 42 milliseconds of all-atom molecular dynamics were used as an informative prior for the structure of the excited state ensemble. This prior was then refined against small-angle X-ray scattering (SAXS) data employing an established method (EROS). The most striking feature of the resulting excited state ensemble was an unstructured N-terminus stabilized by non-native contacts in a conformation that is topologically simpler than the native state. Using these results, we then predict incisive single molecule FRET experiments as a means of model validation. This study demonstrates the paradigm of uniting simulation and experiment in a statistical model to study the structure of protein excited states and rationally design validating experiments.

  19. What is the Role of the Transition State in Soret and Chemical Diffusion Induced Isotopic Fractionation?

    Science.gov (United States)

    Dominguez, G.

    2013-12-01

    For over six decades, Urey's (1) statistical mechanical model of isotopic fractionation based on partition functions with quantized energy levels have enjoyed enormous success in quantitatively explaining equilibrium isotopic fractionation in a wide variety of geochemical systems For example, the interpretation of oxygen isotopic variations in carbonate systems (e.g. foraminiferas), in terms of partition functions with quantized energy levels, forms the basis for paleothermometry (2). Recent observations of isotopic fractionation from chemical and thermal (Soret) diffusion (3-7) appear to challenge our theoretical understanding of mass-transport and isotopic fractionation (8, 9). For example, a recently proposed quantum mechanical model of Soret diffusion, which correctly predicts the isotopic fractionation in thermal gradients for isotopes of Mg, Ca, Fe, Si, and possibly oxygen, was critiqued as being unphysical. First, it was argued that the zero point energies needed to explain the magnitude of isotopic fractionation in basalt melts were unrealistically high based on infrared spectra of these melts. Second, it was argued that the chemical diffusion isotopic fractionation (beta) factors expected from these zero-point energies were also unphysical (10). A recently proposed collision-momentum transfer model partially explains observed fractionation factors, although it fails miserably (by a factor of 3) to account for the isotopic fractionation of Mg isotopes (11). In this presentation, I will review recent observations and models of isotopic fractionation in geochemical melts with thermal gradients and expand upon previous work (8, 12) to show how transition state theory can simultaneously explain mass-transport induced isotopic fractionation, including kinetic, equilibrium, and Soret isotopic fractionation. I show this by providing a few example calculations of the kinetic fractionation factors (a.k.a. beta factors) expected in chemical diffusion as well as

  20. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.

    Science.gov (United States)

    Gani, Terry Z H; Kulik, Heather J

    2017-11-14

    Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the

  1. Excitation energy transfer in Chlamydomonas reinhardtii deficient in the PSI core or the PSII core under conditions mimicking state transitions.

    Science.gov (United States)

    Wlodarczyk, Lucyna M; Dinc, Emine; Croce, Roberta; Dekker, Jan P

    2016-06-01

    The efficient use of excitation energy in photosynthetic membranes is achieved by a dense network of pigment-protein complexes. These complexes fulfill specific functions and interact dynamically with each other in response to rapidly changing environmental conditions. Here, we studied how in the intact cells of Chlamydomonas reinhardtii (C.r.) the lack of the photosystem I (PSI) core or the photosystem II (PSII) core affects these interactions. To that end the mutants F15 and M18 (both PSI-deficient) and FUD7 (PSII-deficient) were incubated under conditions known to promote state transitions in wild-type. The intact cells were then instantly frozen to 77K and the full-spectrum time-resolved fluorescence emission of the cells was measured by means of streak camera. In the PSI-deficient mutants excitation energy transfer (EET) towards light-harvesting complexes of PSI (Lhca) occurs in less than 0.5 ns, and fluorescence from Lhca decays in 3.1 ns. Decreased trapping by PSII and increased fluorescence of Lhca upon state 1 (S1)→state 2 (S2) transition appears in the F15 and less in the M18 mutant. In the PSII-deficient mutant FUD7, quenched (0.5 ns) and unquenched (2 ns) light-harvesting complexes of PSII (LHCII) are present in both states, with the quenched form more abundant in S2 than in S1. Moreover, EET of 0.4 ns from the remaining LHCII to PSI increases upon S1→S2 transition. We relate the excitation energy kinetics observed in F15, M18 and FUD7 to the remodeling of the photosynthetic apparatus in these mutants under S1 and S2 conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Superconductivity in thallium double atomic layer and transition into an insulating phase intermediated by a quantum metal state

    Science.gov (United States)

    Ichinokura, S.; Bondarenko, L. V.; Tupchaya, A. Y.; Gruznev, D. V.; Zotov, A. V.; Saranin, A. A.; Hasegawa, S.

    2017-06-01

    We report on the first observation of superconductivity in a double atomic layer of Tl on Si(1 1 1) using in situ electrical resistivity measurements in ultrahigh vacuum. The structure of the Tl bilayer was characterized by a set of techniques, including scanning tunneling microscopy, electron diffraction and photoemission spectroscopy, which confirmed the metastability and metallic nature of the Tl bilayer. The epitaxial growth of atomically thin ‘soft’ metallic film over the entire surface of substrate enabled us to find a macroscopic superconducting transition at 0.96 K, accompanied by thermal and quantum fluctuations of order parameter. The system also demonstrates a perpendicular-magnetic-field-induced superconductor-insulator transition, together with an intermediate metallic state. We have found that the magnetoresitivity at the lowest temperature is consistent with the Bose metal picture, which is a consequence of strong quantum fluctuations.

  3. The radiative decays of excited states of transition elements located inside and near core-shell nanoparticles

    Science.gov (United States)

    Pukhov, Konstantin K.

    2017-12-01

    Here we discuss the radiative decays of excited states of transition elements located inside and outside of the subwavelength core-shell nanoparticles embedded in dielectric medium. Based on the quantum mechanics and quantum electrodynamics, the general analytical expressions are derived for the probability of the spontaneous transitions in the luminescent centers (emitter) inside and outside the subwavelength core-shell nanoparticle. Obtained expressions holds for arbitrary orientation of the dipole moment and the principal axes of the quadrupole moment of the emitter with respect to the radius-vector r connecting the center of the emitter with the center of the nanoparticle. They have simple form and show how the spontaneous emission in core-shell NPs can be controlled and engineered due to the dependence of the emission rates on core-shell sizes, radius-vector r and permittivities of the surrounding medium, shell, and core.

  4. Exploring the Cross-sectional Association between Transit-Oriented Development Zoning and Active Travel and Transit Usage in the United States, 2010-2014

    Directory of Open Access Journals (Sweden)

    Emily eThrun

    2016-06-01

    Full Text Available Background: In response to traditional zoning codes that contribute to car-dependent, sprawling, and disconnected neighborhoods, communities are reforming their land use laws to create pedestrian-friendly areas that promote physical activity. One such reform is the adoption of transit-oriented developments or districts (TODs. TODs are higher-density, compact, mixed use areas located around transit stops that are designed to encourage walking.Purpose: To identify the characteristics of communities that have adopted TODs in their land use laws and examine if communities that have included TODs in their zoning codes are more likely to have adults that commute by any form of active transportation (i.e., walking, biking, or public transportation or by using public transportation specifically.Methods: Zoning codes effective as of 2010 were obtained for a purposeful sample of the largest 3,914 municipal jurisdictions located in 473 of the most populous US counties and consolidated cities within 48 states and the District of Columbia. They were evaluated to determine whether they included TOD districts or regulations using a coding tool developed by the study team. Descriptive statistics together with t-tests and Pearson’s chi-squared independence test were used to compare characteristics of jurisdictions with and without TOD zoning. Multivariate linear regressions were used to compute the adjusted association between TOD zoning and taking public or active transportation to work.Results: Jurisdictions with TOD zoning were located more in the South and West than non-TOD jurisdictions and were more populous, higher income, more racially diverse, and younger. Jurisdictions with TOD zoning had significantly higher percentages of occupied housing with no vehicle than those without TOD zoning. TOD zoning was associated with significantly higher rates of public transportation to work (β=2.10, 95% CI=0.88, 3.32 and active transportation to work (β=2.48, 95

  5. Folding of proteins with an all-atom Go-model.

    Science.gov (United States)

    Wu, L; Zhang, J; Qin, M; Liu, F; Wang, W

    2008-06-21

    The Go-like potential at a residual level has been successfully applied to the folding of proteins in many previous works. However, taking into consideration more detailed structural information in the atomic level, the definition of contacts used in these traditional Go-models may not be suitable for all-atom simulations. Here, in this work, we develop a rational definition of contacts considering the screening effect in the crowded intramolecular environment. In such a scheme, a large amount of screened atom pairs are excluded and the number of contacts is decreased compared to the case of the traditional definition. These contacts defined by such a new definition are compatible with the all-atom representation of protein structures. To verify the rationality of the new definition of contacts, the folding of proteins CI2 and SH3 is simulated by all-atom molecular dynamics simulations. A high folding cooperativity and good correlation of the simulated Phi-values with those obtained experimentally, especially for CI2, are found. This suggests that the all-atom Go-model is improved compared to the traditional Go-model. Based on the comparison of the Phi-values, the roles of side chains in the folding are discussed, and it is concluded that the side-chain structures are more important for local contacts in determining the transition state structures. Moreover, the relations between side chain and backbone orderings are also discussed.

  6. P-state-to-P-state transitions in optically prepared atomic collisions: I. Theory of measurement in terms of Stokes parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sidky, E.Y. [Niels Bohr Institute, Oersted Laboratory, Copenhagen (Denmark); JR Mcdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS (United States); Grego, S.; Andersen, N. [Niels Bohr Institute, Oersted Laboratory, Copenhagen (Denmark); Dowek, D. [Laboratoire des Collisions Atomiques et Moleculaires, Batiment 351, Universite Paris-Sud, Orsay (France)

    2002-05-14

    We present a parametrization in terms of Stokes parameters for the scattering from a P state to a P state for atomic collisions in a beam experiment. The classic approach to a 'complete scattering experiment', well known for S-state-to-P-state transitions, is generalized by a systematic combination of optical preparation of specific initial P states with Stokes parameter analysis of the radiation pattern from the final P state. The anisotropy of the initial and final state provides the possibility of extraction of a complete set of nine parameters describing the reaction at the level of five independent scattering amplitudes. We discuss the minimum number of experiments required to obtain a complete set of parameters in the cases of scattering angle-integrated and scattering angle-differential measurements. Relations to collision parameters for the reverse process are derived. Finally, effects due to fine and hyperfine depolarization, as well as inclusion of electron spin polarization, are treated. (author)

  7. Computational analysis of the mechanism of chemical reactions in terms of reaction phases: hidden intermediates and hidden transition States.

    Science.gov (United States)

    Kraka, Elfi; Cremer, Dieter

    2010-05-18

    Computational approaches to understanding chemical reaction mechanisms generally begin by establishing the relative energies of the starting materials, transition state, and products, that is, the stationary points on the potential energy surface of the reaction complex. Examining the intervening species via the intrinsic reaction coordinate (IRC) offers further insight into the fate of the reactants by delineating, step-by-step, the energetics involved along the reaction path between the stationary states. For a detailed analysis of the mechanism and dynamics of a chemical reaction, the reaction path Hamiltonian (RPH) and the united reaction valley approach (URVA) are an efficient combination. The chemical conversion of the reaction complex is reflected by the changes in the reaction path direction t(s) and reaction path curvature k(s), both expressed as a function of the path length s. This information can be used to partition the reaction path, and by this the reaction mechanism, of a chemical reaction into reaction phases describing chemically relevant changes of the reaction complex: (i) a contact phase characterized by van der Waals interactions, (ii) a preparation phase, in which the reactants prepare for the chemical processes, (iii) one or more transition state phases, in which the chemical processes of bond cleavage and bond formation take place, (iv) a product adjustment phase, and (v) a separation phase. In this Account, we examine mechanistic analysis with URVA in detail, focusing on recent theoretical insights (with a variety of reaction types) from our laboratories. Through the utilization of the concept of localized adiabatic vibrational modes that are associated with the internal coordinates, q(n)(s), of the reaction complex, the chemical character of each reaction phase can be identified via the adiabatic curvature coupling coefficients, A(n,s)(s). These quantities reveal whether a local adiabatic vibrational mode supports (A(n,s) > 0) or resists

  8. Fast Transition between High-soft and Low-soft States in GRS 1915 ...

    Indian Academy of Sciences (India)

    The X-ray light curve and colour-colour diagram of the source during these observations are found to be different from any reported so far. The duration of these dips is found to be of the order of a few tens of seconds with a repetition time of a few hundred seconds. The transition between these dips and non-dips which differ ...

  9. Comment on "Minimum Action Path Theory Reveals the Details of Stochastic Transitions Out of Oscillatory States"

    OpenAIRE

    Meerson, Baruch; Smith, Naftali R.

    2018-01-01

    De la Cruz et al. [Phys. Rev. Lett. 120, 128102 (2018); arXiv:1705.08683] studied a noise-induced transition in an oscillating stochastic population undergoing birth- and death-type reactions. They applied the Freidlin-Wentzell WKB formalism to determine the most probable path to the noise-induced escape from a limit cycle predicted by deterministic theory, and to find the probability distribution of escape time. Here we raise a number of objections to their calculations.

  10. Energy barriers between metastable states in first-order quantum phase transitions

    Science.gov (United States)

    Wald, Sascha; Timpanaro, André M.; Cormick, Cecilia; Landi, Gabriel T.

    2018-02-01

    A system of neutral atoms trapped in an optical lattice and dispersively coupled to the field of an optical cavity can realize a variation of the Bose-Hubbard model with infinite-range interactions. This model exhibits a first-order quantum phase transition between a Mott insulator and a charge density wave, with spontaneous symmetry breaking between even and odd sites, as was recently observed experimentally [Landig et al., Nature (London) 532, 476 (2016), 10.1038/nature17409]. In the present paper, we approach the analysis of this transition using a variational model which allows us to establish the notion of an energy barrier separating the two phases. Using a discrete WKB method, we then show that the local tunneling of atoms between adjacent sites lowers this energy barrier and hence facilitates the transition. Within our simplified description, we are thus able to augment the phase diagram of the model with information concerning the height of the barrier separating the metastable minima from the global minimum in each phase, which is an essential aspect for the understanding of the reconfiguration dynamics induced by a quench across a quantum critical point.

  11. Control over the magnetism and transition between high- and low-spin states of an adatom on trilayer graphene.

    Science.gov (United States)

    Zheng, Anmin; Gao, Guoying; Huang, Hai; Gao, Jinhua; Yao, Kailun

    2017-05-31

    Using density-functional theory, we investigate the electronic and magnetic properties of an adatom (Na, Cu and Fe) on ABA- and ABC-stacked (Bernal and rhombohedral) trilayer graphenes. In particular, we study the influence of an applied gate voltage on magnetism, as it modifies the electronic states of the trilayer graphene (TLG) as well as changes the adatom spin states. Our study performed for a choice of three different adatoms (Na, Cu, and Fe) shows that the nature of adatom-graphene bonding evolves from ionic to covalent in moving from an alkali metal (Na) to a transition metal (Cu or Fe). Applying an external electric field (EEF) to TLG systems with different stacking orders results in the transition between high- and low-spin states in the latter case (Cu, Fe) and induces a little of magnetism in the former (Na) without magnetism in the absence of an external electric field. Our study would be useful for controlled adatom magnetism and (organic) spintronic applications in nanotechnology.

  12. Characteristics of the Mott transition and electronic states of high-temperature cuprate superconductors from the perspective of the Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2018-04-01

    A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.

  13. Main line maser emission in the OH ground state Λdoublet as a result of overlapping far infrared transitions

    International Nuclear Information System (INIS)

    Pelling, M.

    1977-01-01

    Transitions 2πsub(1/2), j = 5/2, F = 3 → 2πsub(3/2), j = 3/2, F = 2 and 2πsub(1/2), j = 5/2, F = 2 → 2πsub(3/2), J = 3/2, F = 1 have overlapping Doppler line wings at a kinetic temperature of 100 K. This alters the transport of radiation in each line from that which would occur in the absence of line overlap. As a result, the upper levels of the ground state Λ-doublet become overpopulated. (author)

  14. Crossing the dividing surface of transition state theory. IV. Dynamical regularity and dimensionality reduction as key features of reactive trajectories.

    Science.gov (United States)

    Lorquet, J C

    2017-04-07

    The atom-diatom interaction is studied by classical mechanics using Jacobi coordinates (R, r, θ). Reactivity criteria that go beyond the simple requirement of transition state theory (i.e., P R* > 0) are derived in terms of specific initial conditions. Trajectories that exactly fulfill these conditions cross the conventional dividing surface used in transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) only once. Furthermore, they are observed to be strikingly similar and to form a tightly packed bundle of perfectly collimated trajectories in the two-dimensional (R, r) configuration space, although their angular motion is highly specific for each one. Particular attention is paid to symmetrical transition states (i.e., either collinear or T-shaped with C 2v symmetry) for which decoupling between angular and radial coordinates is observed, as a result of selection rules that reduce to zero Coriolis couplings between modes that belong to different irreducible representations. Liapunov exponents are equal to zero and Hamilton's characteristic function is planar in that part of configuration space that is visited by reactive trajectories. Detailed consideration is given to the concept of average reactive trajectory, which starts right from the saddle point and which is shown to be free of curvature-induced Coriolis coupling. The reaction path Hamiltonian model, together with a symmetry-based separation of the angular degree of freedom, provides an appropriate framework that leads to the formulation of an effective two-dimensional Hamiltonian. The success of the adiabatic approximation in this model is due to the symmetry of the transition state, not to a separation of time scales. Adjacent trajectories, i.e., those that do not exactly fulfill the reactivity conditions have similar characteristics, but the quality of the approximation is lower. At

  15. Crossing the dividing surface of transition state theory. IV. Dynamical regularity and dimensionality reduction as key features of reactive trajectories

    Science.gov (United States)

    Lorquet, J. C.

    2017-04-01

    The atom-diatom interaction is studied by classical mechanics using Jacobi coordinates (R, r, θ). Reactivity criteria that go beyond the simple requirement of transition state theory (i.e., PR* > 0) are derived in terms of specific initial conditions. Trajectories that exactly fulfill these conditions cross the conventional dividing surface used in transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) only once. Furthermore, they are observed to be strikingly similar and to form a tightly packed bundle of perfectly collimated trajectories in the two-dimensional (R, r) configuration space, although their angular motion is highly specific for each one. Particular attention is paid to symmetrical transition states (i.e., either collinear or T-shaped with C2v symmetry) for which decoupling between angular and radial coordinates is observed, as a result of selection rules that reduce to zero Coriolis couplings between modes that belong to different irreducible representations. Liapunov exponents are equal to zero and Hamilton's characteristic function is planar in that part of configuration space that is visited by reactive trajectories. Detailed consideration is given to the concept of average reactive trajectory, which starts right from the saddle point and which is shown to be free of curvature-induced Coriolis coupling. The reaction path Hamiltonian model, together with a symmetry-based separation of the angular degree of freedom, provides an appropriate framework that leads to the formulation of an effective two-dimensional Hamiltonian. The success of the adiabatic approximation in this model is due to the symmetry of the transition state, not to a separation of time scales. Adjacent trajectories, i.e., those that do not exactly fulfill the reactivity conditions have similar characteristics, but the quality of the approximation is lower. At higher

  16. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.

    2000-01-01

    The nonequilibrium, steady-state phase transitions and the structure of the different phases of a two-dimensional system with two thermodynamic temperatures are studied via a simple lattice-gas model with mobile active impurities ("hot/cold spots'') whose activity is controlled by an external drive....... The properties of the model are calculated by Monte Carlo computer-simulation techniques. The two temperatures and the external drive on the system lead to a rich phase diagram including regions of microstructured phases in addition to macroscopically ordered (phase-separated) and disordered phases. Depending...

  17. Improving the effectiveness of ecological site descriptions: General state-and-transition models and the Ecosystem Dynamics Interpretive Tool (EDIT)

    Science.gov (United States)

    Bestelmeyer, Brandon T.; Williamson, Jeb C.; Talbot, Curtis J.; Cates, Greg W.; Duniway, Michael C.; Brown, Joel R.

    2016-01-01

    State-and-transition models (STMs) are useful tools for management, but they can be difficult to use and have limited content.STMs created for groups of related ecological sites could simplify and improve their utility. The amount of information linked to models can be increased using tables that communicate management interpretations and important within-group variability.We created a new web-based information system (the Ecosystem Dynamics Interpretive Tool) to house STMs, associated tabular information, and other ecological site data and descriptors.Fewer, more informative, better organized, and easily accessible STMs should increase the accessibility of science information.

  18. Differences in transition state stabilization between thermolysin (EC 3.4.24.27) and neprilysin (EC 3.4.24.11).

    OpenAIRE

    Marie-Claire, Cynthia; Ruffet, Emmanuel; Tiraboschi, Gilles; Fournie-Zaluski, Marie-Claude

    1998-01-01

    Important homologies in the topology of the catalytic site and the mechanism of action of thermolysin and neprilysin have been evidenced by site-directed mutagenesis. The determination of differences in transition state stabilization between these peptidases could facilitate the design of specific inhibitors. Thus, two residues of thermolysin which could be directly (Tyr157) or indirectly (Asp226) involved in the stabilization of the transition state and their putative counterparts in neprily...

  19. Fluorescence excitation involving multiple electron transition states of N{sub 2} and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y.R.; Chen, F.Z.; Hung, T.; Judge, D.L. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-04-01

    The electronic states and electronic structures of N{sub 2} and CO{sub 2} in the 8-50 eV energy region have been studied extensively both experimentally and theoretically. In the energy region higher than 25 eV there exists many electronic states including multiple electron transition (MET) states which are responsible for producing most of the dissociative photoionization products. The electronic states at energies higher than 50 eV have been mainly determined by Auger spectroscopy, double charge transfer, photofragment spectroscopy and ion-ion coincidence spectroscopy. The absorption and ionization spectra of these molecules at energies higher than 50 eV mainly show a monotonic decrease in cross section values and exhibit structureless features. The decay channels of MET and Rydberg (or superexcited) states include autoionization, ionization, dissociative ionization, predissociation, and dissociation while those of single ion and multiple ion states may involve predissociation. and dissociation processes. The study of fluorescence specifically probes electronically excited species resulting from the above-mentioned decay channels and provides information for understanding the competition among these channels.

  20. Some Considerations on the Fundamentals of Chemical Kinetics: Steady State, Quasi-Equilibrium, and Transition State Theory

    Science.gov (United States)

    Perez-Benito, Joaquin F.

    2017-01-01

    The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…